
January 31, 2006
Version 2.0

Unified Extensible Firmware

Interface
Specification

Version 2.0

January 31, 2006

 January 31, 2006
ii Version 2.0

Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO
BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES,
LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT,
OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN
ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT
SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 Unified EFI, Inc. All Rights Reserved.

January 31, 2006
Version 2.0 iii

History

Revision Revision History Date

2.0 First release of UEFI Specification January 31, 2006

 January 31, 2006
iv Version 2.0

January 31, 2006
Version 2.0 v

Table of Contents

Acknowledgements..ii

History ..iii

Table of Contents .. v

1 Introduction .. 1
1.1 UEFI Driver Model Extensions ... 2
1.2 Overview... 3
1.3 Goals... 6
1.4 Target Audience ... 8
1.5 UEFI Design Overview ... 9
1.6 UEFI Driver Model .. 10

1.6.1 UEFI Driver Model Goals... 10
1.6.2 Legacy Option ROM Issues... 11

1.7 Migration Requirements.. 11
1.7.1 Legacy Operating System Support.. 12
1.7.2 Supporting the UEFI Specification on a Legacy Platform ... 12

1.8 Conventions Used in This Document ... 12
1.8.1 Data Structure Descriptions... 12
1.8.2 Protocol Descriptions... 13
1.8.3 Procedure Descriptions ... 14
1.8.4 Instruction Descriptions ... 14
1.8.5 Pseudo-Code Conventions.. 15
1.8.6 Typographic Conventions .. 15

2 Overview ... 17
2.1 Boot Manager ... 18

2.1.1 UEFI Images.. 18
2.1.2 Applications.. 19
2.1.3 UEFI OS Loaders .. 20
2.1.4 UEFI Drivers .. 20

2.2 Firmware Core .. 21
2.2.1 UEFI Services.. 21
2.2.2 Runtime Services... 22

2.3 Calling Conventions.. 23
2.3.1 Data Types... 24
2.3.2 IA-32 Platforms .. 25

2.3.2.1 Handoff State... 27
2.3.3 Itanium®-based Platforms ... 27

2.3.3.1 Handoff State... 29
2.3.4 x64 Platforms... 29

2.3.4.1 Handoff State... 31
2.3.4.2 Detailed Calling Conventions .. 31
2.3.4.3 Enabling Paging or Alternate Translations in an Application 31

2.4 Protocols... 32
2.5 UEFI Driver Model .. 36

 January 31, 2006
vi Version 2.0

2.5.1 Legacy Option ROM Issues... 38
2.5.1.1 32-bit/16-Bit Real Mode Binaries... 39
2.5.1.2 Fixed Resources for Working with Option ROMs.. 39
2.5.1.3 Matching Option ROMs to their Devices ... 39
2.5.1.4 Ties to PC-AT System Design... 40
2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience 41

2.5.2 Driver Initialization ... 41
2.5.3 Host Bus Controllers.. 42
2.5.4 Device Drivers.. 44
2.5.5 Bus Drivers .. 45
2.5.6 Platform Components .. 47
2.5.7 Hot-Plug Events... 48
2.5.8 EFI Services Binding ... 48

2.6 Requirements ... 50
2.6.1 Required Elements .. 50
2.6.2 Platform-Specific Elements.. 51
2.6.3 Driver-Specific Elements ... 52

3 Boot Manager ... 55
3.1 Firmware Boot Manager ... 55
3.2 Globally Defined Variables ... 59
3.3 Boot Option Variables Default Behavior ... 61
3.4 Boot Mechanisms ... 62

3.4.1 Boot via the Simple File Protocol... 62
3.4.1.1 Removable Media Boot Behavior.. 63

3.4.2 Boot via LOAD_FILE PROTOCOL .. 63
3.4.2.1 Network Booting .. 64
3.4.2.2 Future Boot Media ... 64

4 EFI System Table.. 65
4.1 UEFI Image Entry Point .. 65

EFI_IMAGE_ENTRY_POINT .. 65
4.2 EFI Table Header ... 67

EFI_TABLE_HEADER... 67
4.3 EFI System Table ... 68

EFI_SYSTEM_TABLE... 69
4.4 EFI Boot Services Table... 71

EFI_BOOT_SERVICES... 71
4.5 EFI Runtime Services Table... 76

EFI_RUNTIME_SERVICES .. 76
4.6 EFI Configuration Table.. 79

EFI_CONFIGURATION_TABLE ... 79
4.7 Image Entry Point Examples .. 80

4.7.1 Image Entry Point Examples ... 80
4.7.2 UEFI Driver Model Example .. 82
4.7.3 UEFI Driver Model Example (Unloadable) .. 83
4.7.4 EFI Driver Model Example (Multiple Instances) .. 84

5 GUID Partition Table (GPT) Format .. 87
5.1 EFI Partition Formats.. 87
5.2 LBA 0 Format.. 87

January 31, 2006
Version 2.0 vii

5.2.1 Legacy Master Boot Record (MBR)... 87
5.2.2 Protective Master Boot Record.. 90

5.3 GUID Partition Table (GPT) Format ... 90
5.3.1 GUID Format overview .. 90
5.3.2 GPT Partition Table Header .. 93
5.3.3 GUID Partition Entry Array... 95

6 Services — Boot Services... 97
6.1 Event, Timer, and Task Priority Services ... 98

CreateEvent() .. 103
CreateEventEx().. 107
CloseEvent().. 110
SignalEvent()... 111
WaitForEvent() .. 112
CheckEvent()... 114
SetTimer() ... 115
RaiseTPL() .. 117
RestoreTPL()... 119

6.2 Memory Allocation Services ... 120
AllocatePages() ... 123
FreePages() .. 126
GetMemoryMap() .. 127
AllocatePool() .. 131
FreePool() ... 132

6.3 Protocol Handler Services .. 133
6.3.1 Driver Model Boot Services ... 135

InstallProtocolInterface() ... 138
UninstallProtocolInterface()... 141
ReinstallProtocolInterface()... 143
RegisterProtocolNotify() .. 145
LocateHandle().. 147
HandleProtocol() ... 149
LocateDevicePath()... 151
OpenProtocol() .. 153
CloseProtocol().. 160
OpenProtocolInformation().. 163
ConnectController() ... 165
DisconnectController()... 170
ProtocolsPerHandle() .. 173
LocateHandleBuffer() .. 175
LocateProtocol() .. 178
InstallMultipleProtocolInterfaces() ... 179
UninstallMultipleProtocolInterfaces()... 181

6.4 Image Services ... 182
LoadImage() .. 184
StartImage() .. 186
UnloadImage()... 188
EFI_IMAGE_ENTRY_POINT.. 189
Exit() .. 190
ExitBootServices()... 192

6.5 Miscellaneous Boot Services.. 193
SetWatchdogTimer() ... 194

 January 31, 2006
viii Version 2.0

Stall() ... 196
CopyMem().. 197
SetMem()... 199
GetNextMonotonicCount() .. 200
InstallConfigurationTable() .. 201
CalculateCrc32() ... 203

7 Services — Runtime Services... 205
7.1 Variable Services.. 206

GetVariable() ... 207
GetNextVariableName() .. 209
SetVariable() ... 211
QueryVariableInfo() ... 213

7.2 Time Services ... 214
GetTime() .. 215
SetTime()... 218
GetWakeupTime() ... 219
SetWakeupTime() ... 220

7.3 Virtual Memory Services... 221
SetVirtualAddressMap() .. 222
ConvertPointer() .. 224

7.4 Miscellaneous Runtime Services.. 225
7.4.1 Reset System... 225

ResetSystem()... 226
7.4.2 GetNextHighMotonic Count ... 227

GetNextHighMonotonicCount() ... 228
7.4.3 Update Capsule ... 229

UpdateCapsule() ... 230
7.4.3.1 Capsule Definition ... 233

QueryCapsuleCapabilities() .. 235

8 Protocols — EFI Loaded Image .. 237
EFI_LOADED_IMAGE_PROTOCOL .. 237

EFI_LOADED_IMAGE.Unload() ... 240

9 Protocols — Device Path Protocol ... 241
9.1 Device Path Overview .. 241
9.2 EFI Device Path Protocol.. 242

EFI_DEVICE_PATH_PROTOCOL.. 242
9.3 Device Path Nodes ... 243

9.3.1 Generic Device Path Structures .. 243
9.3.2 Hardware Device Path... 245

9.3.2.1 PCI Device Path .. 245
9.3.2.2 PCCARD Device Path ... 245
9.3.2.3 Memory Mapped Device Path ... 246
9.3.2.4 Vendor Device Path... 246
9.3.2.5 Controller Device Path... 246

9.3.3 ACPI Device Path .. 247
9.3.4 ACPI _ADR Device Path ... 249
9.3.5 Messaging Device Path ... 250

9.3.5.1 ATAPI Device Path.. 250
9.3.5.2 SCSI Device Path.. 250

January 31, 2006
Version 2.0 ix

9.3.5.3 Fibre Channel Device Path ... 250
9.3.5.4 1394 Device Path .. 251
9.3.5.5 USB Device Paths ... 251

9.3.5.5.1 USB Device Path Example... 252
9.3.5.6 USB Device Paths (WWID) ... 254
9.3.5.7 Device Logical Unit.. 254
9.3.5.8 USB Device Path (Class) .. 255
9.3.5.9 I2O Device Path .. 255
9.3.5.10 MAC Address Device Path.. 255
9.3.5.11 IPv4 Device Path ... 256
9.3.5.12 IPv6 Device Path ... 256
9.3.5.13 InfiniBand Device Path .. 257
9.3.5.14 UART Device Path .. 258
9.3.5.15 Vendor-Defined Messaging Device Path .. 258
9.3.5.16 UART Flow Control Messaging Path... 259
9.3.5.17 Serial Attached SCSI (SAS) Device Path.. 260

9.3.5.17.1 Device and Topology Information... 260
9.3.5.17.2 Device and Topology Information... 261
9.3.5.17.3 Relative Target Port.. 261
9.3.5.17.4 Examples Of Correct Device Path Display Format 262

9.3.5.18 iSCSI Device Path ... 263
9.3.5.18.1 iSCSI Login Options ... 263
9.3.5.18.2 Device Path Examples ... 264

9.3.6 Media Device Path... 264
9.3.6.1 Hard Drive ... 265
9.3.6.2 CD-ROM Media Device Path .. 266
9.3.6.3 Vendor-Defined Media Device Path .. 266
9.3.6.4 File Path Media Device Path ... 267
9.3.6.5 Media Protocol Device Path .. 267

9.3.7 BIOS Boot Specification Device Path.. 268
9.4 Device Path Generation Rules ... 269

9.4.1 Housekeeping Rules.. 269
9.4.2 Rules with ACPI _HID and _UID ... 269
9.4.3 Rules with ACPI _ADR .. 270
9.4.4 Hardware vs. Messaging Device Path Rules .. 271
9.4.5 Media Device Path Rules .. 271
9.4.6 Other Rules.. 271

9.5 EFI Device Path Display Format Overview .. 272
9.5.1 Design Discussion ... 272

9.5.1.1 Standardized Display Format .. 272
9.5.1.2 Readability... 272
9.5.1.3 Round-Trip Conversion ... 273
9.5.1.4 Command-Line Parsing... 273
9.5.1.5 Text Representation Basics .. 274
9.5.1.6 Text Device Node Reference .. 276

9.5.2 Code Definitions .. 288
EFI_DEVICE_PATH_UTILITIES_PROTOCOL... 289

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize 291
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath.................. 292
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath() 293
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()................. 294
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance() 295

 January 31, 2006
x Version 2.0

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance().... 296
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode() 297
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstance() 298

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL ... 299
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText() 300
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText() 302

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.. 304
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode

()... 305
EFI_DEVICE_PATH_FROM_PATH_PROTOCOL.ConvertTextToDevicePath

() ... 306

10 Protocols — UEFI Driver Model .. 307
10.1 EFI Driver Binding Protocol .. 307

EFI_DRIVER_BINDING_PROTOCOL .. 307
EFI_DRIVER_BINDING_PROTOCOL.Supported().. 310
EFI_DRIVER_BINDING_PROTOCOL.Start()... 316
EFI_DRIVER_BINDING_PROTOCOL.Stop()... 324

10.2 EFI Platform Driver Override Protocol .. 329
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL... 329

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver() 331
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath().............. 333
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded() 335

10.3 EFI Bus Specific Driver Override Protocol.. 337
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL .. 337

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()............... 338
10.4 EFI Driver Configuration Protocol... 339

EFI_DRIVER_CONFIGURATION_PROTOCOL... 339
EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions() 341
EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()........................... 344
EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults() 346

10.5 EFI Driver Diagnostics Protocol.. 349
EFI_DRIVER_DIAGNOSTICS_PROTOCOL .. 349

EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics() 350
10.6 EFI Component Name Protocol.. 353

EFI_COMPONENT_NAME_PROTOCOL... 353
EFI_COMPONENT_NAME_PROTOCOL.GetDriverName() 354
EFI_COMPONENT_NAME_PROTOCOL.GetControllerName().......................... 356

10.7 EFI Service Binding Protocol.. 357
EFI_SERVICE_BINDING_PROTOCOL.. 358

EFI_SERVICE_BINDING_PROTOCOL.CreateChild() ... 359
EFI_SERVICE_BINDING_PROTOCOL.DestroyChild() 363

11 Protocols — Console Support .. 367
11.1 Console I/O Protocol... 367

11.1.1 Overview.. 367
11.1.2 ConsoleIn Definition... 368

11.2 Simple Text Input Protocol.. 370
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.. 370

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset() .. 371

January 31, 2006
Version 2.0 xi

EFI_SIMPLE_TEXT_INPUT.ReadKeyStroke()... 372
11.2.1 ConsoleOut or StandardError .. 374

11.3 Simple Text Output Protocol... 374
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL ... 374

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset() .. 377
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString() 378
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString() 382
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()................................. 383
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode() 384
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()................................. 385
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()................................ 387
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition() 388
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor().............................. 389

11.4 Simple Pointer Protocol .. 390
EFI_SIMPLE_POINTER_PROTOCOL.. 390

EFI_SIMPLE_POINTER_PROTOCOL.Reset() .. 392
EFI_SIMPLE_POINTER_PROTOCOL.GetState() ... 393

11.5 EFI Simple Pointer Device Paths ... 395
11.6 Serial I/O Protocol... 399

EFI_SERIAL_IO_PROTOCOL .. 399
EFI_SERIAL_IO_PROTOCOL.Reset() ... 402
EFI_SERIAL_IO_PROTOCOL.SetAttributes().. 403
EFI_SERIAL_IO_PROTOCOL.SetControl() ... 405
EFI_SERIAL_IO_PROTOCOL.GetControl() ... 407
EFI_SERIAL_IO_PROTOCOL.Write() .. 409
EFI_SERIAL_IO_PROTOCOL.Read().. 410

11.7 Graphics Output Protocol ... 411
11.7.1 Blt Buffer .. 411

EFI_GRAPHICS_OUTPUT_PROTOCOL ... 413
EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode() 417
EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()... 419
EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt() ... 421
EFI_EDID_DISCOVERED_PROTOCOL.. 424
EFI_EDID_ACTIVE_PROTOCOL... 425

Graphics Output EDID Override Protocol.. 426
EFI_EDID_OVERRIDE_PROTOCOL.GetEdid() .. 427

11.8 Rules for PCI/AGP Devices.. 428

12 Protocols — Media Access ... 433
12.1 Load File Protocol... 433

EFI_LOAD_FILE_PROTOCOL ... 433
EFI_LOAD_FILE_PROTOCOL.LoadFile().. 434

12.2 File System Format... 436
12.2.1 System Partition... 436

12.2.1.1 File System Format ... 437
12.2.1.2 File Names .. 437
12.2.1.3 Directory Structure... 437

12.2.2 Partition Discovery... 439
12.2.2.1 ISO-9660 and El Torito.. 440

12.2.3 Media Formats... 440
12.2.3.1 Removable Media.. 440

 January 31, 2006
xii Version 2.0

12.2.3.2 Diskette.. 440
12.2.3.3 Hard Drive ... 441
12.2.3.4 CD-ROM and DVD-ROM... 441
12.2.3.5 Network ... 441

12.3 Simple File System Protocol... 442
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL ... 442

EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume() 444
12.4 EFI File Protocol ... 445

EFI_FILE_PROTOCOL ... 445
EFI_FILE_PROTOCOL.Open()... 447
EFI_FILE_PROTOCOL.Close() .. 450
EFI_FILE_PROTOCOL.Delete() ... 451
EFI_FILE_PROTOCOL.Read()... 452
EFI_FILE_PROTOCOL.Write() ... 454
EFI_FILE_PROTOCOL.SetPosition() ... 455
EFI_FILE_PROTOCOL.GetPosition()... 456
EFI_FILE_PROTOCOL.GetInfo().. 457
EFI_FILE_PROTOCOL.SetInfo() .. 459
EFI_FILE_PROTOCOL.Flush()... 461
EFI_FILE_INFO... 462
EFI_FILE_SYSTEM_INFO.. 464
EFI_FILE_SYSTEM_VOLUME_LABEL.. 465

12.5 Tape Boot Support.. 465
12.5.1 Tape I/O Support ... 465
12.5.2 Tape I/O Protocol... 466

EFI_TAPE_IO_PROTOCOL ... 467
EFI_TAPE_IO_PROTOCOL.TapeRead() ... 468
EFI_TAPE_IO_PROTOCOL.TapeWrite() ... 470
EFI_TAPE_IO_PROTOCOL.TapeRewind().. 472
EFI_TAPE_IO_PROTOCOL.TapeSpace() ... 473
EFI_TAPE_IO_PROTOCOL.TapeWriteFM().. 475
EFI_TAPE_IO_PROTOCOL.TapeReset() .. 476

12.5.3 Tape Header Format ... 477
12.6 Disk I/O Protocol... 478

EFI_DISK_IO_PROTOCOL... 478
EFI_DISK_IO_PROTOCOL.ReadDisk() ... 481
EFI_DISK_IO_PROTOCOL.WriteDisk() ... 482

12.7 Block I/O Protocol ... 483
EFI_BLOCK_IO_PROTOCOL... 483

EFI_BLOCK_IO_PROTOCOL.Reset().. 486
EFI_BLOCK_IO_PROTOCOL.ReadBlocks().. 487
EFI_BLOCK_IO_PROTOCOL.WriteBlocks().. 489
EFI_BLOCK_IO_PROTOCOL.FlushBlocks() ... 491

12.8 Unicode Collation Protocol ... 492
EFI_UNICODE_COLLATION_ PROTOCOL... 492

EFI_UNICODE_COLLATION_PROTOCOL.StriColl() .. 494
EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch() 495
EFI_UNICODE_COLLATION_PROTOCOL.StrLwr() ... 497
EFI_UNICODE_COLLATION_PROTOCOL.StrUpr() ... 498
EFI_UNICODE_COLLATION_PROTOCOL.FatToStr().. 499
EFI_UNICODE_COLLATION_PROTOCOL.StrToFat().. 500

January 31, 2006
Version 2.0 xiii

13 Protocols — PCI Bus Support... 501
13.1 PCI Root Bridge I/O Support .. 501

13.1.1 PCI Root Bridge I/O Overview... 501
13.1.1.1 Sample PCI Architectures ... 504

13.2 PCI Root Bridge I/O Protocol.. 508
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL .. 508
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()....................................... 517
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo().. 519
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write() 521
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write() 523
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write() 525
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem() 527
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map().. 529
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap() ... 531
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer() 532
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer().................................... 534
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush() .. 535
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()................................ 536
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes() 538
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() 540

13.2.1 PCI Root Bridge Device Paths... 542
13.3 PCI Driver Model .. 546

13.3.1 PCI Driver Initialization .. 546
13.3.1.1 Driver Configuration Protocol .. 548
13.3.1.2 Driver Diagnostics Protocol ... 548
13.3.1.3 Component Name Protocol ... 548

13.3.2 PCI Bus Drivers ... 549
13.3.2.1 Driver Binding Protocol for PCI Bus Drivers.. 550
13.3.2.2 PCI Enumeration ... 553

13.3.3 PCI Device Drivers .. 553
13.3.3.1 Driver Binding Protocol for PCI Device Drivers... 553

13.4 EFI PCI I/O Protocol ... 555
EFI_PCI_IO_PROTOCOL... 556
EFI_PCI_IO_PROTOCOL.PollMem() ... 566
EFI_PCI_IO_PROTOCOL.PollIo() .. 568
EFI_PCI_IO_PROTOCOL.Mem.Read()

EFI_PCI_IO_PROTOCOL.Mem.Write() .. 570
EFI_PCI_IO_PROTOCOL.Io.Read() EFI_PCI_IO_PROTOCOL.Io.Write()......... 572
EFI_PCI_IO_PROTOCOL.Pci.Read() EFI_PCI_IO_PROTOCOL.Pci.Write()...... 574
EFI_PCI_IO_PROTOCOL.CopyMem()... 576
EFI_PCI_IO_PROTOCOL.Map() .. 579
EFI_PCI_IO_PROTOCOL.Unmap().. 581
EFI_PCI_IO_PROTOCOL.AllocateBuffer()... 582
EFI_PCI_IO_PROTOCOL.FreeBuffer() .. 584
EFI_PCI_IO_PROTOCOL.Flush() .. 585
EFI_PCI_IO_PROTOCOL.GetLocation().. 586
EFI_PCI_IO_PROTOCOL.Attributes() .. 587
EFI_PCI_IO_PROTOCOL.GetBarAttributes() .. 590
EFI_PCI_IO_PROTOCOL.SetBarAttributes() ... 593

 January 31, 2006
xiv Version 2.0

13.4.1 PCI Device Paths... 595
13.4.2 PCI Option ROMs .. 597

13.4.2.1 PCI Bus Driver Responsibilities... 600
13.4.2.2 PCI Device Driver Responsibilities.. 600

13.4.3 Nonvolatile Storage ... 603
13.4.4 PCI Hot-Plug Events.. 604

14 Protocols — SCSI Driver Models and Bus Support................................ 605
14.1 SCSI Driver Model Overview.. 605
14.2 SCSI Bus Drivers.. 606

14.2.1 Driver Binding Protocol for SCSI Bus Drivers.. 606
14.2.2 SCSI Enumeration ... 607

14.3 SCSI Device Drivers ... 608
14.3.1 Driver Binding Protocol for SCSI Device Drivers... 608

14.4 EFI SCSI I/O Protocol Overview... 608
14.5 EFI_SCSI_IO_PROTOCOL.. 609

14.5.1 EFI_SCSI_IO_PROTOCOL.GetDeviceType() .. 611
14.5.2 EFI_SCSI_IO_PROTOCOL. GetDeviceLocation().. 613
14.5.3 EFI_SCSI_IO_PROTOCOL. ResetBus()... 614
14.5.4 EFI_SCSI_IO_PROTOCOL.ResetDevice()... 615
14.5.5 EFI_SCSI_IO_PROTOCOL. ExecuteScsiCommand().. 616

14.6 SCSI Device Paths ... 621
14.6.1 SCSI Device Path Example ... 621
14.6.2 ATAPI Device Path Example ... 622
14.6.3 Fibre Channel Device Path Example... 623
14.6.4 InfiniBand Device Path Example ... 624

14.7 SCSI Pass Thru Device Paths.. 625
14.8 Extended SCSI Pass Thru Protocol ... 628

EFI_EXT_SCSI_PASS_THRU_PROTOCOL ... 628
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru() 632
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() 638
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() 640
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun().............................. 642
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel() 644
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun().......................... 645
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() 647

15 Protocols — iSCSI Boot... 649
15.1 Overview... 649

15.1.1 iSCSI UEFI Driver Layering ... 649
15.2 EFI iSCSI Initiator Name Protocol .. 649

EFI_ISCSI_INITIATOR_NAME_PROTOCOL... 650
EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get() .. 651
EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set().. 652

16 Protocols — USB Support... 653
16.1 USB2 Host Controller Protocol ... 653

16.1.1 USB Host Controller Protocol Overview .. 653
EFI_USB2_HC_PROTOCOL.. 654
EFI_USB2_HC_PROTOCOL.GetCapability()... 656
EFI_USB2_HC_PROTOCOL.Reset() ... 658
EFI_USB2_HC_PROTOCOL.GetState() .. 661

January 31, 2006
Version 2.0 xv

EFI_USB2_HC_PROTOCOL.SetState()... 663
EFI_USB2_HC_PROTOCOL.ControlTransfer() ... 665
EFI_USB2_HC_PROTOCOL.BulkTransfer() .. 668
EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer().. 671
EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer() ... 674
EFI_USB2_HC_PROTOCOL.IsochronousTransfer() ... 676
EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer() 679
EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus() 682
EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()...................................... 686
EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature() 688

16.2 USB Driver Model ... 690
16.2.1 Scope... 690
16.2.2 USB Bus Driver.. 691

16.2.2.1 USB Bus Driver Entry Point... 691
16.2.2.2 Driver Binding Protocol for USB Bus Drivers .. 691
16.2.2.3 USB Hot-Plug Event .. 692
16.2.2.4 USB Bus Enumeration... 692

16.2.3 USB Device Driver... 693
16.2.3.1 USB Device Driver Entry Point.. 693
16.2.3.2 Driver Binding Protocol for USB Device Drivers ... 693

16.2.4 EFI USB I/O Protocol Overview... 693
EFI_USB_IO Protocol ... 694
EFI_USB_IO_PROTOCOL.UsbControlTransfer() .. 696
EFI_USB_IO_PROTOCOL.UsbBulkTransfer() ... 699
EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()..................................... 701
EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer() 705
EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer() .. 707
EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer() 709
EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor() .. 711
EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()... 713
EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor() 715
EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()..................................... 717
EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor().. 719
EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages() 720
EFI_USB_IO_PROTOCOL.UsbPortReset() ... 721

17 Protocols — Debugger Support.. 723
17.1 Overview... 723
17.2 EFI Debug Support Protocol... 724

17.2.1 EFI Debug Support Protocol Overview.. 724
EFI_DEBUG_SUPPORT_PROTOCOL .. 725
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex() 727
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback() 728
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback() 733
EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache() 737

17.3 EFI Debugport Protocol .. 738
EFI Debugport Overview .. 738

EFI_DEBUGPORT_PROTOCOL.. 739
EFI_DEBUGPORT_PROTOCOL.Reset()... 740
EFI_DEBUGPORT_PROTOCOL.Write().. 741
EFI_DEBUGPORT_PROTOCOL.Read().. 742
EFI_DEBUGPORT_PROTOCOL.Poll() .. 743

 January 31, 2006
xvi Version 2.0

17.3.1 Debugport Device Path.. 744
EFI Debugport Variable .. 745

17.4 EFI Debug Support Table... 746
Overview ... 746
EFI System Table Location... 747
EFI Image Info .. 748

18 Protocols — Compression Algorithm Specification............................... 751
18.1 Algorithm Overview... 751
18.2 Data Format.. 753

18.2.1 Bit Order... 753
18.2.2 Overall Structure.. 753
18.2.3 Block Structure... 754

18.2.3.1 Block Header ... 754
18.2.3.2 Block Body... 757

18.3 Compressor Design .. 758
18.3.1 Overall Process.. 758
18.3.2 String Info Log.. 759

18.3.2.1 Data Structures.. 760
18.3.2.2 Searching the Tree.. 761
18.3.2.3 Adding String Info .. 761
18.3.2.4 Deleting String Info .. 762

18.3.3 Huffman Code Generation... 763
18.3.3.1 Huffman Tree Generation.. 763
18.3.3.2 Code Length Adjustment... 763
18.3.3.3 Code Generation ... 764

18.4 Decompressor Design .. 765
18.5 Decompress Protocol ... 765

EFI_DECOMPRESS_PROTOCOL... 766
EFI_DECOMPRESS_PROTOCOL.GetInfo() ... 767
EFI_DECOMPRESS_PROTOCOL.Decompress() ... 769

19 EFI Byte Code Virtual Machine ... 771
19.1 Overview... 771

19.1.1 Processor Architecture Independence .. 771
19.1.2 OS Independent... 771
19.1.3 EFI Compliant .. 772
19.1.4 Coexistence of Legacy Option ROMs ... 772
19.1.5 Relocatable Image... 772
19.1.6 Size Restrictions Based on Memory Available .. 772

19.2 Memory Ordering.. 773
19.3 Virtual Machine Registers... 773
19.4 Natural Indexing.. 775

19.4.1 Sign Bit... 775
19.4.2 Bits Assigned to Natural Units ... 776
19.4.3 Constant... 776
19.4.4 Natural Units .. 776

19.5 EBC Instruction Operands.. 777
19.5.1 Direct Operands... 777
19.5.2 Indirect Operands .. 777
19.5.3 Indirect with Index Operands ... 778
19.5.4 Immediate Operands ... 778

January 31, 2006
Version 2.0 xvii

19.6 EBC Instruction Syntax... 778
19.7 Instruction Encoding ... 779

19.7.1 Instruction Opcode Byte Encoding .. 779
19.7.2 Instruction Operands Byte Encoding ... 780
19.7.3 Index/Immediate Data Encoding.. 780

19.8 EBC Instruction Set .. 780
ADD... 781
AND... 782
ASHR .. 783
BREAK .. 784
CALL ... 786
CMP... 789
CMPI ... 791
DIV... 793
DIVU.. 794
EXTNDB.. 795
EXTNDD.. 796
EXTNDW... 797
JMP ... 798
JMP8 ... 800
LOADSP.. 801
MOD .. 802
MODU ... 803
MOV .. 804
MOVI ... 806
MOVIn ... 808
MOVn .. 810
MOVREL ... 812
MOVsn .. 813
MUL... 815
MULU .. 816
NEG... 817
NOT... 818
OR ... 819
POP... 820
POPn... 821
PUSH .. 822
PUSHn .. 823
RET ... 824
SHL.. 825
SHR... 826
STORESP ... 827
SUB ... 828
XOR... 829

19.9 Runtime and Software Conventions ... 830
19.9.1 Calling Outside VM .. 830
19.9.2 Calling Inside VM... 830
19.9.3 Parameter Passing .. 830
19.9.4 Return Values .. 830
19.9.5 Binary Format .. 830

19.10 Architectural Requirements .. 830
19.10.1 EBC Image Requirements ... 831

 January 31, 2006
xviii Version 2.0

19.10.2 EBC Execution Interfacing Requirements ... 831
19.10.3 Interfacing Function Parameters Requirements .. 831
19.10.4 Function Return Requirements.. 831
19.10.5 Function Return Values Requirements.. 832

19.11 EBC Interpreter Protocol... 832
EFI_EBC_PROTOCOL ... 833
EFI_EBC_PROTOCOL.CreateThunk()... 834
EFI_EBC_PROTOCOL.UnloadImage() .. 835
EFI_EBC_PROTOCOL.RegisterICacheFlush().. 836
EFI_EBC_PROTOCOL.GetVersion().. 838

19.12 EBC Tools... 839
19.12.1 EBC C Compiler... 839
19.12.2 C Coding Convention... 839
19.12.3 EBC Interface Assembly Instructions .. 839
19.12.4 Stack Maintenance and Argument Passing... 839
19.12.5 Native to EBC Arguments Calling Convention .. 840
19.12.6 EBC to Native Arguments Calling Convention .. 840
19.12.7 EBC to EBC Arguments Calling Convention ... 840
19.12.8 Function Returns ... 840
19.12.9 Function Return Values ... 840
19.12.10 Thunking.. 841

19.12.10.1 Thunking EBC to Native Code... 841
19.12.10.2 Thunking Native Code to EBC... 842
19.12.10.3 Thunking EBC to EBC ... 842

19.12.11 EBC Linker .. 843
19.12.12 Image Loader .. 843
19.12.13 Debug Support .. 843

19.13 VM Exception Handling .. 844
19.13.1 Divide By 0 Exception.. 844
19.13.2 Debug Break Exception ... 844
19.13.3 Invalid Opcode Exception .. 844
19.13.4 Stack Fault Exception .. 844
19.13.5 Alignment Exception .. 844
19.13.6 Instruction Encoding Exception ... 844
19.13.7 Bad Break Exception ... 845
19.13.8 Undefined Exception.. 845

19.14 Option ROM Formats.. 845
19.14.1 EFI Drivers for PCI Add-in Cards... 845
19.14.2 Non-PCI Bus Support .. 845

20 Network Protocols — SNP, PXE and BIS... 847
20.1 EFI_SIMPLE_NETWORK_PROTOCOL .. 847

EFI_SIMPLE_NETWORK_PROTOCOL ... 847
EFI_SIMPLE_NETWORK.Start() .. 852
EFI_SIMPLE_NETWORK.Stop() .. 853
EFI_SIMPLE_NETWORK.Initialize()... 854
EFI_SIMPLE_NETWORK.Reset() .. 855
EFI_SIMPLE_NETWORK.Shutdown().. 856
EFI_SIMPLE_NETWORK.ReceiveFilters()... 857
EFI_SIMPLE_NETWORK.StationAddress() ... 860
EFI_SIMPLE_NETWORK.Statistics() ... 861
EFI_SIMPLE_NETWORK.MCastIPtoMAC()... 864

January 31, 2006
Version 2.0 xix

EFI_SIMPLE_NETWORK.NvData().. 865
EFI_SIMPLE_NETWORK.GetStatus().. 867
EFI_SIMPLE_NETWORK.Transmit().. 869
EFI_SIMPLE_NETWORK.Receive()... 871

20.2 Network Interface Identifier Protocol .. 873
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL.. 873

20.3 PXE Base Code Protocol.. 876
EFI_PXE_BASE_CODE_PROTOCOL.. 876

EFI_PXE_BASE_CODE_PROTOCOL.Start() .. 888
EFI_PXE_BASE_CODE_PROTOCOL.Stop() .. 891
EFI_PXE_BASE_CODE_PROTOCOL.Dhcp() ... 892
EFI_PXE_BASE_CODE_PROTOCOL.Discover().. 894
EFI_PXE_BASE_CODE_PROTOCOL.Mtftp().. 898
EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()... 902
EFI_PXE_BASE_CODE_PROTOCOL.UdpRead() .. 905
EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter() ... 908
EFI_PXE_BASE_CODE_PROTOCOL.Arp() .. 910
EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()...................................... 912
EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp() .. 914
EFI_PXE_BASE_CODE_PROTOCOL.SetPackets() ... 916

20.4 PXE Base Code Callback Protocol... 918
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL... 918

EFI_PXE_BASE_CODE_CALLBACK.Callback() ... 919
20.5 Boot Integrity Services Protocol ... 921

EFI_BIS_PROTOCOL ... 921
EFI_BIS_PROTOCOL.Initialize() .. 924
EFI_BIS_PROTOCOL.Shutdown() ... 928
EFI_BIS_PROTOCOL.Free().. 930
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate() 931
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag() 932
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()..................... 933
EFI_BIS_PROTOCOL.GetSignatureInfo() .. 934
EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()..................................... 939
EFI_BIS_PROTOCOL.VerifyBootObject() .. 948
EFI_BIS_PROTOCOL.VerifyObjectWithCredential().. 955

21 Network Protocols — Managed Network ... 963
21.1 EFI Managed Network Protocol.. 963

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL 963
EFI_MANAGED_NETWORK_PROTOCOL .. 964

EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()................................ 966
EFI_MANAGED_NETWORK_PROTOCOL.Configure()....................................... 969
EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()............................... 971
EFI_MANAGED_NETWORK_PROTOCOL.Groups() .. 973
EFI_MANAGED_NETWORK_PROTOCOL.Transmit() .. 975
EFI_MANAGED_NETWORK_PROTOCOL.Receive() ... 981
EFI_MANAGED_NETWORK_PROTOCOL.Cancel() ... 982
EFI_MANAGED_NETWORK_PROTOCOL.Poll() .. 983

22 Network Protocols — ARP and DHCPv4.. 985
22.1 ARP Protocol .. 985

 January 31, 2006
xx Version 2.0

EFI_ARP_SERVICE_BINDING_PROTOCOL .. 985
EFI_ARP_PROTOCOL ... 986

Description .. 987
EFI_ARP_PROTOCOL.Configure() .. 988
EFI_ARP_PROTOCOL.Add() ... 990
EFI_ARP_PROTOCOL.Find()... 992

Related Definitions... 993
EFI_ARP_PROTOCOL.Delete() ... 994
EFI_ARP_PROTOCOL.Flush()... 995
EFI_ARP_PROTOCOL.Request() .. 996
EFI_ARP_PROTOCOL.Cancel() .. 998

22.2 EFI DHCPv4 Protocol ... 999
EFI_DHCP4_SERVICE_BINDING_PROTOCOL.. 999
EFI_DHCP4_PROTOCOL... 1000

EFI_DHCP4_PROTOCOL.GetModeData() .. 1002
EFI_DHCP4_PROTOCOL.Configure() ... 1006
EFI_DHCP4_PROTOCOL.Start() ... 1016
EFI_DHCP4_PROTOCOL.RenewRebind() .. 1018
EFI_DHCP4_PROTOCOL.Release().. 1020
EFI_DHCP4_PROTOCOL.Stop() ... 1021
EFI_DHCP4_PROTOCOL.Build()... 1022
EFI_DHCP4_PROTOCOL.TransmitReceive().. 1024
EFI_DHCP4_PROTOCOL.Parse() ... 1027

23 Network Protocols —TCPv4, IPv4 and Configuration 1029
23.1 EFI TCPv4 Protocol .. 1029

EFI_TCP4_SERVICE_BINDING_PROTOCOL... 1029
EFI TCP4 Variable... 1030
EFI_TCP4_PROTOCOL.. 1032

EFI_TCP4_PROTOCOL.GetModeData() ... 1034
EFI_TCP4_PROTOCOL.Configure() .. 1040
EFI_TCP4_PROTOCOL.Routes() .. 1042
EFI_TCP4_PROTOCOL.Connect() .. 1044
EFI_TCP4_PROTOCOL.Accept()... 1047
EFI_TCP4_PROTOCOL.Transmit().. 1049
EFI_TCP4_PROTOCOL.Receive()... 1054
EFI_TCP4_PROTOCOL.Close()... 1056
EFI_TCP4_PROTOCOL.Cancel()... 1058
EFI_TCP4_PROTOCOL.Poll().. 1059

23.2 EFI IPv4 Protocol.. 1060
EFI_IP4_SERVICE_BINDING_PROTOCOL .. 1060
EFI IPv4 Variable... 1061
EFI_IP4_PROTOCOL.. 1062

EFI_IP4_PROTOCOL.GetModeData() ... 1064
EFI_IP4_PROTOCOL.Configure() .. 1069
EFI_IP4_PROTOCOL.Groups().. 1071
EFI_IP4_PROTOCOL.Routes() .. 1073
EFI_IP4_PROTOCOL.Transmit().. 1075
EFI_IP4_PROTOCOL.Receive()... 1082
EFI_IP4_PROTOCOL.Cancel() .. 1084

January 31, 2006
Version 2.0 xxi

EFI_IP4_PROTOCOL.Poll().. 1085
23.3 EFI IPv4 Configuration Protocol ... 1085

EFI_IP4_CONFIG_PROTOCOL ... 1086
EFI_IP4_CONFIG_PROTOCOL.Start() .. 1087
EFI_IP4_CONFIG_PROTOCOL.Stop() .. 1089
EFI_IP4_CONFIG_PROTOCOL.GetData() .. 1090

Related Definitions... 1090

24 Network Protocols — UDPv4 and MTFTPv4.. 1093
24.1 EFI UDPv4 Protocol.. 1093

EFI_UDP4_SERVICE_BINDING_PROTOCOL .. 1093
EFI UDP4 Variable .. 1093
EFI_UDP4_PROTOCOL ... 1096

EFI_UDP4_PROTOCOL.GetModeData() ... 1098
EFI_UDP4_PROTOCOL.Configure().. 1101
EFI_UDP4_PROTOCOL.Groups().. 1103
EFI_UDP4_PROTOCOL.Routes() .. 1105
EFI_UDP4_PROTOCOL.Transmit() ... 1107
EFI_UDP4_PROTOCOL.Receive() .. 1113
EFI_UDP4_PROTOCOL.Cancel() .. 1115
EFI_UDP4_PROTOCOL.Poll() ... 1116

24.2 EFI MTFTPv4 Protocol ... 1117
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.. 1117

EFI_MTFTP4_PROTOCOL .. 1118
EFI_MTFTP4_PROTOCOL.GetModeData() .. 1120
EFI_MTFTP4_PROTOCOL.Configure() ... 1123
EFI_MTFTP4_PROTOCOL.GetInfo() ... 1125
EFI_MTFTP4_PROTOCOL.ParseOptions() ... 1134
EFI_MTFTP4_PROTOCOL.ReadFile()... 1136
EFI_MTFTP4_PROTOCOL.WriteFile()... 1142
EFI_MTFTP4_PROTOCOL.ReadDirectory() .. 1144
EFI_MTFTP4_PROTOCOL.Poll() ... 1146

25 Security — Secure Boot, Driver Signing and Hash 1147
25.1 Secure Boot .. 1147

EFI_AUTHENTICATION_INFO_PROTOCOL .. 1147
EFI_AUTHENTICATION_INFO_PROTOCOL.Get()... 1148
EFI_AUTHENTICATION_INFO_PROTOCOL.Set() ... 1149

25.2 UEFI Driver Signing Overview.. 1152
25.2.1 Digital Signatures... 1153
25.2.2 Embedded Signatures ... 1154
25.2.3 Creating Message from Executables... 1155
25.2.4 Code Definitions .. 1155

WIN_CERTIFICATE.. 1156
WIN_CERTIFICATE_EFI_PKCS1_15 .. 1157

25.2.5 WIN_CERTIFICATE_UEFI_GUID... 1157
25.3 Hash Overview ... 1158

25.3.1 Hash References ... 1158
25.4 EFI Hash Protocols... 1159

EFI_HASH_SERVICE_BINDING_PROTOCOL.. 1159
EFI_HASH_PROTOCOL .. 1160

 January 31, 2006
xxii Version 2.0

EFI_HASH_PROTOCOL.GetHashSize().. 1161
EFI_HASH_PROTOCOL.Hash()... 1162

25.4.1 Other Code Definitions .. 1164
EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH,
EFI_SHA384_HASH, EFI_SHA512HASH, EFI_MD5_HASH 1164
25.4.1.1 EFI Hash Algorithms.. 1165

Appendix A GUID and Time Formats .. 1167

Appendix B Console ... 1169
B.1 Simple _Input Protocol.. 1169
B.2 SIMPLE_TEXT_OUTPUT... 1170

Appendix C Device Path Examples ... 1173
C.1 Example Computer System.. 1173
C.2 Legacy Floppy .. 1174
C.3 IDE Disk.. 1175
C.4 Secondary Root PCI Bus with PCI to PCI Bridge... 1177
C.5 ACPI Terms .. 1178
C.6 EFI Device Path as a Name Space .. 1179

Appendix D Status Codes .. 1181

Appendix E Universal Network Driver Interfaces....................................... 1185
E.1 Introduction ... 1185

E.1.1 Definitions .. 1185
E.1.2 Referenced Specifications ... 1187
E.1.3 OS Network Stacks.. 1189

E.2 Overview... 1191
E.2.1 32/64-bit UNDI Interface .. 1191

E.2.1.1 Issuing UNDI Commands.. 1195
E.2.2 UNDI Command Format .. 1196

E.3 UNDI C Definitions.. 1198
E.3.1 Portability Macros .. 1198

E.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER 1198
E.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT.................... 1198
E.3.1.3 PXE_BUSTYPE... 1199
E.3.1.4 PXE_SWAP_UINT16 .. 1199
E.3.1.5 PXE_SWAP_UINT32 .. 1200
E.3.1.6 PXE_SWAP_UINT64 .. 1200

E.3.2 Miscellaneous Macros ... 1201
E.3.2.1 Miscellaneous.. 1201

E.3.3 Portability Types .. 1201
E.3.3.1 PXE_CONST... 1201
E.3.3.2 PXE_VOLATILE .. 1201
E.3.3.3 PXE_VOID... 1202
E.3.3.4 PXE_UINT8 ... 1202
E.3.3.5 PXE_UINT16 ... 1202
E.3.3.6 PXE_UINT32 ... 1202
E.3.3.7 PXE_UINT64 ... 1202
E.3.3.8 PXE_UINTN .. 1202

E.3.4 Simple Types ... 1203

January 31, 2006
Version 2.0 xxiii

E.3.4.1 PXE_BOOL ... 1203
E.3.4.2 PXE_OPCODE.. 1203
E.3.4.3 PXE_OPFLAGS .. 1204
E.3.4.4 PXE_STATFLAGS .. 1209
E.3.4.5 PXE_STATCODE.. 1213
E.3.4.6 PXE_IFNUM.. 1213
E.3.4.7 PXE_CONTROL.. 1214
E.3.4.8 PXE_FRAME_TYPE ... 1214
E.3.4.9 PXE_IPV4.. 1214
E.3.4.10 PXE_IPV6.. 1214
E.3.4.11 PXE_MAC_ADDR ... 1214
E.3.4.12 PXE_IFTYPE... 1215

E.3.5 Compound Types .. 1216
E.3.5.1 PXE_HW_UNDI... 1216
E.3.5.2 PXE_SW_UNDI... 1218
E.3.5.3 PXE_UNDI... 1218
E.3.5.4 PXE_CDB.. 1219
E.3.5.5 PXE_IP_ADDR.. 1220
E.3.5.6 PXE_DEVICE .. 1220

E.4 UNDI Commands.. 1221
E.4.1 Command Linking and Queuing .. 1222
E.4.2 Get State.. 1225

E.4.2.1 Issuing the Command.. 1225
E.4.2.2 Waiting for the Command to Execute.. 1226
E.4.2.3 Checking Command Execution Results .. 1226

E.4.3 Start ... 1227
E.4.3.1 Issuing the Command.. 1227
E.4.3.2 Preparing the CPB... 1228
E.4.3.3 Waiting for the Command to Execute.. 1233
E.4.3.4 Checking Command Execution Results .. 1233

E.4.4 Stop.. 1234
E.4.4.1 Issuing the Command.. 1234
E.4.4.2 Waiting for the Command to Execute.. 1234
E.4.4.3 Checking Command Execution Results .. 1234

E.4.5 Get Init Info .. 1235
E.4.5.1 Issuing the Command.. 1235
E.4.5.2 Waiting for the Command to Execute.. 1235
E.4.5.3 Checking Command Execution Results .. 1235
E.4.5.4 StatFlags ... 1236
E.4.5.5 DB 1236

E.4.6 Get Config Info... 1238
E.4.6.1 Issuing the Command.. 1238
E.4.6.2 Waiting for the Command to Execute.. 1238
E.4.6.3 Checking Command Execution Results .. 1239
E.4.6.4 DB 1239

E.4.7 Initialize .. 1241
E.4.7.1 Issuing the Command.. 1241
E.4.7.2 OpFlags ... 1241
E.4.7.3 Preparing the CPB... 1242
E.4.7.4 Waiting for the Command to Execute.. 1243
E.4.7.5 Checking Command Execution Results .. 1244
E.4.7.6 StatFlags ... 1244

 January 31, 2006
xxiv Version 2.0

E.4.7.7 Before Using the DB.. 1244
E.4.8 Reset.. 1245

E.4.8.1 Issuing the Command.. 1245
E.4.8.2 OpFlags ... 1245
E.4.8.3 Waiting for the Command to Execute.. 1246
E.4.8.4 Checking Command Execution Results .. 1246
E.4.8.5 StatFlags ... 1246

E.4.9 Shutdown... 1247
E.4.9.1 Issuing the Command.. 1247
E.4.9.2 Waiting for the Command to Execute.. 1248
E.4.9.3 Checking Command Execution Results .. 1248

E.4.10 Interrupt Enables ... 1249
E.4.10.1 Issuing the Command.. 1249
E.4.10.2 OpFlags ... 1249
E.4.10.3 Waiting for the Command to Execute.. 1250
E.4.10.4 Checking Command Execution Results .. 1250
E.4.10.5 StatFlags ... 1250

E.4.11 Receive Filters ... 1251
E.4.11.1 Issuing the Command.. 1251
E.4.11.2 OpFlags ... 1251
E.4.11.3 Preparing the CPB... 1252
E.4.11.4 Waiting for the Command to Execute.. 1252
E.4.11.5 Checking Command Execution Results .. 1252
E.4.11.6 StatFlags ... 1253
E.4.11.7 DB 1253

E.4.12 Station Address ... 1254
E.4.12.1 Issuing the Command.. 1254
E.4.12.2 OpFlags ... 1254
E.4.12.3 Preparing the CPB... 1254
E.4.12.4 Waiting for the Command to Execute.. 1255
E.4.12.5 Checking Command Execution Results .. 1255
E.4.12.6 Before Using the DB.. 1255

E.4.13 Statistics... 1256
E.4.13.1 Issuing the Command.. 1256
E.4.13.2 OpFlags ... 1256
E.4.13.3 Waiting for the Command to Execute.. 1256
E.4.13.4 Checking Command Execution Results .. 1257
E.4.13.5 DB 1257

E.4.14 MCast IP To MAC.. 1259
E.4.14.1 Issuing the Command.. 1259
E.4.14.2 OpFlags ... 1259
E.4.14.3 Preparing the CPB... 1259
E.4.14.4 Waiting for the Command to Execute.. 1260
E.4.14.5 Checking Command Execution Results .. 1260
E.4.14.6 Before Using the DB.. 1260

E.4.15 NvData ... 1261
E.4.15.1 Issuing the Command.. 1261
E.4.15.2 Preparing the CPB... 1261

E.4.15.2.1 Sparse NvData CPB... 1261
E.4.15.2.2 Bulk NvData CPB ... 1262

E.4.15.3 Waiting for the Command to Execute.. 1262
E.4.15.4 Checking Command Execution Results .. 1262

January 31, 2006
Version 2.0 xxv

E.4.15.4.1 DB... 1263
E.4.16 Get Status .. 1263

E.4.16.1 Issuing the Command.. 1263
E.4.16.1.1 Setting OpFlags .. 1264

E.4.16.2 Waiting for the Command to Execute.. 1264
E.4.16.3 Checking Command Execution Results .. 1264
E.4.16.4 StatFlags ... 1264
E.4.16.5 Using the DB ... 1265

E.4.17 Fill Header.. 1266
E.4.17.1 Issuing the Command.. 1266
E.4.17.2 OpFlags ... 1266
E.4.17.3 Preparing the CPB... 1266
E.4.17.4 Nonfragmented Frame .. 1266
E.4.17.5 Fragmented Frame.. 1267
E.4.17.6 Waiting for the Command to Execute.. 1268
E.4.17.7 Checking Command Execution Results .. 1268

E.4.18 Transmit ... 1269
E.4.18.1 Issuing the Command.. 1269
E.4.18.2 OpFlags ... 1270
E.4.18.3 Preparing the CPB... 1270
E.4.18.4 Nonfragmented Frame .. 1270
E.4.18.5 Fragmented Frame.. 1271
E.4.18.6 Waiting for the Command to Execute.. 1272
E.4.18.7 Checking Command Execution Results .. 1272

E.4.19 Receive .. 1273
E.4.19.1 Issuing the Command.. 1273
E.4.19.2 Preparing the CPB... 1273
E.4.19.3 Waiting for the Command to Execute.. 1274
E.4.19.4 Checking Command Execution Results .. 1274
E.4.19.5 Using the DB ... 1275

E.5 UNDI as an EFI Runtime Driver ... 1276

Appendix F Using the Simple Pointer Protocol ... 1277

Appendix G Using the EFI SCSI Pass Thru Protocol................................. 1279

Appendix H Compression Source Code ... 1283

Appendix I Decompression Source Code... 1311

Appendix J EFI Byte Code Virtual Machine Opcode List 1327

Appendix K Alphabetic Function Lists ... 1329

Appendix L EFI 1.10 Protocol Changes and Deprecation List................. 1359
L.1 Protocol and GUID Name Changes from EFI 1.10 .. 1359
L.2 Deprecated Protocols ... 1361

 January 31, 2006
xxvi Version 2.0

Appendix M Formats--Language Codes and Language Code Arrays 1363

Glossary ... 1365

References ... 1383
Related Information .. 1383
Prerequisite Specifications ... 1387

ACPI Specification .. 1387
WfM Specification ... 1387
Additional Considerations for Itanium-Based Platforms ... 1388

Index ... 1389

[ERRATA Pages 1408-1449]

January 31, 2006
Version 2.0 xxvii

Figures
1. UEFI Conceptual Overview .. 9
2. Booting Sequence .. 17
3. Stack after AddressOfEntryPoint Called, supported 32-bit ... 27
4. Stack after AddressOfEntryPoint Called, Itanium-based Systems 29
5. Construction of a Protocol .. 33
6. Desktop System.. 37
7. Server System .. 38
8. Image Handle ... 41
9. Driver Image Handle... 42
10. Host Bus Controllers... 43
11. PCI Root Bridge Device Handle ... 43
12. Connecting Device Drivers ... 44
13. Connecting Bus Drivers .. 46
14. Child Device Handle with a Bus Specific Override... 47
15. Software Service Relationships.. 49
16. GUID Partition Table (GPT) Scheme ... 91
17. Device Handle to Protocol Handler Mapping.. 134
18. Handle Database .. 136
19. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures 234
20. Text to Binary Conversion .. 273
21. Binary to Text Conversion .. 273
22. Device Path Text Representation... 274
23. Text Device Node Names... 275
24. Device Node Option Names ... 275
25. Software BLT Buffer ... 412
26. Nesting of Legacy MBR Partition Records ... 439
27. Host Bus Controllers... 502
28. Device Handle for a PCI Root Bridge Controller .. 503
29. Desktop System with One PCI Root Bridge ... 504
30. Server System with Four PCI Root Bridges ... 505
31. Server System with Two PCI Segments... 506
32. Server System with Two PCI Host Buses .. 507
33. Image Handle ... 546
34. PCI Driver Image Handle.. 547
35. PCI Host Bus Controller.. 549
36. Device Handle for a PCI Host Bus Controller... 549
37. Physical PCI Bus Structure .. 550
38. Connecting a PCI Bus Driver.. 551
39. Child Handle Created by a PCI Bus Driver... 551
40. Connecting a PCI Device Driver... 554
41. Recommended PCI Driver Image Layout... 601
42. Device Handle for a SCSI Bus Controller... 606
43. Child Handle Created by a SCSI Bus Driver .. 607
44. Software Triggered State Transitions of a USB Host Controller .. 663
45. USB Bus Controller Handle .. 690
46. Debug Support Table Indirection and Pointer Usage... 747
47. Bit Sequence of Compressed Data .. 753
48. Compressed Data Structure ... 754
49. Block Structure ... 754
50. Block Body.. 757
51. String Info Log Search Tree ... 760

 January 31, 2006
xxviii Version 2.0

52. Node Split ... 762
53. Creating A Digital Signature ... 1153
54. Verifying A Digital Signature... 1154
55. Embedded Digital Certificates .. 1155
56. Example Computer System.. 1173
57. Partial ACPI Name Space for Example System... 1174
58. EFI Device Path Displayed As a Name Space... 1179
59. Network Stacks with Three Classes of Drivers... 1189
60. !PXE Structures for H/W and S/W UNDI .. 1191
61. Issuing UNDI Commands ... 1195
62. UNDI Command Descriptor Block (CDB) ... 1196
63. Storage Types .. 1201
64. UNDI States, Transitions & Valid Commands .. 1221
65. Linked CDBs... 1223
66. Queued CDBs... 1224

January 31, 2006
Version 2.0 xxix

Tables
Table 1. Organization of the UEFI Specification .. 3
Table 2. UEFI Image Memory Types ... 19
Table 3. UEFI Runtime Services .. 22
Table 4. Common UEFI Data Types .. 24
Table 5. Modifiers for Common UEFI Data Types ... 25
Table 6. UEFI Protocols ... 34
Table 7. Required UEFI Implementation Elements.. 51
Table 8. Global Variables ... 59
Table 9. UEFI Image Types ... 63
Table 10. Legacy Master Boot Record... 87
Table 11. Legacy Master Boot Record Partition Record.. 88
Table 12. Protective MBR Partition Record ... 90
Table 13. GUID Partition Table Header ... 93
Table 14. GUID Partition Entry... 95
Table 15. Defined GUID Partition Entry - Partition Type GUIDs.. 96
Table 16. Defined GUID Partition Entry - Attributes... 96
Table 17. Event, Timer, and Task Priority Functions ... 98
Table 18. TPL Usage ... 99
Table 19. TPL Restrictions ... 101
Table 20. Memory Allocation Functions ... 120
Table 21. Memory Type Usage before ExitBootServices() .. 121
Table 22. Memory Type Usage after ExitBootServices() ... 122
Table 23. Protocol Interface Functions... 133
Table 24. Image Type Differences Summary... 182
Table 25. Image Functions... 183
Table 26. Miscellaneous Boot Services Functions... 193
Table 27. Variable Services Functions... 206
Table 28. Time Services Functions .. 214
Table 29. Virtual Memory Functions... 221
Table 30. Miscellaneous Runtime Services ... 225
Table 31. Generic Device Path Node Structure ... 243
Table 32. Device Path End Structure... 244
Table 33. PCI Device Path ... 245
Table 34. PCCARD Device Path.. 245
Table 35. Memory Mapped Device Path.. 246
Table 36. Vendor-Defined Device Path.. 246
Table 37. Controller Device Path ... 246
Table 38. ACPI Device Path... 248
Table 39. Expanded ACPI Device Path ... 248
Table 40 ACPI _ADR Device Path .. 249
Table 41. ATAPI Device Path... 250
Table 42. SCSI Device Path... 250
Table 43. Fibre Channel Device Path .. 250
Table 44. 1394 Device Path ... 251
Table 45. USB Device Path.. 251
Table 46. USB Device Path Examples... 252
Table 47. Another USB Device Path Example... 253
Table 48. USB WWID Device Path .. 254
Table 49. Device Logical Unit... 254

 January 31, 2006
xxx Version 2.0

Table 50. USB Class Device Path.. 255
Table 51. I2O Device Path ... 255
Table 52. MAC Address Device Path... 255
Table 53. IPv4 Device Path.. 256
Table 54. IPv6 Device Path.. 256
Table 55. InfiniBand Device Path ... 257
Table 56. UART Device Path ... 258
Table 57. Vendor-Defined Messaging Device Path ... 258
Table 58. UART Flow Control Messaging Device Path ... 259
Table 59. Messaging Device Path Structure.. 260
Table 60. iSCSI Device Path Node (Base Information) ... 263
Table 61. Hard Drive Media Device Path... 265
Table 62. CD-ROM Media Device Path ... 266
Table 63. Vendor-Defined Media Device Path... 266
Table 64. File Path Media Device Path.. 267
Table 65. Media Protocol Media Device Path .. 267
Table 66. BIOS Boot Specification Device Path .. 268
Table 67. ACPI _CRS to EFI Device Path Mapping .. 269
Table 68. ACPI _ADR to EFI Device Path Mapping .. 270
Table 69. EFI Device Path Option Parameter Values.. 276
Table 70. Device Node Table... 277
Table 71. EFI Driver Configuration Default Type ... 347
Table 72. Supported Unicode Control Characters ... 368
Table 73. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL.. 369
Table 74. EFI Cursor Location/Advance Rules .. 380
Table 75. PS/2 Mouse Device Path ... 395
Table 76. Serial Mouse Device Path.. 396
Table 77. USB Mouse Device Path.. 398
Table 78. Blt Operation Table .. 423
Table 79. Attributes Definition Table .. 427
Table 80. Tape Header Formats .. 477
Table 81. PCI Configuration Address... 526
Table 82. ACPI 2.0 QWORD Address Space Descriptor... 541
Table 83. ACPI 2.0 End Tag .. 541
Table 84. PCI Root Bridge Device Path for a Desktop System ... 542
Table 85. PCI Root Bridge Device Path for Bridge #0 in a Server System.. 543
Table 86. PCI Root Bridge Device Path for Bridge #1 in a Server System.. 543
Table 87. PCI Root Bridge Device Path for Bridge #2 in a Server System.. 544
Table 88. PCI Root Bridge Device Path for Bridge #3 in a Server System.. 544
Table 89. PCI Root Bridge Device Path Using Expanded ACPI Device Path 545
Table 90. ACPI 2.0 QWORD Address Space Descriptor... 591
Table 91. ACPI 2.0 End Tag .. 591
Table 92. PCI Device 7, Function 0 on PCI Root Bridge 0 .. 595
Table 93. PCI Device 7, Function 0 behind PCI to PCI bridge .. 596
Table 94. Standard PCI Expansion ROM Header.. 598
Table 95. PCIR Data Structure... 598
Table 96. PCI Expansion ROM Code Types.. 598
Table 97. EFI PCI Expansion ROM Header... 599
Table 98. Recommended PCI Device Driver Layout ... 602
Table 99. SCSI Device Path Examples.. 621
Table 100. ATAPI Device Path Examples... 622
Table 101. Fibre Channel Device Path Examples... 623

January 31, 2006
Version 2.0 xxxi

Table 102. InfiniBand Device Path Examples ... 624
Table 103. Single Channel PCI SCSI Controller ... 625
Table 104. Single Channel PCI SCSI Controller behind a PCI Bridge.. 626
Table 105. Channel #3 of a PCI SCSI Controller behind a PCI Bridge... 627
Table 106. USB Hub Port Status Bitmap .. 683
Table 107. Hub Port Change Status Bitmap ... 685
Table 108. USB Port Feature .. 687
Table 109. Debugport Messaging Device Path... 744
Table 110. Block Header Fields .. 755
Table 111. General Purpose VM Registers... 773
Table 112. Dedicated VM Registers.. 774
Table 113. VM Flags Register ... 774
Table 114. Index Encoding.. 775
Table 115. Index Size in Index Encoding .. 776
Table 116. Opcode Byte Encoding.. 779
Table 117. Operand Byte Encoding .. 780
Table 118. ADD Instruction Encoding ... 781
Table 119. AND Instruction Encoding ... 782
Table 120. ASHR Instruction Encoding... 783
Table 121. VM Version Format.. 784
Table 122. BREAK Instruction Encoding... 785
Table 123. CALL Instruction Encoding.. 787
Table 124. CMP Instruction Encoding... 790
Table 125. CMPI Instruction Encoding.. 792
Table 126. DIV Instruction Encoding... 793
Table 127. DIVU Instruction Encoding .. 794
Table 128. EXTNDB Instruction Encoding .. 795
Table 129. EXTNDD Instruction Encoding .. 796
Table 130. EXTNDW Instruction Encoding ... 797
Table 131. JMP Instruction Encoding.. 799
Table 132. JMP8 Instruction Encoding.. 800
Table 133. LOADSP Instruction Encoding .. 801
Table 134. MOD Instruction Encoding .. 802
Table 135. MODU Instruction Encoding.. 803
Table 136. MOV Instruction Encoding... 805
Table 137. MOVI Instruction Encoding.. 806
Table 138. MOVIn Instruction Encoding.. 808
Table 139. MOVn Instruction Encoding... 810
Table 140. MOVREL Instruction Encoding.. 812
Table 141. MOVsn Instruction Encoding... 813
Table 142. MUL Instruction Encoding ... 815
Table 143. MULU Instruction Encoding... 816
Table 144. NEG Instruction Encoding ... 817
Table 145. NOT Instruction Encoding ... 818
Table 146. OR Instruction Encoding ... 819
Table 147. POP Instruction Encoding ... 820
Table 148. POPn Instruction Encoding ... 821
Table 149. PUSH Instruction Encoding... 822
Table 150. PUSHn Instruction Encoding... 823
Table 151. RET Instruction Encoding.. 824
Table 152. SHL Instruction Encoding.. 825
Table 153. SHR Instruction Encoding ... 826

 January 31, 2006
xxxii Version 2.0

Table 154. STORESP Instruction Encoding.. 827
Table 155. SUB Instruction Encoding ... 828
Table 156. XOR Instruction Encoding ... 829
Table 157. PXE Tag Definitions for EFI .. 886
Table 158. Destination IP Filter Operation .. 906
Table 159. Destination UDP Port Filter Operation .. 906
Table 160. Source IP Filter Operation... 907
Table 161. Source UDP Port Filter Operation ... 907
Table 162. DHCP4 Enumerations ... 1004
Table 163. Descriptions of Parameters in MTFTPv4 Packet Structures... 1129
Table 164. Generic Authentication Node Structure... 1150
Table 165. CHAP Authentication Node Structure using RADIUS... 1151
Table 166. CHAP Authentication Node Structure using Local Database.. 1152
Table 167. EFI Hash Algorithms.. 1165
Table 168. EFI GUID Format... 1167
Table 169. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL................................... 1169
Table 170. Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL.............. 1170
Table 171. Legacy Floppy Device Path... 1175
Table 172. IDE Disk Device Path .. 1176
Table 173. Secondary Root PCI Bus with PCI to PCI Bridge Device Path..................................... 1177
Table 174. EFI_STATUS Codes Ranges.. 1181
Table 175. EFI_STATUS Success Codes (High Bit Clear)... 1181
Table 176. EFI_STATUS Error Codes (High Bit Set).. 1181
Table 177. EFI_STATUS Warning Codes (High Bit Clear) ... 1183
Table 178. Definitions.. 1185
Table 179. Referenced Specifications... 1187
Table 180. Driver Types: Pros and Cons ... 1190
Table 181. !PXE Structure Field Definitions .. 1192
Table 182. UNDI CDB Field Definitions .. 1196
Table 183. EBC Virtual Machine Opcode Summary ... 1327
Table 184. Functions Listed in Alphabetic Order .. 1329
Table 185. Functions Listed Alphabetically within a Service or Protocol .. 1346
Table 186. Protocol Name changes .. 1359

January 31, 2006
Version 2.0 1

1
Introduction

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification 2.0 describes
an interface between the operating system (OS) and the platform firmware. UEFI was preceded by
the Extensible Firmware Interface Specification 1.10. As a result, some code and certain protocol
names retain the EFI designation. Unless otherwise noted, EFI designations in this specification
may be assumed to be part of UEFI.

The interface is in the form of data tables that contain platform-related information, and boot and
runtime service calls that are available to the OS loader and the OS. Together, these provide a
standard environment for booting an OS. This specification is designed as a pure interface
specification. As such, the specification defines the set of interfaces and structures that platform
firmware must implement. Similarly, the specification defines the set of interfaces and structures
that the OS may use in booting. How either the firmware developer chooses to implement the
required elements or the OS developer chooses to make use of those interfaces and structures is an
implementation decision left for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate
only information necessary to support the OS boot process. This is accomplished through a formal
and complete abstract specification of the software-visible interface presented to the OS by the
platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible with
supported processor specifications will be able to boot on a variety of system designs without
further platform or OS customization. The definition will also allow for platform innovation to
introduce new features and functionality that enhance platform capability without requiring new
code to be written in the OS boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality through the
same defined abstract interface, again without impact on the OS boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems to
servers. The specification provides a core set of services along with a selection of protocol
interfaces. The selection of protocol interfaces can evolve over time to be optimized for various
platform market segments. At the same time the specification allows maximum extensibility and
customization abilities for OEMs to allow differentiation. In this, the purpose of UEFI is to define
an evolutionary path from the traditional “PC-AT”-style boot world into a legacy-API free
environment.

 January 31, 2006
2 Version 2.0

1.1 UEFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. One purpose of the UEFI
Driver Model is to provide a replacement for “PC-AT”-style option ROMs. It is important to point
out that drivers written to the UEFI Driver Model are designed to access boot devices in the preboot
environment. They are not designed to replace the high performance OS specific drivers.

The UEFI Driver Model is designed to support the execution of modular pieces of code, also
known as drivers that run in the preboot environment. These drivers may manage or control
hardware buses and devices on the platform or they may provide some software derived platform
specific service.

The UEFI Driver Model also contains information required by UEFI driver writers to design and
implement any combination of bus drivers and device drivers that a platform may need to boot a
UEFI compliant OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or device.
The UEFI Specification 2.0 describes how to write PCI bus drivers, PCI device drivers, USB bus
drivers, USB device drivers, and SCSI drivers. Additions details are provided that allow UEFI
drivers to be stored in PCI option ROMs while maintaining compatibility with legacy option
ROM images.

One of the design goals in the UEFI Specification 2.0 is keeping the driver images as small as
possible. However, if a driver is required to support multiple processor architectures, a driver
object file would also be required to be shipped for each supported processor architecture. To
address this space issue, this specification also defines the EFI Byte Code Virtual Machine. A
UEFI driver can be compiled into a single EFI Byte Code object file. UEFI 2.0 complaint firmware
must contain an EFI Byte Code interpreter. This allows a single EFI Byte Code object file to be
shipped that supports multiple processor architectures. Another space saving technique is the use
of compression. This specification defines compression and decompression algorithms that may be
used to reduce the size of UEFI Drivers, and thus reduce the overhead when UEFI Drivers are
stored in ROM devices.

The information contained in the UEFI Specification 2.0 can be used by OSVs, IHVs, OEMs, and
firmware vendors to design and implement firmware conforming to this specification, drivers that
produce standard protocol interfaces, and operating system loaders that can be used to boot UEFI-
compliant operating systems.

January 31, 2006
Version 2.0 3

1.2 Overview

The UEFI 2.0 Specification is organized as listed in Table 1.

Table 1. Organization of the UEFI Specification

Chapter/Appendix Description

1. Introduction Introduces the UEFI Specification and topics related to using the
specification.

2. Overview Describes the major components of UEFI, including the boot
manager, firmware core, calling conventions, protocols, and
requirements.

3. Boot Manager Describes the boot manager, which is used to load drivers and
applications written to this specification.

4. EFI System Table Describes the EFI System Table that is passed to every
compliant driver and application.

5. Guid Partition Table (GPT) Format Defines a new partitioning scheme that must be supported by
firmware conforming to this specification.

6. Services — Boot Services Contains the definitions of the fundamental services that are
present in a UEFI-compliant system before an OS is booted.

7. Services — Runtime Services Contains definitions for the fundamental services that are
present in a compliant system before and after an OS is booted.

8. Protocols — EFI Loaded Image Defines the EFI Loaded Image Protocol that describes a UEFI
Image that has been loaded into memory.

9 Protocols — Device Path Protocol Defines the device path protocol and provides the information
needed to construct and manage device paths in the UEFI
environment.

10. Protocols — UEFI Driver Model Describes a generic driver model for UEFI. This includes the set
of services and protocols that apply to every bus and device
type, including the Driver Binding Protocol, the Platform Driver
Override Protocol, the Bus Specific Driver Override Protocol, the
Driver Diagnostics Protocol, the Driver Configuration Protocol,
and the Component Name Protocol.

11. Protocols — Console Support Defines the Console I/O protocols, which handle input and output
of text-based information intended for the system user while
executing in the boot services environment. These protocols
include the Simple Input Protocol, the Simple Text Output
Protocol, the Graphics Output Protocol, the Simple Pointer
Protocol, and the Serial I/O Protocol.

12. Protocols—Media Access

Defines the Load File protocol, file system format and media
formats for handling removable media

 January 31, 2006
4 Version 2.0

Chapter/Appendix Description

13. Protocols — PCI Bus Support Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option
ROM layouts. The protocols described include the PCI Root
Bridge I/O Protocol and the PCI I/O Protocol.

14. Protocols — SCSI Driver Models
and Bus Support

Defines the SCSI I/O Protocol, and the Extended SCSI Pass
Thru Protocol that is used to abstract access to a SCSI channel
that is produced by a SCSI host controller.

15. Protocols —iSCSI Boot The iSCSI protocol defines a transport for SCSI data over
TCP/IP.

16. Protocols — USB Support Defines USB Bus Drivers and USB Device Drivers. The
protocols described include the USB2 Host Controller Protocol
and the USB I/O Protocol.

17. Protocols — Debugger Support An optional set of protocols that provide the services required to
implement a source level debugger for the UEFI environment.
The EFI Debug Port Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol provides
services to hook processor exceptions, save the processor
context, and restore the processor context. These protocols can
be used in the implementation of a debug agent on the target
system that interacts with the remote debug host.

18. Protocols — Compression
Algorithm Specification

Describes in detail the compression/decompression algorithm,
as well as the EFI Decompress Protocol. The EFI Decompress
Protocol provides a standard decompression interface for use at
boot time. The EFI Decompress Protocol is used by a PCI Bus
Driver to decompress UEFI drivers stored in PCI Option ROMs.

19. EFI Byte Code Virtual Machine Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into
memory, and the mechanism for transitioning from native code to
EBC code and back to native code. The information in this
document is sufficient to implement an EFI Byte Code
interpreter, an EFI Byte Code compiler, and an EFI Byte Code
linker.

20. Protocols—Tape Boot Support Defines support for a new Tape IO protocol, functions, and a
standard tape header format to enable tape-based OS
bootloaders to be run using the EFI Load File Protocol.

21. Network Protocols—SNP, PXE,
and BIS

Defines the protocols that provide access to network devices
while executing in the UEFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

22. Network Protocols—Managed
Network

Defines the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet I/O services and
Managed Network Service Binding Protocol, which is used to
locate communication devices that are supported by an MNP
driver.

23. Network Protocols—ARP and
DHCPv4

Defines the EFI Address Resolution Protocol (ARP) Protocol
interface and the EFI DHCPv4 Protocol.

January 31, 2006
Version 2.0 5

Chapter/Appendix Description

24. Network Protocols—TCPv4,IPv4
and Configuration

Defines the EFI TCPv4 (Transmission Control Protocol
version 4) Protocol and the EFI IPv4 (Internet Protocol version 4)
Protocol interface.

25. Network Protocols—UDPv4 and
MTFPv4

Defines the EFI UDPv4 (User Datagram Protocol version 4)
Protocol that interfaces over the EFI IPv4 Protocol and defines
the EFI MTFTPv4 Protocol interface that is built upon the EFI
UDPv4 Protocol.

26. Security—Driver Signing and Hash Describes a means of generating a digital signature for a UEFI
executable, and a standard set of functions for creating a hash
value for a specified variable length input.

A. GUID and Time Formats Explains the GUID (Guaranteed Unique Identifier) format.

B. Console Describes the requirements for a basic text-based console
required by EFI-conformant systems to provide communication
capabilities.

C. Device Path Examples Examples of use of the data structures that defines various
hardware devices to the boot services.

D. Status Codes Lists success, error, and warning codes returned by UEFI
interfaces.

E. Universal Network Driver Interfaces This appendix defines the 32/64-bit H/W and S/W Universal
Network Driver Interfaces (UNDIs).

F. Using the Simple Pointer Protocol This appendix provides the suggested usage of the Simple
Pointer Protocol.

G. Using the EFI SCSI Pass Thru
Protocol

This appendix provides an example on how the SCSI Pass Thru
Protocol can be used.

H. Compression Source Code The C source code to an implementation of the Compression
Algorithm.

I. Decompression Source Code The C source code to an implementation of the EFI
Decompression Algorithm.

J. EFI Byte Code Virtual Machine
Opcode Lists

A summary of the opcodes in the instruction set of the EFI Byte
Code Virtual Machine.

K. Alphabetic Function List Lists all UEFI interface functions alphabetically.

L. EFI 1.10 Protocol Changes and
Deprecation Lists

This appendix lists the Protocol , GUID, and revision identifier
name changes and the deprecated protocols compared to the
EFI Specification 1.10.

M. Formats—Language Codes and
Language Code Arrays

This appendix lists the formats for language codes and language
code arrays.

Glossary Briefly describes terms defined or referenced by this
specification.

References Lists all necessary and/or useful specifications, web sites, and
other documentation that is referenced in this UEFI Specification.

Index Provides an index to the key terms and concepts in the
specification.

 January 31, 2006
6 Version 2.0

1.3 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry.
Each new platform capability or hardware innovation requires firmware developers to craft
increasingly complex solutions, and often requires OS developers to make changes to their boot
code before customers can benefit from the innovation. This can be a time-consuming process
requiring a significant investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment that can
alleviate some of these considerations. In this goal, the specification is similar to other existing
boot specifications. The main properties of this specification can be summarized by these
attributes:

• Coherent, scalable platform environment. The specification defines a complete solution for the
firmware to describe all platform features and surface platform capabilities to the OS during the
boot process. The definitions are rich enough to cover a range of contemporary processor
designs.

• Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader to be
constructed with far less knowledge of the platform and firmware that underlie those interfaces.
The interfaces represent a well-defined and stable boundary between the underlying platform
and firmware implementation and the OS loader. Such a boundary allows the underlying
firmware and the OS loader to change provided both limit their interactions to the defined
interfaces.

• Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces require the
OS loader to have specific knowledge of the workings of certain hardware devices. This
specification provides OS loader developers with something different—abstract interfaces that
make it possible to build code that works on a range of underlying hardware devices without
having explicit knowledge of the specifics for each device in the range.

• Abstraction of Option ROMs from the firmware. This specification defines interfaces to
platform capabilities including standard bus types such as PCI, USB, and SCSI. The list of
supported bus types may grow over time, so a mechanism to extend to future bus types is
included. These defined interfaces and the ability to extend to future bus types are components
of the UEFI Driver Model. One purpose of the UEFI Driver Model is to solve a wide range of
issues that are present in existing “PC-AT” option ROMs. Like OS loaders, drivers use the
abstract interfaces so device drivers and bus drivers can be constructed with far less knowledge
of the platform and firmware that underlie those interfaces.

• Architecturally shareable system partition. Initiatives to expand platform capabilities and add
new devices often require software support. In many cases, when these platform innovations
are activated before the OS takes control of the platform, they must be supported by code that is
specific to the platform rather than to the customer’s choice of OS. The traditional approach to
this problem has been to embed code in the platform during manufacturing (for example, in
flash memory devices). Demand for such persistent storage is increasing at a rapid rate. This
specification defines persistent store on large mass storage media types for use by platform
support code extensions to supplement the traditional approach. The definition of how this
works is made clear in the specification to ensure that firmware developers, OEMs, operating

January 31, 2006
Version 2.0 7

system vendors, and perhaps even third parties can share the space safely while adding to
platform capability.

Defining a boot environment that delivers these attributes could be accomplished in many ways.
Indeed several alternatives, perhaps viable from an academic point of view, already existed at the
time this specification was written. These alternatives, however, typically presented high barriers
to entry given the current infrastructure capabilities surrounding supported processor platforms.
This specification is intended to deliver the attributes listed above while also recognizing the unique
needs of an industry that has considerable investment in compatibility and a large installed base of
systems that cannot be abandoned summarily. These needs drive the requirements for the
additional attributes embodied in this specification:

• Evolutionary, not revolutionary. The interfaces and structures in the specification are designed
to reduce the burden of an initial implementation as much as possible. While care has been
taken to ensure that appropriate abstractions are maintained in the interfaces themselves, the
design also ensures that reuse of BIOS code to implement the interfaces is possible with a
minimum of additional coding effort. In other words, on PC-AT platforms the specification
can be implemented initially as a thin interface layer over an underlying implementation based
on existing code. At the same time, introduction of the abstract interfaces provides for
migration away from legacy code in the future. Once the abstraction is established as the
means for the firmware and OS loader to interact during boot, developers are free to replace
legacy code underneath the abstract interfaces at leisure. A similar migration for hardware
legacy is also possible. Since the abstractions hide the specifics of devices, it is possible to
remove underlying hardware, and replace it with new hardware that provides improved
functionality, reduced cost, or both. Clearly this requires that new platform firmware be written
to support the device and present it to the OS loader via the abstract interfaces. However,
without the interface abstraction, removal of the legacy device might not be possible at all.

• Compatibility by design. The design of the system partition structures also preserves all the
structures that are currently used in the “PC-AT” boot environment. Thus it is a simple matter
to construct a single system that is capable of booting a legacy OS or an EFI-aware OS from
the same disk.

• Simplifies addition of OS-neutral platform value-add. The specification defines an open
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process, or
they may be used to implement enhanced platform capabilities like fault tolerance or security.
Furthermore this ability to extend platform capability is designed into the specification from the
outset. This is intended to help developers avoid many of the frustrations inherent in trying to
squeeze new code into the traditional BIOS environment. As a result of the inclusion of
interfaces to add new protocols, OEMs or firmware developers have an infrastructure to add
capability to the platform in a modular way. Such drivers may potentially be implemented
using high level coding languages because of the calling conventions and environment defined
in the specification. This in turn may help to reduce the difficulty and cost of innovation. The
option of a system partition provides an alternative to nonvolatile memory storage for such
extensions.

 January 31, 2006
8 Version 2.0

• Built on existing investment. Where possible, the specification avoids redefining interfaces and
structures in areas where existing industry specifications provide adequate coverage. For
example, the ACPI specification provides the OS with all the information necessary to discover
and configure platform resources. Again, this philosophical choice for the design of the
specification is intended to keep barriers to its adoption as low as possible.

1.4 Target Audience

This document is intended for the following readers:

• IHVs and OEMs who will be implementing UEFI drivers.
• OEMs who will be creating supported processor platforms intended to boot shrink-wrap

operating systems.
• BIOS developers, either those who create general-purpose BIOS and other firmware products

or those who modify these products for use in supported processor-based products.
• Operating system developers who will be adapting their shrink-wrap operating system products

to run on supported processor-based platforms.

January 31, 2006
Version 2.0 9

1.5 UEFI Design Overview

The design of UEFI is based on the following fundamental elements:

• Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing specifications
that are commonly implemented on platforms compatible with supported processor
specifications must be implemented on platforms wishing to comply with the UEFI
specification. (See the References appendix for additional information.)

• System partition. The System partition defines a partition and file system that are designed to
allow safe sharing between multiple vendors, and for different purposes. The ability to include
a separate sharable system partition presents an opportunity to increase platform value-add
without significantly growing the need for nonvolatile platform memory.

• Boot services. Boot services provide interfaces for devices and system functionality that can be
used during boot time. Device access is abstracted through “handles” and “protocols.” This
facilitates reuse of investment in existing BIOS code by keeping underlying implementation
requirements out of the specification without burdening the consumer accessing the device.

• Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its
normal operations.

Figure 1 shows the principal components of UEFI and their relationship to platform hardware and
OS software.

OM13141

ACPI
SMBIOS

(OTHER)

INTERFACES
FROM

OTHER
REQUIRED

SPECS PLATFORM HARDWARE

EFI BOOT SERVICES EFI RUNTIME
SERVICES

EFI OS LOADER

OPERATING SYSTEM

EFI SYSTEM PARTITION
EFI OS

LOADER

Figure 1. UEFI Conceptual Overview

This diagram illustrates the interactions of the various components of an UEFI specification-
compliant system that are used to accomplish platform and OS boot.

 January 31, 2006
10 Version 2.0

The platform firmware is able to retrieve the OS loader image from the System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM and
DVD as well as remote boot via a network. Through the extensible protocol interfaces, it is
possible to add other boot media types, although these may require OS loader modifications if they
require use of protocols other than those defined in this document.

Once started, the OS loader continues to boot the complete operating system. To do so, it may use
the EFI boot services and interfaces defined by this or other required specifications to survey,
comprehend and initialize the various platform components and the OS software that manages
them. EFI runtime services are also available to the OS loader during the boot phase.

1.6 UEFI Driver Model

This section describes the goals of a driver model for firmware conforming to this specification.
The goal is for this driver model to provide a mechanism for implementing bus drivers and device
drivers for all types of buses and devices. At the time of writing, supported bus types include PCI,
USB, and so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms
are increasing. This trend is especially true in high-end servers. However, a more diverse set of
bus types is being designed into desktop and mobile systems and even some embedded systems.
This increasing complexity means that a simple method for describing and managing all the buses
and devices in a platform is required in the preboot environment. The UEFI Driver Model provides
this simple method in the form of protocols services and boot services.

1.6.1 UEFI Driver Model Goals
The UEFI Driver Model has the following goals:

• Compatible – Drivers conforming to this specification must maintain compatibility with the
EFI 1.10 Specification and the UEFI 2.0 Specification. This means that the UEFI Driver
Model takes advantage of the extensibility mechanisms in the UEFI 2. 0 Specification to add
the required functionality.

• Simple – Drivers which coform to this specification must be simple to implement and simple to
maintain. The UEFI Driver Model must allow a driver writer to concentrate on the specific
device for which the driver is being developed. A driver should not be concerned with platform
policy or platform management issues. These considerations should be left to the system
firmware.

• Scalable – The UEFI Driver Model must be able to adapt to all types of platforms. These
platforms would include embedded systems; mobile and desktop systems, as well as
workstations; and servers.

• Flexible – The UEFI Driver Model must support the ability to enumerate all the devices, or to
enumerate only those devices required to boot the required OS. The minimum device
enumeration provides support for more rapid boot capability, and the full device enumeration
provides the ability to perform OS installations, system maintenance, or system diagnostics on
any boot device present in the system.

• Extensible – The UEFI Driver Model must be able to extend to future bus types as they are
defined.

January 31, 2006
Version 2.0 11

• Portable – Drivers written to the UEFI Driver Model must be portable between platforms and
between supported processor architectures.

• Interoperable – Drivers must coexist with other drivers and system firmware and must do so
without generating resource conflicts.

• Describe Complex Bus Hierarchies – The UEFI Driver Model must be able to describe a
variety of bus topologies from very simple single bus platforms to very complex platforms
containing many buses of various types.

• Small Driver Footprint – The size of executables produced by the UEFI Driver Model must be
minimized to reduce the overall platform cost. While flexibility and extensibility are goals, the
additional overhead required to support these must be kept to a minimum to prevent the size of
firmware components from becoming unmanageable.

• Address Legacy Option ROM Issues – The UEFI Driver Model must directly address and
solve the constraints and limitations of legacy option ROMs. Specifically it must be possible to
build add-in cards that support both UEFI drivers and legacy option ROMs where such cards
can execute in both legacy BIOS systems and UEFI conforming platforms without
modifications to the code carried on the card. The solution must provide an evolutionary path
to migrate from legacy option ROMs driver to UEFI drivers.

1.6.2 Legacy Option ROM Issues
This idea of supporting a driver model came from feedback on the UEFI Specification 2.0 that
provided a clear, market-driven requirement for an alternative to the legacy option ROM
(sometimes also referred to as an expansion ROM). The perception is that the advent of the UEFI
Specification 2.0 represents a chance to escape the limitations implicit to the construction and
operation of legacy option ROM images by replacing them with an alternative mechanism that
works within the framework of the UEFI Specification 2.0.

1.7 Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification
to a future time when all platforms and operating systems implement to this specification. During
this period, two major compatibility considerations are important:

1. The ability to continue booting legacy operating systems;
2. The ability to implement UEFI on existing platforms by reusing as much existing firmware

code to keep development resource and time requirements to a minimum.

 January 31, 2006
12 Version 2.0

1.7.1 Legacy Operating System Support
The UEFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the boot process. However, choosing to make a platform that complies with
this specification in no way precludes a platform from also supporting existing legacy OS binaries
that have no knowledge of the UEFI specification.

The UEFI specification does not restrict a platform designer who chooses to support both the UEFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is
to be implemented it should be developed in accordance with existing industry practice that is
defined outside the scope of this specification. The choice of legacy operating systems that are
supported on any given platform is left to the manufacturer of that platform.

1.7.2 Supporting the UEFI Specification on a Legacy Platform
The UEFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the UEFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing and supported 32-bit-based platform that
uses traditional BIOS to support operating system boot, an additional layer of firmware code would
need to be provided. This extra code would be required to translate existing interfaces for services
and devices into support for the abstractions defined in this specification.

1.8 Conventions Used in This Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte
of a multibyte data item in memory is at the lowest address, while the high-order byte is at the
highest address. Some supported 64-bit processors may be configured for both “little endian” and
“big endian” operation. All implementations designed to conform to this specification use “little
endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

January 31, 2006
Version 2.0 13

1.8.2 Protocol Descriptions
A protocol description generally has the following format:

Protocol: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit unique identifier for the protocol interface.

Revision Number: The revision of the protocol interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the
procedures and data fields produced by this protocol
interface.

Parameters: A brief description of each field in the protocol interface
structure.

Related Definitions: The type declarations and constants that are used in the
protocol interface structure or any of its procedures.

Description: A description of the functionality provided by the
protocol interface including any limitations and caveats
of which the caller should be aware.

 January 31, 2006
14 Version 2.0

1.8.3 Procedure Descriptions
A procedure description generally has the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling
sequence.

Parameters: The parameters defined in the template are described in
further detail.

Related Definitions: The type declarations and constants that are only used by
this procedure.

Description: A description of the functionality provided by the
interface including any limitations and caveats the caller
of which should be aware.

Status Codes Returned: A description of the codes returned by the interface.
Any status codes listed in this table are required to be
implemented by the procedure. Additional error codes
may be returned, but they will not be tested by standard
compliance tests, and any software that uses the
procedure cannot depend on any of the extended error
codes that an implementation may provide.

1.8.4 Instruction Descriptions
An instruction description for EBC instructions generally has the following format:

InstructionName The formal name of the EBC Instruction.

SYNTAX: A brief description of the EBC Instruction.

DESCRIPTION: A description of the functionality provided by the EBC
Instruction accompanied by a table that details the
instruction encoding.

OPERATION: Details the operations performed on operands.

BEHAVIORS AND RESTRICTIONS: An item by item description of the behavior
of each operand involved in the instruction
and any restrictions that apply to the
operands or the instruction.

January 31, 2006
Version 2.0 15

1.8.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the UEFI Specification.

1.8.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text (blue) In the electronic version of this specification, any plain text
underlined and in blue indicates an active link to the cross-reference.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate
paragraphs, though words or segments can also be embedded in a
normal text paragraph.

BOLD Monospace In the electronic version of this specification, words in a BOLD
Monospace typeface that is underlined and in a dark red color
indicate an active hyperlink to the definition for that function or type
definition. Click on the word to follow the hyperlink.

NOTE

Due to management and file size considerations, only the first occurrence of the reference on each
page is an active link. Subsequent references on the same page will not be actively linked to the
definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace typeface) on the page and click on the
word to jump to the function or type definition.

Italic Monospace In code or in text, words in Italic Monospace indicate
placeholder names for variable information that must be supplied
(i.e., arguments).

 January 31, 2006
16 Version 2.0

January 31, 2006
Version 2.0 17

2
Overview

UEFI allows the extension of platform firmware by loading UEFI driver and UEFI application
images. When UEFI drivers and UEFI applications are loaded they have access to all UEFI-
defined runtime and boot services. See Figure 2.

OM13144

Standard
firmware
platform
initilization

Drivers and
applications
loaded
iteratively

Boot from
ordered list
of EFIOS
loaders

Operation
handed off
to OS loader

API specified Value add implementation

Boot Manager EFI binaries

Platform
Init

EFI Image
Load

EFI
OS Loader

Load

Boot
Services

Terminate

EFI
Driver

EFI
Application

EFI
Bootcode OS Loader

EFI APIRetry
Failure

Figure 2. Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware into a
single platform firmware menu. These platform firmware menus will allow the selection of any
UEFI OS loader from any partition on any boot medium that is supported by UEFI boot services.
An UEFI OS loader can support multiple options that can appear on the user interface. It is also
possible to include legacy boot options, such as booting from the A: or C: drive in the platform
firmware boot menus.

UEFI supports booting from media that contain an UEFI OS loader or a UEFI-defined System
Partition. A UEFI-defined System Partition is required by UEFI to boot from a block device.
UEFI does not require any change to the first sector of a partition, so it is possible to build media
that will boot on both legacy architectures and UEFI platforms.

 January 31, 2006
18 Version 2.0

2.1 Boot Manager

UEFI contains a boot manager that allows the loading of applications written to this specification
(including OS 1st stage loader) or UEFI drivers from any file on an UEFI-defined file system or
through the use of an UEFI-defined image loading service. UEFI defines NVRAM variables that
are used to point to the file to be loaded. These variables also contain application specific data that
are passed directly to the UEFI application. The variables also contain a human readable Unicode
string that can be displayed to the user in a menu.

The variables defined by UEFI allow the system firmware to contain a boot menu that can point to
all the operating systems, and even multiple versions of the same operating systems. The design
goal of UEFI was to have one set of boot menus that could live in platform firmware. UEFI only
specifies the NVRAM variables used in selecting boot options. UEFI leaves the implementation of
the menu system as value added implementation space.

UEFI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first floppy,
hard drive, CD-ROM, USB keys, or network card attached to the system. Booting from a common
hard drive can cause lots of interoperability problems between operating systems, and different
versions of operating systems from the same vendor.

2.1.1 UEFI Images
UEFI Images are a class of files defined by UEFI that contain executable code. The most
distinguishing feature of UEFI Images is that the first set of bytes in the UEFI Image file contains
an image header that defines the encoding of the executable image.

UEFI uses a subset of the PE32+ image format with a modified header signature. The
modification to signature value in the PE32+ image is done to distinguish UEFI images from
normal PE32 executables. The “+” addition to PE32 provides the 64-bit relocation fix-up
extensions to standard PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header are
defined below. The major differences between image types are the memory type that the firmware
will load the image into, and the action taken when the image’s entry point exits or returns. An
application image is always unloaded when control is returned from the image’s entry point. A
driver image is only unloaded if control is passed back with a UEFI error code.
// PE32+ Subsystem type for EFI images
#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

January 31, 2006
Version 2.0 19

Table 2. UEFI Image Memory Types

Subsystem Type Code Memory Type Data Memory Type

EFI_IMAGE_SUSBSYTEM_EFI_APPLICATION EfiLoaderCode EfiLoaderData

EFI_IMAGE_SUBSYSMTE_EFI_BOOT_SERVICES_DRIVER EfiBootServiceCode EfiBootServicesData

EFI_IMAGE_SUBSYSTEM_EFI_RUNITME_DRIVER EfiRuntimeServicesCode EfiRuntimeServicesData

The Machine value that is found in the PE image file header is used to indicate the machine code
type of the image. The machine code types defined for images with the UEFI image signature are
defined below. A given platform must implement the image type native to that platform and the
image type for EFI Byte Code (EBC). Support for other machine code types is optional to the
platform.

// PE32+ Machine type for EFI images
#define EFI_IMAGE_MACHINE_IA32 0x014c
#define EFI_IMAGE_MACHINE_IA64 0x0200
#define EFI_IMAGE_MACHINE_EBC 0x0EBC
#define EFI_IMAGE_MACHINE_x64 0x8664

A UEFI image is loaded into memory through the LoadImage() Boot Service. This service
loads an image with a PE32+ format into memory. This PE32+ loader is required to load all the
sections of the PE32+ image into memory. Once the image is loaded into memory, and the
appropriate “fix-ups” have been performed, control is transferred to a loaded image at the
AddressOfEntryPoint reference according to the normal indirect calling conventions of
applications based on supported 32-bit or supported 64-bit processors. All other linkage to and
from an UEFI image is done programmatically.

2.1.2 Applications
Applications written to this specification are loaded by the Boot Manager or by other UEFI
applications. To load an application the firmware allocates enough memory to hold the image,
copies the sections within the application to the allocated memory and applies the relocation fix-ups
needed. Once done, the allocated memory is set to be the proper type for code and data for the
image. Control is then transferred to the application’s entry point. When the application returns
from its entry point, or when it calls the Boot Service Exit(), the application is unloaded from
memory and control is returned to the UEFI component that loaded the application.

When the Boot Manager loads an application, the image handle may be used to locate the “load
options” for the application. The load options are stored in nonvolatile storage and are associated
with the application being loaded and executed by the Boot Manager.

 January 31, 2006
20 Version 2.0

2.1.3 UEFI OS Loaders
An OS loader is a special type of UEFI application that normally takes over control of the system
from firmware conforming to this specification. When loaded, the OS loader behaves like any
other UEFI application in that it must only use memory it has allocated from the firmware and can
only use UEFI services and protocols to access the devices that the firmware exposes. If the OS
Loader includes any boot service style driver functions, it must use the proper UEFI interfaces to
obtain access to the bus specific-resources. That is, I/O and memory-mapped device registers must
be accessed through the proper bus specific I/O calls like those that an UEFI driver would perform.

If the OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Boot Service Exit() call.
The Exit() call allows both an error code and ExitData to be returned. The ExitData
contains both a Unicode string and OS loader-specific data to be returned.

If the OS loader successfully loads its operating system, it can take control of the system by using
the Boot Service ExitBootServices(). After successfully calling ExitBootServices(),
all boot services in the system are terminated, including memory management, and the OS loader is
responsible for the continued operation of the system.

2.1.4 UEFI Drivers
UEFI Drivers are loaded by the Boot Manager, firmware conforming to this specification, or by
other UEFI applications. To load an UEFI Driver the firmware allocates enough memory to hold
the image, copies the sections within the driver to the allocated memory and applies the relocation
fix-ups needed. Once done, the allocated memory is set to be the proper type for code and data for
the image. Control is then transferred to the driver’s entry point. When the driver returns from its
entry point, or when it calls the Boot Service Exit(), the driver is optionally unloaded from
memory and control is returned to the component that loaded the driver. A driver is not unloaded
from memory if it returns a status code of EFI_SUCCESS. If the driver’s return code is an error
status code, then the driver is unloaded from memory.

There are two types of UEFI Drivers. These are Boot Service Drivers and Runtime Drivers. The
only difference between these two driver types is that Runtime Drivers are available after an OS
Loader has taken control of the platform with the Boot Service ExitBootServices().

Boot Service Drivers are terminated when ExitBootServices() is called, and all the memory
resources consumed by the Boot Service Drivers are released for use in the operating system
environment. A runtime driver of type EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER
gets fixed up with virtual mappings when the OS calls SetVirtualAddressMap().

January 31, 2006
Version 2.0 21

2.2 Firmware Core

This section provides an overview of the services defined by UEFI. These include boot services
and runtime services.

2.2.1 UEFI Services
The purpose of the UEFI interfaces is to define a common boot environment abstraction for use by
loaded UEFI images, which include UEFI drivers, UEFI applications, and UEFI OS loaders. The
calls are defined with a full 64-bit interface, so that there is headroom for future growth. The goal
of this set of abstracted platform calls is to allow the platform and OS to evolve and innovate
independently of one another. Also, a standard set of primitive runtime services may be used by
operating systems.

Platform interfaces defined in this chapter allow the use of standard Plug and Play Option ROMs as
the underlying implementation methodology for the boot services. The interfaces have been
designed in such as way as to map back into legacy interfaces. These interfaces have in no way
been burdened with any restrictions inherent to legacy Option ROMs.

The UEFI platform interfaces are intended to provide an abstraction between the platform and the
OS that is to boot on the platform. The UEFI specification also provides abstraction between
diagnostics or utility programs and the platform; however, it does not attempt to implement a full
diagnostic OS environment. It is envisioned that a small diagnostic OS-like environment can be
easily built on top of an UEFI system. Such a diagnostic environment is not described by this
specification.

Interfaces added by this specification are divided into the following categories and are detailed later
in this document:

• Runtime services
• Boot services interfaces, with the following subcategories:

 Global boot service interfaces

 Device handle-based boot service interfaces

 Device protocols

 Protocol services

 January 31, 2006
22 Version 2.0

2.2.2 Runtime Services
This section describes UEFI runtime service functions. The primary purpose of the runtime
services is to abstract minor parts of the hardware implementation of the platform from the OS.
Runtime service functions are available during the boot process and also at runtime provided the
OS switches into flat physical addressing mode to make the runtime call. However, if the OS
loader or OS uses the Runtime Service SetVirtualAddressMap() service, the OS will only
be able to call runtime services in a virtual addressing mode. All runtime interfaces are non-
blocking interfaces and can be called with interrupts disabled if desired.

In all cases memory used by the runtime services must be reserved and not used by the OS.
runtime services memory is always available to an UEFI function and will never be directly
manipulated by the OS or its components. UEFI is responsible for defining the hardware resources
used by runtime services, so the OS can synchronize with those resources when runtime service
calls are made, or guarantee that the OS never uses those resources.

Table 3 lists the Runtime Services functions.

Table 3. UEFI Runtime Services
Name Description

GetTime() Returns the current time, time context, and time
keeping capabilities.

SetTime() Sets the current time and time context.

GetWakeupTime() Returns the current wakeup alarm settings.

SetWakeupTime() Sets the current wakeup alarm settings.

GetVariable() Returns the value of a named variable.

GetNextVariableName() Enumerates variable names.

SetVariable() Sets, and if needed creates, a variable.

SetVirtualAddressMap() Switches all runtime functions from physical to virtual
addressing.

ConvertPointer() Used to convert a pointer from physical to virtual
addressing.

GetNextHighMonotonicCount() Subsumes the platform's monotonic counter
functionality.

ResetSystem() Resets all processors and devices and reboots the
system.

UpdateCapsule() Passes capsules to the firmware with both virtual and
physical mapping.

QueryCapsuleCapabilities() Returns if the capsule can be supported via
UpdateCapsule().

QueryVariableInfo() Returns information about the EFI variable store.

January 31, 2006
Version 2.0 23

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the UEFI specification are called through pointers
in common, architecturally defined, calling conventions found in C compilers. Pointers to the
various global UEFI functions are found in the EFI_RUNTIME_SERVICES and
EFI_BOOT_SERVICES tables that are located via the system table. Pointers to other functions
defined in this specification are located dynamically through device handles. In all cases, all
pointers to UEFI functions are cast with the word EFIAPI. This allows the compiler for each
architecture to supply the proper compiler keywords to achieve the needed calling conventions.
When passing pointer arguments to Boot Services, Runtime Services, and Protocol Interfaces, the
caller has the following responsibilities:

1. It is the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location (i.e. a
memory mapped I/O region), the results are unpredictable and the system may halt.

2. It is the caller’s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the system may halt.

3. It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is
explicitly allowed. If a NULL pointer is passed to a function, the results are unpredictable and
the system may hang.

4. Unless otherwise stated, a caller should not make any assumptions regarding the state of pointer
parameters if the function returns with an error.

5. A caller may not pass structures that are larger than native size by value and these structures
must be passed by reference (via a pointer) by the caller. Passing a structure larger than native
width (4 bytes on supported 32-bit processors; 8 bytes on supported 64-bit processor
instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are described in more
detail below. Any function or protocol may return any valid return code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public interfaces
include the image entry point, UEFI event handlers, and protocol member functions. The type
EFIAPI is used to indicate conformance to the calling conventions defined in this chapter. Non
public interfaces, such as private functions and static library calls, are not required to follow the
UEFI calling conventions and may be optimized by the compiler.

 January 31, 2006
24 Version 2.0

2.3.1 Data Types
Table 4 lists the common data types that are used in the interface definitions, and Table 5 lists their
modifiers. Unless otherwise specified all data types are naturally aligned. Structures are aligned on
boundaries equal to the largest internal datum of the structure and internal data are implicitly
padded to achieve natural alignment.

Table 4. Common UEFI Data Types
Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other
values are undefined.

INTN Signed value of native width. (4 bytes on supported 32-bit processor instructions, 8
bytes on supported 64-bit processor instructions)

UINTN Unsigned value of native width. (4 bytes on supported 32-bit processor
instructions, 8 bytes on supported 64-bit processor instructions)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

UINT64 8-byte unsigned value.

CHAR8 1-byte Character.

CHAR16 2-byte Character. Unless otherwise specified all strings are stored in the
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

EFI_STATUS Status code. Type INTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Control address.

EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.

EFI_IPv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address.

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

<Enumerated Type> Element of a standard ANSI C enum type declaration. Type INT32.

sizeof (VOID *) 4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit
processor instructions.

January 31, 2006
Version 2.0 25

Table 5. Modifiers for Common UEFI Data Types
Mnemonic Description

IN Datum is passed to the function.

OUT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be

passed if the value is not supplied.

CONST Datum is read-only.

EFIAPI Defines the calling convention for UEFI interfaces.

2.3.2 IA-32 Platforms
All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function. In addition, unless otherwise specified by the
function definition, all other registers are preserved.

Firmware boot services and runtime services run in the following processor execution mode prior to
the OS calling ExitBootServices():

• Uniprocessor
• Protected mode
• Paging mode not enabled
• Selectors are set to be flat and are otherwise not used
• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot

services timer functions (All loaded device drivers are serviced synchronously by “polling.”)
• Direction flag in EFLAGs is clear
• Other general purpose flag registers are undefined
• 128 KB, or more, of available stack space

An application written to this specification may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available
and it is illegal to call any boot service. After ExitBootServices, firmware runtime services are still
available and may be called with paging enabled and virtual address pointers if
SetVirtualAddressMap() has been called describing all virtual address ranges used by the firmware
runtime service.

For an operating system to use any UEFI runtime services, it must:
• Preserve all memory in the memory map marked as runtime code and runtime data
• Call the runtime service functions, with the following conditions:

 In protected mode

 Paging not enabled

 Direction flag in EFLAGs clear

 January 31, 2006
26 Version 2.0

 4 KB, or more, of available stack space

 Interrupts disabled
• ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory

(recommended) or EfiACPIMemoryNVS. ACPI FACS must be contained in memory of type
EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be
aligned on a 4 KB boundary and must be a multiple of 4 KB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on a 4 KB boundary and must be a multiple of 4 KB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map.
If the system memory map does not contain cacheability attributes, the ACPI Memory Op-
region must inherit its cacheability attributes from the ACPI name space. If no cacheability
attributes exist in the system memory map or the ACPI name space, then the region must be
assumed to be non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map, the
table is assumed to be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesdata,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

NOTE

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration Tables.
EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 intends to clarify the
situation moving forward. Also, only OSes conforming to UEFI 2.0 are guaranteed to handle
SMBIOS table in memory of type EfiBootServicesdata.

January 31, 2006
Version 2.0 27

2.3.2.1 Handoff State
When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit
mode. All descriptors are set to their 4 GB limits so that all of memory is accessible from all
segments.

