presented by

UEFI Manageability and REST Services

Fall 2017 UEFI Seminar and Plugfest
October 30 – November 3, 2017
Presented by Abner Chang (HPE), Ting Ye (Intel)

Agenda

- Introduction
- UEFI Manageability
- Real Use Case: UEFI iSCSI
- REST in UEFI
- Insufficient Capabilities in 'EFI REST' and Proposals for Enhancement
- Summary & Call to Action

Introduction

Introduction

- Today's platforms have amazing capabilities, but they are complex to configure
 - Firmware configuration model is still focused on "Press to Enter Setup"
 - Remote management isn't consistent
- UEFI has abundant firmware manageability interfaces, and is adopting REST/Redfish, but there are still gaps in the standard

Goals

- Overview of UEFI manageability interfaces
 & Human Interface Infrastructure (HII)
- Examples of handling configuration data
- Overview of EFI REST protocol
- Proposals to cover gaps in REST services
- Background of REST service provider and UEFI REST Client

UEFI Manageability

UEFI Manageability

- Human Interface Infrastructure
 - HII Protocols
 - -x-UEFI language
- Keyword Handler Protocol
- Configuration Namespace

Human Interface Infrastructure

HII Protocols

- Content Registration:
 - HII Font, Font Ex, Font Glyph Generator
 - HII Image, Image ExImage Decoder
 - HII String
 - HII Database
- Browser Protocol:
 - Config Access / Routing
 - Form Browser
 - HII Popup

Multiple Language Support

x-UEFI: a "UEFI" Language

• "machine-to-machine" language

String Pack Language	ENG
Token #1	"BIOS Vendor"
String Pack Language	SPA
Token #1	"Vendedor de BIOS"
String Pack Language	x-UEFI
Token #1	"BIOS_VENDOR_KEYWORD"

How To Use This Language

- Retrieve platform exported data
- Get String Token of x-UEFI keyword
- Find op-code using the string token

Byte Byte		Byte	Byte	
Op-Code	Length (Prompt Token #	Help Token#	
Quest	ion ID	VarStore ID		
VarSto	reInfo	Flags	Op-Code Specific	
Op-Code Specific	Op-Code Specific	Op-Code Specific	Op-Code Specific	

Offset 0

Offset 4

Offset 8

Offset 12

Real Use Case: UEFI iSCSI

UEFI Plugfest – October 2017 www.uefi.org 13

Real Use Case: UEFI iSCSI

iSCSI is a popular network boot target

 UEFI iSCSI defines a number of dynamic HII forms

UEFI Plugfest – October 2017 www.uefi.org 15

 Registered to http://uefi.org/confignamespace

iSCSIInitiatorName	ReadWrite	iSCSIMacAddr	ReadWrite
iSCSIAttemptName:#	ReadOnly	iSCSIAddAttempts	ReadWrite
iSCSIBootEnable:#	ReadWrite	iSCSIDeleteAttempts	ReadWrite
iSCSIConnectRetry:#	ReadWrite	iSCSIDisplayAttemptList	ReadOnly

x-UEFI Usage Example


```
iSCSIInitiatorName
```

VFR file

UNI file

```
#string STR_ISCSI_CONFIG_INIT_NAME #language en-US "iSCSI Initiator Name"
#string STR_ISCSI_CONFIG_INIT_NAME #language x-UEFI "iSCSIInitiatorName"
```

Script file

IScsiScript -i iqn.edkii.intel.com

General Guidelines

- <u>OEMs ...</u>
 - Get keywords definition from http://uefi.org/confignamespace
 - Use KeywordHandler.GetData/SetData
- Firmware vendors ...
 - Get HII updates from the latest
 Intel® UEFI Development Kit
- <u>IHVs ...</u>
 - Define and register x-UEFI keywords
 - Support keyword setting in ConfigAccess.RouteConfig

REST in UEFI

REST = REpresentational **S**tate **T**ransfer (architecture) Most common client/server REST interface is HTTP

	Byte	Byte	Byte	Byte
Offset 0	Op-Code	Length (Prompt Token#	Help Token#
Offset 4	Question ID		VarStore ID	
Offset 8	VarStoreInfo		Flags	Op-Code Specific
Offset 12	Op-Code Specific	Op-Code Specific	Op-Code Specific	Op-Code Specific

#x-UEFI Keyword "iSCSIInitiatorName" HII Database **Device UEFI** Driver Platform Keyword Setup Handler Management **Browser** Driver **Protocol** HII Forms **Config Access UEFI** Variable EFI REST_PROTOCOL

Redfish Resources

Configure
Redfish BIOS
property
Remotely

BIOS Redfish Attribute "iSCSIInitiatorName"

Internet

#x-UEFI Keyword "iSCSIInitiatorName"

BIOS Redfish Attribute "iSCSIInitiatorName"

Resources

Redfish BIOS

property

Remotely

	Byte	Byte	Byte	Byte
Offset 0	Op-Code	Length (Prompt Token#	Help Token#
Offset 4	Question ID		VarStore ID	
Offset 8	VarStoreInfo		Flags	Op-Code Specific
Offset 12	Op-Code Specific	Op-Code Specific	Op-Code Specific	Op-Code Specific

