Vulnerability Management in UEFI

UEFI Fall 2023 Developers Conference & Plugfest
October 11, 2023
Presented by Brian Mullen
Agenda

• Introduction
• Background – SSDLC Primer
• UEFI Vulnerability Management
• Questions
20+ years developing C/C++ firmware for embedded systems for telecommunications and consumer electronic devices (Past - Fujitsu/Motorola/Google/Arris)

DRM Security Lead for Motorola’s set-top box BU. Managed secure integration of DRM technologies into products.
- Cablecard DRM
- Secure Media HDD DRM
- DTLA’s DTCP-IP streaming DRM

Project Owner for Comcast’s OG-1600 Outdoor WiFi AP Product

AMI’s Head of SSDLC Organization
Before we turn focus to UEFI...

Background – An SSDLC Primer
What is the SSDLC Org?

A decentralized Product Security Team with a mandate to implement NIST SP 800-218 across the Engineering Organization
What is SP 800-218 About?

Requirements, Processes, Roles

Proactive Security

Prepare the Organization (PO)

Secure Dev Env
Secure Release
Code Signing

Produce Well-Secured Software (PW)

Reacting Security

Protect the Software (PS)

Respond to Vulnerabilities (RV)
Managing Vulnerabilities in the UEFI Supply Chain
Vulnerability Trends in UEFI

The Rate of Firmware Attacks are Increasing

<table>
<thead>
<tr>
<th>Exploit</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mebromi</td>
<td>2011</td>
</tr>
<tr>
<td>Hacking Team</td>
<td>2015</td>
</tr>
<tr>
<td>Equation Group/Vault 7 Leaks</td>
<td>2017</td>
</tr>
<tr>
<td>LoJax</td>
<td>2018</td>
</tr>
<tr>
<td>MosaicRegressor</td>
<td>2020</td>
</tr>
<tr>
<td>Trickboot</td>
<td>2020</td>
</tr>
<tr>
<td>FinSpy</td>
<td>2021</td>
</tr>
<tr>
<td>ESpecter</td>
<td>2021</td>
</tr>
<tr>
<td>MoonBounce</td>
<td>2022</td>
</tr>
<tr>
<td>Conti Group Leak</td>
<td>2022</td>
</tr>
<tr>
<td>CosmicStrand</td>
<td>2022</td>
</tr>
<tr>
<td>BlackLotus</td>
<td>2022</td>
</tr>
</tbody>
</table>

www.uefi.org
Why Invest in a Secure Software Development Lifecycle?

• Reduce Risk to the Supply Chain
• Reacting better/faster when vulnerabilities are identified.
• Gov’t Mandates/Looming Regulations (EO 14028)
 – This was the catalyst for NIST SA 800-218
• Brand Reputation
 – Affects relationships with other supply chain partners
 – Can affect realized value of Organization
• Operating Costs
 – PSIRT is most costly and time-consuming phase of the SDLC to fix an issue
How to Implement an SSDLC

1. Break out of a cycle of reacting
2. Shift-Left into Proactive Security
Breaking the Reactive Cycle

1. Properly staff the team
 - 75% of team should have coding skills
 - 25% for Process, training, project management, auditing/compliance

2. Modernize Vulnerability Management

3. Automate, Automate, Automate
Reactive Security

PSIRT

• Create Processes for AMI PSIRT
• Create security remediation processes for Engineering Teams
• Create tools and systems for vulnerability management for PSIRT and Product Engineering and Customer Engineering Teams
• Perform risk assessments (CVSS/CWE) on all vulnerabilities
• Publish Advisories (NDA and Public)
• Work with PO on security related marketing material, security related notices target at customers, web site content
• Operate in a hybrid manner
Use a Modern VMS

Off-the-shelf or in-house solution

– Off-the-shelf option will require customizations
Custom Vulnerability Management

Disclosure Sources
- NVD
- TianoCore
- AMD
- Intel
- debian
- E-mail
- TIS

Customer Facing Teams
- Executive Leadership
- Customers
- KPI Reports
- Published Advisory

Project Teams
- Security
- Web UI
- Web UI
- RestFUL APIs Services
- Investigation Updates
- Investigation Requests
- Automation Scripts/Scan Tools
- Scans UEFI code
- Opens tickets for new sightings

Advisories
- Automated Advisory Authoring
- Disclosure DB
- Metrics DB

Executive Leadership
- Customers
- Customer Facing Teams
- KPI Reports
- Published Advisory

www.uefi.org
UEFI Vulnerability Scanner

1. Determines Project and module versions
2. Performs Snippet Scan on per project/module basis
3. Compiles list of OSS used in project from module Info
4. Fetches list of CVEs for each OSS name/version pair

Off-the-shelf OSS scanner

UEFI Product

Module to OSS Mapping

Team is alerted of new OSS sightings

Teams sets accurate OSS name and version

Add OSS sightings to data store

New sightings added to VMS

Vulnerability Management

Fetches list of CVEs for each OSS name/version pair

Vulnerability Scanner

www.uefi.org
Automate the Vulnerability Lifecycle
Vuln Lifecycle Management

Customer Engineering PM triages as a security issue, creates internal ticket.