Figure 3 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has been
called on supported 32-bit systems. All UEFI image entry points take two parameters. These are
the image handle of the UEFI image, and a pointer to the EFI System Table.

OM13145

 Stack Location

EFI_SYSTEM_TABLE *

EFI_HANDLE

<return address>

ESP + 8

ESP + 4

ESP

Figure 3. Stack after AddressOfEntryPoint Called, IA- 32

2.3.3 Itanium®-based Platforms
UEFI executes as an extension to the SAL execution environment with the same rules as laid out by
the SAL specification.

During boot services time the processor is in the following execution mode:

• Uniprocessor
• Physical mode
• 128 KB, or more, of available stack space
• 16 KB, or more, of available backing store space
• May only use the lower 32 floating point registers

An application written to this specificaiton may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available
and it is illegal to call any boot service. After ExitBootServices, firmware runtime services are still
available and may be called in virtual mode with virtual address pointers if
SetVirtualAddressMap() has been called describing all virtual address ranges used by the firmware
runtime service.

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS. must be
aligned on an 8 KB boundary and must be a multiple of 8 KB in size.

 January 31, 2006
28 Version 2.0

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on an 8 KB boundary and must be a multiple of 8 KB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map.
If the system memory map does not contain cacheability attributes the ACPI Memory Op-
region must inherit its cacheability attributes from the ACPI name space. If no cacheability
attributes exist in the system memory map or the ACPI name space, then the region must be
assumed to be non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map, the
table is assumed to be non-cached.

• In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended and the system firmware must not
request a virtual mapping), EfiBootServicesdata, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

NOTE

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration Tables.
EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 intends to clarify the
situation moving forward. Also, only OSes conforming to UEFI 2.0 are guaranteed to handle
SMBIOS table in memory of type EfiBootServicesdata.

Refer to the IA-64 System Abstraction Layer Specification (see the References appendix) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Itanium-based
applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions
for IA-64 (see the References appendix) for more information.

January 31, 2006
Version 2.0 29

2.3.3.1 Handoff State
UEFI uses the standard P64 C calling conventions that are defined for Itanium-based operating
systems. Figure 4 shows the stack after ImageEntryPoint has been called on Itanium-based
systems. The arguments are also stored in registers: out0 contains EFI_HANDLE and out1
contains the address of the EFI_SYSTEM_TABLE. The gp for the UEFI Image will have been
loaded from the plabel pointed to by the AddressOfEntryPoint in the image’s PE32+
header. All UEFI image entry points take two parameters. These are the image handle of the
image, and a pointer to the System Table.

OM13146

EFI_SYSTEM_TABLE *

EFI_HANDLE

SP + 8

SP

out1

out0

Stack Location Register

Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see the References appendix) defines the state of the system registers at
boot handoff. The SAL specification also defines which system registers can only be used after
UEFI boot services have been properly terminated.

2.3.4 x64 Platforms
All functions are called with the C language calling convention. See “Detailed Calling Convention”
Section 2.3.4.2 for more detail.

During boot services time the processor is in the following execution mode:

• Uniprocessor
• Long mode, in 64-bit mode
• Paging mode is enabled and any memory space defined by the UEFI memory map is identity

mapped (virtual address equals physical address). The mappings to other regions are undefined
and may vary form implementation to implementation.

• Selectors are set to be flat and are otherwise not used.
• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot

services timer functions (All loaded device drivers are serviced synchronously by “polling.”)
• Direction flag in EFLAGs is clear
• Other general purpose flag registers are undefined
• 128 KB, or more, of available stack space

For an operating system to use any UEFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data
• Call the runtime service functions, with the following conditions:
• In long mode, in 64-bit mode
• Paging enabled

 January 31, 2006
30 Version 2.0

• All selectors set to be flat with virtual = physical address. If the OS Loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address space, then this
condition does not have to be met.

 Direction flag in EFLAGs clear

 4 KB, or more, of available stack space

 Interrupts disabled at the discretion of the OS.

• Firmware may need to block interrupts in its runtime services if it enters a critical
section. This is like raising the TPL level in boot services.

• ACPI Tables loaded at boot time can be contained in memory of type EfiACPIReclaimMemory
(recommended) or EfiACPIMemoryNVS. ACPI FACS must be contained in memory of type
EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must be
aligned on a 4 KB boundary and must be a multiple of 4 KB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KB boundary and must be a multiple of 4 KB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

1. ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS. The
cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI memory
map. If no information about the table location exists in the UEFI memory map, the table is
assumed to be non-cached.

2. In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained
in memory of type EfiRuntimeServicesData (recommended and the system firmware must not
request a virtual mapping), EfiBootServicesdata, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

NOTE

Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration Tables.
EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 intends to clarify the
situation moving forward. Also, only OSes conforming to UEFI 2.0 are guaranteed to handle
SMBIOS table in memory of type EfiBootServicesdata.

January 31, 2006
Version 2.0 31

2.3.4.1 Handoff State
Rcx – EFI_HANDLE

Rdx – EFI_SYSTEM_TABLE *

RSP - <return address>

2.3.4.2 Detailed Calling Conventions
The caller passes the first four integer arguments in registers. The integer values are passed from
left to right in Rcx, Rdx, R8, and R9 registers. The caller passes arguments five and above onto the
stack. All arguments must be right-justified in the register in which they are passed. This ensures
the callee can process only the bits in the register that are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The caller
passes structures and unions of size 8, 16, 32, or 64 bits as if they were integers of the same size.
The caller is not allowed to pass structures and unions of other than these sizes and must pass these
unions and structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The most
common requirement is to take the address of an argument.

If the parameters are passed through varargs then essentially the typical parameter passing applies,
including spilling the fifth and subsequent arguments onto the stack. The callee must dump the
arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does not fit
within 64-bits, then the caller must allocate and pass a pointer for the return value as the first
argument, Rcx. Subsequent arguments are then shifted one argument to the right, so for example
argument one would be passed in Rdx. User-defined types to be returned must be 1,2,4,8,16,32, or
64 bits in length.

The registers Rax, Rcx Rdx R8, R9, R10, R11, and XMM0-XMM5 are volatile and are, therefore,
destroyed on function calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMM15 are considered
nonvolatile and must be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require special
treatment.

2.3.4.3 Enabling Paging or Alternate Translations in an Application
Boot Services define an execution environment where paging is not enabled (supported 32-bit) or
where translations are enabled but mapped virtual equal physical (x64) and this section will
describe how to write an application with alternate translations or with paging enabled. Some
Operating Systems require the OS Loader to be able to enable OS required translations at Boot
Services time.

 January 31, 2006
32 Version 2.0

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure that the
firmware executes with each supplanted data structure. There are two ways that firmware
conforming to this specification can execute when the application has paging enabled.

1. Explicit firmware call
2. Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before each UEFI
call. However the possibility of preemption may require the translation enabled application to
disable interrupts while alternate translations are enabled. It’s legal for the translation enabled
application to enable interrupts if the application catches the interrupt and restores the EFI firmware
environment prior to calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will
return to the translation enabled application context and restore any mappings required by the
application.

2.4 Protocols

The protocols that a device handle supports are discovered through the HandleProtocol()
Boot Service or the OpenProtocol() Boot Service. Each protocol has a specification that
includes the following:

• The protocol’s globally unique ID (GUID)
• The Protocol Interface structure
• The Protocol Services

Unless otherwise specified a protocol’s interface structure is not allocated from runtime memory
and the protocol member functions should not be called at runtime. If not explicitly specified a
protocol member function can be called at a TPL level of less than or equal to TPL_NOTIFY.
Unless otherwise specified a protocol’s member function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be
implemented, Additional error codes may be returned, but they will not be tested by standard
compliance tests, and any software that uses the procedure cannot depend on any of the extended
error codes that an implementation may provide.

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol() or OpenProtocol(). If the device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface structure links
the caller to the protocol-specific services to use for this device.

January 31, 2006
Version 2.0 33

Figure 5 shows the construction of a protocol. The UEFI driver contains functions specific to one
or more protocol implementations, and registers them with the Boot Service
InstallProtocolInterface(). The firmware returns the Protocol Interface for the
protocol that is then used to invoke the protocol specific services. The UEFI driver keeps private,
device-specific context with protocol interfaces.

OM13147

Protocol Interface
Function Pointer
Function Pointer

Device specific
context

...

GUID 1

GUID 2

Protocol
specific
functions

Protocol
specific
functions

EFI Driver

Invoking one of
the protocol
services

HandleProtocol (GUID, ...)

Handle

Device, or
next Driver

Figure 5. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;
Status = HandleProtocol (

 EffectsDevice.EFIHandle,
 &IllustrationProtocolGuid,

 &EffectsDevice.IllustrationProtocol
);

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
 EffectsDevice.IllustrationProtocol,

 TheFlashyAndNoisyEffect
);

 January 31, 2006
34 Version 2.0

Table 6 lists the UEFI protocols defined by this specification.

Table 6. UEFI Protocols
Protocol Description

LOADED_IMAGE Provides information on the image.

DEVICE_PATH Provides the location of the device.

DRIVER_BINDING Provides services to determine if an UEFI driver supports a
given controller, and services to start and stop a given
controller.

PLATFORM_DRIVER_OVERRIDE Provide a platform specific override mechanism for the
selection of the best driver for a given controller.

BUS_SPECIFIC_DRIVER_OVERRIDE Provides a bus specific override mechanism for the selection
of the best driver for a given controller.

DRIVER_CONFIGURATION Provides user configuration options for UEFI drivers and the
controllers that the drivers are managing.

DRIVER_DIAGNOSTICS Provides diagnostics services for the controllers that UEFI
drivers are managing.

COMPONENT_NAME Provides human readable names for UEFI Drivers and the
controllers that the drivers are managing.

SIMPLE_INPUT Protocol interfaces for devices that support simple console
style text input.

SIMPLE_TEXT_OUTPUT Protocol interfaces for devices that support console style text
displaying.

SIMPLE_POINTER Protocol interfaces for devices such as mice and trackballs.

SERIAL_IO Protocol interfaces for devices that support serial character
transfer.

LOAD_FILE Protocol interface for reading a file from an arbitrary device.

SIMPLE_FILE_SYSTEM Protocol interfaces for opening disk volume containing a UEFI
file system.

FILE_HANDLE Provides access to supported file systems.

DISK_IO A protocol interface that layers onto any BLOCK_IO interface.

BLOCK_IO Protocol interfaces for devices that support block I/O style
accesses.

UNICODE_COLLATION Protocol interfaces for Unicode string comparison operations.

PCI_ROOT_BRIDGE_IO Protocol interfaces to abstract memory, I/O, PCI configuration,
and DMA accesses to a PCI root bridge controller.

PCI_IO Protocol interfaces to abstract memory, I/O, PCI configuration,
and DMA accesses to a PCI controller on a PCI bus.

USB_IO Protocol interfaces to abstract access to a USB controller.

SIMPLE_NETWORK Provides interface for devices that support packet based
transfers.

PXE_BC Protocol interfaces for devices that support network booting.

January 31, 2006
Version 2.0 35

Protocol Description

BIS Protocol interfaces to validate boot images before they are
loaded and invoked.

DEBUG_SUPPORT Protocol interfaces to save and restore processor context and
hook processor exceptions.

DEBUG_PORT Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

DECOMPRESS Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

DEVICE_IO Protocol interfaces for performing device I/O.

EBC Protocols interfaces required to support an EFI Byte Code
interpreter.

EFI_GRAPHICS_OUTPUT Protocol interfaces for devices that support graphical output.

EXT_SCSI_PASS_THRU Protocol interfaces for a SCSI channel that allows SCSI
Request Packets to be sent to SCSI devices.

USB2_HC Protocol interfaces to abstract access to a USB Host
Controller.

Authentication Info Provides access for generic authentication information
associated with specific device paths

Device Path Utilities Aids in creating and manipulating device paths.

Device Path to Text Converts device nodes and paths to text.

Device Path From Text Converts text to device paths and device nodes.

EDID Discovered Contains the EDID information retrieved from a video output
device.

EDID Active Contains the EDID information for an active video output
device.

Graphics Output EDID Override Produced by the platform to allow the platform to provide
EDID information to the producer of the Graphics Output
protocol

iSCSI Initiator Name Sets and obtains the iSCSI Initiator Name.

Tape IO Provides services to control and access a tape drive.

Managed Network Service Binding

Used to locate communication devices that are supported by
an MNP driver and create and destroy instances of the MNP
child protocol driver that can use the underlying
communications devices.

ARP Service Binding Used to locate communications devices that are supported by
an ARP driver and to create and destroy instances of the ARP
child protocol driver.

ARP Used to resolve local network protocol addresses into network
hardware addresses.

DHCP4 Service Binding Used to locate communication devices that are supported by
an EFI DHCPv4 Protocol driver and to create and destroy EFI

 January 31, 2006
36 Version 2.0

Protocol Description

DHCP4 Service Binding (cont.) an EFI DHCPv4 Protocol driver and to create and destroy EFI
DHCPv4 Protocol child driver instances that can use the
underlying communications devices.

DHCP4 Used to collect configuration information for the EFI IPv4
Protocol drivers and to provide DHCPv4 server and PXE boot
server discovery services.

TCP4 Service Binding Used to locate EFI TCPv4Protocol drivers to create and
destroy child of the driver to communicate with other host
using TCP protocol.

TCP4 Provides services to send and receive data stream.

IP4 Service Binding Used to locate communication devices that are supported by
an EFI IPv4 Protocol Driver and to create and destroy
instances of the EFI IPv4 Protocol child protocol driver that
can use the underlying communication device.

IP4 Provides basic network IPv4 packet I/O services.

IP4 Config The EFI IPv4 Config Protocol driver performs platform- and
policy-dependent configuration of the EFI IPv4 Protocol driver.

UDP4 Service Binding Used to locate communication devices that are supported by
an EFI UDPv4 Protocol driver and to create and destroy
instances of the EFI UDPv4 Protocol child protocol driver that
can use the underlying communication device.

UDP4 Provides simple packet-oriented services to transmit and
receive UDP packets.

MTFTP4 Service Binding Used to locate communication devices that are supported by
an EFI MTFTPv4 Protocol driver and to create and destroy
instances of the EFI MTFTPv4 Protocol child protocol driver
that can use the underlying communication device.

MTFTP4 Provides basic services for client-side unicast or multicast
TFTP operations.

Hash Allows creating a hash of an arbitrary message digest using
one or more hash algorithms.

HASH Service Binding Used to locate hashing services support provided by a driver
and create and destroy instances of the EFI Hash Protocol so
that a multiple drivers can use the underlying hashing
services.

2.5 UEFI Driver Model

The UEFI Driver Model is intended to simplify the design and implementation of device drivers,
and produce small executable image sizes. As a result, some complexity has been moved into bus
drivers and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on
which the driver was loaded. It then waits for the system firmware to connect the driver to a

January 31, 2006
Version 2.0 37

controller. When that occurs, the device driver is responsible for producing a protocol on the
controller’s device handle that abstracts the I/O operations that the controller supports. A bus
driver performs these exact same tasks. In addition, a bus driver is also responsible for discovering
any child controllers on the bus, and creating a device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more
processors connected to one or more core chipsets. The core chipsets are responsible for producing
one or more I/O buses. The UEFI Driver Model does not attempt to describe the processors or the
core chipsets. Instead, the UEFI Driver Model describes the set of I/O buses produced by the core
chipsets, and any children of these I/O buses. These children can either be devices or additional
I/O buses. This can be viewed as a tree of buses and devices with the core chipsets at the root
of that tree.

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could
include keyboards, displays, disks, network, etc. The nonleaf nodes are the buses that move data
between devices and buses, or between different bus types. Figure 6 shows a sample desktop
system with four buses and six devices.

OM13142

CPU

North
Bridge

USB

IDE

VGA

PCI-ISA
Bridge

PCI Bus

ISA Bus

1.44 MB
Floppy

Hard
Drive

CD-ROM

Keyboard

MouseIDE Bus

USB Bus

Bus Controller

Device Controller

Other

Figure 6. Desktop System

 January 31, 2006
38 Version 2.0

Figure 7 is an example of a more complex server system. The idea is to make the UEFI Driver
Model simple and extensible so more complex systems like the one below can be described and
managed in the preboot environment. This system contains six buses and eight devices.

OM13143

CPU

North
Bridge

PCI-IBA
Bridge

USB

VGA

PCI-ISA
Bridge

PCI Bus

ISA Bus

1.44 MB
Floppy

KBD

MOUSE

USB Bus

IBA Bus

CPU

IBA-PCI
Bridge SCSI

PCI Bus

Hard
Drive

Hard
Drive

Hard
Drive

Hard
Drive

Figure 7. Server System

The combination of firmware services, bus drivers, and device drivers in any given platform is
likely to be produced by a wide variety of vendors including OEMs, IBVs, and IHVs. These
different components from different vendors are required to work together to produce a protocol for
an I/O device than can be used to boot a UEFI compliant operating system. As a result, the UEFI
Driver Model is described in great detail in order to increase the interoperability of these
components.

This remainder of this section is a brief overview of the UEFI Driver Model. It describes the
legacy option ROM issues that the UEFI Driver Model is designed to address, the entry point of a
driver, host bus controllers, properties of device drivers, properties of bus drivers, and how the
UEFI Driver Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM Issues
Legacy option ROMs have a number of constraints and limitations that restrict innovation on the
part of platform designers and adapter vendors. At the time of writing, both ISA and PCI adapters
use legacy option ROMs. For the purposes of this discussion, only PCI option ROMs will be
considered; legacy ISA option ROMs are not supported as part of the UEFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For each
issue, the design considerations that went into the design of the UEFI Driver Model are also listed.
Thus, the design of the UEFI Driver Model directly addresses the requirements for a solution to
overcome the limitations implicit to PC-AT-style legacy option ROMs.

January 31, 2006
Version 2.0 39

2.5.1.1 32-bit/16-Bit Real Mode Binaries
Legacy option ROMs typically contain 16-bit real mode code for an IA-32 processor. This means
that the legacy option ROM on a PCI card cannot be used in platforms that do not support the
execution of IA-32 real mode binaries. Also, 16-bit real mode only allows the driver to access
directly the lower 1 MB of system memory. It is possible for the driver to switch the processor into
modes other than real mode in order to access resources above 1 MB, but this requires a lot of
additional code, and causes interoperability issues with other option ROMs and the system BIOS.
Also, option ROMs that switch the processor into to alternate execution modes are not compatible
with Itanium Processors.

 UEFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.
• Drivers need to be written in C so they are portable between processor architectures.
• Drivers may be compiled into a virtual machine executable, allowing a single binary driver to

work on machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs
Since legacy option ROMs can only directly address the lower 1 MB of system memory, this means
that the code from the legacy option ROM must exist below 1 MB. In a PC-AT platform, memory
from 0x00000-0x9FFFF is system memory. Memory from 0xA0000-0xBFFFF is VGA memory,
and memory from 0xF0000-0xFFFFF is reserved for the system BIOS. Also, since system BIOS
has become more complex over the years, many platforms also use 0xE0000-0xEFFFF for system
BIOS. This leaves 128 KB of memory from 0xC0000-0xDFFFF for legacy option ROMs. This
limits how many legacy option ROMs can be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to
allocate memory from Extended BIOS Data Area (EBDA), allocate memory through a Post
Memory Manager (PMM), or search for free memory based on a heuristic. Of these, only EBDA is
standard, and the others are not used consistently between adapters, or between BIOS vendors,
which adds complexity and the potential for conflicts.

UEFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.
• Drivers need to be capable of being relocated so that they can be loaded anywhere in memory

(PE/COFF Images)
• Drivers should allocate memory through the boot services. These are well-specified interfaces,

and can be guaranteed to function as expected across a wide variety of platform
implementations.

2.5.1.3 Matching Option ROMs to their Devices
It is not clear which controller may be managed by a particular legacy option ROM. Some legacy
option ROMs search the entire system for controllers to manage. This can be a lengthy process
depending on the size and complexity of the platform. Also, due to limitation in BIOS design, all
the legacy option ROMs must be executed, and they must scan for all the peripheral devices before
an operating system can be booted. This can also be a lengthy process, especially if SCSI buses

 January 31, 2006
40 Version 2.0

must be scanned for SCSI devices. This means that legacy option ROMs are making policy
decision about how the platform is being initialized, and which controllers are managed by which
legacy option ROMs. This makes it very difficult for a system designer to predict how legacy
option ROMs will interact with each other. This can also cause issues with on-board controllers,
because a legacy option ROM may incorrectly choose to manage the on-board controller.

UEFI Driver Model design considerations:

• Driver to controller matching must be deterministic
• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration

Protocol
• It must be possible to start only the drivers and controllers required to boot an operating system.

2.5.1.4 Ties to PC-AT System Design
Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that
directly touches hardware registers. This can make them incompatible on legacy-free and headless
platforms. Legacy option ROMs may also contain setup programs that assume a PC-AT-like
system architecture to interact with a keyboard or video display. This makes the setup application
incompatible on legacy-free and headless platforms.

UEFI Driver Model design considerations:

• Drivers should use well-defined protocols to interact with system hardware, system input
devices, and system output devices.

January 31, 2006
Version 2.0 41

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience
Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities
between legacy option ROMs and system BIOS. These incompatibilities exist in part because there
are no clear specifications on how to write a legacy option ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not
always clear which device will be the boot device for the OS.

UEFI Driver Model design considerations:

• Drivers and firmware are written to follow this specification. Since both components have a
clearly defined specification, compliance tests can be developed to prove that drivers and
system firmware are compliant. This should eliminate the need to build workarounds into
either drivers or system firmware (other than those that might be required to address specific
hardware issues).

• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol and other OEM value-add components to manage the boot device selection process.

2.5.2 Driver Initialization
The file for a driver image must be loaded from some type of media. This could include ROM,
FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image
has been found, it can be loaded into system memory with the boot service LoadImage().
LoadImage() loads a PE/COFF formatted image into system memory. A handle is created for
the driver, and a Loaded Image Protocol instance is placed on that handle. A handle that contains a
Loaded Image Protocol instance is called an Image Handle. At this point, the driver has not been
started. It is just sitting in memory waiting to be started. Figure 8 shows the state of an image
handle for a driver after LoadImage() has been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

OM13148

Figure 8. Image Handle

After a driver has been loaded with the boot service LoadImage(), it must be started with the
boot service StartImage(). This is true of all types of UEFI Applications and UEFI Drivers
that can be loaded and started on an UEFI-compliant system. The entry point for a driver that
follows the UEFI Driver Model must follow some strict rules. First, it is not allowed to touch any
hardware. Instead, the driver is only allowed to install protocol instances onto its own Image
Handle. A driver that follows the UEFI Driver Model is required to install an instance of the
Driver Binding Protocol onto its own Image Handle. It may optionally install the Driver
Configuration Protocol, the Driver Diagnostics Protocol, or the Component Name Protocol. In

 January 31, 2006
42 Version 2.0

addition, if a driver wishes to be unloadable it may optionally update the Loaded Image Protocol to
provide its own Unload() function. Finally, if a driver needs to perform any special operations
when the boot service ExitBootServices() is called, it may optionally create an event with a
notification function that is triggered when the boot service ExitBootServices() is called.
An Image Handle that contains a Driver Binding Protocol instance is known as a Driver Image
Handle. Figure 9 shows a possible configuration for the Image Handle from Figure 8 after the boot
service StartImage() has been called.

OM13149

Image Handle

Optional

Optional

Optional

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_CONFIGURATION_PROTOCOL

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

EFI_COMPONENT_NAME_PROTOCOL

Figure 9. Driver Image Handle

2.5.3 Host Bus Controllers
Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will
be loaded and started, but they will all be waiting to be told to manage one or more controllers in
the system. A platform component, like the Boot Manager, is responsible for managing the
connection of drivers to controllers. However, before even the first connection can be made, there
has to be some initial collection of controllers for the drivers to manage. This initial collection of
controllers is known as the Host Bus Controllers. The I/O abstractions that the Host Bus
Controllers provide are produced by firmware components that are outside the scope of the UEFI
Driver Model. The device handles for the Host Bus Controllers and the I/O abstraction for each
one must be produced by the core firmware on the platform, or a driver that may not follow the
UEFI Driver Model. See the PCI Root Bridge I/O Protocol Specification for an example of an I/O
abstraction for PCI buses.

January 31, 2006
Version 2.0 43

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 10 shows a platform with n processors (CPUs), and a set
of core chipset components that produce m host bridges.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1

Figure 10. Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path Protocol
instance, and a protocol instance that abstracts the I/O operations that the host bus can perform.
For example, a PCI Host Bus Controller supports one or more PCI Root Bridges that are abstracted
by the PCI Root Bridge I/O Protocol. Figure 11 shows an example device handle for a PCI
Root Bridge.

OM15221

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Figure 11. PCI Root Bridge Device Handle

 January 31, 2006
44 Version 2.0

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the
PCI devices in the system. PCI Device Drivers should then be connected to these child handles,
and produce I/O abstractions that may be used to boot a UEFI compliant OS. The following section
describes the different types of drivers that can be implemented within the UEFI Driver Model.
The UEFI Driver Model is very flexible, so all the possible types of drivers will not be discussed
here. Instead, the major types will be covered that can be used as a starting point for designing and
implementing additional driver types.

2.5.4 Device Drivers
A device driver is not allowed to create any new device handles. Instead, it installs additional
protocol interfaces on an existing device handle. The most common type of device driver will
attach an I/O abstraction to a device handle that was created by a bus driver. This I/O abstraction
may be used to boot a UEFI compliant OS. Some example I/O abstractions would include Simple
Text Output, Simple Input, Block I/O, and Simple Network Protocol. Figure 12 shows a device
handle before and after a device driver is connected to it. In this example, the device handle is a
child of the XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the XYZ bus
supports. It also contains a Device Path Protocol that was placed there by the XYZ Bus Driver.
The Device Path Protocol is not required for all device handles. It is only required for device
handles that represent physical devices in the system. Handles for virtual devices will not contain a
Device Path Protocol.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

OM13152

Stop()
Start()

Installed by Start()
Uninstalled by Stop()

Figure 12. Connecting Device Drivers

January 31, 2006
Version 2.0 45

The device driver that connects to the device handle in Figure 12 must have installed a Driver
Binding Protocol on its own image handle. The Driver Binding Protocol contains three functions
called Supported(), Start(), and Stop(). The Supported() function tests to see if the
driver supports a given controller. In this example, the driver will check to see if the device handle
supports the Device Path Protocol and the XYZ I/O Protocol. If a driver’s Supported()
function passes, then the driver can be connected to the controller by calling the driver’s Start()
function. The Start() function is what actually adds the additional I/O protocols to a device
handle. In this example, the Block I/O Protocol is being installed. To provide symmetry, the
Driver Binding Protocol also has a Stop() function that forces the driver to stop managing a
device handle. This will cause the device driver to uninstall any protocol interfaces that were
installed in Start().

The Supported(), Start(), and Stop() functions of the EFI Driver Binding Protocol are
required to make use of the boot service OpenProtocol() to get a protocol interface and the
boot service CloseProtocol() to release a protocol interface. OpenProtocol() and
CloseProtocol() update the handle database maintained by the system firmware to track
which drivers are consuming protocol interfaces. The information in the handle database can be
used to retrieve information about both drivers and controllers. The new boot service
OpenProtocolInformation() can be used to get the list of components that are currently
consuming a specific protocol interface.

2.5.5 Bus Drivers
Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of view.
The only difference is that a bus driver creates new device handles for the child controllers that the
bus driver discovers on its bus. As a result, bus drivers are slightly more complex than device
drivers, but this in turn simplifies the design and implementation of device drivers. There are two
major types of bus drivers. The first creates handles for all child controllers on the first call to
Start(). The other type allows the handles for the child controllers to be created across multiple
calls to Start(). This second type of bus driver is very useful in supporting a rapid boot
capability. It allows a few child handles or even one child handle to be created. On buses that take
a long time to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Figure 13 shows the tree structure of a bus controller before and after
Start() is called. The dashed line coming into the bus controller node represents a link to the
bus controller’s parent controller. If the bus controller is a Host Bus Controller, then it will not
have a parent controller. Nodes A, B, C ,D, and E represent the child controllers of the bus
controller.

 January 31, 2006
46 Version 2.0

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E

Figure 13. Connecting Bus Drivers

A bus driver that supports creating one child on each call to Start() might choose to create child
C first, and then child E, and then the remaining children A, B, and D. The Supported(),
Start(), and Stop() functions of the Driver Binding Protocol are flexible enough to allow this
type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum,
it must install a protocol interface that provides an I/O abstraction of the bus’s services to the child
controllers. If the bus driver creates a child handle that represents a physical device, then the bus
driver must also install a Device Path Protocol instance onto the child handle. A bus driver may
optionally install a Bus Specific Driver Override Protocol onto each child handle. This protocol is
used when drivers are connected to the child controllers. The boot service
ConnectController() uses architecturally defined precedence rules to choose the best set of
drivers for a given controller. The Bus Specific Driver Override Protocol has higher precedence
than a general driver search algorithm, and lower precedence than platform overrides. An example
of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver stored in a PCI
controller’s option ROM a higher precedence than drivers stored elsewhere in the platform.
Figure 14 shows an example child device handle that was created by the XYZ Bus Driver that
supports a bus specific driver override mechanism.

January 31, 2006
Version 2.0 47

OM13154

Optional

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Figure 14. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components
Under the UEFI Driver Model, the act of connecting and disconnecting drivers from controllers in a
platform is under the platform firmware’s control. This will typically be implemented as part of the
UEFI Boot Manager, but other implementations are possible. The boot services
ConnectController() and DisconnectController() can be used by the platform
firmware to determine which controllers get started and which ones do not. If the platform wishes
to perform system diagnostics or install an operating system, then it may choose to connect drivers
to all possible boot devices. If a platform wishes to boot a preinstalled operating system, it may
choose to only connect drivers to the devices that are required to boot the selected operating
system. The UEFI Driver Model supports both these modes of operation through the boot services
ConnectController() and DisconnectController(). In addition, since the platform
component that is in charge of booting the platform has to work with device paths for console
devices and boot options, all of the services and protocols involved in the UEFI Driver Model are
optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles
and gain access to a boot device, the OS present device drivers cannot assume that a UEFI driver
for a device has been executed. The presence of a UEFI driver in the system firmware or in an
option ROM does not guarantee that the UEFI driver will be loaded, executed, or allowed to
manage any devices in a platform. All OS present device drivers must be able to handle devices
that have been managed by a UEFI driver and devices that have not been managed by an UEFI
driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol.
This is similar to the Bus Specific Driver Override Protocol, but it has higher priority. This gives
the platform firmware the highest priority when deciding which drivers are connected to which
controllers. The Platform Driver Override Protocol is attached to a handle in the system. The boot
service ConnectController() will make use of this protocol if it is present in the system.

 January 31, 2006
48 Version 2.0

2.5.7 Hot-Plug Events
In the past, system firmware has not had to deal with hot-plug events in the preboot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at any
time, it is important to make sure that it is possible to describe these types of buses in the UEFI
Driver Model. It is up to the bus driver of a bus that supports the hot adding and removing of
devices to provide support for such events. For these types of buses, some of the platform
management is going to have to move into the bus drivers. For example, when a keyboard is hot
added to a USB bus on a platform, the end user would expect the keyboard to be active. A USB
Bus driver could detect the hot-add event and create a child handle for the keyboard device.
However, because drivers are not connected to controllers unless ConnectController() is
called, the keyboard would not become an active input device. Making the keyboard driver active
requires the USB Bus driver to call ConnectController() when a hot-add event occurs. In
addition, the USB Bus Driver would have to call DisconnectController() when a hot-
remove event occurs.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be
removed without any notice. This means that the Stop() functions of USB device drivers will
have to deal with shutting down a driver for a device that is no longer present in the system. As a
result, any outstanding I/O requests will have to be flushed without actually being able to touch the
device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers
and device drivers. Adding this support is up to the driver writer, so the extra complexity and size
of the driver will need to be weighed against the need for the feature in the preboot environment.

2.5.8 EFI Services Binding
The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and simple
combinations of software services that layer on top of hardware devices. However, the UEFI driver
Model does not map well onto complex combinations of software services. As a result, an
additional set of complementary protocols are required for more complex combinations of software
services.

Figure 15 contains three examples showing the different ways that software services relate to each
other. In the first two cases, each service consumes one or more other services, and at most one
other service consumes all of the services. Case #3 differs because two different services consume
service A. The EFI_DRIVER_BINDING_PROTOCOL can be used to model cases #1 and #2, but
it cannot be used to model case #3 because of the way that the UEFI Boot Service
OpenProtocol()behaves. When used with the BY_DRIVER open mode,
OpenProtocol()allows each protocol to have only at most one consumer. This feature is very
useful and prevents multiple drivers from attempting to manage the same controller. However, it
makes it difficult to produce sets of software services that look like case #3.

January 31, 2006
Version 2.0 49

A

B

C

Case #1: Linear Stack

A

B C

Case #2: Multiple Dependencies

B C

A

Case #3: Multiple Consumers

Figure 15. Software Service Relationships

The EFI_SERVICE_BINDING_PROTOCOL provides the mechanism that allows protocols to
have more than one consumer. The EFI_SERVICE_BINDING_PROTOCOL is used with the
EFI_DRIVER_BINDING_PROTOCOL. A UEFI driver that produces protocols that need to be
available to more than one consumer at the same time will produce both the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL. This
type of driver is a hybrid driver that will produce the EFI_DRIVER_BINDING_PROTOCOL in its
driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE_BINDING_PROTOCOL on the handle of the controller that is being started. The
EFI_SERVICE_BINDING_PROTOCOL is slightly different from other protocols defined in the
UEFI Specification. It does not have a GUID associated with it. Instead, this protocol instance
structure actually represents a family of protocols. Each software service driver that requires an
EFI_SERVICE_BINDING_PROTOCOL instance will be required to generate a new GUID for its
own type of EFI_SERVICE_BINDING_PROTOCOL. This requirement is why the various
network protocols in this specification contain two GUIDs. One is the
EFI_SERVICE_BINDING_PROTOCOL GUID for that network protocol, and the other GUID is
for the protocol that contains the specific member services produced by the network driver. The
mechanism defined here is not limited to network protocol drivers. It can be applied to any set of
protocols that the EFI_DRIVER_BINDING_PROTOCOL cannot directly map because the
protocols contain one or more relationships like case #3 in Figure 15.

 January 31, 2006
50 Version 2.0

Neither the EFI_DRIVER_BINDING_PROTOCOL nor the combination of the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL can
handle circular dependencies. There are methods to allow circular references, but they require that
the circular link be present for short periods of time. When the protocols across the circular link are
used, these methods also require that the protocol must be opened with an open mode of
EXCLUSIVE, so that any attempts to deconstruct the set of protocols with a call to
DisconnectController() will fail. As soon as the driver is finished with the protocol across
the circular link, the protocol should be closed.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify
architecture in ways that allow maximum flexibility in implementation. However, there are certain
requirements on which elements of this specification must be implemented to ensure that operating
system loaders and other code designed to run with UEFI boot services can rely upon a consistent
environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches
the element name. For required elements however, the definition may in a few cases not be entirely
self contained in the section that is named for the particular element. In implementing required
elements, care should be taken to cover all the semantics defined in this specification that relate to
the particular element.

2.6.1 Required Elements
Table 7 lists the required elements. Any system that is designed to conform to this specification
must provide a complete implementation of all these elements. This means that all the required
service functions and protocols must be present and the implementation must deliver the full
semantics defined in the specification for all combinations of calls and parameters. Implementers of
applications, drivers or operating system loaders that are designed to run on a broad range of
systems conforming to the UEFI specification may assume that all such systems implement all the
required elements.

A system vendor may choose not to implement all the required elements, for example on
specialized system configurations that do not support all the services and functionality implied by
the required elements. However, since most applications, drivers and operating system loaders are
written assuming all the required elements are present on a system that implements the UEFI
specification; any such code is likely to require explicit customization to run on a less than
complete implementation of the required elements in this specification.

January 31, 2006
Version 2.0 51

Table 7. Required UEFI Implementation Elements

Element Description

EFI System Table Provides access to UEFI Boot Services, UEFI Runtime Services,
consoles, firmware vendor information, and the system
configuration tables.

EFI Boot Services All functions defined as boot services.

EFI Runtime Services All functions defined as runtime services.

LOADED_IMAGE protocol Provides information on the image.

DEVICE_PATH protocol Provides the location of the device.

DECOMPRESS protocol Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EFI_DEVICE_PATH_UTILITIES
protocol

Protocol interfaces to create and manipulate UEFI device paths
and UEFI device path nodes.

EBC Interpreter An EFI Byte Code Interpreter is required so UEFI images
compiled to EFI Byte Code executables are guaranteed to
function on all UEFI compliant platforms. The EBC Interpreter
must also produce the EBC protocol.

2.6.2 Platform-Specific Elements
There are a number of elements that can be added or removed depending on the specific features
that a platform requires. Platform firmware developers are required to implement UEFI elements
based upon the features included. The following is a list of potential platform features and the
elements that are required for each feature type:

• If a platform includes console devices, the Simple Input Protocol and Simple Text Output Protocol
must be implemented.

• If a platform includes graphical console devices, then the Graphics Output Protocol, EDID
Discovered Protocol and EDID Active protocol must be implemented. In order to support the EFI
Graphical Output Protocol a platform must contain a driver to consume Graphics Output Protocol and
produce Simple Text Output Protocol even if the Graphics Output Protocol is produced by an external
driver.

• If a platform includes a pointer device as part of its console support, the Simple Pointer Protocol must
be implemented.

• If a platform includes the ability to boot from a disk device, then the Block I/O Protocol, the Disk I/O
Protocol, the Simple File System Protocol, and the Unicode Collation Protocol are required. In
addition, partition support for MBR, GPT, and El Torito must be implemented. An external driver may
produce the Block I/O Protocol. All other protocols required to boot from a disk device must be
carried as part of the platform.

• If a platform includes the ability to boot from a network device, then the UNDI interface, the Simple
Network Protocol, and the PXE Base Code Protocol are required. If a platform includes the ability to
validate a boot image received through a network device, the Boot Integrity Services Protocol is also
required. An external driver may produce the UNDI interface. All other protocols required to boot
from a network device must be carried by the platform.

 January 31, 2006
52 Version 2.0

• If a platform supports UEFI general purpose network applications, then the Managed Network
Protocol, Managed Network Service Binding Protocol, ARP Protocol, ARP Service Binding Protocol,
DHCPv4 Protocol, DHCPv4 Service Binding Protocol, TCPv4 Protocol, TCPv4 Service Binding
Protocol, IPv4 Protocol, IPv4 Service Binding Protocol, IPv4 Configuration Protocol, UDPv4 Protocol,
UDPv4 Service Binding Protocol, MTFTPv4 Protocol, and MTFTPv4 Service Binding Protocol are
required.

• If a platform includes a byte-stream device such as a UART, then the Serial I/O Protocol must be
implemented.

• If a platform includes PCI bus support, then the PCI Root Bridge I/O Protocol, the PCI I/O Protocol,
must be implemented.

• If a platform includes USB bus support, then the USB2 Host Controller Protocol and the USB I/O
Protocol must be implemented. An external device can support USB by producing a USB Host
Controller Protocol.

3. If a platform includes an I/O subsystem that utilizes SCSI command packets, then the Extended
SCSI Pass Thru Protocol must be implemented.

4. If a platform supports booting from a block oriented SCSI peripheral, then the SCSI I/O
Protocol and Block I/O Protocol must be implemented. An external driver may produce the
Extended SCSI Pass Thru Protocol. All other protocols required to boot from a SCSI I/O
subsystem must be carried by the platform.

5. If a platform supports booting from an iSCSI peripheral, then the iSCSI Initiator Name Protocol
and the EFI_AUTHENTICATION_INFO_PROTOCOL must be implemented.

• If a platform includes debugging capabilities, then the Debug Support Protocol, the Debug Port

Protocol, and the Debug Image Info Table must be implemented.
• If a platform includes the ability to override the default driver to the controller matching algorithm

provided by the UEFI Driver Model, then the Platform Driver Override Protocol must be implemented.

2.6.3 Driver-Specific Elements
There are a number of UEFI elements that can be added or removed depending on the features that
a specific driver requires. Drivers can be implemented by platform firmware developers to support
buses and devices in a specific platform. Drivers can also be implemented by add-in card vendors
for devices that might be integrated into the platform hardware or added to a platform through an
expansion slot. The following list includes possible driver features, and the UEFI elements that are
required for each feature type:

1. If a driver follows the driver model of this specification, the EFI Driver Binding Protocol must
be implemented. It is strongly recommended that all drivers that follow the driver model of this
specification also implement the Component Name Protocol.

2. If a driver requires configuration information, the Driver Configuration Protocol must be
implemented. A driver is not allowed to interact with the user unless the Driver Configuration
Protocol is invoked.

3. If a driver requires diagnostics, the Driver Diagnostics Protocol must be implemented. In order
to support low boot times, limit diagnostics during normal boots. Time consuming diagnostics
should be deferred until the Driver Diagnostics Protocol is invoked.

January 31, 2006
Version 2.0 53

4. If a bus supports devices that are able to provide containers for drivers (e.g. option ROMs),
then the bus driver for that bus type must implement the Bus Specific Driver Override Protocol.

5. If a driver is written for a console output device, then the Simple Text Output Protocol must be
implemented.

6. If a driver is written for a graphical console output device, then the Graphics Output Protocol,
EDID Discovered Protocol and EDID Active Protocol must be implemented.

7. If a driver is written for a console input device, then the Simple Input Protocol must be
implemented.

8. If a driver is written for a pointer device, then the Simple Pointer Protocol must be
implemented.

9. If a driver is written for a network device, then the UNDI interface must be implemented.
10. If a driver is written for a disk device, then the Block I/O Protocol must be implemented.
11. If a driver is written for a device that is not a block oriented device but one that can provide a

file system-like interface, then the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must be
implemented.

12. If a driver is written for a PCI root bridge, then the PCI Root Bridge I/O Protocol and the PCI
I/O Protocol must be implemented.

13. If a driver is written for a USB host controller, then the USB2 Host Controller Protocol must
be implemented.

14. If a driver is written for a SCSI controller, then the Extended SCSI Pass Thru Protocol must be
implemented.

15. If a driver is digitally signed, it must embed the digital signature in the PE/COFF image as
described in Section 25.2.2.

16. If a driver is written for a boot device that is not a block-oriented device, a file system-based
device, or a console device, then the Load File Protocol must be implemented.

 January 31, 2006
54 Version 2.0

January 31, 2006
Version 2.0 55

3
Boot Manager

The UEFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load UEFI
drivers and UEFI applications (including UEFI OS boot loaders) in an order defined by the global
NVRAM variables. The platform firmware must use the boot order specified in the global
NVRAM variables for normal boot. The platform firmware may add extra boot options or remove
invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value added
feature would be not loading a UEFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error
was discovered in the boot process.

The boot sequence for UEFI consists of the following:

• The boot order list is read from a globally defined NVRAM variable. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a Unicode name for the boot option that can be displayed to a user.

• The variable also contains a pointer to the hardware device and to a file on that hardware device
that contains the UEFI image to be loaded.

• The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The
platform firmware has no knowledge of what is contained in the load options. The load options are
set by higher level software when it writes to a global NVRAM variable to set the platform
firmware boot policy. This information could be used to define the location of the OS kernel if it
was different than the location of the UEFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in firmware conforming to this specification that determines
which drivers and applications should be explicitly loaded and when. Once compliant firmware is
initialized, it passes control to the boot manager. The boot manager is then responsible for
determining what to load and any interactions with the user that may be required to make such a
decision. Much of the behavior of the boot manager is left up to the firmware developer to decide,
and details of boot manager implementation are outside the scope of this specification. In
particular, likely implementation options might include any console interface concerning boot,
integrated platform management of boot selections, possible knowledge of other internal
applications or recovery drivers that may be integrated into the system through the boot manager.

 January 31, 2006
56 Version 2.0

Programmatic interaction with the boot manager is accomplished through globally defined
variables. On initialization the boot manager reads the values which comprise all of the published
load options among the UEFI environment variables. By using the SetVariable() function the
data that contain these environment variables can be modified.

Each load option entry resides in a Boot#### variable or a Driver#### variable where the
is replaced by a unique option number in printable hexadecimal representation using the
digits 0–9, and the upper case versions of the characters A–F (0000–FFFF). The #### must
always be four digits, so small numbers must use leading zeros. The load options are then logically
ordered by an array of option numbers listed in the desired order. There are two such option
ordering lists. The first is DriverOrder that orders the Driver#### load option variables into
their load order. The second is BootOrder that orders the Boot#### load options variables into
their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the
option number of the new Boot#### variable would be added to the BootOrder ordered list and
the BootOrder variable would be rewritten. To change boot option on an existing Boot####,
only the Boot#### variable would need to be rewritten. A similar operation would be done to
add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS the boot manager will stop
processing the BootOrder variable and present a boot manager menu to the user. If a boot via
Boot#### returns a status other than EFI_SUCCESS, the boot has failed and the next
Boot#### in the BootOrder variable will be tried until all possibilities are exhausted.

The boot manager may perform automatic maintenance of the database variables. For example, it
may remove unreferenced load option variables or any load option variables that cannot be parsed
or loaded, and it may rewrite any ordered list to remove any load options that do not have
corresponding load option variables. In addition, the boot manager may automatically update any
ordered list to place any of its own load options where it desires. The boot manager can also, at its
own discretion, provide for manual maintenance operations as well. Examples include choosing
the order of any or all load options, activating or deactivating load options, etc.

The boot manager is required to process the Driver load option entries before the Boot load option
entries. The boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot
option. After the BootNext boot option is tried,the normal BootOrder list is used. To prevent
loops, the boot manager deletes this variable before transferring control to the preselected boot
option.

The boot manager must call LoadImage() which supports at least
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL and EFI_LOAD_FILE_PROTOCOL for resolving
load options. If LoadImage() succeeds, the boot manager must enable the watchdog timer for 5
minutes by using the SetWatchdogTimer() boot service prior to calling StartImage(). If
a boot option returns control to the boot manager, the boot manager must disable the watchdog
timer with an additional call to the SetWatchdogTimer() boot service.

January 31, 2006
Version 2.0 57

If the boot image is not loaded via LoadImage() the boot manager is required to check for a
default application to boot. Searching for a default application to boot happens on both removable
and fixed media types. This search occurs when the device path of the boot image listed in any boot
option points directly to an EFI_SIMPLE_FILE_SYSTEM_PROTOCOL device and does not
specify the exact file to load. The file discovery method is explained in “Boot Option Variables
Default Behavior”. The default media boot case of a protocol other than
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is handled by the EFI_LOAD_FILE_PROTOCOL
for the target device path and does not need to be handled by the boot manager.

The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 61, “Hard Drive Media Device Path”).
The boot manager must use the GUID or signature and partition number in the hard drive device
path to match it to a device in the system. If the drive supports the GPT partitioning scheme the
GUID in the hard drive media device path is compared with the UniquePartitionGuid field
of the GUID Partition Entry (see Table 14). If the drive supports the PC-AT MBR scheme the
signature in the hard drive media device path is compared with the UniqueMBRSignature in
the Legacy Master Boot Record (see Table 10). If a signature match is made, then the partition
number must also be matched. The hard drive device path can be appended to the matching
hardware device path and normal boot behavior can then be used. If more than one device matches
the hard drive device path, the boot manager will pick one arbitrarily. Thus the operating system
must ensure the uniqueness of the signatures on hard drives to guarantee deterministic boot
behavior.

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte packed buffer
of variable length fields. Since some of the fields are variable length, an EFI_LOAD_OPTION
cannot be described as a standard C data structure. Instead, the fields are listed below in the order
that they appear in an EFI_LOAD_OPTION descriptor:

Descriptor
 UINT32 Attributes;
 UINT16 FilePathListLength;
 CHAR16 Description[];
 EFI_DEVICE_PATH_PROTOCOL FilePathList[];
 UINT8 OptionalData[];

Parameters

Attributes The attributes for this load option entry. All unused bits must be
zero and are reserved by the UEFI specification for future
growth. See “Related Definitions.”

FilePathListLength Length in bytes of the FilePathList. OptionalData
starts at offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of
the EFI_LOAD_OPTION descriptor.

Description The user readable description for the load option. This field ends
with a Null Unicode character.

 January 31, 2006
58 Version 2.0

FilePathList A packed array of UEFI device paths. The first element of the
array is a device path that describes the device and location of
the Image for this load option. The FilePathList[0] is
specific to the device type. Other device paths may optionally
exist in the FilePathList, but their usage is OSV specific.
Each element in the array is variable length, and ends at the
device path end structure. Because the size of Description
is arbitrary, this data structure is not guaranteed to be aligned on
a natural boundary. This data structure may have to be copied to
an aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a binary
data buffer that is passed to the loaded image. If the field is zero
bytes long, a NULL pointer is passed to the loaded image. The
number of bytes in OptionalData can be computed by
subtracting the starting offset of OptionalData from total
size in bytes of the EFI_LOAD_OPTION.

Related Definitions

//***
// Attributes
//***
#define LOAD_OPTION_ACTIVE 0x00000001
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002

Description

Calling SetVariable() creates a load option. The size of the load option is the same as the size
of the DataSize argument to the SetVariable() call that created the variable. When
creating a new load option, all undefined attribute bits must be written as zero. When updating a
load option, all undefined attribute bits must be preserved. If a load option is not marked as
LOAD_OPTION_ACTIVE, the boot manager will not automatically load the option. This
provides an easy way to disable or enable load options without needing to delete and re-add them.
If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all of
the UEFI drivers in the system will be disconnected and reconnected after the last Driver####
load option is processed. This allows a UEFI driver loaded with a Driver#### load option to
override a UEFI driver that was loaded prior to the execution of the UEFI Boot Manager.

January 31, 2006
Version 2.0 59

3.2 Globally Defined Variables

This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when
the data variable may be accessed. The variables with an attribute of NV are nonvolatile. This
means that their values are persistent across resets and power cycles. The value of any environment
variable that does not have this attribute will be lost when power is removed from the system and
the state of firmware reserved memory is not otherwise preserved. The variables with an attribute of
BS are only available before ExitBootServices() is called. This means that these
environment variables can only be retrieved or modified in the preboot environment. They are not
visible to an operating system. Environment variables with an attribute of RT are available before
and after ExitBootServices() is called. Environment variables of this type can be retrieved
and modified in the preboot environment, and from an operating system. All architecturally
defined variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \

{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

To prevent name collisions with possible future globally defined variables, other internal firmware
data variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL_VARIABLE. Table 8 lists the global variables.

Table 8. Global Variables
Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports. This
value is deprecated.

Lang NV, BS, RT The language code that the system is configured for.
This value is deprecated.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

PlatformLangCodes BS, RT The language codes that the firmware supports.

PlatformLang NV, BS, RT The language code that the system is configured for.

ConIn NV, BS, RT The device path of the default input console.

ConOut NV, BS, RT The device path of the default output console.

ErrOut NV, BS, RT The device path of the default error output device.

ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No 0x
or h is included in the hex value.

BootOrder NV, BS, RT The ordered boot option load list.

 January 31, 2006
60 Version 2.0

Variable Name Attribute Description

BootNext NV, BS, RT The boot option for the next boot only.

BootCurrent BS, RT The boot option that was selected for the current boot.

Driver#### NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

The PlatformLangCodes variable contains a null- terminated string (8-bit ASCII character)
representing the language codes that the firmware can support. At initialization time the firmware
computes the supported languages and creates this data variable. Since the firmware creates this
value on each initialization, its contents are not stored in nonvolatile memory. This value is
considered read-only. PlatformLangCodes is specified in Native RFC 3066 format. See
Appendix M for the format of language codes and language code arrays. LangCodes is deprecated
and may be provided for backwards compatibility.

The PlatformLang variable contains a null-terminated string (8-bit ASCII character) language code
that the machine has been configured for. This value may be changed to any value supported by
PlatformLangCodes. If this change is made in the preboot environment, then the change will take
effect immediately. If this change is made at OS runtime, then the change does not take effect
until the next boot. If the language code is set to an unsupported value, the firmware will choose a
supported default at initialization and set PlatformLang to a supported value. PlatformLang is
specified in Native RFC 3066 array format. See Appendix M for the format of language codes.
Lang is deprecated and may be provided for backwards compatibility.

Lang has been deprecated. If the platform supports this variable, it must map any changes in the
Lang variable into PlatformLang in the appropriate format.

Langcodes has been deprecated. If the platform supports this variable, it must map any changes in
the Langcodes variable into PlatformLang in the appropriate format.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the
firmware will wait before initiating the original default boot selection. A value of 0 indicates that
the default boot selection is to be initiated immediately on boot. If the value is not present, or
contains the value of 0xFFFF then firmware will wait for user input before booting. This means the
default boot selection is not automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH_PROTOCOL
descriptor that defines the default device to use on boot. Changes to these values made in the
preboot environment take effect immediately. Changes to these values at OS runtime do not take
effect until the next boot. If the firmware cannot resolve the device path, it is allowed to
automatically replace the value(s) as needed to provide a console for the system.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an
EFI_DEVICE_PATH_PROTOCOL descriptor that defines all the possible default devices to use on
boot. These variables are volatile, and are set dynamically on every boot. ConIn, ConOut, and
ErrOut are always proper subsets of ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example, Boot0001,
Boot0002, Boot0A02, etc.

January 31, 2006
Version 2.0 61

The BootOrder variable contains an array of UINT16’s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, etc. The BootOrder order list is
used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal BootOrder list is
used. To prevent loops, the boot manager deletes this variable before transferring control to the
preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load
option, the second element is the value for the second logical driver load option, etc. The
DriverOrder list is used by the firmware’s boot manager as the default load order for UEFI
drivers that it should explicitly load.

3.3 Boot Option Variables Default Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the BootOrder variable
does not exist or only points to nonexistent boot options.

If no valid boot options exist, the boot manager will enumerate all removable media devices
followed by all fixed media devices. The order within each group is undefined. These new default
boot options are not saved to non volatile storage. The boot manger will then attempt to boot from
each boot option. If the device supports the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL then
the removable media boot behavior (see Section 3.4.1.1) is executed. Otherwise the firmware will
attempt to boot the device via the EFI_LOAD_FILE_PROTOCOL .

It is expected that this default boot will load an operating system or a maintenance utility. If this is
an operating system setup program it is then responsible for setting the requisite environment
variables for subsequent boots. The platform firmware may also decide to recover or set to a
known set of boot options.

 January 31, 2006
62 Version 2.0

3.4 Boot Mechanisms

EFI can boot from a device using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the
EFI_LOAD_FILE_PROTOCOL. A device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must materialize a file system protocol for that
device to be bootable. If a device does not wish to support a complete file system it may produce
an EFI_LOAD_FILE_PROTOCOL which allows it to materialize an image directly. The Boot
Manager will attempt to boot using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL first. If that
fails, then the EFI_LOAD_FILE_PROTOCOL will be used.

3.4.1 Boot via the Simple File Protocol
When booting via the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the FilePath will start
with a device path that points to the device that “speaks” the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL. The next part of the FilePath will point to the
file name, including sub directories that contain the bootable image. If the file name is a null
device path, the file name must be discovered on the media using the rules defined for removable
media devices with ambiguous file names (see Section 3.4.1.1 below).

The format of the file system specified is contained in Chapter 12.2. While the firmware must
produce an EFI_SIMPLE_FILE_SYSTEM_PROTOCOL that understands the UEFI file system,
any file system can be abstracted with the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL interface.

January 31, 2006
Version 2.0 63

3.4.1.1 Removable Media Boot Behavior
On a removable media device it is not possible for the FilePath to contain a file name, including
sub directories. FilePathList[0] is stored in non volatile memory in the platform and cannot
possibly be kept in sync with a media that can change at any time. A FilePathList[0] for a
removable media device will point to a device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or EFI_BLOCK_IO_PROTOCOL. The
FilePathList[0] will not contain a file name or sub directories.

If FilePathList[0] points to a device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, then the system firmware will attempt to boot from
a removable media FilePathList[0] by adding a default file name in the form
\EFI\BOOT\BOOT{machine type short-name}.EFI. Where machine type short-name defines a
PE32+ image format architecture. Each file only contains one UEFI image type, and a system may
support booting from one or more images types. Table 9 lists the UEFI image types.

Table 9. UEFI Image Types
 File Name Convention PE Executable Machine Type *

32-bit BOOTIA32.EFI 0x14c

x64 BOOTx64.EFI 0x8664

Itanium architecture BOOTIA64.EFI 0x200

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification,
Revision 6.0

A media may support multiple architectures by simply having a \EFI\BOOT\BOOT{machine type
short-name}.EFI file of each possible machine type.

If FilePathList[0] device does not support the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but support the EFI_BLOCK_IO_PROTOCOL
protocol, then the EFI Boot Service ConnectController must be called for FilePathList[0]
with DriverImageHandle and RemainingDevicePath set to NULL and the Recursive flag is
set to TRUE.The firmware will then attempt to boot from any child handles produced using the
algorithms outlined above.

3.4.2 Boot via LOAD_FILE PROTOCOL
When booting via the EFI_LOAD_FILE_PROTOCOL protocol, the FilePath is a device path
that points to a device that “speaks” the EFI_LOAD_FILE_PROTOCOL. The image is loaded
directly from the device that supports the EFI_LOAD_FILE_PROTOCOL. The remainder of the
FilePath will contain information that is specific to the device. Firmware passes this device-
specific data to the loaded image, but does not use it to load the image. If the remainder of the
FilePath is a null device path it is the loaded image's responsibility to implement a policy to find
the correct boot device.

The EFI_LOAD_FILE_PROTOCOL is used for devices that do not directly support file systems.
Network devices commonly boot in this model where the image is materialized without the need of
a file system.

 January 31, 2006
64 Version 2.0

3.4.2.1 Network Booting
Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies UDP,
DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent
system load server. UEFI defines special interfaces that are used to implement PXE. These
interfaces are contained in the EFI_PXE_BASE_CODE_PROTOCOL (Section 20.3).

3.4.2.2 Future Boot Media
Since UEFI defines an abstraction between the platform and the OS and its loader it should be
possible to add new types of boot media as technology evolves. The OS loader will not necessarily
have to change to support new types of boot. The implementation of the UEFI platform services
may change, but the interface will remain constant. The OS will require a driver to support the
new type of boot media so that it can make the transition from UEFI boot services to OS control of
the boot media.

January 31, 2006
Version 2.0 65

4
EFI System Table

This chapter describes the entry point to a UEFI image and the parameters that are passed to that
entry point. There are three types of UEFI images that can be loaded and executed by firmware
conforming to this specification. These are UEFI Applications, OS Loaders, and drivers. There are
no differences in the entry point for these three image types.

4.1 UEFI Image Entry Point

The most significant parameter that is passed to an image is a pointer to the System Table. This
pointer is EFI_IMAGE_ENTRY_POINT (see definition immediately below), the main entry point
for a UEFI Image. The System Table contains pointers to the active console devices, a pointer to
the Boot Services Table, a pointer to the Runtime Services Table, and a pointer to the list of system
configuration tables such as ACPI, SMBIOS, and the SAL System Table. This chapter describes
the System Table in detail.

EFI_IMAGE_ENTRY_POINT

Summary

This is the main entry point for a UEFI Image. This entry point is the same for UEFI Applications,
UEFI OS Loaders, and UEFI Drivers including both device drivers and bus drivers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle The firmware allocated handle for the UEFI image.

SystemTable A pointer to the EFI System Table.

Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service LoadImage(). An EFI image is invoked through the EFI Boot
Service StartImage().

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the

 January 31, 2006
66 Version 2.0

EFI_BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the System Table contains
pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to nonzero values. Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images
support the EFI_LOADED_IMAGE_PROTOCOL that returns the source location of the image, the
memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE_PROTOCOL structure is defined in Chapter 8.

If the image is an application written to this specification, then the application executes and either
returns or calls the EFI Boot Services Exit(). An applications written to this specification is
always unloaded from memory when it exits, and its return status is returned to the component that
started the application.

If the EFI image is an EFI OS Loader, then the EFI OS Loader executes and either returns, calls the
EFI Boot Service Exit(), or calls the EFI Boot Service ExitBootServices(). If the EFI
OS Loader returns or calls Exit(), then the load of the OS has failed, and the EFI OS Loader is
unloaded from memory and control is returned to the component that attempted to boot the EFI OS
Loader. If ExitBootServices() is called, then the OS Loader has taken control of the
platform, and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFI Runtime Service ResetSystem().

If the image is a UEFI Driver, then the driver executes and either returns or calls the Boot Service
Exit(). If a driver returns an error, then the driver is unloaded from memory. If the driver
returns EFI_SUCCESS, then it stays resident in memory. If the driver does not follow the UEFI
Driver Model, then it performs any required initialization and installs its protocol services before
returning. If the driver does follow the UEFI Driver Model, then the entry point is not allowed to
touch any device hardware. Instead, the entry point is required to create and install the
EFI_DRIVER_BINDING_PROTOCOL (Chapter 10.1) on the ImageHandle of the UEFI driver.
If this process is completed, then EFI_SUCCESS is returned. If the resources are not available to
complete the driver initialization, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 67

4.2 EFI Table Header

The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

EFI_TABLE_HEADER

Summary

Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {
 UINT64 Signature;
 UINT32 Revision;
 UINT32 HeaderSize;
 UINT32 CRC32;
 UINT32 Reserved;
} EFI_TABLE_HEADER;

Parameters

Signature A 64-bit signature that identifies the type of table that follows. Unique
signatures have been generated for the EFI System Table, the EFI Boot
Services Table, and the EFI Runtime Services Table.

Revision The revision of the EFI Specification to which this table conforms. The
upper 16 bits of this field contain the major revision value, and the lower
16 bits contain the minor revision value. The minor revision values are
limited to the range of 00..99.

HeaderSize The size, in bytes, of the entire table including the
EFI_TABLE_HEADER.

CRC32 The 32-bit CRC for the entire table. This value is computed by setting
this field to 0, and computing the 32-bit CRC for HeaderSize bytes.

Reserved Reserved field that must be set to 0.

 January 31, 2006
68 Version 2.0

NOTE

The capabilities found in the EFI system table, runtime table and boot services table may change
over time. The first field in each of these tables is an EFI_TABLE_HEADER. This header’s
Revision field is incremented when new capabilities and functions are added to the functions in the
table. When checking for capabilities, code should verify that Revision is greater than or equal to
the revision level of the table at the point when the capabilities were added to the UEFI
specification.

NOTE

Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed polynomial
value of 0x04c11db7 for its CRC calculations.

NOTE

The size of the system table, runtime services table, and boot services table may increase over time.
It is very important to always use the HeaderSize field of the EFI_TABLE_HEADER to
determine the size of these tables.

4.3 EFI System Table

UEFI uses the EFI System Table, which contains pointers to the runtime and boot services tables.
The definition for this table is shown in the following code fragments. Except for the table header,
all elements in the service tables are pointers to functions as defined in Chapters 6 and 7. Prior to a
call to ExitBootServices(), all of the fields of the EFI System Table are valid. After an
operating system has taken control of the platform with a call to ExitBootServices(), only
the Hdr, FirmwareVendor, FirmwareRevision, RuntimeServices,
NumberOfTableEntries, and ConfigurationTable fields are valid.

January 31, 2006
Version 2.0 69

EFI_SYSTEM_TABLE

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions
#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))

typedef struct {
 EFI_TABLE_HEADER Hdr;
 CHAR16 *FirmwareVendor;
 UINT32 FirmwareRevision;
 EFI_HANDLE ConsoleInHandle;
 EFI_SIMPLE_INPUT_PROTOCOL *ConIn;
 EFI_HANDLE ConsoleOutHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;
 EFI_HANDLE StandardErrorHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;
 EFI_RUNTIME_SERVICES *RuntimeServices;
 EFI_BOOT_SERVICES *BootServices;
 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *ConfigurationTable;
} EFI_SYSTEM_TABLE;

 January 31, 2006
70 Version 2.0

Parameters

Hdr The table header for the EFI System Table. This header contains
the EFI_SYSTEM_TABLE_SIGNATURE and
EFI_SYSTEM_TABLE_REVISION values along with the size
of the EFI_SYSTEM_TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

FirmwareVendor A pointer to a null terminated Unicode string that identifies the
vendor that produces the system firmware for the platform.

FirmwareRevision A firmware vendor specific value that identifies the revision of
the system firmware for the platform.

ConsoleInHandle The handle for the active console input device. This handle must
support the SIMPLE_INPUT_PROTOCOL.

ConIn A pointer to the SIMPLE_INPUT_PROTOCOL interface that is
associated with ConsoleInHandle.

ConsoleOutHandle The handle for the active console output device. This handle
must support the SIMPLE_TEXT_OUTPUT_PROTOCOL.

ConOut A pointer to the SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with ConsoleOutHandle.

StandardErrorHandle The handle for the active standard error console device. This
handle must support the
SIMPLE_TEXT_OUTPUT_PROTOCOL.

StdErr A pointer to the SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with StandardErrorHandle.

RuntimeServices A pointer to the EFI Runtime Services Table. See Section 4.5.

BootServices A pointer to the EFI Boot Services Table. See Section 4.4.

NumberOfTableEntries The number of system configuration tables in the buffer
ConfigurationTable.

ConfigurationTable A pointer to the system configuration tables. The number of
entries in the table is NumberOfTableEntries.

January 31, 2006
Version 2.0 71

4.4 EFI Boot Services Table

UEFI uses the EFI Boot Services Table, which contains a table header and pointers to all of the
boot services. The definition for this table is shown in the following code fragments. Except for
the table header, all elements in the EFI Boot Services Tables are prototypes of function pointers to
functions as defined in Chapter 6. The function pointers in this table are not valid after the
operating system has taken control of the platform with a call to ExitBootServices().

EFI_BOOT_SERVICES

Summary

Contains a table header and pointers to all of the boot services.

Related Definitions
#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42
#define EFI_BOOT_SERVICES_REVISION ((2<<16) | (00))

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Task Priority Services
 //
 EFI_RAISE_TPL RaiseTPL; // EFI 1.0+
 EFI_RESTORE_TPL RestoreTPL; // EFI 1.0+

 //
 // Memory Services
 //
 EFI_ALLOCATE_PAGES AllocatePages; // EFI 1.0+
 EFI_FREE_PAGES FreePages; // EFI 1.0+
 EFI_GET_MEMORY_MAP GetMemoryMap; // EFI 1.0+
 EFI_ALLOCATE_POOL AllocatePool; // EFI 1.0+
 EFI_FREE_POOL FreePool; // EFI 1.0+

 //
 // Event & Timer Services
 //
 EFI_CREATE_EVENT CreateEvent; // EFI 1.0+
 EFI_SET_TIMER SetTimer; // EFI 1.0+
 EFI_WAIT_FOR_EVENT WaitForEvent; // EFI 1.0+
 EFI_SIGNAL_EVENT SignalEvent; // EFI 1.0+
 EFI_CLOSE_EVENT CloseEvent; // EFI 1.0+
 EFI_CHECK_EVENT CheckEvent; // EFI 1.0+

 //

 January 31, 2006
72 Version 2.0

 // Protocol Handler Services
 //
 EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; //

EFI 1.0+
 EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; //

EFI 1.0+
 EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; //

EFI 1.0+
 EFI_HANDLE_PROTOCOL HandleProtocol; // EFI 1.0+
 EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; // EFI

1.0+
 EFI_LOCATE_HANDLE LocateHandle; // EFI 1.0+
 EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+
 EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; //

EFI 1.0+

 //
 // Image Services
 //
 EFI_IMAGE_LOAD LoadImage; // EFI 1.0+
 EFI_IMAGE_START StartImage; // EFI 1.0+
 EFI_EXIT Exit; // EFI 1.0+
 EFI_IMAGE_UNLOAD UnloadImage; // EFI 1.0+
 EFI_EXIT_BOOT_SERVICES ExitBootServices; // EFI 1.0+

 //
 // Miscellaneous Services
 //
 EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; // EFI

1.0+
 EFI_STALL Stall; // EFI 1.0+
 EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; // EFI 1.0+

 //
 // DriverSupport Services
 //
 EFI_CONNECT_CONTROLLER ConnectController; // EFI 1.1
 EFI_DISCONNECT_CONTROLLER DisconnectController;// EFI

1.1+

 //
 // Open and Close Protocol Services
 //
 EFI_OPEN_PROTOCOL OpenProtocol; // EFI

1.1+

January 31, 2006
Version 2.0 73

 EFI_CLOSE_PROTOCOL CloseProtocol; //
EFI 1.1+
 EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation; //

EFI 1.1+

 //
 // Library Services
 //
 EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; // EFI

1.1+
 EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; // EFI

1.1+
 EFI_LOCATE_PROTOCOL LocateProtocol; // EFI

1.1+
 EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtoco
lInterfaces; // EFI 1.1+
 EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProt
ocolInterfaces; // EFI 1.1+

 //
 // 32-bit CRC Services
 //
 EFI_CALCULATE_CRC32 CalculateCrc32; //

EFI 1.1+

 //
 // Miscellaneous Services
 //
 EFI_COPY_MEM CopyMem; // EFI

1.1+
 EFI_SET_MEM SetMem; // EFI

1.1+
 EFI_CREATE_EVENT_EX CreateEventEx; // UEFI
2.0+
 } EFI_BOOT_SERVICES;

 January 31, 2006
74 Version 2.0

Parameters

Hdr The table header for the EFI Boot Services Table. This
header contains the EFI_BOOT_SERVICES_
SIGNATURE and EFI_BOOT_SERVICES_
REVISION values along with the size of the
EFI_BOOT_SERVICES structure and a 32-bit CRC to
verify that the contents of the EFI Boot Services Table
are valid.

RaiseTPL Raises the task priority level.

RestoreTPL Restores/lowers the task priority level.

AllocatePages Allocates pages of a particular type.

FreePages Frees allocated pages.

GetMemoryMap Returns the current boot services memory map and
memory map key.

AllocatePool Allocates a pool of a particular type.

FreePool Frees allocated pool.

CreateEvent Creates a general-purpose event structure.

SetTimer Sets an event to be signaled at a particular time.

WaitForEvent Stops execution until an event is signaled.

SignalEvent Signals an event.

CloseEvent Closes and frees an event structure.

CheckEvent Checks whether an event is in the signaled state.

InstallProtocolInterface Installs a protocol interface on a device handle.

ReinstallProtocolInterface Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface Removes a protocol interface from a device handle.

HandleProtocol Queries a handle to determine if it supports a specified
protocol.

Reserved Reserved. Must be NULL.

RegisterProtocolNotify Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Returns an array of handles that support a specified
protocol.

January 31, 2006
Version 2.0 75

LocateDevicePath Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

InstallConfigurationTable Adds, updates, or removes a configuration table from the
EFI System Table.

LoadImage Loads an EFI image into memory.

StartImage Transfers control to a loaded image’s entry point.

Exit Exits the image’s entry point.

UnloadImage Unloads an image.

ExitBootServices Terminates boot services.

GetNextMonotonicCount Returns a monotonically increasing count for the
platform.

Stall Stalls the processor.

SetWatchdogTimer Resets and sets a watchdog timer used during boot
services time.

ConnectController Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Informs a set of drivers to stop managing a controller.

OpenProtocol Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolInformation Retrieve the list of agents that are currently consuming a
protocol interface.

ProtocolsPerHandle Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocolInterfaces

 Installs one or more protocol interfaces onto a handle.

 January 31, 2006
76 Version 2.0

UninstallMultipleProtocolInterfaces

 Uninstalls one or more protocol interfaces from a
handle.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.

CopyMem Copies the contents of one buffer to another buffer.

SetMem Fills a buffer with a specified value.

CreateEventEx Creates an event structure as part of an event group.

4.5 EFI Runtime Services Table

UEFI uses the EFI Runtime Services Table, which contains a table header and pointers to all of the
runtime services. The definition for this table is shown in the following code fragments. Except
for the table header, all elements in the EFI Runtime Services Tables are prototypes of function
pointers to functions as defined in Chapter 7. Unlike the EFI Boot Services Table, this table, and
the function pointers it contains are valid after the operating system has taken control of the
platform with a call to ExitBootServices(). If a call to SetVirtualAddressMap() is
made by the OS, then the function pointers in this table are fixed up to point to the new virtually
mapped entry points.

EFI_RUNTIME_SERVICES

Summary

Contains a table header and pointers to all of the runtime services.

Related Definitions
#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
#define EFI_RUNTIME_SERVICES_REVISION ((2<<16) | (00))

January 31, 2006
Version 2.0 77

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Time Services
 //
 EFI_GET_TIME GetTime;
 EFI_SET_TIME SetTime;
 EFI_GET_WAKEUP_TIME GetWakeupTime;
 EFI_SET_WAKEUP_TIME SetWakeupTime;

 //
 // Virtual Memory Services
 //
 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
 EFI_CONVERT_POINTER ConvertPointer;

 //
 // Variable Services
 //
 EFI_GET_VARIABLE GetVariable;
 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
 EFI_SET_VARIABLE SetVariable;

 //
 // Miscellaneous Services
 //
 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
 EFI_RESET_SYSTEM ResetSystem;

 //
 // UEFI 2.0 Capsule Services
 //
 EFI_UPDATE_CAPSULE UpdateCapsule;
 EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities;

 //
 // Miscellaneous UEFI 2.0 Service
 //
 EFI_QUERY_VARIABLE_INFO QueryVariableInfo;
} EFI_RUNTIME_SERVICES;

 January 31, 2006
78 Version 2.0

Parameters

Hdr The table header for the EFI Runtime Services Table.
This header contains the
EFI_RUNTIME_SERVICES_ SIGNATURE and
EFI_RUNTIME_SERVICES_ REVISION values
along with the size of the
EFI_RUNTIME_SERVICES structure and a 32-bit
CRC to verify that the contents of the EFI Runtime
Services Table are valid.

GetTime Returns the current time and date, and the time-
keeping capabilities of the platform.

SetTime Sets the current local time and date information.

GetWakeupTime Returns the current wakeup alarm clock setting.

SetWakeupTime Sets the system wakeup alarm clock time.

SetVirtualAddressMap Used by an OS loader to convert from physical
addressing to virtual addressing.

ConvertPointer Used by EFI components to convert internal pointers
when switching to virtual addressing.

GetVariable Returns the value of a variable.

GetNextVariableName Enumerates the current variable names.

SetVariable Sets the value of a variable.

GetNextHighMonotonicCount Returns the next high 32 bits of the platform’s
monotonic counter.

ResetSystem Resets the entire platform.

UpdateCapsule Passes capsules to the firmware with both virtual and
physical mapping.

QueryCapsuleCapabilities Returns if the capsule can be supported via
UpdateCapsule().

QueryVariableInfo Returns information about the EFI variable store.

January 31, 2006
Version 2.0 79

4.6 EFI Configuration Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION_TABLE structure below. The number of types of configuration tables is
expected to grow over time. This is why a GUID is used to identify the configuration table type.
The EFI Configuration Table may contain at most once instance of each table type.

EFI_CONFIGURATION_TABLE

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI
System Table.

Related Definitions
typedef struct{
 EFI_GUID VendorGuid;
 VOID *VendorTable;
} EFI_CONFIGURATION_TABLE;

Parameters

The following list shows the GUIDs for tables defined in some of the industry standards. These
industry standards define tables accessed as UEFI Configuration Tables on UEFI-based systems.
This list is not exhaustive and does not show GUIDS for all possible UEFI Configuration tables.

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.

VendorTable A pointer to the table associated with VendorGuid.

#define EFI_ACPI_20_TABLE_GUID \
 {0x8868e871,0xe4f1,0x11d3,0xbc,0x22,0x0,0x80,0xc7,0x3c,0x88,0x81}

#define ACPI_TABLE_GUID \
 {0xeb9d2d30,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define SAL_SYSTEM_TABLE_GUID \
 {0xeb9d2d32,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define SMBIOS_TABLE_GUID \
 {0xeb9d2d31,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

#define MPS_TABLE_GUID \
 {0xeb9d2d2f,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

 January 31, 2006
80 Version 2.0

//
// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE_GUID
//
#define EFI_ACPI_TABLE_GUID \
{0x8868e871,0xe4f1,0x11d3,0xbc,0x22,0x0,0x80,0xc7,0x3c,0x88,0x81}
#define ACPI_10_TABLE_GUID \
{0xeb9d2d30,0x2d88,0x11d3,0x9a,0x16,0x0,0x90,0x27,0x3f,0xc1,0x4d}

4.7 Image Entry Point Examples
The examples in the following sections show how the various table examples are presented in
the UEFI environment.

4.7.1 Image Entry Point Examples
The following example shows the image entry point for a UEFI Application. This
application makes use of the EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_RUNTIME_SERVICES_TABLE *gRT;

EfiApplicationEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_TIME *Time;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Use EFI System Table to print “Hello World” to the active console output
 // device.
 //
 Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use EFI Boot Services Table to allocate a buffer to store the current time
 // and date.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_TIME),
 (VOID **)&Time
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

January 31, 2006
Version 2.0 81

 //
 // Use the EFI Runtime Services Table to get the current time and date.
 //
 Status = gRT->GetTime (Time, NULL)
 if (EFI_ERROR (Status)) {
 return Status;
 }

 return Status;
}

The following example shows the UEFI image entry point for a driver that does not follow the
UEFI Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in memory after
it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_RUNTIME_SERVICES_TABLE *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Implement driver initialization here.
 //

 return EFI_SUCCESS;
}

The following example shows the UEFI image entry point for a driver that also does not follow the
UEFI Driver Model. Since this driver returns EFI_DEVICE_ERROR, it will not stay resident in
memory after it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_RUNTIME_SERVICES_TABLE *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 January 31, 2006
82 Version 2.0

 //
 // Implement driver initialization here.
 //

 return EFI_DEVICE_ERROR;
}

4.7.2 UEFI Driver Model Example
The following is an UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL is
defined in Chapter 9 The function prototypes for the AbcSupported(), AbcStart(), and
AbcStop() functions are defined in Section 9.1. This function saves the driver’s image handle
and a pointer to the EFI boot services table in global variables, so the other functions in the same
driver can have access to these values. It then creates an instance of the
EFI_DRIVER_BINDING_PROTOCOL and installs it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES_TABLE *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

January 31, 2006
Version 2.0 83

4.7.3 UEFI Driver Model Example (Unloadable)
The following is the same UEFI driver Model example as above, except it also includes the code
required to allow the driver to be unloaded through the boot service Unload(). Any protocols
installed or memory allocated in AbcEntryPoint() must be uninstalled or freed in the
AbcUnload().
extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES_TABLE *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
);

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

 gBS = SystemTable->BootServices;

 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiLoadedImageProtocolGuid,
 &LoadedImage,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }
 LoadedImage->Unload = AbcUnload;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);

 return Status;
}

 January 31, 2006
84 Version 2.0

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
)

{
 EFI_STATUS Status;

 Status = gBS->UninstallMultipleProtocolInterfaces (
 ImageHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.7.4 EFI Driver Model Example (Multiple Instances)
The following is the same as the first UEFI Driver Model example, except it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES_TABLE *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
 AbcSupportedA,
 AbcStartA,
 AbcStopA,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
 AbcSupportedB,
 AbcStartB,
 AbcStopB,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
 AbcSupportedC,
 AbcStartC,
 AbcStopC,
 1,
 NULL,
 NULL
};

January 31, 2006
Version 2.0 85

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 //
 // Install mAbcDriverBindingA onto ImageHandle
 //
 mAbcDriverBindingA->ImageHandle = ImageHandle;
 mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingA->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingB onto a newly created handle
 //
 mAbcDriverBindingB->ImageHandle = ImageHandle;
 mAbcDriverBindingB->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingB->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingC onto a newly created handle
 //
 mAbcDriverBindingC->ImageHandle = ImageHandle;
 mAbcDriverBindingC->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingC->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
 NULL
);

 return Status;
}

 January 31, 2006
86 Version 2.0

January 31, 2006
Version 2.0 87

5
GUID Partition Table (GPT) Format

5.1 EFI Partition Formats

This specification defines a new partitioning scheme that must be supported by

firmware which conforms to it. The following list outlines the advantages of using the GUID
Partition Table over the legacy MBR partition table:

• Logical Block Addressing is 64 bits.
• Supports many partitions.
• Uses a primary and backup table for redundancy.
• Uses version number and size fields for future expansion.
• Uses CRC32 fields for improved data integrity.
• Defines a GUID for uniquely identifying each partition.
• Uses a GUID and attributes to define partition content type.
• Each partition contains a 36 Unicode character human readable name.

5.2 LBA 0 Format

LBA 0 (i.e. the first block) of the hard disk contains either a legacy Master Boot Record (MBR)
(see Section 5.2.1) or a protective MBR (see Section 5.2.2).

5.2.1 Legacy Master Boot Record (MBR)
A legacy master boot record may be located at LBA 0 (i.e. the first block) of the hard disk if it is
not using the GPT partition scheme. The boot code on the MBR is not executed by EFI firmware.
The MBR may optionally contain a UniqueMBRSignature located as defined in Table 10. The
UniqueMBRSignature must be maintained by operating systems, and is never maintained by EFI
firmware. The UniqueMBRSignature is only 4 bytes in length, so it is not a GUID. UEFI does not
specify the algorithm that is used to generate UniqueMBRSignature. The uniqueness of
UniqueMBRSignature is defined as all disks in a given system having a unique value in this field.

Table 10. Legacy Master Boot Record

Mnemonic

Byte
Offset

Byte
Length

Description

BootCode 0 440 Code used on a legacy system to select a
partition record and load the first block (sector)
of the partition pointed to by the partition
record. This code is not executed on UEFI
systems.

 January 31, 2006
88 Version 2.0

Mnemonic

Byte
Offset

Byte
Length

Description

UniqueMBRSignature 440 4 Unique Disk Signature, this is an optional
feature and not on all hard drives. This value
is always written by the OS and is never written
by EFI firmware.

Unknown 444 2 Unknown

PartitionRecord 446 16*4 Array of four legacy MBR partition records (see
Table 11).

Signature 510 2 Must be 0xaa55 (i.e., byte 510 contains 0x55
and byte 511 contains 0xaa).

Reserved 512 BlockSize - 512 The rest of the logical block, if any, is reserved.

The MBR contains four partition records that define the beginning and ending LBA addresses that a
partition consumes on a hard disk. The partition record contains a legacy Cylinder Head Sector
(CHS) address that is not used in UEFI. UEFI utilizes the StartingLBA entry to define the starting
LBA of the partition on the disk. The size of the partition is defined by the SizeInLBA field.

The boot indicator field is not used by EFI firmware. The operating system indicator value of 0xEF
defines a partition that contains a UEFI file system. The other values of the system indicator are
not defined by this specification. If an MBR partition has an operating system indicator value of
0xEF, then the firmware must add the EFI System Partition GUID to the handle for the MBR
partition using InstallProtocolInterface(). This will allow drivers and applications,
including OS loaders, to easily search for handles that represent EFI System Partitions.

January 31, 2006
Version 2.0 89

Table 11. Legacy Master Boot Record Partition Record

Mnemonic

Byte
Offset

Byte
Length

Description

BootIndicator 0 1 Not used by EFI firmware . 0x80 indicates that this is the
bootable legacy partition.

StartingCHS 1 3 Start of partition in CHS address format, not used by EFI
firmware.

OSType 4 1 Type of partition. 0xEF defines an EFI system partition.
0xEE is used by a protective MBR (Table 12) to define a
fake partition covering the entire disk. Other values are used
by legacy operating systems, and are allocated
independently of the UEFI specification.

Ending CHS 1 3 End of partition in CHS address format, not used by EFI
firmware.

Starting LBA 8 4 Starting LBA of the partition on the disk. Used by EFI
firmware to define the start of the partition.

SizeInLBA 12 4 Size of the partition in LBA units of logical blocks.. Used by
EFI firmware to determine the size of the partition.

The following test must be performed to determine if a legacy MBR is valid:

• The Signature must be 0xaa55.
• A partition record that contains an OSType value of zero or a SizeInLBA value of zero may be

ignored.

 January 31, 2006
90 Version 2.0

Otherwise:

• The partition defined by each MBR partition record must physically reside on the disk.
• Each partition must not overlap with other partitions.

5.2.2 Protective Master Boot Record
On all GUID Partition Table disks a Protective MBR (PMBR) in LBA 0 (that is, the first block)
precedes the GUID Partition Table Header to maintain compatibility with existing tools that do not
understand GPT partition structures. The Protective MBR has the same format as a legacy MBR
(see Section 5.2.1) and contains one partition entry with an OSType set to 0xEE reserving the entire
space used on the disk by the GPT partitions, including all headers as shown in Table 12. If the
GPT partition is larger than a partition that can be represented by a legacy MBR, values of all Fs
must be used to signify that all space that can be possibly reserved by the MBR is being reserved.

Table 12. Protective MBR Partition Record

Mnemonic

Byte
Offset

Byte
Length

Description

BootIndicator 0 1 Must be set to zero to indicate nonbootable partition.
StartingCHS 1 3 Must be 0x000200, corresponding to the StartingLBA.
OSType 4 1 Must be 0xEE.
EndingCHS

1

3

Set to the CHS address of the last logical block on the
disk. Must be set to 0xFFFFFF if it is not possible to
represent the value in these fields.

StartingLBA 8 4 Must be 0x00000001.
SizeInLBA 12 4 Size of the disk minus one. Set to 0xFFFFFFFF if the

size of the disk is too large to be represented in this
field.

5.3 GUID Partition Table (GPT) Format

This specification defines a new GUID Partition Table (GPT) partitioning scheme that must be
supported by EFI firmware.

5.3.1 GUID Format overview
The GPT partitioning scheme is depicted in Figure 16. The GUID Partition Table Header
(see Section 5.3.2) starts with a signature and a revision number that specifies the format of the data
bytes in the partition header. The GUID Partition Table Header contains a header size field that is
used in calculating the CRC32 that confirms the integrity of the GUID Partition Table Header.
While the GUID Partition Table Header’s size may increase in the future it cannot span more than
one block on the device.

LBA 0 (i.e., the first logical block) contains a protective MBR (see Section 5.2.2).

Two GUID Partition Table Header structures are stored on the device: the primary and the backup.
The primary GUID Partition Table Header must be located in LBA 1 (i.e., the second logical

January 31, 2006
Version 2.0 91

block), and the backup GUID Partition Table Header must be located in the last LBA of the logical
device. Within the GUID Partition Table Header the MyLBA field contains the logical block
address of the GUID Partition Table Header itself, and the AlternateLBA field contains the
logical block address of the other GUID Partition Table Header. For example, the primary GUID
Partition Table Header’s MyLBA value would be 1 and its AlternateLBA would be the value for
the last block of the logical device. The backup GUID Partition Table Header’s fields would be
reversed.

The GUID Partition Table Header defines the range of logical block addresses that are usable by
Partition Entries. This range is defined to be inclusive of FirstUsableLBA through
LastUsableLBA on the logical device. All data stored on the volume must be stored between
the FirstUsableLBA through LastUsableLBA, and only the data structures defined by
UEFI to manage partitions may reside outside of the usable space. The value of DiskGUID is a
GUID that uniquely identifies the entire GUID Partition Table Header and all its associated storage.
This value can be used to uniquely identify the disk. The start of the GUID Partition Entry array is
located at the logical block address PartitionEntryLBA. The size of a GUID Partition Entry
element is defined in the SizeOfPartitionEntry field. There is a 32-bit CRC of the GUID Partition
Entry array that is stored in the GUID Partition Table Header in
PartitionEntryArrayCRC32 field. The size of the GUID Partition Entry array is
SizeOfPartitionEntry multiplied by NumberOfPartitionEntries. When a GUID Partition
Entry is updated, the PartitionEntryArrayCRC32 must be updated. When the
PartitionEntryArrayCRC32 is updated, the GUID Partition Table Header CRC must also
be updated, since the PartitionEntryArrayCRC32 is stored in the GUID Partition Table
Header.

Partition 1

Start partition

OM13160

P
M

B
R

P
artition

T
able H

D
R

LBA0 LBA1

First useable block

P
artition

T
able H

D
R

Last useable block

LBAn

0 1 n

End partition

Primary Partition
Table

Backup Partition
Table

Start partition
End partition

0 1 n

Figure 16. GUID Partition Table (GPT) Scheme

The primary GUID Partition Entry array must be located after the primary GUID Partition Table
Header and end before the FirstUsableLBA. The backup GUID Partition Entry array must be
located after the LastUsableLBA and end before the backup GUID Partition Table Header.

 January 31, 2006
92 Version 2.0

Therefore the primary and backup GUID Partition Entry arrays are stored in separate locations on
the disk. GUID Partition Entries define a partition that is contained in a range that is within the
usable space declared by the GUID Partition Table Header. Zero or more GUID Partition Entries
may be in use in the GUID Partition Entry array. Each defined partition must not overlap with any
other defined partition. If all the fields of a GUID Partition Entry are zero, the entry is not in use.
A minimum of 16,384 bytes of space must be reserved for the GUID Partition Entry array.

If the block size is 512, the FirstUsableLBA will be greater than or equal to 34 (allowing
1 block for the PMBR, 1 block for the Partition Table Header, and 32 blocks for the GUID Partition
Table Entry array); if the logical block size is 4096, the FirstUseableLBA will be greater than
or equal to 6 (allowing 1 block for the PMBR, 1 block for the Partition Table Header, and 4 blocks
for the GUID Partition Table Entry array).

Historically, the logical block size and physical block size have often both been 512 bytes long.
However, other block sizes may be used by a device, and larger block sizes may become more
prevalent over time.

The device may present a logical block size that is not 512 bytes long. In ATA, this is called the
Long Logical Sector feature set; an ATA device reports support for this feature set in IDENTIFY
DEVICE data word 106 bit 12 and reports the number of words (i.e., 2 bytes) per logical sector in
IDENTIFY DEVICE data words 117-118. A SCSI device reports its logical block size in the
READ CAPACITY parameter data Block Length In Bytes field.

The device may present a logical block size that is smaller than the physical block size (e.g., present
a logical block size of 512 bytes but implement a physical block size of 4,096 bytes). In ATA, this
is called the Long Physical Sector feature set; an ATA device reports support for this feature set in
IDENTIFY DEVICE data word 106 bit 13 and reports the Physical Sector Size/Logical Sector Size
ratio in IDENTIFY DEVICE data word 106 bits 3-0 (as of ATA/ATAPI-7, this field can report 1, 2,
4, or 8 logical sectors per physical sector).

GPT partitions should not start at a boundary that is not aligned to the physical block size of the
device, or performance may be impacted. For example, if the logical block size is 512 and the
physical block size is 4,096, a GPT partition should not start at an LBA that is not a multiple of 8.
GPT partitions may start at larger boundaries. To avoid the need to determine the physical block
size, software may align GPT partitions at significantly larger boundaries. For example, it may use
LBAs that are multiples of 256 to support physical block sizes up to 131,072 bytes.

January 31, 2006
Version 2.0 93

5.3.2 GPT Partition Table Header

Table 13. GUID Partition Table Header

Mnemonic

Byte
Offset

Byte
Length

Description

Signature 0 8 Identifies EFI-compatible partition table
header. This value must contain the string
“EFI PART,” 0x5452415020494645.

Revision 8 4 The revision number for this header. This
revision value is not related to the UEFI
Specification version. This header is version
1.0, so the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GUID Partition Table
Header. The HeaderSize must be

greater than 92 and must be less than or
equal to the logical block size.

HeaderCRC32 16 4 CRC32 checksum for the GUID Partition
Table Header structure. This value is
computed by

setting this field to 0, and computing the 32-bit
CRC for HeaderSize bytes.

Reserved 20 4 Must be zero.

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GUID Partition
Table Header.

FirstUsableLBA 40 8 The first usable logical block that may be used
by a partition described by a GUID Partition
Entry.

LastUsableLBA 48 8 The last usable logical block that may be used
by a partition described by a GUID Partition
Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry
array.

NumberOfPartitionEntries 80 4 The number of Partition Entries in the GUID
Partition Entry array.

SizeOfPartitionEntry

84 4 The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry
array. Must be a multiple of 8.

PartitionEntryArrayCRC32 88 4 The CRC32 of the GUID Partition Entry array.

Starts at PartitionEntryLBA and is

computed over a byte length of
NumberOfPartitionEntries *
SizeOfPartitionEntry.

 January 31, 2006
94 Version 2.0

Mnemonic

Byte
Offset

Byte
Length

Description

Reserved 92 BlockSi
ze – 92

The rest of the block is reserved by UEFI and
must be zero.

The following test must be performed to determine if a GUID Partition Table is valid:

• Check the GUID Partition Table Signature
• Check the GUID Partition Table CRC
• Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
• Check the CRC of the GUID Partition Entry Array

If the GUID Partition Table is the primary table, stored at LBA 1:

• Check the AlternateLBA to see if it is a valid GUID Partition Table

If the primary GUID Partition Table is corrupt, software must check the last LBA of the device to
see if it has a valid GUID Partition Table Header and point to a valid GUID Partition Entry Array.
If it points to a valid GUID Partition Entry Array, then software should restore the primary GUID
Partition Table if allowed by platform policy settings (e.g. a platform may require a user to provide
confirmation before restoring the table, or may allow the table to be restored automatically).
Software must report whenever it restores a GUID Partition Table.

Software should ask a user for confirmation before restoring the primary GUID Partition Table and
must report whenever it does modify the media to restore a GUID Partition Table. If a GPT
formatted disk is reformatted to the legacy MBR format by legacy software, the last logical block
might not be overwritten and might still contain a stale GUID Partition Table. If GPT-cognizant
software then accesses the disk and honors the stale GUID Partition Table, it will misinterpret the
contents of the disk. Software may detect this scenario if the legacy MBR contains valid partitions
rather than a protective MBR (see Section 5.2.1).

Any software that updates the primary GUID Partition Table must also update the backup GUID
Partition Table. Software may update the GUID Partition Table Header and GUID Partition Entry
array in any order, since all the CRCs are stored in the GUID Partition Table Header. Software
must update the backup GUID Partition Table before the primary GUID Partition Table, so if the
size of device has changed (e.g. volume expansion) and the update is interrupted, the backup GUID
Partition Table is in the proper location on the disk

If the primary GUID Partition Table is invalid, the backup GUID Partition Table is used instead
and it is located on the last logical block on the disk. If the backup GUID Partition Table is valid it
must be used to restore the primary GUID Partition Table. If the primary GUID Partition Table is
valid and the backup GUID Partition Table is invalid software must restore the backup GUID
Partition Table. If both the primary and backup GUID Partition Tables are corrupted this block
device is defined as not having a valid GUID Partition Header.

Both the primary and backup GUID Partition Tables must be valid before an attempt is made to
grow the size of a physical volume. This is due to the GUID Partition Table recovery scheme
depending on locating the backup GUID Partition Table at the end of the physical device. A
volume may grow in size when disks are added to a RAID device. As soon as the volume size is

January 31, 2006
Version 2.0 95

increased the backup GUID Partition Table must be moved to the end of the volume and the
primary and backup GUID Partition Table Headers must be updated to reflect the new volume size.

5.3.3 GUID Partition Entry Array

Table 14. GUID Partition Entry

Mnemonic

Byte
Offset

Byte
Length

Description

PartitionTypeGUID 0 16 Unique ID that defines the purpose and
type of this Partition. A value of zero
defines that this partition entry is not being
used.

UniquePartitionGUID 16 16 GUID that is unique for every partition
entry. Every partition ever created will
have a unique GUID. This GUID must be
assigned when the GUID Partition Entry is
created. The GUID Partition Entry is
created when ever the
NumberOfPartitionEntries in

the GUID Partition Table Header is
increased to include a larger range of
addresses.

StartingLBA 32 8 Starting LBA of the partition defined by
this entry.

EndingLBA 40 8 Ending LBA of the partition defined by this
entry.

Attributes 48 8 Attribute bits, all bits reserved by UEFI
(see
Table 15).

Partition Name 56 72 Unicode string.

Reserved 128 SizeOfPartitionEntry -
72

The rest of the GUID partition entry, if
any, is reserved by UEFI and must be
zero.

The SizeOfPartitionEntry variable in the GUID Partition Table Header defines the size of
each GUID Partition Entry. Each partition entry contains a Unique Partition GUID variable that
uniquely identifies every partition that will ever be created. Any time a new partition entry is
created a new GUID must be generated for that partition, and every partition is guaranteed to have a
unique GUID. The partition is defined as all the logical blocks inclusive of the StartingLBA and
EndingLBA.

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar to the
OSType field in the legacy MBR. Each file system must publish its unique GUID. The Attributes
field can be used by utilities to make broad inferences about the usage of a partition and is defined
in Table 15. The PartitionName field contains a 36-character Unicode string containing a human
readable string that can be used to represent what information is stored on the partition. This allows
third party utilities to give human readable names to partitions.

 January 31, 2006
96 Version 2.0

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using InstallProtocolInterface(). This will allow drivers and applications, including
OS loaders, to easily search for handles that represent EFI System Partitions or vendor specific
partition types.

Software that makes copies of GPT-formatted disks and partitions must generate new Disk
GUID values in the GUID Partition Table Headers and new Unique Partition GUID values in each
GUID Partition Entry. If GPT-cognizant software encounters two disks or partitions with identical
GUIDs, results will be indeterminate.

Table 15. Defined GUID Partition Entry - Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000

EFI System Partition C12A7328-F81F-11d2-BA4B-00A0C93EC93B

Partition containing a legacy MBR 024DEE41-33E7-11d3-9D69-0008C781F39F

OS vendors need to generate their own GUIDs to identify their partition types.

Table 16. Defined GUID Partition Entry - Attributes

Bits Description

Bit 0 Required for the platform to function. The system cannot function normally if this partition is
removed. This partition should be considered as part of the hardware of the system, and if it is
removed the system may not boot. It may contain diagnostics, recovery tools, or other code or
data that is critical to the functioning of a system independent of any OS.

Bits 1-47 Undefined and must be zero. Reserved for expansion by future versions of the UEFI
specification.

Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on the
PartitionTypeGUID. Only the owner of the PartitionTypeGUID is allowed to
modify these bits. They must be preserved if Bits 0–47 are modified.

January 31, 2006
Version 2.0 97

6
Services — Boot Services

This chapter discusses the fundamental boot services that are present in a compliant system. The
services are defined by interface functions that may be used by code running in the UEFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as applications running in the preboot environment, and OS loaders.

Two types of services apply in an compliant system:

• Boot Services. Functions that are available before a successful call to
ExitBootServices(). These functions are described in this chapter.

• Runtime Services. Functions that are available before and after any call to
ExitBootServices(). These functions are described in Chapter 6.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
“handle-based.”

UEFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an Image is provided a pointer to a system table which contains the
Boot Services dispatch table and the default handles for accessing the console. All boot services
functionality is available until an OS loader loads enough of its own environment to take control of
the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices(). This choice may in
part depend upon whether or not such code is designed to make continued use of boot services or
the boot services environment.

 January 31, 2006
98 Version 2.0

The rest of this chapter discusses individual functions. Global boot services functions fall into
these categories:

• Event, Timer, and Task Priority Services (Section 6.1)
• Memory Allocation Services (Section 6.2)
• Protocol Handler Services (Section 6.3)
• Image Services (Section 6.4)
• Miscellaneous Services (Section 6.5)

6.1 Event, Timer, and Task Priority Services

The functions that make up the Event, Timer, and Task Priority Services are used during preboot to
create, close, signal, and wait for events; to set timers; and to raise and restore task priority levels.
See Table 17.

Table 17. Event, Timer, and Task Priority Functions
Name Type Description

CreateEvent Boot Creates a general-purpose event structure.

CreateEventEx Boot Creates an event structure as part of an event group

CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.

CheckEvent Boot Checks whether an event is in the signaled state.

SetTimer Boot Sets an event to be signaled at a particular time.

RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

Execution in the boot services environment occurs at different task priority levels, or TPLs. The
boot services environment exposes only three of these levels to UEFI applications and drivers:

• TPL_APPLICATION, the lowest priority level

• TPL_CALLBACK, an intermediate priority level

• TPL_NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority
level. For example, tasks that run at the TPL_NOTIFY level may interrupt tasks that run at the
TPL_APPLICATION or TPL_CALLBACK level. While TPL_NOTIFY is the highest level
exposed to the boot services applications, the firmware may have higher task priority items it deals
with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL_HIGH_LEVEL, designed for use
exclusively by the firmware.

January 31, 2006
Version 2.0 99

The intended usage of the priority levels is shown in Table 18 from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH_LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally occurs at
the TPL_APPLICATION level. Execution occurs at other levels as a direct result of the triggering
of an event notification function(this is typically caused by the signaling of an event). During timer
interrupts, firmware signals timer events when an event’s “trigger time” has expired. This allows
event notification functions to interrupt lower priority code to check devices (for example). The
notification function can signal other events as required. After all pending event notification
functions execute, execution continues at the TPL_APPLICATION level.

Table 18. TPL Usage
Task Priority Level Usage
TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when

no event notifications are pending and which interacts with the user. User I/O
(and blocking on User I/O) can be performed at this level. The boot manager
executes at this level and passes control to other UEFI applications at this
level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level. Long term

operations (such as file system operations and disk I/O) can occur at this level.
TPL_NOTIFY Interrupts code executing below TPL_NOTIFY level. Blocking is not

allowed at this level. Code executes to completion and returns. If code
requires more processing, it needs to signal an event to wait to obtain control
again at whatever level it requires. This level is typically used to process low
level IO to or from a device.

(Firmware Interrupts) This level is internal to the firmware. It is the level at which internal interrupts
occur. Code running at this level interrupts code running at the
TPL_NOTIFY level (or lower levels). If the interrupt requires extended time

to complete, firmware signals another event (or events) to perform the longer
term operations so that other interrupts can occur.

TPL_HIGH_LEVEL Interrupts code executing below TPL_HIGH_LEVEL. This is the highest

priority level. It is not interruptible (interrupts are disabled) and is used
sparingly by firmware to synchronize operations that need to be accessible
from any priority level. For example, it must be possible to signal events while
executing at any priority level. Therefore, firmware manipulates the internal
event structure while at this priority level.

 January 31, 2006
100 Version 2.0

Executing code can temporarily raise its priority level by calling the RaiseTPL() function.
Doing this masks event notifications from code running at equal or lower priority levels until the
RestoreTPL() function is called to reduce the priority to a level below that of the pending event
notifications. There are restrictions on the TPL levels at which many UEFI service functions and
protocol interface functions can execute. Table 19 summarizes the restrictions.

January 31, 2006
Version 2.0 101

Table 19. TPL Restrictions
Name Restriction Task Priority Level

Protocol Interface Functions <= TPL_NOTIIFY

Block I/O Protocol <= TPL_CALLBACK

CheckEvent() < TPL_HIGH_LEVEL

CloseEvent() < TPL_HIGH_LEVEL

CreateEvent() < TPL_HIGH_LEVEL

Disk I/O Protocol <= TPL_CALLBACK

Event Notification Levels >
<=

TPL_APPLICATION
TPL_HIGH_LEVEL

Exit() <= TPL_CALLBACK

ExitBootServices() = TPL_APPLICATION

LoadImage() < TPL_CALLBACK

Memory Allocation Services <= TPL_NOTIFY

PXE Base Code Protocol <= TPL_CALLBACK

Serial I/O Protocol <= TPL_CALLBACK

SetTimer() < TPL_HIGH_LEVEL

SignalEvent() <= TPL_HIGH_LEVEL

Simple File System Protocol <= TPL_CALLBACK

Simple Input Protocol <= TPL_APPLICATION

Simple Network Protocol <= TPL_CALLBACK

Simple Text Output Protocol <= TPL_NOTIFY

StartImage() < TPL_CALLBACK

Time Services <= TPL_CALLBACK

UnloadImage() <= TPL_CALLBACK

Variable Services <= TPL_CALLBACK

WaitForEvent() = TPL_APPLICATION

Authentication Info <= TPL_NOTIFY

Device Path Utilities <= TPL_NOTIFY

Device Path From Text <= TPL_NOTIFY

EDID Discovered <= TPL_NOTIFY

EDID Active <= TPL_NOTIFY

Graphics Output EDID Override <= TPL_NOTIFY

iSCSI Initiator Name <= TPL_NOTIFY

Tape IO <= TPL_NOTIFY

Managed Network Service Binding <= TPL_CALLBACK

ARP Service Binding <= TPL_CALLBACK

ARP <= TPL_CALLBACK

DHCP4 Service Binding <= TPL_CALLBACK

 January 31, 2006
102 Version 2.0

Name Restriction Task Priority Level

DHCP4 <= TPL_CALLBACK

TCP4 Service Binding <= TPL_CALLBACK

TCP4 <= TPL_CALLBACK

IP4 Service Binding <= TPL_CALLBACK

IP4 <= TPL_CALLBACK

IP4 Config <= TPL_CALLBACK

UDP4 Service Binding <= TPL_CALLBACK

UDP4 <= TPL_CALLBACK

MTFTP4 Service Binding <= TPL_CALLBACK

MTFTP4 <= TPL_CALLBACK

January 31, 2006
Version 2.0 103

CreateEvent()

Summary

Creates an event.

Prototype

typedef
EFI_STATUS
CreateEvent (
 IN UINT32 Type,
 IN EFI_TPL NotifyTpl,
 IN EFI_EVENT_NOTIFY NotifyFunction, OPTIONAL
 IN VOID *NotifyContext, OPTIONAL
 OUT EFI_EVENT *Event
);

Parameters

Type The type of event to create and its mode and attributes. The #define
statements in “Related Definitions” can be used to specify an event’s
mode and attributes.

NotifyTpl The task priority level of event notifications, if needed. See
RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any. See “Related
Definitions.”