#x-UEFI Keyword "iSCSIInitiatorName"

#x-UEFI Keyword "iSCSIInitiatorName"

UEFI Plugfest – October 2017

www.uefi.org

EFI REST Protocol in UEFI Spec v2.5

EFI REST Protocol use HTTP-like message as the format of REST service request and response

```
typedef struct _EFI_REST_PROTOCOL {
    EFI_REST_SEND_RECEIVE SendReceive;
    EFI_REST_GET_TIME GetServiceTime;
} EFI_REST_PROTOCOL;

Request

Request

Request

Resource

Resource

Resource

Response
```

EFI REST Protocol in UEFI Spec v2.5

EFI REST driver instances may use different underlying protocol to communicate with REST server.

Insufficient Capabilities in 'EFI REST' and Proposals for Enhancement

- Are 'EFI REST' capabilities sufficient for UEFI Manageability?
- Are 'EFI REST' capabilities sufficient for the modern REST Services?

Are 'EFI REST' Capabilities Sufficient?

How can we support a variety of in-band/out of band UEFI management models as shown in this figure?

Are 'EFI REST' Capabilities Sufficient?

STA .

How can we support On-platform/Off-Platform REST services for EFI REST clients?

Suggestions for EFI REST Protocol Enhancements

- Multiple EFI REST driver instances for different REST services
- The information of REST service
- The location of REST service
- Asynchronous request and response
- Address the events from REST service

Suggestions for EFI REST Protocol Enhancements

Multiple EFI REST driver instances for different REST services

Multiple EFI REST driver instances can be installed on system for communicating to different REST services. The EFI REST client drivers and applications can use the specific EFI REST protocol to access to REST service.

Suggestions for EFI REST Protocol Enhancements

The information of REST service?

Each EFI REST driver instance has to provide the information about REST service it supports.

The location of REST service?

Each EFI REST driver instance has to provide the information about the location of REST service.

Synchronous request and response leads to a downtime

SendReceive() function provided in EFI REST protocol is synchronous transfer. EFI REST client has to wait for the response once it sends the request out.

www.uefi.org 38

Asynchronous request and response

Support asynchronous SendReceive() function to provide efficient REST request and response. Also provides the better user experience when users use EFI REST client application

#x-UEFI Keyword "iSCSIInitiatorName"

Address the events from REST service

Most of REST service support event capability to indicate the changes of resource. User can register the event for certain type resource change such as resource created, modified, deleted and etc.

Summary & Call to Action

UEFI Plugfest – October 2017 www.uefi.org 4

Summary

- UEFI provides interfaces for improved manageability
 - (HII, x-UEFI, Keyword handle protocol, EFI REST protocol)
- Improvements to REST are required for adoption of standardized manageability

Call to Action

- Define and register more x-UEFI keywords
- Enhance current EFI REST Protocol for flexible, scalable and user friendly interfaces for EFI REST Clients
 - Asynchronous request/response in the enhanced EFI REST Protocol
 - Event subscription for monitoring resource changes in enhanced EFI REST Protocol
 - Provide sufficient information for target REST service

Thanks for attending the Fall 2017 UEFI Plugfest

For more information on the UEFI Forum and UEFI Specifications, visit http://www.uefi.org

presented by

Backup

What is REST?

REpresentational **S**tate **T**ransfer, which is a software architecture style. There are some constraints applied to this architecture.

request is retuned in response body.

REST in HTTP

HTTP is not the only interface (protocol) for REST architecture. However, it's most commonly used in Web REST service. Any transport interface which is unified to REST service and have the well defined verb to manipulate resource could be the interface between REST server and REST client.

REST Client and REST Services

REST Services

There are many REST Services and Providers. Most of those services provide RESTful APIs which are Web service API adhere to REST constraints. Those are called RESTful services.

Client

Request

Resource

Server

Resource

openstack RESTful Service

OData RESTful Service

Redfish RESTful Service

REST Service Server and EFI REST Client

The location of REST service provided by specific EFI REST driver

instance

Each EFI REST driver instance has to provide the information about the location of REST service it supports.

Asynchronous request and response

Support asynchronous

SendReceive() function provided in EFI REST protocol is synchronous transfer. EFI REST client has to wait for the response once it sends the request out.

SendReceive() function to provide efficient REST request and response. Also provide the better user experience when users use EFI REST client application

Asynchronous request and response

The way how REST service returns final response to REST Protocol driver instance is REST service implementation-specific and transparent to REST client.

The content of URI which pointed by HTTP Location header is REST service implementation-specific and not defined in REST Protocol specification. REST Protocol driver instance provider should have knowledge about how to poll the status of returning resource from given HTTP Location header.

provide better rs use Check URI status for the

Address the events from REST service

Multiple EFI REST clients to access to different REST service

Each EFI REST child instance communicates to different REST services.

Multiple EFI REST clients to access to one REST service

Each EFI REST child instance communicates to different REST services.

Or multiple EFI REST child instances access to the same REST service.

Enhancement of EFI REST Protocol