PSIRT routes to Vuln Lean in Product Engineering.

Vuln Lead creates tickets for each module affected.

VMS automatically determines projects affected as assigns tickets.

Ticket fields contain affected labels, fix label, patches.
Responsiveness

Key Metric for Product Security Incident Response Team (PSIRT)

• Responsiveness is the measure of time it takes to reach each phase of the vulnerability Lifecycle (and ultimately remediate the issue)

• Supply chain partners ask their upstream partners for commitments on responsiveness they can in turn offer commits to their downstream partners

• Researchers want to go public ASAP and usually start with a 60- or 90-day embargo period after the initial reporting of the sighting
Reasonable Expectations

• Supply chain partners should be able to provide history responsiveness KPIs
• Supply chain partners should have upstream partner commit to responsiveness guidelines and record this in SLAs
We need to work together to remediation issues faster
Remediation Steps Detailed

1. It immediately begins an investigation into which product is determined to be affected. The SiP issues an advisory to the IFV within a week (which is a reasonable response time) of the sighting.
2. The IFV performs an investigation and determines its product is also affected so an IFV advisory is issued to the ODM.
3. The ODM follows suit by issuing an advisory to the OEM after it determines that it has inherited the same vulnerability.
4. And finally, the OEM issues an advisory to all its CSP customers that the issue exists, and a fix is being worked on.
5. The SiP addresses the issue in the first release the patch is available in.
6. The SiP may have had the patch earlier but typically SiPs only provide remediations in releases which are made available on a quarterly basis. After the SiP issues the patch, the IFV integrates the fix. Typically, this integration takes a minimum of 3 weeks. In this illustration, it can be observed that the IFV is able to integrate the changes just in time to have the fix available in the release issued at point 7.
7. Unfortunately, the remediation was made available to the ODM at a bad time as there is not enough time to include the remediation in the next release so it must be targeted for the subsequent release which is almost four months away and at that time it is made available to the OEM (to put up on their website so customers can download it).
8. After the OEM makes the UEFI FW release available, the CSP will download the image and update all the servers in the data center.
9. The next step is public disclosure. Given the organic sequence of events detailed in the illustration above, October 1st, ~300 days after the initial sighting, seems like an appropriate time to go public. In this case, a 300-day embargo period seems reasonable for the UEFI supply chain as opposed to the arbitrary 90-day embargo period.
10. Steps (10), (11), (12), and (13) represent all supply chain partners issuing public advisories after the 300-day embargo period expires.
Supply chain remediation time can be halved
Monitor Responsiveness KPIs

Mine the data to find bottlenecks and optimize teams and processes
Responsiveness Guidelines

<table>
<thead>
<tr>
<th>Phase</th>
<th>CVSS version 3.1 Risk Service Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical (CVSS 9-10)</td>
</tr>
<tr>
<td></td>
<td>High (CVSS 7-8.9)</td>
</tr>
<tr>
<td></td>
<td>Medium (CVSS 4-6.9)</td>
</tr>
<tr>
<td></td>
<td>Low (CVSS 0.1 -3.9)</td>
</tr>
<tr>
<td>Investigation</td>
<td></td>
</tr>
<tr>
<td>Module Fix Plan</td>
<td></td>
</tr>
<tr>
<td>Module Patch/Release</td>
<td></td>
</tr>
<tr>
<td>CRB Fix Plan</td>
<td></td>
</tr>
<tr>
<td>CRB Patch/Release</td>
<td></td>
</tr>
<tr>
<td>Public Disclosure Date</td>
<td></td>
</tr>
</tbody>
</table>

- Ask your upstream supplier to provide this table populated with the number they can achieve
- Provide this table to your customers to give them an expectation of how fast you can provide remediations
Once the organization’s responsiveness is understood, you are in a position to

1. Offer Responsiveness Commitments
2. Offer Transparency – Access to KPIs

Downstream partners need this so they can generate their own responsiveness commitments for their downstream partners
What is Next?

• Proactive security – prevent vulnerabilities before they get into the released product
Everything Else...

• Craft processes that Product Engineering and Customer Engineering Teams can implement
• Provide and Support Tools engineering can use to implement processes
• Facilitate Compliance
 Perform Process GAP analysis on engineering teams
 Assist engineering teams in becoming compliant
• Train Engineering on process, tools, secure coding practices
• Train CISO org on how to determine compliance
• Operate in a decentralized manner
Questions?
References

4.) NIST SP 800-218 - https://doi.org/10.6028/NIST.SP.800-218
Thanks for attending the UEFI Fall 2023 Developers Conference & Plugfest

For more information on UEFI Forum and UEFI Specifications, visit http://www.uefi.org