NotifyContext Pointer to the notification function’s context; corresponds to parameter
Context in the notification function.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

 January 31, 2006
104 Version 2.0

Related Definitions
//***
// EFI_EVENT
//***
typedef VOID *EFI_EVENT

//***
// Event Types
//***
// These types can be “ORed” together as needed – for example,
// EVT_TIMER might be “Ored” with EVT_NOTIFY_WAIT or
// EVT_NOTIFY_SIGNAL.
#define EVT_TIMER 0x80000000
#define EVT_RUNTIME 0x40000000

#define EVT_NOTIFY_WAIT 0x00000100
#define EVT_NOTIFY_SIGNAL 0x00000200

#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201
#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER The event is a timer event and may be passed to SetTimer(). Note
that timers only function during boot services time.

EVT_RUNTIME The event is allocated from runtime memory. If an event is to be
signaled after the call to ExitBootServices(), the event’s data
structure and notification function need to be allocated from runtime
memory. For more information, see SetVirtualAddressMap() in
Chapter 7.

EVT_NOTIFY_WAIT
If an event of this type is not already in the signaled state, then the
event’s NotificationFunction will be queued at the event’s
NotifyTpl whenever the event is being waited on via
WaitForEvent() or CheckEvent().

EVT_NOTIFY_SIGNAL
The event’s NotifyFunction is queued whenever the event is
signaled.

EVT_SIGNAL_EXIT_BOOT_SERVICES
This event is to be notified by the system when
ExitBootServices() is invoked. This event is of type
EVT_NOTIFY_SIGNAL and should not be combined with any other
event types. The notification function for this event is not allowed to use
the Memory Allocation Services, or call any functions that use the
Memory Allocation Services and should only call functions that are
known not to use Memory Allocation Services, because these services
modify the current memory map.

January 31, 2006
Version 2.0 105

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when
SetVirtualAddressMap() is performed. This event type is a
composite of EVT_NOTIFY_SIGNAL, EVT_RUNTIME, and
EVT_RUNTIME_CONTEXT and should not be combined with any other
event types.

//***
// EFI_EVENT_NOTIFY
//***
typedef
VOID
(EFIAPI *EFI_EVENT_NOTIFY) (
 IN EFI_EVENT Event,
 IN VOID *Context
);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is implementation-
dependent. Context corresponds to NotifyContext in
CreateEvent().

Description

The CreateEvent() function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts
it in the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT_NOTIFY_SIGNAL is specified, places a call to its notification function in a FIFO queue.
There is a queue for each of the “basic” task priority levels defined in Section 6.1
(TPL_CALLBACK, and TPL_NOTIFY). The functions in these queues are invoked in FIFO order,
starting with the highest priority level queue and proceeding to the lowest priority queue that is
unmasked by the current TPL. If the current TPL is equal to or greater than the queued notification,
it will wait until the TPL is lowered via RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of
program execution. This capability is typically used with device drivers. For example, a network
device driver that needs to poll for the presence of new packets could create an event whose type
includes EVT_TIMER and then call the SetTimer() function. When the timer expires, the
firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the ExitBootServices() function.
ExitBootServices() can clean up the firmware since it understands firmware internals, but it

 January 31, 2006
106 Version 2.0

cannot clean up on behalf of drivers that have been loaded into the system. The drivers have to do
that themselves by creating an event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES and
whose notification function is a function within the driver itself. Then, when
ExitBootServices() has finished its cleanup, it signals each event of type
EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressMap() function in Chapter 6.

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is
specified, the caller does not require any notification concerning the event and the NotifyTpl,
NotifyFunction, and NotifyContext parameters are ignored. If EVT_NOTIFY_WAIT is
specified and the event is not in the signaled state, then the EVT_NOTIFY_WAIT notify
function is queued whenever a consumer of the event is waiting for the event (via
WaitForEvent() or CheckEvent()). If the EVT_NOTIFY_SIGNAL flag is specified then
the event’s notify function is queued whenever the event is signaled.

NOTE

Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned
EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and
EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyFunction is
NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyTpl is not a

supported TPL level.
EFI_OUT_OF_RESOURCES The event could not be allocated.

January 31, 2006
Version 2.0 107

CreateEventEx()

Summary

Creates an event in a group.

Prototype
typedef
EFI_STATUS
CreateEventEx (
 IN UINT32 Type,
 IN EFI_TPL NotifyTpl,

IN EFI_EVENT_NOTIFY NotifyFunction OPTIONAL,
IN CONST VOID *NotifyContext OPTIONAL,
IN CONST EFI_GUID *EventGroup OPTIONAL,
OUT EFI_EVENT *Event
);

Parameters
Type The type of event to create and its mode and attributes.

NotifyTpl The task priority level of event notifications,if needed. See
RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any.

NotifyContext Pointer to the notification function’s context; corresponds to parameter
Context in the notification function.

EventGroup Pointer to the unique identifier of the group to which this event belongs.
If this is NULL, then the function behaves as if the parameters were
passed to CreateEvent.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Description

The CreateEventEx function creates a new event of type Type and returns it in the specified
location indicated by Event. The event’s notification function, context and task priority are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively. The event
will be added to the group of events identified by EventGroup.

If no group is specified by EventGroup, then this function behaves as if the same parameters had
been passed to CreateEvent.

Event groups are collections of events identified by a shared EFI_GUID where, when one member
event is signaled, all other events are signaled and their individual notification actions are taken (as

 January 31, 2006
108 Version 2.0

described in CreateEvent). All events are guaranteed to be signaled before the first notification
action is taken. All notification functions will be executed in the order specified by their
NotifyTpl.

A single event can only be part of a single event group. An event may be removed from an event
group by using CloseEvent.

The Type of an event uses the same values as defined in CreateEvent except that
EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
are not valid.

If Type has EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT, then NotifyFunction must
be non- NULL and NotifyTpl must be a valid task priority level. Otherwise these parameters are
ignored.

More than one event of type EVT_TIMER may be part of a single event group. However, there is
no mechanism for determining which of the timers was signaled.

Pre-Defined Event Groups

This section describes the pre-defined event groups used by the UEFI specification.

EFI_EVENT_GROUP_EXIT_BOOT_SERVICES

This event group is notified by the system when ExitBootServices() is invoked. The
notification function for this event is not allowed to use the Memory Allocation
Services, or call any functions that use the Memory Allocation Services, because
these services modify the current memory map. This is functionally equivalent to the
EVT_SIGNAL_EXIT_BOOT_SERVICES flag for the Type argument of
CreateEvent.

EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE

This event group is notified by the system when SetVirtualAddressMap() is
invoked. This is functionally equivalent to the
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE flag for the Type argument of
CreateEvent.

EFI_EVENT_GROUP_MEMORY_MAP_CHANGE

This event group is notified by the system when the memory map has changed. The
notification function for this event should not use Memory Allocation Services to
avoid reentrancy complications.

EFI_EVENT_GROUP_READY_TO_BOOT

This event group is notified by the system when the Boot Manager is about to load
and execute a boot option.

January 31, 2006
Version 2.0 109

Related Definitions

EFI_EVENT is defined in CreateEvent.

EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
are defined in CreateEvent.

#define EFI_EVENT_GROUP_EXIT_BOOT_SERVICES \
 {0x27abf055, 0xb1b8, 0x4c26, 0x80, 0x48, 0x74, 0x8f, 0x37,\

0xba, 0xa2, 0xdf}}

#define EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE \
 {0x13fa7698, 0xc831, 0x49c7, 0x87, 0xea, 0x8f, 0x43, 0xfc,\

0xc2, 0x51, 0x96}

#define EFI_EVENT_GROUP_MEMORY_MAP_CHANGE \

{0x78bee926, 0x692f, 0x48fd, 0x9e, 0xdb, 0x1, 0x42, 0x2e,
0xf0, 0xd7, 0xab}

#define EFI_EVENT_GROUP_READY_TO_BOOT \

{0x7ce88fb3, 0x4bd7, 0x4679, 0x87, 0xa8, 0xa8, 0xd8, 0xde,
0xe5, 0xd, 0x2b}

Status Codes Returned
EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and
EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyFunction is
NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyTpl is not a

supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.

 January 31, 2006
110 Version 2.0

CloseEvent()

Summary

Closes an event.

Prototype

typedef
EFI_STATUS
CloseEvent (
 IN EFI_EVENT Event
);

Parameters

Event The event to close. Type EFI_EVENT is defined in the
CreateEvent() function description.

Description

The CloseEvent() function removes the caller’s reference to the event, removes it from any event
group to which it belongs, and closes it. Once the event is closed, the event is no longer valid and
may not be used on any subsequent function calls.

Status Codes Returned
EFI_SUCCESS The event has been closed.

January 31, 2006
Version 2.0 111

SignalEvent()

Summary

Signals an event.

Prototype

typedef
EFI_STATUS
SignalEvent (
 IN EFI_EVENT Event
);

Parameters

Event The event to signal. Type EFI_EVENT is defined in the
CreateEvent() function description.

Description

The supplied Event is placed in the signaled state. If Event is already in the signaled state, then
EFI_SUCCESS is returned. If Event is of type EVT_NOTIFY_SIGNAL, then the event’s
notification function is scheduled to be invoked at the event’s notification task priority level.
SignalEvent() may be invoked from any task priority level.

If the supplied Event is a part of an event group, then all of the events in the event group are also
signaled and their notification functions are scheduled.

When signaling an event group, it is possible to create an event in the group, signal it and then close
the event to remove it from the group. For example:
EFI_EVENT Event;
EFI_GUID gMyEventGroupGuid = EFI_MY_EVENT_GROUP_GUID;
gBS->CreateEventEx (
 0,
 0,
 NULL,
 NULL,
 &gMyEventGroupGuid,
 &Event
);

gBS->SignalEvent (Event);
gBS->CloseEvent (Event);

Status Codes Returned
EFI_SUCCESS The event was signaled.

 January 31, 2006
112 Version 2.0

WaitForEvent()

Summary

Stops execution until an event is signaled.

Prototype

typedef
EFI_STATUS
WaitForEvent (
 IN UINTN NumberOfEvents,
 IN EFI_EVENT *Event,
 OUT UINTN *Index
);

Parameters

NumberOfEvents The number of events in the Event array.

Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent() function description.

Index Pointer to the index of the event which satisfied the wait condition.

Description

This function must be called at priority level TPL_APPLICATION. If an attempt is made to call it
at any other priority level, EFI_UNSUPPORTED is returned.

The list of events in the Event array are evaluated in order from first to last, and this evaluation is
repeated until an event is signaled or an error is detected. The following checks are performed on
each event in the Event array.

• If an event is of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned
and Index indicates the event that caused the failure.

• If an event is in the signaled state, the signaled state is cleared and EFI_SUCCESS is returned,
and Index indicates the event that was signaled.

• If an event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the event’s
notification function causes the event to be signaled, then the signaled state is cleared,
EFI_SUCCESS is returned, and Index indicates the event that was signaled.

To wait for a specified time, a timer event must be included in the Event array.

To check if an event is signaled without waiting, an already signaled event can be used as the last
event in the list being checked, or the CheckEvent() interface may be used.

January 31, 2006
Version 2.0 113

Status Codes Returned
EFI_SUCCESS The event indicated by Index was signaled.

EFI_INVALID_PARAMETER NumberOfEvents is 0.

EFI_INVALID_PARAMETER The event indicated by Index is of type
EVT_NOTIFY_SIGNAL.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

 January 31, 2006
114 Version 2.0

CheckEvent()

Summary

Checks whether an event is in the signaled state.

Prototype

typedef
EFI_STATUS
CheckEvent (
 IN EFI_EVENT Event
);

Parameters

Event The event to check. Type EFI_EVENT is defined in the
CreateEvent() function description.

Description

The CheckEvent() function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned. Otherwise,
there are three possibilities:

1. If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.

2. If Event is not in the signaled state and has no notification function, EFI_NOT_READY is
returned.

3. If Event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the
notification function causes Event to be signaled, then the signaled state is cleared and
EFI_SUCCESS is returned; if the Event is not signaled, then EFI_NOT_READY is returned.

Status Codes Returned
EFI_SUCCESS The event is in the signaled state.

EFI_NOT_READY The event is not in the signaled state.

EFI_INVALID_PARAMETER Event is of type EVT_NOTIFY_SIGNAL.

January 31, 2006
Version 2.0 115

SetTimer()

Summary

Sets the type of timer and the trigger time for a timer event.

Prototype

typedef
EFI_STATUS
SetTimer (
 IN EFI_EVENT Event,
 IN EFI_TIMER_DELAY Type,
 IN UINT64 TriggerTime
);

Parameters

Event The timer event that is to be signaled at the specified time. Type
EFI_EVENT is defined in the CreateEvent() function description.

Type The type of time that is specified in TriggerTime. See the timer
delay types in “Related Definitions.”

TriggerTime The number of 100ns units until the timer expires. A TriggerTime of
0 is legal. If Type is TimerRelative and TriggerTime is 0, then
the timer event will be signaled on the next timer tick. If Type is
TimerPeriodic and TriggerTime is 0, then the timer event will
be signaled on every timer tick.

Related Definitions

//***
//EFI_TIMER_DELAY
//***
typedef enum {
 TimerCancel,
 TimerPeriodic,
 TimerRelative
} EFI_TIMER_DELAY;

TimerCancel The event’s timer setting is to be cancelled and no timer trigger is to be
set. TriggerTime is ignored when canceling a timer.

 January 31, 2006
116 Version 2.0

TimerPeriodic The event is to be signaled periodically at TriggerTime intervals from
the current time. This is the only timer trigger Type for which the event
timer does not need to be reset for each notification. All other timer
trigger types are “one shot.”

TimerRelative The event is to be signaled in TriggerTime 100ns units.

Description

The SetTimer() function cancels any previous time trigger setting for the event, and sets the
new trigger time for the event. This function can only be used on events of type EVT_TIMER.

Status Codes Returned
EFI_SUCCESS The event has been set to be signaled at the requested time.

EFI_INVALID_PARAMETER Event or Type is not valid.

January 31, 2006
Version 2.0 117

RaiseTPL()

Summary

Raises a task’s priority level and returns its previous level.

Prototype

typedef
EFI_TPL
RaiseTPL (
 IN EFI_TPL NewTpl
);

Parameters

NewTpl The new task priority level. It must be greater than or equal to the
current task priority level. See “Related Definitions.”

Related Definitions
//***
// EFI_TPL
//***
typedef UINTN EFI_TPL

//***
// Task Priority Levels
//***
#define TPL_APPLICATION 4
#define TPL_CALLBACK 8
#define TPL_NOTIFY 16
#define TPL_HIGH_LEVEL 31

 January 31, 2006
118 Version 2.0

Description

The RaiseTPL() function raises the priority of the currently executing task and returns its
previous priority level.

Only three task priority levels are exposed outside of the firmware during boot services execution.
The first is TPL_APPLICATION where all normal execution occurs. That level may be
interrupted to perform various asynchronous interrupt style notifications, which occur at the
TPL_CALLBACK or TPL_NOTIFY level. By raising the task priority level to TPL_NOTIFY such
notifications are masked until the task priority level is restored, thereby synchronizing execution
with such notifications. Synchronous blocking I/O functions execute at TPL_NOTIFY.
TPL_CALLBACK is the typically used for application level notification functions. Device drivers
will typically use TPL_CALLBACK or TPL_NOTIFY for their notification functions. Applications
and drivers may also use TPL_NOTIFY to protect data structures in critical sections of code.

The caller must restore the task priority level with RestoreTPL() to the previous level before
returning.

NOTE

If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL
levels above TPL_APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned
Unlike other UEFI interface functions, RaiseTPL() does not return a status code. Instead, it
returns the previous task priority level, which is to be restored later with a matching call to
RestoreTPL().

January 31, 2006
Version 2.0 119

RestoreTPL()

Summary

Restores a task’s priority level to its previous value.

Prototype

typedef
VOID
RestoreTPL (
 IN EFI_TPL OldTpl
)

Parameters

OldTpl The previous task priority level to restore (the value from a previous,
matching call to RaiseTPL()). Type EFI_TPL is defined in the
RaiseTPL() function description.

Description

The RestoreTPL() function restores a task’s priority level to its previous value. Calls to
RestoreTPL() are matched with calls to RaiseTPL().

NOTE

If OldTpl is above the current TPL level, then the system behavior is indeterminate.
Additionally, only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and
TPL_HIGH_LEVEL may be used. All other values are reserved for use by the firmware; using
them will result in unpredictable behavior. Good coding practice dictates that all code should
execute at its lowest possible TPL level, and the use of TPL levels above TPL_APPLICATION
must be minimized. Executing at TPL levels above TPL_APPLICATION for extended periods of
time may also result in unpredictable behavior.

Status Codes Returned

None.

 January 31, 2006
120 Version 2.0

6.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during preboot to allocate and
free memory, and to obtain the system’s memory map. See Table 20.

Table 20. Memory Allocation Functions
Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.

AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.

The way in which these functions are used is directly related to an important feature of UEFI
memory design. This feature, which stipulates that EFI firmware owns the system’s memory map
during preboot, has three major consequences:

1. During preboot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
AllocatePages(), AllocatePool(), FreePages(), and FreePool(). The
firmware dynamically maintains the memory map as these functions are called.

2. During preboot, an executing EFI Image must only use the memory it has allocated.
3. Before an executing EFI image exits and returns control to the firmware, it must free all

resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware
when the image is unloaded.

When memory is allocated, it is “typed” according to the values in EFI_MEMORY_TYPE (see the
description for AllocatePages()). Some of the types have a different usage before
ExitBootServices() is called than they do afterwards. Table 21 lists each type and its usage
before the call; Table 22 lists each type and its usage after the call. The system firmware must
follow the processor-specific rules outlined in Sections 2.3.2 and 2.3.4 in the layout of the EFI
memory map to enable the OS to make the required virtual mappings.

January 31, 2006
Version 2.0 121

Table 21. Memory Type Usage before ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The code portions of a loaded application. (Note that UEFI OS loaders
are UEFI applications.)

EfiLoaderData The data portions of a loaded application and the default data allocation
type used by an application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded Boot Services Driver.

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the default data
allocation type used by a Boot Services Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and the default
data allocation type used by a Runtime Services Driver to allocate pool
memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate memory
cycles to IO cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the
processor.

NOTE

There is only one region of type EfiMemoryMappedIoPortSpace defined in the architecture for
Itanium-based platforms. As a result, there should be one and only one region of type
EfiMemoryMappedIoPortSpace in the EFI memory map of an Itanium-based platform.

 January 31, 2006
122 Version 2.0

Table 22. Memory Type Usage after ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices() is utilizing one or
more EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices() is utilizing one or
more EfiLoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1–S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1–S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available
for general use.

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in the working
and ACPI S1–S3 states.

EfiMemoryMappedIO This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped IO
port space information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the loader and OS in the working
and ACPI S1–S3 states. This memory may also have other attributes
that are defined by the processor implementation.

NOTE

An image that calls ExitBootServices() first calls GetMemoryMap() to obtain the current
memory map. Following the ExitBootServices() call, the image implicitly owns all unused
memory in the map. This includes memory types EfiLoaderCode, EfiLoaderData,
EfiBootServicesCode, EfiBootServicesData, and EfiConventionalMemory. An EFI-compatible
loader and operating system must preserve the memory marked as EfiRuntimeServicesCode and
EfiRuntimeServicesData.

January 31, 2006
Version 2.0 123

AllocatePages()

Summary

Allocates memory pages from the system.

Prototype

typedef
EFI_STATUS
AllocatePages(
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 IN OUT EFI_PHYSICAL_ADDRESS *Memory
);

Parameters

Type The type of allocation to perform. See “Related Definitions.”

MemoryType The type of memory to allocate. The type EFI_MEMORY_TYPE is
defined in “Related Definitions” below. These memory types are also
described in more detail in Table 21 and Table 22. Normal allocations
(that is, allocations by any UEFI application) are of type
EfiLoaderData. MemoryType values in the range
0x80000000..0xFFFFFFFF are reserved for use by UEFI OS loaders that
are provided by operating system vendors. The only illegal memory type
values are those in the range EfiMaxMemoryType..0x7FFFFFFF.

Pages The number of contiguous 4 KB pages to allocate.

Memory Pointer to a physical address. On input, the way in which the address is
used depends on the value of Type. See “Description” for more
information. On output the address is set to the base of the page range
that was allocated. See “Related Definitions.”

 January 31, 2006
124 Version 2.0

Related Definitions

//***
//EFI_ALLOCATE_TYPE
//***
// These types are discussed in the “Description” section below.
typedef enum {

 AllocateAnyPages,
 AllocateMaxAddress,
 AllocateAddress,
 MaxAllocateType
 } EFI_ALLOCATE_TYPE;

//***
//EFI_MEMORY_TYPE
//***
// These type values are discussed in Table 21 and Table 22.
typedef enum {
 EfiReservedMemoryType,
 EfiLoaderCode,
 EfiLoaderData,
 EfiBootServicesCode,
 EfiBootServicesData,
 EfiRuntimeServicesCode,
 EfiRuntimeServicesData,
 EfiConventionalMemory,
 EfiUnusableMemory,
 EfiACPIReclaimMemory,
 EfiACPIMemoryNVS,
 EfiMemoryMappedIO,
 EfiMemoryMappedIOPortSpace,
 EfiPalCode,
 EfiMaxMemoryType
} EFI_MEMORY_TYPE;

//***
//EFI_PHYSICAL_ADDRESS
//***
typedef UINT64 EFI_PHYSICAL_ADDRESS;

January 31, 2006
Version 2.0 125

Description

The AllocatePages() function allocates the requested number of pages and returns a pointer
to the base address of the page range in the location referenced by Memory. The function scans the
memory map to locate free pages. When it finds a physically contiguous block of pages that is
large enough and also satisfies the allocation requirements of Type, it changes the memory map to
indicate that the pages are now of type MemoryType.

In general, UEFI OS loaders and applications should allocate memory (and pool) of type
EfiLoaderData. Boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. Runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services
time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages
whose uppermost address is less than or equal to the address pointed to by Memory on input.

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Status Codes Returned
EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or
AllocateMaxAddress or AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range
EfiMaxMemoryType..0x7FFFFFFF.

EFI_NOT_FOUND The requested pages could not be found.

 January 31, 2006
126 Version 2.0

FreePages()

Summary

Frees memory pages.

Prototype

typedef
EFI_STATUS
FreePages (

IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN Pages
);

Parameters

Memory The base physical address of the pages to be freed. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages()
function description.

Pages The number of contiguous 4 KB pages to free.

Description

The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.

January 31, 2006
Version 2.0 127

GetMemoryMap()

Summary

Returns the current memory map.

Prototype

typedef
EFI_STATUS
GetMemoryMap (
 IN OUT UINTN *MemoryMapSize,
 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
 OUT UINTN *MapKey,
 OUT UINTN *DescriptorSize,
 OUT UINT32 *DescriptorVersion
);

Parameters
MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On input, this

is the size of the buffer allocated by the caller. On output, it is the size of
the buffer returned by the firmware if the buffer was large enough, or the
size of the buffer needed to contain the map if the buffer was too small.

MemoryMap A pointer to the buffer in which firmware places the current memory
map. The map is an array of EFI_MEMORY_DESCRIPTORs. See
“Related Definitions.”

MapKey A pointer to the location in which firmware returns the key for the
current memory map.

DescriptorSize A pointer to the location in which firmware returns the size, in bytes, of
an individual EFI_MEMORY_DESCRIPTOR.

DescriptorVersion A pointer to the location in which firmware returns the version number
associated with the EFI_MEMORY_DESCRIPTOR. See “Related
Definitions.”

 January 31, 2006
128 Version 2.0

Related Definitions

//***
//EFI_MEMORY_DESCRIPTOR
//***
typedef struct {
UINT32 Type;
EFI_PHYSICAL_ADDRESS PhysicalStart;
EFI_VIRTUAL_ADDRESS VirtualStart;
UINT64 NumberOfPages;
UINT64 Attribute;
} EFI_MEMORY_DESCRIPTOR;
Type Type of the memory region. Type EFI_MEMORY_TYPE is defined in

the AllocatePages() function description.

PhysicalStart Physical address of the first byte in the memory region. Physical start
must be aligned on a 4 KB boundary. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages()
function description.

VirtualStart Virtual address of the first byte in the memory region. Virtual start must
be aligned on a 4 KB boundary. Type EFI_VIRTUAL_ADDRESS is
defined in “Related Definitions.”

NumberOfPages Number of 4 KB pages in the memory region.

Attribute Attributes of the memory region that describe the bit mask of capabilities
for that memory region, and not necessarily the current settings for that
memory region. See the following “Memory Attribute Definitions.”

//***
// Memory Attribute Definitions
//***
// These types can be “ORed” together as needed.
#define EFI_MEMORY_UC 0x0000000000000001
#define EFI_MEMORY_WC 0x0000000000000002
#define EFI_MEMORY_WT 0x0000000000000004
#define EFI_MEMORY_WB 0x0000000000000008
#define EFI_MEMORY_UCE 0x0000000000000010
#define EFI_MEMORY_WP 0x0000000000001000
#define EFI_MEMORY_RP 0x0000000000002000
#define EFI_MEMORY_XP 0x0000000000004000
#define EFI_MEMORY_RUNTIME 0x8000000000000000

January 31, 2006
Version 2.0 129

EFI_MEMORY_UC Memory cacheability attribute: The memory region supports
being configured as not cacheable.

EFI_MEMORY_WC Memory cacheability attribute: The memory region supports
being configured as write combining.

EFI_MEMORY_WT Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write through” policy.
Writes that hit in the cache will also be written to main memory.

EFI_MEMORY_WB Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write back” policy. Reads
and writes that hit in the cache do not propagate to main memory.
Dirty data is written back to main memory when a new cache line
is allocated.

EFI_MEMORY_UCE Memory cacheability attribute: The memory region supports
being configured as not cacheable, exported, and supports the
“fetch and add” semaphore mechanism.

EFI_MEMORY_WP Physical memory protection attribute: The memory region
supports being configured as write-protected by system hardware.

EFI_MEMORY_RP Physical memory protection attribute: The memory region
supports being configured as read-protected by system hardware.

EFI_MEMORY_XP Physical memory protection attribute: The memory region
supports being configured so it is protected by system hardware
from executing code.

EFI_MEMORY_RUNTIME
Runtime memory attribute: The memory region needs to be given
a virtual mapping by the operating system when
SetVirtualAddressMap() is called (described in
Chapter 7.3.

//***
//EFI_VIRTUAL_ADDRESS
//***
typedef UINT64 EFI_VIRTUAL_ADDRESS;

//***
// Memory Descriptor Version Number
//***
#define EFI_MEMORY_DESCRIPTOR_VERSION 1

 January 31, 2006
130 Version 2.0

Description

The GetMemoryMap() function returns a copy of the current memory map. The map is an array
of memory descriptors, each of which describes a contiguous block of memory. The map describes
all of memory, no matter how it is being used. That is, it includes blocks allocated by
AllocatePages() and AllocatePool(), as well as blocks that the firmware is using for its
own purposes. The memory map is only used to describe memory that is present in the system.
Memory descriptors are never used to describe holes in the system memory map.

Until ExitBootServices() is called, the memory map is owned by the firmware and the
currently executing EFI Image should only use memory pages it has explicitly allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and
the MemoryMapSize value contains the size of the buffer needed to contain the current
memory map.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is
changed every time something in the memory map changes. In order to successfully invoke
ExitBootServices() the caller must provide the current memory map key.

The GetMemoryMap() function also returns the size and revision number of the
EFI_MEMORY_DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY_DESCRIPTOR array element returned in MemoryMap. The size is returned to
allow for future expansion of the EFI_MEMORY_DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY_DESCRIPTOR may be extended in the future but
it will remain backwards compatible with the current definition. Thus OS software must use the
DescriptorSize to find the start of each EFI_MEMORY_DESCRIPTOR in the MemoryMap
array.

Status Codes Returned
EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER MemoryMapSize is NULL.

EFI_INVALID_PARAMETER The MemoryMap buffer is not too small and MemoryMap is
NULL.

January 31, 2006
Version 2.0 131

AllocatePool()

Summary

Allocates pool memory.

Prototype

typedef
EFI_STATUS
AllocatePool (
 IN EFI_MEMORY_TYPE PoolType,

IN UINTN Size,
OUT VOID **Buffer
);

Parameters

PoolType The type of pool to allocate. Type EFI_MEMORY_TYPE is defined in
the AllocatePages() function description. PoolType values in
the range 0x80000000..0xFFFFFFFF are reserved for use by UEFI OS
loaders that are provided by operating system vendors. The only illegal
memory type values are those in the range
EfiMaxMemoryType..0x7FFFFFFF.

Size The number of bytes to allocate from the pool.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Description

The AllocatePool() function allocates a memory region of Size bytes from memory of type
PoolType and returns the address of the allocated memory in the location referenced by Buffer.
This function allocates pages from EfiConventionalMemory as needed to grow the requested
pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the FreePool() function.

Status Codes Returned
EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType was invalid.

 January 31, 2006
132 Version 2.0

FreePool()

Summary

Returns pool memory to the system.

Prototype

typedef
EFI_STATUS
FreePool (

IN VOID *Buffer
);

Parameters

Buffer Pointer to the buffer to free.

Description

The FreePool() function returns the memory specified by Buffer to the system. On return,
the memory’s type is EfiConventionalMemory. The Buffer that is freed must have been
allocated by AllocatePool().

Status Codes Returned
EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

January 31, 2006
Version 2.0 133

6.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol
Interface structure. The structure contains the functions and instance data that are used to access a
device. The functions that make up Protocol Handler Services allow applications to install a
protocol on a handle, identify the handles that support a given protocol, determine whether a handle
supports a given protocol, and so forth. See Table 23.

Table 23. Protocol Interface Functions

Name Type Description

InstallProtocolInterface Boot Installs a protocol interface on a device handle.

UninstallProtocolInterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolInformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the
supports the requested protocol.

InstallMultipleProtocolInterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces Boot Uninstalls one or more protocol interfaces from a handle.

 January 31, 2006
134 Version 2.0

The Protocol Handler boot services have been modified to take advantage of the information that is
now being tracked with the OpenProtocol() and CloseProtocol() boot services. Since
the usage of protocol interfaces is being tracked with these new boot services, it is now possible to
safely uninstall and reinstall protocol interfaces that are being consumed by UEFI drivers.

As depicted in Figure 17, the firmware is responsible for maintaining a “data base” that shows
which protocols are attached to each device handle. (The figure depicts the “data base” as a linked
list, but the choice of data structure is implementation-dependent.) The “data base” is built
dynamically by calling the InstallProtocolInterface() function. Protocols can only be
installed by UEFI drivers or the firmware itself. In the figure, a device handle (EFI_HANDLE)
refers to a list of one or more registered protocol interfaces for that handle. The first handle in the
system has four attached protocols, and the second handle has two attached protocols. Each
attached protocol is represented as a GUID/Interface pointer pair. The GUID is the name of the
protocol, and Interface points to a protocol instance. This data structure will typically contain a list
of interface functions, and some amount of instance data.

Access to devices is initiated by calling the HandleProtocol() function, which determines
whether a handle supports a given protocol. If it does, a pointer to the matching Protocol Interface
structure is returned.

When a protocol is added to the system, it may either be added to an existing device handle or it
may be added to create a new device handle. Figure 17 shows that protocol handlers are listed for
each device handle and that each protocol handler is logically a UEFI driver.

OM13155

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

First Handle

Figure 17. Device Handle to Protocol Handler Mapping

January 31, 2006
Version 2.0 135

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces
provides great flexibility. Layering makes it possible to add a new protocol that builds on a
device’s basic protocols. An example of this might be to layer on a SIMPLE_TEXT_OUTPUT
protocol support that would build on the handle’s underlying SERIAL_IO protocol.

The ability to add new handles can be used to generate new devices as they are found, or even to
generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the SIMPLE_TEXT_OUTPUT protocol onto
multiple underlying device handles.

6.3.1 Driver Model Boot Services
This section provides a detailed description of the new UEFI boot services that are required by the
UEFI Driver Model. These boot services are being added to reduce the size and complexity of the
bus drivers and device drivers. This, in turn, will reduce the amount of ROM space required by
drivers that are programmed into ROMs on adapters or into system FLASH, and reduce the
development and testing time required by driver writers.

These new services fall into two categories. The first group is used to track the usage of protocol
interfaces by different agents in the system. Protocol interfaces are stored in a handle database.
The handle database consists of a list of handles, and on each handle there is a list of one or more
protocol interfaces. The boot services InstallProtocolInterface(),
UninstallProtocolInterface(), and ReinstallProtocolInterface() are used
to add, remove, and replace protocol interfaces in the handle database. The boot service
HandleProtocol() is used to look up a protocol interface in the handle database. However,
agents that call HandleProtocol() are not tracked, so it is not safe to call
UninstallProtocolInterface() or ReinstallProtocolInterface() because an
agent may be using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish
this, each protocol interface includes a list of agents that are consuming the protocol interface.
Figure 18 shows an example handle database with these new agent lists. An agent consists of an
image handle, a controller handle, and some attributes. The image handle identifies the driver or
application that is consuming the protocol interface. The controller handle identifies the controller
that is consuming the protocol interface. Since a driver may manage more than one controller, the
combination of a driver's image handle and a controller's controller handle uniquely identifies the
agent that is consuming the protocol interface. The attributes show how the protocol interface is
being used.

 January 31, 2006
136 Version 2.0

OM13156

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

Image Handle
Controller Handle
Attributes

First Handle

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Figure 18. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required.
These are OpenProtocol(), CloseProtocol(), and OpenProtocolInformation().
OpenProtocol() adds elements to the list of agents consuming a protocol interface.
CloseProtocol() removes elements from the list of agents consuming a protocol interface,
and OpenProtocolInformation() retrieves the entire list of agents that are currently using a
protocol interface.

January 31, 2006
Version 2.0 137

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are ConnectController() and
DisconnectController(). These services take advantage of the new features of the handle
database along with the new protocols described in this document to manage the drivers and
controllers present in the system. ConnectController() uses a set of strict precedence rules
to find the best set of drivers for a controller. This provides a deterministic matching of drivers to
controllers with extensibility mechanisms for OEMs, IBVs, and IHVs.
DisconnectController() allows drivers to be disconnected from controllers in a controlled
manner, and by using the new features of the handle database it is possible to fail a disconnect
request because a protocol interface cannot be released at the time of the disconnect request.

The third group of boot services is designed to help simplify the implementation of drivers, and
produce drivers with smaller executable footprints. The LocateHandleBuffer() is a new
version of LocateHandle() that allocates the required buffer for the caller. This eliminates two
calls to LocateHandle() and a call to AllocatePool() from the caller's code.
LocateProtocol() searches the handle database for the first protocol instance that matches the
search criteria. The InstallMultipleProtocolInterfaces() and
UninstallMultipleProtocolInterfaces() are very useful to driver writers. These
boot services allow one or more protocol interfaces to be added or removed from a handle. In
addition, InstallMultipleProtocolInterfaces() guarantees that a duplicate device
path is never added to the handle database. This is very useful to bus drivers that can create one
child handle at a time, because it guarantees that the bus driver will not inadvertently create two
instances of the same child handle.

 January 31, 2006
138 Version 2.0

InstallProtocolInterface()

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added
to the list of handles in the system. InstallMultipleProtocolInterfaces() performs
more error checking than InstallProtocolInterface(), so it is recommended that
InstallMultipleProtocolInterfaces() be used in place of
InstallProtocolInterface()

Prototype

typedef
EFI_STATUS
InstallProtocolInterface (
 IN OUT EFI_HANDLE *Handle,
 IN EFI_GUID *Protocol,
 IN EFI_INTERFACE_TYPE InterfaceType,
 IN VOID *Interface
);

Parameters

Handle A pointer to the EFI_HANDLE on which the interface is to be installed.
If *Handle is NULL on input, a new handle is created and returned on
output. If *Handle is not NULL on input, the protocol is added to the
handle, and the handle is returned unmodified. The type EFI_HANDLE
is defined in “Related Definitions.” If *Handle is not a valid handle,
then EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the protocol interface. The type EFI_GUID is
defined in “Related Definitions.” It is the caller’s responsibility to pass
in a valid GUID. See “Wired For Management Baseline” for a
description of valid GUID values.

InterfaceType Indicates whether Interface is supplied in native form. This value
indicates the original execution environment of the request. See
“Related Definitions.”

Interface A pointer to the protocol interface. The Interface must adhere to the
structure defined by Protocol. NULL can be used if a structure is not
associated with Protocol.

January 31, 2006
Version 2.0 139

Related Definitions

//***
//EFI_HANDLE
//***
typedef VOID *EFI_HANDLE;

//***
//EFI_GUID
//***
typedef struct {
 UINT32 Data1;
 UINT16 Data2;
 UINT16 Data3;
 UINT8 Data4[8];
} EFI_GUID;

//***
//EFI_INTERFACE_TYPE
//***
typedef enum {
EFI_NATIVE_INTERFACE
} EFI INTERFACE_TYPE;

Description

The InstallProtocolInterface() function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle. The same GUID cannot be installed more than once
onto the same handle. If installation of a duplicate GUID on a handle is attempted, an
EFI_INVALID_PARAMETER will result.

Installing a protocol interface allows other components to locate the Handle, and the interfaces
installed on it.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see the
RegisterProtocolNotify() function description.

 January 31, 2006
140 Version 2.0

Status Codes Returned
EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER Handle is NULL

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER InterfaceType is not
EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER Protocol is already installed on the handle
specified by Handle.

January 31, 2006
Version 2.0 141

UninstallProtocolInterface()

Summary

Removes a protocol interface from a device handle. It is recommended that
UninstallMultipleProtocolInterfaces() be used in place of
UninstallProtocolInterface().

Prototype
typedef
EFI_STATUS
UninstallProtocolInterface (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 IN VOID *Interface
);

Parameters

Handle The handle on which the interface was installed. If Handle is not a
valid handle, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the InstallProtocolInterface()
function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description

The UninstallProtocolInterface() function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has
been removed. In some cases, outstanding reference information is not available in the protocol, so
the protocol, once added, cannot be removed. Examples include Console I/O, Block I/O, Disk I/O,
and (in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.

 January 31, 2006
142 Version 2.0

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above.
There may be some drivers that are currently consuming the protocol interface that needs to be
uninstalled, so it may be dangerous to just blindly remove a protocol interface from the system.
Since the usage of protocol interfaces is now being tracked for components that use the
OpenProtocol() and CloseProtocol() boot services, a safe version of this function can be
implemented. Before the protocol interface is removed, an attempt is made to force all the drivers
that are consuming the protocol interface to stop consuming that protocol interface. This is done by
calling the boot service DisconnectController() for the driver that currently have the
protocol interface open with an attribute of EFI_OPEN_PROTOCOL_BY_DRIVER or
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

If the disconnect succeeds, then those agents will have called the boot service
CloseProtocol() to release the protocol interface. Lastly, all of the agents that have the
protocol interface open with an attribute of EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL, or EFI_OPEN_PROTOCOL_TEST_PROTOCOL are
closed. If there are any agents remaining that still have the protocol interface open, the protocol
interface is not removed from the handle and EFI_ACCESS_DENIED is returned. In addition, all
of the drivers that were disconnected with the boot service DisconnectController() earlier,
are reconnected with the boot service ConnectController(). If there are no agents
remaining that are consuming the protocol interface, then the protocol interface is removed from
the handle as described above.

Status Codes Returned
EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface
is still being used by a driver.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

January 31, 2006
Version 2.0 143

ReinstallProtocolInterface()

Summary

Reinstalls a protocol interface on a device handle.

Prototype
typedef
EFI_STATUS
ReinstallProtocolInterface (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 IN VOID *OldInterface,
 IN VOID *NewInterface
);

Parameters
Handle Handle on which the interface is to be reinstalled. If Handle is not a

valid handle, then EFI_INVALID_PARAMETER is returned. Type
EFI_HANDLE is defined in the InstallProtocolInterface()
function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

OldInterface A pointer to the old interface. NULL can be used if a structure is not
associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is not
associated with Protocol.

Description

The ReinstallProtocolInterface() function reinstalls a protocol interface on a device
handle. The OldInterface for Protocol is replaced by the NewInterface.
NewInterface may be the same as OldInterface. If it is, the registered protocol notifies
occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface(), any process that has registered to wait for the
installation of the interface is notified.

The caller is responsible for ensuring that there are no references to the OldInterface that is
being removed.

 January 31, 2006
144 Version 2.0

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above.
There may be some number of drivers currently consuming the protocol interface that is being
reinstalled. In this case, it may be dangerous to replace a protocol interface in the system. It could
result in an unstable state, because a driver may attempt to use the old protocol interface after a new
one has been reinstalled. Since the usage of protocol interfaces is now being tracked for
components that use the OpenProtocol() and CloseProtocol() boot services, a safe
version of this function can be implemented.

When this function is called, a call is first made to the boot service
UninstallProtocolInterface(). This will guarantee that all of the agents are currently
consuming the protocol interface OldInterface will stop using OldInterface. If
UninstallProtocolInterface() returns EFI_ACCESS_DENIED, then this function
returns EFI_ACCESS_DENIED, OldInterface remains on Handle, and the protocol notifies
are not processed because NewInterface was never installed.

If UninstallProtocolInterface() succeeds, then a call is made to the boot service
InstallProtocolInterface() to put the NewInterface onto Handle.

Finally, the boot service ConnectController() is called so all agents that were forced to
release OldInterface with UninstallProtocolInterface() can now consume the
protocol interface NewInterface that was installed with InstallProtocolInterface().
After OldInterface has been replaced with NewInterface, any process that has registered
to wait for the installation of the interface is notified.

Status Codes Returned
EFI_SUCCESS The protocol interface was reinstalled.

EFI_NOT_FOUND The OldInterface on the handle was not found.

EFI_ACCESS_DENIED The protocol interface could not be reinstalled,
because OldInterface is still being used by a
driver that will not release it.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

January 31, 2006
Version 2.0 145

RegisterProtocolNotify()

Summary

Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

typedef
EFI_STATUS
RegisterProtocolNotify (
 IN EFI_GUID *Protocol,
 IN EFI_EVENT Event,
 OUT VOID **Registration
);

Parameters

Protocol The numeric ID of the protocol for which the event is to be registered.
Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

Event Event that is to be signaled whenever a protocol interface is registered
for Protocol. The type EFI_EVENT is defined in the
CreateEvent() function description. The same EFI_EVENT may
be used for multiple protocol notify registrations.

Registration A pointer to a memory location to receive the registration value. This
value must be saved and used by the notification function of Event to
retrieve the list of handles that have added a protocol interface of type
Protocol.

Description

The RegisterProtocolNotify() function creates an event that is to be signaled whenever a
protocol interface is installed for Protocol by InstallProtocolInterface() or
ReinstallProtocolInterface().

Once Event has been signaled, the LocateHandle() function can be called to identify the
newly installed, or reinstalled, handles that support Protocol. The Registration parameter
in RegisterProtocolNotify() corresponds to the SearchKey parameter in
LocateHandle(). Note that the same handle may be returned multiple times if the handle
reinstalls the target protocol ID multiple times. This is typical for removable media devices,
because when such a device reappears, it will reinstall the Block I/O protocol to indicate that the
device needs to be checked again. In response, layered Disk I/O and Simple File System protocols
may then reinstall their protocols to indicate that they can be re-checked, and so forth.

 January 31, 2006
146 Version 2.0

Status Codes Returned
EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Registration is NULL.

January 31, 2006
Version 2.0 147

LocateHandle()

Summary

Returns an array of handles that support a specified protocol.

Prototype

typedef
EFI_STATUS
LocateHandle (
 IN EFI_LOCATE_SEARCH_TYPE SearchType,
 IN EFI_GUID *Protocol OPTIONAL,
 IN VOID *SearchKey OPTIONAL,
 IN OUT UINTN *BufferSize,
 OUT EFI_HANDLE *Buffer
);

Parameters

SearchType Specifies which handle(s) are to be returned. Type
EFI_LOCATE_SEARCH_TYPE is defined in “Related Definitions.”

Protocol Specifies the protocol to search by. This parameter is only valid if
SearchType is ByProtocol. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

SearchKey Specifies the search key. This parameter is ignored if SearchType is
AllHandles or ByProtocol. If SearchType is
ByRegisterNotify, the parameter must be the Registration
value returned by function RegisterProtocolNotify().

BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of
the array returned in Buffer (if the buffer was large enough) or the
size, in bytes, of the buffer needed to obtain the array (if the buffer was
not large enough).

Buffer The buffer in which the array is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

 January 31, 2006
148 Version 2.0

Related Definitions
//***
// EFI_LOCATE_SEARCH_TYPE
//***
typedef enum {
AllHandles,
ByRegisterNotify,
ByProtocol
} EFI_LOCATE_SEARCH_TYPE;

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration value returned by
RegisterProtocolNotify(). The function returns the
next handle that is new for the registration. Only one handle is
returned at a time, starting with the first, and the caller must loop
until no more handles are returned. Protocol is ignored for
this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

Description

The LocateHandle() function returns an array of handles that match the SearchType
request. If the input value of BufferSize is too small, the function returns
EFI_BUFFER_TOO_SMALL and updates BufferSize to the size of the buffer needed to obtain
the array.

Status Codes Returned
EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result.
BufferSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER SearchType is not a member of
EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and
SearchKey is NULL.

EFI_INVALID_PARAMETER SearchType is ByProtocol and Protocol is
NULL.

EFI_INVALID_PARAMETER One or more matches are found and BufferSize is
NULL.

EFI_INVALID_PARAMETER BufferSize is large enough for the result and Buffer
is NULL.

January 31, 2006
Version 2.0 149

HandleProtocol()

Summary

Queries a handle to determine if it supports a specified protocol.

Prototype
typedef
EFI_STATUS
HandleProtocol (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT VOID **Interface
);

Parameters

Handle The handle being queried. If Handle is not a valid EFI_HANDLE, then
EFI_INVALID_PARAMETER is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For Management
Baseline” for a description of valid GUID values. Type EFI_GUID is
defined in the InstallProtocolInterface() function
description.

Interface Supplies the address where a pointer to the corresponding Protocol
Interface is returned. NULL will be returned in *Interface if a
structure is not associated with Protocol.

Description

The HandleProtocol() function queries Handle to determine if it supports Protocol. If it
does, then on return Interface points to a pointer to the corresponding Protocol Interface.
Interface can then be passed to any protocol service to identify the context of the request.

 January 31, 2006
150 Version 2.0

EFI 1.10 Extension

The HandleProtocol() function is still available for use by old EFI applications and drivers.
However, all new applications and drivers should use OpenProtocol() in place of
HandleProtocol(). The following code fragment shows a possible implementation of
HandleProtocol() using OpenProtocol(). The variable EfiCoreImageHandle is the
image handle of the EFI core.

EFI_STATUS
HandleProtocol (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT VOID **Interface
)
{
 return OpenProtocol (
 Handle,
 Protocol,
 Interface,
 EfiCoreImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
);
}

Status Codes Returned
EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE..

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.

January 31, 2006
Version 2.0 151

LocateDevicePath()

Summary

Locates the handle to a device on the device path that supports the specified protocol.

Prototype

typedef
EFI_STATUS
LocateDevicePath (
 IN EFI_GUID *Protocol,
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath,
 OUT EFI_HANDLE *Device
);

Parameters

Protocol The protocol to search for. Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

DevicePath On input, a pointer to a pointer to the device path. On output, the device
path pointer is modified to point to the remaining part of the device
path—that is, when the function finds the closest handle, it splits the
device path into two parts, stripping off the front part, and returning the
remaining portion. EFI_DEVICE_PATH_PROTOCOL is defined in
Section 9.2.

 Device A pointer to the returned device handle. Type EFI_HANDLE is defined
in the InstallProtocolInterface() function description.

Description

The LocateDevicePath() function locates all devices on DevicePath that support
Protocol and returns the handle to the device that is closest to DevicePath. DevicePath is
advanced over the device path nodes that were matched.

This function is useful for locating the proper instance of a protocol interface to use from a logical
parent device driver. For example, a target device driver may issue the request with its own device
path and locate the interfaces to perform I/O on its bus. It can also be used with a device path that
contains a file path to strip off the file system portion of the device path, leaving the file path and
handle to the file system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is
advanced to the device path terminator node.

 January 31, 2006
152 Version 2.0

Status Codes Returned
EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.

EFI_INVALID_PARAMETER Protocol is NULL

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER A handle matched the search and Device is NULL.

January 31, 2006
Version 2.0 153

OpenProtocol()

Summary

Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the
handle, it opens the protocol on behalf of the calling agent. This is an extended version of the EFI
boot service HandleProtocol().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT VOID **Interface OPTIONAL,
 IN EFI_HANDLE AgentHandle,
 IN EFI_HANDLE ControllerHandle,
 IN UINT32 Attributes
);

Parameters

Handle The handle for the protocol interface that is being opened.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

Interface Supplies the address where a pointer to the corresponding
Protocol Interface is returned. NULL will be returned in
*Interface if a structure is not associated with Protocol.
This parameter is optional, and will be ignored if Attributes
is EFI_OPEN_PROTOCOL_TEST_PROTOCOL.

AgentHandle The handle of the agent that is opening the protocol interface
specified by Protocol and Interface. For agents that
follow the UEFI Driver Model, this parameter is the handle that
contains the EFI_DRIVER_BINDING_PROTOCOL instance
that is produced by the UEFI driver that is opening the protocol
interface. For UEFI applications, this is the image handle of the
UEFI application that is opening the protocol interface. For
applications that use HandleProtocol() to open a protocol
interface, this parameter is the image handle of the EFI firmware.

 January 31, 2006
154 Version 2.0

ControllerHandle If the agent that is opening a protocol is a driver that follows the
UEFI Driver Model, then this parameter is the controller handle
that requires the protocol interface. If the agent does not follow
the UEFI Driver Model, then this parameter is optional and may
be NULL.

Attributes The open mode of the protocol interface specified by Handle
and Protocol. See "Related Definitions" for the list of legal
attributes.

Description

This function opens a protocol interface on the handle specified by Handle for the protocol
specified by Protocol. The first three parameters are the same as HandleProtocol(). The
only difference is that the agent that is opening a protocol interface is tracked in an EFI's internal
handle database. The tracking is used by the UEFI Driver Model, and also used to determine if it is
safe to uninstall or reinstall a protocol interface.

The agent that is opening the protocol interface is specified by AgentHandle,
ControllerHandle, and Attributes. If the protocol interface can be opened, then
AgentHandle, ControllerHandle, and Attributes are added to the list of agents that
are consuming the protocol interface specified by Handle and Protocol. In addition, the
protocol interface is returned in Interface, and EFI_SUCCESS is returned. If Attributes
is TEST_PROTOCOL, then Interface is optional, and can be NULL.

There are a number of reasons that this function call can return an error. If an error is returned, then
AgentHandle, ControllerHandle, and Attributes are not added to the list of agents
consuming the protocol interface specified by Handle and Protocol, and Interface is
returned unmodified. The following is the list of conditions that must be checked before this
function can return EFI_SUCCESS.

If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

If Interface is NULL and Attributes is not TEST_PROTOCOL, then
EFI_INVALID_PARAMETER is returned.

If Handle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is returned.

If Handle does not support Protocol, then EFI_UNSUPPORTED is returned.

If Attributes is not a legal value, then EFI_INVALID_PARAMETER is returned. The legal
values are listed in “Related Definitions.”

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, EXCLUSIVE, or
BY_DRIVER|EXCULSIVE, and AgentHandle is not a valid EFI_HANDLE, then
EFI_INVALID_PARAMETER is returned.

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, or BY_DRIVER|EXCULSIVE,
and ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER
is returned.

January 31, 2006
Version 2.0 155

If Attributes is BY_CHILD_CONTROLLER and Handle is identical to
ControllerHandle, then EFI_INVALID_PARAMETER is returned.

If Attributes is BY_DRIVER , BY_DRIVER|EXCLUSIVE, or EXCLUSIVE, and there are any
items on the open list of the protocol interface with an attribute of EXCLUSIVE or
BY_DRIVER|EXCLUSIVE, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is the same agent handle in the open list
item, then EFI_ALREADY_STARTED is returned.

If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is different than the agent handle in the
open list item, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is the
same agent handle in the open list item, then EFI_ALREADY_STARTED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is different
than the agent handle in the open list item, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE or EXCLUSIVE, and there is an item on the open
list of the protocol interface with an attribute of BY_DRIVER, then the boot service
DisconnectController() is called for the driver on the open list. If there is an item in the
open list of the protocol interface with an attribute of BY_DRIVER remaining after the
DisconnectController() call has been made, EFI_ACCESS_DENIED is returned.

Related Definitions
#define EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001
#define EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002
#define EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004
#define EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 0x00000008
#define EFI_OPEN_PROTOCOL_BY_DRIVER 0x00000010
#define EFI_OPEN_PROTOCOL_EXCLUSIVE 0x00000020

The following is the list of legal values for the Attributes parameter, and how each value is
used.

BY_HANDLE_PROTOCOL Used in the implementation of HandleProtocol(). Since
OpenProtocol() performs the same function as
HandleProtocol() with additional functionality,
HandleProtocol() can simply call OpenProtocol()
with this Attributes value.

 January 31, 2006
156 Version 2.0

GET_PROTOCOL Used by a driver to get a protocol interface from a handle. Care
must be taken when using this open mode because the driver that
opens a protocol interface in this manner will not be informed if
the protocol interface is uninstalled or reinstalled. The caller is
also not required to close the protocol interface with
CloseProtocol().

TEST_PROTOCOL Used by a driver to test for the existence of a protocol interface
on a handle. Interface is optional for this attribute value, so
it is ignored, and the caller should only use the return status
code. The caller is also not required to close the protocol
interface with CloseProtocol().

BY_CHILD_CONTROLLER Used by bus drivers to show that a protocol interface is being
used by one of the child controllers of a bus. This information is
used by the boot service ConnectController() to
recursively connect all child controllers and by the boot service
DisconnectController() to get the list of child
controllers that a bus driver created.

BY_DRIVER Used by a driver to gain access to a protocol interface. When
this mode is used, the driver’s Stop() function will be called
by DisconnectController() if the protocol interface is
reinstalled or uninstalled. Once a protocol interface is opened by
a driver with this attribute, no other drivers will be allowed to
open the same protocol interface with the BY_DRIVER attribute.

BY_DRIVER|EXCLUSIVE Used by a driver to gain exclusive access to a protocol interface.
If any other drivers have the protocol interface opened with an
attribute of BY_DRIVER, then an attempt will be made to
remove them with DisconnectController().

EXCLUSIVE Used by applications to gain exclusive access to a protocol
interface. If any drivers have the protocol interface opened with
an attribute of BY_DRIVER, then an attempt will be made to
remove them by calling the driver’s Stop() function.

Status Codes Returned
EFI_SUCCESS An item was added to the open list for the protocol interface, and the

protocol interface was returned in Interface.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL, and Attributes is not
TEST_PROTOCOL.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_UNSUPPORTED Handle does not support Protocol.

EFI_INVALID_PARAMETER Attributes is not a legal value.

January 31, 2006
Version 2.0 157

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and
AgentHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and AgentHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and
AgentHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is EXCLUSIVE and AgentHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and
ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and ControllerHandle is not a
valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and
ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and Handle is
identical to ControllerHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list
with an attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item
on the open list with an attribute of EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is EXCLUSIVE and there is an item on the open list
with an attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ALREADY_STARTED Attributes is BY_DRIVER and there is an item on the open list
with an attribute of BY_DRIVER whose agent handle is the same as
AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list
with an attribute of BY_DRIVER whose agent handle is different than
AgentHandle.

EFI_ALREADY_STARTED Attributes is BY_DRIVER|EXCLUSIVE and there is an item
on the open list with an attribute of BY_DRIVER|EXCLUSIVE whose
agent handle is the same as AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item
on the open list with an attribute of BY_DRIVER|EXCLUSIVE whose
agent handle is different than AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLSUIVE or EXCLUSIVE and
there are items in the open list with an attribute of BY_DRIVER that
could not be removed when DisconnectController() was

called for that open item.

 January 31, 2006
158 Version 2.0

Examples
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_XYZ_IO_PROTOCOL *XyzIo;
EFI_STATUS Status;

//
// EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The application that is opening the protocol is identified by ImageHandle
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_GET_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_TEST_PROTOCOL example
// Tests to see if the XYZ I/O Protocol is present on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,

January 31, 2006
Version 2.0 159

 NULL,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo. If
// a different driver had the XYZ I/O Protocol opened
// BY_DRIVER, then that driver was disconnected to
// allow this driver to open the XYZ I/O Protocol.
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver that
// already has the protocol opened with an EXCLUSIVE
// attribute.
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE
);

 January 31, 2006
160 Version 2.0

CloseProtocol()

Summary

Closes a protocol on a handle that was opened using OpenProtocol().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CLOSE_PROTOCOL) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 IN EFI_HANDLE AgentHandle,
 IN EFI_HANDLE ControllerHandle
);

Parameters

Handle The handle for the protocol interface that was previously opened
with OpenProtocol(), and is now being closed.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

AgentHandle The handle of the agent that is closing the protocol interface.
For agents that follow the UEFI Driver Model, this parameter is
the handle that contains the
EFI_DRIVER_BINDING_PROTOCOL instance that is
produced by the UEFI driver that is opening the protocol
interface. For UEFI applications, this is the image handle of the
UEFI application. For applications that used
HandleProtocol() to open the protocol interface, this will
be the image handle of the EFI firmware.

ControllerHandle If the agent that opened a protocol is a driver that follows the
UEFI Driver Model, then this parameter is the controller handle
that required the protocol interface. If the agent does not follow
the UEFI Driver Model, then this parameter is optional and may
be NULL.

January 31, 2006
Version 2.0 161

Description

This function updates the handle database to show that the protocol instance specified by Handle
and Protocol is no longer required by the agent and controller specified AgentHandle and
ControllerHandle.

If Handle or AgentHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER
is returned. If ControllerHandle is not NULL, and ControllerHandle is not a valid
EFI_HANDLE, then EFI_INVALID_PARAMETER is returned. If Protocol is NULL, then
EFI_INVALID_PARAMETER is returned.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then a
check is made to see if the protocol instance specified by Protocol and Handle was opened by
AgentHandle and ControllerHandle with OpenProtocol(). If the protocol instance
was not opened by AgentHandle and ControllerHandle, then EFI_NOT_FOUND is
returned. If the protocol instance was opened by AgentHandle and ControllerHandle,
then all of those references are removed from the handle database, and EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The protocol instance was closed.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER AgentHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ControllerHandle is not NULL and ControllerHandle is
not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_NOT_FOUND The protocol interface specified by Handle and Protocol is not
currently open by AgentHandle and ControllerHandle.

 January 31, 2006
162 Version 2.0

Examples
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_STATUS Status;

//
// Close the XYZ I/O Protocol that was opened on behalf of ControllerHandle
//
Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

//
// Close the XYZ I/O Protocol that was opened with BY_HANDLE_PROTOCOL
//
Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 ImageHandle,
 NULL
);

January 31, 2006
Version 2.0 163

OpenProtocolInformation()

Summary

Retrieves the list of agents that currently have a protocol interface opened.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL_INFORMATION) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT EFI_OPEN_PROTOCOL_INFORMATION_ENTRY **EntryBuffer,
 OUT UINTN *EntryCount
);

Parameters

Handle The handle for the protocol interface that is being queried.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

EntryBuffer A pointer to a buffer of open protocol information in the form of
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures.
See "Related Definitions" for the declaration of this type. The
buffer is allocated by this service, and it is the caller's
responsibility to free this buffer when the caller no longer
requires the buffer's contents.

EntryCount A pointer to the number of entries in EntryBuffer.

Related Definitions
typedef struct {
 EFI_HANDLE AgentHandle;
 EFI_HANDLE ControllerHandle;
 UINT32 Attributes;
 UINT32 OpenCount;
} EFI_OPEN_PROTOCOL_INFORMATION_ENTRY;

 January 31, 2006
164 Version 2.0

Description

This function allocates and returns a buffer of EFI_OPEN_PROTOCOL_INFORMATION_ENTRY
structures. The buffer is returned in EntryBuffer, and the number of entries is returned in
EntryCount.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then
EntryBuffer is allocated with the boot service AllocatePool(), and EntryCount is set
to the number of entries in EntryBuffer. Each entry of EntryBuffer is filled in with the
image handle, controller handle, and attributes that were passed to OpenProtocol() when the
protocol interface was opened. The field OpenCount shows the number of times that the protocol
interface has been opened by the agent specified by ImageHandle, ControllerHandle, and
Attributes. After the contents of EntryBuffer have been filled in, EFI_SUCCESS is
returned. It is the caller’s responsibility to call FreePool() on EntryBuffer when the caller
no longer required the contents of EntryBuffer.

If there are not enough resources available to allocate EntryBuffer, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The open protocol information was returned in EntryBuffer, and the

number of entries was returned EntryCount.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate EntryBuffer.

Examples

See example in the LocateHandleBuffer() function description for an example on how
LocateHandleBuffer(), ProtocolsPerHandle(), OpenProtocol(), and
OpenProtocolInformation() can be used to traverse the entire handle database.

January 31, 2006
Version 2.0 165

ConnectController()

Summary

Connects one or more drivers to a controller.

Prototype
typedef
EFI_STATUS
ConnectController (
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE *DriverImageHandle OPTIONAL,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
 IN BOOLEAN Recursive
);

Parameters

ControllerHandle The handle of the controller to which driver(s) are to be connected.

DriverImageHandle A pointer to an ordered list handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The list is terminated
by a NULL handle value. These handles are candidates for the
Driver Binding Protocol(s) that will manage the controller
specified by ControllerHandle. This is an optional
parameter that may be NULL. This parameter is typically used to
debug new drivers.

RemainingDevicePath A pointer to the device path that specifies a child of the
controller specified by ControllerHandle. This is an
optional parameter that may be NULL. If it is NULL, then
handles for all the children of ControllerHandle will be
created. This parameter is passed unchanged to the
Supported() and Start() services of the
EFI_DRIVER_BINDING_PROTOCOL attached to
ControllerHandle.

Recursive If TRUE, then ConnectController() is called recursively
until the entire tree of controllers below the controller specified
by ControllerHandle have been created. If FALSE, then
the tree of controllers is only expanded one level.

 January 31, 2006
166 Version 2.0

Description

This function connects one or more drivers to the controller specified by ControllerHandle.
If ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. If there are no EFI_DRIVER_BINDING_PROTOCOL instances present in the system,
then return EFI_NOT_FOUND. If there are not enough resources available to complete this
function, then EFI_OUT_OF_RESOURCES is returned.

If Recursive is FALSE, then this function returns after all drivers have been connected to
ControllerHandle. If Recursive is TRUE, then ConnectController() is called
recursively on all of the child controllers of ControllerHandle. The child controllers can be
identified by searching the handle database for all the controllers that have opened
ControllerHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_
CONTROLLER.

This functions uses four precedence rules when deciding the order that drivers are tested against
controllers. These four rules from highest precedence to lowest precedence are as follows:

1. Context Override : DriverImageHandle is an ordered list of handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The highest priority image handle is the first element
of the list, and the lowest priority image handle is the last element of the list. The list is
terminated with a NULL image handle.

2. Platform Driver Override : If an EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
instance is present in the system, then the GetDriver() service of this protocol is used to
retrieve an ordered list of image handles for ControllerHandle. The first image handle
returned from GetDriver() has the highest precedence, and the last image handle returned
from GetDriver() has the lowest precedence. The ordered list is terminated when
GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver(). There can be at most a single instance in the system of the
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL. If there is more than one, then the
system behavior is not deterministic.

3. Bus Specific Driver Override : If there is an instance of the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL attached to
ControllerHandle, then the GetDriver() service of this protocol is used to retrieve an
ordered list of image handle for ControllerHandle. The first image handle returned from
GetDriver() has the highest precedence, and the last image handle returned from
GetDriver() has the lowest precedence. The ordered list is terminated when
GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver().

4. Driver Binding Search : The list of available driver image handles can be found by using the
boot service LocateHandle() with a SearchType of ByProtocol for the GUID of the
EFI_DRIVER_BINDING_PROTOCOL. From this list, the image handles found in rules (1),
(2), and (3) above are removed. The remaining image handles are sorted from highest to lowest
based on the Version field of the EFI_DRIVER_BINDING_PROTOCOL instance
associated with each image handle.

January 31, 2006
Version 2.0 167

Each of the four groups of image handles listed above is tested against ControllerHandle in
order by using the EFI_DRIVER_BINDING_PROTOCOL service Supported().
RemainingDevicePath is passed into Supported() unmodified. The first image handle
whose Supported() service returns EFI_SUCCESS is marked so the image handle will not be
tried again during this call to ConnectController(). Then, the Start() service of the
EFI_DRIVER_BINDING_PROTOCOL is called for ControllerHandle. Once again,
RemainingDevicePath is passed in unmodified. Every time Supported() returns
EFI_SUCCESS, the search for drivers restarts with the highest precedence image handle. This
process is repeated until no image handles pass the Supported() check.

If at least one image handle returned EFI_SUCCESS from its Start() service, then
EFI_SUCCESS is returned.

If no image handles returned EFI_SUCCESS from their Start() service then
EFI_NOT_FOUND is returned unless RemainingDevicePath is not NULL, and
RemainingDevicePath is an End Node. In this special case, EFI_SUCCESS is returned
because it is not an error to fail to start a child controller that is specified by an End Device Path
Node.

Status Codes Returned
EFI_SUCCESS One or more drivers were connected to ControllerHandle.

EFI_SUCCESS No drivers were connected to ControllerHandle, but
RemainingDevicePath is not NULL, and it is an End Device

Path Node.
EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_NOT_FOUND There are no EFI_DRIVER_BINDING_PROTOCOL instances

present in the system.

EFI_NOT_FOUND No drivers were connected to ControllerHandle.

 January 31, 2006
168 Version 2.0

Examples
//
// Connect All Handles Example
// The following example recusively connects all controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES_TABLE *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 Status = gBS->ConnectController (
 HandleBuffer[HandleIndex],
 NULL,
 NULL,
 TRUE
);
 }
 gBS->FreePool(HandleBuffer);
}

//
// Connect Device Path Example
// The following example walks the device path nodes of a device path, and
// connects only the drivers required to force a handle with that device path
// to be present in the handle database. This algorithms guarantees that
// only the minimum number of devices and drivers are initialized.
//

EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE Handle;

January 31, 2006
Version 2.0 169

do {
 //
 // Find the handle that best matches the Device Path. If it is only a
 // partial match the remaining part of the device path is returned in
 // RemainingDevicePath.
 //
 RemainingDevicePath = DevicePath;
 Status = gBS->LocateDevicePath (
 &gEfiDevicePathProtocolGuid,
 &RemainingDevicePath,
 &Handle
);
 if (EFI_ERROR(Status)) {
 return EFI_NOT_FOUND;
 }

 //
 // Connect all drivers that apply to Handle and RemainingDevicePath
 // If no drivers are connected Handle, then return EFI_NOT_FOUND
 // The Recursive flag is FALSE so only one level will be expanded.
 //
 Status = gBS->ConnectController (
 Handle,
 NULL,
 RemainingDevicePath,
 FALSE
);
 if (EFI_ERROR(Status)) {
 return EFI_NOT_FOUND;
 }

 //
 // Loop until RemainingDevicePath is an empty device path
 //
} while (!IsDevicePathEnd (RemainingDevicePath));

//
// A handle with DevicePath exists in the handle database
//
return EFI_SUCCESS;

 January 31, 2006
170 Version 2.0

DisconnectController()

Summary

Disconnects one or more drivers from a controller.

Prototype
typedef
EFI_STATUS
DisconnectController (
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE DriverImageHandle OPTIONAL,
 IN EFI_HANDLE ChildHandle OPTIONAL
);

Parameters

ControllerHandle The handle of the controller from which driver(s) are to be disconnected.

DriverImageHandle The driver to disconnect from ControllerHandle. If
DriverImageHandle is NULL, then all the drivers currently
managing ControllerHandle are disconnected from
ControllerHandle.

ChildHandle The handle of the child to destroy. If ChildHandle is NULL,
then all the children of ControllerHandle are destroyed
before the drivers are disconnected from
ControllerHandle.

Description

This function disconnects one or more drivers from the controller specified by
ControllerHandle. If DriverImageHandle is NULL, then all of the drivers currently
managing ControllerHandle are disconnected from ControllerHandle. If
DriverImageHandle is not NULL, then only the driver specified by DriverImageHandle
is disconnected from ControllerHandle. If ChildHandle is NULL, then all of the children
of ControllerHandle are destroyed before the drivers are disconnected from
ControllerHandle. If ChildHandle is not NULL, then only the child controller specified
by ChildHandle is destroyed. If ChildHandle is the only child of ControllerHandle,
then the driver specified by DriverImageHandle will be disconnected from
ControllerHandle. A driver is disconnected from a controller by calling the Stop() service
of the EFI_DRIVER_BINDING_PROTOCOL. The EFI_DRIVER_BINDING_PROTOCOL is on
the driver image handle, and the handle of the controller is passed into the Stop() service. The
list of drivers managing a controller, and the list of children for a specific controller can be
retrieved from the handle database with the boot service OpenProtocolInformation(). If
all the required drivers are disconnected from ControllerHandle, then EFI_SUCCESS is
returned.

January 31, 2006
Version 2.0 171

If ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. If no drivers are managing ControllerHandle, then EFI_SUCCESS is returned. If
DriverImageHandle is not NULL, and DriverImageHandle is not a valid EFI_HANDLE,
then EFI_INVALID_PARAMETER is returned. If DriverImageHandle is not NULL, and
DriverImageHandle is not currently managing ControllerHandle, then EFI_SUCCESS
is returned. If ChildHandle is not NULL, and ChildHandle is not a valid EFI_HANDLE,
then EFI_INVALID_PARAMETER is returned. If there are not enough resources available to
disconnect drivers from ControllerHandle, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS One or more drivers were disconnected from the controller.

EFI_SUCCESS On entry, no drivers are managing ControllerHandle.

EFI_SUCCESS DriverImageHandle is not NULL, and on entry
DriverImageHandle is not managing ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER DriverImageHandle is not NULL, and it is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL, and it is not a valid EFI_HANDLE.

EFI_OUT_OF_RESOURCES There are not enough resources available to disconnect any drivers from
ControllerHandle.

EFI_DEVICE_ERROR The controller could not be disconnected because of a device error.

EFI_INVALID_PARAMETER DriverImageHandle does not support the
EFI_DRIVER_BINDING_PROTOCOL.

 January 31, 2006
172 Version 2.0

Examples
//
// Disconnect All Handles Example
// The following example recusively disconnects all drivers from all
// controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES_TABLE *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 Status = gBS->DisconnectController (
 HandleBuffer[HandleIndex],
 NULL,
 NULL
);
 }
 gBS->FreePool(HandleBuffer);

January 31, 2006
Version 2.0 173

ProtocolsPerHandle()

Summary

Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated
from pool.

Prototype
typedef
EFI_STATUS
ProtocolsPerHandle (
 IN EFI_HANDLE Handle,
 OUT EFI_GUID ***ProtocolBuffer,
 OUT UINTN *ProtocolBufferCount
);

Parameters

Handle The handle from which to retrieve the list of protocol interface
GUIDs.

ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are
installed on Handle. This buffer is allocated with a call to the
Boot Service AllocatePool(). It is the caller's
responsibility to call the Boot Service FreePool() when the
caller no longer requires the contents of ProtocolBuffer.

ProtocolBufferCount A pointer to the number of GUID pointers present in
ProtocolBuffer.

Description

The ProtocolsPerHandle() function retrieves the list of protocol interface GUIDs that are
installed on Handle. The list is returned in ProtocolBuffer, and the number of GUID
pointers in ProtocolBuffer is returned in ProtocolBufferCount.

If Handle is NULL or Handle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER
is returned.

If ProtocolBuffer is NULL, then EFI_INVALID_PAREMETER is returned.

If ProtocolBufferCount is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to allocate ProtocolBuffer, then
EFI_OUT_OF_RESOURCES is returned.

 January 31, 2006
174 Version 2.0

Status Codes Returned
EFI_SUCCESS The list of protocol interface GUIDs installed on Handle was returned in

ProtocolBuffer. The number of protocol interface GUIDs was
returned in ProtocolBufferCount.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER ProtocolBuffer is NULL.

EFI_INVALID_PARAMETER ProtocolBufferCount is NULL.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results.

Examples

See example in the LocateHandleBuffer() function description for an example on how
LocateHandleBuffer(), ProtocolsPerHandle(), OpenProtocol(), and
OpenProtocolInformation() can be used to traverse the entire handle database.

January 31, 2006
Version 2.0 175

LocateHandleBuffer()

Summary

Returns an array of handles that support the requested protocol in a buffer allocated from pool.

Prototype
typedef
EFI_STATUS
LocateHandleBuffer (
 IN EFI_LOCATE_SEARCH_TYPE SearchType,
 IN EFI_GUID *Protocol OPTIONAL,
 IN VOID *SearchKey OPTIONAL,
 IN OUT UINTN *NoHandles,
 OUT EFI_HANDLE **Buffer
);

Parameters

SearchType Specifies which handle(s) are to be returned.

Protocol Provides the protocol to search by. This parameter is only valid for a
SearchType of ByProtocol.

SearchKey Supplies the search key depending on the SearchType.

NoHandles The number of handles returned in Buffer.

Buffer A pointer to the buffer to return the requested array of handles that
support Protocol. This buffer is allocated with a call to the Boot
Service AllocatePool(). It is the caller's responsibility to call the
Boot Service FreePool() when the caller no longer requires the
contents of Buffer.

Description

The LocateHandleBuffer() function returns one or more handles that match the
SearchType request. Buffer is allocated from pool, and the number of entries in Buffer is
returned in NoHandles. Each SearchType is described below:

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration returned by
RegisterProtocolNotify(). The function returns the
next handle that is new for the Registration. Only one handle is
returned at a time, and the caller must loop until no more handles
are returned. Protocol is ignored for this search type.

 January 31, 2006
176 Version 2.0

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

If NoHandles is NULL, then EFI_INVALID_PARAMETER is returned.

If Buffer is NULL, then EFI_INVALID_PARAMETER is returned.

If there are no handles in the handle database that match the search criteria, then
EFI_NOT_FOUND is returned.

If there are not enough resources available to allocate Buffer, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned
EFI_SUCCESS The array of handles was returned in Buffer, and the number of

handles in Buffer was returned in NoHandles.

EFI_INVALID_PARAMETER NoHandles is NULL

EFI_INVALID_PARAMETER Buffer is NULL

EFI_NOT_FOUND No handles match the search.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.

Examples
//
// The following example traverses the entire handle database. First all of
// the handles in the handle database are retrieved by using
// LocateHandleBuffer(). Then it uses ProtocolsPerHandle() to retrieve the
// list of protocol GUIDs attached to each handle. Then it uses OpenProtocol()
// to get the protocol instance associated with each protocol GUID on the
// handle. Finally, it uses OpenProtocolInformation() to retrieve the list of
// agents that have opened the protocol on the handle. The caller of these
// functions must make sure that they free the return buffers with FreePool()
// when they are done.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES_TABLE *gBS;
EFI_HANDLE ImageHandle;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;
EFI_GUID **ProtocolGuidArray;
UINTN ArrayCount;
UINTN ProtocolIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,

January 31, 2006
Version 2.0 177

 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 //
 // Retrieve the list of all the protocols on each handle
 //
 Status = gBS->ProtocolsPerHandle (
 HandleBuffer[HandleIndex],
 &ProtocolGuidArray,
 &ArrayCount
);
 if (!EFI_ERROR (Status)) {
 for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) {
 //
 // Retrieve the protocol instance for each protocol
 //
 Status = gBS->OpenProtocol (
 HandleBuffer[HandleIndex],
 ProtocolGuidArray[ProtocolIndex],
 &Instance,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

 //
 // Retrieve the list of agents that have opened each protocol
 //
 Status = gBS->OpenProtocolInformation (
 HandleBuffer[HandleIndex],
 ProtocolGuidArray[ProtocolIndex],
 &OpenInfo,
 &OpenInfoCount
);
 if (!EFI_ERROR (Status)) {
 for (OpenInfoIndex=0;OpenInfoIndex<OpenInfoCount;OpenInfoIndex++) {
 //
 // HandleBuffer[HandleIndex] is the handle
 // ProtocolGuidArray[ProtocolIndex] is the protocol GUID
 // Instance is the protocol instance for the protocol
 // OpenInfo[OpenInfoIndex] is an agent that has opened a protocol
 //
 }
 if (OpenInfo != NULL) {
 gBS->FreePool(OpenInfo);
 }
 }
 }
 if (ProtocolGuidArray != NULL) {
 gBS->FreePool(ProtocolGuidArray);
 }
 }
 }
 if (HandleBuffer != NULL) {
 gBS->FreePool (HandleBuffer);
 }
}

 January 31, 2006
178 Version 2.0

LocateProtocol()

Summary

Returns the first protocol instance that matches the given protocol.

Prototype
typedef
EFI_STATUS
LocateProtocol (
 IN EFI_GUID *Protocol,
 IN VOID *Registration OPTIONAL,
 OUT VOID **Interface
);

Parameters

Protocol Provides the protocol to search for.

Registration Optional registration key returned from
RegisterProtocolNotify(). If Registration is NULL, then
it is ignored.

Interface On return, a pointer to the first interface that matches Protocol and
Registration.

Description

The LocateProtocol() function finds the first device handle that support Protocol, and
returns a pointer to the protocol interface from that handle in Interface. If no protocol
instances are found, then Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support
Protocol, then EFI_NOT_FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then
EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS A protocol instance matching Protocol was found and returned in

Interface.

EFI_INVALID_PARAMETER Interface is NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol and
Registration .

January 31, 2006
Version 2.0 179

InstallMultipleProtocolInterfaces()

Summary

Installs one or more protocol interfaces into the boot services environment.

Prototype
typedef
EFI_STATUS
InstallMultipleProtocolInterfaces (
 IN OUT EFI_HANDLE *Handle,
 ...
);

Parameters

Handle The handle to install the new protocol interfaces on, or NULL if a new
handle is to be allocated.

... A variable argument list containing pairs of protocol GUIDs and protocol
interfaces.

Description

This function installs a set of protocol interfaces into the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs
are used to call the boot service InstallProtocolInterface() to add a protocol interface
to Handle. If Handle is NULL on entry, then a new handle will be allocated. The pairs of
arguments are removed in order from the variable argument list until a NULL protocol GUID value
is found. If any errors are generated while the protocol interfaces are being installed, then all the
protocols installed prior to the error will be uninstalled with the boot service
UninstallProtocolInterface() before the error is returned. The same GUID cannot be
installed more than once onto the same handle.

It is illegal to have two handles in the handle database with identical device paths. This service
performs a test to guarantee a duplicate device path is not inadvertently installed on two different
handles. Before any protocol interfaces are installed onto Handle, the list of GUID/pointer pair
parameters are searched to see if a Device Path Protocol instance is being installed. If a Device
Path Protocol instance is going to be installed onto Handle, then a check is made to see if a handle
is already present in the handle database with an identical Device Path Protocol instance. If an
identical Device Path Protocol instance is already present in the handle database, then no protocols
are installed onto Handle, and EFI_ALREADY_STARTED is returned.

 January 31, 2006
180 Version 2.0

Status Codes Returned
EFI_SUCCESS All the protocol interfaces were installed.

EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already present in
the handle database.

EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols.

January 31, 2006
Version 2.0 181

UninstallMultipleProtocolInterfaces()

Summary

Removes one or more protocol interfaces into the boot services environment.

Prototype
typedef
EFI_STATUS
UninstallMultipleProtocolInterfaces (
 IN EFI_HANDLE Handle,
 ...
);

Parameters

Handle The handle to remove the protocol interfaces from.

... A variable argument list containing pairs of protocol GUIDs and
protocol interfaces.

Description

This function removes a set of protocol interfaces from the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs
are used to call the boot service UninstallProtocolInterface() to remove a protocol
interface from Handle. The pairs of arguments are removed in order from the variable argument
list until a NULL protocol GUID value is found. If all of the protocols are uninstalled from
Handle, then EFI_SUCCESS is returned. If any errors are generated while the protocol
interfaces are being uninstalled, then the protocols uninstalled prior to the error will be reinstalled
with the boot service InstallProtocolInterface() and the status code
EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS All the protocol interfaces were removed.

EFI_INVALID_PARAMETER One of the protocol interfaces was not previously installed on
Handle.

 January 31, 2006
182 Version 2.0

6.4 Image Services

Three types of images can be loaded: applications written to this specification, EFI Boot Services
Drivers, and EFI Runtime Services Drivers. An OS Loader is a type of application. The most
significant difference between these image types is the type of memory into which they are loaded
by the firmware’s loader. Table 24 summarizes the differences between images.

Table 24. Image Type Differences Summary

 UEFI Application EFI Boot Services Driver EFI Runtime Services Driver

Description A transient application

that is loaded during boot

services time. I

Applications written to this

specification are either

unloaded when they

complete, or they take

responsibility for the

continued operation of the

system via
ExitBootServices().

The applications are

loaded in sequential order

by the boot manager, but

one application may

dynamically load another.

A program that is loaded into boot

services memory and stays resident

until boot services terminates.

A program that is loaded into

runtime services memory and

stays resident during runtime. The

memory required for a Runtime

Services Driver must be performed

in a single memory allocation, and

marked as
EfiRuntimeServicesData.

(Note that the memory only stays

resident when booting an EFI-

compatible operating system.

Legacy operating systems will

reuse the memory.)

Loaded into

memory type

EfiLoaderCode,

EfiLoaderData

EfiBootServicesCode,

EfiBootServicesData

EfiRuntimeServicesCode,

EfiRuntimeServicesData

Default pool

allocations

from memory

type

EfiLoaderData EfiBootServicesData EfiRuntimeServicesData

Exit behavior When an application

exits, firmware frees the

memory used to hold its

image.

When a boot services driver exits with

an error code, firmware frees the

memory used to hold its image.

When a boot services driver’s entry
point completes with EFI_SUCCESS,

the image is retained in memory.

When a runtime services driver

exits with an error code, firmware

frees the memory used to hold its

image.

When a runtime services driver’s

entry point completes with
EFI_SUCCESS, the image is

retained in memory.

Notes This type of image would

not install any protocol

interfaces or handles.

This type of image would typically use
InstallProtocolInterface().

A runtime driver can only allocate

runtime memory during boot

services time. Due to the

complexity of performing a virtual

relocation for a runtime image, this

driver type is discouraged unless it

is absolutely required.

January 31, 2006
Version 2.0 183

Most images are loaded by the boot manager. When an application or driver is installed, the
installation procedure registers itself with the boot manager for loading. However, in some cases
an application or driver may want to programmatically load and start another EFI image. This can
be done with the LoadImage() and StartImage() interfaces. Drivers may only load
applications during the driver’s initialization entry point. Table 25 lists the functions that make up
Image Services.

Table 25. Image Functions
Name Type Description

LoadImage Boot Loads an EFI image into memory.

StartImage Boot Transfers control to a loaded image’s entry point.

UnloadImage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

The Image boot services have been modified to take advantage of the information that is now being
tracked with the OpenProtocol() and CloseProtocol() boot services. Since the usage of
protocol interfaces is being tracked with these new boot services, it is now possible to automatically
close protocol interfaces when an application or a driver is unloaded or exited.

 January 31, 2006
184 Version 2.0

LoadImage()

Summary

Loads an EFI image into memory.

Prototype

typedef
EFI_STATUS
LoadImage (
 IN BOOLEAN BootPolicy,
 IN EFI_HANDLE ParentImageHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
 IN VOID *SourceBuffer OPTIONAL,
 IN UINTN SourceSize,
 OUT EFI_HANDLE *ImageHandle
);

Parameters

BootPolicy If TRUE, indicates that the request originates from the boot
manager, and that the boot manager is attempting to load
FilePath as a boot selection. Ignored if SourceBuffer is
not NULL.

ParentImageHandle The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description.
This field is used to initialize the ParentHandle field of the
EFI_LOADED_IMAGE_PROTOCOL for the image that is being
loaded.

FilePath The DeviceHandle specific file path from which the image is
loaded. EFI_DEVICE_PATH_PROTOCOL is defined in
Section 9.2.

SourceBuffer If not NULL, a pointer to the memory location containing a copy
of the image to be loaded.

SourceSize The size in bytes of SourceBuffer. Ignored if
SourceBuffer is NULL.

ImageHandle Pointer to the returned image handle that is created when the
image is successfully loaded. Type EFI_HANDLE is defined in
the InstallProtocolInterface() function description.

January 31, 2006
Version 2.0 185

Description

The LoadImage() function loads an EFI image into memory and returns a handle to the image.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a
memory-to-memory load in which SourceBuffer points to the image to be loaded and
SourceSize indicates the image’s size in bytes. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL and then the EFI_LOAD_FILE_PROTOCOL
instance associated with the handle that most closely matches FilePath will be used. See the
boot service description for more information on how the closest handle is located. In the case of
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the path name from the File Path Media Device
Path node(s) of FilePath are used. In the case of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the
remaining device path nodes of FilePath and the BootPolicy flag is passed to the
LOAD_FILE.LoadFile() function; the default image responsible for booting is loaded when
the FilePath only indicates the device. For more information see the discussion of the Load File
Protocol in Chapter 12.1.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports EFI_LOADED_IMAGE_PROTOCOL. The caller may fill in the image’s “load
options” data, or add additional protocol support to the handle before passing control to the newly
loaded image by calling StartImage(). Also, once the image is loaded, the caller either starts it
by calling StartImage() or unloads it by calling UnloadImage().

Status Codes Returned
EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND Both SourceBuffer and FilePath are NULL.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is not a valid EFI_HANDLE.

EFI_UNSUPPORTED The image type is not supported.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

 January 31, 2006
186 Version 2.0

StartImage()

Summary

Transfers control to a loaded image’s entry point.

Prototype

typedef
EFI_STATUS
StartImage (

IN EFI_HANDLE ImageHandle,
OUT UINTN *ExitDataSize,
OUT CHAR16 **ExitData OPTIONAL
);

Parameters

ImageHandle Handle of image to be started. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description.

ExitDataSize Pointer to the size, in bytes, of ExitData. If ExitData is NULL,
then this parameter is ignored and the contents of ExitDataSize are
not modified.

ExitData Pointer to a pointer to a data buffer that includes a Null-terminated
Unicode string, optionally followed by additional binary data. The string
is a description that the caller may use to further indicate the reason for
the image’s exit.

Description

The StartImage() function transfers control to the entry point of an image that was loaded by
LoadImage(). The image may only be started one time.

Control returns from StartImage() when the loaded image’s EFI_IMAGE_ENTRY_POINT
returns or when the loaded image calls Exit(). When that call is made, the ExitData buffer
and ExitDataSize from Exit() are passed back through the ExitData buffer and
ExitDataSize in this function. The caller of this function is responsible for returning the
ExitData buffer to the pool by calling FreePool() when the buffer is no longer needed. Using
Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that Exit()
may also return additional ExitData. Exit() function description defines clean up procedure
performed by the firmware once loaded image returns control.

January 31, 2006
Version 2.0 187

EFI 1.10 Extension

To maintain compatibility with UEFI drivers that are written to the EFI 1.02 Specification,
StartImage() must monitor the handle database before and after each image is started. If any
handles are created or modified when an image is started, then ConnectController() must be
called with the Recursive parameter set to TRUE for each of the newly created or modified
handles before StartImage() returns.

Status Codes Returned
EFI_INVALID_PARAMETER ImageHandle is either an invalid image handle or the image

has already been initialized with StartImage

Exit code from image Exit code from image.

 January 31, 2006
188 Version 2.0

UnloadImage()

Summary

Unloads an image.

Prototype
typedef
EFI_STATUS
UnloadImage (
 IN EFI_HANDLE ImageHandle
);

Parameters

ImageHandle Handle that identifies the image to be unloaded.

Description

The UnloadImage() function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the
image and returns EFI_SUCCESS.

If the image has been started and has an Unload() entry point, control is passed to that entry
point. If the image’s unload function returns EFI_SUCCESS, the image is unloaded; otherwise,
the error returned by the image’s unload function is returned to the caller. The image unload
function is responsible for freeing all allocated memory and ensuring that there are no references to
any freed memory, or to the image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload() entry point, the function returns
EFI_UNSUPPORTED.

EFI 1.10 Extension

All of the protocols that were opened by ImageHandle using the boot service
OpenProtocol() are automatically closed with the boot service CloseProtocol(). If all of
the open protocols are closed, then EFI_SUCCESS is returned. If any call to
CloseProtocol() fails, then the error code from CloseProtocol() is returned.

Status Codes Returned
EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.

EFI_INVALID_PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler Exit code from the image’s unload function.

January 31, 2006
Version 2.0 189

EFI_IMAGE_ENTRY_POINT

Summary

This is the declaration of an EFI image entry point. This can be the entry point to an application
written to this specification, an EFI boot service driver, or an EFI runtime driver.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle Handle that identifies the loaded image. Type EFI_HANDLE is defined
in the InstallProtocolInterface() function description.

SystemTable System Table for this image. Type EFI_SYSTEM_TABLE is defined in
Chapter 4.

Description

An image’s entry point is of type EFI_IMAGE_ENTRY_POINT. After firmware loads an image
into memory, control is passed to the image’s entry point. The entry point is responsible for
initializing the image. The image’s ImageHandle is passed to the image. The ImageHandle
provides the image with all the binding and data information it needs. This information is available
through protocol interfaces. However, to access the protocol interfaces on ImageHandle
requires access to boot services functions. Therefore, LoadImage() passes to the
EFI_IMAGE_ENTRY_POINT a SystemTable that is inherited from the current scope of
LoadImage().

All image handles support the EFI_LOADED_IMAGE_PROTOCOL. This protocol can be used to
obtain information about the loaded image’s state—for example, the device from which the image
was loaded and the image’s load options. In addition, the ImageHandle may support other
protocols provided by the parent image.

If the image supports dynamic unloading, it must supply an unload function in the
EFI_LOADED_IMAGE_PROTOCOL structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling Exit() or by
returning control from its entry point. If the image returns control from its entry point, the
firmware passes control to Exit() using the return code as the ExitStatus parameter to
Exit().

See Exit() below for entry point exit conditions.

 January 31, 2006
190 Version 2.0

Exit()

Summary

Terminates a loaded EFI image and returns control to boot services.

Prototype
typedef
EFI_STATUS
Exit (
 IN EFI_HANDLE ImageHandle,
 IN EFI_STATUS ExitStatus,
 IN UINTN ExitDataSize,
 IN CHAR16 *ExitData OPTIONAL
);

Parameters

ImageHandle Handle that identifies the image. This parameter is passed to the image
on entry.

ExitStatus The image’s exit code.

ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is
EFI_SUCCESS.

ExitData Pointer to a data buffer that includes a Null-terminated Unicode string,
optionally followed by additional binary data. The string is a description
that the caller may use to further indicate the reason for the image’s exit.
ExitData is only valid if ExitStatus is something other than
EFI_SUCCESS. The ExitData buffer must be allocated by calling
AllocatePool().

Description

The Exit() function terminates the image referenced by ImageHandle and returns control to
boot services. This function may not be called if the image has already returned from its entry
point (EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that have not exited (all
child images must exit before this image can exit).

Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that
Exit() may also return additional ExitData.

January 31, 2006
Version 2.0 191

When an application exits a compliant system, firmware frees the memory used to hold the image.
The firmware also frees its references to the ImageHandle and the handle itself. Before exiting,
the application is responsible for freeing any resources it allocated. This includes memory (pages
and/or pool), open file system handles, and so forth. The only exception to this rule is the
ExitData buffer, which must be freed by the caller of StartImage(). (If the buffer is needed,
firmware must allocate it by calling AllocatePool() and must return a pointer to it to the caller
of StartImage().)

When an EFI boot service driver or runtime service driver exits, firmware frees the image only if
the ExitStatus is an error code; otherwise the image stays resident in memory. The driver must
not return an error code if it has installed any protocol handlers or other active callbacks into the
system that have not (or cannot) be cleaned up. If the driver exits with an error code, it is
responsible for freeing all resources before exiting. This includes any allocated memory (pages
and/or pool), open file system handles, and so forth.

It is valid to call Exit() or Unload() for an image that was loaded by LoadImage() before
calling StartImage(). This will free the image from memory without having started it.

EFI 1.10 Extension

If ImageHandle is a UEFI application, then all of the protocols that were opened by
ImageHandle using the boot service OpenProtocol() are automatically closed with the boot
service CloseProtocol(). If ImageHandle is an EFI boot services driver or runtime service
driver, and ExitStatus is an error code, then all of the protocols that were opened by
ImageHandle using the boot service OpenProtocol() are automatically closed with the boot
service CloseProtocol(). If ImageHandle is an EFI boot services driver or runtime service
driver, and ExitStatus is not an error code, then no protocols are automatically closed by this
service.

Status Codes Returned
(Does not return.) Image exit. Control is returned to the StartImage() call that

invoked the image specified by ImageHandle.

EFI_SUCCESS The image specified by ImageHandle was unloaded. This

condition only occurs for images that have been loaded with
LoadImage() but have not been started with
StartImage().

EFI_INVALID_PARAMETER The image specified by ImageHandle has been loaded and
started with LoadImage() and StartImage(), but the

image is not the currently executing image.

 January 31, 2006
192 Version 2.0

ExitBootServices()

Summary

Terminates all boot services.

Prototype

typedef
EFI_STATUS
ExitBootServices (
 IN EFI_HANDLE ImageHandle,
 IN UINTN MapKey
);

Parameters

ImageHandle Handle that identifies the exiting image. Type EFI_HANDLE is defined
in the InstallProtocolInterface() function description.

MapKey Key to the latest memory map.

Description

The ExitBootServices() function is called by the currently executing EFI OS loader image
to terminate all boot services. On success, the loader becomes responsible for the continued
operation of the system. All events of type EVT_SIGNAL_EXIT_BOOT_SERVICES must be
signaled before ExitBootServices() returns.

An EFI OS loader must ensure that it has the system’s current memory map at the time it calls
ExitBootServices(). This is done by passing in the current memory map’s MapKey value
as returned by GetMemoryMap(). Care must be taken to ensure that the memory map does not
change between these two calls. It is suggested that GetMemoryMap()be called immediately
before calling ExitBootServices().

On success, the EFI OS loader owns all available memory in the system. In addition, the loader can
treat all memory in the map marked as EfiBootServicesCode and
EfiBootServicesData as available free memory. No further calls to boot service functions or
EFI device-handle-based protocols may be used, and the boot services watchdog timer is disabled.
On success, several fields of the EFI System Table should be set to NULL. These include
ConsoleInHandle, ConIn, ConsoleOutHandle, ConOut, StandardErrorHandle,
StdErr, and BootServicesTable. In addition, since fields of the EFI System Table are
being modified, the 32-bit CRC for the EFI System Table must be recomputed.

Status Codes Returned
EFI_SUCCESS Boot services have been terminated.

EFI_INVALID_PARAMETER MapKey is incorrect.

January 31, 2006
Version 2.0 193

6.5 Miscellaneous Boot Services

This section contains the remaining function definitions for boot services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 26 lists the
Miscellaneous Boot Services Functions.

Table 26. Miscellaneous Boot Services Functions
Name Type Description

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the EFI
System Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.

The CalculateCrc32() service was added because there are several places in EFI that 32-bit
CRCs are used. These include the EFI System Table, the EFI Boot Services Table, the EFI
Runtime Services Table, and the GUID Partition Table (GPT) structures. The
CalculateCrc32() service allows new 32-bit CRCs to be computed, and existing 32-bit CRCs
to be validated.

 January 31, 2006
194 Version 2.0

SetWatchdogTimer()

Summary

Sets the system’s watchdog timer.

Prototype

typedef
EFI_STATUS
SetWatchdogTimer (
 IN UINTN Timeout,
 IN UINT64 WatchdogCode,
 IN UINTN DataSize,
 IN CHAR16 *WatchdogData OPTIONAL
);

Parameters
Timeout The number of seconds to set the watchdog timer to. A value of zero

disables the timer.
WatchdogCode The numeric code to log on a watchdog timer timeout event. The

firmware reserves codes 0x0000 to 0xFFFF. Loaders and operating
systems may use other timeout codes.

DataSize The size, in bytes, of WatchdogData.
WatchdogData A data buffer that includes a Null-terminated Unicode string, optionally

followed by additional binary data. The string is a description that the
call may use to further indicate the reason to be logged with a watchdog
event.

Description

The SetWatchdogTimer() function sets the system’s watchdog timer.

If the watchdog timer expires, the event is logged by the firmware. The system may then either
reset with the Runtime Service ResetSystem(), or perform a platform specific action that must
eventually cause the platform to be reset. The watchdog timer is armed before the firmware's boot
manager invokes an EFI boot option. The watchdog must be set to a period of 5 minutes. The EFI
Image may reset or disable the watchdog timer as needed. If control is returned to the firmware's
boot manager, the watchdog timer must be disabled.

The watchdog timer is only used during boot services. On successful completion of
ExitBootServices() the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.

January 31, 2006
Version 2.0 195

Status Codes Returned
EFI_SUCCESS The timeout has been set.

EFI_INVALID_PARAMETER The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED The system does not have a watchdog timer.

EFI_DEVICE_ERROR The watch dog timer could not be programmed due to a hardware
error.

 January 31, 2006
196 Version 2.0

Stall()

Summary

Induces a fine-grained stall.

Prototype

typedef
EFI_STATUS
Stall (
 IN UINTN Microseconds
)

Parameters

Microseconds The number of microseconds to stall execution.

Description

The Stall() function stalls execution on the processor for at least the requested number of
microseconds. Execution of the processor is not yielded for the duration of the stall.

Status Codes Returned
EFI_SUCCESS Execution was stalled at least the requested number of

Microseconds.

January 31, 2006
Version 2.0 197

CopyMem()

Summary

The CopyMem() function copies the contents of one buffer to another buffer.

Prototype
typedef
VOID
CopyMem (
 IN VOID *Destination,
 IN VOID *Source,
 IN UINTN Length
);

Parameters

Destination Pointer to the destination buffer of the memory copy.

Source Pointer to the source buffer of the memory copy.

Length Number of bytes to copy from Source to Destination.

Description

The CopyMem() function copies Length bytes from the buffer Source to the buffer
Destination.

The implementation of CopyMem() must be reentrant, and it must handle overlapping Source
and Destination buffers. This means that the implementation of CopyMem() must choose the
correct direction of the copy operation based on the type of overlap that exists between the
Source and Destination buffers. If either the Source buffer or the Destination buffer
crosses the top of the processor’s address space, then the result of the copy operation is
unpredictable.

The contents of the Destination buffer on exit from this service must match the contents of the
Source buffer on entry to this service. Due to potential overlaps, the contents of the Source
buffer may be modified by this service. The following rules can be used to guarantee the correct
behavior:

1. If Destination and Source are identical, then no operation should be performed.

2. If Destination > Source and Destination < (Source + Length), then the data
should be copied from the Source buffer to the Destination buffer starting from the end
of the buffers and working toward the beginning of the buffers.

3. Otherwise, the data should be copied from the Source buffer to the Destination buffer
starting from the beginning of the buffers and working toward the end of the buffers.

 January 31, 2006
198 Version 2.0

Status Codes Returned

None.

January 31, 2006
Version 2.0 199

SetMem()

Summary

The SetMem() function fills a buffer with a specified value.

Prototype
typedef
VOID
SetMem (
 IN VOID *Buffer,
 IN UINTN Size,
 IN UINT8 Value
);

Parameters

Buffer Pointer to the buffer to fill.

Size Number of bytes in Buffer to fill.

Value Value to fill Buffer with.

Description

This function fills Size bytes of Buffer with Value. The implementation of SetMem() must
be reentrant. If Buffer crosses the top of the processor’s address space, the result of the
SetMem() operation is unpredictable.

Status Codes Returned

None.

 January 31, 2006
200 Version 2.0

GetNextMonotonicCount()

Summary

Returns a monotonically increasing count for the platform.

Prototype

typedef
EFI_STATUS
GetNextMonotonicCount (
 OUT UINT64 *Count
);

Parameters

Count Pointer to returned value.

Description

The GetNextMonotonicCount() function returns a 64-bit value that is numerically larger
then the last time the function was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits.
The low 32-bit value is volatile and is reset to zero on every system reset. It is increased by 1 on
every call to GetNextMonotonicCount(). The high 32-bit value is nonvolatile and is
increased by one on whenever the system resets or the low 32-bit counter overflows.

Status Codes Returned
EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER Count is NULL.

January 31, 2006
Version 2.0 201

InstallConfigurationTable()

Summary

Adds, updates, or removes a configuration table entry from the EFI System Table.

Prototype

typedef
EFI_STATUS
InstallConfigurationTable (
 IN EFI_GUID *Guid,
 IN VOID *Table
);

Parameters

Guid A pointer to the GUID for the entry to add, update, or remove.

Table A pointer to the configuration table for the entry to add, update, or
remove. May be NULL.

Description

The InstallConfigurationTable() function is used to maintain the list of configuration
tables that are stored in the EFI System Table. The list is stored as an array of (GUID, Pointer)
pairs. The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is not a valid GUID, EFI_INVALID_PARAMETER is returned. If Guid is valid, there
are four possibilities:

• If Guid is not present in the System Table, and Table is not NULL, then the (Guid, Table)
pair is added to the System Table. See Note below.

• If Guid is not present in the System Table, and Table is NULL, then EFI_NOT_FOUND
is returned.

• If Guid is present in the System Table, and Table is not NULL, then the (Guid, Table) pair
is updated with the new Table value.

• If Guid is present in the System Table, and Table is NULL, then the entry associated with
Guid is removed from the System Table.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

NOTE

If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

 January 31, 2006
202 Version 2.0

Status Codes Returned
EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is not valid.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.

January 31, 2006
Version 2.0 203

CalculateCrc32()

Summary

Computes and returns a 32-bit CRC for a data buffer.

Prototype
typedef
EFI_STATUS
CalculateCrc32 (
 IN VOID *Data,
 IN UINTN DataSize,
 OUT UINT32 *Crc32
);

Parameters
Data A pointer to the buffer on which the 32-bit CRC is to be computed.

DataSize The number of bytes in the buffer Data.

Crc32 The 32-bit CRC that was computed for the data buffer specified by Data
and DataSize.

Description

This function computes the 32-bit CRC for the data buffer specified by Data and DataSize. If
the 32-bit CRC is computed, then it is returned in Crc32 and EFI_SUCCESS is returned.

If Data is NULL, then EFI_INVALID_PARAMETER is returned.

If Crc32 is NULL, then EFI_INVALID_PARAMETER is returned.

If DataSize is 0, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in

Crc32.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER Crc32 is NULL.

EFI_INVALID_PARAMETER DataSize is 0.

 January 31, 2006
204 Version 2.0

January 31, 2006
Version 2.0 205

7
Services — Runtime Services

This chapter discusses the fundamental services that are present in a compliant system. The
services are defined by interface functions that may be used by code running in the EFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as applications running in the preboot environment and EFI OS loaders. Two
types of services are described here:

• Boot Services. Functions that are available before a successful call to
ExitBootServices(). These functions are described in Chapter 6.

• Runtime Services. Functions that are available before and after any call to
ExitBootServices(). These functions are described in this chapter.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
“handle-based.”

Applications written to this specification (including OS loaders) must use boot services functions to
access devices and allocate memory. On entry, an image is provided a pointer to a system table
which contains the Boot Services dispatch table and the default handles for accessing the console.
All boot services functionality is available until an EFI OS loader loads enough of its own
environment to take control of the system’s continued operation and then terminates boot services
with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices(). This choice may in
part depend upon whether or not such code is designed to make continued use of EFI boot services
or the boot services environment.

The rest of this chapter discusses individual functions. Runtime Services fall into these categories:

• Variable Services (Section 7.1)
• Time Services (Section 7.2)
• Virtual Memory Services (Section 7.3)
• Miscellaneous Services (Section 7.4)

 January 31, 2006
206 Version 2.0

7.1 Variable Services

Variables are defined as key/value pairs that consist of identifying information plus attributes (the
key) and arbitrary data (the value). Variables are intended for use as a means to store data that is
passed between the EFI environment implemented in the platform and EFI OS loaders and other
applications that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must
be persistent in most cases. This implies that the EFI implementation on a platform must arrange it
so that variables passed in for storage are retained and available for use each time the system boots,
at least until they are explicitly deleted or overwritten. Provision of this type of nonvolatile storage
may be very limited on some platforms, so variables should be used sparingly in cases where other
means of communicating information cannot be used.

Table 27 lists the variable services functions described in this section:

Table 27. Variable Services Functions
Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

QueryVariableInfo() Runtime Returns information about the EFI variables

January 31, 2006
Version 2.0 207

GetVariable()

Summary

Returns the value of a variable.

Prototype

typedef
EFI_STATUS
GetVariable (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,

OUT UINT32 *Attributes OPTIONAL,
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the InstallProtocolInterface() function
description.

Attributes If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable. See “Related Definitions.”

DataSize On input, the size in bytes of the return Data buffer.
On output the size of data returned in Data.

Data The buffer to return the contents of the variable.

Related Definitions

//***
// Variable Attributes
//***
#define EFI_VARIABLE_NON_VOLATILE 0x00000001
#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x00000002
#define EFI_VARIABLE_RUNTIME_ACCESS 0x00000004

 January 31, 2006
208 Version 2.0

Description
Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its Attributes are supplied to indicate how the
data variable should be stored and maintained by the system. The attributes affect when the
variable may be accessed and volatility of the data. Any attempts to access a variable that does not
have the attribute set for runtime access will yield the EFI_NOT_FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error
EFI_BUFFER_TOO_SMALL is returned and DataSize is set to the required buffer size to obtain
the data.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has

been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER The DataSize is not too small and Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.

January 31, 2006
Version 2.0 209

GetNextVariableName()

Summary
Enumerates the current variable names.

Prototype

typedef
EFI_STATUS
GetNextVariableName (
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VendorGuid
);

Parameters

VariableNameSize The size of the VariableName buffer.

VariableName On input, supplies the last VariableName that was returned
by GetNextVariableName(). On output, returns the Null-
terminated Unicode string of the current variable.

VendorGuid On input, supplies the last VendorGuid that was returned by
GetNextVariableName(). On output, returns the
VendorGuid of the current variable. Type EFI_GUID is
defined in the InstallProtocolInterface() function
description.

Description

GetNextVariableName() is called multiple times to retrieve the VariableName and
VendorGuid of all variables currently available in the system. On each call to
GetNextVariableName() the previous results are passed into the interface, and on output the
interface returns the next variable name data. When the entire variable list has been returned, the
error EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small
for the next variable. When such an error occurs, the VariableNameSize is updated to reflect
the size of buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial call to
GetNextVariableName(). When VariableName is a pointer to a Null Unicode character,
VendorGuid is ignored. GetNextVariableName() cannot be used as a filter to return
variable names with a specific GUID. Instead, the entire list of variables must be retrieved, and the

 January 31, 2006
210 Version 2.0

caller may act as a filter if it chooses. Calls to SetVariable() between calls to
GetNextVariableName() may produce unpredictable results. Passing in a VariableName
parameter that is neither a Null-terminated string nor a value that was returned on the previous call
to GetNextVariableName() may also produce unpredictable results.

Once ExitBootServices() is performed, variables that are only visible during boot services
will no longer be returned. To obtain the data contents or attribute for a variable returned by
GetNextVariableName(), the GetVariable() interface is used.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
VariableNameSize has been updated with the size needed
to complete the request.

EFI_INVALID_PARAMETER VariableNameSize is NULL.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.

January 31, 2006
Version 2.0 211

SetVariable()

Summary

Sets the value of a variable.

Prototype

typedef
EFI_STATUS
SetVariable (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 IN UINT32 Attributes,
 IN UINTN DataSize,
 IN VOID *Data
);

Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable. Each VariableName is unique for each
VendorGuid. VariableName must contain 1 or more
Unicode characters. If VariableName is an empty Unicode
string, then EFI_INVALID_PARAMETER is returned.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in the InstallProtocolInterface() function
description.

Attributes Attributes bitmask to set for the variable. Refer to the
GetVariable() function description.

DataSize The size in bytes of the Data buffer. A size of zero causes the
variable to be deleted.

Data The contents for the variable.

Description

Variables are stored by the firmware and may maintain their values across power cycles. Each
vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid.

Each variable has Attributes that define how the firmware stores and maintains the data value.
If the EFI_VARIABLE_NON_VOLATILE attribute is not set, the firmware stores the variable in
normal memory and it is not maintained across a power cycle. Such variables are used to pass
information from one component to another. An example of this is the firmware’s language code
support variable. It is created at firmware initialization time for access by EFI components that
may need the information, but does not need to be backed up to nonvolatile storage.

 January 31, 2006
212 Version 2.0

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited
storage capacity; sometimes a severely limited capacity. Software should only use a nonvolatile
variable when absolutely necessary. In addition, if software uses a nonvolatile variable it should
use a variable that is only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Using SetVariable() with a DataSize
of zero causes the entire variable to be deleted. The space consumed by the deleted variable may
not be available until the next power cycle.

The Attributes have the following usage rules:

• Storage attributes are only applied to a variable when creating the variable. If a preexisting
variable is rewritten with different attributes, the result is indeterminate and may vary between
implementations. The correct method of changing the attributes of a variable is to delete the
variable and recreate it with different attributes. There is one exception to this rule. If a
preexisting variable is rewritten with no access attributes specified, the variable will be deleted.

• Setting a data variable with no access attributes, or zero DataSize specified, causes it to be
deleted.

• Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have
EFI_VARIABLE_BOOTSERVICE_ACCESS set. The caller is responsible for following this
rule.

• Once ExitBootServices() is performed, data variables that did not have
EFI_VARIABLE_RUNTIME_ACCESS set are no longer visible to GetVariable().

• Once ExitBootServices() is performed, only variables that have
EFI_VARIABLE_RUNTIME_ACCESS and EFI_VARIABLE_NON_VOLATILE set can be
set with SetVariable(). Variables that have runtime access but that are not nonvolatile are
read-only data variables once ExitBootServices() is performed.

The only rules the firmware must implement when saving a nonvolatile variable is that it has
actually been saved to nonvolatile storage before returning EFI_SUCCESS, and that a partial save
is not performed. If power fails during a call to SetVariable() the variable may contain its
previous value, or its new value. In addition there is no read, write, or delete security protection.

Status Codes Returned
EFI_SUCCESS The firmware has successfully stored the variable and its data as

defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied, or the
DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty Unicode string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

EFI_WRITE_PROTECTED The variable in question is read-only.

January 31, 2006
Version 2.0 213

QueryVariableInfo()

Summary

Returns information about the EFI variables.

Prototype

typedef
EFI_STATUS
QueryVariableInfo (
 IN UINT32 Attributes,
 OUT UINT64 *MaximumVariableStorageSize,
 OUT UINT64 *RemainingVariableStorageSize,
 OUT UINT64 *MaximumVariableSize
);

Attributes Attributes bitmask to specify the type of variables on
which to return information. Refer to the
GetVariable() function description.

MaximumVariableStorageSize On output the maximum size of the storage space
available for the EFI variables associated with the
attributes specified.

RemainingVariableStorageSize Returns the remaining size of the storage space
available for the EFI variables associated with the
attributes specified.

MaximumVariableSize Returns the maximum size of the individual EFI
variables associated with the attributes specified.

Description

The QueryVariableInfo() function allows a caller to obtain the information about the
maximum size of the storage space available for the EFI variables, the remaining size of the storage
space available for the EFI variables and the maximum size of each individual EFI variable,
associated with the attributes specified.

The returned MaximumVariableStorageSize, RemainingVariableStorageSize,
MaximumVariableSize information may change immediately after the call based on other
runtime activities including asynchronous error events. Also, these values associated with different
attributes are not additive in nature.

 January 31, 2006
214 Version 2.0

Status Codes Returned
EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied

EFI_UNSUPPORTED The attribute is not supported on this platform, and the
MaximumVariableStorageSize,
RemainingVariableStorageSize, MaximumVariableSize
are undefined.

7.2 Time Services

This section contains function definitions for time-related functions that are typically needed by
operating systems at runtime to access underlying hardware that manages time information and
services. The purpose of these interfaces is to provide operating system writers with an abstraction
for hardware time devices, thereby relieving the need to access legacy hardware devices directly.
There is also a stalling function for use in the preboot environment. Table 28 lists the time services
functions described in this section:

Table 28. Time Services Functions
Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the
platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.

January 31, 2006
Version 2.0 215

GetTime()

Summary

Returns the current time and date information, and the time-keeping capabilities of the hardware
platform.

Prototype

typedef
EFI_STATUS
GetTime (
 OUT EFI_TIME *Time,
 OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

Parameters

Time A pointer to storage to receive a snapshot of the current time. Type
EFI_TIME is defined in “Related Definitions.”

Capabilities An optional pointer to a buffer to receive the real time clock device’s
capabilities. Type EFI_TIME_CAPABILITIES is defined in “Related
Definitions.”

Related Definitions

//***
//EFI_TIME
//***
// This represents the current time information
typedef struct {
 UINT16 Year; // 1998 – 20XX
 UINT8 Month; // 1 – 12
 UINT8 Day; // 1 – 31
 UINT8 Hour; // 0 – 23
 UINT8 Minute; // 0 – 59
 UINT8 Second; // 0 – 59
 UINT8 Pad1;
 UINT32 Nanosecond; // 0 – 999,999,999
 INT16 TimeZone; // -1440 to 1440 or 2047
 UINT8 Daylight;
 UINT8 Pad2;
} EFI_TIME;

 January 31, 2006
216 Version 2.0

//***
// Bit Definitions for EFI_TIME.Daylight. See below.
//***
#define EFI_TIME_ADJUST_DAYLIGHT 0x01
#define EFI_TIME_IN_DAYLIGHT 0x02

//***
// Value Definition for EFI_TIME.TimeZone. See below.
//***
#define EFI_UNSPECIFIED_TIMEZONE 0x07FF

Year, Month, Day The current local date.

Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current fraction
of a second in the device. The format of the time is
hh:mm:ss.nnnnnnnnn. A battery backed real time clock
device maintains the date and time.

TimeZone The time's offset in minutes from GMT. If the value is
EFI_UNSPECIFIED_TIMEZONE, then the time is interpreted
as a local time.

Daylight A bitmask containing the daylight savings time information for
the time.

The EFI_TIME_ADJUST_DAYLIGHT bit indicates if the time
is affected by daylight savings time or not. This value does not
indicate that the time has been adjusted for daylight savings
time. It indicates only that it should be adjusted when the
EFI_TIME enters daylight savings time.

If EFI_TIME_IN_DAYLIGHT is set, the time has been
adjusted for daylight savings time.

All other bits must be zero.

January 31, 2006
Version 2.0 217

//***
// EFI_TIME_CAPABILITIES
//***
// This provides the capabilities of the
// real time clock device as exposed through the EFI interfaces.
typedef struct {
 UINT32 Resolution;
 UINT32 Accuracy;
 BOOLEAN SetsToZero;
} EFI_TIME_CAPABILITIES;

Resolution Provides the reporting resolution of the real-time clock device in counts
per second. For a normal PC-AT CMOS RTC device, this value would
be 1 Hz, or 1, to indicate that the device only reports the time to the
resolution of 1 second.

Accuracy Provides the timekeeping accuracy of the real-time clock in an error rate
of 1E-6 parts per million. For a clock with an accuracy of 50 parts per
million, the value in this field would be 50,000,000.

SetsToZero A TRUE indicates that a time set operation clears the device’s time below
the Resolution reporting level. A FALSE indicates that the state
below the Resolution level of the device is not cleared when the time
is set. Normal PC-AT CMOS RTC devices set this value to FALSE.

Description

The GetTime() function returns a time that was valid sometime during the call to the function.
While the returned EFI_TIME structure contains TimeZone and Daylight savings time
information, the actual clock does not maintain these values. The current time zone and daylight
saving time information returned by GetTime() are the values that were last set via
SetTime().

The GetTime() function should take approximately the same amount of time to read the time
each time it is called. All reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetTime().

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.

 January 31, 2006
218 Version 2.0

SetTime()

Summary

Sets the current local time and date information.

Prototype

typedef
EFI_STATUS
SetTime (
 IN EFI_TIME *Time
);

Parameters

Time A pointer to the current time. Type EFI_TIME is defined in the
GetTime() function description. Full error checking is performed on
the different fields of the EFI_TIME structure (refer to the EFI_TIME
definition in the GetTime() function description for full details), and
EFI_INVALID_PARAMETER is returned if any field is out of range.

Description

The SetTime() function sets the real time clock device to the supplied time, and records the
current time zone and daylight savings time information. The SetTime() function is not allowed
to loop based on the current time. For example, if the device does not support a hardware reset for
the sub-resolution time, the code is not to implement the feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetTime().

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The time could not be set due to a hardware error.

January 31, 2006
Version 2.0 219

GetWakeupTime()

Summary

Returns the current wakeup alarm clock setting.

Prototype

typedef
EFI_STATUS
GetWakeupTime (
 OUT BOOLEAN *Enabled,
 OUT BOOLEAN *Pending,
 OUT EFI_TIME *Time
);

Parameters

Enabled Indicates if the alarm is currently enabled or disabled.

Pending Indicates if the alarm signal is pending and requires acknowledgement.

Time The current alarm setting. Type EFI_TIME is defined in the
GetTime() function description.

Description

The alarm clock time may be rounded from the set alarm clock time to be within the resolution of
the alarm clock device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetWakeupTime().

Status Codes Returned
EFI_SUCCESS The alarm settings were returned.

EFI_INVALID_PARAMETER Enabled is NULL.

EFI_INVALID_PARAMETER Pending is NULL.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.

 January 31, 2006
220 Version 2.0

SetWakeupTime()

Summary

Sets the system wakeup alarm clock time.

Prototype

typedef
EFI_STATUS
SetWakeupTime (
 IN BOOLEAN Enable,
 IN EFI_TIME *Time OPTIONAL
);

Parameters

Enable Enable or disable the wakeup alarm.

Time If Enable is TRUE, the time to set the wakeup alarm for. Type
EFI_TIME is defined in the GetTime() function description. If
Enable is FALSE, then this parameter is optional, and may be NULL.

Description

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the
alarm fires, the alarm signal is latched until it is acknowledged by calling SetWakeupTime() to
disable the alarm. If the alarm fires before the system is put into a sleeping or off state, since the
alarm signal is latched the system will immediately wake up. If the alarm fires while the system is
off and there is insufficient power to power on the system, the system is powered on when power
is restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm
for the desired wakeup time. The operating system still controls the wakeup event as it normally
would through the ACPI Power Management register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetWakeupTime().

Status Codes Returned
EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If

Enable is FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.

January 31, 2006
Version 2.0 221

7.3 Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally
used by an operating system at runtime. If an operating system chooses to make EFI runtime
service calls in a virtual addressing mode instead of the flat physical mode, then the operating
system must use the services in this section to switch the EFI runtime services from flat physical
addressing to virtual addressing. Table 29 lists the virtual memory service functions described in
this section. The system firmware must follow the processor-specific rules outlined in
Sections 2.3.2 through 2.3.4 in the layout of the EFI memory map to enable the OS to make the
required virtual mappings.

Table 29. Virtual Memory Functions
Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to virtual
addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when switching
to virtual addressing.

 January 31, 2006
222 Version 2.0

SetVirtualAddressMap()

Summary

Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype

typedef
EFI_STATUS
SetVirtualAddressMap (
IN UINTN MemoryMapSize,
IN UINTN DescriptorSize,
IN UINT32 DescriptorVersion,
IN EFI_MEMORY_DESCRIPTOR *VirtualMap
);

Parameters

MemoryMapSize The size in bytes of VirtualMap.

DescriptorSize The size in bytes of an entry in the VirtualMap.

DescriptorVersion The version of the structure entries in VirtualMap.

VirtualMap An array of memory descriptors which contain new virtual
address mapping information for all runtime ranges. Type
EFI_MEMORY_DESCRIPTOR is defined in the
GetMemoryMap() function description.

Description

The SetVirtualAddressMap() function is used by the OS loader. The function can only be
called at runtime, and is called by the owner of the system’s memory map. I.e., the component
which called ExitBootServices(). All events of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE must be signaled before
SetVirtualAddressMap() returns.

This call changes the addresses of the runtime components of the EFI firmware to the new virtual
addresses supplied in the VirtualMap. The supplied VirtualMap must provide a new virtual
address for every entry in the memory map at ExitBootServices() that is marked as being
needed for runtime usage. All of the virtual address fields in the VirtualMap must be aligned
on 4 KB boundaries.

The call to SetVirtualAddressMap() must be done with the physical mappings. On
successful return from this function, the system must then make any future calls with the newly
assigned virtual mappings. All address space mappings must be done in accordance to the
cacheability flags as specified in the original address map.

January 31, 2006
Version 2.0 223

When this function is called, all events that were registered to be signaled on an address map
change are notified. Each component that is notified must update any internal pointers for their
new addresses. This can be done with the ConvertPointer() function. Once all events have
been notified, the EFI firmware reapplies image “fix-up” information to virtually relocate all
runtime images to their new addresses. In addition, all of the fields of the EFI Runtime Services
Table except SetVirtualAddressMap and ConvertPointer must be converted from
physical pointers to virtual pointers using the ConvertPointer() service. The
SetVirtualAddressMap() and ConvertPointer() services are only callable in physical
mode, so they do not need to be converted from physical pointers to virtual pointers. Several fields
of the EFI System Table must be converted from physical pointers to virtual pointers using the
ConvertPointer() service. These fields include FirmwareVendor, RuntimeServices,
and ConfigurationTable. Because contents of both the EFI Runtime Services Table and the
EFI System Table are modified by this service, the 32-bit CRC for the EFI Runtime Services Table
and the EFI System Table must be recomputed.

A virtual address map may only be applied one time. Once the runtime system is in virtual mode,
calls to this function return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
virtual address mapped mode.

EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is

invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory
map that requires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found
in the memory map.

 January 31, 2006
224 Version 2.0

ConvertPointer()

Summary
Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype

typedef
EFI_STATUS
ConvertPointer (
IN UINTN DebugDisposition,
 IN VOID **Address
);

Parameters

DebugDisposition Supplies type information for the pointer being converted. See
“Related Definitions.”

Address A pointer to a pointer that is to be fixed to be the value needed
for the new virtual address mappings being applied.

Related Definitions

//***
// EFI_OPTIONAL_PTR
//***
#define EFI_OPTIONAL_PTR 0x00000001

Description

The ConvertPointer() function is used by an EFI component during the
SetVirtualAddressMap() operation. ConvertPointer()must be called using physical
address pointers during the execution of. SetVirtualAddressMap().

The ConvertPointer() function updates the current pointer pointed to by Address to be the
proper value for the new address map. Only runtime components need to perform this operation.
The CreateEvent() function is used to create an event that is to be notified when the address
map is changing. All pointers the component has allocated or assigned must be updated.

If the EFI_OPTIONAL_PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in
pointers that are embedded in any runtime image.

January 31, 2006
Version 2.0 225

Status Codes Returned
EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part

of the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER Address is NULL.

EFI_INVALID_PARAMETER *Address is NULL and DebugDisposition does
not have the EFI_OPTIONAL_PTR bit set.

7.4 Miscellaneous Runtime Services

This section contains the remaining function definitions for runtime services not defined elsewhere
but which are required to complete the definition of the EFI environment. Table 30 lists the
Miscellaneous Runtime Services.

Table 30. Miscellaneous Runtime Services
Name Type Description

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic
counter.

ResetSystem Runtime Resets the entire platform.

UpdateCapsule

Runtime Pass capsules to the firmware. The firmware may process the
capsules immediately or return a value to be passed into
ResetSystem() that will cause the capsule to be processed
by the firmware as part of the reset process.

QueryCapsuleCapabilities Runtime Returns if the capsule can be supported via
UpdateCapsule()

7.4.1 Reset System
This section describes the reset system runtime service and its associated data structures.

 January 31, 2006
226 Version 2.0

ResetSystem()

Summary

Resets the entire platform.

Prototype

typedef
VOID
ResetSystem (
 IN EFI_RESET_TYPE ResetType,

IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
);

Parameters

ResetType The type of reset to perform. Type EFI_RESET_TYPE is defined in
“Related Definitions” below.

ResetStatus The status code for the reset. If the system reset is part of a normal
operation, the status code would be EFI_SUCCESS. If the system reset
is due to some type of failure the most appropriate EFI Status code
would be used.

DataSize The size, in bytes, of ResetData.

ResetData For a ResetType of EfiResetCold, EfiResetWarm, or
EfiResetShutdown the data buffer starts with a Null-terminated
Unicode string, optionally followed by additional binary data. The string
is a description that the caller may use to further indicate the reason for
the system reset. ResetData is only valid if ResetStatus is
something other then EFI_SUCCESS. This pointer must be a physical
address. For a ResetType of EfiRestUpdate the data buffer also
starts with a Null-terminated string that is followed by a physical
VOID * to an EFI_CAPSULE_HEADER.

January 31, 2006
Version 2.0 227

Related Definitions

//***
// EFI_RESET_TYPE
//***
typedef enum {
 EfiResetCold,
 EfiResetWarm,
 EfiResetShutdown
} EFI_RESET_TYPE;

Description

The ResetSystem()function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets
all circuitry within the system to its initial state. This type of reset is asynchronous to system
operation and operates without regard to cycle boundaries. EfiResetCold is tantamount to a
system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization.
The processors are set to their initial state, and pending cycles are not corrupted. If the system does
not support this reset type, then an EfiResetCold must be performed.

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a
power state equivalent to the ACPI G2/S5 or G3 states. If the system does not support this reset
type, then when the system is rebooted, it should exhibit the EfiResetCold attributes. If the
ACPI S5 state is supported on the system, then this reset type should not be used.

The platform may optionally log the parmeters from any non-normal reset that occurs.

The ResetSystem() function does not return.

7.4.2 GetNextHighMotonic Count
This section describes the GetNextHighMonotonicCount runtime service and its associated data
structures.

 January 31, 2006
228 Version 2.0

GetNextHighMonotonicCount()

Summary

Returns the next high 32 bits of the platform’s monotonic counter.

Prototype

typedef
EFI_STATUS
GetNextHighMonotonicCount (
 OUT UINT32 *HighCount
);

Parameters

HighCount Pointer to returned value.

Description

The GetNextHighMonotonicCount() function returns the next high 32 bits of the platform’s
monotonic counter.

The platform’s monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the
low 32 bits. During boot service time the low 32-bit value is volatile: it is reset to zero on every
system reset and is increased by 1 on every call to GetNextMonotonicCount(). The high
32-bit value is nonvolatile and is increased by 1 whenever the system resets or whenever the low
32-bit count (returned by GetNextMonoticCount()) overflows.

The GetNextMonotonicCount() function is only available at boot services time. If the
operating system wishes to extend the platform monotonic counter to runtime, it may do so by
utilizing GetNextHighMonotonicCount(). To do this, before calling
ExitBootServices() the operating system would call GetNextMonotonicCount() to
obtain the current platform monotonic count. The operating system would then provide an
interface that returns the next count by:

• Adding 1 to the last count.
• Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount().

This will increase the high 32 bits of the platform’s nonvolatile portion of the monotonic count
by 1.

This function may only be called at Runtime.

January 31, 2006
Version 2.0 229

Status Codes Returned
EFI_SUCCESS The next high monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER HighCount is NULL.

7.4.3 Update Capsule
This runtime function allows a caller to pass information to the firmware. Update Capsule is
commonly used to update the firmware FLASH or for an operating system to have information
persist across a system reset.

 January 31, 2006
230 Version 2.0

UpdateCapsule()

Summary

Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended
consumption, the firmware may process the capsule immediately. If the payload should persist
across a system reset, the reset value returned from EFI_QueryCapsuleCapabilities must
be passed into ResetSystem() and will cause the capsule to be processed by the firmware as
part of the reset process.

Prototype

typedef
EFI_STATUS
UpdateCapsule (
 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
 IN UINTN CapsuleCount,
 IN EFI_PHSYICAL_ADDRESS ScatterGatherList OPTIONAL
);

Parameters

CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules
being passed into update capsule. Each capsules is assumed to
stored in contiguous virtual memory. The capsules in the
CapsuleHeaderArray must be the same capsules as the
ScatterGatherList. The CapsuleHeaderArray must
have the capsules in the same order as the
ScatterGatherList.

CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in
CaspuleHeaderArray.

ScatterGatherList Physical pointer to a set of
EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the
location in physical memory of a set of capsules. See Related
Definitions for an explanation of how more than one capsule is
passed via this interface. The capsules in the
ScatterGatherList must be in the same order as the
CapsuleHeaderArray. This parameter is only referenced if
the capsules are defined to persist across system reset.

January 31, 2006
Version 2.0 231

Related Definitions
typedef struct (
 UINT64 Length;
 union {

 EFI_PHYSICAL_ADDRESS DataBlock;

 EFI_PHYSICAL_ADDRESS ContinuationPointer;

 }
) EFI_CAPSULE_BLOCK_DESCRIPTOR;

Length Length in bytes of the data pointed to by

DataBlock/ContinuationPointer.

DataBlock Physical address of the data block. This member of the union is
used if Length is not equal to zero.

ContinuationPointer Physical address of another block of
EFI_CAPSULE_BLOCK_DESCRIPTOR structures. This
member of the union is used if Length is equal to zero. If
ContinuationPointer is zero this entry represents the end
of the list.

This data structure defines the ScatterGatherList list the OS passes to the firmware.
ScatterGatherList represents an array of structures and is terminated with a structure
member whose Length is 0 and DataBlock physical address is 0. If Length is 0 and
DataBlock physical address is not 0, the specified physical address is known as a
“continuation pointer” and it points to a further list of EFI_CAPSULE_BLOCK_DESCRIPTOR
structures. A continuation pointer is used to allow the scatter gather list to be contained in
physical memory that is not contiguous. It also is used to allow more than a single capsule to be
passed at one time.

 January 31, 2006
232 Version 2.0

typedef struct {
 EFI_GUID CapsuleGuid;
 UINT32 HeaderSize;
 UINT32 Flags;
 UINT32 CapsuleImageSize;
} EFI_CAPSULE_HEADER;

CapsuleGuid A GUID that defines the contents of a capsule.

HeaderSize The size of the capsule header. This may be larger than the size
of the EFI_CAPSULE_HEADER since CapsuleGuid may
imply extended header entries.

Flags Bit-mapped list describing the capsule attributes. The Flag
values of 0x0000 – 0xFFFF are defined by CapsuleGuid.
Flag values of 0x10000 – 0xFFFFFFFF are defined by this
specification

CapsuleImageSize Size in bytes of the capsule.

#define CAPSULE_FLAGS_PERSIST_ACROSS_RESET 0x00010000
#define CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE 0x00020000

Description

The UpdateCapsule()function allows the operating system to pass information to firmware.
The UpdateCapsule() function supports passing capsules in operating system virtual memory
back to firmware. Each capsule is contained in a contiguous virtual memory range in the operating
system, but both a virtual and physical mapping for the capsules are passed to the firmware.

If a capsule has the CAPSULE_FLAGS_PERSIST_ACROSS_RESET Flag set in its header, the
firmware will process the capsules after system reset. The caller must ensure to reset the system
using the required reset value obtained from QueryCapsuleCapabilities. If this flag is not set, the
firmware will process the capsules immediately.

If a capsule has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag set in its header in
addition to CAPSULE_FLAGS_PERSIST_ACROSS_RESET then the firmware must place a
pointer to this capsule in the EFI System Table after the system has been reset. The EFI System
Table entry must use the GUID from the CapsuleGuid field of the EFI_CAPSULE_HEADER. The
EFI System Table entry must point to an array of capsules that contain the same CapsuleGuid
value. The array must be prefixed by a UINT32 that represents the size of the array of capsules.

The set of capsules is pointed to by ScatterGatherList and CapsuleHeaderArray so the
firmware will know both the physical and virtual addresses of the operating system allocated
buffers. The scatter-gather list supports the situation where the virtual address range of a capsules is
contiguous, but the physical address are not. See 6.1.1 for more complete definition of capsule
construction.

January 31, 2006
Version 2.0 233

Status Codes Returned
EFI_SUCCESS Valid capsule was passed. I Valid capsule was passed. If

CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set, the
capsule has been successfully processed by the firmware.

EFI_INVALID_PARAMETER CapsuleSize is NULL.

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.

7.4.3.1 Capsule Definition
A capsule is simply a contiguous set of data that starts with an EFI_CAPSULE_HEADER. The
CapsuleGuid field in the header defines the format of the capsule.

The capsule contents are designed to be communicated from an OS-present environment to the
system firmware. To allow capsules to persist across system reset, a level of indirection is required
for the description of a capsule, since the OS primarily uses virtual memory and the firmware at
boot time uses physical memory. This level of abstraction is accomplished via the
EFI_CAPSULE_BLOCK_DESCRIPTOR. The EFI_CAPSULE_BLOCK_DESCRIPTOR allows
the OS to allocate contiguous virtual address space and describe this address space to the firmware
as a discontinuous set of physical address ranges. The firmware is passed both physical and virtual
addresses and pointers to describe the capsule so the firmware can process the capsule immediately
or defer processing of the capsule until after a system reset.

In most instruction sets and OS architecture, allocation of physical memory is possible only on a
“page” granularity (which can range for 4 KB to at least 1 MB). The
EFI_CAPSULE_BLOCK_DESCRIPTOR must have the following properties to ensure the safe and
well defined transition of the data:

• Each new capsule must start on a new page of memory.
• All pages except for the last must be completely filled by the capsule.

 It is legal to pad the header to make it consume an entire page of data to enable the passing
of page aligned data structures via a capsule. The last page must have at least one byte of
capsule in it.

• Pages must be naturally aligned
• Pages may not overlap on another
• Firmware may never make an assumption about the page sizes the operating system is using.

Multiple capsules can be concatenated together and passed via a single call to
UpdateCapsule().The physical address description of capsules are concatenated by converting
the terminating EFI_CAPSULE_BLOCK_DESCRIPTOR entry of the 1st capsule into a
continuation pointer by making it point to the EFI_CAPSULE_BLOCK_DESCRIPTOR that
represents the start of the 2nd capsule. There is only a single terminating
EFI_CAPSULE_BLOCK_DESCRIPTOR entry and it is at the end of the last capsule in the chain.

 January 31, 2006
234 Version 2.0

The following algorithm must be used to find multiple capsules in a single scatter gather list:

• Look at the capsule header to determine the size of the capsule

 The first Capsule header is always pointed to by the first
EFI_CAPSULE_BLOCK_DESCRIPTOR entry

• Walk the EFI_CAPSULE_BLOCK_DESCRIPTOR list keeping a running count of the size
each entry represents.

• If the EFI_CAPSULE_BLOCK_DESCRIPTOR entry is a continuation pointer and the running
current capsule size count is greater than or equal to the size of the current capsule this is the
start of the next capsule.

• Make the new capsules the current capsule and repeat the algorithm.

Figure 19 shows a Scatter-Gather list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures that
describes two capsules. The left side of the figure shows OS view of the capsules as two separate
contiguous virtual memory buffers. The center of the figure shows the layout of the data in system
memory. The right hand side of the figure shows the ScatterGatherList list passed into the
firmware. Since there are two capsules two independent EFI_CAPSULE_BLOCK_DESCRIPTOR
lists exist that were joined together via a continuation pointer in the first list.

Page N

Page M+1

Page M

System Memory

Capsule A header

Capsule B header

Capsule Body

Capsule Body

Capsule BodyPage N+1

Page N+2

Capsule Block Descriptor
ScatterGather

OS view of Capsules
FW view of Capsules

Page X

Page Y

NULL

Figure 19. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures

January 31, 2006
Version 2.0 235

QueryCapsuleCapabilities()

Summary

Returns if the capsule can be supported via UpdateCapsule().

Prototype

typedef
EFI_STATUS
QueryCapsuleCapabilities (
 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
 IN UINTN CapsuleCount,
 OUT UINT64 *MaximumCapsuleSize,
 OUT EFI_RESET_TYPE *ResetType
);

CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules
being passed into update capsule. The capsules are assumed to
stored in contiguous virtual memory.

CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in
CaspuleHeaderArray.

MaxiumCapsuleSize On output the maximum size that UpdateCapsule() can
support as an argument to UpdateCapsule() via
CapsuleHeaderArray and ScatterGatherList.
Undefined on input.

ResetType Returns the type of reset required for the capsule update.
Undefined on input.

Description

The QueryCapsuleCapabilities() function allows a caller to test to see if a capsule or
capsules can be updated via UpdateCapsule(). The Flags values in the capsule header and
size of the entire capsule is checked.

If the caller needs to query for generic capsule capability a fake EFI_CAPSULE_HEADER can be
constructed where CapsuleImageSize is equal to HeaderSize that is equal to sizeof
(EFI_CAPSULE_HEADER). To determine reset requirements,
CAPSULE_FLAGS_PERSIST_ACROSS_RESET should be set in the Flags field of the
EFI_CAPSULE_HEADER.

The firmware must support any capsule that has the
CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set in EFI_CAPSULE_HEADER. The
firmware sets the policy for what capsules are supported that do not have the
CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set.

 January 31, 2006
236 Version 2.0

Status Codes Returned
EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL.

EFI_UNSUPPORTED The capsule type is not supported on this platform, and
MaximumCapsuleSize and ResetType are undefined.

January 31, 2006
Version 2.0 237

8
Protocols — EFI Loaded Image

This chapter defines EFI_LOADED_IMAGE_PROTOCOL. This protocol describes an Image that
has been loaded into memory. This description includes the source from which the image was
loaded, the current location of the image in memory, the type of memory allocated for the image,
and the parameters passed to the image when it was invoked.

EFI_LOADED_IMAGE_PROTOCOL

Summary

Can be used on any image handle to obtain information about the loaded image.

GUID
#define EFI_LOADED_IMAGE_PROTOCOL_GUID \

{0x5B1B31A1,0x9562,0x11d2,0x8E,0x3F,0x00,0xA0,0xC9,0x69,
0x72,0x3B}

Revision Number
#define EFI_LOADED_IMAGE_PROTOCOL_REVISION 0x1000

Protocol Interface Structure
typedef struct {
 UINT32 Revision;
 EFI_HANDLE ParentHandle;
 EFI_SYSTEM_TABLE *SystemTable;

 // Source location of the image
 EFI_HANDLE DeviceHandle;
 EFI_DEVICE_PATH_PROTOCOL *FilePath;
 VOID *Reserved;

 // Image’s load options
 UINT32 LoadOptionsSize;
 VOID *LoadOptions;

 January 31, 2006
238 Version 2.0

 // Location where image was loaded
 VOID *ImageBase;
 UINT64 ImageSize;
 EFI_MEMORY_TYPE ImageCodeType;
 EFI_MEMORY_TYPE ImageDataType;

 EFI_IMAGE_UNLOAD Unload;
} EFI_LOADED_IMAGE_PROTOCOL;

Parameters

Revision Defines the revision of the EFI_LOADED_IMAGE_PROTOCOL
structure. All future revisions will be backward compatible to
the current revision.

ParentHandle Parent image’s image handle. NULL if the image is loaded
directly from the firmware’s boot manager. Type EFI_HANDLE
is defined in Chapter 6.

SystemTable The image’s EFI system table pointer. Type
EFI_SYSTEM_TABLE is defined in Section 4.3

DeviceHandle The device handle that the EFI Image was loaded from. Type
EFI_HANDLE is defined in Chapter 6.

FilePath A pointer to the file path portion specific to DeviceHandle
that the EFI Image was loaded from.
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Reserved Reserved. DO NOT USE.

LoadOptionsSize The size in bytes of LoadOptions.

LoadOptions A pointer to the image’s binary load options.

ImageBase The base address at which the image was loaded.

ImageSize The size in bytes of the loaded image.

ImageCodeType The memory type that the code sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Chapter 6.

ImageDataType The memory type that the data sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Chapter 6.

Unload Function that unloads the image. See Unload().

January 31, 2006
Version 2.0 239

Description

Each loaded image has an image handle that supports EFI_LOADED_IMAGE_PROTOCOL. When
an image is started, it is passed the image handle for itself. The image can use the handle to obtain
its relevant image data stored in the EFI_LOADED_IMAGE_PROTOCOL structure, such as its load
options.

 January 31, 2006
240 Version 2.0

EFI_LOADED_IMAGE.Unload()

Summary

Unloads an image from memory.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_UNLOAD_IMAGE) (
 IN EFI_HANDLE ImageHandle,
);

Parameters

ImageHandle The handle to the image to unload. Type EFI_HANDLE is defined in
Section 6.3.1.

Description

The Unload() function unloads an image from memory if ImageHandle is valid.

Status Codes Returned
EFI_SUCCESS The image was unloaded.

EFI_INVALID_PARAMETER The ImageHandle was not valid.

January 31, 2006
Version 2.0 241

9
Protocols — Device Path Protocol

This chapter contains the definition of the device path protocol and the information needed to
construct and manage device paths in the UEFI environment. A device path is constructed and
used by the firmware to convey the location of important devices, such as the boot device and
console, consistent with the software-visible topology of the system.

9.1 Device Path Overview

A Device Path is used to define the programmatic path to a device. The primary purpose of a
Device Path is to allow an application, such as an OS loader, to determine the physical device that
the interfaces are abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted
around a name space that is written in ASL (ACPI Source Language). Given that EFI does not
replace ACPI and defers to ACPI when ever possible, it would seem logical to utilize the ACPI
name space in EFI. However, the ACPI name space was designed for usage at operating system
runtime and does not fit well in platform firmware or OS loaders. Given this, EFI defines its own
name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key
structures in the Device Path defines the linkage back to the ACPI name space. The Device Path
also is used to fill in the gaps where ACPI defers to buses with standard enumeration algorithms.
The Device Path is able to relate information about which device is being used on buses with
standard enumeration mechanisms. The Device Path is also used to define the location on a
medium where a file should be, or where it was loaded from. A special case of the Device Path can
also be used to support the optional booting of legacy operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which
devices the platform firmware was using as boot devices. This allows the operating system to
maintain a view of the system that is consistent with the platform firmware. An example of this is a
“headless” system that is using a network connection as the boot device and console. In such a
case, the firmware will convey to the operating system the network adapter and network protocol
information being used as the console and boot device in the device path for these devices.

 January 31, 2006
242 Version 2.0

9.2 EFI Device Path Protocol

This section provides a detailed description of EFI_DEVICE_PATH_PROTOCOL.

EFI_DEVICE_PATH_PROTOCOL

Summary

Can be used on any device handle to obtain generic path/location information concerning the
physical device or logical device. If the handle does not logically map to a physical device, the
handle may not necessarily support the device path protocol. The device path describes the location
of the device the handle is for. The size of the Device Path can be determined from the structures
that make up the Device Path.

GUID
#define EFI_DEVICE_PATH_PROTOCOL_GUID \

{0x09576e91,0x6d3f,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Protocol Interface Structure
//***
// EFI_DEVICE_PATH_PROTOCOL
//***
typedef struct _EFI_DEVICE_PATH_PROTOCOL {
UINT8 Type;
UINT8 SubType;
UINT8 Length[2];
} EFI_DEVICE_PATH_PROTOCOL;

Description

The executing EFI Image may use the device path to match its own device drivers to the particular
device. Note that the executing UEFI OS loader and UEFI application images must access all
physical devices via Boot Services device handles until ExitBootServices() is successfully
called. A UEFI driver may access only a physical device for which it provides functionality.

January 31, 2006
Version 2.0 243

9.3 Device Path Nodes

There are six major types of Device Path nodes:

• Hardware Device Path. This Device Path defines how a device is attached to the resource
domain of a system, where resource domain is simply the shared memory, memory mapped
I/O, and I/O space of the system.

• ACPI Device Path. This Device Path is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described using ACPI AML
in the ACPI name space; this Device Path is a linkage to the ACPI name space.

• Messaging Device Path. This Device Path is used to describe the connection of devices outside
the resource domain of the system. This Device Path can describe physical messaging
information (e.g., a SCSI ID) or abstract information (e.g., networking protocol IP addresses).

• Media Device Path. This Device Path is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define which partition
on a hard drive was being used.

• BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy
operating systems; it is based on the BIOS Boot Specification Version 1.01. Refer to the
References appendix for details on obtaining this specification.

• End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used to
indicate the end of the Device Path instance or Device Path structure.

9.3.1 Generic Device Path Structures
A Device Path is a variable-length binary structure that is made up of variable-length generic
Device Path nodes. Table 31 defines the structure of a variable-length generic Device Path node
and the lengths of its components. The table defines the type and sub-type values corresponding to
the Device Paths described in Section 9.3; all other type and sub-type values are Reserved.

Table 31. Generic Device Path Node Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x01 – Hardware Device Path

Type 0x02 – ACPI Device Path

Type 0x03 – Messaging Device Path

Type 0x04 – Media Device Path

Type 0x05 – BIOS Boot Specification Device Path

Type 0x7F – End of Hardware Device Path

Sub-Type 1 1 Sub-Type – Varies by Type. (See Table 32.)

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Specific Device Path Data 4 n Specific Device Path data. Type and Sub-Type define
type of data. Size of data is included in Length.

 January 31, 2006
244 Version 2.0

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte
offset zero of the Device Path. The next Device Path node starts at the end of the previous Device
Path node. Therefore all nodes are byte-packed data structures that may appear on any byte
boundary. All code references to device path notes must assume all fields are unaligned. Since
every Device Path node contains a length field in a known place, it is possible to traverse Device
Path nodes that are of an unknown type. There is no limit to the number, type, or sequence of
nodes in a Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two
sub-types (see Table 32):

• End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device
Path instance and denotes the start of another. This is only required when an environment
variable represents multiple devices. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and serial output console. This
variable would describe a console output stream that is sent to both VGA and serial
concurrently and thus has a Device Path that contains two complete Device Paths.

• End Entire Device Path (sub-type 0xFF). This type of node terminates an entire Device Path.
Software searches for this sub-type to find the end of a Device Path. All Device Paths must end
with this sub-type.

Table 32. Device Path End Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x7F – End of Hardware Device Path

Sub-Type 1 1 Sub-Type 0xFF – End Entire Device Path, or

Sub-Type 0x01 – End This Instance of a Device Path and start a new
Device Path

Length 2 2 Length of this structure in bytes. Length is 4 bytes.

January 31, 2006
Version 2.0 245

9.3.2 Hardware Device Path
This Device Path defines how a device is attached to the resource domain of a system, where
resource domain is simply the shared memory, memory mapped I/O, and I/O space of the system.
It is possible to have multiple levels of Hardware Device Path such as a PCCARD device that was
attached to a PCCARD PCI controller.

9.3.2.1 PCI Device Path
The Device Path for PCI defines the path to the PCI configuration space address for a PCI device.
There is one PCI Device Path entry for each device and function number that defines the path from
the root PCI bus to the device. Because the PCI bus number of a device may potentially change, a
flat encoding of single PCI Device Path entry cannot be used. An example of this is when a PCI
device is behind a bridge, and one of the following events occurs:

• OS performs a Plug and Play configuration of the PCI bus.
• A hot plug of a PCI device is performed.
• The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies
the PCI root bus. The programming of root PCI bridges is not defined by any PCI specification and
this is why an ACPI Device Path entry is required.

Table 33. PCI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 1 – PCI

Length 2 2 Length of this structure is 6 bytes

Function 4 1 PCI Function Number

Device 5 1 PCI Device Number

9.3.2.2 PCCARD Device Path

Table 34. PCCARD Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 2 – PCCARD

Length 2 2 Length of this structure in bytes. Length is 5 bytes.

Function Number 4 1 Function Number (0 = First Function)

 January 31, 2006
246 Version 2.0

9.3.2.3 Memory Mapped Device Path

Table 35. Memory Mapped Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 3 – Memory Mapped.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Memory Type 4 4 EFI_MEMORY_TYPE. Type EFI_MEMORY_TYPE is
defined in the AllocatePages() function description.

Start Address 8 8 Starting Memory Address.

End Address 16 8 Ending Memory Address.

9.3.2.4 Vendor Device Path
The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must
allocate a Vendor GUID for a Device Path. The Vendor GUID can then be used to define the
contents on the n bytes that follow in the Vendor Device Path node.

Table 36. Vendor-Defined Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 4 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

9.3.2.5 Controller Device Path

Table 37. Controller Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 5 – Controller.

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Controller Number 4 4 Controller number.

January 31, 2006
Version 2.0 247

9.3.3 ACPI Device Path
This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID
and its corresponding unique persistent ID. The ACPI IDs are stored in the ACPI _HID, _CID, and
_UID device identification objects that are associated with a device. The ACPI Device Path
contains values that must match exactly the ACPI name space that is provided by the platform
firmware to the operating system. Refer to the ACPI specification for a complete description of the
_HID, _CID, and _UID device identification objects.

The _HID and _CID values are optional device identification objects that appear in the ACPI name
space. If only _HID is present, the _HID must be used to describe any device that will be
enumerated by the ACPI driver. The _CID, if present, contains information that is important for the
OS to attach generic driver (e.g., PCI Bus Driver), while the _HID contains information important
for the OS to attach device-specific driver. The ACPI bus driver only enumerates a device when no
standard bus enumerator exists for a device.

The _UID object provides the OS with a serial number-style ID for a device that does not change
across reboots. The object is optional, but is required when a system contains two devices that
report the same _HID. The _UID only needs to be unique among all device objects with the same
_HID value. If no _UID exists in the APCI name space for a _HID the value of zero must be stored
in the _UID field of the ACPI Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device
Path. An _HID (along with _CID if present) is required to represent a PCI root bridge, since the
PCI specification does not define the programming model for a PCI root bridge. There are two
subtypes of the ACPI Device Path: a simple subtype that only includes the _HID and _UID fields,
and an extended subtype that includes the _HID, _CID, and _UID fields.

The ACPI Device Path node only supports numeric 32-bit values for the _HID and _UID values.
The Expanded ACPI Device Path node supports both numeric and string values for the _HID,
_UID, and _CID values. As a result, the ACPI Device Path node is smaller and should be used if
possible to reduce the size of device paths that may potentially be stored in nonvolatile storage. If a
string value is required for the _HID field, or a string value is required for the _UID field, or a
_CID field is required, then the Expanded ACPI Device Path node must be used. If a string field of
the Expanded ACPI Device Path node is present, then the corresponding numeric field is ignored.

The _HID and _CID fields in the ACPI Device Path node and Expanded ACPI Device Path node
are stored as a 32-bit compressed EISA-type IDs. The following macro can be used to compute
these EISA-type IDs from a Plug and Play Hardware ID. The Plug and Play Hardware IDs used to
compute the _HID and _CID fields in the EFI device path nodes must match the Plug and Play
Hardware IDs used to build the matching entries in the ACPI tables. The compressed EISA-type
IDs produced by this macro differ from the compressed EISA-type IDs stored in ACPI tables. As a
result, the compressed EISA-type IDs from the ACPI Device Path nodes cannot be directly
compared to the compressed EISA-type IDs from the ACPI table.

#define EFI_PNP_ID(ID) (UINT32)(((ID) << 16) | 0x41D0)
#define EISA_PNP_ID(ID) EFI_PNP_ID(ID)

 January 31, 2006
248 Version 2.0

Table 38. ACPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 1 ACPI Device Path.

Length 2 2 Length of this structure in bytes. Length is 12 bytes.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. Only the 32-bit
numeric value type of _UID is supported; thus strings must
not be used for the _UID in the ACPI name space.

Table 39. Expanded ACPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 2 Expanded ACPI Device Path.

Length 2 2 Length of this structure in bytes. Minimum length is
19 bytes. The actual size will depend on the size of
the _HIDSTR, _UIDSTR, and _CIDSTR fields.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space.

_CID 12 4 Device’s compatible PnP hardware ID stored in a numeric
32-bit compressed EISA-type ID. This value must match at
least one of the compatible device IDs returned by the
corresponding _CID in the ACPI name space.

_HIDSTR 16 >=1 Device’s PnP hardware ID stored as a null-terminated ASCII
string. This value must match the corresponding _HID in
the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _HID field is used.
If the length of this null-terminated string is greater than 0,
then this field supersedes the _HID field.

January 31, 2006
Version 2.0 249

Mnemonic

Byte
Offset

Byte
Length

Description

_UIDSTR Varies >=1 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. This value is
stored as a null-terminated ASCII string. If the length of this
string not including the null-terminator is 0, then the _UID
field is used. If the length of this null-terminated string is
greater than 0, then this field supersedes the _UID field.
The Byte Offset of this field can be computed by adding 16
to the size of the _HIDSTR field.

_CIDSTR Varies >=1 Device’s compatible PnP hardware ID stored as a null-
terminated ASCII string. This value must match at least one
of the compatible device IDs returned by the corresponding
_CID in the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _CID field is used.
If the length of this null-terminated string is greater than 0,
then this field supersedes the _CID field. The Byte Offset of
this field can be computed by adding 16 to the sum of the
sizes of the _HIDSTR and _UIDSTR fields.

9.3.4 ACPI _ADR Device Path
The _ADR device path is used to contain video output device attributes to support the Graphics
Output Protocol. The device path can contain multiple _ADR entries if multiple video output
devices are displaying the same output.

Table 40 ACPI _ADR Device Path

6. Mnemonic 7. Byte
Offset

8. Byte
Length

9. Description

10. Type 11. 0 12. 1 13. Type 2 – ACPI Device Path

14. Sub-Type 15. 1 16. 1 17. Sub-Type3 _ADR Device Path

18. Length 19. 2 20. 2 21. Length of this structure in bytes. Minimum
length is 8.

22. _ADR 23. 4 24. 4 25. _ADR value. For video output devices the
value of this field comes from Table B-2 ACPI 3.0
specification. At least one _ADR value is required

26. Additional
_ADR

27. 8 28. N 29. This device path may optionally contain more
than one _ADR entry.

 January 31, 2006
250 Version 2.0

9.3.5 Messaging Device Path
This Device Path is used to describe the connection of devices outside the resource domain of the
system. This Device Path can describe physical messaging information like SCSI ID or abstract
information like networking protocol IP addresses.

9.3.5.1 ATAPI Device Path

Table 41. ATAPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 1 – ATAPI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

PrimarySecondary 4 1 Set to zero for primary or one for secondary

SlaveMaster 5 1 Set to zero for master or one for slave mode

Logical Unit Number 6 2 Logical Unit Number

9.3.5.2 SCSI Device Path

Table 42. SCSI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 2 – SCSI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Target ID 4 2 Target ID on the SCSI bus (PUN)

Logical Unit Number 6 2 Logical Unit Number (LUN)

9.3.5.3 Fibre Channel Device Path

Table 43. Fibre Channel Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 3 – Fibre Channel

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Number 8 8 Fibre Channel World Wide Number

Logical Unit Number 16 8 Fibre Channel Logical Unit Number

January 31, 2006
Version 2.0 251

9.3.5.4 1394 Device Path

Table 44. 1394 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 4 – 1394

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

Reserved 4 4 Reserved

GUID1 8 8 1394 Global Unique ID (GUID)1

Note: 1 The usage of the term GUID is per the 1394 specification. This is not the same as the EFI_GUID
type defined in the EFI Specification.

9.3.5.5 USB Device Paths

Table 45. USB Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 5 – USB

Length 2 2 Length of this structure in bytes. Length is 6 bytes.

USB Parent Port Number 4 1 USB Parent Port Number

Interface 5 1 USB Interface Number

 January 31, 2006
252 Version 2.0

9.3.5.5.1 USB Device Path Example
Table 46 shows an example device path for a USB controller on a desktop platform. This USB
Controller is connected to the port 0 of the root hub, and its interface number is 0. The USB Host
Controller is a PCI device whose PCI device number 0x1F and PCI function 0x02. So, the whole
device path for this USB Controller consists an ACPI Device Path Node, a PCI Device Path Node,
a USB Device Path Node and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:

PciRoot(0)/PCI(31,2)/USB(0,0).

Table 46. USB Device Path Examples

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x1F PCI Function

0x11 0x01 0x02 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 253

Another example is a USB Controller (interface number 0) that is connected to port 3 of a USB
Hub Controller (interface number 0), and this USB Hub Controller is connected to the port 1 of the
root hub. The shorthand notation for this device path is:

PciRoot(0)/PCI(31,2)/USB(1,0)/USB(3,0).

Table 47 shows the device path for this USB Controller.

Table 47. Another USB Device Path Example

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x1F PCI Function

0x11 0x01 0x02 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x01 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x19 0x01 0x05 Sub type – USB

0x1A 0x02 0x06 Length – 0x06 bytes

0x1C 0x01 0x03 Parent Hub Port Number

0x1D 0x01 0x00 Controller Interface Number

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
254 Version 2.0

9.3.5.6 USB Device Paths (WWID)
This device path describes a USB device using its serial number.

Specifications, such as the USB Mass Storage class, bulk-only transport subclass, require that some
portion of the suffix of the device’s serial number be unique with respect to the vendor and product
id for the device. So, in order to avoid confusion and overlap of WWID’s, the interface’s class,
subclass, and protocol are included.

Table 48. USB WWID Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 16– USB WWID

Length 2 2 Length of this structure in bytes. Length is 10+

• Interface Number 4 2 USB interface number

• Device Vendor Id 6 2 USB vendor id of the device

• Device Product Id 8 2 USB product id of the device

• Serial Number 10 n Last 64-or-fewer UTF-16 characters of the USB
serial number. The length of the string is
determined by the Length field less the offset of
the Serial Number field (10)

Devices that do not have a serial number string must use with the USB Device Path (type 5) as
described in Section 9.3.5.5.

Including the interface as part of this node allows distinction for multi-interface devices, e.g., an
HID interface and a Mass Storage interface on the same device, or two Mass Storage interfaces.

9.3.5.7 Device Logical Unit
For some classes of devices, such as USB Mass Storage, it is necessary to specify the Logical Unit
Number (LUN), since a single device may have multiple logical units. In order to boot from one of
these logical units of the device, the Device Logical Unit device node is appended to the device
path. The EFI path node subtype is defined, as in Table 50.

Table 49. Device Logical Unit

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 17 – Device Logical unit

Length 2 2 Length of this structure in bytes. Length is 5

LUN 4 1 Logical Unit Number for the interface

January 31, 2006
Version 2.0 255

9.3.5.8 USB Device Path (Class)

Table 50. USB Class Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path.

Sub-Type 1 1 Sub-Type 15 - USB Class.

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of 0xFFFF will
match any Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of 0xFFFF will
match any Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of 0xFF
will match any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of
0xFF will match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of 0xFF
will match any protocol code.

9.3.5.9 I2O Device Path

Table 51. I2O Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 6 – I2O Random Block Storage Class

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

TID 4 4 Target ID (TID) for a device

9.3.5.10 MAC Address Device Path

Table 52. MAC Address Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 11 – MAC Address for a network interface

Length 2 2 Length of this structure in bytes. Length is 37 bytes.

MAC Address 4 32 The MAC address for a network interface padded with 0s

IfType 36 1 Network interface type(i.e. 802.3, FDDI). See RFC 1700

 January 31, 2006
256 Version 2.0

9.3.5.11 IPv4 Device Path

Table 53. IPv4 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 12 – IPv4

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Local IP Address 4 4 The local IPv4 address

Remote IP Address 8 4 The remote IPv4 address

Local Port 12 2 The local port number

Remote Port 14 2 The remote port number

Protocol 16 2 The network protocol(i.e. UDP, TCP). See RFC 1700

StaticIPAddress 18 1 0x00 - The Source IP Address was assigned though DHCP

0x01 - The Source IP Address is statically bound

9.3.5.12 IPv6 Device Path

Table 54. IPv6 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 13 – IPv6

Length 2 2 Length of this structure in bytes. Length is 43 bytes.

Local IP Address 4 16 The local IPv6 address

Remote IP Address 20 16 The remote IPv6 address

Local Port 36 2 The local port number

Remote Port 38 2 The remote port number

Protocol 40 2 The network protocol (i.e. UDP, TCP). See RFC 1700

StaticIPAddress 42 1 0x00 - The Source IP Address was assigned though DHCP

0x01 - The Source IP Address is statically bound

January 31, 2006
Version 2.0 257

9.3.5.13 InfiniBand Device Path

Table 55. InfiniBand Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 9 – InfiniBand

Length 2 2 Length of this structure in bytes. Length is 48 bytes.

Resource Flags 4 4 Flags to help identify/manage InfiniBand device path
elements:

• Bit 0 – IOC/Service (0b = IOC, 1b = Service)

• Bit 1 – Extend Boot Environment

• Bit 2 – Console Protocol

• Bit 3 – Storage Protocol

• Bit 4 – Network Protocol

All other bits are reserved.

PORT GID 8 16 128-bit Global Identifier for remote fabric port

IOC GUID/Service ID 24 8 64-bit unique identifier to remote IOC or server process.
Interpretation of field specified by Resource Flags (bit 0)

Target Port ID 32 8 64-bit persistent ID of remote IOC port

Device ID 40 8 64-bit persistent ID of remote device

Note: The usage of the terms GUID and GID is per the InfiniBand Specification. The term GUID is not
the same as the EFI_GUID type defined in this EFI Specification.

 January 31, 2006
258 Version 2.0

9.3.5.14 UART Device Path

Table 56. UART Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 14 – UART

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Reserved 4 4 Reserved

Baud Rate 8 8 The baud rate setting for the UART style device. A value of
0 means that the device's default baud rate will be used.

Data Bits 16 1 The number of data bits for the UART style device. A value
of 0 means that the device's default number of data bits will
be used.

Parity 17 1 The parity setting for the UART style device.
Parity 0x00 - Default Parity

Parity 0x01 - No Parity

Parity 0x02 - Even Parity
Parity 0x03 - Odd Parity

Parity 0x04 - Mark Parity

Parity 0x05 - Space Parity

Stop Bits 18 1 The number of stop bits for the UART style device.

Stop Bits 0x00 - Default Stop Bits
Stop Bits 0x01 - 1 Stop Bit

Stop Bits 0x02 - 1.5 Stop Bits

Stop Bits 0x03 - 2 Stop Bits

9.3.5.15 Vendor-Defined Messaging Device Path

Table 57. Vendor-Defined Messaging Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows

Vendor Defined Data 20 n Vendor-defined variable size data

The following GUIDs are used with a Vendor-Defined Messaging Device Path to describe the
transport protocol for use with PC-ANSI, VT-100, VT-100+, and VT-UTF8 terminals. Device
paths can be constructed with this node as the last node in the device path. The rest of the device
path describes the physical device that is being used to transmit and receive data. The PC-ANSI,
VT-100, VT-100+, and VT-UTF8 GUIDs define the format of the data that is being sent though the
physical device. Additional GUIDs can be generated to describe additional transport protocols.

January 31, 2006
Version 2.0 259

#define EFI_PC_ANSI_GUID \
 { 0xe0c14753,0xf9be,0x11d2,0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,0x4d }

#define EFI_VT_100_GUID \
 { 0xdfa66065,0xb419,0x11d3,0x9a,0x2d,0x00,0x90,0x27,0x3f,0xc1,0x4d }

#define EFI_VT_100_PLUS_GUID \
 { 0x7baec70b,0x57e0,0x4c76,0x8e,0x87,0x2f,0x9e,0x28,0x08,0x83,0x43 }

#define EFI_VT_UTF8_GUID \
 { 0xad15a0d6,0x8bec,0x4acf,0xa0,0x73,0xd0,0x1d,0xe7,0x7e,0x2d,0x88 }

9.3.5.16 UART Flow Control Messaging Path
The UART messaging device path defined in the EFI 1.02 specification does not contain a
provision for flow control. Therefore, a new device path node is needed to declare flow control
characteristics. It is a vendor-defined messaging node which may be appended to the UART node
in a device path. It has the following definition:

#define DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL \
{0X37499A9D,0X542F,0X4C89,0XA0,0X26,0X35,0XDA,0X14,0X20,0X94,0XE4}

Table 58. UART Flow Control Messaging Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Vendor GUID 4 16 DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL

Flow_Control_Map 20 4 Bitmap of supported flow control types.

Bit 0 set indicates hardware flow control.

Bit 1 set indicates Xon/Xoff flow control.

All other bits are reserved and are clear.

A debugport driver that implements Xon/Xoff flow control would produce a device path similar to
the following:
ACPI(PciRootBridge)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,n,8,1)
/UartFlowCtrl(2)/DebugPort()

NOTE

If no bits are set in the Flow_Control_Map, this indicates there is no flow control and is equivalent
to leaving the flow control node out of the device path completely.

 January 31, 2006
260 Version 2.0

9.3.5.17 Serial Attached SCSI (SAS) Device Path
This section defines the device node for Serial Attached SCSI (SAS) devices.

Table 59. Messaging Device Path Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type -3 Messaging

Sub Type 1 1 10 (Vendor)

Length 2 2 Length of this Structure.

Vendor GUID 4 16 d487ddb4-008b-11d9-afdc-001083ffca4d

Reserved 20 4 Reserved for future use.

SAS Address 24 8 SAS Address for Serial Attached SCSI Target.

Logical Unit Number 32 8 SAS Logical Unit Number.

SAS/SATA device and
Topology Info

40 2 More Information about the device and its
interconnect

Relative Target Port 42 2 Relative Target Port (RTP)

Summary

The device node represented by the structure in Table 59 (above) shall be appended after the
Hardware Device Path node in the device path.

There are two cases for boot devices connected with SAS HBA’s. Each of the cases is described
below with an example of the expected Device Path for these.

1. SAS Device anywhere in an SAS domain accessed through SSP Protocol.
a. PciRoot(0)/PCI(1,0)/Sas(0x21000004CF13F6BD, 0)

The first 64-bit number represents the SAS address of the target SAS device.

The second number is the boot LUN of the target SAS device.

The third number is the Relative Target Port (RTP)
2. SATA Device connected directly to a HBA port.

a. PciRoot(0)/PCI(1,0)/Sas(0x21000004CF13F6BD)

The first number represents either a real SAS address reserved by the HBA for above
connections, or a fake but unique SAS address generated by the HBA to represent the
SATA device.

9.3.5.17.1 Device and Topology Information
First Byte (At offset 40 into the structure):

 Bits 0:3:

 Value 0x0 -> No Additional Information about device topology.

 Value 0x1 -> More Information about device topology valid in this byte.

 Value 0x2 -> More Information about device topology valid in this and next 1 byte.

January 31, 2006
Version 2.0 261

 Values 0x3 thru 0xF -> Reserved.

 Bits 4:5: Device Type (Valid only if the More Information field above is non-zero)

 Value 0x0 -> SAS Internal Device

 Value 0x1 -> SATA Internal Device

 Value 0x2 -> SAS External Device

 Value 0x3 -> SATA External Device

 Bits 6:7: Topology / Interconnect (Valid only if the More Information field above is non-zero)

 Value 0x0 -> Direct Connect (Connected directly with the HBA Port/Phy)

 Value 0x1 -> Expander Connect (Connected thru/via one or more Expanders)

 Value 0x2 and 0x3 > Reserved

9.3.5.17.2 Device and Topology Information
Second Byte (At offset 41 into the structure). Valid only if bits 0-3 of More Information in Byte
36 have a value of 2:

 Bits 0-7: Internal Drive/Bay Id (Only applicable if Internal Drive is indicated in Device
Type)

 Value 0x0 thru 0xFF -> Drive 1 thru Drive 256

9.3.5.17.3 Relative Target Port
At offset 42 into the structure:

This two-byte field shall contain the “Relative Target Port” of the target SAS port. Relative Target
Port can be obtained by performing an INQUIRY command to VPD page 0x83 in the target.
Implementation of RTP is mandatory for SAS targets as defined in Section 10.2.10 of sas1r07
specification (or later).

NOTE

If a LUN is seen thru multiple RTPs in a given target, then the UEFI driver shall create separate
device path instances for both paths. RTP in the device path shall distinguish these two device path
instantiations.

 January 31, 2006
262 Version 2.0

NOTE

Changing the values of the SAS/SATA device topology information or the RTP fields of the device
path will make UEFI think this is a different device.

9.3.5.17.4 Examples Of Correct Device Path Display Format
Case 1: When Additional Information is not Valid or Not Present (Bits 0:3 of Byte 40 have a
value of 0)

PciRoot(0)/PCI(1,0)/SAS(0x21000004CF13F6BD, 0)

Case 2: When Additional Information is Valid and present (Bits 0:3 of Byte 40 have a value of
1 or 2)

1. If Bits 4-5 of Byte 40 (Device and Topology information) indicate an SAS device (Internal or
External) i.e., has values 0x0 or 0x2, then the following format shall be used.

PciRoot(0)/PCI(1,0)/SAS(0x21000004CF13F6BD, 0, SAS)

2. If Bits 4-5 of Byte 40 (Device and Topology information) indicate a SATA device (Internal or
External) i.e., has a value of 0x1 or 0x3, then the following format shall be used.

ACPI(PnP)/PCI(1,0)/SAS(0x21000004CF13F6BD, SATA)

January 31, 2006
Version 2.0 263

9.3.5.18 iSCSI Device Path

Table 60. iSCSI Device Path Node (Base Information)

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 19 – (iSCSI)

Length 2 2 Length of this structure in bytes. Length is (22 + n)
bytes

Protocol 4 2 Network Protocol (0 = TCP, 1+ = reserved)

Options 6 2 iSCSI Login Options

Reserved 8 2 Reserved for future use

Target Portal group tag 10 2 iSCSI Target Portal group tag the initiator intends
to establish a session with.

Logical Unit Number 12 8 SCSI Logical Unit Number

iSCSI Target Name 20 n iSCSI NodeTarget Name. The length of the name
is determined by subtracting the offset of this field
from Length.

9.3.5.18.1 iSCSI Login Options
The iSCSI Device Node Options describe the iSCSI login options for the key values:

Bits 0:1:

0 = No Header Digest

2 = Header Digest Using CRC32C

Bits 2-3:

0 = No Data Digest

2 = Data Digest Using CRC32C

Bits 4:9

Reserved for future use

 January 31, 2006
264 Version 2.0

Bits 10-11:

 0 = AuthMethod_CHAP

 2 = AuthMethod_None

Bit 12:

 0 = CHAP_BI

 1 = CHAP_UNI

For each specific login key, none, some or all of the defined values may be configured. If none of
the options are defined for a specific key, the iSCSI driver shall propose “None” as the value. If
more than one option is configured for a specific key, all the configured values will be proposed
(ordering of the values is implementation dependent).

• Portal Group Tag: defines the iSCSI portal group the initiator intends to establish Session with.
• Logical Unit Number: defines the 64 bit SCSI LUN.
• iSCSI Target Name Length: defines the length in bytes of the iSCSI Target Name
• iSCSI Target Name: defines the iSCSI Target Name for the iSCSI Node. The size of the iSCSI

Target Name can be up to a maximum of 223 bytes.

9.3.5.18.2 Device Path Examples
Some examples for the Device Path for the case the boot device connected to iSCSI bootable
controller:

1. With IPv4 configuration:

PciRoot(0)/PCI(2,0)/MAC(…)/IPv4(…)/iSCSI(iSCSITargetName,
PortalGroupTag, LUN)

2. With IPv6 configuration:

ACPI(PnP)/PCI(2,0)/MAC(…)/IPv6(…)/iSCSI(iSCSITargetName,
PortalGroupTag, LUN)

9.3.6 Media Device Path
This Device Path is used to describe the portion of the medium that is being abstracted by a boot
service. An example of Media Device Path would be defining which partition on a hard drive was
being used.

January 31, 2006
Version 2.0 265

9.3.6.1 Hard Drive
The Hard Drive Media Device Path is used to represent a partition on a hard drive. Each partition has
at least Hard Drive Device Path node, each describing an entry in a partition table. EFI supports MBR
and GPT partitioning formats. Partitions are numbered according to their entry in their respective
partition table, starting with 1. Partitions are addressed in EFI starting at LBA zero. A partition
number of zero can be used to represent the raw hard drive or a raw extended partition.

The partition format is stored in the Device Path to allow new partition formats to be supported in
the future. The Hard Drive Device Path also contains a Disk Signature and a Disk Signature Type.
The disk signature is maintained by the OS and only used by EFI to partition Device Path nodes.
The disk signature enables the OS to find disks even after they have been physically moved in a
system.

Table 61. Hard Drive Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 1 – Hard Drive

Length 2 2 Length of this structure in bytes. Length is 42 bytes.

Partition Number 4 4 Describes the entry in a partition table, starting with entry 1.
Partition number zero represents the entire device. Valid
partition numbers for a MBR partition are [1, 4]. Valid
partition numbers for a GPT partition are [1,
NumberOfPartitionEntries].

Partition Start 8 8 Starting LBA of the partition on the hard drive

Partition Size 16 8 Size of the partition in units of Logical Blocks

Partition Signature 24 16 Signature unique to this partition

Partition Format 40 1 Partition Format: (Unused values reserved)

0x01 – PC-AT compatible legacy MBR (see Section 5.2.1).
Partition Start and Partition Size come from
PartitionStartingLBA and PartitionSizeInLBA for
the partition.

0x02 – GUID Partition Table (see Section 5.3.2).

Signature Type 41 1 Type of Disk Signature: (Unused values reserved)

0x00 – No Disk Signature.

0x01 – 32-bit signature from address 0x1b8 of the type
0x01 MBR.

0x02 – GUID signature.

 January 31, 2006
266 Version 2.0

9.3.6.2 CD-ROM Media Device Path
The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM.
The CD-ROM is assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito”
format. The Boot Entry number from the Boot Catalog is how the “El Torito” specification defines
the existence of bootable entities on a CD-ROM. In EFI the bootable entity is an EFI System
Partition that is pointed to by the Boot Entry.

Table 62. CD-ROM Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 2 – CD-ROM “El Torito” Format.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Boot Entry 4 4 Boot Entry number from the Boot Catalog. The
Initial/Default entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs use
Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sectors.

9.3.6.3 Vendor-Defined Media Device Path

Table 63. Vendor-Defined Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 3 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

January 31, 2006
Version 2.0 267

9.3.6.4 File Path Media Device Path

Table 64. File Path Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 4 – File Path.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Path Name 4 n Unicode Path string including directory and file names. The
length of this string n can be determined by subtracting 4
from the Length entry. A device path may contain one or
more of these nodes. The complete path to a file can be
found by concatenating all the File Path Media Device Path
nodes. This is typically used to describe the directory path
in one node, and the filename in another node.

9.3.6.5 Media Protocol Device Path
The Media Protocol Device Path is used to denote the protocol that is being used in a device path at
the location of the path specified. Many protocols are inherent to the style of device path.

Table 65. Media Protocol Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 5 – Media Protocol.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Protocol GUID 4 16 The ID of the protocol.

NOTE

Sub-Type 6 is reserved for future use

 January 31, 2006
268 Version 2.0

9.3.7 BIOS Boot Specification Device Path
This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device
Path is based on the IPL and BCV table entry data structures defined in Appendix A of the BIOS
Boot Specification. The BIOS Boot Specification Device Path defines a complete Device Path and
is not used with other Device Path entries. This Device Path is only needed to enable platform
firmware to select a legacy non-EFI OS as a boot option.

Table 66. BIOS Boot Specification Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 5 – BIOS Boot Specification Device Path.

Sub-Type 1 1 Sub-Type 1 – BIOS Boot Specification Version 1.01.

Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.

Device Type 4 2 Device Type as defined by the BIOS Boot Specification.

Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification

Description String 8 n ASCIIZ string that describes the boot device to a user. The
length of this string n can be determined by subtracting 8
from the Length entry.

Example BIOS Boot Specification Device Types include:

• 00h = Reserved
• 01h = Floppy
• 02h = Hard Disk
• 03h = CD-ROM
• 04h = PCMCIA
• 05h = USB
• 06h = Embedded network
• 07h..7Fh = Reserved
• 80h = BEV device
• 81h..FEh = Reserved
• FFh = Unknown

January 31, 2006
Version 2.0 269

9.4 Device Path Generation Rules

9.4.1 Housekeeping Rules
The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of
Device Path node with a sub-type of End the Entire Device Path. A NULL Device Path consists of
a single End Device Path Node. A Device Path that contains a NULL pointer and no Device Path
structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types
can be skipped when parsing the Device Path since the length field can be used to find the next
Device Path structure in the stream. Any future additions to the Device Path structure types will
always start with the current standard header. The size of a Device Path can be determined by
traversing the generic Device Path structures in each header and adding up the total size of the
Device Path. This size will include the four bytes of the End of Device Path structure.

Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will
contain a complete Device Path that is terminated by the Device Path End Structure. The Device
Path End Structures that do not end the Device Path contain a sub-type of End This Instance of the
Device Path. The last Device Path End Structure contains a sub-type of End Entire Device Path.

9.4.2 Rules with ACPI _HID and _UID
As described in the ACPI specification, ACPI supports several different kinds of device
identification objects, including _HID, _CID and _UID. The _UID device identification objects are
optional in ACPI and only required if more than one _HID exists with the same ID. The ACPI
Device Path structure must contain a zero in the _UID field if the ACPI name space does not
implement _UID. The _UID field is a unique serial number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource
Setting) then it should be described by an ACPI Device Path structure. A _CRS implies that a
device is not mapped by any other standard. A _CRS is used by ACPI to make a nonstandard
device into a Plug and Play device. The configuration methods in the ACPI name space allow the
ACPI driver to configure the device in a standard fashion. The presence of a _CID determines
whether the ACPI Device Path node or the Expanded ACPI Device Path node should be used.

Table 67 maps ACPI _CRS devices to EFI Device Path.

Table 67. ACPI _CRS to EFI Device Path Mapping

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNP0A03, _UID

Floppy ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number 0-3

Parallel Port ACPI Device Path: _HID PNP0401, _UID LPT number 0-3

 January 31, 2006
270 Version 2.0

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a
PCI device usually contained in a chipset that consumes a proprietary bus and produces a PCI bus.
In typical desktop and mobile systems there is only one root PCI bridge. On larger server systems
there are typically multiple root PCI bridges. The operation of root PCI bridges is not defined in
any current PCI specification. A root PCI bridge should not be confused with a PCI to PCI bridge
that both consumes and produces a PCI bus. The operation and configuration of PCI to PCI bridges
is fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNP0A03, This will be stored in the ACPI
Device Path _HID field, or in the Expanded ACPI Device Path _CID field to match the ACPI name
space. The _UID in the ACPI Device Path structure must match the _UID in the ACPI name space.

9.4.3 Rules with ACPI _ADR
If a device in the ACPI name space can be completely described by a _ADR object then it will map
to an EFI ACPI, Hardware, or Message Device Path structure. A _ADR method implies a bus with
a standard enumeration algorithm. If the ACPI device has a _ADR and a _CRS method, then it
should also have a _HID method and follow the rules for using _HID.

Table 68 relates the ACPI _ADR bus definition to the EFI Device Path:

Table 68. ACPI _ADR to EFI Device Path Mapping

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

January 31, 2006
Version 2.0 271

9.4.4 Hardware vs. Messaging Device Path Rules
Hardware Device Paths are used to define paths on buses that have a standard enumeration
algorithm and that relate directly to the coherency domain of the system. The coherency domain is
defined as a global set of resources that is visible to at least one processor in the system. In a
typical system this would include the processor memory space, IO space, and PCI configuration
space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration
algorithm, but are not part of the global coherency domain of the system. SCSI and Fibre Channel
are examples of this kind of bus. The Messaging Device Path can also be used to describe virtual
connections over network-style devices. An example would be the TCPI/IP address of an internet
connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency
resource domain of the system. A Message Device Path is used if the bus consumes resources from
the coherency domain and produces resources out side the coherency domain of the system.

9.4.5 Media Device Path Rules
The Media Device Path is used to define the location of information on a medium. Hard Drives are
subdivided into partitions by the MBR and a Media Device Path is used to define which partition is
being used. A CD-ROM has boot partitions that are defined by the “El Torito” specification, and
the Media Device Path is used to point to these partitions.

An EFI_BLOCK_IO_PROTOCOL is produced for both raw devices and partitions on devices.
This allows the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL protocol to not have to understand
media formats. The EFI_BLOCK_IO_PROTOCOL for a partition contains the same Device Path
as the parent EFI_BLOCK_IO_PROTOCOL for the raw device with the addition of a Media
Device Path that defines which partition is being abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device
Path is used to load files and to represent what file an image was loaded from.

9.4.6 Other Rules
The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing
the BIOS Boot Specification Device Path should only contain the required End Device Path
structure and no other Device Path structures. The BIOS Boot Specification Device Path is only
used to allow the EFI boot menus to boot a legacy operating system from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID
to a Hardware, Messaging, or Media Device Path. This extension is guaranteed to never conflict
with future extensions of this specification.

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only
permitted using a Vendor GUID Device Path entry.

 January 31, 2006
272 Version 2.0

9.5 EFI Device Path Display Format Overview

This section describes the recommended conversion between an EFI Device Path Protocol and
Unicode text. It also describes standard protocols for implementing these. The goals are:

• Standardized display format. This allows documentation and test tools to understand output
coming from drivers provided by multiple vendors.

• Increase Readability. Device paths need to be read by people, so the format should be in a
form which can be deciphered, maintaining as much as possible the industry standard means of
presenting data. In this case, there are two forms, a display-only form and a parse-able form.

• Round-trip conversion from text to binary form and back to text without loss, if desired.
• Ease of command-line parsing. Since device paths can appear on the command-lines of UEFI

applications executed from a shell, the conversion format should not prohibit basic command-
line processing, either by the application or by a shell.

This specification is designed to be inserted as Sections 8.5 and 8.6 of the UEFI 2.0 specification,
immediately following Device Path Generation Rules.

9.5.1 Design Discussion
The following subsections describe the design considerations for conversion to and from the EFI
Device Path Protocol binary format and its corresponding text form.

9.5.1.1 Standardized Display Format
Before the UEFI 2.0, there was no standardized format for the conversion from the EFI Device Path
protocol and text. Some de-facto standards arose, either as part of the standard implementation or in
descriptive text in the EFI Device Driver Writer’s Guide, although they didn’t agree. The
standardized format attempts to maintain at least the spirit of these earlier ideas.

9.5.1.2 Readability
Since these are conversions to text and, in many cases, users have to read and understand the text
form of the EFI Device Path, it makes sense to make them as readable as reasonably possible.
Several strategies are used to accomplish this:

• Creating simplified forms for well-known device paths. For example, a PCI root Bridge can be
represented as Acpi(PNP0A03,0), but makes more sense as PciRoot(0). When converting from
text to binary form, either form is accepted, but when converting from binary form to text, the
latter is preferred.

• Omitting the conversion of fields which have empty or default values. By doing this, the
average display length is greatly shortened, which improves readability.

January 31, 2006
Version 2.0 273

9.5.1.3 Round-Trip Conversion
The conversions specified here guarantee at least that conversion to and from the binary
representation of the EFI Device Path will be semantically identical.

Text1 Binary1 Text2 Binary2

Figure 20. Text to Binary Conversion

In Figure 20, the process described in this section is applied to Text1, converting it to Binary1.
Subsequently, Binary1 is converted to Text2. Finally, the Text2 is converted to Binary2. In these cases,
Binary1 and Binary2 will always be identical. Text1 and Text2 may or may not be identical. This is
the result of the fact that the text representation has, in some cases, more than one way of
representing the same EFI Device Path node.

Binary1 Text1 Binary2 Text2

Figure 21. Binary to Text Conversion

In Figure 21 the process described in this section is applied to Binary1, converting it to Text1.

Subsequently, Text1 is converted to Binary2. Finally, Binary2 is converted to Text2. In these cases,
Binary1 and Binary2 will always be identical and Text1 and Text2 will always be identical.

Another consideration in round-trip conversion is potential ambiguity in parsing. This happens
when the text representation could be converted into more than type of device node, thus requiring
information beyond that contained in the text representation in order to determine the correct
conversion to apply. In the case of EFI Device Paths, this causes problems primarily with literal
strings in the device path, such as those found in file names, volumes or directories.

For example, the file name Acpi(PNP0A03,0) might be a legal FAT32 file name. However, in
parsing this, it is not clear whether it refers to an Acpi device node or a file name. Thus, it is
ambiguous. In order to prevent ambiguity, certain characters may only be used for device node
keywords and may not be used in file names or directories.

9.5.1.4 Command-Line Parsing
Applications written to this specification need to accept the text representation of EFI device paths
as command-line parameters, possibly in the context of a command-prompt or shell. In order to do
this, the text representation must follow simple guidelines concerning its format.

Command-line parsing generally involves three separate concepts: substitution, redirection and
division.

 January 31, 2006
274 Version 2.0

In substitution, the invoker of the application modifies the actual contents of the command-line
before it is passed to the application. For example:

 copy *.xyz

In redirection, the invoker of the application gleans from the command line parameters which it
uses to, for example, redirect or pipe input or output. For example:

echo This text is copied to a file >abc

dir | more

Finally, in division, the invoker or the application startup code divides the command-line up into
individual arguments. The following line, for example, has (at least) three arguments, divided by
whitespace.

 copy /b file1.info file2.info

9.5.1.5 Text Representation Basics
This section describes the basic rules for the text representation of device nodes and device paths.
The formal grammar describing appears later.

The text representation of a device path (or text device path) consists of one or more text device
nodes, each preceded by a ‘/’ or ‘\’ character. The behavior of a device path where the first node is
not preceded by one of these characters is undefined. Some implementations may treat it as a
relative path from a current working directory.

Spaces are not allowed at any point within the device path except when quoted with double quotes
(“). The ‘|” (bar), ‘<’ (less than) and ‘>’ (greater than) characters are likewise reserved for use by
the shell.

Figure 22. Device Path Text Representation

There are two types of text device nodes : file-name/directory or canonical. Canonical text device
nodes are prefixed by an option name consisting of only alphanumerical characters, followed by a
parenthesis, followed by option-specific parameters separated by a ‘,’ (comma). File names and
directories have no prefixes.

device-path := \device-node

 /device-node

 \device-path device-node

January 31, 2006
Version 2.0 275

Figure 23. Text Device Node Names

The canonical device node can have zero or more option parameters between the parentheses.
Multiple option parameters are separated by a comma. The meaning of the option parameters
depends primarily on the option name, then the parameter-identifier (if present) and then the order
of appearance in the parameter list. The parameter identifier allows the text representation to only
contain the non-default option parameter value, even if it would normally appear fourth in the list
of option parameters. Missing parameters do not require the comma unless needed as a placeholder
to correctly increment the parameter count for a subsequent parameter.

Consider

 Acpi(HWP0002, PNP0A03)

Which could also be written:

 Acpi(HWP0002,CID=PNP0A03)

Since CID is an optional parameter.

Figure 24. Device Node Option Names

option-name := alphanumerical characters string

opion-parameters := option-parameter

 option-parameters,option-parameter

option-parameter := parameter-value

 parameter-identifier=parameter-value

device-node := standard-device-node | file-name/directory

standard-device-node := option-name(option-parameters)

file-name/directory := any character except ‘/’ ‘\’ ‘|’ ‘>’ ‘<’

 January 31, 2006
276 Version 2.0

9.5.1.6 Text Device Node Reference
In each of the following table rows, a specific device node type and sub-type are given, along with
the most general form of the text representation. Any parameters for the device node are listed in
italics. In each case, the type is listed and along with it what is required or optional, and any default
value, if applicable.

On subsequent lines, alternate representations are listed. In general, these alternate representations
are simplified by the assumption that one or more of the parameters is set to a specific value.

Parameter Types

This section describes the various types of option parameter values.

Table 69. EFI Device Path Option Parameter Values
GUID An EFI GUID in standard format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where each x

is a hexadecimal digit.

Keyword In some cases, one of a series of keywords must be listed.

Integer Unless otherwise specified, this indicates an unsigned integer in the range of 0 to 232-
1. The value is decimal, unless preceded by “0x” or “0X”

EISAID A seven character text identifier in the format used by the ACPI specification. The first
three characters must be alphabetic, either upper or lower case. The second four
characters are hexadecimal digits, either numeric, upper case or lower case.
Optionally, it can be the number 0.

String Series of alphabetic, numeric and punctuation characters not including a right
parenthesis ‘)’, bar ‘|’ less-than ‘<’ or greater than ‘>’ character.

HexDump Series of bytes, represented by two hexadecimal characters per byte. Unless
otherwise indicated, the size is only limited by the length of the device node.

IP Address Series of four integer values (each between 0-255), separated by a ‘.’ Optionally,
followed by a ‘:’ and an integer value between 0-65555. If the ‘:’ is not present, then
the port value is zero.

IPv6 Series of four character hexadecimal values, separated by the ':' character. If '::'
appears, it fills in zero or more missing 16-bit values before the any remaining
hexadecimal characters with zeroes.

January 31, 2006
Version 2.0 277

Table 70. Device Node Table
Device Node
Type/SubType/Other

Description

 Path (type, subtype, data)

The type is an integer from 0-255.

The sub-type is an integer from 0-255.

The data is a hex dump.

Type: 1 (Hardware Device Path) HardwarePath(subtype, data)

The subtype is an integer from 0-255.

The data is a hex dump.

Type: 1 (Hardware Device Path)

SubType: 1 (PCI)

Pci(Function, Device)

The Function is an integer from 0-31 and is required.

The Device is an integer from 0-7 and is required.

Type: 1 (Hardware Device Path)

SubType: 2 (PcPcard)

PcCard(Function)

The Function is an integer from 0-255 and is required.

Type: 1 (Hardware Device Path)

SubType: 3 (Memory Mapped)

MemoryMapped(StartingAddress, EndingAddress)

The StartingAddress and EndingAddress are both 64-bit integers and
are both required.

Type: 1 (Hardware Device Path) VenHw(Guid, Data)

Type: 1 (Hardware Device Path)

SubType: 5 (Controller)

Ctrl(Controller)

The Controller is an integer and is required.

Type 2

AcpiPath (subtype, data)

The subtype is an integer from 0-255.

The data is a hex dump.

Type: 2 (ACPI Device Path)

SubType: 1 (ACPI Device Path)

Acpi(HID,UID)

The HID parameter is an EISAID and is required.

The UID parameter is an integer and is optional. The default value is
zero.

 January 31, 2006
278 Version 2.0

Device Node
Type/SubType/Other

Description

Type: 2 (ACPI Device Path)

SubType: 1 (ACPI Device Path)

HID=PNP0A03

PciRoot(UID)

The UID parameter is an integer. It is optional but required for display.
The default value is zero.

Type: 2 (ACPI Device Path)

SubType: 1 (ACPI Device Path)

HID=PNP0604

Floppy(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is zero.

Type: 2 (ACPI Device Path)

SubType: 1 (ACPI Device Path)

HID=PNP0301

Keyboard(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)

SubType: 1 (ACPI Device Path)

HID=PNP0501

Serial(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)

SubType: 1 (ACPI Device Path)

HID=PNP0401

ParallelPort(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

January 31, 2006
Version 2.0 279

Device Node
Type/SubType/Other

Description

Type: 2 (ACPI Device Path) AcpiEx(HID,CID,UID,HIDSTR,CIDSTR,UIDSTR)

Type: 2 (ACPI Device Path)

SubType: 2 (ACPI Expanded
Device Path)

HIDSTR=empty

CIDSTR=empty

UID = 0

AcpiExp(HID,CID,UIDSTR)

The HID parameter is an EISAID. It is required.

The CID parameter is an EISAID. It is optional and has a default value
of 0.

The UIDSTR parameter is a string. It is optional and defaults to an
empty string.

Type: 3 MessagingPath HardwarePath(subtype, data)

The subtype is an integer from 0-255.

The data is a hex dump.

Type: 3 (Messaging Device Path)

SubType: 1 (ATAPI)

Ata(Controller,Drive,LUN)

Ata(LUN) (Display only)

The Controller is either an integer with a value of 0 or 1 or else the
keyword Primary (0) or Secondary (1). It is required.

The Drive is either an integer with the value of 0 or 1 or else the
keyword Master (0) or Slave (1). It is required.

The LUN is a 16-bit integer. It is required.

Type: 3 (Messaging Device Path)

SubType: 2 (SCSI)

Scsi(PUN,LUN)

The PUN is an integer between 0 and 65535 and is required.

The LUN is an integer between 0 and 65535 and is required.

 January 31, 2006
280 Version 2.0

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 3 (Fibre Channel)

Fibre(WWN,LUN)

The WWN is a 64-bit unsigned integer and is required.

The LUN is a 64-bit unsigned integer and is required.

Type: 3 (Messaging Device Path) I1394(GUID)

Type: 3 (Messaging Device Path)

SubType: 5 (USB)

USB(Port,Interface)

The Port is an integer between 0 and 255 and is required.

The Interface is an integer between 0 and 255 and is required.

Type: 3 (Messaging Device Path)

SubType: 6 (I2O)

I2O(TID)

The TID is an integer and is required.

Type: 3 (Messaging Device Path)

SubType: 9 (Infiniband)

Infiniband

Infiniband(Flags, Guid, ServiceId, TargetId, DeviceId)

Flags is an integer.

Guid is a guid.

ServiceId, TargetId and DeviceId are 64-bit unsigned integers.

All fields are required.

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

VenMsg(Guid, Data)

The Guid is a GUID and is required.

The Data is a Hex Dump and is option. The default value is zero
bytes.

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

GUID=EFI_PC_ANSI_GUID

VenPcAnsi()

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

GUID=EFI_VT_100_GIUD

VenVt100()

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

GUID=EFI_VT_100_PLUS_GUID

VenVt100Plus()

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

GUID=EFI_VT_UTF8_GUID

VenUtf8()

January 31, 2006
Version 2.0 281

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

GUID=DEVICE_PATH_MESSAGI
NG_UART_FLOW_CONTROL

UartFlowCtrl(Value)

The Value is either an integer with the value 0, 1 or 2 or the keywords
XonXoff (2) or Hardware (1) or None (0).

Type: 3 (Messaging Device Path)

SubType: 10 (Serial Attached
SCSI)

Vendor GUID: d487ddb4-008b-
11d9-afdc-001083ffca4d

SAS (Address, LUN, RTP, SASSATA, Location, Connect, DriveBay,
Reserved)

The Address is a 64-bit unsigned integer representing the SAS
Address and is required.

The LUN is a 64-bit unsigned integer representing the Logical Unit
Number and is optional. The default value is 0.

The RTP is a 16-bit unsigned integer representing the Relative Target
Port and is optional. The default value is 0.

The SASSATA is a keyword SAS or SATA or NoTopology or an
unsigned 16-bit integer and is optional. The default is NoTopology. If
NoTopology or an integer are specified, then Location, Connect and
DriveBay are prohibited. If SAS or SATA is specified, then Location
and Connect are required, but DriveBay is optional. If an integer is
specified, then the topology information is filled with the integer value.

The Location is an integer between 0 and 1 or else the keyword
Internal (0) or External (1) and is optional. If SASSATA is an integer
or NoToplogy, it is prohibited. The default value is 0.

The Connect is an integer between 0 and 3 or else the keyword Direct
(0) or Expanded (1) and is optional. If SASSATA is an integer or
NoTopology, it is prohibited. The default value is 0.

The DriveBay is an integer between 1 and 256 and is optional unless
SASSATA is an integer or NoTopology, in which case it is prohibited.

The Reserved field is an integer and is optional. The default value is 0.

Type: 3 (Messaging Device Path)

SubType: 10 (Vendor)

GUID=EFI_DEBUGPORT_
PROTOCOL_GUID

DebugPort()

Type: 3 (Messaging Device Path) MAC(MacAddr, IfType)

 January 31, 2006
282 Version 2.0

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 12 (IPv4)

IPv4(RemoteIp, Protocol, Type, LocalIp)

IPv4(RemoteIp) (Display Only)

The RemoteIp is an IP Address and is required.

The Protocol is a keyword, either UDP (0) or TCP (1). The default
value is UDP.

The Type is a keyword, either Static (1) or DHCP (0). It is optional.
The default value is DHCP.

The LocalIp is an IP Address and is optional. The default value is all
zeroes.

Type: 3 (Messaging Device Path)

SubType: 13 (IPv6)

IPv6(RemoteIp, Protocol, Type, LocalIp)

IPv6(RemoteIp) (Display Only)

The RemoteIp is an IPv6 Address and is required.

The Protocol is a keyword, either UDP (0) or TCP (1). The default

value is UDP.

The Type is a keyword, either Static (1) or DHCP (0). It is optional.

The default value is DHCP.

The LocalIp is an IPv6 Address and is optional. The default value is all
zeroes.

Type: 3 (Messaging Device Path)

SubType: 14 (UART)

Uart(Baud, DataBits, Parity, StopBits)

The Baud is a 64-bit integer and is optional. The default value is
115200.

The DataBits is an integer from 0 to 255 and is optional. The default
value is 8.

The Parity is either an integer from 0-255 or else a keyword and
should be D (0), N (1), E (2), O (3), M (4) or S (5). It is optional. The
default value is 0.

The StopBits is a either an integer from 0-255 or else a keyword and
should be D (0), 1 (1), 1.5 (2), 2 (3). It is optional. The default value is
0.

January 31, 2006
Version 2.0 283

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

UsbClass(VID,PID,Class,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The Class is an integer between 0 and 255 and is optional. The default
value is 0xFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path) UsbAudio(VID,PID,SubClass,Protocol)

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 2

UsbCDCControl(VID,PID,SubClass,Protocol)

The VID is an optional integer between 0 and 65535 and is optional.
The default value is 0xFFFF.

The PID is an optional integer between 0 and 65535 and is optional.
The default value is 0xFFFF.

The SubClass is an optional integer between 0 and 255 and is
optional. The default value is 0xFF.

The Protocol is an optional integer between 0 and 255 and is optional.
The default value is 0xFF.

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 3

UsbHID(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

 January 31, 2006
284 Version 2.0

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 6

UsbImage(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path) UsbPrinter(VID,PID,SubClass,Protocol)

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 8

UsbMassStorage(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 9

UsbHub(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

January 31, 2006
Version 2.0 285

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 10

UsbCDCData(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path) UsbSmartCard(VID,PID,SubClass,Protocol)

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 14

UsbVideo(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 220

UsbDiagnostic(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

 January 31, 2006
286 Version 2.0

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 224

UsbWireless(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path) UsbDeviceFirmwareUpdate(VID,PID,Protocol)

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 254

SubClass: 2

UsbIrdaBridge(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 254

SubClass: 3

UsbTestAndMeasurement(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)

SubType: 16 (USB WWID Class)

UsbWwid(VID,PID,InterfaceNumber,”WWID”)

The VID is an integer between 0 and 65535 and is required.

The PID is an integer between 0 and 65535 and is required.

The InterfaceNumber is an integer between 0 and 255 and is required.

The WWID is a string and is required.

January 31, 2006
Version 2.0 287

Device Node
Type/SubType/Other

Description

Type: 3 (Messaging Device Path)

SubType: 17 (Logical Unit Class)

Unit(LUN)

The LUN is an integer and is required.

Type: 3 (Messaging Device Path)

SubType: 19 (iSCSI)

iSCSI(TargetName, PortalGroup, LUN, HeaderDigest, DataDigest,
Authentication, Protocol)

The TargetName is a string and is required.

The PortalGroup is an unsigned 16-bit integer and is required.

The LUN is an unsigned 16-bit integer and is required.

The HeaderDigest is a keyword None or CRC32C is optional. The
default is None.

The DataDigest is a keyword None or CRC32C is optional. The
default is None.

The Authentication is a keyword None or CHAP_BI or CHAP_UNI.
The default is None.

Type: 4

MediaPath((subtype, data)

The subtype is an integer from 0-255 and is required.

Type: 4 (Media Device Path)

SubType: 1 (Hard Drive)

HD(Partition,Type,Signature,Start, Size)

 January 31, 2006
288 Version 2.0

Device Node
Type/SubType/Other

Description

Type: 4 (Media Device Path)

SubType: 2 (CD-ROM)

CDROM(Entry,Start,Size)

CDROM(Entry) (Display Only)

The Entry is an integer representing the Boot Entry from the Boot
Catalog. It is optional and the default is 0.

The Start is a 64-bit integer and is required.

The Size is a 64-bit integer and is required.

Type: 4 (Media Device Path)

SubType: 3 (Vendor)

VenMedia(GUID, Data)

The Guid is a GUID and is required.

The Data is a Hex Dump and is option. The default value is zero
bytes.

Type: 4 (Media Device Path)

SubType: 4 (File Path)

String

The String is the file path and is a string.

Type: 4 (Media Device Path)

SubType: 5 (Media Protocol)

Media(Guid)

The Guid is a GUID and is required.

Type: 5

BbsPath (subtype, data)

The subtype is an integer from 0-255.

The data is a hex dump.

Type: 5 – BIOS Boot Specification
Device Path

SubType: 1 (BBS 1.01)

BBS(Type,Id,Flags)

BBS(Type, Id) (Display Only)

The Type is an integer from 0-65535 or else one of the following
keywords: Floppy (1), HD (2), CDROM (3), PCMCIA (4), USB (5),
Network (6). It is required.

The Id is a string and is required.

The Flags are an integer and are optional. The default value is 0.

9.5.2 Code Definitions
This section describes the EFI_DEVICE_PATH_UTILITIES_PROTOCOL, which aids in
creating and manipulating device paths.

January 31, 2006
Version 2.0 289

EFI_DEVICE_PATH_UTILITIES_PROTOCOL

Summary

Creates and manipulates device paths and device nodes.

GUID
// {0379BE4E-D706-437d-B037-EDB82FB772A4}
#define EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID \
 {0x379be4e,0xd706,0x437d,0xb0,0x37,0xed,0xb8,0x2f,0xb7,

 0x72,0xa4 };

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_UTILITIES_PROTOCOL {
 EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE

GetDevicePathSize;
 EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH DuplicateDevicePath;
 EFI_DEVICE_PATH_UTILS_APPEND_PATH AppendDevicePath;
 EFI_DEVICE_PATH_UTILS_APPEND_NODE AppendDeviceNode;
 EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE

AppendDevicePathInstance;
 EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE

 GetNextDevicePathInstance;
 EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE

IsDevicePathMultiInstance;
 EFI_DEVICE_PATH_CREATE_NODE CreateDeviceNode;
 } EFI_DEVICE_PATH_UTILITIES_PROTOCOL;

 January 31, 2006
290 Version 2.0

Parameters

GetDevicePathSize Return the size of the specified device path, in bytes.

DuplicateDevicePath Duplicate a device path structure.

AppendDeviceNode Appends the device node to the specified device path.

AppendDevicePath Appends the device path to the specified device path.

AppendDevicePathInstance Append a device path instance to another device path.

GetNextDevicePathInstance Retrieves the next device path instance from a device
path data structure.

IsDevicePathMultiInstance Return TRUE if this is a multi-instance device path.

CreateDeviceNode Allocate memory for a device node with the specified
type and sub-type.

Description

The EFI_DEVICE_PATH_UTILITIES_PROTOCOL provides common utilities for creating a
manipulating device paths and device nodes.

January 31, 2006
Version 2.0 291

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize

Summary

Returns the size of the device path, in bytes.

Prototype
typedef
UINTN
(EFIAPI *EFI_DEVICE_PATH_GET_DEVICE_PATH_SIZE) (
 IN CONST EFI_DEVICE_PATH* DevicePath
);

Parameters

DevicePath Points to the start of the EFI device path.

Description

This function returns the size of the specified device path, in bytes, including the end-of-path tag.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined LocateDevicePath

 January 31, 2006
292 Version 2.0

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath

Summary

Create a duplicate of the specified path.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_DUP_DEVICE_PATH) (
 IN CONST EFI_DEVICE_PATH* DevicePath,
);

Parameters

DevicePath Points to the source device path.

Description

This function creates a duplicate of the specified device path. The memory is allocated from EFI
boot services memory. It is the responsibility of the caller to free the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the duplicate device path or NULL if there was insufficient
memory.

January 31, 2006
Version 2.0 293

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()

Summary

Create a new path by appending the second device path to the first.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_APPEND_DEVICE_PATH)
 IN CONST EFI_DEVICE_PATH* Src1,
 IN CONST EFI_DEVICE_PATH* Src2,
);

Parameters

Src1 Points to the first device path. If NULL, then it is ignored.

Src2 Points to the second device path. If NULL, then it is ignored.

Description

This function creates a new device path by appending a copy of the second device path to a copy of
the first device path in a newly allocated buffer. Only the end-of-device-path device node from the
second device path is retained. If either path is NULL, then it is ignored and a duplicate of the other
is returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the newly created device path or NULL if memory could not be
allocated or either DevicePath or DeviceNode is NULL.

 January 31, 2006
294 Version 2.0

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()

Summary

Creates a new path by appending the device node to the device path.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_APPEND_DEVICE_NODE) (
 IN CONST EFI_DEVICE_PATH* DevicePath,
 IN CONST EFI_DEVICE_PATH* DeviceNode
);

Parameters

DevicePath Points to the device path.

DeviceNode Points to the device node.

Description

This function creates a new device path by appending a copy of the specified device node to a copy
of the specified device path in an allocated buffer. The end-of-device-path device node is moved
after the end of the appended device node.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the allocated device node or NULL if DevicePath or
DeviceNode is NULL or there was insufficient memory.

January 31, 2006
Version 2.0 295

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance()

Summary

Creates a new path by appending the specified device path instance to the specified device path.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_APPEND_DEVICE_PATH_INSTANCE) (
 IN CONST EFI_DEVICE_PATH* DevicePath,
 IN CONST EFI_DEVICE_PATH* DevicePathInstance
);

Parameters

DevicePath Points to the device path. If NULL, then ignored.

DevicePathInstance Points to the device path instance

Description

This function creates a new device path by appending a copy of the specified device path instance
to a copy of the specified device path in an allocated buffer. The end-of-device-path device node is
moved after the end of the appended device node and a new end-of-device-path-instance node is
inserted between. If DevicePath is NULL, then a copy if DevicePathInstance is returned
instead.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the newly created device path or NULL if
DevicePathInstance is NULL or there was insufficient memory.

 January 31, 2006
296 Version 2.0

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance()

Summary

Creates a copy of the current device path instance and returns a pointer to the next device path
instance.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_GET_NEXT_INSTANCE) (
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePathInstance,
 OUT UINTN *DevicePathInstanceSize
);

Parameters

DevicePathInstance On input, this holds the pointer to the current device path
instance. On output, this holds the pointer to the next
device path instance or NULL if there are no more device
path instances in the device path.

DevicePathInstanceSize On output, this holds the size of the device path instance,
in bytes or zero, if DevicePathInstance is zero.

Description

This function creates a copy of the current device path instance. It also updates
DevicePathInstance to point to the next device path instance in the device path (or NULL if
no more) and updates DevicePathInstanceSize to hold the size of the device path instance
copy.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the copy of the current device path instance or NULL if
DevicePathInstace was NULL on entry or there was insufficient memory.

January 31, 2006
Version 2.0 297

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()

Summary

Creates a device node

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_CREATE_NODE) (
 IN UINT8 NodeType,
 IN UINT8 NodeSubType,
 IN UINT16 NodeLength,
);

Parameters

NodeType NodeType is the device node type (EFI_DEVICE_PATH.Type) for
the new device node.

NodeSubType NodeSubType is the device node sub-type
(EFI_DEVICE_PATH.SubType) for the new device node.

NodeLength NodeLength is the length of the device node
(EFI_DEVICE_PATH.Length) for the new device node.

Description

This function creates a new device node in a newly allocated buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the created device node or NULL if NodeLength is less than
the size of the header or there was insufficient memory.

 January 31, 2006
298 Version 2.0

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstance()

Summary

Returns whether a device path is multi-instance.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_DEVICE_PATH_IS_MULTI_INSTANCE) (
 IN CONST EFI_DEVICE_PATH* DevicePath
);

Parameters

DevicePath Points to the device path. If NULL, then ignored.

Description

This function returns whether the specified device path has multiple path instances.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns TRUE if the device path has more than one instance or FALSE if it is empty
or contains only a single instance.

January 31, 2006
Version 2.0 299

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL

Summary

Convert device nodes and paths to text

GUID
#define EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID \

{0x8b843e20,0x8132,0x4852,0x90,0xcc,0x55,0x1a,0x4e,0x4a,
0x7f, 0x1c}

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_TO_TEXT_PROTOCOL {
 EFI_DEVICE_PATH_TO_TEXT_NODE ConvertDeviceNodeToText;
 EFI_DEVICE_PATH_TO_TEXT_PATH ConvertDevicePathToText;
 } EFI_DEVICE_PATH_TO_TEXT_PROTOCOL;

Parameters

ConvertDeviceNodeToText Convert a device node to text.

ConvertDevicePathToText Convert a device path to text.

Description

The EFI_DEVICE_PATH_TO_TEXT_PROTOCOL provides common utility functions for
converting device nodes and device paths to a text representation.

 January 31, 2006
300 Version 2.0

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText()

Summary

Convert a device node to its text representation.

Prototype
typedef
CHAR16*
(EFIAPI *EFI_DEVICE_PATH_TO_TEXT_NODE) (
 IN CONST EFI_DEVICE_PATH* DeviceNode,
 IN BOOLEAN DisplayOnly,
 IN BOOLEAN AllowShortcuts
);

Parameters

DeviceNode Points to the device node to be converted.

DisplayOnly If DisplayOnly is TRUE, then the shorter text representation
of the display node is used, where applicable. If DisplayOnly
is FALSE, then the longer text representation of the display node
is used.

AllowShortcuts If AllowShortcuts is TRUE, then the shortcut forms of text
representation for a device node can be used, where applicable.

Description

The ConvertDeviceNodeToText function converts a device node to its text representation and
copies it into a newly allocated buffer.

The DisplayOnly parameter controls whether the longer (parseable) or shorter (display-only)
form of the conversion is used.

The AllowShortcuts is FALSE, then the shortcut forms of text representation for a device node
cannot be used. A shortcut form is one which uses information other than the type or subtype.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

January 31, 2006
Version 2.0 301

Returns

This function returns the pointer to the allocated text representation of the device node data or else
NULL if DeviceNode was NULL or there was insufficient memory.

 January 31, 2006
302 Version 2.0

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()

Summary

Convert a device path to its text representation.

Prototype
typedef
CHAR16*
(EFIAPI *EFI_DEVICE_PATH_TO_TEXT_PATH) (
 IN CONST EFI_DEVICE_PATH* DevicePath,
 IN BOOLEAN DisplayOnly,
 IN BOOLEAN AllowShortcuts
);

Parameters

DeviceNode Points to the device path to be converted.

DisplayOnly If DisplayOnly is TRUE, then the shorter text representation
of the display node is used, where applicable. If DisplayOnly
is FALSE, then the longer text representation of the display node
is used.

AllowShortcuts The AllowShortcuts is FALSE, then the shortcut forms of
text representation for a device node cannot be used.

Description

This function converts a device path into its text representation and copies it into an allocated
buffer.

The DisplayOnly parameter controls whether the longer (parseable) or shorter (display-only)
form of the conversion is used.

The AllowShortcuts is FALSE, then the shortcut forms of text representation for a device node
cannot be used. A shortcut form is one which uses information other than the type or subtype.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

January 31, 2006
Version 2.0 303

Status Codes Returned

This function returns a pointer to the allocated text representation of the device node or NULL if
DevicePath was NULL or there was insufficient memory.

 January 31, 2006
304 Version 2.0

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL

Summary

Convert text to device paths and device nodes.

GUID
#define EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL_GUID \

{0x5c99a21,0xc70f,0x4ad2,0x8a,0x5f,0x35,0xdf,0x33,0x43,
0xf5, 0x1e}

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL {
 EFI_DEVICE_PATH_FROM_TEXT_NODE ConvertDeviceNodeFromText;
 EFI_DEVICE_PATH_FROM_TEXT_PATH ConvertDevicePathFromText;
 } EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL;

Parameters

ConvertTextToDeviceNode Convert text to a device node.

ConvertTextToDevicePath Convert text to a device path.

Description

The EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL provides common utilities for converting
text to device paths and device nodes.

January 31, 2006
Version 2.0 305

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode()

Summary

Convert text to the binary representation of a device node.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_FROM_TEXT_NODE) (
 IN CONST CHAR16* TextDeviceNode,
);

Parameters

TextDeviceNode TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues
until the first non-device node character.

Description

This function converts text to its binary device node representation and copies it into an allocated
buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the EFI device node or NULL if TextDeviceNode is NULL or
there was insufficient memory.

 January 31, 2006
306 Version 2.0

EFI_DEVICE_PATH_FROM_PATH_PROTOCOL.ConvertTextToDevicePath()

Summary

Convert a text to its binary device path representation.

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_FROM_PATHPATH) (
 IN CONST CHAR16* TextDevicePath,
);

Parameters

TextDevicePath TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues
until the first non-device path character.

Description

This function converts text to its binary device path representation and copies it into an allocated
buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions

EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns

This function returns a pointer to the allocated device path or NULL if TextDevicePath is
NULL or there was insufficient memory.

January 31, 2006
Version 2.0 307

10
Protocols — UEFI Driver Model

EFI drivers that follow the UEFI Driver Model are not allowed to search for controllers to manage.
When a specific controller is needed, the EFI boot service ConnectController() is used
along with the EFI_DRIVER_BINDING_PROTOCOL services to identify the best drivers for a
controller. Once ConnectController() has identified the best drivers for a controller, the
start service in the EFI_DRIVER_BINDING_PROTOCOL is used by ConnectController()
to start each driver on the controller. Once a controller is no longer needed, it can be released with
the EFI boot service DisconnectController(). DisconnectController() calls the
stop service in each EFI_DRIVER_BINDING_PROTOCOL to stop the controller.

The driver initialization routine of an UEFI driver is not allowed to touch any device hardware.
Instead, it just installs an instance of the EFI_DRIVER_BINDING_PROTOCOL on the
ImageHandle of the UEFI driver. The test to determine if a driver supports a given controller
must be performed in as little time as possible without causing any side effects on any of the
controllers it is testing. As a result, most of the controller initialization code is present in the start
and stop services of the EFI_DRIVER_BINDING_PROTOCOL.

10.1 EFI Driver Binding Protocol

This section provides a detailed description of the EFI_DRIVER_BINDING_PROTOCOL. This
protocol is produced by every driver that follows the UEFI Driver Model, and it is the central
component that allows drivers and controllers to be managed. It provides a service to test if a
specific controller is supported by a driver, a service to start managing a controller, and a service to
stop managing a controller. These services apply equally to drivers for both bus controllers and
device controllers.

EFI_DRIVER_BINDING_PROTOCOL

Summary

Provides the services required to determine if a driver supports a given controller. If a controller is
supported, then it also provides routines to start and stop the controller.

GUID
#define EFI_DRIVER_BINDING_PROTOCOL_GUID \

{0x18A031AB,0xB443,0x4D1A,0xA5,0xC0,0x0C,0x09,0x26,0x1E,
0x9F,0x71}

 January 31, 2006
308 Version 2.0

Protocol Interface Structure
typedef struct _EFI_DRIVER_BINDING_PROTOCOL {
 EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED Supported;
 EFI_DRIVER_BINDING_PROTOCOL_START Start;
 EFI_DRIVER_BINDING_PROTOCOL_STOP Stop;
 UINT32 Version;
 EFI_HANDLE ImageHandle;
 EFI_HANDLE DriverBindingHandle;
} EFI_DRIVER_BINDING_PROTOCOL;

Parameters

Supported Tests to see if this driver supports a given controller. This
service is called by the EFI boot service
ConnectController(). In order to make drivers as small
as possible, there are a few calling restrictions for this service.
ConnectController() must follow these calling
restrictions. If any other agent wishes to call Supported() it
must also follow these calling restrictions. See the
Supported() function description.

Start Starts a controller using this driver. This service is called by the
EFI boot service ConnectController(). In order to make
drivers as small as possible, there are a few calling restrictions
for this service. ConnectController() must follow these
calling restrictions. If any other agent wishes to call Start()
it must also follow these calling restrictions. See the Start()
function description.

Stop Stops a controller using this driver. This service is called by the
EFI boot service DisconnectController(). In order to
make drivers as small as possible, there are a few calling
restrictions for this service. DisconnectController()
must follow these calling restrictions. If any other agent wishes
to call Stop() it must also follow these calling restrictions.
See the Stop() function description.

Version The version number of the UEFI driver that produced the
EFI_DRIVER_BINDING_PROTOCOL. This field is used by
the EFI boot service ConnectController() to determine
the order that driver's Supported() service will be used
when a controller needs to be started. EFI Driver Binding
Protocol instances with higher Version values will be used
before ones with lower Version values. The Version values
of 0x0-0x0f and 0xfffffff0-0xffffffff are reserved
for platform/OEM specific drivers. The Version values of
0x10-0xffffffef are reserved for IHV-developed drivers.

January 31, 2006
Version 2.0 309

ImageHandle The image handle of the UEFI driver that produced this instance
of the EFI_DRIVER_BINDING_PROTOCOL.

DriverBindingHandle The handle on which this instance of the
EFI_DRIVER_BINDING_PROTOCOL is installed. In most
cases, this is the same handle as ImageHandle. However, for
UEFI drivers that produce more than one instance of the
EFI_DRIVER_BINDING_PROTOCOL, this value may not be
the same as ImageHandle.

Description

The EFI_DRIVER_BINDING_PROTOCOL provides a service to determine if a driver supports a
given controller. If a controller is supported, then it also provides services to start and stop the
controller. All UEFI drivers are required to be reentrant so they can manage one or more
controllers. This requires that drivers not use global variables to store device context. Instead, they
must allocate a separate context structure per controller that the driver is managing. Bus drivers
must support starting and stopping the same bus multiple times, and they must also support starting
and stopping all of their children, or just a subset of their children.

 January 31, 2006
310 Version 2.0

EFI_DRIVER_BINDING_PROTOCOL.Supported()

Summary

Tests to see if this driver supports a given controller. If a child device is provided, it further tests to
see if this driver supports creating a handle for the specified child device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL
instance.

ControllerHandle The handle of the controller to test. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.
Sometimes just the presence of this I/O abstraction is enough for
the driver to determine if it supports ControllerHandle.
Sometimes, the driver may use the services of the I/O abstraction
to determine if this driver supports ControllerHandle.

RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.

Description

This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that
the device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with
FreePages(), AllocatePool() with FreePool(), and OpenProtocol() with

January 31, 2006
Version 2.0 311

CloseProtocol(). Since ControllerHandle may have been previously started by the
same driver, if a protocol is already in the opened state, then it must not be closed with
CloseProtocol(). This is required to guarantee the state of ControllerHandle is not
modified by this function.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already open for exclusive access by a different driver or
application, then EFI_ACCESS_DENIED is returned.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already opened by the same driver, then
EFI_ALREADY_STARTED is returned. However, if the driver specified by This is a bus driver
that is able to create one child handle at a time, then it is not an error, and the bus driver should
continue with its test of ControllerHandle. This allows a bus driver to create one child
handle on the first call to Supported() and Start(), and create additional child handles on
additional calls to Supported() and Start().

If ControllerHandle is not supported by This, then EFI_UNSUPPORTED is returned.

If This is a bus driver that creates child handles with an EFI_DEVICE_PATH_PROTOCOL, then
ControllerHandle must support the EFI_DEVICE_PATH_PROTOCOL. If it does not, then
EFI_UNSUPPORTED is returned.

If ControllerHandle is supported by This, and This is a device driver, then
EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is NULL, then EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is not NULL, then RemainingDevicePath must be analyzed. If
the first node of RemainingDevicePath is an EFI Device Path node that the bus driver recognizes
and supports, then EFI_SUCCESS is returned. Otherwise, EFI_UNSUPPORTED is returned.

The Supported() function is designed to be invoked from the EFI boot service
ConnectController(). As a result, much of the error checking on the parameters to
Supported() has been moved into this common boot service. It is legal to call Supported()
from other locations, but the following calling restrictions must be followed or the system behavior
will not be deterministic.

ControllerHandle must be a valid EFI_HANDLE. If RemainingDevicePath is not
NULL, then it must be a pointer to a naturally aligned EFI_DEVICE_PATH_PROTOCOL that
contains at least one device path node other than the end node.

 January 31, 2006
312 Version 2.0

Status Codes Returned
EFI_SUCCESS The device specified by ControllerHandle and

RemainingDevicePath is supported by the driver specified by
This.

EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.

EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different

driver or an application that requires exclusive access.

EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by
This.

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
return Status;

January 31, 2006
Version 2.0 313

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example

 // would return EFI_SUCCESS if the SCSI driver supports creating the
 // child handle for PUN=3, LUN=0. Otherwise it would return an error.

//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
return Status;

Pseudo Code

Listed below are the algorithms for the Supported() function for three different types of
drivers. How the Start() function of a driver is implemented can affect how the
Supported() function is implemented. All of the services in the
EFI_DRIVER_BINDING_PROTOCOL need to work together to make sure that all resources
opened or allocated in Supported() and Start() are released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a bus driver that always creates
all of its child handles on the first call to Start(). The third is a more advanced bus driver that
can either create one child handles at a time on successive calls to Start(), or it can create all of
its child handles or all of the remaining child handles in a single call to Start().

Device Driver:
3. Ignore the parameter RemainingDevicePath.
4. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

5. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

6. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol() and
return EFI_UNSUPPORTED.

7. Close all protocols opened in (2) with CloseProtocol().
8. Return EFI_SUCCESS.

 January 31, 2006
314 Version 2.0

Bus Driver that creates all of its child handles on the first call to Start():
1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure

it is a legal Device Path Node for this bus driver’s children. If it is not, then return
EFI_UNSUPPORTED.

2. Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) with CloseProtocol() and
return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().
6. Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():
1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure

it is a legal Device Path Node for this bus driver’s children. If it is not, then return
EFI_UNSUPPORTED.

2. Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) failed with an error other than
EFI_ALREADY_STARTED, then close all of the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol(), and return the status code from the
OpenProtocol() call that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of
the protocols opened in (2) are used to further check the identity of the controller. If any of
these tests fails, then close all the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol() and return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) that did not return EFI_ALREADY_STARTED with
CloseProtocol().

6. Return EFI_SUCCESS.

January 31, 2006
Version 2.0 315

Listed below is sample code of the Supported() function of device driver for a device on the
XYZ bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. Just the presence of
the EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. The gBS variable is initialized in this driver’s entry point. See
Chapter 4.

extern EFI_GUID gEfiXyzIoProtocol;
EFI_BOOT_SERVICES_TABLE *gBS;

EFI_STATUS
AbcSupported (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;

 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

 return EFI_SUCCESS;
}

 January 31, 2006
316 Version 2.0

EFI_DRIVER_BINDING_PROTOCOL.Start()

Summary

Starts a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_START) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL
instance.

ControllerHandle The handle of the controller to start. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.

RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL, then only the handle for the child
device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.

Description

This function starts the device specified by Controller with the driver specified by This.
Whatever resources are allocated in Start() must be freed in Stop(). For example, every
AllocatePool(), AllocatePages(), OpenProtocol(), and
InstallProtocolInterface() in Start() must be matched with a FreePool(),
FreePages(), CloseProtocol(), and UninstallProtocolInterface() in
Stop().

If Controller is started, then EFI_SUCCESS is returned. If Controller cannot be started
due to a device error, then EFI_DEVICE_ERROR is returned. If there are not enough resources to
start the device or bus specified by Controller, then EFI_OUT_OF_RESOURCES is returned.

If the driver specified by This is a device driver, then RemainingDevicePath is ignored.

January 31, 2006
Version 2.0 317

If the driver specified by This is a bus driver, and RemainingDevicePath is NULL, then all
of the children of Controller are discovered and enumerated, and a device handle is created for
each child.

If the driver specified by This is a bus driver that is capable of creating one child handle at a time
and RemainingDevicePath is not NULL, then an attempt is made to create the device handle
for the child device specified by RemainingDevicePath. Depending on the bus type, all of the
child devices may need to be discovered and enumerated, but at most only the device handle for the
one child specified by RemainingDevicePath shall be created.

The Start() function is designed to be invoked from the EFI boot service
ConnectController(). As a result, much of the error checking on the parameters to
Start() has been moved into this common boot service. It is legal to call Start() from other
locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned

EFI_DEVICE_PATH_PROTOCOL that contains at least one device path node other than the
end node.

3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned
EFI_SUCCESS.

Status Codes Returned
EFI_SUCCESS The device was started.

EFI_DEVICE_ERROR The device could not be started due to a device error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

 January 31, 2006
318 Version 2.0

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 NULL
);
}

return Status;

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example

 // would return EFI_SUCCESS if the SCSI driver supports creating the
 // child handle for PUN=3, LUN=0. Otherwise it would return an error.

//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
}

return Status;

January 31, 2006
Version 2.0 319

Pseudo Code

Listed below are the algorithms for the Start() function for three different types of drivers.
How the Start() function of a driver is implemented can affect how the Supported()
function is implemented. All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to
work together to make sure that all resources opened or allocated in Supported() and
Start() are released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a simple bus driver that always
creates all of its child handles on the first call to Start(). It does not attach any additional
protocols to the handle for the bus controller. The third is a more advanced bus driver that can
either create one child handles at a time on successive calls to Start(), or it can create all of its
child handles or all of the remaining child handles in a single call to Start(). Once again, it does
not attach any additional protocols to the handle for the bus controller.

Device Driver:

a. Ignore the parameter RemainingDevicePath.
b. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive
access to a protocol interface, and it requires any drivers that may be using the protocol
interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It
must use the same Attribute value that was used in Supported().

c. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the
protocols opened in (2) with CloseProtocol(), and return the status code from the call
to OpenProtocol() that returned an error.

d. Initialize the device specified by ControllerHandle. If an error occurs, close all of
the protocols opened in (2) with CloseProtocol(), and return EFI_DEVICE_ERROR.

e. Allocate and initialize all of the data structures that this driver requires to manage the
device specified by ControllerHandle. This would include space for public protocols
and space for any additional private data structures that are related to
ControllerHandle. If an error occurs allocating the resources, then close all of the
protocols opened in (2) with CloseProtocol(), and return
EFI_OUT_OF_RESOURCES.

f. Install all the new protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces(). If an error occurs, close all of the
protocols opened in (1) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().

g. Return EFI_SUCCESS.

 January 31, 2006
320 Version 2.0

Bus Driver that creates all of its child handles on the first call to Start():
1. Ignore the parameter RemainingDevicePath.
2. Open all required protocols with OpenProtocol(). A standard driver should use an

Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the
protocols opened in (2) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (2) with CloseProtocol(), and return EFI_DEVICE_ERROR.

5. Discover all the child devices of the bus controller specified by ControllerHandle.
6. If the bus requires it, allocate resources to all the child devices of the bus controller specified by

ControllerHandle.
7. FOR each child C of ControllerHandle:

a. Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (2) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

b. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c. Initialize the child device C. If an error occurs, close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR.

d. Create a new handle for C, and install the protocol interfaces for child device C using
InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH_PROTOCOL.

e. Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

8. END FOR
9. If the bus driver also produces protocols on ControllerHandle, then install all the new

protocol interfaces onto ControllerHandle using InstallMultipleProtocolInterfaces(). If
an error occurs, close all of the protocols opened in (2) with CloseProtocol(), and return the
error from InstallMultipleProtocolInterfaces().

10. Return EFI_SUCCESS.

January 31, 2006
Version 2.0 321

Bus Driver that is able to create all or one of its child handles on each call to Start():

• Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

• If any of the calls to OpenProtocol() in (1) returned an error, then close all of the protocols
opened in (1) with CloseProtocol(), and return the status code from the call to
OpenProtocol() that returned an error.

• Initialize the device specified by ControllerHandle. If an error occurs, close all of the
protocols opened in (1) with CloseProtocol(), and return EFI_DEVICE_ERROR.

• IF RemainingDevicePath is not NULL, THEN
h. C is the child device specified by RemainingDevicePath.
i. Allocate and initialize all of the data structures that this driver requires to manage the child

device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

j. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

k. Initialize the child device C.
l. Create a new handle for C, and install the protocol interfaces for child device C using

InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH_PROTOCOL.

m. Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

ELSE

• Discover all the child devices of the bus controller specified by ControllerHandle.
• If the bus requires it, allocate resources to all the child devices of the bus controller specified by

ControllerHandle.

• FOR each child C of ControllerHandle
a. Allocate and initialize all of the data structures that this driver requires to manage the child

device C. This would include space for public protocols and space for any additional
private data structures that are related to the child device C. If an error occurs allocating
the resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

b. If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c. Initialize the child device C.
d. Create a new handle for C, and install the protocol interfaces for child device C using

InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH_PROTOCOL.

 January 31, 2006
322 Version 2.0

e. Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

• END FOR
1. END IF
2. If the bus driver also produces protocols on ControllerHandle, then install all the new

protocol interfaces onto ControllerHandle using InstallMultipleProtocolInterfaces(). If an
error occurs, close all of the protocols opened in (2) with CloseProtocol(), and return the
error from InstallMultipleProtocolInterfaces().

3. Return EFI_SUCCESS.

Listed below is sample code of the Start() function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on
ControllerHandle. The gBS variable is initialized in this driver’s entry point as shown in the
UEFI Driver Model examples in Section 1.6.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES_TABLE *gBS;

EFI_STATUS
AbcStart (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Open the Xyz I/O Protocol that this driver consumes
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Allocate and zero a private data structure for the Abc device.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,

January 31, 2006
Version 2.0 323

 sizeof (EFI_ABC_DEVICE),
 &AbcDevice
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }
 ZeroMem (AbcDevice, sizeof (EFI_ABC_DEVICE));

 //
 // Initialize the contents of the private data structure for the Abc device.
 // This includes the XyzIo protocol instance and other private data fields
 // and the EFI_ABC_IO_PROTOCOL instance that will be installed.
 //
 AbcDevice->Signature = EFI_ABC_DEVICE_SIGNATURE;
 AbcDevice->XyzIo = XyzIo;

 AbcDevice->PrivateData1 = PrivateValue1;
 AbcDevice->PrivateData2 = PrivateValue2;
 . . .
 AbcDevice->PrivateDataN = PrivateValueN;

 AbcDevice->AbcIo.Revision = EFI_ABC_IO_PROTOCOL_REVISION;
 AbcDevice->AbcIo.Func1 = AbcIoFunc1;
 AbcDevice->AbcIo.Func2 = AbcIoFunc2;
 . . .
 AbcDevice->AbcIo.FuncN = AbcIoFuncN;

 AbcDevice->AbcIo.Data1 = Value1;
 AbcDevice->AbcIo.Data2 = Value2;
 . . .
 AbcDevice->AbcIo.DataN = ValueN;

 //
 // Install protocol interfaces for the ABC I/O device.
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 &ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }

 return EFI_SUCCESS;

ErrorExit:
 //
 // When there is an error, the private data structures need to be freed and
 // the protocols that were opened need to be closed.
 //
 if (AbcDevice != NULL) {
 gBS->FreePool (AbcDevice);
 }
 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);
 return Status;
}

 January 31, 2006
324 Version 2.0

EFI_DRIVER_BINDING_PROTOCOL.Stop()

Summary

Stops a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_STOP) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_BINDING_PROTOCOL
instance. Type EFI_DRIVER_BINDING_PROTOCOL is
defined in Section 10.1.

ControllerHandle A handle to the device being stopped. The handle must support
a bus specific I/O protocol for the driver to use to stop the
device.

NumberOfChildren The number of child device handles in ChildHandleBuffer.

ChildHandleBuffer An array of child handles to be freed. May be NULL if
NumberOfChildren is 0.

Description

This function performs different operations depending on the parameter NumberOfChildren. If
NumberOfChildren is not zero, then the driver specified by This is a bus driver, and it is
being requested to free one or more of its child handles specified by NumberOfChildren and
ChildHandleBuffer. If all of the child handles are freed, then EFI_SUCCESS is returned. If
NumberOfChildren is zero, then the driver specified by This is either a device driver or a bus
driver, and it is being requested to stop the controller specified by ControllerHandle. If
ControllerHandle is stopped, then EFI_SUCCESS is returned. In either case, this function is
required to undo what was performed in Start(). Whatever resources are allocated in
Start() must be freed in Stop(). For example, every AllocatePool(),
AllocatePages(), OpenProtocol(), and InstallProtocolInterface() in
Start() must be matched with a FreePool(), FreePages(), CloseProtocol(), and
UninstallProtocolInterface() in Stop().

January 31, 2006
Version 2.0 325

If ControllerHandle cannot be stopped, then EFI_DEVICE_ERROR is returned. If, for
some reason, there are not enough resources to stop ControllerHandle, then
EFI_OUT_OF_RESOURCES is returned.

The Stop() function is designed to be invoked from the EFI boot service
DisconnectController(). As a result, much of the error checking on the parameters to
Stop() has been moved into this common boot service. It is legal to call Stop() from other
locations, but the following calling restrictions must be followed or the system behavior will not be
deterministic.

A ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this same
driver’s Start() function.

B The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver’s Start()
function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

Status Codes Returned
EFI_SUCCESS The device was stopped.

EFI_DEVICE_ERROR The device could not be stopped due to a device error.

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_HANDLE ChildHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// Use the Driver Binding Protocol instance to free the child
// specified by ChildHandle. Then, use the Driver Binding
// Protocol to stop ControllerHandle.
//

 January 31, 2006
326 Version 2.0

Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 1,
 &ChildHandle
);

Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 0,
 NULL
);

Pseudo Code

Device Driver:
1. Uninstall all the protocols that were installed onto ControllerHandle in Start().
2. Close all the protocols that were opened on behalf of ControllerHandle in Start().
3. Free all the structures that were allocated on behalf of ControllerHandle in Start().
4. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

Bus Driver that is able to create all or one of its child handles on each call to Start():
1. IF NumberOfChildren is zero THEN:

a. Uninstall all the protocols that were installed onto ControllerHandle in Start().
b. Close all the protocols that were opened on behalf of ControllerHandle in Start().
c. Free all the structures that were allocated on behalf of ControllerHandle in

Start().
2. ELSE

• FOR each child C in ChildHandleBuffer

 Uninstall all the protocols that were installed onto C in Start().

 Close all the protocols that were opened on behalf of C in Start().

 Free all the structures that were allocated on behalf of C in Start().

• END FOR
3. END IF
4. Return EFI_SUCCESS.

January 31, 2006
Version 2.0 327

Listed below is sample code of the Stop() function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on
ControllerHandle in Start(). The gBS variable is initialized in this driver’s entry point.
See Chapter 4.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES_TABLE *gBS;

EFI_STATUS
AbcStop (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_ABC_IO AbcIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Get our context back
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid,
 &AbcIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return EFI_UNSUPPORTED;
 }

 //
 // Use Containment Record Macro to get AbcDevice structure from
 // a pointer to the AbcIo structure within the AbcDevice structure.
 //
 AbcDevice = ABC_IO_PRIVATE_DATA_FROM_THIS (AbcIo);

 January 31, 2006
328 Version 2.0

 //
 // Uninstall the protocol installed in Start()
 //
 Status = gBS->UninstallMultipleProtocolInterfaces (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (!EFI_ERROR (Status)) {

 //
 // Close the protocol opened in Start()
 //
 Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);

 //
 // Free the structure allocated in Start().
 //
 gBS->FreePool (AbcDevice);
 }

 return Status;

}

January 31, 2006
Version 2.0 329

10.2 EFI Platform Driver Override Protocol

This section provides a detailed description of the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL. This protocol can override the default algorithm for matching drivers to controllers.

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. A platform driver produces this protocol,
and it is installed on a separate handle. This protocol is used by the ConnectController()
boot service to select the best driver for a controller. All of the drivers returned by this protocol
have a higher precedence than drivers found from an EFI Bus Specific Driver Override Protocol or
drivers found from the general UEFI driver Binding search algorithm. If more than one driver is
returned by this protocol, then the drivers are returned in order from highest precedence to lowest
precedence.

GUID
#define EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL_GUID \

{0x6b30c738,0xa391,0x11d4,0x9a,0x3b,0x00,0x90,0x27,0x3f,
0xc1,0x4d}

Protocol Interface Structure
typedef struct _EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL {
 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER GetDriver;
 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH GetDriverPath;
 EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED DriverLoaded;
} EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL;

Parameters

GetDriver Retrieves the image handle of a platform override driver for a controller
in the system. See the GetDriver() function description.

GetDriverPath Retrieves the device path of a platform override driver for a controller in
the system. See the GetDriverPath() function description.

DriverLoaded This function is used after a driver has been loaded using a device path
returned by GetDriverPath(). This function associates a device
path to an image handle, so the image handle can be returned the next
time that GetDriver() is called for the same controller. See the
DriverLoaded() function description.

 January 31, 2006
330 Version 2.0

Description

The EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL is used by the EFI boot service
ConnectController() to determine if there is a platform specific driver override for a
controller that is about to be started. The bus drivers in a platform will use a bus defined matching
algorithm for matching drivers to controllers. This protocol allows the platform to override the bus
driver's default driver matching algorithm. This protocol can be used to specify the drivers for on-
board devices whose drivers may be in a system ROM not directly associated with the on-board
controller, or it can even be used to manage the matching of drivers and controllers in add-in cards.
This can be very useful if there are two adapters that are identical except for the revision of the
driver in the adapter's ROM. This protocol, along with a platform configuration utility, could
specify which of the two drivers to use for each of the adapters.

The drivers that this protocol returns can be either in the form of an image handle or a device path.
ConnectController() can only use image handles, so ConnectController() is
required to use the GetDriver() service. A different component, such as the Boot Manager,
will have to use the GetDriverPath() service to retrieve the list of drivers that need to be
loaded from I/O devices. Once a driver has been loaded and started, this same component can use
the DriverLoaded() service to associate the device path of a driver with the image handle of
the loaded driver. Once this association has been established, the image handle can then be
returned by the GetDriver() service the next time it is called by ConnectController().

January 31, 2006
Version 2.0 331

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Retrieves the image handle of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN OUT EFI_HANDLE *DriverImageHandle
);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver(). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle for ControllerHandle.

Description

This function is used to retrieve a driver image handle that is selected in a platform specific manner.
The first driver image handle is retrieved by passing in a DriverImageHandle value of NULL.
This will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. The first driver image handle has the highest precedence, and the last driver image handle
has the lowest precedence. This ordered list of driver image handles is used by the boot service
ConnectController() to search for the best driver for a controller.

 January 31, 2006
332 Version 2.0

Status Codes Returned
EFI_SUCCESS The driver override for ControllerHandle was returned in

DriverImageHandle.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a
previous call to GetDriver().

January 31, 2006
Version 2.0 333

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()

Summary

Retrieves the device path of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DriverImagePath
);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImagePath On input, a pointer to the previous driver device path returned by
GetDriverPath(). On output, a pointer to the next driver
device path. Passing in a pointer to NULL, will return the first
driver device path for ControllerHandle.

Description

This function is used to retrieve a driver device path that is selected in a platform specific manner.
The first driver device path is retrieved by passing in a DriverImagePath value that is a pointer
to NULL. This will cause the first driver device path to be returned in DriverImagePath. On
each successive call, the previous value of DriverImagePath must be passed in. If a call to this
function returns a valid driver device path, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImagePath is passed in that was not
returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle is not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is
returned. The first driver device path has the highest precedence, and the last driver device path has
the lowest precedence. This ordered list of driver device paths is used by a platform specific
component, such as the EFI Boot Manager, to load and start the platform override drivers by using
the EFI boot services LoadImage() and StartImage(). Each time one of these drivers is
loaded and started, the DriverLoaded() service is called.

 January 31, 2006
334 Version 2.0

Status Codes Returned
EFI_SUCCESS The driver override for ControllerHandle was returned in

DriverImagePath.

EFI_UNSUPPORTED The operation is not supported.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid handle.

EFI_INVALID_PARAMETER DriverImagePath is not a device path that was returned on a
previous call to GetDriverPath().

January 31, 2006
Version 2.0 335

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

Summary

Used to associate a driver image handle with a device path that was returned on a prior call to the
GetDriverPath() service. This driver image handle will then be available through the
GetDriver() service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *DriverImagePath,
 IN EFI_HANDLE DriverImageHandle
);

Parameters

This A pointer to the EFI_PLATFORM_DRIVER_OVERRIDE_
PROTOCOL instance.

ControllerHandle The device handle of a controller. This must match the
controller handle that was used in a prior call to GetDriver()
to retrieve DriverImagePath.

DriverImagePath A pointer to the driver device path that was returned in a prior
call to GetDriverPath().

DriverImageHandle The driver image handle that was returned by LoadImage()
when the driver specified by DriverImagePath was loaded
into memory.

Description

This function associates the image handle specified by DriverImageHandle with the device
path of a driver specified by DriverImagePath. DriverImagePath must be a value that
was returned on a prior call to GetDriverPath() for the controller specified by
ControllerHandle. Once this association has been established, then the service
GetDriver() must return DriverImageHandle as one of the override drivers for the
controller specified by ControllerHandle.

 January 31, 2006
336 Version 2.0

If the association between the image handle specified by DriverImageHandle and the device
path specified by DriverImagePath is established for the controller specified by
ControllerHandle, then EFI_SUCCESS is returned. If ControllerHandle is not a valid
EFI_HANDLE, or DriverImagePath is not a valid device path, or DriverImageHandle is
not a valid EFI_HANDLE, then EFI_INVALID_PARAMETER is returned. If
DriverImagePath is not a device path that was returned on a prior call to GetDriver() for
the controller specified by ControllerHandle, then EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS The association between DriverImagePath and

DriverImageHandle was established for the controller specified
by ControllerHandle.

EFI_UNSUPPORTED The operation is not supported.

EFI_NOT_FOUND DriverImagePath is not a device path that was returned on a prior
call to GetDriverPath() for the controller specified by
ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid device handle.

EFI_INVALID_PARAMETER DriverImagePath is not a valid device path.

EFI_INVALID_PARAMETER DriverImageHandle is not a valid image handle.

January 31, 2006
Version 2.0 337

10.3 EFI Bus Specific Driver Override Protocol

This section provides a detailed description of the EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_
PROTOCOL. Bus drivers that have a bus specific algorithm for matching drivers to controllers are
required to produce this protocol for each controller. For example, a PCI Bus Driver will produce
an instance of this protocol for every PCI controller that has a PCI option ROM that contains one or
more UEFI drivers. The protocol instance is attached to the handle of the PCI controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Summary

This protocol matches one or more drivers to a controller. This protocol is produced by a bus
driver, and it is installed on the child handles of buses that require a bus specific algorithm for
matching drivers to controllers. This protocol is used by the ConnectController() boot
service to select the best driver for a controller. All of the drivers returned by this protocol have a
higher precedence than drivers found in the general EFI Driver Binding search algorithm, but a
lower precedence than those drivers returned by the EFI Platform Driver Override Protocol. If
more than one driver image handle is returned by this protocol, then the drivers image handles are
returned in order from highest precedence to lowest precedence.

GUID
#define EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL_GUID \

{0x3bc1b285,0x8a15,0x4a82,0xaa,0xbf,0x4d,0x7d,0x13,0xfb,
0x32,0x65}

Protocol Interface Structure
typedef struct _EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL {
 EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER GetDriver;
} EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL;

Parameters

GetDriver Uses a bus specific algorithm to retrieve a driver image handle
for a controller. See the GetDriver() function description.

Description

The EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL provides a mechanism for bus
drivers to override the default driver selection performed by the ConnectController() boot
service. This protocol is attached to the handle of a child device after the child handle is created by
the bus driver. The service in this protocol can return a bus specific override driver to
ConnectController(). ConnectController() must call this service until all of the bus
specific override drivers have been retrieved. ConnectController() uses this information
along with the EFI Platform Driver Override Protocol and all of the EFI Driver Binding protocol
instances to select the best drivers for a controller. Since a controller can be managed by more than
one driver, this protocol can return more than one bus specific override driver.

 January 31, 2006
338 Version 2.0

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary

Uses a bus specific algorithm to retrieve a driver image handle for a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER) (
 IN EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL *This,
 IN OUT EFI_HANDLE *DriverImageHandle
);

Parameters

This A pointer to the EFI_BUS_SPECIFIC_DRIVER_
OVERRIDE_PROTOCOL instance.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver(). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle.

Description

This function is used to retrieve a driver image handle that is selected in a bus specific manner. The
first driver image handle is retrieved by passing in a DriverImageHandle value of NULL. This
will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. The
first driver image handle has the highest precedence, and the last driver image handle has the lowest
precedence. This ordered list of driver image handles is used by the boot service
ConnectController() to search for the best driver for a controller.

Status Codes Returned
EFI_SUCCESS A bus specific override driver is returned in DriverImageHandle.

EFI_NOT_FOUND The end of the list of override drivers was reached. A bus specific
override driver is not returned in DriverImageHandle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a
previous call to GetDriver().

January 31, 2006
Version 2.0 339

10.4 EFI Driver Configuration Protocol

This section provides a detailed description of the EFI_DRIVER_CONFIGURATION_
PROTOCOL. This is a protocol that allows an UEFI driver to provide the ability to set controller
specific options on a controller that the driver is managing. Unlike legacy option ROMs, the
configuration of drivers and controllers is delayed until a platform management utility chooses to
use the services of this protocol. UEFI drivers are not allowed to perform setup-like operations
outside the context of this protocol. This means that a driver is not allowed to interact with the user
outside the context of this protocol.

EFI_DRIVER_CONFIGURATION_PROTOCOL

Summary

Used to set configuration options for a controller that a UEFI driver is managing.

GUID
#define EFI_DRIVER_CONFIGURATION_PROTOCOL_GUID \

{0xbfd7dc1d,0x24f1,0x40d9,0x82,0xe7,0x2e,0x09,0xbb,0x6b,
0x4e,0xbe}

Protocol Interface Structure
typedef struct _EFI_DRIVER_CONFIGURATION_PROTOCOL {
 EFI_DRIVER_CONFIGURATION_SET_OPTIONS SetOptions;
 EFI_DRIVER_CONFIGURATION_OPTIONS_VALID OptionsValid;
 EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS ForceDefaults;
 CHAR8 *SupportedLanguages;
} EFI_DRIVER_CONFIGURATION_PROTOCOL;

Parameters

SetOptions Allows the use to set drivers specific configuration options for a
controller that the driver is currently managing. See the
SetOptions() function description.

OptionsValid Tests to see if a controller's current configuration options are
valid. See the OptionsValid() function description.

ForceDefaults Forces a driver to set the default configuration options for a
controller. See the ForceDefaults() function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
supported language codes. This is the list of language codes that
this protocol supports. The number of languages supported by a
driver is up to the driver writer. SupportedLanguages is
specified in RFC 3066 format. See Appendix M for the format of
language codes and language code arrays.

 January 31, 2006
340 Version 2.0

Description

The EFI_DRIVER_CONFIGURATION_PROTOCOL is used by a platform management utility to
allow the user to set controller specific options. This protocol is optionally attached to the image
handle of driver in the driver's entry point. The platform management utility can collect all the
EFI_DRIVER_CONFIGURATION_PROTOCOL instances present in the system, and present the
user with a menu of the controllers than have user selectable options. This platform management
utility is invoked through a platform component such as the EFI Boot Manager.

January 31, 2006
Version 2.0 341

EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions()

Summary

Allows the user to set controller specific options for a controller that a driver is currently managing.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_CONFIGURATION_SET_OPTIONS) (
 IN EFI_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN CHAR8 *Language,
 OUT EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED *ActionRequired
);

Parameters
This A pointer to the EFI_DRIVER_CONFIGURATION_

PROTOCOL instance.

ControllerHandle The handle of the controller to set options on. If
ControllerHandle is a valid EFI_HANDLE that is being
managed by this driver, then the user will be allowed to set
options for the controller specified by ControllerHandle.
If this parameter is NULL, then the options will be set for all the
controllers that this driver is currently managing. If
ControllerHandle is NULL, then setting options for a child
controller is not supported, so ChildHandle must also be
NULL.

ChildHandle The handle of the child controller to set options on. This is an
optional parameter that may be NULL. It will be NULL for
device drivers, and for bus drivers that attempt to set options for
the bus controller. It will not be NULL for a bus driver that
attempts to set options for one of its child controllers.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language of the user interface that should
be presented to the user, and it must match one of the languages
specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.
Language is specified in RFC 3066 language code format. See
Appendix M for the format of language codes.

ActionRequired A pointer to the action that the calling agent is required to
perform when this function returns. See "Related Definitions"
for a list of the actions that the calling agent is required to
perform prior to accessing ControllerHandle again.

 January 31, 2006
342 Version 2.0

Description

This function allows the configuration options to be set for the driver specified by This on the
controller specified by ControllerHandle and ChildHandle. This function must only use
the EFI_SIMPLE_TEXT_INPUT_PROTOCOL and EFI_SIMPLE_TEXT_OUPUT_PROTOCOL
from the EFI_SYSTEM_TABLE to interact with the user, and it must use the language specified by
Language. If the driver specified by This does not support the language specified by
Language, then EFI_UNSUPPORTED is returned. If the controller specified by
ControllerHandle and ChildHandle is not supported by the driver specified by This,
then EFI_UNSUPPORTED is returned. If a device error occurs while setting the configuration
options, EFI_DEVICE_ERROR is returned. If there are not enough resources available to set the
configuration options, then EFI_OUT_OF_RESOURCES is returned.

The ActionRequired return value must always be set to a legal value by this function. The
caller must perform the required action regardless of the return status. The calling agent must also
perform the action described by ActionRequired prior to using any of the services produced by
ControllerHandle or any of its children.

Related Definitions
//***
// EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED
//***
typedef enum {
 EfiDriverConfigurationActionNone = 0,
 EfiDriverConfigurationActionStopController = 1,
 EfiDriverConfigurationActionRestartController = 2,
 EfiDriverConfigurationActionRestartPlatform = 3,
 EfiDriverConfigurationActionMaximum
} EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED;

EfiDriverConfigurationActionNone

The controller specified by ControllerHandle is still in a usable state. No actions
are required before this controller can be used again.

EfiDriverConfigurationStopController

The driver has detected that the controller specified by ControllerHandle is not in a
usable state, and it needs to be stopped. The calling agent can use the
DisconnectController() service to perform this operation, and it should be
performed as soon as possible.

EfiDriverConfigurationRestartController

This controller specified by ControllerHandle needs to be stopped and restarted
before it can be used again. The calling agent can use the
DisconnectController() and ConnectController() services to perform
this operation. The restart operation can be delayed until all of the configuration options
have been set.

January 31, 2006
Version 2.0 343

EfiDriverConfigurationRestartPlatform

A configuration change has been made that requires the platform to be restarted before
the controller specified by ControllerHandle can be used again. The calling agent
can use the ResetSystem() services to perform this operation. The restart operation
can be delayed until all of the configuration options have been set.

Status Codes Returned
EFI_SUCCESS The driver specified by This successfully set the configuration options

for the controller specified by ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This does not support setting configuration
options for the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_DEVICE_ERROR A device error occurred while attempt to set the configuration options for
the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to set the configuration options
for the controller specified by ControllerHandle and
ChildHandle.

 January 31, 2006
344 Version 2.0

EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()

Summary

Tests to see if a controller's current configuration options are valid.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_CONFIGURATION_OPTIONS_VALID) (
 IN EFI_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL
);

Parameters

This A pointer to the EFI_DRIVER_CONFIGURATION_
PROTOCOL instance.

ControllerHandle The handle of the controller to test if its current configuration
options are valid.

ChildHandle The handle of the child controller to test if its current
configuration options are valid. This is an optional parameter
that may be NULL. It will be NULL for device drivers. It will
also be NULL for bus drivers that attempt to test the
configuration options for the bus controller. It will not be NULL
for a bus driver that attempts to test configuration options for one
of its child controllers.

Description

This function tests to see if the configuration options for the driver specified by This on the
controller specified by ControllerHandle and ChildHandle are valid. If they are, then
EFI_SUCCESS is returned. If they are not valid, then EFI_DEVICE_ERROR is returned. If the
controller specified by ControllerHandle and ChildHandle is not currently being managed
by the driver specified by This, then EFI_UNSUPPORTED is returned. This function is not
allowed to interact with the user. Since the driver is responsible for maintaining the configuration
options for each controller it manages, the exact method by which the configuration options are
validated is driver specific.

January 31, 2006
Version 2.0 345

Status Codes Returned
EFI_SUCCESS The controller specified by ControllerHandle and

ChildHandle that is being managed by the driver specified by This
has a valid set of configuration options.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle that is being managed by the driver specified by This

has an invalid set of configuration options.

 January 31, 2006
346 Version 2.0

EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()

Summary

Forces a driver to set the default configuration options for a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS) (
 IN EFI_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN UINT32 DefaultType,
 OUT EFI_DRIVER_CONFIGURATION_ACTION_REQUIRED *ActionRequired
);

Parameters

This A pointer to the EFI_DRIVER_CONFIGURATION_
PROTOCOL instance.

ControllerHandle The handle of the controller to force default configuration
options on.

ChildHandle The handle of the child controller to force default configuration
options on. This is an optional parameter that may be NULL. It
will be NULL for device drivers. It will also be NULL for a bus
drivers that attempt to force default configuration options for the
bus controller. It will not be NULL for a bus driver that attempts
to force default configuration options for one of its child
controllers.

DefaultType The type of default configuration options to force on the
controller specified by ControllerHandle and
ChildHandle. See Table 71 for legal values. A
DefaultType of 0x00000000 must be supported by this
protocol.

ActionRequired A pointer to the action that the calling agent is required to
perform when this function returns. See “Related Definitions” in
the SetOptions() function description for a list of the actions
that the calling agent is required to perform prior to accessing
ControllerHandle again.

January 31, 2006
Version 2.0 347

Description

This function forces the default configuration options specified by DefaultType for the driver
specified by This on the controller specified by ControllerHandle and ChildHandle.
This function is not allowed to interact with the user. If the controller specified by
ControllerHandle and ChildHandle is not supported by the driver specified by This,
then EFI_UNSUPPORTED is returned. If the configuration type specified by DefaultType is
not supported, then EFI_UNSUPPORTED is returned. If a device error occurs while setting the
default configuration options, EFI_DEVICE_ERROR is returned. If there are not enough
resources available to set the default configuration options, then EFI_OUT_OF_RESOURCES is
returned.

The ActionRequired return value must always be set to a legal value by this function. The
caller must perform the required action regardless of the return status. The calling agent must also
perform the action described by ActionRequired prior to using any of the services produced by
ControllerHandle or any of its children.

Table 71. EFI Driver Configuration Default Type

Bits Description

Bit 0-15

0x0000

0x0001

0x0002

0x0003

If bits 16-31 are 0x0000, then the following values are defined:

Safe Defaults. This type must be supported by all implementations of the
EFI_DRIVER_CONFIGURATION_PROTOCOL. It places a controller a safe configuration that
has the greatest probability of functioning correctly in a platform.

Manufacturing Defaults. Optional type that places the controller in a configuration suitable
for a manufacturing and test environment.

Custom Defaults. Optional type that places the controller in a custom configuration.

Performance Defaults. Optional type that places the controller in a configuration that
maximizes the controller's performance in a platform.

All other values are reserved for future versions of the EFI Specification.

Bits16-31 A value of 0x0000 is reserved by this specification. Values 0x0001-0xFFFF are available for
expansion by third parties.

 January 31, 2006
348 Version 2.0

Status Codes Returned
EFI_SUCCESS The driver specified by This successfully forced the default

configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER ActionRequired is NULL.

EFI_UNSUPPORTED The driver specified by This does not support forcing the default

configuration options on the controller specified by
ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the configuration type
specified by DefaultType.

EFI_DEVICE_ERROR A device error occurred while attempting to force the default configuration
options on the controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to force the default
configuration options on the controller specified by
ControllerHandle and ChildHandle.

January 31, 2006
Version 2.0 349

10.5 EFI Driver Diagnostics Protocol

This section provides a detailed description of the EFI_DRIVER_DIAGNOSTICS_PROTOCOL.
This is a protocol that allows a UEFI driver to perform diagnostics on a controller that the driver is
managing.

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

Summary

Used to perform diagnostics on a controller that a UEFI driver is managing.

GUID
#define EFI_DRIVER_DIAGNOSTICS_PROTOCOL_GUID \

{0x4d330321,0x025f,0x4aac,0x90,0xd8,0x5e,0xd9,0x00,0x17,
0x3b,0x63}

Protocol Interface Structure
typedef struct _EFI_DRIVER_DIAGNOSTICS_PROTOCOL {
 EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS RunDiagnostics;
 CHAR8 *SupportedLanguages;
} EFI_DRIVER_DIAGNOSTICS_PROTOCOL;

Parameters

RunDiagnostics Runs diagnostics on a controller. See the
RunDiagnostics() function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
supported language codes. This is the list of language codes that
this protocol supports. The number of languages supported by a
driver is up to the driver writer. SupportedLanguages is
specified in RFC 3066 format. See Appendix M for the format of
language codes and language code arrays.

Description

The EFI_DRIVER_DIAGNOSTICS_PROTOCOL is used by a platform management utility to
allow the user to run driver specific diagnostics on a controller. This protocol is optionally attached
to the image handle of driver in the driver's entry point. The platform management utility can
collect all the EFI_DRIVER_DISAGNOTICS_PROTOCOL instances present in the system, and
present the user with a menu of the controllers that have diagnostic capabilities. This platform
management utility is invoked through a platform component such as the EFI Boot Manager.

 January 31, 2006
350 Version 2.0

EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics()

Summary

Runs diagnostics on a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS) (
 IN EFI_DRIVER_DIAGNOSTICS_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN EFI_DRIVER_DIAGNOSTIC_TYPE DiagnosticType,
 IN CHAR8 *Language,
 OUT EFI_GUID **ErrorType,
 OUT UINTN *BufferSize,
 OUT CHAR16 **Buffer
);

Parameters

This A pointer to the EFI_DRIVER_DIAGNOSTICS_PROTOCOL
instance.

ControllerHandle The handle of the controller to run diagnostics on.

ChildHandle The handle of the child controller to run diagnostics on. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for a bus drivers that
attempt to run diagnostics on the bus controller. It will not be
NULL for a bus driver that attempts to run diagnostics on one of
its child controllers.

DiagnosticType Indicates type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. See
“Related Definitions” for the list of supported types.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language in which the optional error
message should be returned in Buffer, and it must match one of
the languages specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.
Language is specified in RFC 3066 language code format. See
Appendix M for the format of language codes.

January 31, 2006
Version 2.0 351

ErrorType A GUID that defines the format of the data returned in Buffer.

BufferSize The size, in bytes, of the data returned in Buffer.

Buffer A buffer that contains a Null-terminated Unicode string plus
some additional data whose format is defined by ErrorType.
Buffer is allocated by this function with AllocatePool(),
and it is the caller’s responsibility to free it with a call to
FreePool().

Description

This function runs diagnostics on the controller specified by ControllerHandle and
ChildHandle. DiagnoticType specifies the type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. If the driver specified by This does
not support the language specified by Language, then EFI_UNSUPPORTED is returned. If the
controller specified by ControllerHandle and ChildHandle is not supported by the driver
specified by This, then EFI_UNSUPPORTED is returned. If the diagnostics type specified by
DiagnosticType is not supported by this driver, then EFI_UNSUPPORTED is returned. If
there are not enough resources available to complete the diagnostic, then
EFI_OUT_OF_RESOURCES is returned. If the controller specified by ControllerHandle
and ChildHandle passes the diagnostic, then EFI_SUCCESS is returned. Otherwise,
EFI_DEVICE_ERROR is returned.

If the language specified by Language is supported by this driver, then status information is
returned in ErrorType, BufferSize, and Buffer. Buffer contains a Null-terminated
Unicode string followed by additional data whose format is defined by ErrorType.
BufferSize is the size of Buffer is bytes, and it is the caller's responsibility to call
FreePool() on Buffer when the caller is done with the return data. If there are not enough
resources available to return the status information, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_DRIVER_DIAGNOSTIC_TYPE
//***
typedef enum {
 EfiDriverDiagnosticTypeStandard = 0,
 EfiDriverDiagnosticTypeExtended = 1,
 EfiDriverDiagnosticTypeManufacturing = 2,
 EfiDriverDiagnosticTypeMaximum
} EFI_DRIVER_DIAGNOSTIC_TYPE;

 January 31, 2006
352 Version 2.0

EfiDriverDiagnosticTypeStandard

Performs standard diagnostics on the controller. This diagnostic type is required to be
supported by all implementations of this protocol.

EfiDriverDiagnosticTypeExtended

This is an optional diagnostic type that performs diagnostics on the controller that may
take an extended amount of time to execute.

EfiDriverDiagnosticTypeManufacturing

This is an optional diagnostic type that performs diagnostics on the controller that are
suitable for a manufacturing and test environment.

Status Codes Returned
EFI_SUCCESS The controller specified by ControllerHandle and

ChildHandle passed the diagnostic.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ErrorType is NULL.

EFI_INVALID_PARAMETER BufferSize is NULL.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The driver specified by This does not support running diagnostics for
the controller specified by ControllerHandle and
ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the type of diagnostic
specified by DiagnosticType.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

EFI_OUT_OF_RESOURCES There are not enough resources available to complete the diagnostics.

EFI_OUT_OF_RESOURCES There are not enough resources available to return the status information
in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and
ChildHandle did not pass the diagnostic.

January 31, 2006
Version 2.0 353

10.6 EFI Component Name Protocol

This section provides a detailed description of the EFI_COMPONENT_NAME_PROTOCOL. This is
a protocol that allows an driver to provide a user readable name of a UEFI Driver, and a user
readable name for each of the controllers that the driver is managing. This protocol is used by
platform management utilities that wish to display names of components. These names may
include the names of expansion slots, external connectors, embedded devices, and add-in devices.

EFI_COMPONENT_NAME_PROTOCOL

Summary

Used to retrieve user readable names of drivers and controllers managed by UEFI Drivers.

GUID
#define EFI_COMPONENT_NAME_PROTOCOL_GUID \

{0x107a772c,0xd5e1,0x11d4,0x9a,0x46,0x0,0x90,0x27,0x3f,
0xc1,0x4d}

Protocol Interface Structure
typedef struct _EFI_COMPONENT_NAME_PROTOCOL {
 EFI_COMPONENT_NAME_GET_DRIVER_NAME GetDriverName;
 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME GetControllerName;
 CHAR8 *SupportedLanguages;
} EFI_COMPONENT_NAME_PROTOCOL;

Parameters

GetDriverName Retrieves a Unicode string that is the user readable name of the
driver. See the GetDriverName() function description.

GetControllerName Retrieves a Unicode string that is the user readable name of a
controller that is being managed by a driver. See the
GetControllerName() function description.

SupportedLanguages A Null-terminated ASCII string array that contains one or more
supported language codes. This is the list of language codes that
this protocol supports. The number of languages supported by a
driver is up to the driver writer. SupportedLanguages is
specified in RFC 3066 format. See Appendix M for the format of
language codes and language code arrays.

Description

The EFI_COMPONENT_NAME_PROTOCOL is used retrieve a driver's user readable name and the
names of all the controllers that a driver is managing from the driver's point of view. Each of these
names is returned as a Null-terminated Unicode string. The caller is required to specify the
language in which the Unicode string is returned, and this language must be present in the list of
languages that this protocol supports specified by SupportedLanguages.

 January 31, 2006
354 Version 2.0

EFI_COMPONENT_NAME_PROTOCOL.GetDriverName()

Summary

Retrieves a Unicode string that is the user readable name of the driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_DRIVER_NAME) (
 IN EFI_COMPONENT_NAME_PROTOCOL *This,
 IN CHAR8 *Language,
 OUT CHAR16 **DriverName
);

Parameters

This A pointer to the EFI_COMPONENT_NAME_PROTOCOL
instance.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language of the driver name that the caller
is requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported by a
driver is up to the driver writer. Language is specified in RFC
3066 language code format. See Appendix M for the format of
language codes.

DriverName A pointer to the Unicode string to return. This Unicode string is
the name of the driver specified by This in the language
specified by Language.

Description

This function retrieves the user readable name of a driver in the form of a Unicode string. If the
driver specified by This has a user readable name in the language specified by Language, then a
pointer to the driver name is returned in DriverName, and EFI_SUCCESS is returned. If the
driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

January 31, 2006
Version 2.0 355

Status Codes Returned
EFI_SUCCESS The Unicode string for the user readable name in the language specified

by Language for the driver specified by This was returned in
DriverName.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER DriverName is NULL.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

 January 31, 2006
356 Version 2.0

EFI_COMPONENT_NAME_PROTOCOL.GetControllerName()

Summary

Retrieves a Unicode string that is the user readable name of the controller that is being managed by
a driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_CONTROLLER_NAME) (
 IN EFI_COMPONENT_NAME_PROTOCOL_2 *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN CHAR8 *Language,
 OUT CHAR16 **ControllerName
);

Parameters

This A pointer to the EFI_COMPONENT_NAME_PROTOCOL
instance.

ControllerHandle The handle of a controller that the driver specified by This is
managing. This handle specifies the controller whose name is to
be returned.

ChildHandle The handle of the child controller to retrieve the name of. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for bus drivers that attempt
to retrieve the name of the bus controller. It will not be NULL
for a bus driver that attempts to retrieve the name of a child
controller.

Language A pointer to a Null- terminated ASCII string array indicating the
language. This is the language of the controller name that the
caller is requesting, and it must match one of the languages
specified in SupportedLanguages. The number of languages
supported by a driver is up to the driver writer. Language is
specified in RFC 3066 language code format. See Appendix M
for the format of language codes.

ControllerName A pointer to the Unicode string to return. This Unicode string is
the name of the controller specified by ControllerHandle
and ChildHandle in the language specified by Language
from the point of view of the driver specified by This.

January 31, 2006
Version 2.0 357

Description

This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the driver
specified by This has a user readable name in the language specified by Language, then a
pointer to the controller name is returned in ControllerName, and EFI_SUCCESS is returned.

If the driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned.

If the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

Status Codes Returned
EFI_SUCCESS The Unicode string for the user readable name specified by This,

ControllerHandle, ChildHandle, and Language was returned in
ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ControllerName is NULL.

EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle is
not NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the controller
specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language specified by
Language.

10.7 EFI Service Binding Protocol

This section provides a detailed description of the EFI_SERVICE_BINDING_PROTOCOL. This
protocol may be produced only by drivers that follow the UEFI Driver Model. Use this protocol
with the EFI_DRIVER_BINDING_PROTOCOL to produce a set of protocols related to a device.
The EFI_DRIVER_BINDING_PROTOCOL supports simple layering of protocols on a device, but
it does not support more complex relationships such as trees or graphs. The
EFI_SERVICE_BINDING_PROTOCOL provides a member function to create a child handle with
a new protocol installed on it, and another member function to destroy a previously created child
handle. These member functions apply equally to all drivers.

 January 31, 2006
358 Version 2.0

EFI_SERVICE_BINDING_PROTOCOL

Summary

Provides services that are required to create and destroy child handles that support a given set of
protocols.

GUID

This protocol does not have its own GUID. Instead, drivers for other protocols will define a GUID
that shares the same protocol interface as the EFI_SERVICE_BINDING_PROTOCOL. The
protocols defined in this document that have this property include the following:

• EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL

• EFI_ARP_SERVICE_BINDING_PROTOCOL

• EFI_EAP_SERVICE_BINDING_PROTOCOL

• EFI_IP4_SERVICE_BINDING_PROTOCOL

• EFI_TCP4_SERVICE_BINDING_PROTOCOL

• EFI_UDP4_SERVICE_BINDING_PROTOCOL

• EFI_MTFTP4_SERVICE_BINDING_PROTOCOL

• EFI_DHCP4_SERVICE_BINDING_PROTOCOL

Protocol Interface Structure
typedef struct _EFI_SERVICE_BINDING_PROTOCOL {
 EFI_SERVICE_BINDING_CREATE_CHILD CreateChild;
 EFI_SERVICE_BINDING_DESTROY_CHILD DestroyChild;
} EFI_SERVICE_BINDING_PROTOCOL;

Parameters

CreateChild Creates a child handle and installs a protocol. See the
CreateChild() function description.

DestroyChild Destroys a child handle with a protocol installed on it. See the
DestroyChild() function description.

Description

The EFI_SERVICE_BINDING_PROTOCOL provides member functions to create and destroy
child handles. A driver is responsible for adding protocols to the child handle in CreateChild()
and removing protocols in DestroyChild(). Each consumer of a software protocol is
responsible for calling CreateChild() when it requires the protocol and calling
DestroyChild() when it is finished with that protocol.

January 31, 2006
Version 2.0 359

EFI_SERVICE_BINDING_PROTOCOL.CreateChild()

Summary

Creates a child handle and installs a protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERVICE_BINDING_CREATE_CHILD) (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN OUT EFI_HANDLE *ChildHandle
);

Parameters

This Pointer to the EFI_SERVICE_BINDING_PROTOCOL
instance.

ChildHandle Pointer to the handle of the child to create. If it is a pointer to
NULL, then a new handle is created. If it is a pointer to an
existing UEFI handle, then the protocol is added to the existing
UEFI handle.

Description

The CreateChild() function installs a protocol on ChildHandle. If ChildHandle is a
pointer to NULL, then a new handle is created and returned in ChildHandle. If ChildHandle
is not a pointer to NULL, then the protocol installs on the existing ChildHandle.

Status Codes Returned
EFI_SUCCESS The protocol was added to ChildHandle.

EFI_INVALID_PARAMETER ChildHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources available to create the child.

Other The child handle was not created.

 January 31, 2006
360 Version 2.0

Examples

The following example shows how a consumer of the EFI ARP Protocol would use the
CreateChild() function of the EFI_SERVICE_BINDING_PROTOCOL to create a child
handle with the EFI ARP Protocol installed on that handle.
EFI_HANDLE ControllerHandle;
EFI_HANDLE DriverBindingHandle;
EFI_HANDLE ChildHandle;
EFI_ARP_SERVICE_BINDING_PROTOCOL *ArpSb;
EFI_ARP_PROTOCOL *Arp;

//
// Get the ArpServiceBinding Protocol
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiArpServiceBindingProtocolGuid,
 (VOID **)&ArpSb,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}
//
// Initialize a ChildHandle
//
ChildHandle = NULL;
//
// Create a ChildHandle with the Arp Protocol
//
Status = ArpSb->CreateChild (ArpSb, &ChildHandle);
if (EFI_ERROR (Status)) {
 goto ErrorExit;
}

//
// Retrieve the Arp Protocol from ChildHandle
//
Status = gBS->OpenProtocol (
 ChildHandle,
 &gEfiArpProtocolGuid,
 (VOID **)&Arp,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
 goto ErrorExit;
}

January 31, 2006
Version 2.0 361

Pseudo Code

The following is the general algorithm for implementing the CreateChild() function:

1. Allocate and initialize any data structures that are required to produce the requested protocol on
a child handle. If the allocation fails, then return EFI_OUT_OF_RESOURCES.

2. Install the requested protocol onto ChildHandle. If ChildHandle is a pointer to NULL,
then the requested protocol installs onto a new handle.

3. Open the parent protocol BY_CHILD_CONTROLLER to establish the parent-child relationship.
If the parent protocol cannot be opened, then destroy the ChildHandle created in step 2, free
the data structures allocated in step 1, and return an error.

4. Increment the number of children created by CreateChild().
5. Return EFI_SUCCESS.

Listed below is sample code of the CreateChild() function of the EFI ARP Protocol driver.
This driver looks up its private context data structure from the instance of the
EFI_SERVICE_BINDING_PROTOCOL produced on the handle for the network controller. After
retrieving the private context data structure, the driver can use its contents to build the private
context data structure for the child being created. The EFI ARP Protocol driver then installs the
EFI_ARP_PROTOCOL onto ChildHandle.
EFI_STATUS
EFIAPI
ArpServiceBindingCreateChild (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN EFI_HANDLE *ChildHandle
)
{
 EFI_STATUS Status;
 ARP_PRIVATE_DATA *Private;
 ARP_PRIVATE_DATA *PrivateChild;

 //
 // Retrieve the Private Context Data Structure
 //
 Private = ARP_PRIVATE_DATA_FROM_SERVICE_BINDING_THIS (This);

 //
 // Create a new child
 //
 PrivateChild = EfiLibAllocatePool (sizeof (ARP_PRIVATE_DATA));
 if (PrivateChild == NULL) {
 return EFI_OUT_OF_RESOURCES;
 }

 //
 // Copy Private Context Data Structure
 //
 gBS->CopyMem (PrivateChild, Private, sizeof (ARP_PRIVATE_DATA));

 January 31, 2006
362 Version 2.0

 //
 // Install Arp onto ChildHandle
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 ChildHandle,
 &gEfiArpProtocolGuid, &PrivateChild->Arp,
 NULL
);
 if (EFI_ERROR (Status)) {
 gBS->FreePool (PrivateChild);
 return Status;
 }

 Status = gBS->OpenProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 (VOID **)&PrivateChild->ManagedNetwork,
 gArpDriverBinding.DriverBindingHandle,
 *ChildHandle,
 EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
 if (EFI_ERROR (Status)) {
 ArpSB->DestroyChild (This, ChildHandle);
 return Status;
 }

 //
 // Increase number of children created
 //
 Private->NumberCreated++;

 return EFI_SUCCESS;
}

January 31, 2006
Version 2.0 363

EFI_SERVICE_BINDING_PROTOCOL.DestroyChild()

Summary

Destroys a child handle with a protocol installed on it.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERVICE_BINDING_DESTROY_CHILD) (

IN EFI_SERVICE_BINDING_PROTOCOL *This,
IN EFI_HANDLE ChildHandle
);

Parameters

This Pointer to the EFI_SERVICE_BINDING_PROTOCOL
instance.

ChildHandle Handle of the child to destroy.

Description

The DestroyChild() function does the opposite of CreateChild(). It removes a protocol
that was installed by CreateChild() from ChildHandle. If the removed protocol is the last
protocol on ChildHandle, then ChildHandle is destroyed.

Status Codes Returned
EFI_SUCCESS The protocol was removed from ChildHandle.

EFI_UNSUPPORTED ChildHandle does not support the protocol that is being
removed.

EFI_INVALID_PARAMETER ChildHandle is not a valid UEFI handle.

EFI_ACCESS_DENIED The protocol could not be removed from the ChildHandle

because its services are being used.

Other The child handle was not destroyed.

 January 31, 2006
364 Version 2.0

Examples

The following example shows how a consumer of the EFI ARP Protocol would use the
DestroyChild() function of the EFI_SERVICE_BINDING_PROTOCOL to destroy a child
handle with the EFI ARP Protocol installed on that handle.
EFI_HANDLE ControllerHandle;
EFI_HANDLE DriverBindingHandle;
EFI_HANDLE ChildHandle;
EFI_ARP_SERVICE_BINDING_PROTOCOL *Arp;

//
// Get the Arp Service Binding Protocol
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiArpServiceBindingProtocolGuid,
 (VOID **)&ArpSb,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// Destroy the ChildHandle with the Arp Protocol
//
Status = ArpSb->DestroyChild (ArpSb, ChildHandle);
if (EFI_ERROR (Status)) {
 return Status;
}

Pseudo Code

The following is the general algorithm for implementing the DestroyChild() function:

4. Retrieve the protocol from ChildHandle. If this retrieval fails, then return EFI_SUCCESS
because the child has already been destroyed.

5. If this call is a recursive call to destroy the same child, then return EFI_SUCCESS.
6. Close the parent protocol with CloseProtocol().
7. Set a flag to detect a recursive call to destroy the same child.
8. Remove the protocol from ChildHandle. If this removal fails, then reopen the parent

protocol and clear the flag to detect a recursive call to destroy the same child.
9. Free any data structures that allocated in CreateChild().
10. Decrement the number of children that created with CreateChild().
11. Return EFI_SUCCESS.

January 31, 2006
Version 2.0 365

Listed below is sample code of the DestroyChild() function of the EFI ARP Protocol driver.
This driver looks up its private context data structure from the instance of the
EFI_SERVICE_BINDING_PROTOCOL produced on the handle for the network controller. The
driver attempts to retrieve the EFI_ARP_PROTOCOL from ChildHandle. If that fails, then
EFI_SUCCESS is returned. The EFI_ARP_PROTOCOL is then used to retrieve the private context
data structure for the child. The private context data stores the flag that detects if
DestroyChild() is being called recursively. If a recursion is detected, then EFI_SUCCESS is
returned. Otherwise, the EFI_ARP_PROTOCOL is removed from ChildHandle, the number of
children are decremented, and EFI_SUCESS is returned.
EFI_STATUS
EFIAPI
ArpServiceBindingDestroyChild (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ChildHandle
)
{
 EFI_STATUS Status;
 EFI_ARP_PROTOCOL *Arp;
 ARP_PRIVATE_DATA *Private;
 ARP_PRIVATE_DATA *PrivateChild;

 //
 // Retrieve the Private Context Data Structure
 //
 Private = ARP_PRIVATE_DATA_FROM_SERVICE_BINDING_THIS (This);

 //
 // Retrieve Arp Protocol from ChildHandle
 //
 Status = gBS->OpenProtocol (
 ChildHandle,
 &gEfiArpProtocolGuid,
 (VOID **)&Arp,
 gArpDriverBinding.DriverBindingHandle,
 ChildHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return EFI_SUCCESS;
 }

 //
 // Retrieve Private Context Data Structure
 //
 PrivateChild = ARP_PRIVATE_DATA_FROM_ARP_THIS (Arp);
 if (PrivateChild->Destroy) {
 return EFI_SUCCESS;
 }

 January 31, 2006
366 Version 2.0

 //
 // Close the ManagedNetwork Protocol
 //
 gBS->CloseProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 gArpDriverBinding.DriverBindingHandle,
 ChildHandle
);

 PrivateChild->Destroy = TRUE;

 //
 // Uninstall Arp from ChildHandle
 //
 Status = gBS->UninstallMultipleProtocolInterfaces (
 ChildHandle,
 &gEfiArpProtocolGuid, &PrivateChild->Arp,
 NULL
);
 if (EFI_ERROR (Status)) {
 //
 // Uninstall failed, so reopen the parent Arp Protocol and
 // return an error
 //
 PrivateChild->Destroy = FALSE;
 gBS->OpenProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 (VOID **)&PrivateChild->ManagedNetwork,
 gArpDriverBinding.DriverBindingHandle,
 ChildHandle,
 EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
 return Status;
 }

 //
 // Free Private Context Data Structure
 //
 gBS->FreePool (PrivateChild);

 //
 // Decrease number of children created
 //
 Private->NumberCreated--;

 return EFI_SUCCESS;

January 31, 2006
Version 2.0 367

11
Protocols — Console Support

This chapter explores console support protocols, including Simple Text Input, Simple Text Output,
Simple Ponter, Serial IO, and Graphics Output protocols.

11.1 Console I/O Protocol

This section defines the Console I/O protocol. This protocol is used to handle input and output of
text-based information intended for the system user during the operation of code in the boot
services environment. Also included here are the definitions of three console devices: one for input
and one each for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in
implementation. For example, there is no requirement for compliant systems to have a keyboard or
screen directly connected to the system. Implementations may choose to direct information passed
using these interfaces in arbitrary ways provided that the semantics of the functions are preserved
(in other words, provided that the information is passed to and from the system user).

11.1.1 Overview
The UEFI console is built out of the SIMPLE_TEXT_INPUT_PROTOCOL and the
SIMPLE_TEXT_OUTPUT_PROTOCOL. These two protocols implement a basic text-based
console that allows platform firmware, applications written to this specification, and UEFI OS
loaders to present information to and receive input from a system administrator. The UEFI console
consists of 16-bit Unicode characters, a simple set of input control characters (Scan Codes), and a
set of output-oriented programmatic interfaces that give functionality equivalent to an intelligent
terminal. The console does not support pointing devices on input or bitmaps on output.

This specification requires that the SIMPLE_TEXT_INPUT_PROTOCOL support the same
languages as the corresponding SIMPLE_TEXT_OUTPUT_PROTOCOL. The
SIMPLE_TEXT_OUTPUT_PROTOCOL is recommended to support at least the printable Basic
Latin Unicode character set to enable standard terminal emulation software to be used with an EFI
console. The Basic Latin Unicode character set implements a superset of ASCII that has been
extended to 16-bit characters. Any number of other Unicode character sets may be optionally
supported.

 January 31, 2006
368 Version 2.0

11.1.2 ConsoleIn Definition
The SIMPLE_TEXT_INPUT_PROTOCOL defines an input stream that contains Unicode
characters and required EFI scan codes. Only the control characters defined in Table 72 have
meaning in the Unicode input or output streams. The control characters are defined to be characters
U+0000 through U+001F. The input stream does not support any software flow control.

Table 72. Supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left
margin, no action is taken.

TAB U+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

January 31, 2006
Version 2.0 369

The input stream supports Scan Codes in addition to Unicode characters. If the Scan Code is set to
0x00 then the Unicode character is valid and should be used. If the Scan Code is set to a non-0x00
value it represents a special key as defined by Table 73.

Table 73. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL

EFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.

0x02 Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.

0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0x0f Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

0x17 Escape.

 January 31, 2006
370 Version 2.0

11.2 Simple Text Input Protocol

The Simple Text Input protocol defines the minimum input required to support the ConsoleIn
device.

EFI_SIMPLE_TEXT_INPUT_PROTOCOL

Summary

This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires
that the EFI_SIMPLE_TEXT_INPUT_PROTOCOL supports the same languages as the
corresponding EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

GUID
#define EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID \

{0x387477c1,0x69c7,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_TEXT_INPUT_PROTOCOL {
 EFI_INPUT_RESET Reset;
 EFI_INPUT_READ_KEY ReadKeyStroke;
 EFI_EVENT WaitForKey;
} EFI_SIMPLE_TEXT_INPUT_PROTOCOL;

Parameters

Reset Reset the ConsoleIn device. See Reset().

ReadKeyStroke Returns the next input character. See ReadKeyStroke().

WaitForKey Event to use with WaitForEvent() to wait for a key to be available.

Description

The EFI_SIMPLE_TEXT_INPUT_PROTOCOL is used on the ConsoleIn device. It is the
minimum required protocol for ConsoleIn.

January 31, 2006
Version 2.0 371

EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()

Summary

Resets the input device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INPUT_RESET) (
 IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_PROTOCOL is
defined in Section 11.2

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the input device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned
EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

 January 31, 2006
372 Version 2.0

EFI_SIMPLE_TEXT_INPUT.ReadKeyStroke()

Summary

Reads the next keystroke from the input device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INPUT_READ_KEY) (
 IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
 OUT EFI_INPUT_KEY *Key
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_INPUT_PROTOCOL is
defined in Section 11.2.

Key A pointer to a buffer that is filled in with the keystroke
information for the key that was pressed. Type
EFI_INPUT_KEY is defined in “Related Definitions” below.

Related Definitions
//***
// EFI_INPUT_KEY
//***
typedef struct {
 UINT16 ScanCode;
 CHAR16 UnicodeChar;
} EFI_INPUT_KEY;

January 31, 2006
Version 2.0 373

Description

The ReadKeyStroke() function reads the next keystroke from the input device. If there is
no pending keystroke the function returns EFI_NOT_READY. If there is a pending keystroke,
then ScanCode is the EFI scan code defined in Table 73. The UnicodeChar is the actual
printable character or is zero if the key does not represent a printable character (control key,
function key, etc.).

Status Codes Returned
EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.

 January 31, 2006
374 Version 2.0

11.2.1 ConsoleOut or StandardError
The EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL must implement the same Unicode code pages
as the SIMPLE_TEXT_INPUT_PROTOCOL. The protocol must also support the Unicode control
characters defined in Table 72. The EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL supports special
manipulation of the screen by programmatic methods and therefore does not support the EFI scan
codes defined in Table 73.

11.3 Simple Text Output Protocol

The Simple Text Output protocol defines the minimum requirements for a text-based
ConsoleOut device. The EFI specification requires that the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL support the same languages as the corresponding
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

Summary

This protocol is used to control text-based output devices.

GUID
#define EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID \

{0x387477c2,0x69c7,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL {
 EFI_TEXT_RESET Reset;
 EFI_TEXT_STRING OutputString;
 EFI_TEXT_TEST_STRING TestString;
 EFI_TEXT_QUERY_MODE QueryMode;
 EFI_TEXT_SET_MODE SetMode;
 EFI_TEXT_SET_ATTRIBUTE SetAttribute;
 EFI_TEXT_CLEAR_SCREEN ClearScreen;
 EFI_TEXT_SET_CURSOR_POSITION SetCursorPosition;
 EFI_TEXT_ENABLE_CURSOR EnableCursor;
 SIMPLE_TEXT_OUTPUT_MODE *Mode;
} EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL;

Parameters
Reset Reset the ConsoleOut device. See Reset().

OutputString Displays the Unicode string on the device at the current cursor location.
See OutputString().

TestString Tests to see if the ConsoleOut device supports this Unicode string.
See TestString().

January 31, 2006
Version 2.0 375

QueryMode Queries information concerning the output device’s supported text mode.
See QueryMode().

SetMode Sets the current mode of the output device. See SetMode().

SetAttribute Sets the foreground and background color of the text that is output. See
SetAttribute().

ClearScreen Clears the screen with the currently set background color. See
ClearScreen().

SetCursorPosition Sets the current cursor position. See SetCursorPosition().

EnableCursor Turns the visibility of the cursor on/off. See EnableCursor().

Mode Pointer to SIMPLE_TEXT_OUTPUT_MODE data. Type
SIMPLE_TEXT_OUTPUT_MODE is defined in “Related Definitions”
below.

The following data values in the SIMPLE_TEXT_OUTPUT_MODE interface are read-only and are
changed by using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and SetMode().

Mode The text mode of the output device(s).

Attribute The current character output attribute.

CursorColumn The cursor’s column.

CursorRow The cursor’s row.

CursorVisible The cursor is currently visible or not.

Related Definitions

//***
// SIMPLE_TEXT_OUTPUT_MODE
//***
typedef struct {
 INT32 MaxMode;
 // current settings
 INT32 Mode;
 INT32 Attribute;
 INT32 CursorColumn;
 INT32 CursorRow;
 BOOLEAN CursorVisible;
} SIMPLE_TEXT_OUTPUT_MODE;

 January 31, 2006
376 Version 2.0

Description

The SIMPLE_TEXT_OUTPUT protocol is used to control text-based output devices. It is the
minimum required protocol for any handle supplied as the ConsoleOut or StandardError
device. In addition, the minimum supported text mode of such devices is at least 80 x 25
characters.

A video device that only supports graphics mode is required to emulate text mode functionality.
Output strings themselves are not allowed to contain any control codes other than those defined in
Table 72. Positional cursor placement is done only via the SetCursorPosition() function.
It is highly recommended that text output to the StandardError device be limited to sequential
string outputs. (That is, it is not recommended to use ClearScreen() or
SetCursorPosition() on output messages to StandardError.)

If the output device is not in a valid text mode at the time of the HandleProtocol() call, the
device is to indicate that its CurrentMode is –1. On connecting to the output device the caller is
required to verify the mode of the output device, and if it is not acceptable to set it to something it
can use.

January 31, 2006
Version 2.0 377

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset()

Summary

Resets the text output device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_RESET) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.3.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the text output device hardware. The cursor position is set to (0, 0),
and the screen is cleared to the default background color for the output device.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned
EFI_SUCCESS The text output device was reset.

EFI_DEVICE_ERROR The text output device is not functioning correctly and could not be reset.

 January 31, 2006
378 Version 2.0

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString()

Summary

Writes a Unicode string to the output device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_STRING) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN CHAR16 *String
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.3.

String The Null-terminated Unicode string to be displayed on the
output device(s). All output devices must also support the
Unicode drawing characters defined in “Related Definitions.”

Related Definitions

//***
// UNICODE DRAWING CHARACTERS
//***

#define BOXDRAW_HORIZONTAL 0x2500
#define BOXDRAW_VERTICAL 0x2502
#define BOXDRAW_DOWN_RIGHT 0x250c
#define BOXDRAW_DOWN_LEFT 0x2510
#define BOXDRAW_UP_RIGHT 0x2514
#define BOXDRAW_UP_LEFT 0x2518
#define BOXDRAW_VERTICAL_RIGHT 0x251c
#define BOXDRAW_VERTICAL_LEFT 0x2524
#define BOXDRAW_DOWN_HORIZONTAL 0x252c
#define BOXDRAW_UP_HORIZONTAL 0x2534
#define BOXDRAW_VERTICAL_HORIZONTAL 0x253c

January 31, 2006
Version 2.0 379

#define BOXDRAW_DOUBLE_HORIZONTAL 0x2550
#define BOXDRAW_DOUBLE_VERTICAL 0x2551
#define BOXDRAW_DOWN_RIGHT_DOUBLE 0x2552
#define BOXDRAW_DOWN_DOUBLE_RIGHT 0x2553
#define BOXDRAW_DOUBLE_DOWN_RIGHT 0x2554
#define BOXDRAW_DOWN_LEFT_DOUBLE 0x2555
#define BOXDRAW_DOWN_DOUBLE_LEFT 0x2556
#define BOXDRAW_DOUBLE_DOWN_LEFT 0x2557

#define BOXDRAW_UP_RIGHT_DOUBLE 0x2558
#define BOXDRAW_UP_DOUBLE_RIGHT 0x2559
#define BOXDRAW_DOUBLE_UP_RIGHT 0x255a

#define BOXDRAW_UP_LEFT_DOUBLE 0x255b
#define BOXDRAW_UP_DOUBLE_LEFT 0x255c
#define BOXDRAW_DOUBLE_UP_LEFT 0x255d

#define BOXDRAW_VERTICAL_RIGHT_DOUBLE 0x255e
#define BOXDRAW_VERTICAL_DOUBLE_RIGHT 0x255f
#define BOXDRAW_DOUBLE_VERTICAL_RIGHT 0x2560

#define BOXDRAW_VERTICAL_LEFT_DOUBLE 0x2561
#define BOXDRAW_VERTICAL_DOUBLE_LEFT 0x2562
#define BOXDRAW_DOUBLE_VERTICAL_LEFT 0x2563

#define BOXDRAW_DOWN_HORIZONTAL_DOUBLE 0x2564
#define BOXDRAW_DOWN_DOUBLE_HORIZONTAL 0x2565
#define BOXDRAW_DOUBLE_DOWN_HORIZONTAL 0x2566

#define BOXDRAW_UP_HORIZONTAL_DOUBLE 0x2567
#define BOXDRAW_UP_DOUBLE_HORIZONTAL 0x2568
#define BOXDRAW_DOUBLE_UP_HORIZONTAL 0x2569

#define BOXDRAW_VERTICAL_HORIZONTAL_DOUBLE 0x256a
#define BOXDRAW_VERTICAL_DOUBLE_HORIZONTAL 0x256b
#define BOXDRAW_DOUBLE_VERTICAL_HORIZONTAL 0x256c

//***
// EFI Required Block Elements Code Chart
//***

#define BLOCKELEMENT_FULL_BLOCK 0x2588
#define BLOCKELEMENT_LIGHT_SHADE 0x2591

 January 31, 2006
380 Version 2.0

//***
// EFI Required Geometric Shapes Code Chart
//***

#define GEOMETRICSHAPE_UP_TRIANGLE 0x25b2
#define GEOMETRICSHAPE_RIGHT_TRIANGLE 0x25ba
#define GEOMETRICSHAPE_DOWN_TRIANGLE 0x25bc
#define GEOMETRICSHAPE_LEFT_TRIANGLE 0x25c4

//***
// EFI Required Arrow shapes
//***

#define ARROW_UP 0x2191
#define ARROW_DOWN 0x2193

Description

The OutputString() function writes a Unicode string to the output device. This is the most
basic output mechanism on an output device. The String is displayed at the current cursor
location on the output device(s) and the cursor is advanced according to the rules listed in Table 74.

Table 74. EFI Cursor Location/Advance Rules

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.

BS U+0008 If the cursor is not at the left edge of the display, then move the cursor left one
column.

LF U+000A If the cursor is at the bottom of the display, then scroll the display one row, and
do not update the cursor position. Otherwise, move the cursor down one row.

CR U+000D Move the cursor to the beginning of the current row.

Other U+XXXX Print the character at the current cursor position and move the cursor right one
column. If this moves the cursor past the right edge of the display, then the line
should wrap to the beginning of the next line. This is equivalent to inserting a
CR and an LF. Note that if the cursor is at the bottom of the display, and the line
wraps, then the display will be scrolled one line.

NOTE

If desired, the system’s NVRAM environment variables may be used at install time to determine the
configured locale of the system or the installation procedure can query the user for the proper
language support. This is then used to either install the proper EFI image/loader or to configure
the installed image’s strings to use the proper text for the selected locale.

January 31, 2006
Version 2.0 381

Status Codes Returned
EFI_SUCCESS The string was output to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to output
the text.

EFI_UNSUPPORTED The output device’s mode is not currently in a defined
text mode.

EFI_WARN_UNKNOWN_GLYPH This warning code indicates that some of the characters
in the Unicode string could not be rendered and were
skipped.

 January 31, 2006
382 Version 2.0

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString()

Summary

Verifies that all characters in a Unicode string can be output to the target device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_TEST_STRING) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN CHAR16 *String
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 11.3.

String The Null-terminated Unicode string to be examined for the output
device(s).

Description

The TestString() function verifies that all characters in a Unicode string can be output to the
target device.

This function provides a way to know if the desired character set is present for rendering on the
output device(s). This allows the installation procedure (or EFI image) to at least select a letter set
that the output devices are capable of displaying. Since the output device(s) may be changed
between boots, if the loader cannot adapt to such changes it is recommended that the loader call
OutputString() with the text it has and ignore any “unsupported” error codes. The devices(s)
that are capable of displaying the Unicode letter set will do so.

Status Codes Returned
EFI_SUCCESS The device(s) are capable of rendering the output string.

EFI_UNSUPPORTED Some of the characters in the Unicode string cannot be rendered
by one or more of the output devices mapped by the EFI handle.

January 31, 2006
Version 2.0 383

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()

Summary

Returns information for an available text mode that the output device(s) supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_QUERY_MODE) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN ModeNumber,
 OUT UINTN *Columns,
 OUT UINTN *Rows
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 11.3.

ModeNumber The mode number to return information on.

Columns, Rows Returns the geometry of the text output device for the request
ModeNumber.

Description

The QueryMode() function returns information for an available text mode that the output
device(s) supports.

It is required that all output devices support at least 80x25 text mode. This mode is defined to be
mode 0. If the output devices support 80x50, that is defined to be mode 1. All other text
dimensions supported by the device will follow as modes 2 and above. If an output device supports
modes 2 and above, but does not support 80x50, then querying for mode 1 will return
EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The requested mode information was returned.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

 January 31, 2006
384 Version 2.0

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()

Summary

Sets the output device(s) to a specified mode.

Prototype
typedef
EFI_STATUS
(* EFIAPI EFI_TEXT_SET_MODE) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN ModeNumber
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined
in the “Related Definitions” of Section 11.3.

ModeNumber The text mode to set.

Description

The SetMode() function sets the output device(s) to the requested mode. On success the device
is in the geometry for the requested mode, and the device has been cleared to the current
background color with the cursor at (0,0).

Status Codes Returned
EFI_SUCCESS The requested text mode was set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

January 31, 2006
Version 2.0 385

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()

Summary

Sets the background and foreground colors for the OutputString() and ClearScreen()
functions.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_SET_ATTRIBUTE) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN Attribute
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined
in the “Related Definitions” of Section 11.3.

Attribute The attribute to set. Bits 0..3 are the foreground color, and bits 4..6 are
the background color. All other bits are reserved. See “Related
Definitions” below.

Related Definitions

//***
// Attributes
//***
#define EFI_BLACK 0x00
#define EFI_BLUE 0x01
#define EFI_GREEN 0x02
#define EFI_CYAN 0x03
#define EFI_RED 0x04
#define EFI_MAGENTA 0x05
#define EFI_BROWN 0x06
#define EFI_LIGHTGRAY 0x07
#define EFI_BRIGHT 0x08
#define EFI_DARKGRAY 0x08
#define EFI_LIGHTBLUE 0x09
#define EFI_LIGHTGREEN 0x0A
#define EFI_LIGHTCYAN 0x0B
#define EFI_LIGHTRED 0x0C
#define EFI_LIGHTMAGENTA 0x0D
#define EFI_YELLOW 0x0E
#define EFI_WHITE 0x0F

 January 31, 2006
386 Version 2.0

#define EFI_BACKGROUND_BLACK 0x00
#define EFI_BACKGROUND_BLUE 0x10
#define EFI_BACKGROUND_GREEN 0x20
#define EFI_BACKGROUND_CYAN 0x30
#define EFI_BACKGROUND_RED 0x40
#define EFI_BACKGROUND_MAGENTA 0x50
#define EFI_BACKGROUND_BROWN 0x60
#define EFI_BACKGROUND_LIGHTGRAY 0x70

#define EFI_TEXT_ATTR(foreground,background) \

((foreground) | ((background) << 4))

Description

The SetAttribute() function sets the background and foreground colors for the
OutputString() and ClearScreen() functions.

The color mask can be set even when the device is in an invalid text mode.

Devices supporting a different number of text colors are required to emulate the above colors to the
best of the device’s capabilities.

Status Codes Returned
EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

January 31, 2006
Version 2.0 387

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()

Summary

Clears the output device(s) display to the currently selected background color.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_CLEAR_SCREEN) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 11.3.

Description

The ClearScreen() function clears the output device(s) display to the currently selected
background color. The cursor position is set to (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode.

 January 31, 2006
388 Version 2.0

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()

Summary

Sets the current coordinates of the cursor position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_SET_CURSOR_POSITION) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN Column,
 IN UINTN Row
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 11.3.

Column, Row The position to set the cursor to. Must greater than or equal to zero and
less than the number of columns and rows returned by QueryMode().

Description

The SetCursorPosition() function sets the current coordinates of the cursor position. The
upper left corner of the screen is defined as coordinate (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor
position is invalid for the current mode.

January 31, 2006
Version 2.0 389

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()

Summary

Makes the cursor visible or invisible.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_ENABLE_CURSOR) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN BOOLEAN Visible
);

Parameters

This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is defined in the
“Related Definitions” of Section 11.3.

Visible If TRUE, the cursor is set to be visible. If FALSE, the cursor is set to be
invisible.

Description

The EnableCursor() function makes the cursor visible or invisible.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request or
the device does not support changing the cursor mode.

EFI_UNSUPPORTED The output device does not support visibility control of the
cursor.

 January 31, 2006
390 Version 2.0

11.4 Simple Pointer Protocol

This section defines the Simple Pointer Protocol and a detailed description of the
EFI_SIMPLE_POINTER_PROTOCOL. The intent of this section is to specify a simple method
for accessing pointer devices. This would include devices such as mice and trackballs.

The EFI_SIMPLE_POINTER_PROTOCOL allows information about a pointer device to be
retrieved. This would include the status of buttons and the motion of the pointer device since the
last time it was accessed. This protocol is attached the device handle of a pointer device, and can
be used for input from the user in the preboot environment.

EFI_SIMPLE_POINTER_PROTOCOL

Summary

Provides services that allow information about a pointer device to be retrieved.

GUID
#define EFI_SIMPLE_POINTER_PROTOCOL_GUID \

{0x31878c87,0xb75,0x11d5,0x9a,0x4f,0x0,0x90,0x27,0x3f,0xc1,
0x4d}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_POINTER_PROTOCOL {
 EFI_SIMPLE_POINTER_RESET Reset;
 EFI_SIMPLE_POINTER_GET_STATE GetState;
 EFI_EVENT WaitForInput;
 EFI_SIMPLE_INPUT_MODE *Mode;
} EFI_SIMPLE_POINTER_PROTOCOL;

Parameters

Reset Resets the pointer device. See the Reset() function
description.

GetState Retrieves the current state of the pointer device. See the
GetState() function description.

WaitForInput Event to use with WaitForEvent() to wait for input from the
pointer device.

Mode Pointer to EFI_SIMPLE_POINTER_MODE data. The type
EFI_SIMPLE_POINTER_MODE is defined in “Related
Definitions” below.

January 31, 2006
Version 2.0 391

Related Definitions
//***
// EFI_SIMPLE_POINTER_MODE
//***
typedef struct {
 UINT64 ResolutionX;
 UINT64 ResolutionY;
 UINT64 ResolutionZ;
 BOOLEAN LeftButton;
 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_MODE;

The following data values in the EFI_SIMPLE_POINTER_MODE interface are read-only and are
changed by using the appropriate interface functions:

ResolutionX The resolution of the pointer device on the x-axis in counts/mm. If 0,
then the pointer device does not support an x-axis.

ResolutionY The resolution of the pointer device on the y-axis in counts/mm. If 0,
then the pointer device does not support a y-axis.

ResolutionZ The resolution of the pointer device on the z-axis in counts/mm. If 0,
then the pointer device does not support a z-axis.

LeftButton TRUE if a left button is present on the pointer device. Otherwise FALSE.

RightButton TRUE if a right button is present on the pointer device. Otherwise
FALSE.

Description

The EFI_SIMPLE_POINTER_PROTOCOL provides a set of services for a pointer device that
can use used as an input device from an application written to this specification. The services
include the ability to reset the pointer device, retrieve get the state of the pointer device, and
retrieve the capabilities of the pointer device.

 January 31, 2006
392 Version 2.0

EFI_SIMPLE_POINTER_PROTOCOL.Reset()

Summary

Resets the pointer device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_RESET) (
 IN EFI_SIMPLE_POINTER_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL
instance. Type EFI_SIMPLE_POINTER_PROTOCOL is
defined in Section 11.4.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

This Reset() function resets the pointer device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Codes Returned
EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

January 31, 2006
Version 2.0 393

EFI_SIMPLE_POINTER_PROTOCOL.GetState()

Summary

Retrieves the current state of a pointer device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_GET_STATE)
 IN EFI_SIMPLE_POINTER_PROTOCOL *This,
 IN OUT EFI_SIMPLE_POINTER_STATE *State
);

Parameters

This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL
instance. Type EFI_SIMPLE_POINTER_PROTOCOL is
defined in Section 11.4.

State A pointer to the state information on the pointer device. Type
EFI_SIMPLE_POINTER_STATE is defined in “Related
Definitions” below.

Related Definitions
//***
// EFI_SIMPLE_POINTER_STATE
//***
typedef struct {
 INT32 RelativeMovementX;
 INT32 RelativeMovementY;
 INT32 RelativeMovementZ;
 BOOLEAN LeftButton;
 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_STATE;

RelativeMovementX The signed distance in counts that the pointer device has been
moved along the x-axis. The actual distance moved is
RelativeMovementX / ResolutionX millimeters. If the
ResolutionX field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support an x-axis,
and this field must be ignored.

 January 31, 2006
394 Version 2.0

RelativeMovementY The signed distance in counts that the pointer device has been
moved along the y-axis. The actual distance moved is
RelativeMovementY / ResolutionY millimeters. If the
ResolutionY field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support a y-axis,
and this field must be ignored.

RelativeMovementZ The signed distance in counts that the pointer device has been
moved along the z-axis. The actual distance moved is
RelativeMovementZ / ResolutionZ millimeters. If the
ResolutionZ field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support a z-axis,
and this field must be ignored.

LeftButton If TRUE, then the left button of the pointer device is being
pressed. If FALSE, then the left button of the pointer device is
not being pressed. If the LeftButton field of the
EFI_SIMPLE_POINTER_MODE structure is FALSE, then this
field is not valid, and must be ignored.

RightButton If TRUE, then the right button of the pointer device is being
pressed. If FALSE, then the right button of the pointer device is
not being pressed. If the RightButton field of the
EFI_SIMPLE_POINTER_MODE structure is FALSE, then this
field is not valid, and must be ignored.

Description

The GetState() function retrieves the current state of a pointer device. This includes
information on the buttons associated with the pointer device and the distance that each of the axes
associated with the pointer device has been moved. If the state of the pointer device has not
changed since the last call to GetState(), then EFI_NOT_READY is returned. If the state of the
pointer device has changed since the last call to GetState(), then the state information is placed
in State, and EFI_SUCCESS is returned. If a device error occurs while attempting to retrieve
the state information, then EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to
GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer device's
current state.

January 31, 2006
Version 2.0 395

11.5 EFI Simple Pointer Device Paths

An EFI_SIMPLE_POINTER_PROTOCOL must be installed on a handle for its services to be
available to drivers and applications written to this specification. In addition to the
EFI_SIMPLE_POINTER_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle. See Chapter 9.2 for a detailed description of the
EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s
point of view. This includes the list of busses that lie between the processor and the pointer
controller. The UEFI Specification takes advantage of the ACPI Specification to name system
components. The following set of examples shows sample device paths for a PS/2* mouse, a serial
mouse, and a USB mouse.

Table 75 shows an example device path for a PS/2 mouse that is located behind a PCI to ISA bridge
that is located at PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI
root bridge. This device path consists of an ACPI Device Path Node for the PCI Root Bridge, a
PCI Device Path Node for the PCI to ISA bridge, an ACPI Device Path Node for the PS/2 mouse,
and a Device Path End Structure. The _HID and _UID of the first ACPI Device Path Node must
match the ACPI table description of the PCI Root Bridge. The shorthand notation for this device
path is:
ACPI(PNP0A03,0)/PCI(7|0)/ACPI(PNP0F03,0)

Table 75. PS/2 Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0F03

_HID PNP0F03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

 January 31, 2006
396 Version 2.0

Byte
Offset

Byte
Length

Data

Description

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes

Table 76 shows an example device path for a serial mouse that is located on COM 1 behind a PCI
to ISA bridge that is located at PCI device number 0x07 and PCI function 0x00. The PCI to ISA
bridge is directly attached to a PCI root bridge, and the communications parameters for COM 1 are
1200 baud, no parity, 8 data bits, and 1 stop bit. This device path consists of an ACPI Device Path
Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to ISA bridge, an ACPI Device
Path Node for COM 1, a UART Device Path Node for the communications parameters, an ACPI
Device Path Node for the serial mouse, and a Device Path End Structure. The _HID and _UID of
the first ACPI Device Path Node must match the ACPI table description of the PCI Root Bridge.
The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7|0)/ACPI(PNP0501,0)/UART(1200N81)/ACPI(PNP0F01,0)

Table 76. Serial Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0501

_HID PNP0501 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0x03 Generic Device Path Header – Messaging Device Path

0x1F 0x01 0x0E Sub type – UART Device Path

0x20 0x02 0x13 Length – 0x13 bytes

0x22 0x04 0x00 Reserved

0x26 0x08 1200 Baud Rate

January 31, 2006
Version 2.0 397

Byte
Offset

Byte
Length

Data

Description

0x2E 0x01 0x08 Data Bits

0x2F 0x01 0x01 Parity

0x30 0x01 0x01 Stop Bits

0x31 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x32 0x01 0x01 Sub type – ACPI Device Path

0x33 0x02 0x0C Length – 0x0C bytes

0x35 0x04 0x41D0,
0x0F01

_HID PNP0F01 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x39 0x04 0x0000 _UID

0x3D 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x3E 0x01 0xFF Sub type – End of Entire Device Path

0x3F 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
398 Version 2.0

Table 77 shows an example device path for a USB mouse that is behind a PCI to USB host
controller that is located at PCI device number 0x07 and PCI function 0x02. The PCI to USB host
controller is directly attached to a PCI root bridge. This device path consists of an ACPI Device
Path Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to USB controller, a USB
Device Path Node, and a Device Path End Structure. The _HID and _UID of the first ACPI Device
Path Node must match the ACPI table description of the PCI Root Bridge. The shorthand notation
for this device path is:
ACPI(PNP0A03,0)/PCI(7|2)/USB(0,0)

Table 77. USB Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Messaging Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 USB Port Number

0x17 0x01 0x00 USB Endpoint Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 399

11.6 Serial I/O Protocol

This section defines the Serial I/O protocol. This protocol is used to abstract byte stream devices.

EFI_SERIAL_IO_PROTOCOL

Summary

This protocol is used to communicate with any type of character-based I/O device.

GUID
#define EFI_SERIAL_IO_PROTOCOL_GUID \

{0xBB25CF6F,0xF1D4,0x11D2,0x9A0C,0x00,0x90,0x27,0x3F,0xC1,
0xFD}

Revision Number
#define EFI_SERIAL_IO_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct {
 UINT32 Revision;
 EFI_SERIAL_RESET Reset;
 EFI_SERIAL_SET_ATTRIBUTES SetAttributes;
 EFI_SERIAL_SET_CONTROL_BITS SetControl;
 EFI_SERIAL_GET_CONTROL_BITS GetControl;
 EFI_SERIAL_WRITE Write;
 EFI_SERIAL_READ Read;
 SERIAL_IO_MODE *Mode;
} EFI_SERIAL_IO_PROTOCOL;

Parameters

Revision The revision to which the EFI_SERIAL_IO_PROTOCOL adheres.
All future revisions must be backwards compatible. If a future
version is not back wards compatible, it is not the same GUID.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device. These include
the baud rate, receive FIFO depth, transmit/receive time out, parity,
data bits, and stop bit attributes.

SetControl Sets the control bits on a serial device. These include Request to
Send and Data Terminal Ready.

GetControl Reads the status of the control bits on a serial device. These include
Clear to Send, Data Set Ready, Ring Indicator, and Carrier Detect.

Write Sends a buffer of characters to a serial device.

 January 31, 2006
400 Version 2.0

Read Receives a buffer of characters from a serial device.

Mode Pointer to SERIAL_IO_MODE data. Type SERIAL_IO_MODE is
defined in “Related Definitions” below.

Related Definitions

//***
// SERIAL_IO_MODE
//***
typedef struct {

UINT32 ControlMask;

 // current Attributes
 UINT32 Timeout;
 UINT64 BaudRate;
 UINT32 ReceiveFifoDepth;
 UINT32 DataBits;
 UINT32 Parity;
 UINT32 StopBits;
} SERIAL_IO_MODE;

The data values in the SERIAL_IO_MODE are read-only and are updated by the code that
produces the EFI_SERIAL_IO_PROTOCOL functions:

ControlMask A mask of the Control bits that the device supports. The device must
always support the Input Buffer Empty control bit.

Timeout If applicable, the number of microseconds to wait before timing out a
Read or Write operation.

BaudRate If applicable, the current baud rate setting of the device; otherwise,
baud rate has the value of zero to indicate that device runs at the
device’s designed speed.

ReceiveFifoDepth The number of characters the device will buffer on input.

DataBits The number of data bits in each character.

Parity If applicable, this is the EFI_PARITY_TYPE that is computed or
checked as each character is transmitted or received. If the device
does not support parity the value is the default parity value.

StopBits If applicable, the EFI_STOP_BITS_TYPE number of stop bits per
character. If the device does not support stop bits the value is the
default stop bit value.

January 31, 2006
Version 2.0 401

//***
// EFI_PARITY_TYPE
//***
typedef enum {
 DefaultParity,
 NoParity,
 EvenParity,
 OddParity,
 MarkParity,
 SpaceParity
} EFI_PARITY_TYPE;

//***
// EFI_STOP_BITS_TYPE
//***
typedef enum {
 DefaultStopBits,
 OneStopBit, // 1 stop bit
 OneFiveStopBits, // 1.5 stop bits
 TwoStopBits // 2 stop bits
} EFI_STOP_BITS_TYPE;

Description

The Serial I/O protocol is used to communicate with UART-style serial devices. These can be
standard UART serial ports in PC-AT systems, serial ports attached to a USB interface, or
potentially any character-based I/O device.

The Serial I/O protocol can control byte I/O style devices from a generic device, to a device with
features such as a UART. As such many of the serial I/O features are optional to allow for the case
of devices that do not have UART controls. Each of these options is called out in the specific serial
I/O functions.

The default attributes for all UART-style serial device interfaces are: 115,200 baud, a 1 byte
receive FIFO, a 1,000,000 microsecond timeout per character, no parity, 8 data bits, and 1 stop bit.
Flow control is the responsibility of the software that uses the protocol. Hardware flow control can
be implemented through the use of the GetControl() and SetControl() functions
(described below) to monitor and assert the flow control signals. The XON/XOFF flow control
algorithm can be implemented in software by inserting XON and XOFF characters into the serial
data stream as required.

Special care must be taken if a significant amount of data is going to be read from a serial device.
Since UEFI drivers are polled mode drivers, characters received on a serial device might be missed.
It is the responsibility of the software that uses the protocol to check for new data often enough to
guarantee that no characters will be missed. The required polling frequency depends on the baud
rate of the connection and the depth of the receive FIFO.

 January 31, 2006
402 Version 2.0

EFI_SERIAL_IO_PROTOCOL.Reset()

Summary

Resets the serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_RESET) (
 IN EFI_SERIAL_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance.
Type EFI_SERIAL_IO_PROTOCOL is defined in Section
11.6.

Description

The Reset() function resets the hardware of a serial device.

Status Codes Returned
EFI_SUCCESS The serial device was reset.

EFI_DEVICE_ERROR The serial device could not be reset.

January 31, 2006
Version 2.0 403

EFI_SERIAL_IO_PROTOCOL.SetAttributes()

Summary

Sets the baud rate, receive FIFO depth, transmit/receive time out, parity, data bits, and stop bits on a
serial device.

EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_ATTRIBUTES) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN UINT64 BaudRate,
 IN UINT32 ReceiveFifoDepth,
 IN UINT32 Timeout
 IN EFI_PARITY_TYPE Parity,
 IN UINT8 DataBits,
 IN EFI_STOP_BITS_TYPE StopBits
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 11.6.

BaudRate The requested baud rate. A BaudRate value of 0 will use the
device’s default interface speed.

ReceiveFifoDepth The requested depth of the FIFO on the receive side of the serial
interface. A ReceiveFifoDepth value of 0 will use the
device’s default FIFO depth.

Timeout The requested time out for a single character in microseconds.
This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the device’s default
time out value.

Parity The type of parity to use on this serial device. A Parity value
of DefaultParity will use the device’s default parity value.
Type EFI_PARITY_TYPE is defined in “Related Definitions”
in Section 11.6.

DataBits The number of data bits to use on this serial device. A
DataBits value of 0 will use the device’s default data bit
setting.

StopBits The number of stop bits to use on this serial device. A
StopBits value of DefaultStopBits will use the device’s
default number of stop bits. Type EFI_STOP_BITS_TYPE is
defined in “Related Definitions” in Section 11.6.

 January 31, 2006
404 Version 2.0

Description

The SetAttributes() function sets the baud rate, receive-FIFO depth, transmit/receive time
out, parity, data bits, and stop bits on a serial device.

The controller for a serial device is programmed with the specified attributes. If the Parity,
DataBits, or StopBits values are not valid, then an error will be returned. If the specified
BaudRate is below the minimum baud rate supported by the serial device, an error will be
returned. The nearest baud rate supported by the serial device will be selected without exceeding
the BaudRate parameter. If the specified ReceiveFifoDepth is below the smallest FIFO size
supported by the serial device, an error will be returned. The nearest FIFO size supported by the
serial device will be selected without exceeding the ReceiveFifoDepth parameter.

Status Codes Returned
EFI_SUCCESS The new attributes were set on the serial device.

EFI_INVALID_PARAMETER One or more of the attributes has an unsupported value.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

January 31, 2006
Version 2.0 405

EFI_SERIAL_IO_PROTOCOL.SetControl()

Summary

Sets the control bits on a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_CONTROL) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN UINT32 Control
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 11.6.

Control Sets the bits of Control that are settable. See “Related
Definitions” below.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

 January 31, 2006
406 Version 2.0

Description

The SetControl() function is used to assert or deassert the control signals on a serial device.
The following signals are set according their bit settings:

• Request to Send
• Data Terminal Ready

Only the REQUEST_TO_SEND, DATA_TERMINAL_READY, HARDWARE_LOOPBACK_ENABLE,
SOFTWARE_LOOPBACK_ENABLE, and HARDWARE_FLOW_CONTROL_ENABLE bits can be set
with SetControl(). All the bits can be read with GetControl().

Status Codes Returned
EFI_SUCCESS The new control bits were set on the serial device.

EFI_UNSUPPORTED The serial device does not support this operation.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

January 31, 2006
Version 2.0 407

EFI_SERIAL_IO_PROTOCOL.GetControl()

Summary

Retrieves the status of the control bits on a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_GET_CONTROL) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 OUT UINT32 *Control
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 11.6.

Control A pointer to return the current control signals from the
serial device. See “Related Definitions” below.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

 January 31, 2006
408 Version 2.0

Description

The GetControl() function retrieves the status of the control bits on a serial device.

Status Codes Returned
EFI_SUCCESS The control bits were read from the serial device.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

January 31, 2006
Version 2.0 409

EFI_SERIAL_IO_PROTOCOL.Write()

Summary

Writes data to a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_WRITE) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 11.6.

BufferSize On input, the size of the Buffer. On output, the amount of
data actually written.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to a serial device. If a time out error
occurs while data is being sent to the serial port, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the serial
device is returned in BufferSize.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.

 January 31, 2006
410 Version 2.0

EFI_SERIAL_IO_PROTOCOL.Read()

Summary

Reads data from a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_READ) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type
EFI_SERIAL_IO_PROTOCOL is defined in Section 11.6.

BufferSize On input, the size of the Buffer. On output, the amount of
data returned in Buffer.

Buffer The buffer to return the data into.

Description

The Read() function reads a specified number of bytes from a serial device. If a time out error or
an overrun error is detected while data is being read from the serial device, then no more characters
will be read, and an error will be returned. In all cases the number of bytes actually read is returned
in BufferSize.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The serial device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

January 31, 2006
Version 2.0 411

11.7 Graphics Output Protocol

The goal of this section is to replace the functionality that currently exists with VGA hardware and
its corresponding video BIOS. The Graphics Output Protocol is a software abstraction and its goal
is to support any foreseeable graphics hardware and not require VGA hardware, while at the same
time also lending itself to implementation on the current generation of VGA hardware.

Graphics output is important in the pre-boot space to support modern firmware features. These
features include the display of logos, the localization of output to any language, and setup and
configuration screens.

Graphics output may also be required as part of the startup of an operating system. There are
potentially times in modern operating systems prior to the loading of a high performance OS
graphics driver where access to graphics output device is required. The Graphics Output Protocol
supports this capability by providing the EFI OS loader access to a hardware frame buffer and
enough information to allow the OS to draw directly to the graphics output device.

The EFI_GRAPHICS_OUTPUT_PROTOCOL supports three member functions to support the
limited graphics needs of the pre-boot environment. These member functions allow the caller to
draw to a virtualized frame buffer, retrieve the supported video modes, and to set a video mode.
These simple primitives are sufficient to support the general needs of pre-OS firmware code.

The EFI_GRAPHICS_OUTPUT_PROTOCOL also exports enough information about the current
mode for operating system startup software to access the linear frame buffer directly.

The interface structure for the Graphics Output protocol is defined in this section. A unique
Graphics Output protocol must represent each video frame buffer in the system that is driven out to
one or more video output devices.

11.7.1 Blt Buffer
The basic graphics operation in the EFI_GRAPHICS_OUTPUT_PROTOCOL is the Block Transfer
or Blt. The Blt operation allows data to be read or written to the video adapter’s video memory.
The Blt operation abstracts the video adapters hardware implementation by introducing the concept
of a software Blt buffer.

The frame buffer abstracts the video display as an array of pixels. Each pixels location on the video
display is defined by its X and Y coordinates. The X coordinate represents a scan line. A scan line
is a horizontal line of pixels on the display. The Y coordinate represents a vertical line on the
display. The upper left hand corner of the video display is defined as (0, 0) where the notation
(X, Y) represents the X and Y coordinate of the pixel. The lower right corner of the video display
is represented by (Width –1, Height -1).

The software Blt buffer is structured as an array of pixels. Pixel (0, 0) is the first element of the
software Blt buffer. The Blt buffer can be thought of as a set of scan lines. It is possible to convert
a pixel location on the video display to the Blt buffer using the following algorithm: Blt buffer
array index = Y * Width + X.

 January 31, 2006
412 Version 2.0

Each software Blt buffer entry represents a pixel that is comprised of a 32-bit quantity. Byte zero
of the Blt buffer entry represents the Red component of the pixel. Byte one of the Blt buffer entry
represents the Green component of the pixel. Byte two of the Blt buffer entry represents the Blue
component of the pixel. Byte three of the Blt buffer entry is reserved and must be zero. The byte
values for the red, green, and blue components represent the color intensity. This color intensity
value range from a minimum intensity of 0 to maximum intensity of 255.

OM13157

Software BLT Buffer

(0, 0) X-axis
(Width -1, 0)

Y-axis

Pixel

Scan Line

(0, Height - 1) (Width -1, Height - 1)

Figure 25. Software BLT Buffer

January 31, 2006
Version 2.0 413

EFI_GRAPHICS_OUTPUT_PROTOCOL

Summary

Provides a basic abstraction to set video modes and copy pixels to and from the graphics
controller’s frame buffer. The linear address of the hardware frame buffer is also exposed so
software can write directly to the video hardware.

GUID
#define EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID \

{0x9042a9de,0x23dc,0x4a38,0x96,0xfb,0x7a,0xde,0xd0,0x80,
0x51,0x6a}

Protocol Interface Structure
typedef struct EFI_GRAPHICS_OUTPUT_PROTCOL {
 EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE QueryMode;
 EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE SetMode;
 EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT Blt;
 EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE *Mode;
} EFI_GRAPHICS_OUTPUT_PROTOCOL;

Parameters

QueryMode Returns information for an available graphics mode that the
graphics device and the set of active video output devices
supports.

SetMode Set the video device into the specified mode and clears the
visible portions of the output display to black.

Blt Software abstraction to draw on the video device’s frame buffer.

Mode Pointer to EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE data.
Type EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is
defined in “Related Definitions” below.

Related Definitions
typedef struct {
 UINT32 RedMask;
 UINT32 GreenMask;
 UINT32 BlueMask;
 UINT32 ReservedMask;
} EFI_PIXEL_BITMASK;

If a bit is set in RedMask, GreenMask, or BlueMask then those bits of the pixel represent the
corresponding color. Bits in RedMask, GreenMask, BlueMask, and ReserverdMask must
not over lap bit positions. The values for the red, green, and blue components in the bit mask
represent the color intensity. The color intensities must increase as the color values for a each color

 January 31, 2006
414 Version 2.0

mask increase with a minimum intensity of all bits in a color mask clear to a maximum intensity of
all bits in a color mask set.

typedef enum {
 PixelRedGreenBlueReserved8BitPerColor,
 PixelBlueGreenRedReserved8BitPerColor,
 PixelBitMask,

PixelBltOnly,
PixelFormatMax

} EFI_GRAPHICS_PIXEL_FORMAT;

PixelRedGreenBlueReserved8BitPerColor A pixel is 32-bits and byte zero represents
red, byte one represents green, byte two
represents blue, and byte three is
reserved. This is the definition for the
physical frame buffer. The byte values for
the red, green, and blue components
represent the color intensity. This color
intensity value range from a minimum
intensity of 0 to maximum intensity of
255.

PixelBlueGreenRedReserved8BitPerColor A pixel is 32-bits and byte zero represents
blue, byte one represents green, byte two
represents red, and byte three is reserved.
This is the definition for the physical
frame buffer. The byte values for the red,
green, and blue components represent the
color intensity. This color intensity value
range from a minimum intensity of 0 to
maximum intensity of 255.

PixelBitMask The pixel definition of the physical frame
buffer is defined by
EFI_PIXEL_BITMASK.

PixelBltOnly This mode does not support a physical
frame buffer.

PixelFormatMax Valid
EFI_GRAPHICS_PIXEL_FORMAT
enum values are less than this value.

typedef struct {
 UINT32 Version;
 UINT32 HorizontalResolution;
 UINT32 VerticalResolution;
 EFI_GRAPHICS_PIXEL_FORMAT PixelFormat;
 EFI_PIXEL_BITMASK PixelInformation;

January 31, 2006
Version 2.0 415

 UINT32 PixelsPerScanLine;
} EFI_GRAPHICS_OUTPUT_MODE_INFORMATION;

Version The version of this data structure. A value of zero represents the
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION structure as
defined in this specification. Future version of this specification
may extend this data structure in a backwards compatible way and
increase the value of Version.

HorizontalResolution The size of video screen in pixels in the X dimension.
VerticalResolution The size of video screen in pixels in the Y dimension.

PixelFormat Enumeration that defines the physical format of the pixel. A value
of PixelBltOnly implies that a linear frame buffer is not
available for this mode.

PixelInformation This bit-mask is only valid if PixelFormat is set to
PixelPixelBitMask. A bit being set defines what bits are used
for what purpose such as Red, Green, Blue, or Reserved.

PixelsPerScanLine Defines the number of pixel elements per scan line. Not all pixel
elements may be visible. PixelFormat defines the format of the
individual pixel.

typedef struct {
 UINT32 MaxMode;
 UINT32 Mode;
 EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info;
 UINTN SizeOfInfo;
 EFI_PHYSICAL_ADDRESS FrameBufferBase;
 UINTN FrameBufferSize;
} EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE;

The EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is read-only and values are only changed by
using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and

SetMode().

Mode Current Mode of the graphics device. Valid mode numbers are 0 to
MaxMode -1.

Info Pointer to read-only
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data.

SizeOfInfo Size of Info structure in bytes. Future versions of this
specification may increase the size of the
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data.

 January 31, 2006
416 Version 2.0

FrameBufferBase Base address of graphics linear frame buffer. Info contains
information required to allow software to draw directly to the frame
buffer without using Blt().Offset zero in FrameBufferBase
represents the upper left pixel of the display.

FrameBufferSize Size of the frame buffer represented by FrameBufferBase in
bytes.

Description

The EFI_GRAPHICS_OUTPUT_PROTOCOL provides a software abstraction to allow pixels to be
drawn directly to the frame buffer. The EFI_GRAPHICS_OUTPUT_PROTOCOL is designed to be
lightweight and to support the basic needs of graphics output prior to Operating System boot.

January 31, 2006
Version 2.0 417

EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode()

Summary

Returns information for an available graphics mode that the graphics device and the set of active
video output devices supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE) (
 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
 IN UINT32 ModeNumber,
 OUT UINTN *SizeOfInfo
 OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *Info
);

Parameters

This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance. Type
EFI_GRAPHICS_OUTPUT_PROTOCOL is defined in this
section.

ModeNumber The mode number to return information on. The current mode
and valid modes are read-only values in the Mode structure of
the EFI_GRAPHICS_OUTPUT_PROTOCOL.

SizeOfInfo A pointer to the size, in bytes, of the Info buffer.

Info A pointer to a callee allocated buffer that returns information
about ModeNumber.

Description

The QueryMode() function returns information for an available graphics mode that the graphics
device and the set of active video output devices supports. If ModeNumber is not between 0 and
MaxMode – 1, then EFI_INVALID_PARAMETER is returned. MaxMode is available from the
Mode structure of the EFI_GRAPHICS_OUTPUT_PROTOCOL.

The size of the Info structure should never be assumed and the value of SizeOfInfo is the only
valid way to know the size of Info.

If the EFI_GRAPHICS_OUTPUT_PROTOCOL is installed on the handle that represents a single
video output device, then the set of modes returned by this service is the subset of modes supported
by both the graphics controller and the video output device.

If the EFI_GRAPHICS_OUTPUT_PROTOCOL is installed on the handle that represents a
combination of video output devices, then the set of modes returned by this service is the subset of
modes supported by the graphics controller and the all of the video output devices represented by
the handle.

 January 31, 2006
418 Version 2.0

Status Codes Returned
EFI_SUCCESS Valid mode information was returned.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.
EFI_INVALID_PARAMETER ModeNumber is not valid.

January 31, 2006
Version 2.0 419

EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()

Summary

Set the video device into the specified mode and clears the visible portions of the output display to
black.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE) (

 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
 IN UINT32 ModeNumber

);

Parameters

This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance. Type
EFI_GRAPHICS_OUTPUT_PROTOCOL is defined in this
section.

ModeNumber Abstraction that defines the current video mode. The current
mode and valid modes are read-only values in the Mode
structure of the EFI_GRAPHICS_OUTPUT_PROTOCOL.

Description

This SetMode() function sets the graphics device and the set of active video output devices to the
video mode specified by ModeNumber. If ModeNumber is not supported EFI_UNSUPPORTED
is returned.

If a device error occurs while attempting to set the video mode, then EFI_DEVICE_ERROR is
returned. Otherwise, the graphics device is set to the requested geometry, the set of active output
devices are set to the requested geometry, the visible portion of the hardware frame buffer is
cleared to black, and EFI_SUCCESS is returned.

 January 31, 2006
420 Version 2.0

Status Codes Returned
EFI_SUCCESS The graphics mode specified by ModeNumber was selected.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED ModeNumber is not supported by this device.

January 31, 2006
Version 2.0 421

EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt()

Summary

Blt a rectangle of pixels on the graphics screen. Blt stands for BLock Transfer.

Prototype
typedef struct {
 UINT8 Blue;
 UINT8 Green;
 UINT8 Red;
 UINT8 Reserved;
} EFI_GRAPHICS_OUTPUT_BLT_PIXEL;

typedef enum {
 EfiBltVideoFill,
 EfiBltVideoToBltBuffer,
 EfiBltBufferToVideo,
 EfiBltVideoToVideo,
 EfiGraphicsOutputBltOperationMax
} EFI_GRAPHICS_OUTPUT_BLT_OPERATION;

typedef
EFI_STATUS
(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT) (
 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
 IN OUT EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltBuffer, OPTIONAL
 IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,
 IN UINTN SourceX,
 IN UINTN SourceY,
 IN UINTN DestinationX,
 IN UINTN DestinationY,
 IN UINTN Width,
 IN UINTN Height,
 IN UINTN Delta OPTIONAL
);

 January 31, 2006
422 Version 2.0

Parameters

This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance.

BltBuffer The data to transfer to the graphics screen. Size is at least
Width*Height*sizeof(EFI_GRAPHICS_OUTPUT_BLT_PIXEL).

BltOperation The operation to perform when copying BltBuffer on to the graphics
screen.

SourceX The X coordinate of the source for the BltOperation. The origin of
the screen is 0, 0 and that is the upper left-hand corner of the screen.

SourceY The Y coordinate of the source for the BltOperation. The origin of
the screen is 0, 0 and that is the upper left-hand corner of the screen.

DestinationX The X coordinate of the destination for the BltOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the screen.

DestinationY The Y coordinate of the destination for the BltOperation. The origin
of the screen is 0, 0 and that is the upper left-hand corner of the screen.

Width The width of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_GRAPHICS_OUTPUT_PIXEL element.

Height The height of a rectangle in the blt rectangle in pixels. Each pixel is
represented by an EFI_GRAPHICS_OUTPUT_PIXEL element.

Delta Not used for EfiBltVideoFill or the EfiBltVideoToVideo
operation. If a Delta of zero is used, the entire BltBuffer is being
operated on. If a subrectangle of the BltBuffer is being used then
Delta represents the number of bytes in a row of the BltBuffer.

January 31, 2006
Version 2.0 423

Description

The Blt() function is used to draw the BltBuffer rectangle onto the video screen.

The BltBuffer represents a rectangle of Height by Width pixels that will be drawn on the
graphics screen using the operation specified by BltOperation. The Delta value can be used
to enable the BltOperation to be performed on a sub-rectangle of the BltBuffer.

Table 78 describes the BltOperations that are supported on rectangles. Rectangles have
coordinates (left, upper) (right, bottom):

Table 78. Blt Operation Table

Blt Operation Operation

EfiBltVideoFill Write data from the BltBuffer pixel (0,0) directly to every
pixel of the video display rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). Only one pixel will be used
from the BltBuffer. Delta is NOT used.

EfiBltVideoToBltBuffer Read data from the video display rectangle (SourceX,
SourceY) (SourceX + Width, SourceY + Height) and
place it in the BltBuffer rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). If DestinationX or
DestinationY is not zero then Delta must be set to the
length in bytes of a row in the BltBuffer.

EfiBltBufferToVideo Write data from the BltBuffer rectangle (SourceX,
SourceY) (SourceX + Width, SourceY + Height)
directly to the video display rectangle (DestinationX,
DestinationY) (DestinationX + Width,
DestinationY + Height). If SourceX or SourceY is not
zero then Delta must be set to the length in bytes of a
row in the BltBuffer.

EfiBltVideoToVideo Copy from the video display rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) to the video
display rectangle (X, Y) (X + Width, Y + Height). The
BltBuffer and Delta are not used in this mode. There is
no limitation on the overlapping of the source and
destination rectangles.

Status Codes Returned
EFI_SUCCESS BltBuffer was drawn to the graphics screen.

EFI_INVALID_PARAMETER BltOperation is not valid.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

 January 31, 2006
424 Version 2.0

EFI_EDID_DISCOVERED_PROTOCOL

Summary

This protocol contains the EDID information retrieved from a video output device.

GUID
#define EFI_EDID_DISCOVERED_PROTOCOL_GUID \

{0x1c0c34f6,0xd380,0x41fa,0xa0,0x49,0x8a,0xd0,0x6c,0x1a,
0x66,0xaa}

Protocol Interface Structure
typedef struct {
 UINT32 SizeOfEdid;
 UINT8 Edid;
} EFI_EDID_DISCOVERED_PROTOCOL;

Parameter

SizeOfEdid The size, in bytes, of the Edid buffer. 0 if no EDID information
is available from the video output device. Otherwise, it must be
a minimum of 128 bytes.

Edid A pointer to a read-only array of bytes that contains the EDID
information for a video output device. This pointer is NULL if no
EDID information is available from the video output device.
The minimum size of a valid Edid buffer is 128 bytes. EDID
information is defined in the E-DID EEPROM specification
published by VESA (www.vesa.org).

Description

EFI_EDID_DISCOVERED_PROTOCOL represents the EDID information that is returned from a
video output device. If the video output device does not contain any EDID information, then the
SizeOfEdid field must set to zero and the Edid field must be set to NULL. The
EFI_EDID_DISCOVERED_PROTOCOL must be placed on every child handle that represents a
possible video output device. The EFI_EDID_DISCOVERED_PROTOCOL is never placed on
child handles that represent combinations of two or more video output devices.

January 31, 2006
Version 2.0 425

EFI_EDID_ACTIVE_PROTOCOL

Summary

This protocol contains the EDID information for an active video output device. This is either the
EDID information retrieved from the EFI_EDID_OVERRIDE_PROTOCOL if an override is
available, or an identical copy of the EDID information from the
EFI_EDID_DISCOVERED_PROTOCOL if no overrides are available.

GUID

#define EFI_EDID_ACTIVE_PROTOCOL_GUID \

{0xbd8c1056,0x9f36,0x44ec,0x92,0xa8,0xa6,0x33,0x7f,0x81,
0x79,0x86}

Protocol Interface Structure
typedef struct {
 UINT32 SizeOfEdid;
 UINT8 *Edid;
} EFI_EDID_ACTIVE_PROTOCOL;

Parameter

SizeOfEdid The size, in bytes, of the Edid buffer. 0 if no EDID information
is available from the video output device. Otherwise, it must be
a minimum of 128 bytes.

Edid A pointer to a read-only array of bytes that contains the EDID
information for an active video output device. This pointer is
NULL if no EDID information is available for the video output
device. The minimum size of a valid Edid buffer is 128 bytes.
EDID information is defined in the E-DID EEPROM
specification published by VESA (www.vesa.org).

Description

When the set of active video output devices attached to a frame buffer are selected, the
EFI_EDID_ACTIVE_PROTOCOL must be installed onto the handles that represent the each of
those active video output devices. If the EFI_EDID_OVERRIDE_PROTOCOL has override EDID
information for an active video output device, then the EDID information specified by
GetEdid() is used for the EFI_EDID_ACTIVE_PROTOCOL. Otherwise, the EDID
information from the EFI_EDID_DISCOVERED_PROTOCOL is used for the
EFI_EDID_ACTIVE_PROTOCOL. Since all EDID information is read-only, it is legal for the
pointer associated with the EFI_EDID_ACTIVE_PROTOCOL to be the same as the pointer
associated with the EFI_EDID_DISCOVERED_PROTOCOL when no overrides are present.

 January 31, 2006
426 Version 2.0

EFI_EDID_OVERRIDE_PROTOCOL

Summary

This protocol is produced by the platform to allow the platform to provide EDID information to the
producer of the Graphics Output protocol.

GUID
#define EFI_EDID_OVERRIDE_PROTOCOL_GUID \

{0x48ecb431,0xfb72,0x45c0,0xa9,0x22,0xf4,0x58,0xfe,0x4,0xb,
0xd5}

Protocol Interface Structure
typedef struct _EFI_EDID_OVERRIDE_PROTOCOL {
 EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID GetEdid;
} EFI_EDID_OVERRIDE_PROTOCOL;

Parameter
GetEdid Returns EDID values and attributes that the Video BIOS must

use

Description

This protocol is produced by the platform to allow the platform to provide EDID information to the
producer of the Graphics Output protocol.

January 31, 2006
Version 2.0 427

EFI_EDID_OVERRIDE_PROTOCOL.GetEdid()

Summary

Returns policy information and potentially a replacement EDID for the specified video output
device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID) (
 IN EFI_EDID_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE *ChildHandle,
 OUT UINT32 *Attributes,
 IN OUT UINTN *EdidSize,
 IN OUT UINT8 **Edid
);

Parameters

This The EFI_EDID_OVERRIDE_PROTOCOL instance. Type
EFI_EDID_OVERRIDE_PROTOCOL is defined in
Section 11.8.

ChildHandle A child handle that represents a possible video output device.

Attributes A pointer to the attributes associated with ChildHandle
video output device.

EdidSize A pointer to the size, in bytes, of the Edid buffer.

Edid A pointer to the callee allocated buffer that contains the EDID
information associated with ChildHandle. If EdidSize is
0, then a pointer to NULL is returned.

Related Definitions
#define EFI_EDID_OVERRIDE_DONT_OVERRIDE 0x01
#define EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG 0x02

Table 79. Attributes Definition Table

Attribute Bit EdidSize Operation

0x0 != 0 Use returned over ride EDID in all cases

0x0 0 No over rides or policy

EFI_EDID_OVERRIDE_DONT_OVERRIDE != 0 Only use returned over ride EDID if the
display device does not have an EDID. If the
display device has an EDID use that value.

 January 31, 2006
428 Version 2.0

Attribute Bit EdidSize Operation

EFI_EDID_OVERRIDE_DONT_OVERRIDE 0 No over rides or policy.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG != 0 Enable hot plug and used returned over ride
EDID in all cases. This means a Graphics
Output protocol must be produced even if the
display device is not present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG 0 Enable hot plug. This means a Graphics
Output protocol must be produced even if the
display device is not present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG
& EFI_EDID_OVERRIDE_DONT_OVERRIDE

!= 0 Enable hot plug. Only use returned over ride
EDID if the display device does not have an
EDID. This means a Graphics Output
protocol must be produced even if the display
device is not present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG
& EFI_EDID_OVERRIDE_DONT_OVERRIDE

0 Enable hot plug. This means a Graphics
Output protocol must be produced even if the
display device is not present.

Description

This protocol is optionally provided by the platform to override or provide EDID information
and/or output device display properties to the producer of the Graphics Output protocol. If
ChildHandle does not represent a video output device, or there are no override for the video
output device specified by ChildHandle, then EFI_UNSUPPORTED is returned. Otherwise, the
Attributes, EdidSize, and Edid parameters are returned along with a status of
EFI_SUCCESS. Table 79 defines the behavior for the combinations of the Attribute and
EdidSize parameters when EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS Valid over rides returned for ChildHandle.

EFI_UNSUPPORTED ChildHandle has no over rides.

11.8 Rules for PCI/AGP Devices

A UEFI driver that produces the Graphics Output Protocol must follow the UEFI driver model,
produce an EFI_DRIVER_BINDING_PROTOCOL, and follow the rules on implementing the
Supported(), Start(), and Stop(). The Start() function must not update the video
output device in any way that is visible to the user. The Start() function must create child
handle for each physical video output device and each supported combination of video output
devices. The driver must retrieve the EDID information from each physical video output device
and produce a EFI_EDID_DISCOVERED_PROTOCOL on the child handle that corresponds each
physical video output device. The following summary describes the common initialization steps for
a driver that produces the EFI_GRAPHICS_OUTPUT_PROTOCOL. This summary assumes the
graphics controller supports a single frame buffer. If a graphics device supports multiple frame

January 31, 2006
Version 2.0 429

buffers, then handles for the frame buffers must be created first, and then the handles for the video
output devices can be created as children of the frame buffer handles.

Summary of Initialization Steps:

• System calls EFI_DRIVER_BINDING_PROTOCOL.Start().

• If RemainingDevicePath is NULL, then a default set of active video output devices are
selected by the driver. If the first node of RemainingDevicePath is not an ACPI _ADR
node or the first two nodes of RemainingDevicePath are not a Controller node followed
by an ACPI _ADR node, then Start() returns EFI_UNSUPPORTED.

• Start() function creates a ChildHandle for each physical video output device and installs
the EFI_DEVICE_PATH_PROTOCOL onto the created ChildHandle. The
EFI_DEVICE_PATH_PROTOCOL is constructed by appending an ACPI _ADR device path
node describing the physical video output device to the end of the device path installed on the
ControllerHandle passed into Start().

• Start()function retrieves EDID information for each physical video output device and
installs the EFI_EDID_DISCOVERED_PROTOCOL onto the ChildHandle for each
physical video output device. If no EDID data is available from the video output device, then
SizeOfEdid is set to zero, and Edid is set to NULL.

• Start()function create a ChildHandle for each valid combination of two or more video
output devices, and installs the EFI_DEVICE_PATH_PROTOCOL onto the created
ChildHandle. The EFI_DEVICE_PATH_PROTOCOL is constructed by appending an
ACPI _ADR device path node describing the combination of video output devices to the end of
the device path installed on the ControllerHandle passed into Start(). The ACPI
_ADR entry can represent complex topologies of devices and it is possible to have more than
one ACPI _ADR entry in a single device path node. Support of complex video output device
topologies is an optional feature.

• Start()function evaluates the RemainingDevicePath to select the set of active video
output devices. If RemainingDevicePath is NULL, then Start() selects a default set of
video output devices. If RemainingDevicePath is not NULL, and ACPI _ADR device
path node of RemainingDevicePath does not match any of the created ChildHandles,
then Start()must destroy all its ChildHandles and return EFI_UNSUPPORTED.
Otherwise, Start() selects the set of active video output devices specified by the ACPI
_ADR device path node in RemainingDevicePath.

• Start() retrieves the ChildHandle associated with each active video output device.
Only ChildHandles that represent a physical video output device are considered.
Start() calls the EFI_EDID_OVERRIDE_PROTOCOL.GetEdid() service passing in
ChildHandle. Depending on the return values from GetEdid(), either the override EDID
information or the EDID information from the EFI_EDID_DISCOVERED_PROTOCOL on
ChildHandle is selected. See GetEdid() for a detailed description of this decision. The
selected EDID information is used to produce the EFI_EDID_ACTIVE_PROTOCOL, and that
protocol is installed onto ChildHandle.

 January 31, 2006
430 Version 2.0

• Start() retrieves the one ChildHandle that represents the entire set of active video output
devices. If this set is a single video output device, then this ChildHandle will be the same
as the one used in the previous step. If this set is a combination of video output devices, then
this will not be one of the ChildHandles used in the previous two steps. The
EFI_GRAPHICS_OUTPUT_PROTOCOL is installed onto this ChildHandle.

• The QueryMode() service of the EFI_GRAPHICS_OUTPUT_PROTOCOL returns the set of
modes that both the graphics controller and the set of active video output devices all support.
If a different set of active video output device is selected, then a different set of modes will
likely be produced by QueryMode().

• Start()function optionally initializes video frame buffer hardware. The EFI driver has the
option of delaying this operation until SetMode() is called.

• The EFI Driver must provide EFI_COMPONENT_NAME_PROTOCOL
GetControllerName() support for ControllerHandle and all the ChildHandles
created by this driver. The name returned for ControllerHandle must return the name of
the graphics device. The name returned for each of the ChildHandles allow the user to pick
output display settings and should be constructed with this in mind.

• The EFI Driver’s Stop() function must cleanly undo what the Start() function created.

An EFI_GRAPHICS_OUTPUT_PROTOCOL must be implemented for every video frame buffer
that exists on a video adapter. In most cases there will be a single
EFI_GRAPHICS_OUTPUT_PROTOCOL placed on one of the a children of the
ControllerHandle passed into the EFI_DRIVER_BINDING.Start() function.

If a single PCI device/function contains multiple frame buffers the
EFI_GRAPHICS_OUTPUT_PROTOCOL must create child handles of the PCI handle that inherit
its PCI device path and appends a controller device path node. [cross reference 8.3.2.5 EFI 1.10
Controller Device Path]. The handles for the video output devices are children of the handles that
represent the frame buffers..

A video device can support an arbitrary number of geometries, but it must support one or more of
the following modes to conform to this specification:

Onboard graphics device

• A mode required in a platform design guide
• Native mode of the display

Plug in graphics device

• A mode required in a platform design guide
• 800 x 600 with 32-bit color depth or 640 x 480 with 32-bit color depth and a pixel format

described by PixelRedGreenBlueReserved8BitPerColor or
PixelBlueGreenRedReserved8BitPerColor.

A plug in graphics device that contains a ROM must have an EBC version of the EFI driver that
produces the EFI_GRAPHICS_OUTPUT_PROTOCOL.

If graphics output device supports both landscape and portrait mode displays it must return a
different mode via QueryMode(). For example landscape mode could be 800 horizontal and
600 vertical while the equivalent portrait mode would be 600 horizontal and 800 vertical.

January 31, 2006
Version 2.0 431

 January 31, 2006
432 Version 2.0

January 31, 2006
Version 2.0 433

12
Protocols — Media Access

12.1 Load File Protocol

This section defines the Load File protocol. This protocol is designed to allow code running in the
boot services environment to find and load other modules of code.

EFI_LOAD_FILE_PROTOCOL

Summary

Is used to obtain files from arbitrary devices.

GUID
#define EFI_LOAD_FILE_PROTOCOL_GUID \

{ox56EC3091,0x954C,0x11d2,0x8E3F,0x00,0xA0,0xC9,0x69,0x72,
0x3B}

Protocol Interface Structure
typedef struct {
 EFI_LOAD_FILE LoadFile;
} EFI_LOAD_FILE_PROTOCOL;

Parameters

LoadFile Causes the driver to load the requested file. See the LoadFile()
function description.

Description

The EFI_LOAD_FILE_PROTOCOL is a simple protocol used to obtain files from arbitrary
devices.

When the firmware is attempting to load a file, it first attempts to use the device’s Simple File
System protocol to read the file. If the file system protocol is found, the firmware implements the
policy of interpreting the File Path value of the file being loaded. If the device does not support the
file system protocol, the firmware then attempts to read the file via the
EFI_LOAD_FILE_PROTOCOLand the LoadFile() function. In this case the LoadFile()
function implements the policy of interpreting the File Path value.

 January 31, 2006
434 Version 2.0

EFI_LOAD_FILE_PROTOCOL.LoadFile()

Summary

Causes the driver to load a specified file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LOAD_FILE) (
 IN EFI_LOAD_FILE_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
 IN BOOLEAN BootPolicy,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer OPTIONAL
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_LOAD_FILE_PROTOCOL is defined in Section 12.1.

FilePath The device specific path of the file to load. Type
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

BootPolicy If TRUE, indicates that the request originates from the boot manager, and
that the boot manager is attempting to load FilePath as a boot
selection. If FALSE, then FilePath must match an exact file to be
loaded.

BufferSize On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buffer.
On output with a return code of EFI_BUFFER_TOO_SMALL, the size
of Buffer required to retrieve the requested file.

Buffer The memory buffer to transfer the file to. If Buffer is NULL, then no
the size of the requested file is returned in BufferSize.

Description

The LoadFile() function interprets the device-specific FilePath parameter, returns the entire
file into Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL,
then the size of the file is returned in BufferSize. If Buffer is not NULL, and BufferSize
is not large enough to hold the entire file, then EFI_BUFFER_TOO_SMALL is returned, and
BufferSize is updated to indicate the size of the buffer needed to obtain the file. In this case, no
data is returned in Buffer.

January 31, 2006
Version 2.0 435

If BootPolicy is FALSE the FilePath must match an exact file to be loaded. If no such file
exists, EFI_NOT_FOUND is returned. If BootPolicy is FALSE, and an attempt is being made to
perform a network boot through the PXE Base Code protocol, EFI_UNSUPPORTED is returned.

If BootPolicy is TRUE the firmware’s boot manager is attempting to load an EFI image that is a
boot selection. In this case, FilePath contains the file path value in the boot selection option.
Normally the firmware would implement the policy on how to handle an inexact boot file path;
however, since in this case the firmware cannot interpret the file path, the LoadFile() function
is responsible for implementing the policy. For example, in the case of a network boot through the
PXE Base Code protocol, FilePath merely points to the root of the device, and the firmware
interprets this as wanting to boot from the first valid loader. The following is a list of events that
LoadFile() will implement for a PXE boot:

• Perform DHCP.
• Optionally prompt the user with a menu of boot selections.
• Discover the boot server and the boot file.
• Download the boot file into Buffer and update BufferSize with the size of the boot file.

Status Codes Returned
EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED The device does not support the provided BootPolicy.

EFI_INVALID_PARAMETER FilePath is not a valid device path, or BufferSize
is NULL.

EFI_NO_ MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the
current directory entry. BufferSize has been
updated with the size needed to complete the
request.

 January 31, 2006
436 Version 2.0

12.2 File System Format

The file system supported by the Extensible Firmware Interface is based on the FAT file system.
EFI defines a specific version of FAT that is explicitly documented and testable. Conformance to
the EFI specification and its associate reference documents is the only definition of FAT that needs
to be implemented to support EFI. To differentiate the EFI file system from pure FAT, a new
partition file system type has been defined.

EFI encompasses the use of FAT32 for a system partition, and FAT12 or FAT16 for removable
media. The FAT32 system partition is identified by an OSType value other than that used to
identify previous versions of FAT. This unique partition type distinguishes an EFI defined file
system from a normal FAT file system. The file system supported by EFI includes support for
long file names.

The definition of the EFI file system will be maintained by specification and will not evolve over
time to deal with errata or variant interpretations in OS file system drivers or file system utilities.
Future enhancements and compatibility enhancements to FAT will not be automatically included in
EFI file systems. The EFI file system is a target that is fixed by the EFI specification, and other
specifications explicitly referenced by the EFI specification.

For more information about the EFI file system and file image format, visit the web site from which
this document was obtained.

12.2.1 System Partition
A System Partition is a partition in the conventional sense of a partition on a legacy system. For a
hard disk, a partition is a contiguous grouping of sectors on the disk where the starting sector and
size are defined by the Master Boot Record (MBR), which resides on LBA 0 (i.e., the first sector of
the hard disk) (see Section 5.2), or the GUID Partition Table (GPT), which resides on logical block
1 (the second sector of the hard disk) (see Section 5.3.1). For a diskette (floppy) drive, a partition is
defined to be the entire media. A System Partition can reside on any media that is supported by EFI
Boot Services.

A System Partition supports backward compatibility with legacy systems by reserving the first
block (sector) of the partition for compatibility code. On legacy systems, the first block (sector) of a
partition is loaded into memory and execution is transferred to this code. EFI firmware does not
execute the code in the MBR. The EFI firmware contains knowledge about the partition structure of
various devices, and can understand legacy MBR, GPT, and “El Torito.”

The System Partition contains directories, data files, and UEFI Images. UEFI Images can contain a
OS Loader, an driver to extend platform firmware capability, or an application that provides a
transient service to the system. Applications written to this specification could include things such
as a utility to create partitions or extended diagnostics. A System Partition can also support data
files, such as error logs, that can be defined and used by various OS or system firmware software
components.

January 31, 2006
Version 2.0 437

12.2.1.1 File System Format
The first block (sector) of a partition contains a data structure called the BIOS Parameter Block
(BPB) that defines the type and location of FAT file system on the drive. The BPB contains a data
structure that defines the size of the media, the size of reserved space, the number of FAT tables,
and the location and size of the root directory (not used in FAT32). The first block (sector) also
contains code that will be executed as part of the boot process on a legacy system. This code in the
first block (sector) usually contains code that can read a file from the root directory into memory
and transfer control to it. Since EFI firmware contains a file system driver, EFI firmware can load
any file from the file system with out needing to execute any code from the media.

The EFI firmware must support the FAT32, FAT16, and FAT12 variants of the EFI file system.
What variant of EFI FAT to use is defined by the size of the media. The rules defining the
relationship between media size and FAT variants is defined in the specification for the EFI
file system.

12.2.1.2 File Names
FAT stores file names in two formats. The original FAT format limited file names to eight
characters with three extension characters. This type of file name is called an 8.3, pronounced eight
dot three, file name. FAT was extended to include support for long file names (LFN).

FAT 8.3 file names are always stored as uppercase ASCII characters. LFN can either be stored as
ASCII or Unicode and are stored case sensitive. The string that was used to open or create the file is
stored directly into LFN. FAT defines that all files in a directory must have a unique name, and
unique is defined as a case insensitive match. The following are examples of names that are
considered to be the same and cannot exist in a single directory:

• “ThisIsAnExampleDirectory.Dir”
• “thisisanexamppledirectory.dir”
• THISISANEXAMPLEDIRECTORY.DIR
• ThisIsAnExampleDirectory.DIR

12.2.1.3 Directory Structure
An EFI system partition that is present on a hard disk must contain an EFI defined directory in the
root directory. This directory is named EFI. All OS loaders and applications will be stored in
subdirectories below EFI. Applications that are loaded by other applications or drivers are not
required to be stored in any specific location in the EFI system partition. The choice of the
subdirectory name is up to the vendor, but all vendors must pick names that do not collide with any
other vendor’s subdirectory name. This applies to system manufacturers, operating system vendors,
BIOS vendors, and third party tool vendors, or any other vendor that wishes to install files on an
EFI system partition. There must also only be one executable EFI image for each supported
processor architecture in each vendor subdirectory. This guarantees that there is only one image
that can be loaded from a vendor subdirectory by the EFI Boot Manager. If more than one
executable EFI image is present, then the boot behavior for the system will not be deterministic.
There may also be an optional vendor subdirectory called BOOT.

 January 31, 2006
438 Version 2.0

This directory contains EFI images that aide in recovery if the boot selections for the software
installed on the EFI system partition are ever lost. Any additional UEFI-compliant executables must
be in subdirectories below the vendor subdirectory. The following is a sample directory structure
for an EFI system partition present on a hard disk.

\EFI
 \<OS Vendor 1 Directory>
 <OS Loader Image>
 \<OS Vendor 2 Directory>
 <OS Loader Image>
 . . .
 \<OS Vendor N Directory>
 <OS Loader Image>
 \<OEM Directory>
 <OEM Application Image>
 \<BIOS Vendor Directory>
 <BIOS Vendor Application Image>
 \<Third Party Tool Vendor Directory>
 <Third Party Tool Vendor Application Image>
 \BOOT
 BOOT{machine type short name}.EFI

For removable media devices there must be only one UEFI-compliant system partition, and that
partition must contain an UEFI-defined directory in the root directory. The directory will be named
EFI. All OS loaders and applications will be stored in a subdirectory below EFI called BOOT.
There must only be one executable EFI image for each supported processor architecture in the
BOOT directory. For removable media to be bootable under EFI, it must be built in accordance with
the rules laid out in Section 3.4.1.1. This guarantees that there is only one image that can be
automatically loaded from a removable media device by the EFI Boot Manager. Any additional EFI
executables must be in directories other than BOOT. The following is a sample directory structure
for an EFI system partition present on a removable media device.

\EFI
 \BOOT

 BOOT{machine type short name}.EFI

January 31, 2006
Version 2.0 439

12.2.2 Partition Discovery
This specification requires the firmware to be able to parse the legacy master boot record(MBR)
(see Section 5.2.1), GUID Partition Table (GPT)(see Section 5.3.2), and El Torito (see
Section 12.2.2.1) logical device volumes. The EFI firmware produces a logical
EFI_BLOCK_IO_PROTOCOL device for each GPT Partition Entry, El Torito logical device
volume, and if no GPT Partition Table is present any partitions found in the legacy MBR partition
tables. LBA zero of the EFI_BLOCK_IO_PROTOCOL device will correspond to the first logical
block of the partition. See Figure 26.

BLOCK_I/O
DISK

Partition Partition

Partition Table

Pointers
to partitions

Partition Table

Pointers
to partitions

Partition Partition

OM13159

Figure 26. Nesting of Legacy MBR Partition Records

The following is the order in which a block device must be scanned to determine if it contains
partitions. When a check for a valid partitioning scheme succeeds, the search terminates.

1. Check for GUID Partition Table Headers.
2. Follow ISO-9660 specification to search for ISO-9660 volume structures on the magic LBA.

 Check for an “El Torito” volume extension and follow the “El Torito” CD-ROM
specification.

3. If none of the above, check LBA 0 for a legacy MBR partition table.
4. No partition found on device.

EFI supports the nesting of legacy MBR partitions, by allowing any legacy MBR partition to
contain more legacy MBR partitions. This is accomplished by supporting the same partition
discovery algorithm on every logical block device. It should be noted that the GUID Partition Table
does not allow nesting of GUID Partition Table Headers. Nesting is not needed since a GUID
Partition Table Header can support an arbitrary number of partitions (the addressability limits of a
64-bit LBA are the limiting factor).

 January 31, 2006
440 Version 2.0

12.2.2.1 ISO-9660 and El Torito
IS0-9660 is the industry standard low level format used on CD-ROM and DVD-ROM. The CD-
ROM format is completely described by the “El Torito” Bootable CD-ROM Format Specification
Version 1.0. To boot from a CD-ROM or DVD-ROM in the boot services environment, an EFI
System partition is stored in a “no emulation” mode as defined by the “El Torito” specification. A
Platform ID of 0xEF indicates an EFI System Partition. The Platform ID is in either the Section
Header Entry or the Validation Entry of the Booting Catalog as defined by the “El Torito”
specification. EFI differs from “El Torito” “no emulation” mode in that it does not load the “no
emulation” image into memory and jump to it. EFI interprets the “no emulation” image as an EFI
system partition. EFI interprets the Sector Count in the Initial/Default Entry or the Section Header
Entry to be the size of the EFI system partition. If the value of Sector Count is set to 0 or 1, EFI will
assume the system partition consumes the space from the beginning of the “no emulation” image to
the end of the CD-ROM.

DVD-ROM images formatted as required by the UDF 2.00 specification (OSTA Universal Disk
Format Specification, Revision 2.00) can be booted by EFI. EFI supports booting from an
ISO-9660 file system that conforms to the “El Torito” Bootable CD-ROM Format Specification on
a DVD-ROM. A DVD-ROM that contains an ISO-9660 file system is defined as a “UDF Bridge”
disk. Booting from CD-ROM and DVD-ROM is accomplished using the same methods.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM it is possible to boot personal computers using an EFI CD-ROM or DVD-ROM. The
inclusion of boot code for personal computers is optional and not required by EFI.

12.2.3 Media Formats
This section describes how booting from different types of removable media is handled. In general
the rules are consistent regardless of a media’s physical type and whether it is removable or not.

12.2.3.1 Removable Media
Removable media may contain a standard FAT12, FAT16, or FAT32 file system. Legacy 1.44 MB
floppy devices typically support a FAT12 file system.

Booting from a removable media device can be accomplished the same way as any other boot. The
boot file path provided to the boot manager can consist of a UEFI application image to load, or can
merely be the path to a removable media device. In the first case, the path clearly indicates the
image that is to be loaded. In the later case, the boot manager implements the policy to load the
default application image from the device.

For removable media to be bootable under EFI, it must be built in accordance with the rules laid
out in Section 3.4.1.1

12.2.3.2 Diskette
EFI bootable diskettes follow the standard formatting conventions used on personal computers. The
diskette contains only a single partition that complies to the EFI file system type. For diskettes to be
bootable under EFI, it must be built in accordance with the rules laid out in Section 3.4.1.1.

January 31, 2006
Version 2.0 441

Since the EFI file system definition does not use the code in the first block of the diskette, it is
possible to boot personal computers using a diskette that is also formatted as an EFI bootable
removable media device. The inclusion of boot code for personal computers is optional and not
required by EFI.

Diskettes include the legacy 3.5-inch diskette drives as well as the newer larger capacity removable
media drives such as an Iomega* Zip*, Fujitsu MO, or MKE LS-120/SuperDisk*.

12.2.3.3 Hard Drive
Hard drives may contain multiple partitions as defined in Section 12.2.2 on partition discovery.
Any partition on the hard drive may contain a file system that the EFI firmware recognizes.
Images that are to be booted must be stored under the EFI subdirectory as defined in
Sections 12.2.1 and 12.2.2.

EFI code does not assume a fixed block size.

Since EFI firmware does not execute the MBR code and does not depend on the BootIndicator field
in the legacy MBR partition records, the hard disk can still boot and function normally.

12.2.3.4 CD-ROM and DVD-ROM
A CD-ROM or DVD-ROM may contain multiple partitions as defined Sections 12.2.1 and 12.2.2
and in the “El Torito” specification.

EFI code does not assume a fixed block size.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM, it is possible to boot personal computers using an EFI CD-ROM or DVD-ROM. The
inclusion of boot code for personal computers is optional and not required by EFI.

12.2.3.5 Network
To boot from a network device, the Boot Manager uses the Load File Protocol to perform a
LoadFile() on the network device. This uses the PXE Base Code Protocol to perform DHCP
and Discovery. This may result in a list of possible boot servers along with the boot files available
on each server. The Load File Protocol for a network boot may then optionally produce a menu
of these selections for the user to choose from. If this menu is presented, it will always have a
timeout, so the Load File Protocol can automatically boot the default boot selection. If there is
only one possible boot file, then the Load File Protocol can automatically attempt to load the
one boot file.

The Load File Protocol will download the boot file using the MTFTP service in the PXE Base Code
Protocol. The downloaded image must be an EFI image that the platform supports.

 January 31, 2006
442 Version 2.0

12.3 Simple File System Protocol

This section defines the Simple File System protocol. This protocol allows code running in the EFI
boot services environment to obtain file based access to a device.
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is used to open a device volume and return an
EFI_FILE_PROTOCOL that provides interfaces to access files on a device volume.

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

Summary

Provides a minimal interface for file-type access to a device.

GUID
#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID \
{0x0964e5b22,0x6459,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,0x3b}

Revision Number
#define EFI_SIMPLE_FILE SYSTEM_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {
 UINT64 Revision;
 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;
} EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

Parameters

Revision The version of the EFI_FILE_ PROTOCOL. The version specified by
this specification is 0x00010000. All future revisions must be backwards
compatible. If a future version is not backwards compatible, it is not the
same GUID.

OpenVolume Opens the volume for file I/O access. See the OpenVolume() function
description.

January 31, 2006
Version 2.0 443

Description

The EFI_SIMPLE_FILE_SYSTEM_PROTOCOL provides a minimal interface for file-type access
to a device. This protocol is only supported on some devices.

Devices that support the Simple File System protocol return an EFI_FILE_ PROTOCOL. The
only function of this interface is to open a handle to the root directory of the file system on the
volume. Once opened, all accesses to the volume are performed through the volume’s file handles,
using the EFI_FILE_PROTOCOL protocol. The volume is closed by closing all the open file
handles.

The firmware automatically creates handles for any block device that supports the following file
system formats:

• FAT12
• FAT16
• FAT32

 January 31, 2006
444 Version 2.0

EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume()

Summary

Opens the root directory on a volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME) (
 IN EFI_FILE_PROTOCOL *This,
 OUT EFI_FILE_PROTOCOL **Root
);

Parameters

This A pointer to the volume to open the root directory of. See the type
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL description.

Root A pointer to the location to return the opened file handle for the root
directory. See the type EFI_FILE_PROTOCOL description.

Description

The OpenVolume() function opens a volume, and returns a file handle to the volume’s root
directory. This handle is used to perform all other file I/O operations. The volume remains open
until all the file handles to it are closed.

If the medium is changed while there are open file handles to the volume, all file handles to the
volume will return EFI_MEDIA_CHANGED. To access the files on the new medium, the volume
must be reopened with OpenVolume(). If the new medium is a different file system than the one
supplied in the EFI_HANDLE’s DevicePath for the EFI_SIMPLE_SYSTEM_PROTOCOL,
OpenVolume() will return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The file volume was opened.

EFI_UNSUPPORTED The volume does not support the requested file system type.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES The file volume was not opened.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported. Any existing file handles for this volume are
no longer valid. To access the files on the new medium, the
volume must be reopened with OpenVolume().

January 31, 2006
Version 2.0 445

12.4 EFI File Protocol

The protocol and functions described in this section support access to EFI-supported file systems.

EFI_FILE_PROTOCOL

Summary

Provides file based access to supported file systems.

Revision Number
#define EFI_FILE_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_FILE_PROTOCOL {
 UINT64 Revision;
 EFI_FILE_OPEN Open;
 EFI_FILE_CLOSE Close;
 EFI_FILE_DELETE Delete;
 EFI_FILE_READ Read;
 EFI_FILE_WRITE Write;
 EFI_FILE_GET_POSITION GetPosition;
 EFI_FILE_SET_POSITION SetPosition;
 EFI_FILE_GET_INFO GetInfo;
 EFI_FILE_SET_INFO SetInfo;
 EFI_FILE_FLUSH Flush;
} EFI_FILE_PROTOCOL;

Parameters

Revision The version of the EFI_FILE_PROTOCOL interface. The version
specified by this specification is 0x00010000. Future versions are
required to be backward compatible to version 1.0.

Open Opens or creates a new file. See the Open() function description.

Close Closes the current file handle. See the Close() function description.

Delete Deletes a file. See the Delete() function description.

Read Reads bytes from a file. See the Read() function description.

Write Writes bytes to a file. See the Write() function description.

GetPosition Returns the current file position. See the GetPosition() function
description.

SetPosition Sets the current file position. See the SetPosition() function
description.

 January 31, 2006
446 Version 2.0

GetInfo Gets the requested file or volume information. See the GetInfo()
function description.

SetInfo Sets the requested file information. See the SetInfo() function
description.

Flush Flushes all modified data associated with the file to the device. See the
Flush() function description.

Description

The EFI_FILE_PROTOCOL provides file IO access to supported file systems.

An EFI_FILE_PROTOCOL provides access to a file’s or directory’s contents, and is also a
reference to a location in the directory tree of the file system in which the file resides. With any
given file handle, other files may be opened relative to this file’s location, yielding new file
handles.

On requesting the file system protocol on a device, the caller gets the EFI_FILE_PROTOCOL to
the volume. This interface is used to open the root directory of the file system when needed. The
caller must Close() the file handle to the root directory, and any other opened file handles before
exiting. While there are open files on the device, usage of underlying device protocol(s) that the file
system is abstracting must be avoided. For example, when a file system that is layered on a
DISK_IO / EFI_BLOCK_IO_PROTOCOL, direct block access to the device for the blocks that
comprise the file system must be avoided while there are open file handles to the same device.

A file system driver may cache data relating to an open file. A Flush() function is provided that
flushes all dirty data in the file system, relative to the requested file, to the physical medium. If the
underlying device may cache data, the file system must inform the device to flush as well.

January 31, 2006
Version 2.0 447

EFI_FILE_PROTOCOL.Open()

Summary

Opens a new file relative to the source file’s location.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_OPEN) (
 IN EFI_FILE_PROTOCOL *This,
 OUT EFI_FILE_PROTOCOL **NewHandle,
 IN CHAR16 *FileName,
 IN UINT64 OpenMode,
 IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle
to the source location. This would typically be an open handle to a
directory. See the type EFI_FILE_PROTOCOL description.

NewHandle A pointer to the location to return the opened handle for the new file. See
the type EFI_FILE_PROTOCOL description.

FileName The Null-terminated string of the name of the file to be opened. The file
name may contain the following path modifiers: “\”, “.”, and “..”.

OpenMode The mode to open the file. The only valid combinations that the file may
be opened with are: Read, Read/Write, or Create/Read/Write. See
“Related Definitions” below.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these are the
attribute bits for the newly created file. See “Related Definitions” below.

 January 31, 2006
448 Version 2.0

Related Definitions
//***
// Open Modes
//***
#define EFI_FILE_MODE_READ 0x0000000000000001
#define EFI_FILE_MODE_WRITE 0x0000000000000002
#define EFI_FILE_MODE_CREATE 0x8000000000000000

//***
// File Attributes
//***
#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Description

The Open()function opens the file or directory referred to by FileName relative to the location
of This and returns a NewHandle. The FileName may include the following path modifiers:

 “\” If the filename starts with a “\” the relative location is the root directory
that This residues on; otherwise “\” separates name components. Each
name component is opened in turn, and the handle to the last file opened
is returned.

 “.” Opens the current location.

 “..” Opens the parent directory for the current location. If the location is the
root directory the request will return an error, as there is no parent
directory for the root directory.

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location
of FileName does not refer to a directory, then the operation fails. If the file does not exist in the
directory, then a new file is created. If the file already exists in the directory, then the existing file is
opened.

If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be reopened.

January 31, 2006
Version 2.0 449

Status Codes Returned
EFI_SUCCESS The file was opened.

EFI_NOT_FOUND The specified file could not be found on the device.

EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write
when the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.

EFI_VOLUME_FULL The volume is full.

 January 31, 2006
450 Version 2.0

EFI_FILE_PROTOCOL.Close()

Summary

Closes a specified file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_CLOSE) (
 IN EFI_FILE_PROTOCOL *This
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle
to close. See the type EFI_FILE_PROTOCOL description.

Description

The Close() function closes a specified file handle. All “dirty” cached file data is flushed to the
device, and the file is closed. In all cases the handle is closed.

Status Codes Returned
EFI_SUCCESS The file was closed.

January 31, 2006
Version 2.0 451

EFI_FILE_PROTOCOL.Delete()

Summary

Closes and deletes a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_DELETE) (
 IN EFI_FILE_PROTOCOL *This
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the handle to
the file to delete. See the type EFI_FILE_PROTOCOL description.

Description

The Delete() function closes and deletes a file. In all cases the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is returned, but the handle is
still closed.

Status Codes Returned
EFI_SUCCESS The file was closed and deleted, and the handle was

closed.

EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.

 January 31, 2006
452 Version 2.0

EFI_FILE_PROTOCOL.Read()

Summary
Reads data from a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_READ) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle

to read data from. See the type EFI_FILE_PROTOCOL description.

BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.

Buffer The buffer into which the data is read.

Description
The Read() function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the
file’s current position and returns them in Buffer. If the read goes beyond the end of the file, the
read length is truncated to the end of the file. The file’s current position is increased by the number
of bytes returned.

If This is a directory, the function reads the directory entry at the file’s current position and
returns the entry in Buffer. If the Buffer is not large enough to hold the current directory
entry, then EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated.
BufferSize is set to be the size of the buffer needed to read the entry. On success, the current
position is updated to the next directory entry. If there are no more directory entries, the read
returns a zero-length buffer. EFI_FILE_INFO is the structure returned as the directory entry.

January 31, 2006
Version 2.0 453

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to read from a deleted file.

EFI_DEVICE_ERROR On entry, the current file position is beyond the
end of the file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the
current directory entry. BufferSize has been
updated with the size needed to complete the
request.

 January 31, 2006
454 Version 2.0

EFI_FILE_PROTOCOL.Write()

Summary

Writes data to a file.

EFI_STATUS
(EFIAPI *EFI_FILE_WRITE) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle
to write data to. See the type EFI_FILE_PROTOCOL description.

BufferSize On input, the size of the Buffer. On output, the amount of data actually
written. In both cases, the size is measured in bytes.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to the file at the current file position.
The current file position is advanced the actual number of bytes written, which is returned in
BufferSize. Partial writes only occur when there has been a data error during the write attempt
(such as “file space full”). The file is automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to write to a deleted file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

January 31, 2006
Version 2.0 455

EFI_FILE_PROTOCOL.SetPosition()

Summary

Sets a file’s current position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_SET_POSITION) (
 IN EFI_FILE_PROTOCOL *This,
 IN UINT64 Position
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the he file
handle to set the requested position on. See the type
EFI_FILE_PROTOCOL description.

Position The byte position from the start of the file to set.

Description

The SetPosition() function sets the current file position for the handle to the position
supplied. With the exception of seeking to position 0xFFFFFFFFFFFFFFFF, only absolute
positioning is supported, and seeking past the end of the file is allowed (a subsequent write would
grow the file). Seeking to position 0xFFFFFFFFFFFFFFFF causes the current position to be set to
the end of the file.

If This is a directory, the only position that may be set is zero. This has the effect of starting the
read process of the directory entries over.

Status Codes Returned
EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.

EFI_DEVICE_ERROR An attempt was made to set the position of a deleted file.

 January 31, 2006
456 Version 2.0

EFI_FILE_PROTOCOL.GetPosition()

Summary

Returns a file’s current position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_GET_POSITION) (
 IN EFI_FILE_PROTOCOL *This,
 OUT UINT64 *Position
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle
to get the current position on. See the type EFI_FILE_PROTOCOL
description.

Position The address to return the file’s current position value.

Description

The GetPosition() function returns the current file position for the file handle. For directories,
the current file position has no meaning outside of the file system driver and as such the operation
is not supported. An error is returned if This is a directory.

Status Codes Returned
EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

EFI_DEVICE_ERROR An attempt was made to get the position from a deleted file.

January 31, 2006
Version 2.0 457

EFI_FILE_PROTOCOL.GetInfo()

Summary
Returns information about a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_GET_INFO) (
 IN EFI_FILE_PROTOCOL *This,
 IN EFI_GUID *InformationType,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle

the requested information is for. See the type EFI_FILE_PROTOCOL
description.

InformationType The type identifier for the information being requested. Type
EFI_GUID is defined in Section 6.3.1. See the EFI_FILE_INFO and
EFI_FILE_SYSTEM_INFO descriptions for the related GUID
definitions.

BufferSize On input, the size of Buffer. On output, the amount of data returned in
Buffer. In both cases, the size is measured in bytes.

Buffer A pointer to the data buffer to return. The buffer’s type is indicated by
InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested file.
If the file does not support the requested information type, then EFI_UNSUPPORTED is returned.
If the buffer is not large enough to fit the requested structure, EFI_BUFFER_TOO_SMALL is
returned and the BufferSize is set to the size of buffer that is required to make the request.

The information types defined by this specification are required information types that all file
systems must support.

 January 31, 2006
458 Version 2.0

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.
BufferSize has been updated with the size needed to complete the
request.

January 31, 2006
Version 2.0 459

EFI_FILE_PROTOCOL.SetInfo()

Summary

Sets information about a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_SET_INFO) (
 IN EFI_FILE_PROTOCOL *This,
 IN EFI_GUID *InformationType,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle
the information is for. See the type EFI_FILE_PROTOCOL description.

InformationType The type identifier for the information being set. Type EFI_GUID is
defined in Section 6.3.1. See the EFI_FILE_INFO and
EFI_FILE_SYSTEM_INFO descriptions in this section for the related
GUID definitions.

BufferSize The size, in bytes, of Buffer.

Buffer A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description

The SetInfo() function sets information of type InformationType on the requested file.
Because a read-only file can be opened only in read-only mode, an InformationType of
EFI_FILE_INFO_ID can be used with a read-only file because this method is the only one that
can be used to convert a read-only file to a read-write file. In this circumstance, only the
Attribute field of the EFI_FILE_INFO structure may be modified. One or more calls to
SetInfo() to change the Attribute field are permitted before it is closed. The file attributes
will be valid the next time the file is opened with Open().

An InformationType of EFI_FILE_SYSTEM_INFO_ID or
EFI_FILE_SYSTEM_VOLUME_LABEL_ID may not be used on read-only media.

 January 31, 2006
460 Version 2.0

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED InformationType is
EFI_FILE_INFO_ID and the media is read-

only.

EFI_WRITE_PROTECTED InformationType is
EFI_FILE_PROTOCOL_
SYSTEM_INFO_ID and the media is read only.

EFI_WRITE_PROTECTED InformationType is EFI_FILE_
SYSTEM_VOLUME_LABEL_ID and the media

is read-only.
EFI_ACCESS_DENIED An attempt is made to change the name of a file to a

file that is already present.
EFI_ACCESS_DENIED An attempt is being made to change the

EFI_FILE_DIRECTORY Attribute.

EFI_ACCESS_DENIED An attempt is being made to change the size of a
directory.

EFI_ACCESS_DENIED InformationType is
EFI_FILE_INFO_ID and the file was opened

read-only and an attempt is being made to modify a
field other than Attribute.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type
indicated by InformationType.

January 31, 2006
Version 2.0 461

EFI_FILE_PROTOCOL.Flush()

Summary

Flushes all modified data associated with a file to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_FLUSH) (
 IN EFI_FILE_PROTOCOL *This
);

Parameters

This A pointer to the EFI_FILE_PROTOCOL instance that is the file handle
to flush. See the type EFI_FILE_PROTOCOL description.

Description

The Flush() function flushes all modified data associated with a file to a device.

Status Codes Returned
EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

 January 31, 2006
462 Version 2.0

EFI_FILE_INFO

Summary

Provides a GUID and a data structure that can be used with
EFI_FILE_PROTOCOL.SetInfo() and EFI_FILE_PROTOCOL.GetInfo() to set or get
generic file information.

GUID
#define EFI_FILE_INFO_ID \
{0x09576e92,0x6d3f,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Related Definitions
typedef struct {
 UINT64 Size;
 UINT64 FileSize;
 UINT64 PhysicalSize;
 EFI_TIME CreateTime;
 EFI_TIME LastAccessTime;
 EFI_TIME ModificationTime;
 UINT64 Attribute;
 CHAR16 FileName[];
} EFI_FILE_INFO;

//***
// File Attribute Bits
//***

#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

January 31, 2006
Version 2.0 463

Parameters

Size Size of the EFI_FILE_INFO structure, including the Null-
terminated Unicode FileName string.

FileSize The size of the file in bytes.

PhysicalSize The amount of physical space the file consumes on the file
system volume.

CreateTime The time the file was created.

LastAccessTime The time when the file was last accessed.

ModificationTime The time when the file’s contents were last modified.

Attribute The attribute bits for the file. See “Related Definitions” above.

FileName The Null-terminated Unicode name of the file.

Description

The EFI_FILE_INFO data structure supports GetInfo() and SetInfo() requests. In the
case of SetInfo(), the following additional rules apply:

• On directories, the file size is determined by the contents of the directory and cannot be
changed by setting FileSize. On directories, FileSize is ignored during a SetInfo().

• The PhysicalSize is determined by the FileSize and cannot be changed. This value
is ignored during a SetInfo() request.

• The EFI_FILE_DIRECTORY attribute bit cannot be changed. It must match the file’s
actual type.

• A value of zero in CreateTime, LastAccess, or ModificationTime causes the fields
to be ignored (and not updated).

 January 31, 2006
464 Version 2.0

EFI_FILE_SYSTEM_INFO

Summary

Provides a GUID and a data structure that can be used with
EFI_FILE_PROTOCOL.GetInfo() to get information about the system volume, and
EFI_FILE_PROTOCOL.SetInfo() to set the system volume’s volume label.

GUID
#define EFI_FILE_SYSTEM_INFO_ID \
{0x09576e93,0x6d3f,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Related Definitions
typedef struct {
 UINT64 Size;
 BOOLEAN ReadOnly;
 UINT64 VolumeSize;
 UINT64 FreeSpace;
 UINT32 BlockSize;
 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_INFO;

Parameters

Size Size of the EFI_FILE_SYSTEM_INFO structure, including the Null-
terminated Unicode VolumeLabel string.

ReadOnly TRUE if the volume only supports read access.

VolumeSize The number of bytes managed by the file system.

FreeSpace The number of available bytes for use by the file system.

BlockSize The nominal block size by which files are typically grown.

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_INFO data structure is an information structure that can be obtained on
the root directory file handle. The root directory file handle is the file handle first obtained on the
initial call to the HandleProtocol() function to open the file system interface. All of the fields
are read-only except for VolumeLabel. The system volume’s VolumeLabel can be created or
modified by calling EFI_FILE_PROTOCOL.SetInfo() with an updated VolumeLabel
field.

January 31, 2006
Version 2.0 465

EFI_FILE_SYSTEM_VOLUME_LABEL

Summary

Provides a GUID and a data structure that can be used with
EFI_FILE_PROTOCOL.GetInfo() or EFI_FILE_PROTOCOL.SetInfo() to get or set
information about the system’s volume label.

GUID
#define EFI_FILE_SYSTEM_VOLUME_LABEL_ID \
{0xDB47D7D3,0xFE81,0x11d3,0x9A35,0x00,0x90,0x27,0x3F,0xC1,
0x4D}

Related Definitions
typedef struct {
 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_VOLUME_LABEL;

Parameters

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_VOLUME_LABEL data structure is an information structure that can be
obtained on the root directory file handle. The root directory file handle is the file handle first
obtained on the initial call to the HandleProtocol() function to open the file system interface.
The system volume’s VolumeLabel can be created or modified by calling
EFI_FILE_PROTOCOL.SetInfo() with an updated VolumeLabel field.

12.5 Tape Boot Support

12.5.1 Tape I/O Support
This section defines the Tape I/O Protocol and standard tape header format. These enable the
support of booting from tape on UEFI systems.. This protocol is used to abstract the tape drive
operations to support applications written to this specification.

Mission-critical server systems provide reliability and availability. Traditional RISC servers have
long supported native tape boot to perform system recovery tasks. Industry standard servers have
not traditionally provided native tape boot support. Some workarounds have been provided, e.g.,
One-button Disaster Recovery (which makes a tape drive appear as a CD device after a special
start-up sequence; Dual Media support where one boots from CD but recovers from tape; Hard
Drive used for back-up; DVD±RW for backup.

These alternatives have not satisfied customers. They want to migrate native tape boot support to
industry standard servers because most of them do not staff the technical expertise to perform the

 January 31, 2006
466 Version 2.0

human intervention involved, or, they do not perceive the media as reliable or having enough
capacity.

As a result, high-profile customers base their purchases on the promise of the native tape boot
support.

After considering the existing Disk IO Protocol, GPT Disk and File System IO Protocol supporting
the hard disk boot, it was decided that the best approach to support the tape boot is to define a new
Tape IO protocol and a standard tape header format to enable tape-based OS bootloaders to be run
using the EFI Load File Protocol.

12.5.2 Tape I/O Protocol
This section defines the Tape I/O Protocol and its functions. This protocol is used to abstract the
tape drive operations to support applications written to this specification.

January 31, 2006
Version 2.0 467

EFI_TAPE_IO_PROTOCOL

Summary

The EFI_TAPE_IO protocol provides services to control and access a tape device.

GUID
#define EFI_TAPE_IO_PROTOCOL_GUID \
 {0x1e93e633,0xd65a,0x459e,0xab,0x84,0x93,0xd9,0xec,0x26,

0x6d,0x18}

Protocol Interface Structure
typedef struct _EFI_TAPE_IO_PROTOCOL {
 EFI_TAPE_READ TapeRead;
 EFI_TAPE_WRITE TapeWrite;
 EFI_TAPE_REWIND TapeRewind;
 EFI_TAPE_SPACE TapeSpace;
 EFI_TAPE_WRITEFM TapeWriteFM;
 EFI_TAPE_RESET TapeReset;

} EFI_TAPE_IO_PROTOCOL;

Parameters
TapeRead Read a block of data from the tape. See the TapeRead description.

TapeWrite Write a block of data to the tape. See the TapeWrite description.

TapeRewind Rewind the tape. See the TapeRewind description.

TapeSpace Position the tape. See the TapeSpace description.

TapeWriteFM Write filemarks to the tape. See the TapeWriteFM description.

TapeReset Reset the tape device or its parent bus. See the TapeReset
description.

Description

The EFI_TAPE_IO_PROTOCOL provides basic sequential operations for tape devices. These
include read, write, rewind, space, write filemarks and reset functions. Per this specification, a boot
application uses the services of this protocol to load the bootloader image from tape.

No provision is made for controlling or determining media density or compression settings. The
protocol relies on devices to behave normally and select settings appropriate for the media loaded.
No support is included for tape partition support, setmarks or other tapemarks such as End of Data.
Boot tapes are expected to use normal variable or fixed block size formatting and filemarks.

 January 31, 2006
468 Version 2.0

EFI_TAPE_IO_PROTOCOL.TapeRead()

Summary

Reads from the tape.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_READ) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be read into.

Description

This function will read up to BufferSize bytes from media into the buffer pointed to by
Buffer using a timeout of 60 seconds. BufferSize will be updated with the number of bytes
transferred.

Each read operation for a device that operates in variable block size mode reads one media data
block. Unread bytes which do not fit in the buffer will be skipped by the next read operation. The
number of bytes transferred will be limited by the actual media block size. Best practice is for the
buffer size to match the media data block size. When a filemark is encountered in variable block
size mode the read operation will indicate that 0 bytes were transferred and the function will return
an EFI_END_OF_FILE error condition.

In fixed block mode the buffer is expected to be a multiple of the data block size. Each read
operation for a device that operates in fixed block size mode may read multiple media data blocks.
The number of bytes transferred will be limited to an integral number of complete media data
blocks. BufferSize should be evenly divisible by the device’s fixed block size. When a filemark
is encountered in fixed block size mode the read operation will indicate that the number of bytes
transferred is less than the number of blocks that would fit in the provided buffer (possibly 0 bytes
transferred) and the function will return an EFI_END_OF_FILE error condition.

Two consecutive filemarks are normally used to indicate the end of the last file on the media.

The value specified for BufferSize should correspond to the actual block size used on the
media. If necessary, the value for BufferSize may be larger than the actual media block size.

Specifying a BufferSize of 0 is valid but requests the function to provide read-related status
information instead of actual media data transfer. No data will be attempted to be read from the
device however this operation is classified as an access for status handling. The status code returned

January 31, 2006
Version 2.0 469

may be used to determine if a filemark has been encountered by the last read request with a non-
zero size, and to determine if media is loaded and the device is ready for reading. A NULL value for
Buffer is valid when BufferSize is zero.

Status Codes Returned
EFI_SUCCESS Data was successfully transferred from the media.

EFI_END_OF_FILE A filemark was encountered which limited the data
transferred by the read operation or the head is positioned
just after a filemark.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
The transfer was aborted since the current position of the
media may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data
from the media.

EFI_INVALID_PARAMETER A NULL Buffer was specified with a non-zero
BufferSize or the device is operating in fixed block
size mode and the BufferSize was not a multiple of
device’s fixed block size

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not
online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.

 January 31, 2006
470 Version 2.0

EFI_TAPE_IO_PROTOCOL.TapeWrite()

Summary

Write to the tape.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_WRITE) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be written from.

Description

This function will write BufferSize bytes from the buffer pointed to by Buffer to media using
a timeout of 60 seconds.

Each write operation for a device that operates in variable block size mode writes one media data
block of BufferSize bytes.

Each write operation for a device that operates in fixed block size mode writes one or more media
data blocks of the device’s fixed block size. BufferSize must be evenly divisible by the device’s
fixed block size.

Although sequential devices in variable block size mode support a wide variety of block sizes,
many issues may be avoided in I/O software, adapters, hardware and firmware if common block
sizes are used such as: 32768, 16384, 8192, 4096, 2048, 1024, 512, and 80.

BufferSize will be updated with the number of bytes transferred.

When a write operation occurs beyond the logical end of media an EFI_END_OF_MEDIA error
condition will occur. Normally data will be successfully written and BufferSize will be updated
with the number of bytes transferred. Additional write operations will continue to fail in the same
manner. Excessive writing beyond the logical end of media should be avoided since the physical
end of media may be reached.

Specifying a BufferSize of 0 is valid but requests the function to provide write-related status
information instead of actual media data transfer. No data will be attempted to be written to the
device however this operation is classified as an access for status handling. The status code returned
may be used to determine if media is loaded, writable and if the logical end of media point has been
reached. A NULL value for Buffer is valid when BufferSize is zero.

January 31, 2006
Version 2.0 471

Status Codes Returned
EFI_SUCCESS Data was successfully transferred to the media.

EFI_END_OF_MEDIA The logical end of media has been reached. Data may have
been successfully transferred to the media.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
The transfer was aborted since the current position of the
media may be incorrect.

EFI_WRITE_PROTECTED The media in the device is write-protected. The transfer
was aborted since a write cannot be completed.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data
from the media.

EFI_INVALID_PARAMETER A NULL Buffer was specified with a non-zero
BufferSize or the device is operating in fixed block
size mode and BufferSize was not a multiple of
device’s fixed block size.

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not
online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.

 January 31, 2006
472 Version 2.0

EFI_TAPE_IO_PROTOCOL.TapeRewind()

Summary

Rewinds the tape.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_REWIND) (
 IN EFI_TAPE_IO_PROTOCOL *This,
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Description

This function will rewind the media using a timeout of 60 seconds. The function will check if the
media was changed since the last access and reinstall the EFI_TAPE_IO_PROTOCOL interface
for the device handle if needed.

Status Codes Returned
EFI_SUCCESS The media was successfully repositioned.

EFI_NO_MEDIA No media is loaded in the device.

EFI_DEVICE_ERROR A device error occurred while attempting to reposition the
media.

EFI_NOT_READY Repositioning the media failed since the device was not
ready (e.g. not online). The transfer may be retried at a
later time.

EFI_UNSUPPORTED The device does not support this type of media
repositioning.

EFI_TIMEOUT Repositioning of the media did not complete within the
timeout specified.

January 31, 2006
Version 2.0 473

EFI_TAPE_IO_PROTOCOL.TapeSpace()

Summary

Positions the tape.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_SPACE) (
 IN EFI_TAPE_IO_PROTOCOL *This,

INTN Direction,
UINTN Type

);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Direction Direction and number of data blocks or filemarks to space over on
media.

Type Type of mark to space over on media.

Description

This function will position the media using a timeout of 60 seconds.

A positive Direction value will indicate the number of data blocks or filemarks to forward
space the media. A negative Direction value will indicate the number of data blocks or
filemarks to reverse space the media.

The following Type marks are mandatory:

Type of Tape Mark MarkType

BLOCK 0

FILEMARK 1

Space operations position the media past the data block or filemark. Forward space operations
leave media positioned with the tape device head after the data block or filemark. Reverse space
operations leave the media positioned with the tape device head before the data block or filemark.

If beginning of media is reached before a reverse space operation passes the requested number of
data blocks or filemarks an EFI_END_OF_MEDIA error condition will occur. If end of recorded
data or end of physical media is reached before a forward space operation passes the requested
number of data blocks or filemarks an EFI_END_OF_MEDIA error condition will occur. An
EFI_END_OF_MEDIA error condition will not occur due to spacing over data blocks or filemarks
past the logical end of media point used to indicate when write operations should be limited.

 January 31, 2006
474 Version 2.0

Status Codes Returned
EFI_SUCCESS The media was successfully repositioned.

EFI_END_OF_MEDIA Beginning or end of media was reached before the
indicated number of data blocks or filemarks were found.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
Repositioning the media was aborted since the current
position of the media may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to reposition the
media.

EFI_NOT_READY Repositioning the media failed since the device was not
ready (e.g. not online). The transfer may be retried at a
later time.

EFI_UNSUPPORTED The device does not support this type of media
repositioning.

EFI_TIMEOUT Repositioning of the media did not complete within the
timeout specified.

January 31, 2006
Version 2.0 475

EFI_TAPE_IO_PROTOCOL.TapeWriteFM()

Summary

Writes filemarks to the media.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_WRITEFM) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN UINTN Count
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Count Number of filemarks to write to the media.

Description

This function will write filemarks to the tape using a timeout of 60 seconds.

Writing filemarks beyond logical end of tape does not result in an error condition unless physical
end of media is reached.

Status Codes Returned
EFI_SUCCESS Data was successfully transferred from the media.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
The transfer was aborted since the current position of the
media may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data
from the media.

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not
online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.

 January 31, 2006
476 Version 2.0

EFI_TAPE_IO_PROTOCOL.TapeReset()

Summary

Resets the tape device.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_RESET) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

ExtendedVerification Indicates whether the parent bus should also be reset.

Description

This function will reset the tape device. If ExtendedVerification is set to true, the
function will reset the parent bus (e.g., SCSI bus). The function will check if the media was
changed since the last access and reinstall the EFI_TAPE_IO_PROTOCOL interface for the
device handle if needed. Note media needs to be loaded and device online for the reset,
otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The bus and/or device were successfully reset.

EFI_NO_MEDIA No media is loaded in the device.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the bus
and/or device.

EFI_NOT_READY The reset failed since the device and/or bus was not ready.
The reset may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of reset.

EFI_TIMEOUT The reset did not complete within the timeout allowed.

January 31, 2006
Version 2.0 477

12.5.3 Tape Header Format
The boot tape will contain a Boot Tape Header to indicate it is a valid boot tape. The Boot Tape
Header must be located within the first 20 blocks on the tape. The Boot Tape Header must begin
on a block boundary and be contained completely within a block. The Boot Tape Header will have
the following format:

Table 80. Tape Header Formats

Bytes (Dec) Value Purpose

0-7 0x544f4f4220494645 Signature (‘EFI BOOT’ in ASCII)

8-11 1 Revision

12-15 1024 Tape Header Size in bytes

16-19 calculated Tape Header CRC

20-35

{ 0x8befa29a, 0x3511, 0x4cf7,

{ 0xa2, 0xeb, 0x5f, 0xe3, 0x7c,
0x3b, 0xf5, 0x5b } }

EFI Boot Tape GUID

(same for all EFI Boot Tapes, like EFI Disk GUID)

36-51 User Defined

EFI Boot Tape Type GUID

(bootloader / OS specific, like EFI Partition Type GUID)

52-67 User Defined

EFI Boot Tape Unique GUID

(unique for every EFI Boot Tape)

68-71 e.g. 2

File Number of EFI Bootloader relative to the Boot Tape
Header

(first file immediately after the Boot Tape Header is file
number 1, ANSI labels are counted)

72-75 e.g. 0x400 EFI Bootloader Block Size in bytes

76-79 e.g. 0x20000 EFI Bootloader Total Size in bytes

80-119 e.g. HPUX 11.23 OS Version (ASCII)

120-159 e.g. Ignite-UX C.6.2.241 Application Version (ASCII)

160-169 e.g.1993-02-28

EFI Boot Tape creation date (UTC)

(yyyy-mm-dd ASCII)

170-179 e.g. 13:24:55

EFI Boot Tape creation time (UTC)

(hh:mm:ss in ASCII)

180-435

e.g. testsys1

(alt e.g. testsys1.xyzcorp.com) Computer System Name (UTF-8, ref: RFC 2044)

436-555 e.g. Primary Disaster Recovery Boot Tape Title / Comment (UTF-8, ref: RFC 2044)

556-1023 reserved

All numeric values will be specified in binary format. Note that all values are specified in Little
Endian byte ordering.

 January 31, 2006
478 Version 2.0

The Boot Tape Header can also be represented as the following data structure:

struct tape_header {
 UINT64 Signature;
 UINT32 Revision;
 UINT32 BootDescSize;
 UINT32 BootDescCRC;
 EFI_GUID TapeGUID;
 EFI_GUID TapeType;
 EFI_GUID TapeUnique;
 UINT32 BLLocation;
 UINT32 BLBlocksize;
 UINT32 BLFilesize;
 CHAR8 OSVersion[40];
 CHAR8 AppVersion[40];
 CHAR8 CreationDate[10];
 CHAR8 CreationTime[10];
 CHAR8 SystemName[256]; // UTF-8
 CHAR8 TapeTitle[120]; // UTF-8
 CHAR8 pad[468]; // pad to 1024
};

12.6 Disk I/O Protocol

This section defines the Disk I/O protocol. This protocol is used to abstract the block accesses of
the Block I/O protocol to a more general offset-length protocol. The firmware is responsible for
adding this protocol to any Block I/O interface that appears in the system that does not already have
a Disk I/O protocol. File systems and other disk access code utilize the Disk I/O protocol.

EFI_DISK_IO_PROTOCOL

Summary

This protocol is used to abstract Block I/O interfaces.

January 31, 2006
Version 2.0 479

GUID
#define EFI_DISK_IO_PROTOCOL_GUID \

{0xCE345171,0xBA0B,0x11d2,0x8e4F,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Revision Number
#define EFI_DISK_IO_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_DISK_IO_PROTOCOL {
 UINT64 Revision;
 EFI_DISK_READ ReadDisk;
 EFI_DISK_WRITE WriteDisk;
} EFI_DISK_IO_PROTOCOL;

Parameters

Revision The revision to which the disk I/O interface adheres. All future
revisions must be backwards compatible. If a future version is
not backwards compatible, it is not the same GUID.

ReadDisk Reads data from the disk. See the ReadDisk() function
description.

WriteDisk Writes data to the disk. See the WriteDisk() function
description.

 January 31, 2006
480 Version 2.0

Description

The EFI_DISK_IO_PROTOCOL is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block
boundaries or alignment requirements. This is done by copying the data to/from internal buffers as
needed to provide the proper requests to the block I/O device. Outstanding write buffer data is
flushed by using the Flush() function of the EFI_BLOCK_IO_PROTOCOL on the device
handle.

The firmware automatically adds an EFI_DISK_IO_PROTOCOL interface to any
EFI_BLOCK_IO_PROTOCOL interface that is produced. It also adds file system, or logical block
I/O, interfaces to any EFI_DISK_IO_PROTOCOL interface that contains any recognized file
system or logical block I/O devices. The firmware must automatically support the following
required formats:

• The EFI FAT12, FAT16, and FAT32 file system type.
• The legacy master boot record partition block. (The presence of this on any block I/O device

is optional, but if it is present the firmware is responsible for allocating a logical device for
each partition).

• The extended partition record partition block.
• The El Torito logical block devices.

January 31, 2006
Version 2.0 481

EFI_DISK_IO_PROTOCOL.ReadDisk()

Summary

Reads a specified number of bytes from a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_READ) (
 IN EFI_DISK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO_PROTOCOL is defined in the
EFI_DISK_IO_PROTOCOL description.

MediaId ID of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read from.

BufferSize The size in bytes of Buffer. The number of bytes to read from
the device.

Buffer A pointer to the destination buffer for the data. The caller is responsible
for either having implicit or explicit ownership of the buffer.

Description

The ReadDisk() function reads the number of bytes specified by BufferSize from the
device. All the bytes are read, or an error is returned. If there is no medium in the device, the
function returns EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the
device, the function returns EFI_MEDIA_CHANGED.

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid for the
device.

 January 31, 2006
482 Version 2.0

EFI_DISK_IO_PROTOCOL.WriteDisk()

Summary

Writes a specified number of bytes to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_WRITE) (
 IN EFI_DISK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN UNITN BufferSize,
 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_DISK_IO_PROTOCOL is defined in the
EFI_DISK_IO_PROTOCOL protocol description.

MediaId ID of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write.

BufferSize The size in bytes of Buffer. The number of bytes to write to the device.

Buffer A pointer to the buffer containing the data to be written.

Description

The WriteDisk() function writes the number of bytes specified by BufferSize to the device.
All bytes are written, or an error is returned. If there is no medium in the device, the function
returns EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the
function returns EFI_MEDIA_CHANGED.

Status Codes Returned
EFI_SUCCESS The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_DEVICE_ERROR The device reported an error while performing the write operation.

EFI_INVALID_PARAMETER The write request contains device addresses that are not valid for
the device.

January 31, 2006
Version 2.0 483

12.7 Block I/O Protocol

This chapter defines the Block I/O protocol. This protocol is used to abstract mass storage devices
to allow code running in the EFI boot services environment to access them without specific
knowledge of the type of device or controller that manages the device. Functions are defined to
read and write data at a block level from mass storage devices as well as to manage such devices in
the EFI boot services environment.

EFI_BLOCK_IO_PROTOCOL

Summary

This protocol provides control over block devices.

GUID
#define EFI_BLOCK_IO_PROTOCOL_GUID \

{0x964e5b21,0x6459,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Revision Number
#define EFI_BLOCK_IO_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO_PROTOCOL {
 UINT64 Revision;

 EFI_BLOCK_IO_MEDIA *Media;

 EFI_BLOCK_RESET Reset;
 EFI_BLOCK_READ ReadBlocks;
 EFI_BLOCK_WRITE WriteBlocks;
 EFI_BLOCK_FLUSH FlushBlocks;
} EFI_BLOCK_IO_PROTOCOL;

Parameters

Revision The revision to which the block IO interface adheres. All future
revisions must be backwards compatible. If a future version is
not back wards compatible it is not the same GUID.

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device.
Type EFI_BLOCK_IO_MEDIA is defined in “Related
Definitions” below.

Reset Resets the block device hardware. See the Reset() function
description.

ReadBlocks Reads the requested number of blocks from the device. See the
ReadBlocks() function description.

 January 31, 2006
484 Version 2.0

WriteBlocks Writes the requested number of blocks to the device. See the
WriteBlocks() function description.

FlushBlocks Flushes and cache blocks. This function is optional and only
needs to be supported on block devices that cache writes. See
the FlushBlocks() function description.

Related Definitions
//***
// EFI_BLOCK_IO_MEDIA
//***

typedef struct {
 UINT32 MediaId;
 BOOLEAN RemovableMedia;
 BOOLEAN MediaPresent;

 BOOLEAN LogicalPartition;
 BOOLEAN ReadOnly;
 BOOLEAN WriteCaching;

 UINT32 BlockSize;
 UINT32 IoAlign;

 EFI_LBA LastBlock;
} EFI_BLOCK_IO_MEDIA;

//***
// EFI_LBA
//***

typedef UINT64 EFI_LBA;

The following data values in EFI_BLOCK_IO_MEDIA are read-only and are updated by the
code that produces the EFI_BLOCK_IO_PROTOCOL functions:

MediaId The current media ID. If the media changes, this value is
changed.

RemovableMedia TRUE if the media is removable; otherwise, FALSE.

MediaPresent TRUE if there is a media currently present in the device;
otherwise, FALSE. This field shows the media present status as
of the most recent ReadBlocks() or WriteBlocks() call.

LogicalPartition TRUE if the EFI_BLOCK_IO_PROTOCOL was produced to
abstract partition structures on the disk. FALSE if the
BLOCK_IO protocol was produced to abstract the logical blocks
on a hardware device.

January 31, 2006
Version 2.0 485

ReadOnly TRUE if the media is marked read-only otherwise, FALSE. This
field shows the read-only status as of the most recent
WriteBlocks() call.

WriteCaching TRUE if the WriteBlocks() function caches write data.

BlockSize The intrinsic block size of the device. If the media changes, then
this field is updated.

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can
be placed anywhere in memory. Otherwise, IoAlign must be
a power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

LastBlock The last logical block address on the device. If the media
changes, then this field is updated.

Description

The LogicalPartition is TRUE if the device handle is for a partition. For media that have
only one partition, the value will always be TRUE. For media that have multiple partitions, this
value is FALSE for the handle that accesses the entire device. The firmware is responsible for
adding device handles for each partition on such media.

The firmware is responsible for adding an EFI_DISK_IO_PROTOCOL interface to every
EFI_BLOCK_IO_PROTOCOL interface in the system. The EFI_DISK_IO_PROTOCOL
interface allows byte-level access to devices.

 January 31, 2006
486 Version 2.0

EFI_BLOCK_IO_PROTOCOL.Reset()

Summary

Resets the block device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_RESET) (
 IN EFI_BLOCK_IO_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL description.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt
to verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned
EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.

January 31, 2006
Version 2.0 487

EFI_BLOCK_IO_PROTOCOL.ReadBlocks()

Summary

Reads the requested number of blocks from the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_READ) (
 IN EFI_BLOCK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL description.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL description.

BufferSize The size of the Buffer in bytes. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is responsible
for either having implicit or explicit ownership of the buffer.

Description

The ReadBlocks() function reads the requested number of blocks from the device. All the
blocks are read, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

 January 31, 2006
488 Version 2.0

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block
size of the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
on proper alignment.

January 31, 2006
Version 2.0 489

EFI_BLOCK_IO_PROTOCOL.WriteBlocks()

Summary

Writes a specified number of blocks to the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_WRITE) (
 IN EFI_BLOCK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type is defined in the
EFI_BLOCK_IO_PROTOCOL description.

MediaId The media ID that the write request is for.

LBA The starting logical block address to be written. The caller is responsible
for writing to only legitimate locations. Type EFI_LBA is defined in the
EFI_BLOCK_IO_PROTOCOL description.

BufferSize The size in bytes of Buffer. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the source buffer for the data.

Description

The WriteBlocks() function writes the requested number of blocks to the device. All blocks
are written, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

 January 31, 2006
490 Version 2.0

Status Codes Returned
EFI_SUCCESS The data were written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic

block size of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is
not on proper alignment.

January 31, 2006
Version 2.0 491

EFI_BLOCK_IO_PROTOCOL.FlushBlocks()

Summary

Flushes all modified data to a physical block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_FLUSH) (
 IN EFI_BLOCK_IO_PROTOCOL *This
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL protocol description.

Description

The FlushBlocks() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have
cached, and cached data the device may have cached. A flush may cause a read request following
the flush to force a device access.

Status Codes Returned
EFI_SUCCESS All outstanding data were written correctly to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_NO_MEDIA There is no media in the device.

 January 31, 2006
492 Version 2.0

12.8 Unicode Collation Protocol

This section defines the Unicode Collation protocol. This protocol is used to allow code running
in the boot services environment to perform lexical comparison functions on Unicode strings for
given languages.

EFI_UNICODE_COLLATION_ PROTOCOL

Summary

Is used to perform case-insensitive comparisons of Unicode strings.

GUID
#define EFI_UNICODE_COLLATION_PROTOCOL_GUID \

{0x1d85cd7f,0xf43d,0x11d2,0x9a0c,0x00,0x90,0x27,0x3f,0xc1,
0x4d}

Protocol Interface Structure
typedef struct {
 EFI_UNICODE_COLLATION_STRICOLL StriColl;
 EFI_UNICODE_COLLATION_METAIMATCH MetaiMatch;

EFI_UNICODE_COLLATION_STRLWR StrLwr;
EFI_UNICODE_COLLATION_STRUPR StrUpr;
EFI_UNICODE_COLLATION_FATTOSTR FatToStr;
EFI_UNICODE_COLLATION_STRTOFAT StrToFat;

 CHAR8 *SupportedLanguages;
} EFI_UNICODE_COLLATION_PROTOCOL;

Parameters

StriColl Performs a case-insensitive comparison of two Null-terminated
Unicode strings. See the StriColl() function description.

MetaiMatch Performs a case-insensitive comparison between a Null-
terminated Unicode pattern string and a Null-terminated Unicode
string. The pattern string can use the ‘?’ wildcard to match any
character, and the ‘*’ wildcard to match any substring. See the
MetaiMatch() function description.

StrLwr Converts all the Unicode characters in a Null-terminated
Unicode string to lowercase Unicode characters. See the
StrLwr() function description.

StrUpr Converts all the Unicode characters in a Null-terminated
Unicode string to uppercase Unicode characters. See the
StrUpr() function description.

January 31, 2006
Version 2.0 493

FatToStr Converts an 8.3 FAT file name using an OEM character set to a
Null-terminated Unicode string. See the FatToStr() function
description.

StrToFat Converts a Null-terminated Unicode string to legal characters in
a FAT filename using an OEM character set. See the
StrToFat() function description.

SupportedLanguages A Null-terminated ASCII string array that contains one or more
language codes. This array is specified in RFC 3066 format. See
Appendix M for the format of language codes and language code
arrays.

Description

The EFI_UNICODE_COLLATION_PROTOCOL is used to perform case-insensitive comparisons
of Unicode strings.

One or more of the EFI_UNICODE_COLLATION_PROTOCOL instances may be present at one
time. Each protocol instance can support one or more language codes. The language codes that are
supported in the EFI_UNICODE_COLLATION_PROTOCOL is declared in
SupportedLanguages.

The SupportedLanguages is a Null-terminated ASCII string array that contains one or more
supported language codes. This is the list of language codes that this protocol supports. See
Appendix M for the format of language codes and language code arrays.

The main motivation for this protocol is to help support file names in a file system driver. When a
file is opened, a file name needs to be compared to the file names on the disk. In some cases, this
comparison needs to be performed in a case-insensitive manner. In addition, this protocol can be
used to sort files from a directory or to perform a case-insensitive file search.

 January 31, 2006
494 Version 2.0

EFI_UNICODE_COLLATION_PROTOCOL.StriColl()

Summary

Performs a case-insensitive comparison of two Null-terminated Unicode strings.

Prototype
typedef
INTN
(EFIAPI *EFI_UNICODE_COLLATION_STRICOLL) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN CHAR16 *s1,
 IN CHAR16 *s2
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL
instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined in Section 12.8.

s1 A pointer to a Null-terminated Unicode string.

s2 A pointer to a Null-terminated Unicode string.

Description

The StriColl() function performs a case-insensitive comparison of two Null-terminated
Unicode strings.

This function performs a case-insensitive comparison between the Unicode string s1 and the
Unicode string s2 using the rules for the language codes that this protocol instance supports. If s1
is equivalent to s2, then 0 is returned. If s1 is lexically less than s2, then a negative number will
be returned. If s1 is lexically greater than s2, then a positive number will be returned. This
function allows Unicode strings to be compared and sorted.

Status Codes Returned
0 s1 is equivalent to s2.

> 0 s1 is lexically greater than s2.

< 0 s1 is lexically less than s2.

January 31, 2006
Version 2.0 495

EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()

Summary

Performs a case-insensitive comparison of a Null-terminated Unicode pattern string and a Null-
terminated Unicode string.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_METAIMATCH) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN CHAR16 *String,

 IN CHAR16 *Pattern
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL
instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined in Section 12.8.

String A pointer to a Null-terminated Unicode string.

Pattern A pointer to a Null-terminated Unicode pattern string.

Description

The MetaiMatch() function performs a case-insensitive comparison of a Null-terminated
Unicode pattern string and a Null-terminated Unicode string.

This function checks to see if the pattern of characters described by Pattern are found in
String. The pattern check is a case-insensitive comparison using the rules for the language codes
that this protocol instance supports. If the pattern match succeeds, then TRUE is returned.
Otherwise FALSE is returned. The following syntax can be used to build the string Pattern:

* Match 0 or more characters.

? Match any one character.

[<char1><char2>…<charN>] Match any character in the set.

[<char1>-<char2>] Match any character between <char1>
and <char2>.

<char> Match the character <char>.

 January 31, 2006
496 Version 2.0

Following is an example pattern for English:

*.FW Matches all strings that end in “.FW” or “.fw”
or “.Fw” or “.fW.”

[a-z] Match any letter in the alphabet.

 [!@#$%^&*()] Match any one of these symbols.

z Match the character “z” or “Z.”

D?.* Match the character “D” or “d” followed by
any character followed by a “.” followed by
any string.

Status Codes Returned
TRUE Pattern was found in String.

FALSE Pattern was not found in String.

January 31, 2006
Version 2.0 497

EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()

Summary

Converts all the Unicode characters in a Null-terminated Unicode string to lowercase Unicode
characters.

Prototype
typedef
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRLWR) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN OUT CHAR16 *String
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL
instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined in Section 12.8.

String A pointer to a Null-terminated Unicode string.

Description

This functions walks through all the Unicode characters in String, and converts each one to its
lowercase equivalent if it has one. The converted string is returned in String.

 January 31, 2006
498 Version 2.0

EFI_UNICODE_COLLATION_PROTOCOL.StrUpr()

Summary

Converts all the Unicode characters in a Null-terminated Unicode string to uppercase Unicode
characters.

Prototype
typedef
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRUPR) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN OUT CHAR16 *String
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL
instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined in Section 12.8.

String A pointer to a Null-terminated Unicode string.

Description

This functions walks through all the Unicode characters in String, and converts each one to its
uppercase equivalent if it has one. The converted string is returned in String.

January 31, 2006
Version 2.0 499

EFI_UNICODE_COLLATION_PROTOCOL.FatToStr()

Summary

Converts an 8.3 FAT file name in an OEM character set to a Null-terminated Unicode string.

Prototype
typedef
VOID
(EFIAPI *EFI_UNICODE_COLLATION_FATTOSTR) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN UINTN FatSize,
 IN CHAR8 *Fat,
 OUT CHAR16 *String
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL
instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined in Section 12.8.

FatSize The size of the string Fat in bytes.

Fat A pointer to a Null-terminated string that contains an 8.3 file
name using an OEM character set.

String A pointer to a Null-terminated Unicode string. The string must
be allocated in advance to hold FatSize Unicode characters.

Description

This function converts the string specified by Fat with length FatSize to the Null-terminated
Unicode string specified by String. The characters in Fat are from an OEM character set.

 January 31, 2006
500 Version 2.0

EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()

Summary

Converts a Null-terminated Unicode string to legal characters in a FAT filename using an OEM
character set.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_STRTOFAT) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN CHAR16 *String,
 IN UINTN FatSize,
 OUT CHAR8 *Fat
);

Parameters

This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL
instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined in Section 12.8.

String A pointer to a Null-terminated Unicode string.

FatSize The size of the string Fat in bytes.

Fat A pointer to a string that contains the converted version of
String using legal FAT characters from an OEM character set.

Description

This function converts the Unicode characters from String into legal FAT characters in an OEM
character set and stores then in the string Fat. This conversion continues until either FatSize
bytes are stored in Fat, or the end of String is reached. The Unicode characters ‘.’ (period) and
‘ ’ (space) are ignored for this conversion. Unicode characters that map to an illegal FAT character
are substituted with an ‘_’. If no valid mapping from a Unicode character to an OEM character is
available, then it is also substituted with an ‘_’. If any of the Unicode characters conversions are
substituted with a ‘_’, then TRUE is returned. Otherwise FALSE is returned.

Status Codes Returned
TRUE One or more conversions failed and were substituted with ‘_’.

FALSE None of the conversions failed.

January 31, 2006
Version 2.0 501

13
Protocols — PCI Bus Support

13.1 PCI Root Bridge I/O Support

Sections 13.1 and 13.2 describe the PCI Root Bridge I/O Protocol. This protocol provides an I/O
abstraction for a PCI Root Bridge that is produced by a PCI Host Bus Controller. A PCI Host Bus
Controller is a hardware component that allows access to a group of PCI devices that share a
common pool of PCI I/O and PCI Memory resources. This protocol is used by a PCI Bus Driver to
perform PCI Memory, PCI I/O, and PCI Configuration cycles on a PCI Bus. It also provides
services to perform different types of bus mastering DMA on a PCI bus. PCI device drivers will
not directly use this protocol. Instead, they will use the I/O abstraction produced by the PCI Bus
Driver. Only drivers that require direct access to the entire PCI bus should use this protocol. In
particular, this chapter defines functions for managing PCI buses, although other bus types may be
supported in a similar fashion as extensions to this specification.

All the services described in this chapter that generate PCI transactions follow the ordering rules
defined in the PCI Specification. If the processor is performing a combination of PCI transactions
and system memory transactions, then there is no guarantee that the system memory transactions
will be strongly ordered with respect to the PCI transactions. If strong ordering is required, then
processor-specific mechanisms may be required to guarantee strong ordering. Some 64-bit systems
may require the use of memory fences to guarantee ordering.

13.1.1 PCI Root Bridge I/O Overview
The interfaces provided in the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL are for performing
basic operations to memory, I/O, and PCI configuration space. The system provides abstracted
access to basic system resources to allow a driver to have a programmatic method to access these
basic system resources.

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL allows for future innovation of the platform. It
abstracts device-specific code from the system memory map. This allows system designers to make
changes to the system memory map without impacting platform independent code that is
consuming basic system resources.

 January 31, 2006
502 Version 2.0

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 27 shows a platform with n processors (CPUs in the
figure), and a set of core chipset components that produce m host bridges.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1

Figure 27. Host Bus Controllers

Simple systems with one PCI Host Bus Controller will contain a single instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. More complex system may contain multiple
instances of this protocol. It is important to note that there is no relationship between the number of
chipset components in a platform and the number of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instances. This protocol abstracts access to a PCI Root Bridge from a software point of view, and it
is attached to a device handle that represents a PCI Root Bridge. A PCI Root Bridge is a chipset
component(s) that produces a physical PCI Bus. It is also the parent to a set of PCI devices that
share common PCI I/O, PCI Memory, and PCI Prefetchable Memory regions. A PCI Host Bus
Controller is composed of one or more PCI Root Bridges.

January 31, 2006
Version 2.0 503

A PCI Host Bridge and PCI Root Bridge are different than a PCI Segment. A PCI Segment is a
collection of up to 256 PCI busses that share the same PCI Configuration Space. Depending on
the chipset, a single EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL may abstract a portion of a PCI
Segment, or an entire PCI Segment. A PCI Host Bridge may produce one or more PCI Root
Bridges. When a PCI Host Bridge produces multiple PCI Root Bridges, it is possible to have
more than one PCI Segment.

PCI Root Bridge I/O Protocol instances are either produced by the system firmware or by a UEFI
driver. When a PCI Root Bridge I/O Protocol is produced, it is placed on a device handle along
with an EFI Device Path Protocol instance. Figure 28 shows a sample device handle for a PCI Root
Bridge Controller that includes an instance of the EFI_DEVICE_PATH_PROTOCOL and the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Section 13.2 describes the PCI Root Bridge I/O
Protocol in detail, and Section 13.2.1 describes how to build device paths for PCI Root Bridges.
The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL does not abstract access to the chipset-specific
registers that are used to manage a PCI Root Bridge. This functionality is hidden within the system
firmware or the driver that produces the handles that represent the PCI Root Bridges.

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

Figure 28. Device Handle for a PCI Root Bridge Controller

 January 31, 2006
504 Version 2.0

13.1.1.1 Sample PCI Architectures
The PCI Root Bridge I/O Protocol is designed to provide a software abstraction for a wide variety
of PCI architectures including the ones described in this section. This section is not intended to be
an exhaustive list of the PCI architectures that the PCI Root Bridge I/O Protocol can support.
Instead, it is intended to show the flexibility of this protocol to adapt to current and future platform
designs.

Figure 29 shows an example of a PCI Host Bus with one PCI Root Bridge. This PCI Root Bridge
produces one PCI Local Bus that can contain PCI Devices on the motherboard and/or PCI slots.
This would be typical of a desktop system. A higher end desktop system might contain a second
PCI Root Bridge for AGP devices. The firmware for this platform would produce one instance of
the PCI Root Bridge I/O Protocol.

OM13161

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge

Figure 29. Desktop System with One PCI Root Bridge

January 31, 2006
Version 2.0 505

Figure 30 shows an example of a larger server with one PCI Host Bus and four PCI Root Bridges.
The PCI devices attached to the PCI Root Bridges are all part of the same coherency domain. This
means they share a common PCI I/O Space, a common PCI Memory Space, and a common PCI
Prefetchable Memory Space. Each PCI Root Bridge produces one PCI Local Bus that can contain
PCI Devices on the motherboard or PCI slots. The firmware for this platform would produce four
instances of the PCI Root Bridge I/O Protocol.

OM13162

Core Chipset Components

PCI RB PCI RB PCI RB PCI RB

PCI Host Bus

PCI Bus PCI Bus PCI Bus PCI Bus

Figure 30. Server System with Four PCI Root Bridges

 January 31, 2006
506 Version 2.0

Figure 31 shows an example of a server with one PCI Host Bus and two PCI Root Bridges. Each of
these PCI Root Bridges is a different PCI Segment which allows the system to have up to 512 PCI
Buses. A single PCI Segment is limited to 256 PCI Buses. These two segments do not share the
same PCI Configuration Space, but they do share the same PCI I/O, PCI Memory, and PCI
Prefetchable Memory Space. This is why it can be described by a single PCI Host Bus. The
firmware for this platform would produce two instances of the PCI Root Bridge I/O Protocol.

OM13163

PCI Segment 0

Core Chipset Components

PCI Host Bus

PCI RB

PCI Segment 1

PCI RB

Figure 31. Server System with Two PCI Segments

January 31, 2006
Version 2.0 507

Figure 32 shows a server system with two PCI Host Buses and one PCI Root Bridge per PCI Host
Bus. This system supports up to 512 PCI Buses, but the PCI I/O, PCI Memory Space, and PCI
Prefetchable Memory Space are not shared between the two PCI Root Bridges. The firmware for
this platform would produce two instances of the PCI Root Bridge I/O Protocol.

OM13164

PCI Segment 0

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 1

PCI RB

PCI Host Bus 1

Figure 32. Server System with Two PCI Host Buses

 January 31, 2006
508 Version 2.0

13.2 PCI Root Bridge I/O Protocol

This section provides detailed information on the PCI Root Bridge I/O Protocol and its functions.

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Summary

Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that are used to abstract
accesses to PCI controllers behind a PCI Root Bridge Controller.

GUID
#define EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID \
 {0x2F707EBB,0x4A1A,0x11d4,0x9A,0x38,0x00,0x90,0x27,0x3F,

0xC1,0x4D}

Protocol Interface Structure
typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL {
 EFI_HANDLE ParentHandle;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollMem;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollIo;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Mem;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Io;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Pci;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM CopyMem;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP Map;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP Unmap;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH Flush;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES GetAttributes;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES SetAttributes;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION Configuration;
 UINT32 SegmentNumber;
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL;

Parameters
ParentHandle The EFI_HANDLE of the PCI Host Bridge of which this PCI Root

Bridge is a member.

PollMem Polls an address in memory mapped I/O space until an exit condition is
met, or a timeout occurs. See the PollMem() function description.

PollIo Polls an address in I/O space until an exit condition is met, or a timeout
occurs. See the PollIo() function description.

January 31, 2006
Version 2.0 509

Mem.Read Allows reads from memory mapped I/O space. See the Mem.Read()
function description.

Mem.Write Allows writes to memory mapped I/O space. See the Mem.Write()
function description.

Io.Read Allows reads from I/O space. See the Io.Read() function description.

Io.Write Allows writes to I/O space. See the Io.Write() function description.

Pci.Read Allows reads from PCI configuration space. See the Pci.Read()
function description.

Pci.Write Allows writes to PCI configuration space. See the Pci.Write()
function description.

CopyMem Allows one region of PCI root bridge memory space to be copied to
another region of PCI root bridge memory space. See the CopyMem()
function description.

Map Provides the PCI controller–specific addresses needed to access system
memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap() function
description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping. See the
AllocateBuffer() function description.

FreeBuffer Free pages that were allocated with AllocateBuffer(). See the
FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See the
Flush() function description.

GetAttributes Gets the attributes that a PCI root bridge supports setting with
SetAttributes(), and the attributes that a PCI root bridge is
currently using. See the GetAttributes() function description.

SetAttributes Sets attributes for a resource range on a PCI root bridge. See the
SetAttributes() function description.

Configuration Gets the current resource settings for this PCI root bridge. See the
Configuration() function description.

SegmentNumber The segment number that this PCI root bridge resides.

 January 31, 2006
510 Version 2.0

Related Definitions
//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiPciWidthUint8,
 EfiPciWidthUint16,
 EfiPciWidthUint32,
 EfiPciWidthUint64,
 EfiPciWidthFifoUint8,
 EfiPciWidthFifoUint16,
 EfiPciWidthFifoUint32,
 EfiPciWidthFifoUint64,
 EfiPciWidthFillUint8,
 EfiPciWidthFillUint16,
 EfiPciWidthFillUint32,
 EfiPciWidthFillUint64,
 EfiPciWidthMaximum
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH;

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

January 31, 2006
Version 2.0 511

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Read;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Write;
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS;

//***
// EFI PCI Root Bridge I/O Protocol Attribute bits
//***
#define EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
#define EFI_PCI_ATTRIBUTE_ISA_IO 0x0002
#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO 0x0004
#define EFI_PCI_ATTRIBUTE_VGA_MEMORY 0x0008
#define EFI_PCI_ATTRIBUTE_VGA_IO 0x0010
#define EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO 0x0020
#define EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO 0x0040
#define EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080
#define EFI_PCI_ATTRIBUTE_MEMORY_CACHED 0x0800
#define EFI_PCI_ATTRIBUTE_MEMORY_DISABLE 0x1000
#define EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000
#define EFI_PCI_ATTRIBUTE_ISA_IO_16 0x10000
#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000
#define EFI_PCI_ATTRIBUTE_VGA_IO_16 0x40000

EFI_PCI_ATTRIBUTE_ISA_IO_16

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded onto a
PCI root bridge using a 16-bit address decoder on address bits 0..15. Address bits 16..31
must be zero. This bit is used to forward I/O cycles for legacy ISA devices onto a PCI
root bridge. This bit may not be combined with EFI_PCI_ATTRIBUTE_ISA_IO.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O write cycles to the VGA
palette registers onto a PCI root bridge. This bit may not be combined with
EFI_PCI_ATTRIBUTE_VGA_IO or EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO.

 January 31, 2006
512 Version 2.0

EFI_PCI_ATTRIBUTE_VGA_IO_16

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB and 0x3C0–0x3DF
are forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a VGA
controller onto a PCI root bridge. This bit may not be combined with
EFI_PCI_ATTRIBUTE_VGA_IO or EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO.
Because EFI_PCI_ATTRIBUTE_VGA_IO_16 also includes the I/O range described
by EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_ATTRIBUTE_VGA_IO_16 is set.

EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO

 If this bit is set, then the PCI I/O cycles between 0x00000000 and 0x000000FF are
forwarded onto a PCI root bridge. This bit is used to forward I/O cycles for ISA
motherboard devices onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_ISA_IO

 If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded onto a
PCI root bridge using a 10-bit address decoder on address bits 0..9. Address bits 10..15
are not decoded, and address bits 16..31 must be zero. This bit is used to forward I/O
cycles for legacy ISA devices onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded onto a PCI root bridge using a 10 bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O write cycles to the VGA palette registers onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_MEMORY

If this bit is set, then the PCI memory cycles between 0xA0000 and 0xBFFFF are
forwarded onto a PCI root bridge. This bit is used to forward memory cycles for a VGA
frame buffer onto a PCI root bridge.

January 31, 2006
Version 2.0 513

EFI_PCI_ATTRIBUTE_VGA_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB and 0x3C0-0x3DF
are forwarded onto a PCI root bridge using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and the address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a VGA controller onto a PCI root bridge. Since
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO also includes the I/O range described by
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO, the
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO is set.

EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Primary
IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded onto a PCI root bridge using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Secondary
IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a write combining mode. By default, PCI
memory ranges are not accessed in a write combining mode.

EFI_PCI_ATTRIBUTE_MEMORY_CACHED

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a cached mode. By default, PCI memory
ranges are accessed noncached.

EFI_PCI_ATTRIBUTE_MEMORY_DISABLE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is disabled, and can no longer be accessed. By default,
all PCI memory ranges are enabled.

EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE

• This bit may only be used in the Attributes parameter to
AllocateBuffer(). If this bit is set, then the PCI controller that is requesting a
buffer through AllocateBuffer() is capable of producing PCI Dual Address
Cycles, so it is able to access a 64-bit address space. If this bit is not set, then the PCI
controller that is requesting a buffer through AllocateBuffer() is not capable of
producing PCI Dual Address Cycles, so it is only able to access a 32-bit address space.

 January 31, 2006
514 Version 2.0

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION
//***
typedef enum {
 EfiPciOperationBusMasterRead,
 EfiPciOperationBusMasterWrite,
 EfiPciOperationBusMasterCommonBuffer,
 EfiPciOperationBusMasterRead64,
 EfiPciOperationBusMasterWrite64,
 EfiPciOperationBusMasterCommonBuffer64,
 EfiPciOperationMaximum
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION;

EfiPciOperationBusMasterRead

A read operation from system memory by a bus master that is not capable of producing
PCI dual address cycles.

EfiPciOperationBusMasterWrite

A write operation to system memory by a bus master that is not capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both the processor and a bus
master that is not capable of producing PCI dual address cycles. The buffer is coherent
from both the processor’s and the bus master’s point of view.

EfiPciOperationBusMasterRead64

A read operation from system memory by a bus master that is capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterWrite64

A write operation to system memory by a bus master that is capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterCommonBuffer64

Provides both read and write access to system memory by both the processor and a bus
master that is capable of producing PCI dual address cycles. The buffer is coherent from
both the processor’s and the bus master’s point of view.

January 31, 2006
Version 2.0 515

Description

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL provides the basic Memory, I/O, PCI
configuration, and DMA interfaces that are used to abstract accesses to PCI controllers. There is
one EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance for each PCI root bridge in a system.
Embedded systems, desktops, and workstations will typically only have one PCI root bridge. High-
end servers may have multiple PCI root bridges. A device driver that wishes to manage a PCI bus
in a system will have to retrieve the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance that is
associated with the PCI bus to be managed. A device handle for a PCI Root Bridge will minimally
contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance. The PCI bus driver can look at the
EFI_DEVICE_PATH_PROTOCOL instances to determine which
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to use.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three
basic types of bus mastering DMA that is supported by this protocol. These are DMA reads by a
bus master, DMA writes by a bus master, and common buffer DMA. The DMA read and write
operations may need to be broken into smaller chunks. The caller of Map() must pay attention to
the number of bytes that were mapped, and if required, loop until the entire buffer has been
transferred. The following is a list of the different bus mastering DMA operations that are
supported, and the sequence of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL APIs that are used
for each DMA operation type. See “Related Definitions” above for the definition of the different
DMA operation types.

 January 31, 2006
516 Version 2.0

DMA Bus Master Read Operation

• Call Map() for EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the read operation.
• Call Unmap().

DMA Bus Master Write Operation

• Call Map() for EfiPciOperationBusMasterWrite or
EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the write operation.
• Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI

Specification Section 3.2.5.2) .
• Call Flush().

• Call Unmap().

DMA Bus Master Common Buffer Operation

• Call AllocateBuffer() to allocate a common buffer.

• Call Map() for EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• The common buffer can now be accessed equally by the processor and the DMA bus master.
• Call Unmap().

• Call FreeBuffer().

January 31, 2006
Version 2.0 517

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()

Summary

Reads from the memory space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 13.2.

Address The base address of the memory operations. The caller is responsible for
aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask are
ignored when polling the memory address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be of
poorer granularity.

Result Pointer to the last value read from the memory location.

 January 31, 2006
518 Version 2.0

Description

This function provides a standard way to poll a PCI memory location. A PCI memory read
operation is performed at the PCI memory address specified by Address for the width specified
by Width. The result of this PCI memory read operation is stored in Result. This PCI memory
read operation is repeated until either a timeout of Delay 100 ns units has expired, or (Result &
Mask) is equal to Value.

This function will always perform at least one PCI memory read access no matter how small
Delay may be. If Delay is zero, then Result will be returned with a status of EFI_SUCCESS
even if Result does not match the exit criteria. If Delay expires, then EFI_TIMEOUT
is returned.

If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI Root Bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 are not supported.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. However, if the memory mapped I/O region being accessed by this function has
the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 519

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()

Summary

Reads from the I/O space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Width Signifies the width of the I/O operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 13.2.

Address The base address of the I/O operations. The caller is responsible for
aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask are
ignored when polling the I/O address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be of
poorer granularity.

Result Pointer to the last value read from the memory location.

 January 31, 2006
520 Version 2.0

Description

This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is
performed at the PCI I/O address specified by Address for the width specified by Width.
The result of this PCI I/O read operation is stored in Result. This PCI I/O read operation is
repeated until either a timeout of Delay 100 ns units has expired, or (Result & Mask) is equal
to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If
Delay is zero, then Result will be returned with a status of EFI_SUCCESS even if Result
does not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any
alignment and I/O width restrictions that the PCI Root Bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 521

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()

Summary

Enables a PCI driver to access PCI controller registers in the PCI root bridge memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Width Signifies the width of the memory operation. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 13.2.

Address The base address of the memory operation. The caller is responsible for
aligning the Address if required.

Count The number of memory operations to perform. Bytes moved is Width
size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

 January 31, 2006
522 Version 2.0

Description

The Mem.Read(), and Mem.Write() functions enable a driver to access PCI controller
registers in the PCI root bridge memory space.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI Root Bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI read transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 523

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()

Summary

Enables a PCI driver to access PCI controller registers in the PCI root bridge I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 13.2.

Address The base address of the I/O operation. The caller is responsible for
aligning the Address if required.

Count The number of I/O operations to perform. Bytes moved is Width size *
Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

 January 31, 2006
524 Version 2.0

Description

The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in
the PCI root bridge I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and I/O width restrictions that a PCI root bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 525

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()

Summary

Enables a PCI driver to access PCI controller registers in a PCI root bridge’s configuration space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 13.2.

Address The address within the PCI configuration space for the PCI controller.
See Table 81 for the format of Address.

Count The number of PCI configuration operations to perform. Bytes moved is
Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

 January 31, 2006
526 Version 2.0

Description

The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration
registers for a PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for
any alignment and PCI configuration width issues that a PCI Root Bridge on a platform might
require. For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Table 81. PCI Configuration Address

Mnemonic

Byte
Offset

Byte
Length

Description

Register 0 1 The register number on the PCI Function.

Function 1 1 The PCI Function number on the PCI Device.

Device 2 1 The PCI Device number on the PCI Bus.

Bus 3 1 The PCI Bus number.

ExtendedRegister 4 4 The register number on the PCI Function. If this field is zero,
then the Register field is used for the register number. If this
field is nonzero, then the Register field is ignored, and the
ExtendedRegister field is used for the register number.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 527

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()

Summary

Enables a PCI driver to copy one region of PCI root bridge memory space to another region of PCI
root bridge memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 DestAddress,
 IN UINT64 SrcAddress,
 IN UINTN Count
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is defined in
Section 13.2.

DestAddress The destination address of the memory operation. The caller is
responsible for aligning the DestAddress if required.

SrcAddress The source address of the memory operation. The caller is responsible
for aligning the SrcAddress if required.

Count The number of memory operations to perform. Bytes moved is Width
size * Count, starting at DestAddress and SrcAddress.

 January 31, 2006
528 Version 2.0

Description

The CopyMem() function enables a PCI driver to copy one region of PCI root bridge memory
space to another region of PCI root bridge memory space. This is especially useful for video scroll
operation on a memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI root bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then Count read/write transactions are performed to move the contents
of the SrcAddress buffer to the DestAddress buffer. The implementation must be reentrant,
and it must handle overlapping SrcAddress and DestAddress buffers. This means that the
implementation of CopyMem() must choose the correct direction of the copy operation based on
the type of overlap that exists between the SrcAddress and DestAddress buffers. If either
the SrcAddress buffer or the DestAddress buffer crosses the top of the processor’s address
space, then the result of the copy operation is unpredictable.

The contents of the DestAddress buffer on exit from this service must match the contents of the
SrcAddress buffer on entry to this service. Due to potential overlaps, the contents of the
SrcAddress buffer may be modified by this service. The following rules can be used to
guarantee the correct behavior:

1. If DestAddress > SrcAddress and DestAddress < (SrcAddress + Width size *
Count), then the data should be copied from the SrcAddress buffer to the DestAddress
buffer starting from the end of buffers and working toward the beginning of the buffers.

2. Otherwise, the data should be copied from the SrcAddress buffer to the DestAddress
buffer starting from the beginning of the buffers and working toward the end of the buffers.

All the PCI transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The data was copied from one memory region to another memory region.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 529

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()

Summary

Provides the PCI controller–specific addresses required to access system memory from a
DMA bus master.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
 IN VOID *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Operation Indicates if the bus master is going to read or write to system memory.
Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION is
defined in Section 13.2.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of bytes
that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to use to
access the system memory’s HostAddress. Type
EFI_PHYSICAL_ADDRESS is defined in Section 6.2, AllocatePages ().
This address cannot be used by the processor to access the contents of
the buffer specified by HostAddress.

Mapping The value to pass to Unmap() when the bus master DMA operation is
complete.

 January 31, 2006
530 Version 2.0

Description

The Map() function provides the PCI controller specific addresses needed to access system
memory. This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such
mappings must be freed with Unmap() when complete. If the bus master access is a single read
or single write data transfer, then EfiPciOperationBusMasterRead,
EfiPciOperationBusMasterRead64, EfiPciOperationBusMasterWrite, or
EfiPciOperationBusMasterWrite64 is used and the range is unmapped to complete the
operation. If performing an EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64 operation, all the data must be present in system
memory before Map() is performed. Similarly, if performing an EfiPciOperation-
BusMasterWrite or EfiPciOperationBusMasterWrite64 the data cannot be
properly accessed in system memory until Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciOperation-
BusMasterCommonBuffer or EfiPciOperationBusMasterCommonBuffer64.
However, only memory allocated via the AllocateBuffer() interface can be mapped for
this type of operation.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the
requested amount. In this case, the DMA operation will have to be broken up into smaller
chunks. The Map() function will map as much of the DMA operation as it can at one time. The
caller may have to loop on Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned
EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 531

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN VOID *Mapping
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EfiPciOperationBusMasterWrite or
EfiPciOperationBusMasterWrite64, the data is committed to the target system memory.
Any resources used for the mapping are freed.

Status Codes Returned
EFI_SUCCESS The range was unmapped.

EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().

EFI_DEVICE_ERROR The data was not committed to the target system memory.

 January 31, 2006
532 Version 2.0

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()

Summary

Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT VOID **HostAddress,
 IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.1.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is defined
in Section 6.2, Allocate Pages().

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

January 31, 2006
Version 2.0 533

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be used
with this function. If any other bits are set, then
EFI_UNSUPPORTED is returned. This function may choose to
ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide a
hint to the implementation that may improve the performance of
the calling driver. The implementation may choose any default for
the memory attributes including write combining, cached, both, or
neither as long as the allocated buffer can be seen equally by both
the processor and the PCI bus master.

Description

The AllocateBuffer() function allocates pages that are suitable for an
EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping. This means that the buffer
allocated by this function must support simultaneous access by both the processor and a PCI Bus
Master. The device address that the PCI Bus Master uses to access the buffer can be retrieved with
a call to Map().

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is set, then when
the buffer allocated by this function is mapped with a call to Map(), the device address that is
returned by Map() must be within the 64-bit device address space of the PCI Bus Master.

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is clear, then
when the buffer allocated by this function is mapped with a call to Map(), the device address that
is returned by Map() must be within the 32-bit device address space of the PCI Bus Master.

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
DUAL_ADDRESS_CYCLE.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

 January 31, 2006
534 Version 2.0

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()

Summary

Frees memory that was allocated with AllocateBuffer().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN UINTN Pages,
 IN VOID *HostAddress
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description

The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
was not allocated with AllocateBuffer().

January 31, 2006
Version 2.0 535

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()

Summary

Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.1.

Description

The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller
specific action must be taken to guarantee that the posted write transactions have been flushed from
the PCI controller and from all the PCI bridges into the PCI host bridge. This is typically done with
a PCI read transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the
processor’s view of system memory are guaranteed to be coherent. If the PCI posted write
transactions cannot be flushed from the PCI host bridge, then the PCI bus master and processor are
not guaranteed to have a coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host

bridge to system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI
host bridge due to a hardware error.

 January 31, 2006
536 Version 2.0

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()

Summary

Gets the attributes that a PCI root bridge supports setting with SetAttributes(), and the
attributes that a PCI root bridge is currently using.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 OUT UINT64 *Supports OPTIONAL,
 OUT UINT64 *Attributes OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Supports A pointer to the mask of attributes that this PCI root bridge supports
setting with SetAttributes(). The available attributes are listed in
Section 13.2. This is an optional parameter that may be NULL.

Attributes A pointer to the mask of attributes that this PCI root bridge is currently
using. The available attributes are listed in Section 13.2. This is an
optional parameter that may be NULL.

Description

The GetAttributes() function returns the mask of attributes that this PCI root bridge supports
and the mask of attributes that the PCI root bridge is currently using. If Supports is not NULL,
then Supports is set to the mask of attributes that the PCI root bridge supports. If Attributes
is not NULL, then Attributes is set to the mask of attributes that the PCI root bridge is currently
using. If both Supports and Attributes are NULL, then EFI_INVALID_PARAMETER is
returned. Otherwise, EFI_SUCCESS is returned.

If a bit is set in Supports, then the PCI root bridge supports this attribute type, and a call can be
made to SetAttributes() using that attribute type. If a bit is set in Attributes, then the
PCI root bridge is currently using that attribute type. Since a PCI host bus may be composed of
more than one PCI root bridge, different Attributes values may be returned by different PCI
root bridges.

January 31, 2006
Version 2.0 537

Status Codes Returned
EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI root

bridge supports is returned in Supports. If Attributes is
not NULL, then the attributes that the PCI root bridge is currently
using is returned in Attributes.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.

 January 31, 2006
538 Version 2.0

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()

Summary

Sets attributes for a resource range on a PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN UINT64 Attributes,
 IN OUT UINT64 *ResourceBase OPTIONAL,
 IN OUT UINT64 *ResourceLength OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Attributes The mask of attributes to set. If the attribute bit
MEMORY_WRITE_COMBINE, MEMORY_CACHED, or
MEMORY_DISABLE is set, then the resource range is specified by
ResourceBase and ResourceLength. If
MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
MEMORY_DISABLE are not set, then ResourceBase and
ResourceLength are ignored, and may be NULL. The available
attributes are listed in Section 13.2.

ResourceBase A pointer to the base address of the resource range to be modified by the
attributes specified by Attributes. On return, *ResourceBase
will be set the actual base address of the resource range. Not all
resources can be set to a byte boundary, so the actual base address may
differ from the one passed in by the caller. This parameter is only used if
the MEMORY_WRITE_COMBINE bit, the MEMORY_CACHED bit, or the
MEMORY_DISABLE bit of Attributes is set. Otherwise, it is
ignored, and may be NULL.

ResourceLength A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return, *ResourceLength
will be set the actual length of the resource range. Not all resources can
be set to a byte boundary, so the actual length may differ from the one
passed in by the caller. This parameter is only used if the
MEMORY_WRITE_COMBINE bit, the MEMORY_CACHED bit, or the
MEMORY_DISABLE bit of Attributes is set. Otherwise, it is
ignored, and may be NULL.

January 31, 2006
Version 2.0 539

Description

The SetAttributes() function sets the attributes specified in Attributes for the PCI root
bridge on the resource range specified by ResourceBase and ResourceLength. Since the
granularity of setting these attributes may vary from resource type to resource type, and from
platform to platform, the actual resource range and the one passed in by the caller may differ. As a
result, this function may set the attributes specified by Attributes on a larger resource range
than the caller requested. The actual range is returned in ResourceBase and
ResourceLength. The caller is responsible for verifying that the actual range for which the
attributes were set is acceptable.

If the attributes are set on the PCI root bridge, then the actual resource range is returned in
ResourceBase and ResourceLength, and EFI_SUCCESS is returned.

If the attributes specified by Attributes are not supported by the PCI root bridge, then
EFI_UNSUPPORTED is returned. The set of supported attributes for a PCI root bridge can be
found by calling GetAttributes().

If either ResourceBase or ResourceLength are NULL, and a resource range is required for
the attributes specified in Attributes, then EFI_INVALID_PARAMETER is returned.

If more than one resource range is required for the set of attributes specified by Attributes,
then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned
EFI_SUCCESS The set of attributes specified by Attributes for the resource

range specified by ResourceBase and ResourceLength

were set on the PCI root bridge, and the actual resource range is
returned in ResuourceBase and ResourceLength.

EFI_UNSUPPORTED A bit is set in Attributes that is not supported by the PCI Root

Bridge. The supported attribute bits are reported by
GetAttributes().

EFI_INVALID_PARAMETER More than one attribute bit is set in Attributes that requires a
resource range.

EFI_INVALID_PARAMETER A resource range is required, and ResourceBase is NULL.

EFI_INVALID_PARAMETER A resource range is required, and ResourceLength is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the
resource range specified by BaseAddress and Length.

 January 31, 2006
540 Version 2.0

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

Summary

Retrieves the current resource settings of this PCI root bridge in the form of a set of ACPI 2.0
resource descriptors.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 OUT VOID **Resources
);

Parameters

This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in Section 13.2.

Resources A pointer to the ACPI 2.0 resource descriptors that describe the current
configuration of this PCI root bridge. The storage for the ACPI 2.0
resource descriptors is allocated by this function. The caller must treat
the return buffer as read-only data, and the buffer must not be freed by
the caller. See “Related Definitions” for the ACPI 2.0 resource
descriptors that may be used.

Related Definitions

There are only two resource descriptor types from the ACPI Specification that may be used to
describe the current resources allocated to a PCI root bridge. These are the QWORD Address
Space Descriptor (ACPI 2.0 Section 6.4.3.5.1), and the End Tag (ACPI 2.0 Section 6.4.2.8). The
QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for dynamic
or fixed resources. The configuration of a PCI root bridge is described with one or more QWORD
Address Space Descriptors followed by an End Tag. Table 23 and Table 83 contains these two
descriptor types. Please see the ACPI Specification for details on the field values.

January 31, 2006
Version 2.0 541

Table 82. ACPI 2.0 QWORD Address Space Descriptor

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type

 0 – Memory Range

 1 – I/O Range

 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset

0x26 0x08 Address Length

Table 83. ACPI 2.0 End Tag

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.

Description

The Configuration() function retrieves a set of ACPI 2.0 resource descriptors that contains
the current configuration of this PCI root bridge. If the current configuration can be retrieved, then
it is returned in Resources and EFI_SUCCESS is returned. See “Related Definitions” below for
the resource descriptor types that are supported by this function. If the current configuration cannot
be retrieved, then EFI_UNSUPPORTED is returned.

Status Codes Returned
EFI_SUCCESS The current configuration of this PCI root bridge was returned in

Resources.

EFI_UNSUPPORTED The current configuration of this PCI root bridge could not be
retrieved.

 January 31, 2006
542 Version 2.0

13.2.1 PCI Root Bridge Device Paths
An EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must be installed on a handle for its services to
be available to drivers. In addition to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Chapter 9 for a
detailed description of EFI_DEVICE_PATH_PROTOCOL.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the
bus hierarchy in the system, additional device path nodes may precede this ACPI Device Path
Node. A desktop system will typically contain only one PCI Root Bridge, so there would be one
handle with a EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an
EFI_DEVICE_PATH_PROTOCOL A server system may contain multiple PCI Root Bridges, so
it would contain a handle for each PCI Root Bridge present, and on each of those handles would be
an EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH_PROTOCOL. In
all cases, the contents of the ACPI Device Path Nodes for PCI Root Bridges must match the
information present in the ACPI tables for that system.

Table 84 shows an example device path for a PCI Root Bridge in a desktop system. Today, a
desktop system typically contains one PCI Root Bridge. This device path consists of an ACPI
Device Path Node, and a Device Path End Structure. The _HID and _UID must match the ACPI
table description of the PCI Root Bridge. For a system with only one PCI Root Bridge, the _UID
value is usually 0x0000. The shorthand notation for this device path is ACPI(PNP0A03,0).

Table 84. PCI Root Bridge Device Path for a Desktop System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 543

Table 85 through Table 88 show example device paths for the PCI Root Bridges in a server system
with four PCI Root Bridges. Each of these device paths consists of an ACPI Device Path Node,
and a Device Path End Structure. The _HID and _UID must match the ACPI table description of
the PCI Root Bridges. The only difference between each of these device paths is the _UID field.
The shorthand notation for these four device paths is ACPI(PNP0A03,0), ACPI(PNP0A03,1),
ACPI(PNP0A03,2), and ACPI(PNP0A03,3).

Table 85. PCI Root Bridge Device Path for Bridge #0 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Table 86. PCI Root Bridge Device Path for Bridge #1 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0001 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
544 Version 2.0

Table 87. PCI Root Bridge Device Path for Bridge #2 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0002 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Table 88. PCI Root Bridge Device Path for Bridge #3 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0003 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 545

Table 89 shows an example device path for a PCI Root Bridge using an Expanded ACPI Device
Path. This device path consists of an Expanded ACPI Device Path Node, and a Device Path End
Structure. The _UID and _CID fields must match the ACPI table description of the PCI Root
Bridge. For a system with only one PCI Root Bridge, the _UID value is usually 0x0000. The
shorthand notation for this device path is ACPI(12345678,0,PNP0A03).

Table 89. PCI Root Bridge Device Path Using Expanded ACPI Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x02 Sub type – Expanded ACPI Device Path

0x02 0x02 0x10 Length – 0x10 bytes

0x04 0x04 0x1234,

0x5678
_HID-device specific

0x08 0x04 0x0000 _UID

0x0C 0x04 0x41D0,

0x0A03

_CID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is
in the low order bytes.

0x10 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x11 0x01 0xFF Sub type – End of Entire Device Path

0x12 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
546 Version 2.0

13.3 PCI Driver Model

These sections (Sections 13.3 and 13.4) describe the PCI Driver Model. This includes the behavior
of PCI Bus Drivers, the behavior of a PCI Device Drivers, and a detailed description of the PCI I/O
Protocol. The PCI Bus Driver manages PCI buses present in a system, and PCI Device Drivers
manage PCI controllers present on PCI buses. The PCI Device Drivers produce an I/O abstraction
that can be used to boot an EFI compliant operating system.

This document provides enough material to implement a PCI Bus Driver, and the tools required to
design and implement a PCI Device Drivers. It does not provide any information on specific PCI
devices.

The material contained in this section is designed to extend this specification and the UEFI Driver
Model in a way that supports PCI device drivers and PCI bus drivers. These extensions are
provided in the form of PCI-specific protocols. This section provides the information required to
implement a PCI Bus Driver in system firmware. The section also contains the information
required by driver writers to design and implement PCI Device Drivers that a platform may need to
boot a UEFI-compliant OS.

The PCI Driver Model described here is intended to be a foundation on which a PCI Bus Driver and
a wide variety of PCI Device Drivers can be created.

13.3.1 PCI Driver Initialization
There are very few differences between a PCI Bus Driver and PCI Device Driver in the entry point
of the driver. The file for a driver image must be loaded from some type of media. This could
include ROM, FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once
a driver image has been found, it can be loaded into system memory with the Boot Service
LoadImage(). LoadImage() loads a PE/COFF formatted image into system memory. A
handle is created for the driver, and a Loaded Image Protocol instance is placed on that handle. A
handle that contains a Loaded Image Protocol instance is called an Image Handle. At this point, the
driver has not been started. It is just sitting in memory waiting to be started. Figure 33 shows the
state of an image handle for a driver after LoadImage() has been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

OM13148

Figure 33. Image Handle

January 31, 2006
Version 2.0 547

After a driver has been loaded with the Boot Service LoadImage(), it must be started with the
Boot Service StartImage(). This is true of all types of applications and drivers that can be
loaded and started on an UEFI compliant system. The entry point for a driver that follows the
UEFI Driver Model must follow some strict rules. First, it is not allowed to touch any hardware.
Instead, it is only allowed to install protocol instances onto its own Image Handle. A driver that
follows the UEFI Driver Model is required to install an instance of the Driver Binding Protocol
onto its own Image Handle. It may optionally install the Driver Configuration Protocol, the Driver
Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes to be
unloadable it may optionally update the Loaded Image Protocol to provide its own Unload()
function. Finally, if a driver needs to perform any special operations when the Boot Service
ExitBootServices() is called, it may optionally create an event with a notification function
that is triggered when the Boot Service ExitBootServices() is called. An Image Handle that
contains a Driver Binding Protocol instance is known as a Driver Image Handle. Figure 34 shows
a possible configuration for the Image Handle from Figure 33 after the Boot Service
StartImage() has been called.

OM13149

Image Handle

Optional

Optional

Optional

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_CONFIGURATION_PROTOCOL

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

EFI_COMPONENT_NAME_PROTOCOL

Figure 34. PCI Driver Image Handle

 January 31, 2006
548 Version 2.0

13.3.1.1 Driver Configuration Protocol
If a PCI Bus Driver or a PCI Device Driver requires configuration options, then an
EFI_DRIVER_CONFIGURATION_PROTOCOL must be installed on the image handle in the entry
point for the driver. This protocol contains functions set the configuration information for a
controller, validate the current configuration data, and force the configuration data to its default
settings. The EFI_DRIVER_CONFIGURATION_PROTOCOL must use the standard console
devices from the EFI_SYSTEM_TABLE to interact with the user. The functions of this protocol
will be invoked by a platform management utility. Please see the EFI Driver Model Specification
for details on the EFI_DRIVER_CONFIGURATION_PROTOCOL. Neither this specification, nor
the EFI Driver Model Specification specifies where configuration data is stored. It is up to the
driver writer to decide the appropriate location for configuration data. Some possible locations
include a FLASH device or EEPROM device that is attached to the PCI controller, or environment
variables accessed through the Runtime Services GetVariable() and SetVariable().

13.3.1.2 Driver Diagnostics Protocol
If a PCI Bus Driver or a PCI Device Driver requires diagnostics, then an
EFI_DRIVER_DIAGNOSTICS_PROTOCOL must be installed on the image handle in the entry
point for the driver. This protocol contains functions to perform diagnostics on a controller. The
EFI_DRIVER_DIAGNOSTICS_PROTOCOL is not allowed to interact with the user. Instead, it
must return status information through a buffer. The functions of this protocol will be invoked by a
platform management utility. Please see the EFI Driver Model Specification for details on the
EFI_DRIVER_DIAGNOSTICS_PROTOCOL.

13.3.1.3 Component Name Protocol
Both a PCI Bus Driver and a PCI Device Driver are able to produce user readable names for the
PCI drivers and/or the set of PCI controllers that the PCI drivers are managing. This is
accomplished by installing an instance of the EFI_COMPONENT_NAME_PROTOCOL on the image
handle of the driver. This protocol can produce driver and controller names in the form of a
Unicode string in one of several languages. This protocol can be used by a platform management
utility to display user readable names for the drivers and controllers present in a system. Please see
the EFI Driver Model Specification for details on the EFI_COMPONENT_NAME_PROTOCOL.

January 31, 2006
Version 2.0 549

13.3.2 PCI Bus Drivers
A PCI Bus Driver manages PCI Host Bus Controllers that can contain one or more PCI Root
Bridges. Figure 35 shows an example of a desktop system that has one PCI Host Bus Controller
with one PCI Root Bridge.

OM13165

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge

Figure 35. PCI Host Bus Controller

The PCI Host Bus Controller in Figure 35 is abstracted in software with the PCI Root Bridge I/O
Protocol. A PCI Bus Driver will manage handles that contain this protocol. Figure 36 shows an
example device handle for a PCI Host Bus Controller. It contains a Device Path Protocol instance
and a PCI Root Bridge I/O Protocol Instance.

OM15221

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Figure 36. Device Handle for a PCI Host Bus Controller

 January 31, 2006
550 Version 2.0

13.3.2.1 Driver Binding Protocol for PCI Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the PCI Bus Driver can manage a device handle. A PCI
Bus Driver can only manage device handles that contain the Device Path Protocol and the PCI Root
Bridge I/O Protocol, so a PCI Bus Driver must look for these two protocols on the device handle
that is being tested.

The Start() function tells the PCI Bus Driver to start managing a device handle. The device
handle should support the protocols shown in Figure 36. The PCI Root Bridge I/O Protocols
provides access to the PCI I/O, PCI Memory, PCI Prefetchable Memory, and PCI DMA functions.
The PCI Controllers behind a PCI Root Bridge may exist on one or more PCI Buses. The standard
mechanism for expanding the number of PCI Buses on a single PCI Root Bridge is to use PCI to
PCI Bridges. Once a PCI Enumerator configures these bridges, they are invisible to software. As a
result, the PCI Bus Driver flattens the PCI Bus hierarchy when it starts managing a device handle
that represents a PCI Host Controller. Figure 37 shows the physical tree structure for a set of PCI
Device denoted by A, B, C, D, and E. Device A and C are PCI to PCI Bridges.

OM13166

PCI Bus 1

PCI ROOT BRIDGE

A - PPB B C - PPB

D

PCI Bus 2

E

Figure 37. Physical PCI Bus Structure

Figure 38 shows the tree structure generated by a PCI Bus Driver before and after Start() is
called. This is a logical view of set of PCI controller, and not a physical view. The physical tree is
flattened, so any PCI to PCI bridge devices are invisible. In this example, the PCI Bus Driver finds
the five child PCI Controllers on the PCI Bus from Figure 37. A device handle is created for every
PCI Controller including all the PCI to PCI Bridges. The arrow with the dashed line coming into
the PCI Host Bus Controller represents a link to the PCI Host Bus Controller's parent. If the PCI
Host Bus Controller is a Root Bus Controller, then it will not have a parent. The PCI Driver Model
does not require that a PCI Host Bus Controller be a Root Bus Controller. A PCI Host Bus

January 31, 2006
Version 2.0 551

Controller can be present at any location in the tree, and the PCI Bus Driver should be able to
manage the PCI Host Bus Controller.

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E

Figure 38. Connecting a PCI Bus Driver

The PCI Bus Driver has the option of creating all of its children in one call to Start(), or
spreading it across several calls to Start(). In general, if it is possible to design a bus driver to
create one child at a time, it should do so to support the rapid boot capability in the UEFI Driver
Model. Each of the child device handles created in Start() must contain a Device Path Protocol
instance, a PCI I/O protocol instance, and optionally a Bus Specific Driver Override Protocol
instance. The PCI I/O Protocol is described in Section 13.4. The format of device paths for PCI
Controllers is described in Section 2.6, and details on the Bus Specific Driver Override Protocol
can be found in the EFI Driver Model Specification. Figure 39 shows an example child device
handle that is created by a PCI Bus Driver for a PCI Controller.

OM13167

PCI Controller Device Handle

Optional

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Figure 39. Child Handle Created by a PCI Bus Driver

 January 31, 2006
552 Version 2.0

A PCI Bus Driver must perform several steps to manage a PCI Host Bus Controller, as follows:

• Initialize the PCI Host Bus Controller.
• If the PCI buses have not been initialized by a previous agent, perform PCI Enumeration on all

the PCI Root Bridges that the PCI Host Bus Controller contains. This involves assigning a PCI
bus number, allocating PCI I/O resources, PCI Memory resources, and PCI Prefetchable
Memory resources.

• Discover all the PCI Controllers on all the PCI Root Bridges. If a PCI Controller is a PCI to
PCI Bridge, then the I/O, Memory, and Bus Master bits in the Control register of the PCI
Configuration Header should be placed in the enabled state. The PCI Bus Driver should not
modify the contents of the Control register for any other PCI Controllers. It is a PCI Device
Driver’s responsibility to enable the I/O, Memory, and Bus Master bits of the Control register
as required with a call to the Attributes() service when the PCI Device Driver is started.
A similar call to the Attributes() service should be made when the PCI Device Driver is
stopped to disable the I/O, Memory, and Bus Master bits of the Control register.

• Create a device handle for each PCI Controller found. If a request is being made to start only
one PCI Controller, then only create one device handle.

• Install a Device Path Protocol instance and a PCI I/O Protocol instance on the device handle
created for each PCI Controller.

• If the PCI Controller has a PCI Option ROM, then allocate a memory buffer that is the same
size as the PCI Option ROM, and copy the PCI Option ROM contents to the memory buffer.

• If the PCI Option ROM contains any UEFI drivers, then attach a Bus Specific Driver Override
Protocol to the device handle of the PCI Controller that is associated with the PCI Option
ROM.

The Stop() function tells the PCI Bus Driver to stop managing a PCI Host Bus Controller. The
Stop() function can destroy one or more of the device handles that were created on a previous
call to Start(). If all of the child device handles have been destroyed, then Stop() will place
the PCI Host Bus Controller in a quiescent state. The functionality of Stop() mirrors Start(),
as follows:

1. Complete all outstanding transactions to the PCI Host Bus Controller.
2. If the PCI Host Bus Controller is being stopped, then place it in a quiescent state.
3. If one or more child handles are being destroyed, then:

a. Uninstall all the protocols from the device handles for the PCI Controllers found
in Start().

b. Free any memory buffers allocated for PCI Option ROMs.
c. Destroy the device handles for the PCI controllers created in Start().

January 31, 2006
Version 2.0 553

13.3.2.2 PCI Enumeration
The PCI Enumeration process is a platform-specific operation that depends on the properties of the
chipset that produces the PCI bus. As a result, details on PCI Enumeration are outside the scope of
this document. A PCI Bus Driver requires that PCI Enumeration has been performed, so it either
needs to have been done prior to the PCI Bus Driver starting, or it must be part of the PCI Bus
Driver’s implementation.

13.3.3 PCI Device Drivers
PCI Device Drivers manage PCI Controllers. Device handles for PCI Controllers are created by
PCI Bus Drivers. A PCI Device Driver is not allowed to create any new device handles. Instead, it
attaches protocol instance to the device handle of the PCI Controller. These protocol instances are
I/O abstractions that allow the PCI Controller to be used in the preboot environment. The most
common I/O abstractions are used to boot an EFI compliant OS.

13.3.3.1 Driver Binding Protocol for PCI Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the PCI Device Driver can manage a device handle. A
PCI Device Driver can only manage device handles that contain the Device Path Protocol and the
PCI I//O Protocol, so a PCI Device Driver must look for these two protocols on the device handle
that is being tested. In addition, it needs to check to see if the device handle represents a PCI
Controller that the PCI Device Driver knows how to manage. This is typically done by using the
services of the PCI I/O Protocol to read the PCI Configuration Header for the PCI Controller, and
looking at the VendorId, DeviceId, and SubsystemId fields.

The Start() function tells the PCI Device Driver to start managing a PCI Controller. A PCI
Device Driver is not allowed to create any new device handles. Instead, it installs one or more
addition protocol instances on the device handle for the PCI Controller. A PCI Device Driver is not
allowed to modify the resources allocated to a PCI Controller. These resource allocations are
owned by the PCI Bus Driver or some other firmware component that initialized the PCI Bus prior
to the execution of the PCI Bus Driver. This means that the PCI BARs (Base Address Registers)
and the configuration of any PCI to PCI bridge controllers must not be modified by a PCI Device
Driver. A PCI Bus Driver will leave a PCI Device in a disabled state. It is a PCI Device Driver’s
responsibility to call Attributes() to enable the I/O, Memory, and Bus Master decodes.

 January 31, 2006
554 Version 2.0

The Stop() function mirrors the Start() function, so the Stop() function completes any
outstanding transactions to the PCI Controller and removes the protocol interfaces that were
installed in Start(). Figure 40 shows the device handle for a PCI Controller before and after
Start() is called. In this example, a PCI Device Driver is adding the Block I/O Protocol to the
device handle for the PCI Controller. It is also a PCI Device Driver’s responsibility to disable the
I/O, Memory, and Bus Master decodes by calling Attributes().

OM13168

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

Stop() : Closes PCI I/O

Start() : Opens PCI I/O

Installed by Start()
Uninstalled by Stop()

Figure 40. Connecting a PCI Device Driver

January 31, 2006
Version 2.0 555

13.4 EFI PCI I/O Protocol

This section provides a detailed description of the EFI_PCI_IO_PROTOCOL. This protocol is
used by code, typically drivers, running in the EFI boot services environment to access memory and
I/O on a PCI controller. In particular, functions for managing devices on PCI buses are defined
here.

The interfaces provided in the EFI_PCI_IO_PROTOCOL are for performing basic operations to
memory, I/O, and PCI configuration space. The system provides abstracted access to basic system
resources to allow a driver to have a programmatic method to access these basic system resources.
The main goal of this protocol is to provide an abstraction that simplifies the writing of device
drivers for PCI devices. This goal is accomplished by providing the following features:

• A driver model that does not require the driver to search the PCI busses for devices to manage.
Instead, drivers are provided the location of the device to manage or have the capability to be
notified when a PCI controller is discovered.

• A device driver model that abstracts the I/O addresses, Memory addresses, and PCI
Configuration addresses from the PCI device driver. Instead, BAR (Base Address Register)
relative addressing is used for I/O and Memory accesses, and device relative addressing is used
for PCI Configuration accesses. The BAR relative addressing is specified in the PCI I/O
services as a BAR index. A PCI controller may contain a combination of 32-bit and 64-bit
BARs. The BAR index represents the logical BAR number in the standard PCI configuration
header starting from the first BAR. The BAR index does not represent an offset into the
standard PCI Configuration Header because those offsets will vary depending on the
combination and order of 32-bit and 64-bit BARs.

• The Device Path for the PCI device can be obtained from the same device handle that the
EFI_PCI_IO_PROTOCOL resides.

• The PCI Segment, PCI Bus Number, PCI Device Number, and PCI Function Number of the
PCI device if they are required. The general idea is to abstract these details away from the PCI
device driver. However, if these details are required, then they are available.

• Details on any nonstandard address decoding that is not covered by the PCI device's Base
Address Registers.

• Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for which the PCI device is a
member.

• A copy of the PCI Option ROM if it is present in system memory.
• Functions to perform bus mastering DMA. This includes both packet based DMA and common

buffer DMA.

 January 31, 2006
556 Version 2.0

EFI_PCI_IO_PROTOCOL

Summary

Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that a driver uses to access
its PCI controller.

GUID
#define EFI_PCI_IO_PROTOCOL_GUID \
 {0x4cf5b200,0x68b8,0x4ca5,0x9e,0xec,0xb2,0x3e,0x3f,0x50,

0x2,0x9a}

Protocol Interface Structure
typedef struct _EFI_PCI_IO_PROTOCOL {
 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem;
 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo;
 EFI_PCI_IO_PROTOCOL_ACCESS Mem;
 EFI_PCI_IO_PROTOCOL_ACCESS Io;
 EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci;
 EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem;
 EFI_PCI_IO_PROTOCOL_MAP Map;
 EFI_PCI_IO_PROTOCOL_UNMAP Unmap;
 EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
 EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
 EFI_PCI_IO_PROTOCOL_FLUSH Flush;
 EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;
 EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;
 EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes;
 EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;
 UINT64 RomSize;
 VOID *RomImage;
} EFI_PCI_IO_PROTOCOL;

Parameters
PollMem Polls an address in PCI memory space until an exit condition is met, or a

timeout occurs. See the PollMem() function description.

PollIo Polls an address in PCI I/O space until an exit condition is met, or a
timeout occurs. See the PollIo() function description.

Mem.Read Allows BAR relative reads to PCI memory space. See the
Mem.Read() function description.

Mem.Write Allows BAR relative writes to PCI memory space. See the
Mem.Write() function description.

Io.Read Allows BAR relative reads to PCI I/O space. See the Io.Read()
function description.

January 31, 2006
Version 2.0 557

Io.Write Allows BAR relative writes to PCI I/O space. See the Io.Write()
function description.

Pci.Read Allows PCI controller relative reads to PCI configuration space. See the
Pci.Read() function description.

Pci.Write Allows PCI controller relative writes to PCI configuration space. See the
Pci.Write() function description.

CopyMem Allows one region of PCI memory space to be copied to another region
of PCI memory space. See the CopyMem() function description.

Map Provides the PCI controller–specific address needed to access system
memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap() function
description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping. See the
AllocateBuffer() function description.

FreeBuffer Frees pages that were allocated with AllocateBuffer(). See the
FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See the
Flush() function description.

GetLocation Retrieves this PCI controller’s current PCI bus number, device number,
and function number. See the GetLocation() function description.

Attributes Performs an operation on the attributes that this PCI controller supports.
The operations include getting the set of supported attributes, retrieving
the current attributes, setting the current attributes, enabling attributes,
and disabling attributes. See the Attributes() function description.

GetBarAttributes Gets the attributes that this PCI controller supports setting on a BAR
using SetBarAttributes(), and retrieves the list of resource
descriptors for a BAR. See the GetBarAttributes() function
description.

SetBarAttributes Sets the attributes for a range of a BAR on a PCI controller. See the
SetBarAttributes() function description.

RomSize The size, in bytes, of the ROM image.

 January 31, 2006
558 Version 2.0

RomImage A pointer to the in memory copy of the ROM image. The PCI Bus
Driver is responsible for allocating memory for the ROM image, and
copying the contents of the ROM to memory. The contents of this buffer
are either from the PCI option ROM that can be accessed through the
ROM BAR of the PCI controller, or it is from a platform-specific
location. The Attributes() function can be used to determine from
which of these two sources the RomImage buffer was initialized.

Related Definitions
//***
// EFI_PCI_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiPciIoWidthUint8,
 EfiPciIoWidthUint16,
 EfiPciIoWidthUint32,
 EfiPciIoWidthUint64,
 EfiPciIoWidthFifoUint8,
 EfiPciIoWidthFifoUint16,
 EfiPciIoWidthFifoUint32,
 EfiPciIoWidthFifoUint64,
 EfiPciIoWidthFillUint8,
 EfiPciIoWidthFillUint16,
 EfiPciIoWidthFillUint32,
 EfiPciIoWidthFillUint64,
 EfiPciIoWidthMaximum
} EFI_PCI_IO_PROTOCOL_WIDTH;

#define EFI_PCI_IO_PASS_THROUGH_BAR 0xff

//***
// EFI_PCI_IO_PROTOCOL_POLL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

January 31, 2006
Version 2.0 559

//***
// EFI_PCI_IO_PROTOCOL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_IO_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_PCI_IO_PROTOCOL_IO_MEM Read;
 EFI_PCI_IO_PROTOCOL_IO_MEM Write;
} EFI_PCI_IO_PROTOCOL_ACCESS;

//***
// EFI_PCI_IO_PROTOCOL_CONFIG
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT32 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS
//***
typedef struct {
 EFI_PCI_IO_PROTOCOL_CONFIG Read;
 EFI_PCI_IO_PROTOCOL_CONFIG Write;
} EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS;

 January 31, 2006
560 Version 2.0

//***
// EFI PCI I/O Protocol Attribute bits
//***
#define EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
#define EFI_PCI_IO_ATTRIBUTE_ISA_IO 0x0002
#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO 0x0004
#define EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY 0x0008
#define EFI_PCI_IO_ATTRIBUTE_VGA_IO 0x0010
#define EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO 0x0020
#define EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO 0x0040
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080
#define EFI_PCI_IO_ATTRIBUTE_IO 0x0100
#define EFI_PCI_IO_ATTRIBUTE_MEMORY 0x0200
#define EFI_PCI_IO_ATTRIBUTE_BUS_MASTER 0x0400
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED 0x0800
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE 0x1000
#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE 0x2000
#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM 0x4000
#define EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000
#define EFI_PCI_IO_ATTRIBUTE_ISA_IO_16 0x10000
#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000
#define EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 0x40000

EFI_PCI_IO_ATTRIBUTE_ISA_IO_16

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to the
PCI controller using a 16-bit address decoder on address bits 0..15. Address bits 16..31
must be zero. This bit is used to forward I/O cycles for legacy ISA devices. If this bit is
set, then the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI
Host Bus Controller and the PCI Controller are configured to forward these PCI I/O
cycles. This bit may not be combined with EFI_PCI_IO_ATTRIBUTE_ISA_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O write cycles to the VGA
palette registers on a PCI controller. If this bit is set, then the PCI Host Bus Controller
and all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI
Controller are configured to forward these PCI I/O cycles. This bit may not be combined
with EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO.

January 31, 2006
Version 2.0 561

EFI_PCI_IO_ATTRIBUTE_VGA_IO_16

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB and 0x3C0–0x3DF
are forwarded to the PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a VGA
controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller and all
the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles. This bit may not be combined with
EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO. Because
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 also includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 is set.

EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO

If this bit is set, then the PCI I/O cycles between 0x00000000 and 0x000000FF are
forwarded to the PCI controller. This bit is used to forward I/O cycles for ISA
motherboard devices. If this bit is set, then the PCI Host Bus Controller and all the PCI
to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_ISA_IO

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to the
PCI controller using a 10-bit address decoder on address bits 0..9. Address bits 10..15 are
not decoded, and address bits 16..31 must be zero. This bit is used to forward I/O cycles
for legacy ISA devices. If this bit is set, then the PCI Host Bus Controller and all the PCI
to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O write cycles to the VGA palette registers on a PCI controller. If
this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between
the PCI Host Bus Controller and the PCI Controller are configured to forward these
PCI I/O cycles.

 January 31, 2006
562 Version 2.0

EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY

If this bit is set, then the PCI memory cycles between 0xA0000 and 0xBFFFF are
forwarded to the PCI controller. This bit is used to forward memory cycles for a VGA
frame buffer on a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI Memory cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB and 0x3C0-0x3DF
are forwarded to the PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and the address bits 16..31 must be zero. This bit is
used to forward I/O cycles for a VGA controller to a PCI controller. If this bit is set, then
the PCI Host Bus Controller and all the PCI to PCI bridges between the PCI Host Bus
Controller and the PCI Controller are configured to forward these PCI I/O cycles. Since
EFI_PCI_IO_ATTRIBUTE_VGA_IO also includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_ IO, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO is set.

EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7 are
forwarded to a PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Primary
IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377 are
forwarded to a PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Secondary
IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller and
all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller
are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a write combining mode. This bit is used
to improve the write performance to a memory buffer on a PCI controller. By default,
PCI memory ranges are not accessed in a write combining mode.

January 31, 2006
Version 2.0 563

EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a cached mode. By default, PCI memory
ranges are accessed noncached.

EFI_PCI_IO_ATTRIBUTE_IO

If this bit is set, then the PCI device will decode the PCI I/O cycles that the device is
configured to decode.

EFI_PCI_IO_ATTRIBUTE_MEMORY

If this bit is set, then the PCI device will decode the PCI Memory cycles that the device is
configured to decode.

EFI_PCI_IO_ATTRIBUTE_BUS_MASTER

If this bit is set, then the PCI device is allowed to act as a bus master on the PCI bus.

EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is disabled, and can no longer be accessed. By default, all
PCI memory ranges are enabled.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE

If this bit is set, then the PCI controller is an embedded device that is typically a
component on the system board. If this bit is clear, then this PCI controller is part of an
adapter that is populating one of the systems PCI slots.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM

If this bit is set, then the PCI option ROM described by the RomImage and RomSize
fields is not from ROM BAR of the PCI controller. If this bit is clear, then the
RomImage and RomSize fields were initialized based on the PCI option ROM found
through the ROM BAR of the PCI controller.

EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE

If this bit is set, then the PCI controller is capable of producing PCI Dual Address Cycles, so it is
able to access a 64-bit address space. If this bit is not set, then the PCI controller is not capable of
producing PCI Dual Address Cycles, so it is only able to access a 32-bit address space.

 January 31, 2006
564 Version 2.0

//***
// EFI_PCI_IO_PROTOCOL_OPERATION
//***
typedef enum {
 EfiPciIoOperationBusMasterRead,
 EfiPciIoOperationBusMasterWrite,
 EfiPciIoOperationBusMasterCommonBuffer,
 EfiPciIoOperationMaximum
} EFI_PCI_IO_PROTOCOL_OPERATION;

EfiPciIoOperationBusMasterRead

 A read operation from system memory by a bus master.

EfiPciIoOperationBusMasterWrite

 A write operation to system memory by a bus master.

EfiPciIoOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both
the processor and a bus master. The buffer is coherent from both
the processor’s and the bus master’s point of view.

Description

The EFI_PCI_IO_PROTOCOL provides the basic Memory, I/O, PCI configuration, and DMA
interfaces that are used to abstract accesses to PCI controllers. There is one
EFI_PCI_IO_PROTOCOL instance for each PCI controller on a PCI bus. A device driver that
wishes to manage a PCI controller in a system will have to retrieve the EFI_PCI_IO_PROTOCOL
instance that is associated with the PCI controller. A device handle for a PCI controller will
minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_PCI_IO_PROTOCOL instance.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three
basic types of bus mastering DMA that is supported by this protocol. These are DMA reads by a
bus master, DMA writes by a bus master, and common buffer DMA. The DMA read and write
operations may need to be broken into smaller chunks. The caller of Map() must pay attention to
the number of bytes that were mapped, and if required, loop until the entire buffer has been
transferred. The following is a list of the different bus mastering DMA operations that are
supported, and the sequence of EFI_PCI_IO_PROTOCOL interfaces that are used for each DMA
operation type.

January 31, 2006
Version 2.0 565

DMA Bus Master Read Operation

• Call Map() for EfiPciIoOperationBusMasterRead.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the read operation.
• Call Unmap().

DMA Bus Master Write Operation

• Call Map() for EfiPciOperationBusMasterWrite.

• Program the DMA Bus Master with the DeviceAddress returned by Map().
• Start the DMA Bus Master.
• Wait for DMA Bus Master to complete the write operation.
• Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI

Specification Section 3.2.5.2) .
• Call Flush().

• Call Unmap().

DMA Bus Master Common Buffer Operation

• Call AllocateBuffer() to allocate a common buffer.

• Call Map() for EfiPciIoOperationBusMasterCommonBuffer.
• Program the DMA Bus Master with the DeviceAddress returned by Map().
• The common buffer can now be accessed equally by the processor and the DMA bus master.
• Call Unmap().
• Call FreeBuffer().

 January 31, 2006
566 Version 2.0

EFI_PCI_IO_PROTOCOL.PollMem()

Summary

Reads from the memory space of a PCI controller. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 13.4.

Offset The offset within the selected BAR to start the memory operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask are
ignored when polling the memory address.

January 31, 2006
Version 2.0 567

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be of
poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI memory location. A PCI memory read
operation is performed at the PCI memory address specified by BarIndex and Offset for the
width specified by Width. The result of this PCI memory read operation is stored in Result.
This PCI memory read operation is repeated until either a timeout of Delay 100 ns units has
expired, or (Result & Mask) is equal to Value.

This function will always perform at least one memory access no matter how small Delay may be.
If Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result
does not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16,
EfiPciIoWidthUint32, or EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER
is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. However, if the memory mapped I/O region being accessed by this function has
the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the BarIndex of this PCI controller.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 January 31, 2006
568 Version 2.0

EFI_PCI_IO_PROTOCOL.PollIo()

Summary

Reads from the I/O space of a PCI controller. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the I/O operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the I/O operation to perform. This allows all drivers to
use BAR relative addressing. The legal range for this field is 0..5.
However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be used
to bypass the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 13.4.

Offset The offset within the selected BAR to start the I/O operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask are
ignored. The bits in the bytes below Width which are zero in Mask are
ignored when polling the I/O address.

January 31, 2006
Version 2.0 569

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may be of
poorer granularity.

Result Pointer to the last value read from the memory location.

Description

This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is
performed at the PCI I/O address specified by BarIndex and Offset for the width specified by
Width. The result of this PCI I/O read operation is stored in Result. This PCI I/O read
operation is repeated until either a timeout of Delay 100 ns units has expired, or (Result &
Mask) is equal to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If
Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result does
not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16,
EfiPciIoWidthUint32, or EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER
is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any
alignment and I/O width restrictions that the PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI read transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the PCI BAR specified by BarIndex.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 January 31, 2006
570 Version 2.0

EFI_PCI_IO_PROTOCOL.Mem.Read()
EFI_PCI_IO_PROTOCOL.Mem.Write()

Summary

Enable a PCI driver to access PCI controller registers in the PCI memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 13.4.

Offset The offset within the selected BAR to start the memory operation.

Count The number of memory operations to perform. Bytes moved is Width
size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

January 31, 2006
Version 2.0 571

Description

The Mem.Read(), and Mem.Write() functions enable a driver to access controller registers in
the PCI memory space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address
is incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 January 31, 2006
572 Version 2.0

EFI_PCI_IO_PROTOCOL.Io.Read()
EFI_PCI_IO_PROTOCOL.Io.Write()

Summary

Enable a PCI driver to access PCI controller registers in the PCI I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the I/O operation to perform. This allows all drivers to
use BAR relative addressing. The legal range for this field is 0..5.
However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be used
to bypass the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 13.4.

Offset The offset within the selected BAR to start the I/O operation.

Count The number of I/O operations to perform. Bytes moved is Width size *
Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

January 31, 2006
Version 2.0 573

Description

The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in
PCI I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 January 31, 2006
574 Version 2.0

EFI_PCI_IO_PROTOCOL.Pci.Read()
EFI_PCI_IO_PROTOCOL.Pci.Write()

Summary

Enable a PCI driver to access PCI controller registers in PCI configuration space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT32 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

Offset The offset within the PCI configuration space for the PCI controller.

Count The number of PCI configuration operations to perform. Bytes moved is
Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

January 31, 2006
Version 2.0 575

Description

The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration
registers for the PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for
any alignment and I/O width issues which the bus, device, platform, or type of I/O might require.
For example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not

valid for the PCI configuration header of the PCI controller.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 January 31, 2006
576 Version 2.0

EFI_PCI_IO_PROTOCOL.CopyMem()

Summary

Enables a PCI driver to copy one region of PCI memory space to another region of PCI
memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_COPY_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 DestBarIndex,
 IN UINT64 DestOffset,
 IN UINT8 SrcBarIndex,
 IN UINT64 SrcOffset,
 IN UINTN Count
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

DestBarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the memory operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 13.4.

DestOffset The destination offset within the BAR specified by DestBarIndex to
start the memory writes for the copy operation. The caller is responsible
for aligning the DestOffset if required.

SrcBarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the memory operation to perform. This allows all
drivers to use BAR relative addressing. The legal range for this field is
0..5. However, the value EFI_PCI_IO_PASS_THROUGH_BAR can be
used to bypass the BAR relative addressing and pass Offset to the PCI
Root Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in Section 13.4.

January 31, 2006
Version 2.0 577

SrcOffset The source offset within the BAR specified by SrcBarIndex to start
the memory reads for the copy operation. The caller is responsible for
aligning the SrcOffset if required.

Count The number of memory operations to perform. Bytes moved is Width
size * Count, starting at DestOffset and SrcOffset.

Description

The CopyMem() function enables a PCI driver to copy one region of PCI memory space to
another region of PCI memory space on a PCI controller. This is especially useful for video scroll
operations on a memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then Count read/write transactions are performed to move the contents
of the SrcOffset buffer to the DestOffset buffer. The implementation must be reentrant,
and it must handle overlapping SrcOffset and DestOffset buffers. This means that the
implementation of CopyMem() must choose the correct direction of the copy operation based on
the type of overlap that exists between the SrcOffset and DestOffset buffers. If either the
SrcOffset buffer or the DestOffset buffer crosses the top of the processor’s address space,
then the result of the copy operation is unpredictable.

The contents of the DestOffset buffer on exit from this service must match the contents of the
SrcOffset buffer on entry to this service. Due to potential overlaps, the contents of the
SrcOffset buffer may be modified by this service. The following rules can be used to guarantee
the correct behavior:

1. If DestOffset > SrcOffset and DestOffset < (SrcOffset + Width size *
Count), then the data should be copied from the SrcOffset buffer to the DestOffset
buffer starting from the end of buffers and working toward the beginning of the buffers.

2. Otherwise, the data should be copied from the SrcOffset buffer to the DestOffset buffer
starting from the beginning of the buffers and working toward the end of the buffers.

 January 31, 2006
578 Version 2.0

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. All the PCI write transactions generated by this function will follow the write
ordering and completion rules defined in the PCI Specification. However, if the memory-mapped
I/O region being accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED
attribute set, then the transactions will follow the ordering rules defined by the processor
architecture.

Status Codes Returned
EFI_SUCCESS The data was copied from one memory region to another memory region.

EFI_INVALID_PARAMETER Width is invalid.

EFI_UNSUPPORTED DestBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED SrcBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by DestOffset, Width, and Count
is not valid for the PCI BAR specified by DestBarIndex.

EFI_UNSUPPORTED The address range specified by SrcOffset, Width, and Count is
not valid for the PCI BAR specified by SrcBarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 579

EFI_PCI_IO_PROTOCOL.Map()

Summary

Provides the PCI controller–specific addresses needed to access system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MAP) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_OPERATION Operation,
 IN VOID *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Operation Indicates if the bus master is going to read or write to system memory.
Type EFI_PCI_IO_PROTOCOL_OPERATION is defined in
Section 13.4.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of bytes
that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to use to
access the hosts HostAddress. Type EFI_PHYSICAL_ADDRESS is
defined in Chapter 6.2. This address cannot be used by the processor to
access the contents of the buffer specified by HostAddress.

Mapping A resulting value to pass to Unmap().

 January 31, 2006
580 Version 2.0

Description

The Map() function provides the PCI controller–specific addresses needed to access system
memory. This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or write data
transfer, then EfiPciIoOperationBusMasterRead or EfiPciIoOperation-
BusMasterWrite is used and the range is unmapped to complete the operation. If performing
an EfiPciIoOperationBusMasterRead operation, all the data must be present in system
memory before the Map() is performed. Similarly, if performing an EfiPciIoOperation-
BusMasterWrite, the data cannot be properly accessed in system memory until Unmap()
is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciIoOperation-
BusMasterCommonBuffer. However, only memory allocated via the AllocateBuffer()
interface can be mapped for this operation type.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the
requested amount. In this case, the DMA operation will have to be broken up into smaller chunks.
The Map() function will map as much of the DMA operation as it can at one time. The caller may
have to loop on Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned
EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

January 31, 2006
Version 2.0 581

EFI_PCI_IO_PROTOCOL.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_UNMAP) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN VOID *Mapping
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EfiPciIoOperationBusMasterWrite, the data is committed to the
target system memory. Any resources used for the mapping are freed.

Status Codes Returned
EFI_SUCCESS The range was unmapped.

EFI_DEVICE_ERROR The data was not committed to the target system memory.

 January 31, 2006
582 Version 2.0

EFI_PCI_IO_PROTOCOL.AllocateBuffer()

Summary

Allocates pages that are suitable for an EfiPciIoOperationBusMasterCommonBuffer
mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT VOID **HostAddress,
 IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is defined
in Chapter 6.2.

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Attributes The requested bit mask of attributes for the allocated range. Only the
attributes EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED may be used with this
function. If any other bits are set, then EFI_UNSUPPORTED is
returned. This function may choose to ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide a hint to
the implementation that may improve the performance of the calling
driver. The implementation may choose any default for the memory
attributes including write combining, cached, both, or neither as long as
the allocated buffer can be seen equally by both the processor and the
PCI bus master.

January 31, 2006
Version 2.0 583

Description

The AllocateBuffer() function allocates pages that are suitable for an
EfiPciIoOperationBusMasterCommonBuffer mapping. This means that the buffer
allocated by this function must support simultaneous access by both the processor and a PCI Bus
Master. The device address that the PCI Bus Master uses to access the buffer can be retrieved with
a call to Map().

If the current attributes of the PCI controller has the EFI_PCI_IO_ATTRIBUTE_DUAL_
ADDRESS_CYCLE bit set, then when the buffer allocated by this function is mapped with a call to
Map(), the device address that is returned by Map() must be within the 64-bit device address
space of the PCI Bus Master. The attributes for a PCI controller can be managed by calling
Attributes().

If the current attributes for the PCI controller has the EFI_PCI_IO_ATTRIBUTE_DUAL_
ADDRESS_CYCLE bit clear, then when the buffer allocated by this function is mapped with a call
to Map(), the device address that is returned by Map() must be within the 32-bit device address
space of the PCI Bus Master. The attributes for a PCI controller can be managed by calling
Attributes().

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE and MEMORY_CACHED.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

 January 31, 2006
584 Version 2.0

EFI_PCI_IO_PROTOCOL.FreeBuffer()

Summary

Frees memory that was allocated with AllocateBuffer().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_FREE_BUFFER) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINTN Pages,
 IN VOID *HostAddress
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description

The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
was not allocated with AllocateBuffer().

January 31, 2006
Version 2.0 585

EFI_PCI_IO_PROTOCOL.Flush()

Summary

Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_FLUSH) (
 IN EFI_PCI_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Description

The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller
specific action must be taken to guarantee that the posted write transactions have been flushed from
the PCI controller and from all the PCI bridges into the PCI host bridge. This is typically done with
a PCI read transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the
processor’s view of system memory are guaranteed to be coherent. If the PCI posted write
transactions cannot be flushed from the PCI host bridge, then the PCI bus master and processor are
not guaranteed to have a coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned
EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host

bridge to system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI
host bridge due to a hardware error.

 January 31, 2006
586 Version 2.0

EFI_PCI_IO_PROTOCOL.GetLocation()

Summary

Retrieves this PCI controller’s current PCI bus number, device number, and function number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_LOCATION) (
 IN EFI_PCI_IO_PROTOCOL *This,
 OUT UINTN *SegmentNumber,
 OUT UINTN *BusNumber,
 OUT UINTN *DeviceNumber,
 OUT UINTN *FunctionNumber
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

SegmentNumber The PCI controller’s current PCI segment number.

BusNumber The PCI controller’s current PCI bus number.

DeviceNumber The PCI controller’s current PCI device number.

FunctionNumber The PCI controller’s current PCI function number.

Description

The GetLocation() function retrieves a PCI controller’s current location on a PCI Host Bridge.
This is specified by a PCI segment number, PCI bus number, PCI device number, and PCI function
number. These values can be used with the PCI Root Bridge I/O Protocol to perform PCI
configuration cycles on the PCI controller, or any of its peer PCI controller’s on the same PCI Host
Bridge.

Status Codes Returned
EFI_SUCCESS The PCI controller location was returned.

EFI_INVALID_PARAMETER SegmentNumber is NULL.

EFI_INVALID_PARAMETER BusNumber is NULL.

EFI_INVALID_PARAMETER DeviceNumber is NULL.

EFI_INVALID_PARAMETER FunctionNumber is NULL.

January 31, 2006
Version 2.0 587

EFI_PCI_IO_PROTOCOL.Attributes()

Summary

Performs an operation on the attributes that this PCI controller supports. The operations include
getting the set of supported attributes, retrieving the current attributes, setting the current
attributes, enabling attributes, and disabling attributes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION Operation,
 IN UINT64 Attributes,
 OUT UINT64 *Result OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Operation The operation to perform on the attributes for this PCI controller. Type
EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION is defined in
“Related Definitions” below.

Attributes The mask of attributes that are used for Set, Enable, and Disable
operations. The available attributes are listed in Section 13.4.

Result A pointer to the result mask of attributes that are returned for the Get
and Supported operations. This is an optional parameter that may be
NULL for the Set, Enable, and Disable operations. The available
attributes are listed in Section 13.4.

 January 31, 2006
588 Version 2.0

Related Definitions
//***
// EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION
//***
typedef enum {
 EfiPciIoAttributeOperationGet,
 EfiPciIoAttributeOperationSet,
 EfiPciIoAttributeOperationEnable,
 EfiPciIoAttributeOperationDisable,
 EfiPciIoAttributeOperationSupported,
 EfiPciIoAttributeOperationMaximum
} EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION;

EfiPciIoAttributeOperationGet

Retrieve the PCI controller’s current attributes, and return them in Result. If Result
is NULL, then EFI_INVALID_PARAMER is returned. For this operation,
Attributes is ignored.

EfiPciIoAttributeOperationSet

Set the PCI controller’s current attributes to Attributes. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationEnable

Enable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationDisable

Disable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationSupported

Retrieve the PCI controller's supported attributes, and return them in Result. If
Result is NULL, then EFI_INVALID_PARAMER is returned. For this operation,
Attributes is ignored.

January 31, 2006
Version 2.0 589

Description

The Attributes() function performs an operation on the attributes associated with this PCI
controller. If Operation is greater than or equal to the maximum operation value, then
EFI_INVALID_PARAMETER is returned. If Operation is Get or Supported, and Result
is NULL, then EFI_INVALID_PARAMETER is returned. If Operation is Set, Enable, or
Disable for an attribute that is not supported by the PCI controller, then EFI_UNSUPPORTED is
returned. Otherwise, the operation is performed as described in “Related Definitions” and
EFI_SUCCESS is returned. It is possible for this function to return EFI_UNSUPPORTED even if
the PCI controller supports the attribute. This can occur when the PCI root bridge does not support
the attribute. For example, if VGA I/O and VGA Memory transactions cannot be forwarded onto
PCI root bridge #2, then a request by a PCI VGA driver to enable the VGA_IO and VGA_MEMORY
bits will fail even though a PCI VGA controller behind PCI root bridge #2 is able to decode these
transactions.

This function will also return EFI_UNSUPPORTED if more than one PCI controller on the same
PCI root bridge has already successfully requested one of the ISA addressing attributes. For
example, if one PCI VGA controller had already requested the VGA_IO and VGA_MEMORY
attributes, then a second PCI VGA controller on the same root bridge cannot succeed in requesting
those same attributes. This restriction applies to the ISA-, VGA-, and IDE-related attributes.

Status Codes Returned
EFI_SUCCESS The operation on the PCI controller's attributes was completed. If

the operation was Get or Supported, then the attribute mask
is returned in Result.

EFI_INVALID_PARAMETER Operation is greater than or equal to
EfiPciIoAttributeOperationMaximum.

EFI_INVALID_PARAMETER Operation is Get and Result is NULL.

EFI_INVALID_PARAMETER Operation is Supported and Result is NULL.

EFI_UNSUPPORTED Operation is Set, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of
its parent bridges.

EFI_UNSUPPORTED Operation is Enable, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of

its parent bridges.

EFI_UNSUPPORTED Operation is Disable, and one or more of the bits set in
Attributes are not supported by this PCI controller or one of

its parent bridges.

 January 31, 2006
590 Version 2.0

EFI_PCI_IO_PROTOCOL.GetBarAttributes()

Summary

Gets the attributes that this PCI controller supports setting on a BAR using
SetBarAttributes(), and retrieves the list of resource descriptors for a BAR.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINT8 BarIndex,
 OUT UINT64 *Supports OPTIONAL,
 OUT VOID **Resources OPTIONAL
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for resource range. The legal range for this field is 0..5.

Supports A pointer to the mask of attributes that this PCI controller supports
setting for this BAR with SetBarAttributes(). The list of
attributes is listed in Section 13.4. This is an optional parameter that
may be NULL.

Resources A pointer to the ACPI 2.0 resource descriptors that describe the current
configuration of this BAR of the PCI controller. This buffer is allocated
for the caller with the Boot Service AllocatePool(). It is the
caller’s responsibility to free the buffer with the Boot Service
FreePool(). See “Related Definitions” below for the ACPI 2.0
resource descriptors that may be used. This is an optional parameter that
may be NULL.

January 31, 2006
Version 2.0 591

Related Definitions

There are only two resource descriptor types from the ACPI Specification that may be used to
describe the current resources allocated to BAR of a PCI Controller. These are the QWORD
Address Space Descriptor (ACPI 2.0 Section 6.4.3.5.1), and the End Tag (ACPI 2.0
Section 6.4.2.8). The QWORD Address Space Descriptor can describe memory, I/O, and bus
number ranges for dynamic or fixed resources. The configuration of a BAR of a PCI Controller is
described with one or more QWORD Address Space Descriptors followed by an End Tag.
Table 90 and Table 91 contain these two descriptor types. Please see the ACPI Specification for
details on the field values.

Table 90. ACPI 2.0 QWORD Address Space Descriptor

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type

 0 – Memory Range

 1 – I/O Range

 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset

0x26 0x08 Address Length

Table 91. ACPI 2.0 End Tag

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.

 January 31, 2006
592 Version 2.0

Description

The GetBarAttributes() function returns in Supports the mask of attributes that the PCI
controller supports setting for the BAR specified by BarIndex. It also returns in Resources a
list of ACPI 2.0 resource descriptors for the BAR specified by BarIndex. Both Supports and
Resources are optional parameters. If both Supports and Resources are NULL, then
EFI_INVALID_PARAMETER is returned. It is the caller’s responsibility to free Resources
with the Boot Service FreePool() when the caller is done with the contents of Resources. If
there are not enough resources to allocate Resources, then EFI_OUT_OF_RESOURCES is
returned.

If a bit is set in Supports, then the PCI controller supports this attribute type for the BAR
specified by BarIndex, and a call can be made to SetBarAttributes() using that
attribute type.

Status Codes Returned
EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI

controller supports are returned in Supports. If Resources
is not NULL, then the ACPI 2.0 resource descriptors that the PCI
controller is currently using are returned in Resources.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate
Resources.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.

January 31, 2006
Version 2.0 593

EFI_PCI_IO_PROTOCOL.SetBarAttributes()

Summary

Sets the attributes for a range of a BAR on a PCI controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINT64 Attributes,
 IN UINT8 BarIndex,
 IN OUT UINT64 *Offset,
 IN OUT UINT64 *Length
);

Parameters

This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type
EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Attributes The mask of attributes to set for the resource range specified by
BarIndex, Offset, and Length.

BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the resource range. The legal range for this field is 0..5.

Offset A pointer to the BAR relative base address of the resource range to be
modified by the attributes specified by Attributes. On return,
*Offset will be set to the actual base address of the resource range.
Not all resources can be set to a byte boundary, so the actual base
address may differ from the one passed in by the caller.

Length A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return, *Length will be set
to the actual length of the resource range. Not all resources can be set to
a byte boundary, so the actual length may differ from the one passed in
by the caller.

 January 31, 2006
594 Version 2.0

Description

The SetBarAttributes() function sets the attributes specified in Attributes for the PCI
controller on the resource range specified by BarIndex, Offset, and Length. Since the
granularity of setting these attributes may vary from resource type to resource type, and from
platform to platform, the actual resource range and the one passed in by the caller may differ. As a
result, this function may set the attributes specified by Attributes on a larger resource range
than the caller requested. The actual range is returned in Offset and Length. The caller is
responsible for verifying that the actual range for which the attributes were set is acceptable.

If the attributes are set on the PCI controller, then the actual resource range is returned in Offset
and Length, and EFI_SUCCESS is returned. Many of the attribute types also require that the
state of the PCI Host Bus Controller and the state of any PCI to PCI bridges between the PCI Host
Bus Controller and the PCI Controller to be modified. This function will only return
EFI_SUCCESS is all of these state changes are made. The PCI Controller may support a
combination of attributes, but unless the PCI Host Bus Controller and the PCI to PCI bridges also
support that same combination of attributes, then this call will return an error.

If the attributes specified by Attributes, or the resource range specified by BarIndex,
Offset, and Length are not supported by the PCI controller, then EFI_UNSUPPORTED is
returned. The set of supported attributes for the PCI controller can be found by calling
GetBarAttributes().

If either Offset or Length is NULL then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned
EFI_SUCCESS The set of attributes specified by Attributes for the resource

range specified by BarIndex, Offset, and Length were

set on the PCI controller, and the actual resource range is returned
in Offset and Length.

EFI_UNSUPPORTED The set of attributes specified by Attributes is not supported
by the PCI controller for the resource range specified by
BarIndex, Offset, and Length.

EFI_INVALID_PARAMETER Offset is NULL.

EFI_INVALID_PARAMETER Length is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the
resource range specified by BarIndex, Offset, and
Length.

January 31, 2006
Version 2.0 595

13.4.1 PCI Device Paths
An EFI_PCI_IO_PROTOCOL must be installed on a handle for its services to be available to PCI
device drivers. In addition to the EFI_PCI_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Chapter 9 for a
detailed description of the EFI_DEVICE_PATH_PROTOCOL.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the
bus hierarchy in the system, additional device path nodes may precede this ACPI Device Path
Node. A PCI device path is described with PCI Device Path Nodes. There will be one PCI Device
Path node for the PCI controller itself, and one PCI Device Path Node for each PCI to PCI Bridge
that is between the PCI controller and the PCI Root Bridge.

Table 92 shows an example device path for a PCI controller that is located at PCI device number
0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This device path consists
of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path End Structure. The
_HID and _UID must match the ACPI table description of the PCI Root Bridge. The shorthand
notation for this device path is:

ACPI(PNP0A03,0)/PCI(7|0).

Table 92. PCI Device 7, Function 0 on PCI Root Bridge 0

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
596 Version 2.0

Table 93 shows an example device path for a PCI controller that is located behind a PCI to PCI
bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI bridge is directly
attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI function 0x00. This
device path consists of an ACPI Device Path Node, two PCI Device Path Nodes, and a Device Path
End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0).

Table 93. PCI Device 7, Function 0 behind PCI to PCI bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 597

13.4.2 PCI Option ROMs
EFI takes advantage of both the PCI Specification and the PE/COFF Specification to store EFI
images in a PCI Option ROM. There are several rules that must be followed when constructing a
PCI Option ROM

• A PCI Option ROM can be no larger than 16 MB.
• A PCI Option ROM may contain one or more images.
• Each image must being on a 512-byte boundary.
• Each image must be an even multiple of 512 bytes in length. This means that images that are

not an even multiple of 512 bytes in length must be padded to the next 512-byte boundary.
• Legacy Option ROM images begin with a Standard PCI Expansion ROM Header (Table 94).
• EFI Option ROM images begin with an EFI PCI Expansion ROM Header (Table 97).
• Each image must contain a PCIR data structure in the first 64 KB of the image (Table 95).
• The image data for an EFI Option ROM image must begin in the first 64 KB of the image.
• The image data for an EFI Option ROM image must be a PE/COFF image or a compressed

PE/COFF image following the EFI 1.10 Compression Algorithm Specification, and referencing
Appendix H for the Compression Source Code.

• The PCIR data structure must begin on a 4-byte boundary.
• If the PCI Option ROM contains a Legacy Option ROM image, it must be the first image.
• The images are placed in the PCI Option ROM in order from highest to lowest priority. This

priority is used to build the ordered list of Driver Image Handles that are produced by the Bus
Specific Driver Override Protocol for a PCI Controller.

• In the future EBC is the only way new processor bindings can be added.

There are several options available when building a PCI option ROM for a PCI adapter. A PCI
Option ROM can choose to support only a legacy PC-AT platform, only an EFI compliant
platform, or both. This flexibility allows a migration path from adapters that support only legacy
PC-AT platforms, to adapters that support both PC-AT platforms and EFI compliant platforms, to
adapters that support only EFI compliant platforms. The following is a list of the image
combinations that may be placed in a PCI option ROM. This is not an exhaustive list. Instead, it
provides what will likely be the most common PCI option ROM layouts. EFI complaint system
firmware must work with all of these PCI option ROM layouts, plus any other layouts that are
possible within the PCI Specification. The format of a Legacy Option ROM image is defined in the
PCI Specification.

• Legacy Option ROM image
• Legacy Option ROM image + IA-32 EFI driver
• Legacy Option ROM image + Itanium Processor Family EFI driver
• Legacy Option ROM image + IA-32 EFI driver + Itanium Processor Family EFI driver
• Legacy Option ROM image + IA-32 EFI driver + x64 EFI driver
• Legacy Option ROM image + EBC Driver
• IA-32 UEFI driver
• Itanium Processor Family EFI driver
• IA-32 UEFI driver + Itanium Processor Family EFI driver
• EBC Driver

 January 31, 2006
598 Version 2.0

It is also possible to place a application written to this specification in a PCI Option ROM.
However, the PCI Bus Driver will ignore these images. The exact mechanism by which
applications can be loaded and executed from a PCI Option ROM is outside the scope of this
document.

Table 94. Standard PCI Expansion ROM Header

Offset Byte Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02-0x17 22 XX Reserved per processor architecture unique data

0x18-0x19 2 XX Pointer to PCIR Data Structure

Table 95. PCIR Data Structure

Offset Byte Length Description

0x00 4 Signature, the string ‘PCIR’

0x04 2 Vendor Identification

0x06 2 Device Identification

0x08 2 Pointer to Vital Product Data

0x0a 2 PCIR Data Structure Length

0x0c 1 PCIR Data Structure Revision

0x0d 3 Class Code

0x10 2 Image Length

0x12 2 Revision Level of Code/Data

0x14 1 Code Type

0x15 1 Indicator. Used to identify if this is the last image in the ROM

0x16 2 Reserved

Table 96. PCI Expansion ROM Code Types

Code Type Description

0x00 IA-32, PC-AT compatible

0x01 Open Firmware standard for PCI

0x02 Hewlett-Packard PA RISC

0x03 EFI Image

0x04-0xFF Reserved

January 31, 2006
Version 2.0 599

Table 97. EFI PCI Expansion ROM Header

Offset

Byte
Length

Value

Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header.

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX Subsystem value for EFI image header

0x0a 2 XX Machine type from EFI image header

0x0c 2 XX Compression type

0x0000 - The image is uncompressed

0x0001 - The image is compressed. See the
 EFI 1.1 Compression Algorithm Specification and
 Appendix H.

0x0002 - 0xFFFF - Reserved

0x0e 8 0x00 Reserved

0x16 2 XX Offset to EFI Image

0x18 2 XX Offset to PCIR Data Structure

 January 31, 2006
600 Version 2.0

13.4.2.1 PCI Bus Driver Responsibilities
A PCI Bus Driver must scan a PCI Option ROM for PCI Device Drivers. If a PCI Option ROM is
found during PCI Enumeration, then a copy of the PCI Option ROM is placed in a memory buffer.
The PCI Bus Driver will use the memory copy of the PCI Option ROM to search for UEFI drivers
after PCI Enumeration. The PCI Bus Driver will search the list of images in a PCI Option ROM for
the ones that have a Code Type of 0x03 in the PCIR Data Structure, and a Signature of 0xEF1 in
the EFI PCI Expansion ROM Header. Then, it will examine the Subsystem Type of the EFI PCI
Expansion ROM Header. If the Subsystem Type is IMAGE_SUBSYSTEM_EFI_BOOT_
SERVICE_DRIVER(11) or IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER(12), then the PCI
Bus Driver can load the PCI Device Driver from the PCI Option ROM. The Offset to EFI Image
Header field of the EFI PCI Expansion ROM Header is used to get a pointer to the beginning of the
PE/COFF image in the PCI Option ROM. The PE/COFF image may have been compressed using
the EFI 1.10 Compression Algorithm. If it has been compressed, then the PCI Bus Driver must
decompress the driver to a memory buffer. The Boot Service LoadImage() can then be used to
load the driver. If the platform does not support the Machine Type of the driver, then
LoadImage() may fail.

It is the PCI Bus Driver's responsibility to verify that the Expansion ROM Header and PCIR Data
Structure are valid. It is the responsibly of the Boot Service LoadImage() to verify that the
PE/COFF image is valid. The Boot Service LoadImage() may fail for several reasons including
a corrupt PE/COFF image or an unsupported Machine Type.

The PCI Option ROM search may produce one or more Driver Image Handles for the PCI
Controller that is associated with the PCI Option ROM. The PCI Bus Driver is responsible for
producing a Bus Specific Driver Override Protocol instance for every PCI Controller has a PCI
Option ROM that contains one or more UEFI Drivers. The Bus Specific Driver Override Protocol
produces an ordered list of Driver Image Handles. The order that the UEFI Drivers are placed in
the PCI Option ROM is the order of Driver Image Handles that must be returned by the Bus
Specific Driver Override Protocol. This gives the party that builds the PCI Option ROM control
over the order that the drivers are used in the Boot Service ConnectController().

13.4.2.2 PCI Device Driver Responsibilities
A PCI Device Driver should not be designed to care where it is stored. It can reside in a PCI
Option ROM, the system's motherboard ROM, a hard drive, a CD-ROM drive, etc. All PCI Device
Drivers are compiled and linked to generate a PE/COFF image. When a PE/COFF image is placed
in a PCI Option ROM, it must follow the rules outlined in Section 0. The recommended image
layout is to insert an EFI PCI Expansion ROM Header and a PCIR Data Structure in front of the
PE/COFF image, and pad the entire image up to the next 512-byte boundary. Figure 41 shows the
format of a single PCI Device Driver that can be added to a PCI Option ROM.

January 31, 2006
Version 2.0 601

OM13169

PCI Device Driver Image

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

PE/COFF Image of PCI Device Driver

Padding to next 512-byte boundary

Figure 41. Recommended PCI Driver Image Layout

 January 31, 2006
602 Version 2.0

The field values for the EFI PCI Expansion ROM Header and the PCIR Data Structure would be as
follows in this recommended PCI Driver image layout. An image must start at a 512-byte
boundary, and the end of the image must be padded to the next 512-byte boundary.

Table 98. Recommended PCI Device Driver Layout

Offset

Byte
Length

Value

Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX
0x0B
0x0C

Subsystem Value from the PCI Driver's PE/COFF Image Header
Subsystem Value for an EFI Boot Service Driver
Subsystem Value for an EFI Runtime Driver

0x0a 2 XX
0x014C
0x0200
0x0EBC
0x8664

Machine type from the PCI Driver's PE/COFF Image Header
IA-32 Machine Type
Itanium processor type
EFI Byte Code (EBC) Machine Type
X64 Machine Type

0x0C 2 XXXX
0x0000
0x0001

Compression Type
Uncompressed
Compressed following the EFI 1.10 Compression Algorithm
Specification

0x0E 8 0x00 Reserved

0x16 2 0x0034 Offset to EFI Image

0x18 2 0x001C Offset to PCIR Data Structure

0x1A 2 0x0000 Padding to align PCIR Data Structure on a 4 byte boundary

0x1C 4 'PCIR' PCIR Data Structure Signature

0x20 2 XXXX Vendor ID from the PCI Controller's Configuration Header

0x22 2 XXXX Device ID from the PCI Controller's Configuration Header

0x24 2 0x0000 Reserved

0x26 2 0x0018 The length if the PCIR Data Structure in bytes

0x28 1 0x00 PCIR Data Structure Revision. Value for PCI 2.2 Option ROM

0x29 3 XXXX Class Code from the PCI Controller's Configuration Header

0x2C 2 XXXX Code Image Length in units of 512 bytes. Same as Initialization Size

0x2E 2 XXXX Revision Level of the Code/Data. This field is ignored

0x30 1 0x03 Code Type

0x31 1 XX Indicator. Bit 7 clear means another image follows. Bit 7 set means
that this image is the last image in the PCI Option ROM. Bits 0–6 are
reserved.

January 31, 2006
Version 2.0 603

Offset

Byte
Length

Value

Description

 0x00
0x80

Additional images follow this image in the PCI Option ROM
This image is the last image in the PCI Option ROM

0x32 2 0x0000 Reserved

0x34 X XXXX The beginning of the PCI Device Driver's PE/COFF Image

13.4.3 Nonvolatile Storage
A PCI adapter may contain some form of nonvolatile storage. Since there are no standard access
mechanisms for nonvolatile storage on PCI adapters, the PCI I/O Protocol does not provide any
services for nonvolatile storage. However, a PCI Device Driver may choose to implement its own
access mechanisms. If there is a private channel between a PCI Controller and a nonvolatile
storage device, a PCI Device Driver can use it for configuration options or vital product data.

NOTE

The fields RomImage and RomSize in the PCI I/O Protocol do not provide direct access to the
PCI Option ROM on a PCI adapter. Instead, they provide access to a copy of the PCI Option ROM
in memory. If the contents of the RomImage are modified, only the memory copy is updated. If a
vendor wishes to update the contents of a PCI Option ROM, they must provide their own utility or
driver to perform this task. There is no guarantee that the BAR for the PCI Option ROM is valid at
the time that the utility or driver may execute, so the utility or driver must provide the code
required to gain write access to the PCI Option ROM contents. The algorithm for gaining write
access to a PCI Option ROM is both platform specific and adapter specific, so it is outside the
scope of this document.

 January 31, 2006
604 Version 2.0

13.4.4 PCI Hot-Plug Events
It is possible to design a PCI Bus Driver to work with PCI Bus that conforms to the PCI Hot-Plug
Specification. There are two levels of functionality that could be provided in the preboot
environment. The first is to initialize the PCI Hot-Plug capable bus so it can be used by an
operating system that also conforms to the PCI Hot-Plug Specification. This only affects the PCI
Enumeration that is performed in either the PCI Bus Driver’s initialization, or a firmware
component that executes prior to the PCI Bus Driver’s initialization. None of the PCI Device
Drivers need to be aware of the fact that a PCI Controller may exist in a slot that is capable of a hot-
plug event. Also, the addition, removal, and replacement of PCI adapters in the preboot
environment would not be allowed.

The second level of functionality is to actually implement the full hot-plug capability in the PCI
Bus Driver. This is not recommended because it adds a great deal of complexity to the PCI Bus
Driver design with very little added value. However, there is nothing about the PCI Driver Model
that would preclude this implementation. It would have to use an event based periodic timer to
monitor the hot-plug capable slots, and take advantage of the ConnectController() and
DisconnectController() Boot Services to dynamically start and stop the drivers that
manage the PCI controller that is being added, removed, or replaced.

January 31, 2006
Version 2.0 605

14
Protocols — SCSI Driver Models and Bus

Support

The intent of this chapter is to specify a method of providing direct access to SCSI devices. These
protocols provide services that allow a generic driver to produce the Block I/O protocol for SCSI
disk devices, and allows an EFI utility to issue commands to any SCSI device. The main reason to
provide such an access is to enable S.M.A.R.T. functionality during POST (i.e., issuing Mode
Sense, Mode Select, and Log Sense to SCSI devices). This is accomplished by using a generic API
such as SCSI Pass Thru. The use of this method will enable additional functionality in the future
without modifying the EFI SCSI Pass Thru driver. SCSI Pass Thru is not limited to SCSI channels.
It is applicable to all channel technologies that utilize SCSI commands such as SCSI, ATAPI, and
Fibre Channel. This chapter describes the SCSI Driver Model. This includes the behavior of SCSI
Bus Drivers, the behavior of SCSI Device Drivers, and a detailed description of the SCSI I/O
Protocol. This chapter provides enough material to implement a SCSI Bus Driver, and the tools
required to design and implement SCSI Device Drivers. It does not provide any information on
specific SCSI devices.

14.1 SCSI Driver Model Overview

The EFI SCSI Driver Stack includes the SCSI Pass Thru Driver, SCSI Bus Driver and individual
SCSI Device Drivers.

SCSI Pass Thru Driver: A SCSI Pass Through Driver manages a SCSI Host Controller that
contains one or more SCSI Buses. It creates SCSI Bus Controller Handles for each SCSI Bus, and
attaches SCSI Pass Thru Protocol and Device Path Protocol to each handle the driver produced.
Please refer to EFI1.1 SCSI Pass Thru Protocol, Version0.8 for details about the protocol.

SCSI Bus Driver: A SCSI Bus Driver manages a SCSI Bus Controller Handle that is created by
SCSI Pass Thru Driver. It creates SCSI Device Handles for each SCSI Device Controller detected
during SCSI Bus Enumeration, and attaches SCSI I/O Protocol and Device Path Protocol to each
handle the driver produced.

SCSI Device Driver: A SCSI Device Driver manages one kind of SCSI Device. Device handles
for SCSI Devices are created by SCSI Bus Drivers. A SCSI Device Driver could be a bus driver
itself, and may create child handles. But most SCSI Device Drivers will be device drivers that do
not create new handles. For the pure device driver, it attaches protocol instance to the device
handle of the SCSI Device. These protocol instances are I/O abstractions that allow the SCSI
Device to be used in the pre-boot environment. The most common I/O abstractions are used to boot
an EFI compliant OS.

 January 31, 2006
606 Version 2.0

14.2 SCSI Bus Drivers

A SCSI Bus Driver manages a SCSI Bus Controller Handle. A SCSI Bus Controller Handle is
created by a SCSI Pass Thru Driver and is abstracted in software with the SCSI Pass Thru Protocol.
A SCSI Bus Driver will manage handles that contain this protocol. Figure 42 shows an example
device handle for a SCSI Bus handle. It contains a Device Path Protocol instance and a SCSI Pass
Thru Protocol Instance.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_SCSI_PASS_THRU_PROTOCOL

Error! Bookmark not defined.

Figure 42. Device Handle for a SCSI Bus Controller

14.2.1 Driver Binding Protocol for SCSI Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the SCSI Bus Driver can manage a device handle. A
SCSI Bus Driver can only manage device handle that contain the Device Path Protocol and the
SCSI Pass Thru Protocol, so a SCSI Bus Driver must look for these two protocols on the device
handle that is being tested.

The Start() function tells the SCSI Bus Driver to start managing a device handle. The device
handle should support the protocols shown in Figure 42. The SCSI Pass Thru Protocol provides
information about a SCSI Channel and the ability to communicate with any SCSI devices attached
to that SCSI Channel.

The SCSI Bus Driver has the option of creating all of its children in one call to Start(), or
spreading it across several calls to Start(). In general, if it is possible to design a bus driver to
create one child at a time, it should do so to support the rapid boot capability in the UEFI Driver
Model. Each of the child device handles created in Start() must contain a Device Path Protocol
instance, and a SCSI I/O protocol instance. The SCSI I/O Protocol is described in Section 14.4 and
Section 13.4. The format of device paths for SCSI Devices is described in Section 14.6. Figure 43
shows an example child device handle that is created by a SCSI Bus Driver for a SCSI Device.

January 31, 2006
Version 2.0 607

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_SCSI_IO_PROTOCOL

Error! Bookmark not defined.

Figure 43. Child Handle Created by a SCSI Bus Driver

A SCSI Bus Driver must perform several steps to manage a SCSI Bus.

7. Scan for the SCSI Devices on the SCSI Channel that connected to the SCSI Bus Controller. If
a request is being made to scan only one SCSI Device, then only looks for the one specified.
Create a device handle for the SCSI Device found.

8. Install a Device Path Protocol instance and a SCSI I/O Protocol instance on the device handle
created for each SCSI Device.

The Stop() function tells the SCSI Bus Driver to stop managing a SCSI Bus. The Stop()
function can destroy one or more of the device handles that were created on a previous call to
Start(). If all of the child device handles have been destroyed, then Stop() will place the
SCSI Bus Controller in a quiescent state. The functionality of Stop() mirrors Start().

14.2.2 SCSI Enumeration
The purpose of the SCSI Enumeration is only to scan for the SCSI Devices attached to the specific
SCSI channel. The SCSI Bus driver need not allocate resources for SCSI Devices (like PCI Bus
Drivers do), nor need it connect a SCSI Device with its Device Driver (like USB Bus Drivers do).
The details of the SCSI Enumeration is implementation specific, thus is out of the scope of this
document.

 January 31, 2006
608 Version 2.0

14.3 SCSI Device Drivers

SCSI Device Drivers manage SCSI Devices. Device handles for SCSI Devices are created by SCSI
Bus Drivers. A SCSI Device Driver could be a bus driver itself, and may create child handles. But
most SCSI Device Drivers will be device drivers that do not create new handles. For the pure
device driver, it attaches protocol instance to the device handle of the SCSI Device. These protocol
instances are I/O abstractions that allow the SCSI Device to be used in the pre-boot environment.
The most common I/O abstractions are used to boot an EFI compliant OS.

14.3.1 Driver Binding Protocol for SCSI Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the SCSI Device Driver can manage a device handle. A
SCSI Device Driver can only manage device handle that contain the Device Path Protocol and the
SCSI I//O Protocol, so a SCSI Device Driver must look for these two protocols on the device
handle that is being tested. In addition, it needs to check to see if the device handle represents a
SCSI Device that SCSI Device Driver knows how to manage. This is typically done by using the
services of the SCSI I/O Protocol to see whether the device information retrieved is supported by
the device driver.

The Start() function tells the SCSI Device Driver to start managing a SCSI Device. A SCSI
Device Driver could be a bus driver itself, and may create child handles. But most SCSI Device
Drivers will be device drivers that do not create new handles. For the pure device driver, it installs
one or more addition protocol instances on the device handle for the SCSI Device.

The Stop() function mirrors the Start() function, so the Stop() function completes any
outstanding transactions to the SCSI Device and removes the protocol interfaces that were installed
in Start().

14.4 EFI SCSI I/O Protocol Overview

This section defines the EFI SCSI I/O protocol. This protocol is used by code, typically drivers,
running in the EFI boot services environment to access SCSI devices. In particular, functions for
managing devices on SCSI buses are defined here.

The interfaces provided in the EFI_SCSI_IO_PROTOCOL are for performing basic operations to
access SCSI devices.

January 31, 2006
Version 2.0 609

14.5 EFI_SCSI_IO_PROTOCOL

This section provides a detailed description of the EFI_SCSI_IO_PROTOCOL.

Summary

Provides services to manage and communicate with SCSI devices.

GUID
#define EFI_SCSI_IO_PROTOCOL_GUID \

 {0x932f47e6,0x2362,0x4002,0x80,0x3e,0x3c,0xd5,0x4b,0x13,
0x8f,0x85}

Protocol Interface Structure
typedef struct _EFI_SCSI_IO_PROTOCOL {
 EFI_SCSI_IO_PROTOCOL_GET_DEVICE_TYPE GetDeviceType;
 EFI_SCSI_IO_PROTOCOL_GET_DEVICE_LOCATION GetDeviceLocation;
 EFI_SCSI_IO_PROTOCOL_RESET_BUS ResetBus;
 EFI_SCSI_IO_PROTOCOL_RESET_DEVICE ResetDevice;
 EFI_SCSI_IO_PROTOCOL_EXECUTE_SCSI_COMMAND ExecuteScsiCommand;
 UINT32 IoAlign;
} EFI_SCSI_IO_PROTOCOL;

Parameters

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a
power of 2, and the requirement is that the start address of a buffer
must be evenly divisible by IoAlign with no remainder.

GetDeviceType Retrieves the information of the device type which the SCSI device
belongs to. See Section 14.5.1.

GetDeviceLocation
Retrieves the device location information in the SCSI bus. See
Section 14.5.2.

ResetBus Resets the entire SCSI bus the SCSI device attaches to. See
Section 14.5.3.

ResetDevice Resets the SCSI Device that is specified by the device handle the SCSI
I/O protocol attaches. See Section 14.5.4.

ExecuteScsiCommand Sends a SCSI command to the SCSI device and waits for the
execution completion until an exit condition is met, or a timeout
occurs. See Section 14.5.5.

 January 31, 2006
610 Version 2.0

Description

The EFI_SCSI_IO_PROTOCOL provides the basic functionalities to access and manage a SCSI
Device. There is one EFI_SCSI_IO_PROTOCOL instance for each SCSI Device on a SCSI Bus.
A device driver that wishes to manage a SCSI Device in a system will have to retrieve the
EFI_SCSI_IO_PROTOCOL instance that is associated with the SCSI Device. A device handle
for a SCSI Device will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_SCSI_IO_PROTOCOL instance.

January 31, 2006
Version 2.0 611

14.5.1 EFI_SCSI_IO_PROTOCOL.GetDeviceType()

Summary

Retrieves the device type information of the SCSI Device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_GET_DEVICE_TYPE) (
 IN EFI_SCSI_IO_PROTOCOL *This,
 OUT UINT8 *DeviceType
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in Section 13.4.

DeviceType A pointer to the device type information retrieved from the SCSI Device.
See “Related Definitions” for the possible returned values of this
parameter.

Description

This function is used to retrieve the SCSI device type information. This function is typically used
for SCSI Device Drivers to quickly recognize whether the SCSI Device could be managed by it.

If DeviceType is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the device
type is returned in DeviceType and EFI_SUCCESS is returned.

Related Definitions
//Defined in the SCSI Primary Commands standard (e.g., SPC-4)

 January 31, 2006
612 Version 2.0

//
#define EFI_SCSI_IO_TYPE_DISK 0x00 // Disk device
#define EFI_SCSI_IO_TYPE_TAPE 0x01 // Tape device
#define EFI_SCSI_IO_TYPE_PRINTER 0x02 // Printer
#define EFI_SCSI_IO_TYPE_PROCESSOR 0x03 // Processor
#define EFI_SCSI_IO_TYPE_WORM 0x04 // Write-once read-multiple
#define EFI_SCSI_IO_TYPE_CDROM 0x05 // CD oe DVD device
#define EFI_SCSI_IO_TYPE_SCANNER 0x06 // Scanner device
#define EFI_SCSI_IO_TYPE_OPTICAL 0x07 // Optical memory device
#define EFI_SCSI_IO_TYPE_MEDIUMCHANGER 0x08 // Medium Changer device
#define EFI_SCSI_IO_TYPE_COMMUNICATION 0x09 // Communications device
#define MFI_SCSI_IO_TYPE_A 0x0A // Obsolete
#define MFI_SCSI_IO_TYPE_B 0x0B // Obsolete
#define MFI_SCSI_IO_TYPE_RAID 0x0C // Storage array controller

device (e.g., RAID)
#define MFI_SCSI_IO_TYPE_SES 0x0D // Enclosure services

device
#define MFI_SCSI_IO_TYPE_RBC 0x0E // Simplified direct-access
device (e.g., magnetic disk)
#define MFI_SCSI_IO_TYPE_OCRW 0x0F // Optical card
reader/writer device
#define MFI_SCSI_IO_TYPE_BRIDGE 0x10 // Bridge Controller

Commands
#define MFI_SCSI_IO_TYPE_OSD 0x11 // Object-based Storage

Device
#define EFI_SCSI_IO_TYPE_RESERVED_LOW 0x12 // Reserved (low)
#define EFI_SCSI_IO_TYPE_RESERVED_HIGH 0x1E // Reserved (high)
#define EFI_SCSI_IO_TYPE_UNKNOWN 0x1F // Unknown no device type

Status Codes Returned
EFI_SUCCESS Retrieves the device type information successfully.

EFI_INVALID_PARAMETER The DeviceType is NULL.

January 31, 2006
Version 2.0 613

14.5.2 EFI_SCSI_IO_PROTOCOL. GetDeviceLocation()

Summary

Retrieves the SCSI device location in the SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_GET_DEVICE_LOCATION) (
 IN EFI_SCSI_IO_PROTOCOL *This,
 IN OUT UINT8 **Target,
 OUT UINT64 *Lun
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in Section 13.4.

Target A pointer to the Target Array which represents the ID of a SCSI device
on the SCSI channel..

Lun A pointer to the Logical Unit Number of the SCSI device on the SCSI
channel.

Description
This function is used to retrieve the SCSI device location in the SCSI bus. The device location is
determined by a (Target, Lun) pair. This function allows a SCSI Device Driver to retrieve its
location on the SCSI channel, and may use the SCSI Pass Thru Protocol to access the SCSI device
directly.

If Target or Lun is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the device
location is returned in Target and Lun, and EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS Retrieves the device location successfully.

EFI_INVALID_PARAMETER Target or Lun is NULL.

 January 31, 2006
614 Version 2.0

14.5.3 EFI_SCSI_IO_PROTOCOL. ResetBus()

Summary

Resets the SCSI Bus that the SCSI Device is attached to.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_RESET_BUS) (
 IN EFI_SCSI_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in Section 13.4.

Description

This function provides the mechanism to reset the whole SCSI bus that the specified SCSI Device
is connected to. Some SCSI Host Controller may not support bus reset, if so, EFI_UNSUPPORTED
is returned. If a device error occurs while executing that bus reset operation, then
EFI_DEVICE_ERROR is returned. If a timeout occurs during the execution of the bus reset
operation, then EFI_TIMEOUT is returned. If the bus reset operation is completed, then
EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The SCSI bus is reset successfully.

EFI_DEVICE_ERROR Errors encountered when resetting the SCSI bus.

EFI_UNSUPPORTED The bus reset operation is not supported by the SCSI Host Controller.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI bus.

January 31, 2006
Version 2.0 615

14.5.4 EFI_SCSI_IO_PROTOCOL.ResetDevice()

Summary

Resets the SCSI Device that is specified by the device handle that the SCSI I/O Protocol is
attached.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_RESET_DEVICE) (
 IN EFI_SCSI_IO_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in Section 13.4.

Description

This function provides the mechanism to reset the SCSI Device. If the SCSI bus does not support a
device reset operation, then EFI_UNSUPPORTED is returned. If a device error occurs while
executing that device reset operation, then EFI_DEVICE_ERROR is returned. If a timeout occurs
during the execution of the device reset operation, then EFI_TIMEOUT is returned. If the device
reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS Reset the SCSI Device successfully.

EFI_DEVICE_ERROR Errors are encountered when resetting the SCSI Device.

EFI_UNSUPPORTED The SCSI bus does not support a device reset operation.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI Device.

 January 31, 2006
616 Version 2.0

14.5.5 EFI_SCSI_IO_PROTOCOL. ExecuteScsiCommand()

Summary

Sends a SCSI Request Packet to the SCSI Device for execution.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_EXECUTE_SCSI_COMMAND) (
 IN EFI_SCSI_IO_PROTOCOL *This,
 IN OUT EFI_SCSI_IO_SCSI_REQUEST_PACKET *Packet,
 IN EFI_EVENT Event OPTIONAL
);

Parameters

This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type
EFI_SCSI_IO_PROTOCOL is defined in Section 13.4.

Packet The SCSI request packet to send to the SCSI Device specified by the
device handle. See “Related Definitions” for a description of
EFI_SCSI_IO_SCSI_REQUEST_PACKET.

Event If the SCSI bus where the SCSI device is attached does not support non-
blocking I/O, then Event is ignored, and blocking I/O is performed. If
Event is NULL, then blocking I/O is performed. If Event is not NULL
and non-blocking I/O is supported, then non-blocking I/O is performed,
and Event will be signaled when the SCSI Request Packet completes.

Related Definitions
typedef struct {
 UINT64 Timeout;
 VOID *InDataBuffer;
 VOID *OutDataBuffer;
 VOID *SenseData;
 VOID *Cdb;
 UINT32 InTransferLength;
 UINT32 OutTransferLength;
 UINT8 CdbLength;
 UINT8 DataDirection;
 UINT8 HostAdapterStatus;
 UINT8 TargetStatus;
 UINT8 SenseDataLength;
} EFI_SCSI_IO_SCSI_REQUEST_PACKET;

January 31, 2006
Version 2.0 617

Timeout The timeout, in 100 ns units, to use for the execution of this SCSI
Request Packet. A Timeout value of 0 means that this function will
wait indefinitely for the SCSI Request Packet to execute. If Timeout is
greater than zero, then this function will return EFI_TIMEOUT if the
time required to execute the SCSI Request Packet is greater than
Timeout.

DataBuffer A pointer to the data buffer to transfer from or to the SCSI device.

InDataBuffer A pointer to the data buffer to transfer between the SCSI controller and
the SCSI device for SCSI READ command. For all SCSI WRITE
Commands this must point to NULL.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI controller and
the SCSI device for SCSI WRITE command. For all SCSI READ
commands this field must point to NULL.

SenseData A pointer to the sense data that was generated by the execution of the
SCSI Request Packet.

Cdb A pointer to buffer that contains the Command Data Block to send to the
SCSI device.

InTransferLength On Input, the size, in bytes, of InDataBuffer. On output, the number
of bytes transferred between the SCSI controller and the SCSI device. If
InTransferLength is larger than the SCSI controller can handle, no
data will be transferred, InTransferLength will be updated to
contain the number of bytes that the SCSI controller is able to transfer,
and EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SCSI Controller and the SCSI
device. If OutTransferLength is larger than the SCSI controller can
handle, no data will be transferred, OutTransferLength will be
updated to contain the number of bytes that the SCSI controller is able to
transfer, and EFI_BAD_BUFFER_SIZE will be returned.

CdbLength The length, in bytes, of the buffer Cdb. The standard values are 6, 10,
12, and 16, but other values are possible if a variable length CDB is used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. A value of 2 is
Reserved for Bi-Directional SCSI commands. For example
XDREADWRITE. All other values are reserved, and must not be used.

HostAdapterStatus The status of the SCSI Host Controller that produces the SCSI bus where
the SCSI device attached when the SCSI Request Packet was executed
on the SCSI Controller. See the possible values listed below.

TargetStatus The status returned by the SCSI device when the SCSI Request Packet
was executed. See the possible values listed below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On output, the
number of bytes written to the SenseData buffer.

 January 31, 2006
618 Version 2.0

//
// DataDirection
//
#define EFI_SCSI_IO_DATA_DIRECTION_READ 0
#define EFI_SCSI_IO_DATA_DIRECTION_WRITE 1
#define EFI_SCSI_IO_DATA_DIRECTION_BIDIRECTIONAL 2

//
// HostAdapterStatus
//
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_OK 0x00
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_TIMEOUT 0x0b
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_BUS_RESET 0x0e
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_BUS_FREE 0x13
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14
#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_OTHER 0x7f

//
// TargetStatus
//
#define EFI_SCSI_IO_STATUS_TARGET_GOOD 0x00
#define EFI_SCSI_IO_STATUS_TARGET_CHECK_CONDITION 0x02
#define EFI_SCSI_IO_STATUS_TARGET_CONDITION_MET 0x04
#define EFI_SCSI_IO_STATUS_TARGET_BUSY 0x08
#define EFI_SCSI_IO_STATUS_TARGET_INTERMEDIATE 0x10
#define EFI_SCSI_IO_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14
#define EFI_SCSI_IO_STATUS_TARGET_RESERVATION_CONFLICT 0x18
#define EFI_SCSI_IO_STATUS_TARGET_COMMAND_TERMINATED 0x22
#define EFI_SCSI_IO_STATUS_TARGET_QUEUE_FULL 0x28

January 31, 2006
Version 2.0 619

Description

This function sends the SCSI Request Packet specified by Packet to the SCSI Device.

If the SCSI Bus supports non-blocking I/O and Event is not NULL, then this function will return
immediately after the command is sent to the SCSI Device, and will later signal Event when the
command has completed. If the SCSI Bus supports non-blocking I/O and Event is NULL, then this
function will send the command to the SCSI Device and block until it is complete. If the SCSI Bus
does not support non-blocking I/O, the Event parameter is ignored, and the function will send the
command to the SCSI Device and block until it is complete.

If Packet is successfully sent to the SCSI Device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then
EFI_NOT_READY is returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If any field of Packet is invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by DataBuffer and TransferLength is too big to be transferred
in a single command, then EFI_WARN_BUFFER_TOO_SMALL is returned. The number of bytes
actually transferred is returned in TransferLength.

If the command described in Packet is not supported by the SCSI Host Controller that produces
the SCSI bus, then EFI_UNSUPPORTED is returned.

If EFI_SUCCESS,EFI_WARN_BUFFER_TOO_SMALL,EFI_DEVICE_ERROR, or
EFI_TIMEOUT is returned, then the caller must examine the status fields in Packet in the
following precedence order: HostAdapterStatus followed by TargetStatus followed by
SenseDataLength, followed by SenseData. If non-blocking I/O is being used, then the status
fields in Packet will not be valid until the Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then
Packet was never sent, so the status fields in Packet are not valid. If non-blocking I/O is being
used, the Event associated with Packet will not be signaled.

 January 31, 2006
620 Version 2.0

Status Codes Returned
EFI_SUCCESS The SCSI Request Packet was sent by the host. For read and bi-

directional commands, InTransferLength bytes were
transferred to InDataBuffer. For write and bi-directional
commands, OutTransferLength bytes were transferred from
OutDataBuffer. See HostAdapterStatus,
TargetStatus, SenseDataLength, and SenseData in that
order for additional status information.

EFI_WARN_BUFFER_TOO_SMALL The SCSI Request Packet was not executed. For read and bi-
directional commands, the number of bytes that could be
transferred is returned in InTransferLength. For write and bi-
directional commands, the number of bytes that could be
transferred is returned in OutTransferLength.See
HostAdapterStatus and TargetStatus in that order for
additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there are
too many SCSI Command Packets already queued. The caller
may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI
Request Packet. See HostAdapterStatus,

TargetStatus, SenseDataLength, and
SenseData in that order for additional status information.

EFI_INVALID_PARAMETER The contents of CommandPacket are invalid. The SCSI

Request Packet was not sent, so no additional status information
is available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not
supported by the SCSI initiator (i.e., SCSI Host Controller). The
SCSI Request Packet was not sent, so no additional status
information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to
execute. See HostAdapterStatus, TargetStatus,

SenseDataLength, and SenseData in that order for

additional status information.

January 31, 2006
Version 2.0 621

14.6 SCSI Device Paths

An EFI_SCSI_IO_PROTOCOL must be installed on a handle for its services to be available to
SCSI device drivers. In addition to the EFI_SCSI_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Chapter 9 for
detailed description of the EFI_DEVICE_PATH_PROTOCOL.

The SCSI Driver Model defined in this document can support the SCSI channel generated or
emulated by multiple architectures, such as Parallel SCSI, ATAPI, Fibre Channel, InfiniBand, and
other future channel types. In this section, there are four example device paths provided, including
SCSI device path, ATAPI device path, Fibre Channel device path and InfiniBand device path.

14.6.1 SCSI Device Path Example
Table 99 shows an example device path for a SCSI device controller on a desktop platform. This
SCSI device controller is connected to a SCSI channel that is generated by a PCI SCSI host
controller. The PCI SCSI host controller generates a single SCSI channel, it is located at PCI device
number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. The SCSI device
controller is assigned SCSI Id 2, and its LUN is 0.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, a SCSI
Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7|0)/SCSI(2,0).

Table 99. SCSI Device Path Examples

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,

0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x02 Sub type – SCSI

0x14 0x02 0x08 Length – 0x08 bytes

0x16 0x02 0x0002 Target ID on the SCSI bus (PUN)

0x18 0x02 0x0000 Logical Unit Number (LUN)

 January 31, 2006
622 Version 2.0

Byte
Offset

Byte
Length

Data

Description

0x1A 0x01 0xff Generic Device Path Header – Type End of Hardware Device Path

0x1B 0x01 0xFF Sub type – End of Entire Device Path

0x1C 0x02 0x04 Length – 0x04 bytes

14.6.2 ATAPI Device Path Example
Table 100 shows an example device path for an ATAPI device on a desktop platform. This ATAPI
device is connected to the IDE bus on Primary channel, and is configured as the Master device on
the channel. The IDE bus is generated by the IDE controller that is a PCI device. It is located at PCI
device number 0x1F and PCI function 0x01, and is directly attached to a PCI root bridge.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, an
ATAPI Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7|0)/ATAPI(Primary,Master).

Table 100. ATAPI Device Path Examples

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,

0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x01 Sub type – ATAPI

0x14 0x02 0x08 Length – 0x08 bytes

0x16 0x01 0x00 PrimarySecondary – Set to zero for primary or one for secondary.

0x17 0x01 0x00 SlaveMaster – set to zero for master or one for slave.

0x18 0x02 0x0000 Logical Unit Number,LUN.

0x1A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1B 0x01 0xFF Sub type – End of Entire Device Path

0x1C 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 623

14.6.3 Fibre Channel Device Path Example
Table 101 shows an example device path for an SCSI device that is connected to a Fibre Channel
Port on a desktop platform. The Fibre Channel Port is a PCI device that is located at PCI device
number 0x08 and PCI function 0x00, and is directly attached to a PCI root bridge. The Fibre
Channel Port is addressed by the World Wide Number, and is assigned as X (X is a 64bit value);
the SCSI device’s Logical Unit Number is 0.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, a Fibre
Channel Device Path Node, and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(8|0)/Fibre(X,0).

Table 101. Fibre Channel Device Path Examples

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,

0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x08 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x02 Sub type – Fibre Channel

0x14 0x02 0x24 Length – 0x24 bytes

0x16 0x04 0x00 Reserved

0x1A 0x08 X Fibre Channel World Wide Number

0x22 0x08 0x00 Fibre Channel Logical Unit Number (LUN).

0x2A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x2B 0x01 0xFF Sub type – End of Entire Device Path

0x2C 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
624 Version 2.0

14.6.4 InfiniBand Device Path Example
Table 102 shows an example device path for a SCSI device in an InfiniBand Network. This SCSI
device is connected to a single SCSI channel generated by a SCS Host Adapter, and the SCSI Host
Adapter is an end node in the InfiniBand Network. The SCSI Host Adapter is a PCI device that is
located at PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI root
bridge. The SCSI device is addressed by the (IOU X, IOC Y, DeviceId Z) in the InfiniBand
Network. (X, Y, Z are EUI-64 compliant identifiers).

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, an
InfiniBand Node, and a Device Path End Structure. The _HID and _UID must match the ACPI
table description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7|0)/Infiniband(X,Y,Z).

Table 102. InfiniBand Device Path Examples

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,

0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x09 Sub type – InfiniBand

0x14 0x02 0x20 Length – 0x20 bytes

0x16 0x04 0x00 Reserved

0x1A 0x08 X 64bit node GUID of the IOU

0x22 0x08 Y 64bit GUID of the IOC

0x2A 0x08 Z 64bit persistent ID of the device.

0x32 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x33 0x01 0xFF Sub type – End of Entire Device Path

0x34 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 625

14.7 SCSI Pass Thru Device Paths

An EFI_SCSI_PASS_THRU_PROTOCOL must be installed on a handle for its services to be
available to UEFI drivers and applications. In addition to the
EFI_SCSI_PASS_THRU_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle. See Chapter 9 for a detailed description of the
EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s
point of view. This includes the list of busses that lie between the processor and the SCSI
controller. The EFI Specification takes advantage of the ACPI Specification to name system
components. For the following set of examples, a PCI SCSI controller is assumed. The examples
will show a SCSI controller on the root PCI bus, and a SCSI controller behind a PCI-PCI bridge. In
addition, an example of a multichannel SCSI controller will be shown.

Table 103 shows an example device path for a single channel PCI SCSI controller that is located at
PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This
device path consists of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path
End Structure. The _HID and _UID must match the ACPI table description of the PCI Root
Bridge. The shorthand notation for this device path is:

 ACPI(PNP0A03,0)/PCI(7|0).

Table 103. Single Channel PCI SCSI Controller

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
626 Version 2.0

Table 104 shows an example device path for a single channel PCI SCSI controller that is located
behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI
bridge is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI
function 0x00. This device path consists of an ACPI Device Path Node, two PCI Device Path
Nodes, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0).

Table 104. Single Channel PCI SCSI Controller behind a PCI Bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

January 31, 2006
Version 2.0 627

Table 105 shows an example device path for channel #3 of a four channel PCI SCSI controller that
is located behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI
to PCI bridge is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI
function 0x00. This device path consists of an ACPI Device Path Node, two PCI Device Path
Nodes, a Controller Node, and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation of the device paths for all
four of the SCSI channels are listed below. Table 4 shows the last device path listed.

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(0).

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(1).

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(2).

ACPI(PNP0A03,0)/PCI(5|0)/PCI(7|0)/Controller(3).

Table 105. Channel #3 of a PCI SCSI Controller behind a PCI Bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x19 0x01 0x05 Sub type – Controller

0x1A 0x02 0x08 Length – 0x08 bytes

0x1C 0x04 0x0003 Controller Number

0x20 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x21 0x01 0xFF Sub type – End of Entire Device Path

0x22 0x02 0x04 Length – 0x04 bytes

 January 31, 2006
628 Version 2.0

14.8 Extended SCSI Pass Thru Protocol

This section defines the Extended SCSI Pass Thru Protocol. This protocol allows information about
a SCSI channel to be collected, and allows SCSI Request Packets to be sent to any SCSI devices on
a SCSI channel even if those devices are not boot devices. This protocol is attached to the device
handle of each SCSI channel in a system that the protocol supports, and can be used for diagnostics.
It may also be used to build a Block I/O driver for SCSI hard drives and SCSI CD-ROM or DVD
drives to allow those devices to become boot devices.

EFI_EXT_SCSI_PASS_THRU_PROTOCOL

This section provides a detailed description of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL.

Summary

Provides services that allow SCSI Pass Thru commands to be sent to SCSI devices attached to a
SCSI channel.

GUID
#define EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID \

{0x1d3de7f0,0x807,0x424f,0xaa,0x69,0x11,0xa5,0x4e,0x19,0xa4,
0x6f}

Protocol Interface Structure
 typedef struct _EFI_EXT_SCSI_PASS_THRU_PROTOCOL {
EFI_EXT_SCSI_PASS_THRU_MODE *Mode;
EFI_EXT_SCSI_PASS_THRU_PASSTHRU PassThru;
EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN GetNextTargetLun;
EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;
EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN GetTargetLun;
EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL ResetChannel;
EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN ResetTargetLun;
EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET GetNextTarget;}
EFI_EXT_SCSI_PASS_THRU_PROTOCOL;

Parameters
Mode A pointer to the EFI_EXT_SCSI_PASS_THRU_MODE data for this

SCSI channel. EFI_EXT_SCSI_PASS_THRU_MODE is defined in
“Related Definitions” below.

PassThru Sends a SCSI Request Packet to a SCSI device that is Connected to the
SCSI channel. See the PassThru() Function description.

GetNextTargetLun Used to retrieve the list of legal Target IDs and LUNs for the SCSI
devices on a SCSI channel. See the GetNextTargetLun () function
description.

BuildDevicePath Used to allocate and build a device path node for a SCSI Device on a
SCSI channel. See the BuildDevicePath() function description.

January 31, 2006
Version 2.0 629

GetTargetLun Used to translate a device path node to a Target ID and LUN. See the
GetTargetLun() function description.

ResetChannel Resets the SCSI channel. This operation resets all the SCSI devices
connected to the SCSI channel. See the ResetChannel() function
description.

ResetTargetLun Resets a SCSI device that is connected to the SCSI channel. See the
ResetTargetLun() function description.

GetNextTartget Used to retrieve the list of legal Target IDs for the SCSI devices on a
SCSI channel. See the GetNextTarget() function description.

The following data values in the EFI_EXT_SCSI_PASS_THRU_MODE interface are read-only.

AdapterId The Target ID of the host adapter on the SCSI channel.

Attributes Additional information on the attributes of the SCSI channel. See
“Related Definitions” below for the list of possible attributes.

IoAlign Supplies the alignment requirement for any buffer used in a data transfer.
IoAlign values of 0 and 1 mean that the buffer can be placed
anywhere in memory. Otherwise, IoAlign must be a power of 2, and
the requirement is that the start address of a buffer must be evenly
divisible by IoAlign with no remainder.

Related Definitions
typedef struct {
 UINT32 AdapterId;
 UINT32 Attributes;
 UINT32 IoAlign;
} EFI_EXT_SCSI_PASS_THRU_MODE;

#define TARGET_MAX_BYTES 0x10
#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001
#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002
#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface is for
physical devices on the SCSI channel.

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface is for
logical devices on the SCSI channel.

 January 31, 2006
630 Version 2.0

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface supports
non blocking I/O. Every EFI_EXT_SCSI_PASS_THRU_PROTOCOL must support
blocking I/O. The support of nonblocking I/O is optional.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL provides information about a SCSI channel and
the ability to send SCI Request Packets to any SCSI device attached to that SCSI channel. The
information includes the Target ID of the host controller on the SCSI channel and the attributes of
the SCSI channel.

The printable name for the SCSI controller, and the printable name of the SCSI channel can be
provided through the EFI_COMPONENT_NAME_PROTOCOL for multiple languages.

The Attributes field of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface tells if the
interface is for physical SCSI devices or logical SCSI devices. Drivers for non-RAID SCSI
controllers will set both the EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL, and the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical devices and logical devices will
produce two EFI_EXT_SCSI_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to
access the physical devices attached to the RAID controller, and the other can be used to access the
logical devices attached to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical devices will produce one
EFI_EXT_SCSI_PASS_THROUGH_PROTOCOL interface with just the
EFI_EXT_SCSI_PASS_THRU_LOGICAL bit set. The interface for logical devices can also be
used by a file system driver to mount the RAID volumes. An
EFI_EXT_SCSI_PASS_THRU_PROTOCOL with neither
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

January 31, 2006
Version 2.0 631

The Attributes field also contains the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO bit. All
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is
set, then the interface support both blocking I/O and nonblocking I/O.

Each EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance must have an associated device path.
Typically this will have an ACPI device path node and a PCI device path node, although variation
will exist. For a SCSI controller that supports only one channel per PCI bus/device/function, it is
recommended, but not required, that an additional Controller device path node (for controller 0) be
appended to the device path.

For a SCSI controller that supports multiple channels per PCI bus/device/function, it is required
that a Controller device path node be appended for each channel.

Additional information about the SCSI channel can be obtained from protocols attached to the same
handle as the EFI_EXT_SCSI_PASS_THRU_PROTOCOL, or one of its parent handles. This
would include the device I/O abstraction used to access the internal registers and functions of the
SCSI controller.

 January 31, 2006
632 Version 2.0

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()

Summary

Sends a SCSI Request Packet to a SCSI device that is attached to the SCSI channel. This function
supports both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and the
nonblocking I/O functionality is optional.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_PASSTHRU) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT8 *Target,
 IN UINT64 Lun,
 IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet,
 IN EFI_EVENT Event OPTIONAL
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

Target The Target is an array of size TARGET_MAX_BYTES and it represents
the id of the SCSI device to send the SCSI Request Packet. Each
transport driver may chose to utilize a subset of this size to suit the needs
of transport target representation. For example, a Fibre Channel driver
may use only 8 bytes (WWN) to represent an FC target.

Lun The LUN of the SCSI device to send the SCSI Request Packet.

Packet A pointer to the SCSI Request Packet to send to the SCSI device
specified by Target and Lun. See “Related Definitions” below for a
description of
EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET.

Event If nonblocking I/O is not supported then Event is ignored, and blocking
I/O is performed. If Event is NULL, then blocking I/O is performed. If
Event is not NULL and non blocking I/O is supported, then
nonblocking I/O is performed, and Event will be signaled when the
SCSI Request Packet completes.

January 31, 2006
Version 2.0 633

Related Definitions
typedef struct {
 UINT64 Timeout;
 VOID *InDataBuffer;
 VOID *OutDataBuffer;
 VOID *SenseData;
 VOID *Cdb;
 UINT32 InTransferLength;
 UINT32 OutTransferLength;
 UINT8 CdbLength;
 UINT8 DataDirection;
 UINT8 HostAdapterStatus;
 UINT8 TargetStatus;
 UINT8 SenseDataLength;
 } EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET;

Timeout The timeout, in 100 ns units, to use for the execution of this SCSI
Request Packet. A Timeout value of 0 means that this function will
wait indefinitely for the SCSI Request Packet to execute. If Timeout is
greater than zero, then this function will return EFI_TIMEOUT if the
time required to execute the SCSI Request Packet is greater than
Timeout.

InDataBuffer A pointer to the data buffer to transfer between the SCSI controller and
the SCSI device for SCSI READ command. For all SCSI WRITE
Commands this must point to NULL, and must be aligned to the
boundary specified in the IoAlign field of the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI controller and
the SCSI device for SCSI WRITE command. For all SCSI READ
commands this field must point to NULL, and must be aligned to the
boundary specified in the IoAlign field of the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

SenseData A pointer to the sense data that was generated by the execution of the
SCSI Request Packet. Must be aligned to the boundary specified in the
IoAlign field of the EFI_EXT_SCSI_PASS_THRU_MODE
structure.

Cdb A pointer to buffer that contains the Command Data Block to send to the
SCSI device specified by Target and Lun.

 January 31, 2006
634 Version 2.0

InTransferLength On Input, the size, in bytes, of InDataBuffer. On output, the number
of bytes transferred between the SCSI controller and the SCSI device. If
InTransferLength is larger than the SCSI controller can handle, no
data will be transferred, InTransferLength will be updated to
contain the number of bytes that the SCSI controller is able to transfer,
and EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SCSI Controller and the SCSI
device. If OutTransferLength is larger than the SCSI controller can
handle, no data will be transferred, OutTransferLength will be
updated to contain the number of bytes that the SCSI controller is able to
transfer, and EFI_BAD_BUFFER_SIZE will be returned.

CdbLength The length, in bytes, of the buffer Cdb. The standard values are 6, 10,
12, and 16, but other values are possible if a variable length CDB is used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. A value of 2 is
Reserved for Bi-Directional SCSI commands. For example
XDREADWRITE. All other values are reserved, and must not be used.

HostAdapterStatus The status of the host adapter specified by This when the SCSI Request
Packet was executed on the target device. See the possible values listed
below. If bit 7 of this field is set, then HostAdapterStatus is a
vendor defined error code.

TargetStatus The status returned by the device specified by Target and Lun when
the SCSI Request Packet was executed. See the possible values listed
below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On output, the
number of bytes written to the SenseData buffer.

January 31, 2006
Version 2.0 635

//
// DataDirection
//
#define EFI_EXT_SCSI_DATA_DIRECTION_READ 0
#define EFI_EXT_SCSI_DATA_DIRECTION_WRITE 1
#define EFI_EXT_SCSI_DATA_DIRECTION_BIDIRECTIONAL 2
//
// HostAdapterStatus
//
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OK 0x00
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT 0x0b
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_RESET 0x0e
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_FREE 0x13
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OTHER 0x7f
//
// TargetStatus
//
#define EFI_EXT_SCSI_STATUS_TARGET_GOOD 0x00
#define EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION 0x02
#define EFI_EXT_SCSI_STATUS_TARGET_CONDITION_MET 0x04
#define EFI_EXT_SCSI_STATUS_TARGET_BUSY 0x08
#define EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE 0x10
#define EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14
#define EFI_EXT_SCSI_STATUS_TARGET_RESERVATION_CONFLICT 0x18
#define EFI_EXT_SCSI_STATUS_TARGET_TASK_SET_FULL 0x28
#define EFI_EXT_SCSI_STATUS_TARGET_ACA_ACTIVE 0x30
#define EFI_EXT_SCSI_STATUS_TARGET_TASK_ABORTED 0x40

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru() function sends the SCSI
Request Packet specified by Packet to the SCSI device specified by Target and Lun. If the
driver supports nonblocking I/O and Event is not NULL, then the driver will return immediately
after the command is sent to the selected device, and will later signal Event when the command
has completed.

If the driver supports nonblocking I/O and Event is NULL, then the driver will send the command
to the selected device and block until it is complete.

 January 31, 2006
636 Version 2.0

If the driver does not support nonblocking I/O, then the Event parameter is ignored, and the driver
will send the command to the selected device and block until it is complete.

If Packet is successfully sent to the SCSI device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then
EFI_NOT_READY is returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If Target or Lun are not in a valid range for the SCSI channel, then
EFI_INVALID_PARAMETER is returned. If InDataBuffer, OutDataBuffer or
SenseData do not meet the alignment requirement specified by the IoAlign field of the
EFI_EXT_SCSI_PASS_THRU_MODE structure, then EFI_INVALID_PARAMETER is
returned. If any of the other fields of Packet are invalid, then EFI_INVALID_PARAMETER is
returned.

If the data buffer described by InDataBuffer and InTransferLength is too big to be
transferred in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is
returned. The number of bytes that can be transferred in a single command are returned in
InTransferLength..

If the data buffer described by OutDataBuffer and OutTransferLength is too big to be
transferred in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is
returned. The number of bytes that can be transferred in a single command are returned in
OutTransferLength..

If the command described in Packet is not supported by the host adapter, then
EFI_UNSUPPORTED is returned.

If EFI_SUCCESS, EFI_WARN_BUFFER_TOO_SMALL, EFI_DEVICE_ERROR, or
EFI_TIMEOUT is returned, then the caller must examine the status fields in Packet in the
following precedence order: HostAdapterStatus followed by TargetStatus followed by
SenseDataLength, followed by SenseData.

If nonblocking I/O is being used, then the status fields in Packet will not be valid until the
Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then
Packet was never sent, so the status fields in Packet are not valid. If nonblocking I/O is being
used, the Event associated with Packet will not be signaled.

January 31, 2006
Version 2.0 637

Status Codes Returned
EFI_SUCCESS The SCSI Request Packet was sent by the host. For bi-directional

commands, InTransferLength bytes were transferred from
InDataBuffer. For write and bi-directional commands,
OutTransferLength bytes were transferred by
OutDataBuffer. See HostAdapterStatus,
TargetStatus, SenseDataLength, and SenseData
in that order for additional status information.

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. The number of bytes that
could be transferred is returned in InTransferLength. For write
and bi-directional commands, OutTransferLength bytes were
transferred by OutDataBuffer. See HostAdapterStatus,
TargetStatus, and in that order for additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there are too many
SCSI Request Packets already queued. The caller may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request
Packet. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for additional
status information.

EFI_INVALID_PARAMETER Target, Lun, or the contents of ScsiRequestPacket are
invalid. The SCSI Request Packet was not sent, so no additional status
information is available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not supported
by the host adapter. This includes the case of Bi-directional SCSI
commands not supported by the implementation. The SCSI Request
Packet was not sent, so no additional status information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to
execute. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for
additional status information.

 January 31, 2006
638 Version 2.0

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()

Summary

Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These
can either be the list SCSI devices that are actually present on the SCSI channel, or the list of legal
Target Ids and LUNs for the SCSI channel. Regardless, the caller of this function must probe the
Target ID and LUN returned to see if a SCSI device is actually present at that location on the SCSI
channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN OUT UINT8 **Target,
 IN OUT UINT64 *Lun
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

Target On input, a pointer to the Target ID (an array of size
TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
On output, a pointer to the Target ID (an array of
TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
channel. An input value of 0xF’s (all bytes in the array are 0xF) in the
Target array retrieves the Target ID of the first SCSI device present on a
SCSI channel.

Lun On input, a pointer to the LUN of a SCSI device present on the SCSI
channel. On output, a pointer to the LUN of the next SCSI device present
on a SCSI channel.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() function
retrieves the Target ID and LUN of a SCSI device present on a SCSI channel. If on input a
Target is specified by all 0xF in the Target array, then the Target ID and LUN of the first
SCSI device is returned in Target and Lun and EFI_SUCCESS is returned.

If Target and Lun is a Target ID and LUN value that was returned on a previous call to
GetNextTargetLun(), then the Target ID and LUN of the next SCSI device on the SCSI
channel is returned in Target and Lun, and EFI_SUCCESS is returned.

January 31, 2006
Version 2.0 639

If Target array is not all 0xF’s and Target and Lun were not returned on a previous
call to GetNextTargetLun(), then EFI_INVALID_PARAMETER is returned.

If Target and Lun are the Target ID and LUN of the last SCSI device on the SCSI channel,
then EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS The Target ID and LUN of the next SCSI device on the SCSI

channel was returned in Target and Lun.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target array is not all 0xF’s, and Target and Lun were
not returned on a previous call to GetNextTargetLun().

 January 31, 2006
640 Version 2.0

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary

Used to allocate and build a device path node for a SCSI device on a SCSI channel.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH) (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT8 *Target,
 IN UINT64 Lun
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

Target The Target is an array of size TARGET_MAX_BYTES and it specifies the
Target ID of the SCSI device for which a device path node is to be
allocated and built. Transport drivers may chose to utilize a subset of
this size to suit the representation of targets. For example, a Fibre
Channel driver may use only 8 bytes (WWN) in the array to represent a
FC target.

Lun The LUN of the SCSI device for which a device path node is to be
allocated and built.

DevicePath A pointer to a single device path node that describes the SCSI device
specified by Target and Lun. This function is responsible for
allocating the buffer DevicePath with the boot service
AllocatePool(). It is the caller’s responsibility to free
DevicePath when the caller is finished with DevicePath.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates
and builds a single device path node for the SCSI device specified by Target and Lun. If the
SCSI device specified by Target and Lun are not present on the SCSI channel, then
EFI_NOT_FOUND is returned. If DevicePath is NULL, then EFI_INVALID_PARAMETER
is returned. If there are not enough resources to allocate the device path node, then
EFI_OUT_OF_RESOURCES is returned. Otherwise, DevicePath is allocated with the boot
service AllocatePool(), the contents of DevicePath are initialized to describe the SCSI
device specified by Target and Lun, and EFI_SUCCESS is returned.

January 31, 2006
Version 2.0 641

Status Codes Returned
EFI_SUCCESS The device path node that describes the SCSI device specified by

Target and Lun was allocated and returned in
DevicePath.

EFI_NOT_FOUND The SCSI devices specified by Target and Lun does not exist
on the SCSI channel.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.

 January 31, 2006
642 Version 2.0

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()

Summary

Used to translate a device path node to a Target ID and LUN.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
 OUT UINT8 **Target,
 OUT UINT64 *Lun
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

DevicePath A pointer to the device path node that describes a SCSI device on the
SCSI channel.

Target A pointer to the Target Array which represents the ID of a SCSI device
on the SCSI channel.

Lun A pointer to the LUN of a SCSI device on the SCSI channel.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun() function determines the
Target ID and LUN associated with the SCSI device described by DevicePath. If DevicePath
is a device path node type that the SCSI Pass Thru driver supports, then the SCSI Pass Thru driver
will attempt to translate the contents DevicePath into a Target ID and LUN. If this translation is
successful, then that Target ID and LUN are returned in Target and Lun, and EFI_SUCCESS is
returned.

If DevicePath, Target, or Lun are NULL, then EFI_INVALID_PARAMETER is returned.

If DevicePath is not a device path node type that the SCSI Pass Thru driver supports, then
EFI_UNSUPPORTED is returned.

If DevicePath is a device path node type that the SCSI Pass Thru driver supports, but there is
not a valid translation from DevicePath to a Target ID and LUN, then EFI_NOT_FOUND is
returned.

January 31, 2006
Version 2.0 643

Status Codes Returned
EFI_SUCCESS DevicePath was successfully translated to a Target ID and

LUN, and they were returned in Target and Lun.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER Target is NULL

EFI_INVALID_PARAMETER Lun is NULL

EFI_UNSUPPORTED This driver does not support the device path node type in

DevicePath.

EFI_NOT_FOUND A valid translation from DevicePath to a Target ID and LUN

does not exist.

 January 31, 2006
644 Version 2.0

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()

Summary

Resets a SCSI channel. This operation resets all the SCSI devices connected to the SCSI channel.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel() function resets a SCSI
channel. This operation resets all the SCSI devices connected to the SCSI channel. If this SCSI
channel does not support a reset operation, then EFI_UNSUPPORTED is returned.

If a device error occurs while executing that channel reset operation, then EFI_DEVICE_ERROR
is returned.

If a timeout occurs during the execution of the channel reset operation, then EFI_TIMEOUT is
returned. If the channel reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The SCSI channel was reset.

EFI_UNSUPPORTED The SCSI channel does not support a channel reset operation.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI channel.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI channel.

January 31, 2006
Version 2.0 645

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()

Summary

Resets a SCSI logical unit that is connected to a SCSI channel.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN) (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT8 *Target,
 IN UINT64 Lun
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

Target The Target is an array of size TARGET_MAX_BYTE and it represents the
target port ID of the SCSI device containing the SCSI logical unit to
reset. Transport drivers may chose to utilize a subset of this array to suit
the representation of their targets. For example a Fibre Channel driver
may use only 8 bytes in the array (WWN) to represent a FC target.

Lun The LUN of the SCSI device to reset.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun() function resets the
SCSI logical unit specified by Target and Lun. If this SCSI channel does not support a target
reset operation, then EFI_UNSUPPORTED is returned.

If Target or Lun are not in a valid range for this SCSI channel, then
EFI_INVALID_PARAMETER is returned.

If a device error occurs while executing that logical unit reset operation, then
EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of the logical unit reset operation, then EFI_TIMEOUT is
returned.

If the logical unit reset operation is completed, then EFI_SUCCESS is returned.

 January 31, 2006
646 Version 2.0

Status Codes Returned
EFI_SUCCESS The SCSI device specified by Target and Lun was reset

EFI_UNSUPPORTED The SCSI channel does not support a target reset operation.

EFI_INVALID_PARAMETER Target or Lun are invalid.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI device

specified by Target and Lun.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI device

specified by Target and Lun.

January 31, 2006
Version 2.0 647

EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

Summary

Used to retrieve the list of legal Target IDs for SCSI devices on a SCSI channel. These can either
be the list SCSI devices that are actually present on the SCSI channel, or the list of legal Target IDs
for the SCSI channel. Regardless, the caller of this function must probe the Target ID returned to
see if a SCSI device is actually present at that location on the SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN OUT UINT8 **Target,
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.

Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in
Section 14.8.

Target On input, a pointer to the Target ID (an array of size
TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
On output, a pointer to the Target ID (an array of
TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
channel. An input value of 0xF’s (all bytes in the array are 0xF) in the
Target array retrieves the Target ID of the first SCSI device present on a
SCSI channel.

Description

The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() function retrieves the
Target ID of a SCSI device present on a SCSI channel. If on input a Target is specified by all
0xF in the Target array, then the Target ID of the first SCSI device is returned in Target and
EFI_SUCCESS is returned.

If Target is a Target ID value that was returned on a previous call to GetNextTarget(),
then the Target ID of the next SCSI device on the SCSI channel is returned in Target, and
EFI_SUCCESS is returned.

 January 31, 2006
648 Version 2.0

If Target array is not all 0xF’s and Target were not returned on a previous call to
GetNextTarget(), then EFI_INVALID_PARAMETER is returned.

If Target is the Target ID of the last SCSI device on the SCSI channel, then EFI_NOT_FOUND
is returned.

Status Codes Returned
EFI_SUCCESS The Target ID of the next SCSI device on the SCSI

channel was returned in Target.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target array is not all 0xF’s, and Target were not
returned on a previous call to GetNextTarget().

January 31, 2006
Version 2.0 649

15
Protocols — iSCSI Boot

15.1 Overview

The iSCSI protocol defines a transport for SCSI data over TCP/IP. It also provides an interoperable
solution that takes advantage of existing internet infrastructure, management facilities, and
addresses distance limitations. The iSCSI protocol specification was developed by the Internet
Engineering Task Force (IETF) and is SCSI Architecture Model-2 (SAM-2) compliant. iSCSI
encapsulates block-oriented SCSI commands into iSCSI Protocol Data Units (PDU) that traverse
the network over TCP/IP. iSCSI defines a Session, the initiator and target nexus (I-T nexus), which
could be a bundle of one or more TCP connections.

Similar to other existing mass storage protocols like Fibre Channel and parallel SCSI, boot over
iSCSI is an important functionality. This document will attempt to capture the various cases for
iSCSI boot and common up with generic EFI protocol changes to address them.

15.1.1 iSCSI UEFI Driver Layering
Case 1: iSCSI UEFI Driver on a NIC: The driver will be layered on top of the networking layers. It
will use the DHCP, IP, and TCP and packet level interface protocols of the EFI networking stack.

Case 2: iSCSI UEFI Driver on a TOE (or any other TCP offload card): The driver will be layered
on top of the TOE TCP interfaces. It will use the DHCP, IP, TCP protocols of the TOE.

15.2 EFI iSCSI Initiator Name Protocol

This protocol sets and obtains the iSCSI Initiator Name. The iSCSI Initiator Name protocol builds a
default iSCSI name. The iSCSI name configures using the programming interfaces defined below.
Successive configuration of the iSCSI initiator name overwrites the previously existing name. Once
overwritten, the previous name will not be retrievable. Setting an iSCSI name string that is zero
length is illegal. The maximum size of the iSCSI Initiator Name is 224 bytes (including the NULL
terminator).

 January 31, 2006
650 Version 2.0

EFI_ISCSI_INITIATOR_NAME_PROTOCOL

Summary

iSCSI Initiator Name Protocol for setting and obtaining the iSCSI Initiator Name.

GUID
#define EFI_ISCSI_INITIATOR_NAME_PROTOCOL_GUID \

{0xa6a72875,0x2962,0x4c18,0x9f,0x46,0x8d,0xa6,0x44,
0xcc,0xfe}

Protocol Interface Structure
typedef struct _EFI_ISCSI_INITIATOR_NAME_PROTOCOL {

 EFI_ISCSI_INITIATOR_NAME_GET Get;
 EFI_ISCSI_INITIATOR_NAME_SET Set;

} EFI_ISCSI_INITIATOR_NAME_PROTOCOL;

Parameters
Get Used to retrieve the iSCSI Initiator Name.

Set Used to set the iSCSI Initiator Name.

Description

The EFI_ISCSI_INIT_NAME_PROTOCOL provides the ability to get and set the iSCSI Initiator
Name.

January 31, 2006
Version 2.0 651

EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()

Summary

Retrieves the current set value of iSCSI Initiator Name.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_ISCSI_INITIATOR_NAME_GET) {
 IN EFI_ISCSI_INITIATOR_NAME_PROTOCOL *This
 IN OUT UINTN *BufferSize
 OUT VOID *Buffer
}

Parameters
This Pointer to the EFI_ISCSI_INITIATOR_NAME_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer / Actual size of the
variable data buffer.

Buffer Pointer to the buffer for data to be read.

Description

This function will retrieve the iSCSI Initiator Name from Non-volatile memory.

Status Codes Returned
EFI_SUCCESS Data was successfully retrieved into the provided buffer and the

BufferSize was sufficient to handle the iSCSI initiator name

EFI_BUFFER_TOO_SMALL BufferSize is too small for the result. BufferSize will be
updated with the size required to complete the request. Buffer

will not be affected.

EFI_INVALID_PARAMETER BufferSize is NULL. BufferSize and Buffer will not

be affected.

EFI_INVALID_PARAMETER Buffer is NULL. BufferSize and Buffer will not be

affected.

EFI_DEVICE_ERROR The iSCSI initiator name could not be retrieved due to a hardware
error.

 January 31, 2006
652 Version 2.0

EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

Summary

Sets the iSCSI Initiator Name.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_ISCSI_INITIATOR_NAME_SET) {
 IN EFI_ISCSI_INITIATOR_NAME_PROTOCOL *This
 IN OUT UINTN *BufferSize
 IN VOID *Buffer
}

Parameters
This Pointer to the EFI_ISCSI_INITIATOR_NAME_PROTOCOL instance

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be written.

Description

This function will set the iSCSI Initiator Name into Non-volatile memory.

Status Codes Returned
EFI_SUCCESS Data was successfully stored by the protocol

EFI_UNSUPPORTED Platform policies do not allow for data to be written

EFI_INVALID_PARAMETER BufferSize exceeds the maximum allowed limit.
BufferSize will be updated with the maximum size required

to complete the request.

EFI_INVALID_PARAMETER Buffersize is NULL. BufferSize and Buffer will not

be affected

EFI_INVALID_PARAMETER Buffer is NULL. BufferSize and Buffer will not be

affected.

EFI_DEVICE_ERROR The data could not be stored due to a hardware error.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the data

EFI_PROTOCOL_ERROR Input iSCSI initiator name does not adhere to RFC 3720 (and
other related protocols)

January 31, 2006
Version 2.0 653

16
Protocols — USB Support

16.1 USB2 Host Controller Protocol

These sections (Sections 16.1 and below) describe the USB2 Host Controller Protocol. This
protocol provides an I/O abstraction for a USB2 Host Controller. The USB2 Host Controller is a
hardware component that interfaces to a Universal Serial Bus (USB). It moves data between
system memory and devices on the USB by processing data structures and generating transactions
on the USB. This protocol is used by a USB Bus Driver to perform all data transaction over the
Universal Serial Bus. It also provides services to manage the USB root hub that is integrated into
the USB Host Controller. USB device drivers do not use this protocol directly. Instead, they use
the I/O abstraction produced by the USB Bus Driver. This protocol should only be used by drivers
that require direct access to the USB bus.

16.1.1 USB Host Controller Protocol Overview
The USB Host Controller Protocol is used by code, typically USB bus drivers, running in the EFI
boot services environment, to perform data transactions over a USB bus. In addition, it provides an
abstraction for the root hub of the USB bus.

The interfaces provided in the EFI_USB2_HC_PROTOCOL are used to manage data transactions
on a USB bus. It also provides control methods for the USB root hub. The
EFI_USB2_HC_PROTOCOL is designed to support both USB 1.1 and USB 2.0 – compliant host
controllers.

The EFI_USB2_HC_PROTOCOL abstracts basic functionality that is designed to operate with the
EHCI, UHCI and OHCI standards. By using this protocol, a single USB bus driver can be
implemented without knowing if the underlying USB host controller conforms to the EHCI, OHCI
or the UHCI standards.

Each instance of the EFI_USB2_HC_PROTOCOL corresponds to a USB host controller in a
platform. The protocol is attached to the device handle of a USB host controller that is created by a
device driver for the USB host controller’s parent bus type. For example, a USB host controller
that is implemented as a PCI device would require a PCI device driver to produce an instance of the
EFI_USB2_HC_PROTOCOL.

 January 31, 2006
654 Version 2.0

EFI_USB2_HC_PROTOCOL

Summary

Provides basic USB host controller management, basic data transactions over USB bus, and USB
root hub access.

GUID
#define EFI_USB2_HC_PROTOCOL_GUID \

{0x3e745226,0x9818,0x45b6,0xa2,0xac,0xd7,0xcd,0xe,0x8b,
0xa2,0xbc}

Protocol Interface Structure
typedef struct _EFI_USB2_HC_PROTOCOL {
 EFI_USB2_HC_PROTOCOL_GET_CAPABILITY GetCapability;
 EFI_USB2_HC_PROTOCOL_RESET Reset;
 EFI_USB2_HC_PROTOCOL_GET_STATE GetState;
 EFI_USB2_HC_PROTOCOL_SET_STATE SetState;
 EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER ControlTransfer;
 EFI_USB2_HC_PROTOCOL_BULK_TRANSFER BulkTransfer;
 EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER
 AsyncInterruptTransfer;
 EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER
 SyncInterruptTransfer;
 EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER
 IsochronousTransfer;
 EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER
 AsyncIsochronousTransfer;

 EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS
 GetRootHubPortStatus;
 EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE
 SetRootHubPortFeature;
 EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE
 ClearRootHubPortFeature;
 UINT16 MajorRevision;
 UINT16 MinorRevision;
} EFI_USB2_HC_PROTOCOL;

Parameters
GetCapability Retrieves the capabilities of the USB host controller. See the

GetCapability() function description.

Reset Software reset of USB. See the Reset() function description.

GetState Retrieves the current state of the USB host controller. See the
GetState() function description.

January 31, 2006
Version 2.0 655

SetState Sets the USB host controller to a specific state. See the SetState()
function description.

ControlTransfer Submits a control transfer to a target USB device. See the
ControlTransfer() function description.

BulkTransfer Submits a bulk transfer to a bulk endpoint of a USB device. See the
BulkTransfer() function description.

AsyncInterruptTransfer
Submits an asynchronous interrupt transfer to an interrupt endpoint of a
USB device. See the AsyncInterruptTransfer() function
description.

SyncInterruptTransfer
Submits a synchronous interrupt transfer to an interrupt endpoint of a
USB device. See the SyncInterruptTransfer() function
description.

IsochronousTransfer Submits isochronous transfer to an isochronous endpoint of a
USB device. See the IsochronousTransfer() function
description.

AsyncIsochronousTransfer
Submits nonblocking USB isochronous transfer. See the
AsyncIsochronousTransfer() function description.

GetRootHubPortStatus Retrieves the status of the specified root hub port. See the
GetRootHubPortStatus() function description.

SetRootHubPortFeature
Sets the feature for the specified root hub port. See the
SetRootHubPortFeature() function description.

ClearRootHubPortFeature
Clears the feature for the specified root hub port. See the
ClearRootHubPortFeature() function description.

MajorRevision The major revision number of the USB host controller. The revision
information indicates the release of the Universal Serial Bus
Specification with which the host controller is compliant.

MinorRevision The minor revision number of the USB host controller. The revision
information indicates the release of the Universal Serial Bus
Specification with which the host controller is compliant.

Description

The EFI_USB2_HC_PROTOCOL provides USB host controller management, basic data
transactions over a USB bus, and USB root hub access. A device driver that wishes to manage a
USB bus in a system retrieves the EFI_USB2_HC_PROTOCOL instance that is associated with the
USB bus to be managed. A device handle for a USB host controller will minimally contain an
EFI_DEVICE_PATH_PROTOCOL instance, and an EFI_USB2_HC_PROTOCOL instance.

 January 31, 2006
656 Version 2.0

EFI_USB2_HC_PROTOCOL.GetCapability()

Summary

Retrieves the Host Controller capabilities.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_CAPABILITY) (
 IN EFI_USB2_HC_PROTOCOL *This,
 OUT UINT8 *MaxSpeed,
 OUT UINT8 *PortNumber,
 OUT UINT8 *Is64BitCapable
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

MaxSpeed Host controller data transfer speed; see “Related Definitions” below for a
list of supported transfer speed values.

PortNumber Number of the root hub ports.

Is64BitCapable TRUE if controller supports 64-bit memory addressing, FALSE
otherwise.

Related Definitions
#define EFI_USB_SPEED_FULL 0x0000
#define EFI_USB_SPEED_LOW 0x0001
#define EFI_USB_SPEED_HIGH 0x0002

EFI_USB_SPEED_LOW Low speed USB device; data bandwidth is up to 1 Mb/s. Supported by
USB 1.1 OHCI and UHCI host controllers.

EFI_USB_SPEED_FULL Full speed USB device; data bandwidth is up to 12 Mb/s. Supported by
USB 1.1 OHCI and UHCI host controllers.

EFI_USB_SPEED_HIGH High speed USB device; data bandwidth is up to 480 Mb/s. Supported by
USB 2.0 EHCI host controllers.

January 31, 2006
Version 2.0 657

Description

This function is used to retrieve the host controller capabilities. MaxSpeed indicates the maximum
data transfer speed the controller is capable of; this information is needed for the subsequent
transfers. PortNumber is the number of root hub ports, it is required by the USB bus driver to
perform bus enumeration. Is64BitCapable indicates that controller is capable of 64-bit
memory access so that the host controller software can use memory blocks above 4 GB for the data
transfers.

Status Codes Returned
EFI_SUCCESS The host controller capabilities were retrieved successfully.

EFI_INVALID_PARAMETER MaxSpeed or PortNumber or Is64BitCapable is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the capabilities.

 January 31, 2006
658 Version 2.0

EFI_USB2_HC_PROTOCOL.Reset()

Summary

Provides software reset for the USB host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_RESET) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT16 Attributes
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

Attributes A bit mask of the reset operation to perform. See “Related Definitions”
below for a list of the supported bit mask values.

Related Definitions
#define EFI_USB_HC_RESET_GLOBAL 0x0001
#define EFI_USB_HC_RESET_HOST_CONTROLLER 0x0002
#define EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG 0x0004
#define EFI_USB_HC_RESET_HOST_WITH_DEBUG 0x0008

EFI_USB_HC_RESET_GLOBAL
If this bit is set, a global reset signal will be sent to the USB bus. This
resets all of the USB bus logic, including the USB host controller
hardware and all the devices attached on the USB bus.

EFI_USB_HC_RESET_HOST_CONTROLLER
If this bit is set, the USB host controller hardware will be reset. No reset
signal will be sent to the USB bus.

EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG
If this bit is set, then a global reset signal will be sent to the USB bus.
This resets all of the USB bus logic, including the USB host controller
and all of the devices attached on the USB bus. If this is an EHCI
controller and the debug port has been configured, then this will still
reset the host controller.

EFI_USB_HC_RESET_HOST_WITH_DEBUG

 If this bit is set, the USB host controller hardware will be reset. If this is
an EHCI controller and the debug port has been configured, then this will
still reset the host controller.

January 31, 2006
Version 2.0 659

Description

This function provides a software mechanism to reset a USB host controller. The type of reset is
specified by the Attributes parameter. If the type of reset specified by Attributes is not
valid, then EFI_INVALID_PARAMETER is returned. If the reset operation is completed, then
EFI_SUCCESS is returned. If the type of reset specified by Attributes is not currently
supported by the host controller hardware, EFI_UNSUPPORTD is returned. If a device error
occurs during the reset operation, then EFI_DEVICE_ERROR is returned.

Note: For EHCI controllers, the EFI_USB_HC_RESET_GLOBAL and
EFI_USB_HC_RESET_HOST_CONTROLLER types of reset do not actually reset the bus if the
debug port has been configured. In these cases, the function will return EFI_ACCESS_DENIED.

 January 31, 2006
660 Version 2.0

Status Codes Returned
EFI_SUCCESS The reset operation succeeded.

EFI_INVALID_PARAMETER Attributes is not valid.

EFI_UNSUPPORTED The type of reset specified by Attributes is not currently supported

by the host controller hardware.

EFI_ACCESS_DENIED Reset operation is rejected due to the debug port being configured and
active; only EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG or
EFI_USB_HC_RESET_HOST_WITH_DEBUG reset
Attributes can be used to perform reset operation for this host
controller.

EFI_DEVICE_ERROR An error was encountered while attempting to perform the reset operation.

January 31, 2006
Version 2.0 661

EFI_USB2_HC_PROTOCOL.GetState()

Summary

Retrieves current state of the USB host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_STATE) (
 IN EFI_USB2_HC_PROTOCOL *This,
 OUT EFI_USB_HC_STATE *State
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

State A pointer to the EFI_USB_HC_STATE data structure that indicates
current state of the USB host controller. Type EFI_USB_HC_STATE is
defined in “Related Definitions.”

Related Definitions
typedef enum {
 EfiUsbHcStateHalt,
 EfiUsbHcStateOperational,
 EfiUsbHcStateSuspend,
 EfiUsbHcStateMaximum
} EFI_USB_HC_STATE;

EfiUsbHcStateHalt

The host controller is in halt state. No USB transactions can occur while in this state.
The host controller can enter this state for three reasons:

1. After host controller hardware reset.

2. Explicitly set by software.

3. Triggered by a fatal error such as consistency check failure.
EfiUsbHcStateOperational

The host controller is in an operational state. When in this state, the host controller can
execute bus traffic. This state must be explicitly set to enable the USB bus traffic.

 January 31, 2006
662 Version 2.0

EfiUsbHcStateSuspend

The host controller is in the suspend state. No USB transactions can occur while in this
state. The host controller enters this state for the following reasons:

4. Explicitly set by software.

5. Triggered when there is no bus traffic for 3 microseconds.

Description

This function is used to retrieve the USB host controller’s current state. The USB Host Controller
Protocol publishes three states for USB host controller, as defined in “Related Definitions” below.
If State is NULL, then EFI_INVALID_PARAMETER is returned. If a device error occurs while
attempting to retrieve the USB host controllers current state, then EFI_DEVICE_ERROR is
returned. Otherwise, the USB host controller’s current state is returned in State, and
EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The state information of the host controller was returned in State.

EFI_INVALID_PARAMETER State is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the host controller’s
current state.

January 31, 2006
Version 2.0 663

EFI_USB2_HC_PROTOCOL.SetState()

Summary

Sets the USB host controller to a specific state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_SET_STATE) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN EFI_USB_HC_STATE State
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

State Indicates the state of the host controller that will be set. See the
definition and description of the type EFI_USB_HC_STATE in the
GetState() function description.

Description

This function is used to explicitly set a USB host controller’s state. There are three states defined
for the USB host controller. These are the halt state, the operational state and the suspend state.
Figure 44 illustrates the possible state transitions:

OM13170

Halt State Suspend State

Operational State

Figure 44. Software Triggered State Transitions of a USB Host Controller

If the state specified by State is not valid, then EFI_INVALID_PARAMETER is returned. If a
device error occurs while attempting to place the USB host controller into the state specified by
State, then EFI_DEVICE_ERROR is returned. If the USB host controller is successfully placed
in the state specified by State, then EFI_SUCCESS is returned.

 January 31, 2006
664 Version 2.0

Status Codes Returned
EFI_SUCCESS The USB host controller was successfully placed in the state specified by

State.

EFI_INVALID_PARAMETER State is invalid.

EFI_DEVICE_ERROR Failed to set the state specified by State due to device error.

January 31, 2006
Version 2.0 665

EFI_USB2_HC_PROTOCOL.ControlTransfer()

Summary

Submits control transfer to a target USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN EFI_USB_DEVICE_REQUEST *Request,
 IN EFI_USB_DATA_DIRECTION TransferDirection,
 IN OUT VOID *Data OPTIONAL,
 IN OUT UINTN *DataLength OPTIONAL,
 IN UINTN TimeOut,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 OUT UINT32 *TransferResult
);

Related Definitions
typedef struct {
 UINT8 TranslatorHubAddress,
 UINT8 TranslatorPortNumber
} EFI_USB2_HC_TRANSACTION_TRANSLATOR;

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

DeviceSpeed Indicates device speed. See “Related Definitions” in GetCapability() for
a list of the supported values.

MaximumPacketLength
Indicates the maximum packet size that the default control transfer
endpoint is capable of sending or receiving.

Request A pointer to the USB device request that will be sent to the USB device.
Refer to Section 2.5.1 14.2 of EFI 1.1 USB Driver Model, version 0.7.

TransferDirection Specifies the data direction for the transfer. There are three values
available, EfiUsbDataIn, EfiUsbDataOut and EfiUsbNoData.
Refer to Section 2.5.1 of EFI1.1 USB Driver Model, version 0.7 14.2.

 January 31, 2006
666 Version 2.0

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

DataLength On input, indicates the size, in bytes, of the data buffer specified by Data.
On output, indicates the amount of data actually transferred.

Translator A pointer to the transaction translator data. See “Description” for the
detailed information of this data structure.

TimeOut Indicates the maximum time, in milliseconds, which the transfer is
allowed to complete.

TransferResult A pointer to the detailed result information generated by this control
transfer. Refer to Section 2.5.1 of EFI1.1 USB Driver Model,
version 0.7 14.2.

Description

This function is used to submit a control transfer to a target USB device specified by
DeviceAddress. Control transfers are intended to support configuration/command/status type
communication flows between host and USB device.

There are three control transfer types according to the data phase. If the TransferDirection
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase is
present in the control transfer. If the TransferDirection parameter is EfiUsbDataOut,
then Data specifies the data to be transmitted to the device, and DataLength specifies the
number of bytes to transfer to the device. In this case, there is an OUT DATA stage followed by a
SETUP stage. If the TransferDirection parameter is EfiUsbDataIn, then Data specifies
the data to be received from the device, and DataLength specifies the number of bytes to receive
from the device. In this case there is an IN DATA stage followed by a SETUP stage.

Translator is necessary to perform split transactions on low-speed or full-speed devices
connected to a high-speed hub. Such transaction require the device connection information: device
address and the port number of the hub that device is connected to. This information is passed
through the fields of EFI_USB2_HC_TRANSACTION_TRANSLATOR structure. See “Related
Definitions” for the structure field names. Translator is passed as NULL for the USB1.1 host
controllers transfers or when the transfer is requested for high-speed device connected to USB2.0
controller.

If the control transfer has completed successfully, then EFI_SUCCESS is returned. If the transfer
cannot be completed within the timeout specified by TimeOut, then EFI_TIMEOUT is returned.
If an error other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is
returned and the detailed error code will be returned in the TransferResult parameter.

January 31, 2006
Version 2.0 667

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. TransferDirection is invalid.
2. TransferDirection, Data, and DataLength do not match one of the three control

transfer types described above.
3. Request pointer is NULL.
4. MaximumPacketLength is not valid. If DeviceSpeed is EFI_USB_SPEED_LOW, then

MaximumPacketLength must be 8. If IsSlowDevice is FALSE
EFI_USB_SPEED_FULL or EFI_USB_SPEED_HIGH, then MaximumPacketLength
must be 8, 16, 32, or 64.

5. TransferResult pointer is NULL.
6. Translator is NULL while the requested transfer requires split transaction. The conditions

of the split transactions are described above in “Description” section.

Status Codes Returned
EFI_SUCCESS The control transfer was completed successfully.

EFI_OUT_OF_RESOURCES The control transfer could not be completed due to a lack of resources.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The control transfer failed due to timeout.

EFI_DEVICE_ERROR The control transfer failed due to host controller or device error. Caller
should check TransferResult for detailed error information.

 January 31, 2006
668 Version 2.0

EFI_USB2_HC_PROTOCOL.BulkTransfer()

Summary

Submits bulk transfer to a bulk endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_BULK_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN UINT8 DataBuffersNumber,
 IN OUT VOID *Data[EFI_USB_MAX_BULK_BUFFER_NUM],
 IN OUT UINTN *DataLength,
 IN OUT UINT8 *DataToggle,
 IN UINTN TimeOut,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 OUT UINT32 *TransferResult
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction of the
target USB device. Each endpoint address supports data transfer in one
direction except the control endpoint (whose default endpoint address is
0). It is the caller’s responsibility to make sure that the
EndPointAddress represents a bulk endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL and EFI_USB_SPEED_HIGH.

MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable of
sending or receiving.

DataBuffersNumber
Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to USB
device or received from USB device.

January 31, 2006
Version 2.0 669

DataLength When input, indicates the size, in bytes, of the data buffers specified by
Data. When output, indicates the actually transferred data size.

DataToggle A pointer to the data toggle value. On input, it indicates the initial data
toggle value the bulk transfer should adopt; on output, it is updated to
indicate the data toggle value of the subsequent bulk transfer.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

TimeOut Indicates the maximum time, in milliseconds, which the transfer is
allowed to complete.

TransferResult A pointer to the detailed result information of the bulk transfer. Refer to
Section 2.5.1 of EFI1.1 USB Driver Model, version 0.7 14.2.

Description

This function is used to submit bulk transfer to a target endpoint of a USB device. The target
endpoint is specified by DeviceAddress and EndpointAddress. Bulk transfers are
designed to support devices that need to communicate relatively large amounts of data at highly
variable times where the transfer can use any available bandwidth. Bulk transfers can be used only
by full-speed and high-speed devices.

High-speed bulk transfers can be performed using multiple data buffers. The number of buffers that
are actually prepared for the transfer is specified by DataBuffersNumber. For full-speed bulk
transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed bulk transfers only the data
pointed by Data[0] shall be used. For high-speed transfers depending on DataLength there
several data buffers can be used. The total number of buffers must not exceed
EFI_USB_MAX_BULK_BUFFER_NUM. See “Related Definitions” for the
EFI_USB_MAX_BULK_BUFFER_NUM value.

The data transfer direction is determined by the endpoint direction that is encoded in the
EndPointAddress parameter. Refer to USB Specification, Revision 2.0 on the Endpoint
Address encoding.

The DataToggle parameter is used to track target endpoint’s data sequence toggle bits. The
USB provides a mechanism to guarantee data packet synchronization between data transmitter and
receiver across multiple transactions. The data packet synchronization is achieved with the data
sequence toggle bits and the DATA0/DATA1 PIDs. A bulk endpoint’s toggle sequence is
initialized to DATA0 when the endpoint experiences a configuration event. It toggles between
DATA0 and DATA1 in each successive data transfer. It is host’s responsibility to track the bulk
endpoint’s data toggle sequence and set the correct value for each data packet. The input
DataToggle value points to the data toggle value for the first data packet of this bulk transfer;
the output DataToggle value points to the data toggle value for the last successfully transferred
data packet of this bulk transfer. The caller should record the data toggle value for use in
subsequent bulk transfers to the same endpoint.

If the bulk transfer is successful, then EFI_SUCCESS is returned. If USB transfer cannot be
completed within the timeout specified by Timeout, then EFI_TIMEOUT is returned. If an error

 January 31, 2006
670 Version 2.0

other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is returned and the
detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data is NULL.
2. DataLength is 0.
3. DeviceSpeed is not valid; the legal values are EFI_USB_SPEED_FULL or

EFI_USB_SPEED_HIGH.
4. MaximumPacketLength is not valid. The legal value of this parameter is 64 or less for

full-speed and 512 or less for high-speed transaction.
5. DataToggle points to a value other than 0 and 1.
6. TransferResult is NULL.

Status Codes Returned
EFI_SUCCESS The bulk transfer was completed successfully.

EFI_OUT_OF_RESOURCES The bulk transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The bulk transfer failed due to timeout.

EFI_DEVICE_ERROR The bulk transfer failed due to host controller or device error. Caller
should check TransferResult for detailed error information.

January 31, 2006
Version 2.0 671

EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()

Summary

Submits an asynchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN BOOLEAN IsNewTransfer,
 IN OUT UINT8 *DataToggle,
 IN UINTN PollingInterval OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK CallBackFunction OPTIONAL,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction of the
target USB device. Each endpoint address supports data transfer in one
direction except the control endpoint (whose default endpoint address is
zero). It is the caller’s responsibility to make sure that the
EndPointAddress represents an interrupt endpoint.

DeviceSpeed Indicates device speed. See “Related Definitions” in
EFI_USB2_HC_PROTOCOL.ControlTransfer() for a list of the
supported values.

MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable of
sending or receiving.

 January 31, 2006
672 Version 2.0

IsNewTransfer If TRUE, an asynchronous interrupt pipe is built between the host and the
target interrupt endpoint. If FALSE, the specified asynchronous interrupt
pipe is canceled. If TRUE, and an interrupt transfer exists for the target
end point, then EFI_INVALID_PARAMETER is returned.

DataToggle A pointer to the data toggle value. On input, it is valid when
IsNewTransfer is TRUE, and it indicates the initial data toggle value
the asynchronous interrupt transfer should adopt. On output, it is valid
when IsNewTransfer is FALSE, and it is updated to indicate the data
toggle value of the subsequent asynchronous interrupt transfer.

PollingInterval Indicates the interval, in milliseconds, that the asynchronous interrupt
transfer is polled. This parameter is required when IsNewTransfer is
TRUE.

DataLength Indicates the length of data to be received at the rate specified by
PollingInterval from the target asynchronous interrupt endpoint.
This parameter is only required when IsNewTransfer is TRUE.

CallBackFunction The Callback function. This function is called at the rate specified by
PollingInterval. This parameter is only required when
IsNewTransfer is TRUE. Refer to Section 2.5.3 of EFI1.1 USB
Driver Model, version 0.7,14.2 for the definition of this type.

Context The context that is passed to the CallBackFunction. This is an
optional parameter and may be NULL.

Description

This function is used to submit asynchronous interrupt transfer to a target endpoint of a USB
device. The target endpoint is specified by DeviceAddress and EndpointAddress. In the
USB Specification, Revision 2.0, interrupt transfer is one of the four USB transfer types. In the
EFI_USB2_HC_PROTOCOL, interrupt transfer is divided further into synchronous interrupt
transfer and asynchronous interrupt transfer.

An asynchronous interrupt transfer is typically used to query a device’s status at a fixed rate. For
example, keyboard, mouse, and hub devices use this type of transfer to query their interrupt
endpoints at a fixed rate. The asynchronous interrupt transfer is intended to support the interrupt
transfer type of “submit once, execute periodically.” Unless an explicit request is made, the
asychronous transfer will never retire.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is
specified by PollingInterval, the size of the receive buffer is specified by DataLength,
and the callback function is specified by CallBackFunction. Context specifies an optional
context that is passed to the CallBackFunction each time it is called. The
CallBackFunction is intended to provide a means for the host to periodically process interrupt
transfer data.

If IsNewTransfer is TRUE, and an interrupt transfer exists for the target end point, then
EFI_INVALID_PARAMETER is returned.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

January 31, 2006
Version 2.0 673

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data transfer direction indicated by EndPointAddress is other than EfiUsbDataIn.
2. IsNewTransfer is TRUE and DataLength is 0.
3. IsNewTransfer is TRUE and DataToggle points to a value other than 0 and 1.
4. IsNewTransfer is TRUE and PollingInterval is not in the range 1..255.
5. IsNewTransfer requested where an interrupt transfer exists for the target end point.

Status Codes Returned
EFI_SUCCESS The asynchronous interrupt transfer request has been successfully

submitted or canceled.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above. When an interrupt transfer exists for the
target end point and a new transfer is requested,
EFI_INVALID_PARAMETER is returned.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

 January 31, 2006
674 Version 2.0

EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer()

Summary

Submits synchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN OUT UINT8 *DataToggle,
 IN UINTN TimeOut,
 OUT UINT32 *TransferResult
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction of the
target USB device. Each endpoint address supports data transfer in one
direction except the control endpoint (whose default endpoint address is
zero). It is the caller’s responsibility to make sure that the
EndPointAddress represents an interrupt endpoint.

DeviceSpeed Indicates device speed. See “Related Definitions” in
EFI_USB2_HC_PROTOCOL.ControlTransfer() for a list of the
supported values.

MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable of
sending or receiving.

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data. On
output, the number of bytes transferred.

January 31, 2006
Version 2.0 675

DataToggle A pointer to the data toggle value. On input, it indicates the initial data
toggle value the synchronous interrupt transfer should adopt; on output,
it is updated to indicate the data toggle value of the subsequent
synchronous interrupt transfer.

TimeOut Indicates the maximum time, in milliseconds, which the transfer is
allowed to complete.

TransferResult A pointer to the detailed result information from the synchronous
interrupt transfer. Refer to Section 2.5.1 of EFI1.1 USB Driver Model,
version 0.714.2.

Description

This function is used to submit a synchronous interrupt transfer to a target endpoint of a USB
device. The target endpoint is specified by DeviceAddress and EndpointAddress. In the
USB Specification, Revision2.0, interrupt transfer is one of the four USB transfer types. In the
EFI_USB2_HC_PROTOCOL, interrupt transfer is divided further into synchronous interrupt
transfer and asynchronous interrupt transfer.

The synchronous interrupt transfer is designed to retrieve small amounts of data from a USB device
through an interrupt endpoint. A synchronous interrupt transfer is only executed once for each
request. This is the most significant difference from the asynchronous interrupt transfer.

If the synchronous interrupt transfer is successful, then EFI_SUCCESS is returned. If the USB
transfer cannot be completed within the timeout specified by Timeout, then EFI_TIMEOUT is
returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data transfer direction indicated by EndPointAddress is not EfiUsbDataIn.
2. Data is NULL.
3. DataLength is 0.
4. MaximumPacketLength is not valid. The legal value of this parameter should be 3072 or

less for high-speed device, 64 or less for a full-speed device; for a slow device, it is limited to 8
or less. For the full-speed device, it should be 8, 16, 32, or 64; for the slow device, it is limited
to 8.

5. DataToggle points to a value other than 0 and 1.
6. TransferResult is NULL.

Status Codes Returned
EFI_SUCCESS The synchronous interrupt transfer was completed successfully.

EFI_OUT_OF_RESOURCES The synchronous interrupt transfer could not be submitted due to lack of
resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The synchronous interrupt transfer failed due to timeout.

EFI_DEVICE_ERROR The synchronous interrupt transfer failed due to host controller or device
error. Caller should check TransferResult for detailed error
information.

 January 31, 2006
676 Version 2.0

EFI_USB2_HC_PROTOCOL.IsochronousTransfer()

Summary

Submits isochronous transfer to an isochronous endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN UINT8 DataBuffersNumber,
 IN OUT VOID *Data[EFI_USB_MAX_ISO_BUFFER_NUM],
 IN UINTN DataLength,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 OUT UINT32 *TransferResult
);

Related Definitions
#define EFI_USB_MAX_ISO_BUFFER_NUM 7
#define EFI_USB_MAX_ISO_BUFFER_NUM1 2

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction of the
target USB device. Each endpoint address supports data transfer in one
direction except the control endpoint (whose default endpoint address is
0). It is the caller’s responsibility to make sure that the
EndPointAddress represents an isochronous endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL and EFI_USB_SPEED_HIGH.

MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable of
sending or receiving. For isochronous endpoints, this value is used to
reserve the bus time in the schedule, required for the per-frame data
payloads. The pipe may, on an ongoing basis, actually use less
bandwidth than that reserved.

January 31, 2006
Version 2.0 677

DataBuffersNumber Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to USB
device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received from
the USB device.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

TransferResult A pointer to the detail result information of the isochronous transfer.
Refer to Section 2.5.1 of EFI1.1 USB Driver Model, version 0.7.

Description

This function is used to submit isochronous transfer to a target endpoint of a USB device. The
target endpoint is specified by DeviceAddress and EndpointAddress. Isochronous
transfers are used when working with isochronous date. It provides periodic, continuous
communication between the host and a device. Isochronous transfers can be used only by full-speed
and high-speed devices.

High-speed isochronous transfers can be performed using multiple data buffers. The number of
buffers that are actually prepared for the transfer is specified by DataBuffersNumber. For full-
speed isochronous transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed isochronous transfers only the
data pointed by Data[0] shall be used. For high-speed isochronous transfers and for the split
transactions depending on DataLength there several data buffers can be used. For the high-speed
isochronous transfers the total number of buffers must not exceed
EFI_USB_MAX_ISO_BUFFER_NUM. For split transactions performed on full-speed device by
high-speed host controller the total number of buffers is limited to
EFI_USB_MAX_ISO_BUFFER_NUM1 See “Related Definitions” for the
EFI_USB_MAX_ISO_BUFFER_NUM and EFI_USB_MAX_ISO_BUFFER_NUM1 values.

If the isochronous transfer is successful, then EFI_SUCCESS is returned. The isochronous
transfer is designed to be completed within one USB frame time, if it cannot be completed,
EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code will be returned in
TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

1. Data is NULL.
2. DataLength is 0.
3. MaximumPacketLength is larger than 1023.
4. TransferResult is NULL.

 January 31, 2006
678 Version 2.0

Status Codes Returned
EFI_SUCCESS The isochronous transfer was completed successfully.

EFI_OUT_OF_RESOURCES The isochronous transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The isochronous transfer cannot be completed within the one USB
frame time.

EFI_DEVICE_ERROR The isochronous transfer failed due to host controller or device error.
Caller should check TransferResult for detailed error information.

January 31, 2006
Version 2.0 679

EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()

Summary

Submits nonblocking isochronous transfer to an isochronous endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN UINT8 DataBuffersNumber,
 IN OUT VOID
 *Data[EFI_USB_MAX_ISO_BUFFER_NUM],
 IN UINTN DataLength,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint direction of the
target USB device. Each endpoint address supports data transfer in one
direction except the control endpoint (whose default endpoint address is
zero). It is the caller’s responsibility to make sure that the
EndPointAddress represents an isochronous endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL and EFI_USB_SPEED_HIGH.

MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable of
sending or receiving. For isochronous endpoints, this value is used to
reserve the bus time in the schedule, required for the per-frame data
payloads. The pipe may, on an ongoing basis, actually use less
bandwidth than that reserved.

DataBuffersNumber Number of data buffers prepared for the transfer.

 January 31, 2006
680 Version 2.0

Data Array of pointers to the buffers of data that will be transmitted to USB
device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received from
the USB device.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

IsochronousCallback
The Callback function. This function is called if the requested
isochronous transfer is completed. Refer to Section 2.5.3 of EFI1.1 USB
Driver Model, version 0.7.

Context Data passed to the IsochronousCallback function. This is an
optional parameter and may be NULL.

Description

This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous
transfer request through this function, this function will return immediately. When the isochronous
transfer completes, the IsochronousCallback function will be triggered, the caller can know
the transfer results. If the transfer is successful, the caller can get the data received or sent in this
callback function.

The target endpoint is specified by DeviceAddress and EndpointAddress. Isochronous
transfers are used when working with isochronous date. It provides periodic, continuous
communication between the host and a device. Isochronous transfers can be used only by full-speed
and high-speed devices.

High-speed isochronous transfers can be performed using multiple data buffers. The number of
buffers that are actually prepared for the transfer is specified by DataBuffersNumber. For full-
speed isochronous transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed isochronous transfers only the
data pointed by Data[0] shall be used. For high-speed isochronous transfers and for the split
transactions depending on DataLength there several data buffers can be used. For the high-speed
isochronous transfers the total number of buffers must not exceed
EFI_USB_MAX_ISO_BUFFER_NUM. For split transactions performed on full-speed device by
high-speed host controller the total number of buffers is limited to
EFI_USB_MAX_ISO_BUFFER_NUM1 See “Related Definitions” in IsochronousTransfer()
section for the EFI_USB_MAX_ISO_BUFFER_NUM and EFI_USB_MAX_ISO_BUFFER_NUM1
values.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

6. Data is NULL.
7. DataLength is 0.
8. MaximumPacketLength is larger than 1023.

January 31, 2006
Version 2.0 681

Status Codes Returned
EFI_SUCCESS The asynchronous isochronous transfer was completed successfully.

EFI_OUT_OF_RESOURCES The asynchronous isochronous transfer could not be submitted due to
lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

 January 31, 2006
682 Version 2.0

EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()

Summary

Retrieves the current status of a USB root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 PortNumber,
 OUT EFI_USB_PORT_STATUS *PortStatus
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

PortNumber Specifies the root hub port from which the status is to be retrieved. This
value is zero based. For example, if a root hub has two ports, then the
first port is numbered 0, and the second port is numbered 1.

PortStatus A pointer to the current port status bits and port status change bits. The
type EFI_USB_PORT_STATUS is defined in “Related Definitions”
below.

Related Definitions
typedef struct{
 UINT16 PortStatus;
 UINT16 PortChangeStatus;
} EFI_USB_PORT_STATUS;

//**
// EFI_USB_PORT_STATUS.PortStatus bit definition
//**
#define USB_PORT_STAT_CONNECTION 0x0001
#define USB_PORT_STAT_ENABLE 0x0002
#define USB_PORT_STAT_SUSPEND 0x0004
#define USB_PORT_STAT_OVERCURRENT 0x0008
#define USB_PORT_STAT_RESET 0x0010
#define USB_PORT_STAT_POWER 0x0100
#define USB_PORT_STAT_LOW_SPEED 0x0200
#define USB_PORT_STAT_HIGH_SPEED 0x0400

//**

January 31, 2006
Version 2.0 683

// EFI_USB_PORT_STATUS.PortChangeStatus bit definition
//**
#define USB_PORT_STAT_C_CONNECTION 0x0001
#define USB_PORT_STAT_C_ENABLE 0x0002
#define USB_PORT_STAT_C_SUSPEND 0x0004
#define USB_PORT_STAT_C_OVERCURRENT 0x0008
#define USB_PORT_STAT_C_RESET 0x0010

PortStatus Contains current port status bitmap. The root hub port status bitmap is
unified with the USB hub port status bitmap. See Table 106 for a
reference, which is borrowed from Chapter 11, Hub Specification, of
USB Specification, Revision 1.1.

PortChangeStatus Contains current port status change bitmap. The root hub port change
status bitmap is unified with the USB hub port status bitmap. See
Table 107 for a reference, which is borrowed from Chapter 11, Hub
Specification, of USB Specification, Revision 1.1.

Table 106. USB Hub Port Status Bitmap
Bit Description

0 Current Connect Status: (USB_PORT_STAT_CONNECTION) This field reflects whether or not a
device is currently connected to this port.

 0 = No device is present

 1 = A device is present on this port

1 Port Enable / Disabled: (USB_PORT_STAT_ENABLE) Ports can be enabled by software only.
Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by
software.

 0 = Port is disabled

 1 = Port is enabled

2 Suspend: (USB_PORT_STAT_SUSPEND) This field indicates whether or not the device on this
port is suspended.

 0 = Not suspended

 1 = Suspended

3 Over-current Indicator: (USB_PORT_STAT_OVERCURRENT) This field is used to indicate that
the current drain on the port exceeds the specified maximum.

4 Reset: (USB_PORT_STAT_RESET) Indicates whether port is in reset state.

 0 = Port is not in reset state

 1 = Port is in reset state

5-7 Reserved

These bits return 0 when read.

 January 31, 2006
684 Version 2.0

Bit Description

8 Port Power: (USB_PORT_STAT_POWER) This field reflects a port’s logical, power control state.

9 Low Speed Device Attached: (USB_PORT_STAT_LOW_SPEED) This is relevant only if a
device is attached.

 0 = Full-speed device attached to this port

 1 = Low-speed device attached to this port

10 High Speed Device Attached: (USB_PORT_STAT_HIGH_SPEED) This field indicates whether
the connected device is high-speed device

 0 = High-speed device is not attached to this port

 1 = High-speed device attached to this port

NOTE: this bit has precedence over Bit 9; if set, bit 9 must be ignored.

11-15 Reserved

These bits return 0 when read.

January 31, 2006
Version 2.0 685

Table 107. Hub Port Change Status Bitmap
Bit Description

0 Connect Status Change: (USB_PORT_STAT_C_CONNECTION) Indicates a change has
occurred in the port’s Current Connect Status.

 0 = No change has occurred to Current Connect status

 1 = Current Connect status has changed

1 Port Enable /Disable Change: (USB_PORT_STAT_C _ENABLE)

 0 = No change

 1 = Port enabled/disabled status has changed

2 Suspend Change: (USB_PORT_STAT_C _SUSPEND) This field indicates a change in the host-
visible suspend state of the attached device.

 0 = No change

 1 = Resume complete

3 Over-Current Indicator Change: (USB_PORT_STAT_C_OVERCURRENT)

 0 = No change has occurred to Over-Current Indicator

 1 = Over-Current Indicator has changed

4 Reset Change: (USB_PORT_STAT_C_RESET) This field is set when reset processing on this
port is complete.

 0 = No change

 1 = Reset complete

5-15 Reserved.

These bits return 0 when read.

Description

This function is used to retrieve the status of the root hub port specified by PortNumber.

EFI_USB_PORT_STATUS describes the port status of a specified USB port. This data structure is
designed to be common to both a USB root hub port and a USB hub port.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortNumber(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. Otherwise, the status of the USB root hub port is returned in PortStatus, and
EFI_SUCCESS is returned.

Status Codes Returned
EFI_SUCCESS The status of the USB root hub port specified by PortNumber

was returned in PortStatus.

EFI_INVALID_PARAMETER PortNumber is invalid.

 January 31, 2006
686 Version 2.0

EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()

Summary

Sets a feature for the specified root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 PortNumber,
 IN EFI_USB_PORT_FEATURE PortFeature
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

PortNumber Specifies the root hub port whose feature is requested to be set. This
value is zero based. For example, if a root hub has two ports, then the
first port is number 0, and the second port is numbered 1.

PortFeature Indicates the feature selector associated with the feature set request. The
port feature indicator is defined in “Related Definitions” and Table 108
below.

Related Definitions
typedef enum {
 EfiUsbPortEnable = 1,
 EfiUsbPortSuspend = 2,
 EfiUsbPortReset = 4,
 EfiUsbPortPower = 8,
 EfiUsbPortConnectChange = 16,
 EfiUsbPortEnableChange = 17,
 EfiUsbPortSuspendChange = 18,
 EfiUsbPortOverCurrentChange = 19,
 EfiUsbPortResetChange = 20
} EFI_USB_PORT_FEATURE;

January 31, 2006
Version 2.0 687

The feature values specified in the enumeration variable have special meaning. Each value
indicates its bit index in the port status and status change bitmaps, if combines these two bitmaps
into a 32-bit bitmap. The meaning of each port feature is listed in Table 108.

Table 108. USB Port Feature

Port Feature

For
SetRootHubPortFeature

For ClearRootHubPortFeature

EfiUsbPortEnable Enable the given port of the
root hub.

Disable the given port of the root hub.

EfiUsbPortSuspend Put the given port into
suspend state.

Restore the given port from the previous
suspend state.

EfiUsbPortReset Reset the given port of the
root hub.

Clear the RESET signal for the given
port of the root hub.

EfiUsbPortPower Power the given port. Shutdown the power from the given port.

EfiUsbPortConnectChange N/A. Clear
USB_PORT_STAT_C_CONNECTION
bit of the given port of the root hub.

EfiUsbPortEnableChange N/A. Clear USB_PORT_STAT_C_ENABLE bit
of the given port of the root hub.

EfiUsbPortSuspendChange N/A. Clear USB_PORT_STAT_C_SUSPEND
bit of the given port of the root hub.

EfiUsbPortOverCurrentChange N/A. Clear
USB_PORT_STAT_C_OVERCURRENT
bit of the given port of the root hub.

EfiUsbPortResetChange N/A. Clear USB_PORT_STAT_C_RESET bit
of the given port of the root hub.

Description

This function sets the feature specified by PortFeature for the USB root hub port specified by
PortNumber. Setting a feature enables that feature or starts a process associated with that
feature. For the meanings about the defined features, please refer to Table 106 and Table 107.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortNumber(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. If PortFeature is not EfiUsbPortEnable, EfiUsbPortSuspend,
EfiUsbPortReset nor EfiUsbPortPower, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS The feature specified by PortFeature was set for the USB

root hub port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid for this

function.

 January 31, 2006
688 Version 2.0

EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()

Summary

Clears a feature for the specified root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE) (
 IN EFI_USB2_HC_PROTOCOL *This
 IN UINT8 PortNumber,
 IN EFI_USB_PORT_FEATURE PortFeature
);

Parameters

This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type
EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

PortNumber Specifies the root hub port whose feature is requested to be cleared. This
value is zero-based. For example, if a root hub has two ports, then the
first port is number 0, and the second port is numbered 1.

PortFeature Indicates the feature selector associated with the feature clear request.
The port feature indicator (EFI_USB_PORT_FEATURE) is defined in
the “Related Definitions” section of the
SetRootHubPortFeature() function description and in
Table 108.

Description

This function clears the feature specified by PortFeature for the USB root hub port specified
by PortNumber. Clearing a feature disables that feature or stops a process associated with that
feature. For the meanings about the defined features, refer to Table 106 and Table 107.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortNumber(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. If PortFeature is not EfiUsbPortEnable, EfiUsbPortSuspend,
EfiUsbPortPower, EfiUsbPortConnectChange, EfiUsbPortResetChange,
EfiUsbPortEnableChange, EfiUsbPortSuspendChange, or
EfiUsbPortOverCurrentChange, then EFI_INVALID_PARAMETER is returned.

January 31, 2006
Version 2.0 689

Status Codes Returned
EFI_SUCCESS The feature specified by PortFeature was cleared for the

USB root hub port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid.

 January 31, 2006
690 Version 2.0

16.2 USB Driver Model

16.2.1 Scope
These sections (Sections 16.2 and below) describe the USB Driver Model. This includes the
behavior of USB Bus Drivers, the behavior of a USB Device Drivers, and a detailed description of
the EFI USB I/O Protocol. This document provides enough material to implement a USB Bus
Driver, and the tools required to design and implement USB Device Drivers. It does not provide
any information on specific USB devices.

The material contained in this section is designed to extend this specification and the UEFI Driver
Model in a way that supports USB device drivers and USB bus drivers. These extensions are
provided in the form of USB specific protocols. This document provides the information required
to implement a USB Bus Driver in system firmware. The document also contains the information
required by driver writers to design and implement USB Device Drivers that a platform may need
to boot a UEFI-compliant OS.

The USB Driver Model described here is intended to be a foundation on which a USB Bus Driver
and a wide variety of USB Device Drivers can be created. USB Driver Model Overview

The USB Driver Stack includes the USB Bus Driver, USB Host Controller Driver, and individual
USB device drivers.

OM13171

USB Bus Controller Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_USB_HC_PROTOCOL

Figure 45. USB Bus Controller Handle

January 31, 2006
Version 2.0 691

In the USB Bus Driver Design, the USB Bus Controller is managed by two drivers. One is USB
Host Controller Driver, which consumes its parent bus EFI_XYZ_IO_PROTOCOL, and produces
EFI_USB2_HC_PROTOCOL and attaches it to the Bus Controller Handle. The other one is USB
Bus Driver, which consumes EFI_USB2_HC_PROTOCOL, and performs bus enumeration.
Figure 45 shows protocols that are attached to the USB Bus Controller Handle. Detailed
descriptions are presented in the following sections.

16.2.2 USB Bus Driver
USB Bus Driver performs periodic Enumeration on the USB Bus. In USB bus enumeration, when
a new USB controller is found, the bus driver does some standard configuration for that new
controller, and creates a device handle for it. The EFI_USB_IO_PROTOCOL and the
EFI_DEVICE_PATHEFI_DEVICE_PATH_PROTOCOL are attached to the device handle so that
the USB controller can be accessed. The USB Bus Driver is also responsible for connecting USB
device drivers to USB controllers. When a USB device is detached from a USB bus, the USB bus
driver will stop that USB controller, and uninstall the EFI_USB_IO_PROTOCOL and the
EFI_DEVICE_PATH_PROTOCOL from that handle. A detailed description is given in
Section 16.2.2.3.

16.2.2.1 USB Bus Driver Entry Point
Like all other device drivers, the entry point for a USB Bus Driver attaches the
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Bus Driver.

16.2.2.2 Driver Binding Protocol for USB Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the USB Bus Driver can manage a device handle. A USB
Bus Driver can only manage a device handle that contains EFI_USB2_HC_PROTOCOL.

The general idea is that the USB Bus Driver is a generic driver. Since there are several types of
USB Host Controllers, an EFI_USB2_HC_PROTOCOL is used to abstract the host controller
interface. Actually, a USB Bus Driver only requires an EFI_USB2_HC_PROTOCOL.

The Start() function tells the USB Bus Driver to start managing the USB Bus. In this function,
the USB Bus Driver creates a device handle for the root hub, and creates a timer to monitor root
hub connection changes.

The Stop() function tells the USB Bus Driver to stop managing a USB Host Bus Controller. The
Stop() function simply deconfigures the devices attached to the root hub. The deconfiguration is
a recursive process. If the device to be deconfigured is a USB hub, then all USB devices attached
to its downstream ports will be deconfigured first, then itself. If all of the child devices handles
have been destroyed then the EFI_USB2_HC_PROTOCOL is closed. Finally, the Stop()unction
will then place the USB Host Bus Controller in a quiescent state.

 January 31, 2006
692 Version 2.0

16.2.2.3 USB Hot-Plug Event
Hot-Plug is one of the most important features provided by USB. A USB bus driver implements
this feature through two methods. There are two types of hubs defined in the USB specification.
One is the USB root hub, which is implemented in the USB Host controller. A timer event
is created for the root hub. The other one is a USB Hub. An event is created for each hub that
is correctly configured. All these events are associated with the same trigger which is USB
bus numerator.

When USB bus enumeration is triggered, the USB Bus Driver checks the source of the event.
This is required because the root hub differs from standard USB hub in checking the hub status.
The status of a root hub is retrieved through the EFI_USB2_HC_PROTOCOL, and that status of
a standard USB hub is retrieved through a USB control transfer. A detailed description of the
enumeration process is presented in the next section.

16.2.2.4 USB Bus Enumeration
When the periodic timer or the hubs notify event is signaled, the USB Bus Driver will perform
bus numeration.

1. Determine if the event is from the root hub or a standard USB hub.
2. Determine the port on which the connection change event occurred.
3. Determine if it is a connection change or a disconnection change.
4. If a connect change is detected, then a new device has been attached. Perform the following:

a. Reset and enable that port.
b. Configure the new device.
c. Parse the device configuration descriptors; get all of its interface descriptors (i.e. all USB

controllers), and configure each interface.
d. Create a new handle for each interface (USB Controller) within the USB device. Attach

the EFI_DEVICE_PATHEFI_DEVICE_PATH_PROTOCOL, and the
EFI_USB_IO_PROTOCOL to each handle.

e. Connect the USB Controller to a USB device driver with the Boot Service
ConnectController() if applicable.

f. If the USB Controller is a USB hub, create a Hub notify event which is associated with the
USB Bus Enumerator, and submit an Asynchronous Interrupt Transfer Request (See
Section 16.2.4).

5. If a disconnect change, then a device has been detached from the USB Bus. Perform the
following:
a. If the device is not a USB Hub, then find and deconfigure the USB Controllers within the

device. Then, stop each USB controller with DisconnectController(), and
uninstall the EFI_DEVICE_PATH_PROTOCOL and the EFI_USB_IO_PROTOCOL from
the controller’s handle.

b. If the USB controller is USB hub controller, first find and deconfigure all its downstream
USB devices (this is a recursive process, since there may be additional USB hub controllers
on the downstream ports), then deconfigure USB hub controller itself.

January 31, 2006
Version 2.0 693

16.2.3 USB Device Driver
A USB Device Driver manages a USB Controller and produces a device abstraction for use by a
preboot application.

16.2.3.1 USB Device Driver Entry Point
Like all other device drivers, the entry point for a USB Device Driver attaches
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Device Driver.

16.2.3.2 Driver Binding Protocol for USB Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(),
and Stop().

The Supported() tests to see if the USB Device Driver can manage a device handle. This
function checks to see if a controller can be managed by the USB Device Driver. This is done by
opening the EFI_USB_IO_PROTOCOL bus abstraction on the USB Controller handle, and using
the EFI_USB_IO_PROTOCOL services to determine if this USB Controller matches the profile
that the USB Device Driver is capable of managing.

The Start() function tells the USB Device Driver to start managing a USB Controller. It opens
the EFI_USB_IO_PROTOCOL instance from the handle for the USB Controller. This protocol
instance is used to perform USB packet transmission over the USB bus. For example, if the USB
controller is USB keyboard, then the USB keyboard driver would produce and install the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL to the USB controller handle.

The Stop() function tells the USB Device Driver to stop managing a USB Controller. It removes
the I/O abstraction protocol instance previously installed in Start() from the USB controller
handle. It then closes the EFI_USB_IO_PROTOCOL.

16.2.4 EFI USB I/O Protocol Overview
This section provides a detailed description of the EFI_USB_IO_PROTOCOL. This protocol is
used by code, typically drivers, running in the EFI boot services environment to access USB
devices like USB keyboards, mice and mass storage devices. In particular, functions for managing
devices on USB buses are defined here.

The interfaces provided in the EFI_USB_IO_PROTOCOL are for performing basic operations
to access USB devices. Typically, USB devices are accessed through the four different transfers
types:

• Controller Transfer: Typically used to configure the USB device into an operation mode.
• Interrupt Transfer: Typically used to get periodic small amount of data, like USB

keyboard and mouse.
• Bulk Transfer: Typically used to transfer large amounts of data like reading blocks

from USB mass storage devices.
• Isochronous Transfer: Typically used to transfer data at a fixed rate like voice data.

This protocol also provides mechanisms to manage and configure USB devices and controllers.

 January 31, 2006
694 Version 2.0

EFI_USB_IO Protocol

Summary
Provides services to manage and communicate with USB devices.

GUID
#define EFI_USB_IO_PROTOCOL_GUID \
 {0x2B2F68D6,0x0CD2,0x44cf,0x8E,0x8B,0xBB,0xA2,0x0B,0x1B,

0x5B,0x75}

Protocol Interface Structure
typedef struct _EFI_USB_IO_PROTOCOL {
 EFI_USB_IO_CONTROL_TRANSFER UsbControlTransfer;
 EFI_USB_IO_BULK_TRANSFER UsbBulkTransfer;
 EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER
 UsbAsyncInterruptTransfer;
 EFI_USB_IO_SYNC_INTERRPUT_TRANSFER UsbSyncInterruptTransfer
 EFI_USB_IO_ISOCHRONOUS_TRANSFER UsbIsochronousTransfer;
 EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER
 UsbAsyncIsochronousTransfer;
 EFI_USB_IO_GET_DEVICE_DESCRIPTOR UsbGetDeviceDescriptor;
 EFI_USB_IO_GET_CONFIG_DESCRIPTOR UsbGetConfigDescriptor;
 EFI_USB_IO_GET_INTERFACE_DESCRIPTOR
 UsbGetInterfaceDescriptor;
 EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR UsbGetEndpointDescriptor;
 EFI_USB_IO_GET_STRING_DESCRIPTOR UsbGetStringDescriptor;
 EFI_USB_IO_GET_SUPPORTED_LANGUAGES UsbGetSupportedLanguages;
 EFI_USB_IO_PORT_RESET UsbPortReset;
} EFI_USB_IO_PROTOCOL;

Parameters

UsbControlTransfer Accesses the USB Device through USB Control
Transfer Pipe. See the UsbControlTransfer()
function description.

UsbBulkTransfer Accesses the USB Device through USB Bulk Transfer
Pipe. See the UsbBulkTransfer() function
description.

UsbAsyncInterruptTransfer Non-block USB interrupt transfer. See the
UsbAsyncInterruptTransfer() function
description.

UsbSyncInterruptTransfer Accesses the USB Device through USB Synchronous
Interrupt Transfer Pipe. See the
UsbSyncInterruptTransfer() function
description.

January 31, 2006
Version 2.0 695

UsbIsochronousTransfer Accesses the USB Device through USB Isochronous
Transfer Pipe. See the
UsbIsochronousTransfer() function
description.

UsbAsyncIsochronousTransfer Nonblock USB isochronous transfer. See the
UsbAsyncIsochronousTransfer() function
description.

UsbGetDeviceDescriptor Retrieves the device descriptor of a USB device. See
the UsbGetDeviceDescriptor() function
description.

UsbGetConfigDescriptor Retrieves the activated configuration descriptor of a
USB device. See the
UsbGetConfigDescriptor() function
description.

UsbGetInterfaceDescriptor Retrieves the interface descriptor of a USB Controller.
See the UsbGetInterfaceDescriptor()
function description.

UsbGetEndpointDescriptor Retrieves the endpoint descriptor of a USB Controller.
See the UsbGetEndpointDescriptor()
function description.

UsbGetStringDescriptor Retrieves the string descriptor inside a USB Device.
See the UsbGetStringDescriptor() function
description.

UsbGetSupportedLanguages Retrieves the array of languages that the USB device
supports. See the
UsbGetSupportedLanguages() function
description.

UsbPortReset Resets and reconfigures the USB controller. See the
UsbPortReset() function description.

Description

The EFI_USB_IO_PROTOCOL provides four basic transfers types described in the USB 1.1
Specification. These include control transfer, interrupt transfer, bulk transfer and isochronous
transfer. The EFI_USB_IO_PROTOCOL also provides some basic USB device/controller
management and configuration interfaces. A USB device driver uses the services of this protocol to
manage USB devices.

 January 31, 2006
696 Version 2.0

EFI_USB_IO_PROTOCOL.UsbControlTransfer()

Summary

This function is used to manage a USB device with a control transfer pipe. A control transfer is
typically used to perform device initialization and configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_CONTROL_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN EFI_USB_DEVICE_REQUEST *Request,
 IN EFI_USB_DATA_DIRECTION Direction,
 IN UINT32 Timeout,
 IN OUT VOID *Data OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

Request A pointer to the USB device request that will be sent to the USB device.
See “Related Definitions” below.

Direction Indicates the data direction. See “Related Definitions” below for this
type.

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

Timeout Indicating the transfer should be completed within this time frame. The
units are in milliseconds. If Timeout is 0, then the caller must wait for
the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

DataLength The size, in bytes, of the data buffer specified by Data.

Status A pointer to the result of the USB transfer.

January 31, 2006
Version 2.0 697

Related Definitions
typedef enum {
 EfiUsbDataIn,
 EfiUsbDataOut,
 EfiUsbNoData
} EFI_USB_DATA_DIRECTION;

//
// Error code for USB Transfer Results
//
#define EFI_USB_NOERROR 0x0000
#define EFI_USB_ERR_NOTEXECUTE 0x0001
#define EFI_USB_ERR_STALL 0x0002
#define EFI_USB_ERR_BUFFER 0x0004
#define EFI_USB_ERR_BABBLE 0x0008
#define EFI_USB_ERR_NAK 0x0010
#define EFI_USB_ERR_CRC 0x0020
#define EFI_USB_ERR_TIMEOUT 0x0040
#define EFI_USB_ERR_BITSTUFF 0x0080
#define EFI_USB_ERR_SYSTEM 0x0100

typedef struct {
 UINT8 RequestType;
 UINT8 Request;
 UINT16 Value;
 UINT16 Index;
 UINT16 Length;
} EFI_USB_DEVICE_REQUEST;

RequestType The field identifies the characteristics of the specific request.

Request This field specifies the particular request.

Value This field is used to pass a parameter to USB device that is specific to the
request.

Index This field is also used to pass a parameter to USB device that is specific
to the request.

Length This field specifies the length of the data transferred during the second
phase of the control transfer. If it is 0, then there is no data phase in this
transfer.

 January 31, 2006
698 Version 2.0

Description

This function allows a USB device driver to communicate with the USB device through a Control
Transfer. There are three control transfer types according to the data phase. If the Direction
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase exists
for the control transfer. If the Direction parameter is EfiUsbDataOut, then Data specifies
the data to be transmitted to the device, and DataLength specifies the number of bytes to transfer
to the device. In this case there is an OUT DATA stage followed by a SETUP stage. If the
Direction parameter is EfiUsbDataIn, then Data specifies the data that is received from the
device, and DataLength specifies the number of bytes to receive from the device. In this case
there is an IN DATA stage followed by a SETUP stage. After the USB transfer has completed
successfully, EFI_SUCCESS is returned. If the transfer cannot be completed due to timeout, then
EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code is returned in Status.

Status Code Returned
EFI_SUCCESS The control transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter Direction is not valid.

EFI_INVALID_PARAMETER Request is NULL.

EFI-INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The control transfer fails due to timeout.

EFI_DEVICE_ERROR The transfer failed. The transfer status is returned in Status.

January 31, 2006
Version 2.0 699

EFI_USB_IO_PROTOCOL.UsbBulkTransfer()

Summary

This function is used to manage a USB device with the bulk transfer pipe. Bulk Transfers are
typically used to transfer large amounts of data to/from USB devices.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_BULK_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN UINTN Timeout,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not a BULK endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data. On
output, the number of bytes that were actually transferred.

Timeout Indicating the transfer should be completed within this time frame. The
units are in milliseconds. If Timeout is 0, then the caller must wait for
the function to be completed until EFI_SUCCESS or
EFI_DEVICE_ERROR is returned.

Status This parameter indicates the USB transfer status.

 January 31, 2006
700 Version 2.0

Description

This function allows a USB device driver to communicate with the USB device through Bulk
Transfer. The transfer direction is determined by the endpoint direction. If the USB transfer is
successful, then EFI_SUCCESS is returned. If USB transfer cannot be completed within the
Timeout frame, EFI_TIMEOUT is returned. If an error other than timeout occurs during the
USB transfer, then EFI_DEVICE_ERROR is returned and the detailed status code will be returned
in the Status parameter.

Status Code Returned
EFI_SUCCESS The bulk transfer has been successfully executed.

EFI_INVALID_PARAMETER If DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The bulk transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is returned
in Status.

January 31, 2006
Version 2.0 701

EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()

Summary

This function is used to manage a USB device with an interrupt transfer pipe. An Asynchronous
Interrupt Transfer is typically used to query a device’s status at a fixed rate. For example,
keyboard, mouse, and hub devices use this type of transfer to query their interrupt endpoints at
a fixed rate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK InterruptCallBack OPTIONAL,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an INTERRUPT endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

IsNewTransfer If TRUE, a new transfer will be submitted to USB controller. If FALSE,
the interrupt transfer is deleted from the device’s interrupt transfer queue.
If TRUE, and an interrupt transfer exists for the target end point, then
EFI_INVALID_PARAMETER is returned.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to be
executed. This parameter is required when IsNewTransfer is TRUE.
The value must be between 1 to 255, otherwise
EFI_INVALID_PARAMETER is returned. The units are in
milliseconds.

DataLength Specifies the length, in bytes, of the data to be received from the USB
device. This parameter is only required when IsNewTransfer is
TRUE.

 January 31, 2006
702 Version 2.0

Context Data passed to the InterruptCallback function. This is an
optional parameter and may be NULL.

InterruptCallback The Callback function. This function is called if the asynchronous
interrupt transfer is completed. This parameter is required when
IsNewTransfer is TRUE. See “Related Definitions” for the
definition of this type.

Related Definitions
typedef
EFI_STATUS
(EFIAPI * EFI_ASYNC_USB_TRANSFER_CALLBACK) (
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context,
 IN UINT32 Status
);

Data Data received or sent via the USB Asynchronous Transfer, if the transfer
completed successfully.

DataLength The length of Data received or sent via the Asynchronous Transfer, if
transfer successfully completes.

Context Data passed from UsbAsyncInterruptTransfer() request.

Status Indicates the result of the asynchronous transfer.

Description

This function allows a USB device driver to communicate with a USB device with an Interrupt
Transfer. Asynchronous Interrupt transfer is different than the other four transfer types because it is
a nonblocking transfer. The interrupt endpoint is queried at a fixed rate, and the data transfer
direction is always in the direction from the USB device towards the system.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is
specified by PollingInterval, the size of the receive buffer is specified by DataLength,
and the callback function is specified by InterruptCallback. If IsNewTransfer is TRUE,
and an interrupt transfer exists for the target end point, then EFI_INVALID_PARAMETER is
returned.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

January 31, 2006
Version 2.0 703

Status Code Returned
EFI_SUCCESS The asynchronous USB transfer request has been successfully executed.

EFI_DEVICE_ERROR The asynchronous USB transfer request failed. When an interrupt
transfer exists for the target end point and a new transfer is requested,
EFI_INVALID_PARAMETER is returned.

Examples

Below is an example of how an asynchronous interrupt transfer is used. The example shows how a
USB Keyboard Device Driver can periodically receive data from interrupt endpoint.
EFI_USB_IO_PROTOCOL *UsbIo;
EFI_STATUS Status;
USB_KEYBOARD_DEV *UsbKeyboardDevice;
EFI_USB_INTERRUPT_CALLBACK KeyboardHandle;

. . .
Status = UsbIo->UsbAsyncInterruptTransfer(
 UsbIo,
 UsbKeyboardDevice->IntEndpointAddress,
 TRUE,
 UsbKeyboardDevice->IntPollingInterval,
 8,
 KeyboardHandler,
 UsbKeyboardDevice
);
. . .

//
// The following is the InterruptCallback function. If there is any results got
// from Asynchoronous Interrupt Transfer, this function will be called.
//
EFI_STATUS
KeyboardHandler(
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context,
 IN UINT32 Result
)
{
 USB_KEYBOARD_DEV *UsbKeyboardDevice;
 UINTN I;

 if(EFI_ERROR(Result))
 {
 //
 // Something error during this transfer, just to some recovery work
 //
 . . .
 . . .
 return EFI_DEVICE_ERROR;
 }

 January 31, 2006
704 Version 2.0

 UsbKeyboardDevice = (USB_KEYBOARD_DEV *)Context;

 for(I = 0; I < DataLength; I++)
 {
 ParsedData(Data[I]);
 . . .

}

return EFI_SUCCESS;

}

January 31, 2006
Version 2.0 705

EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()

Summary

This function is used to manage a USB device with an interrupt transfer pipe. The difference
between UsbAsyncInterruptTransfer() and UsbSyncInterruptTransfer() is that
the Synchronous interrupt transfer will only be executed one time. Once it returns, regardless of its
status, the interrupt request will be deleted in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_SYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN UINTN Timeout,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an INTERRUPT endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

DataLength On input, then size, in bytes, of the buffer Data. On output, the amount
of data actually transferred.

Timeout The time out, in seconds, for this transfer. If Timeout is 0, then the
caller must wait for the function to be completed until EFI_SUCCESS
or EFI_DEVICE_ERROR is returned. If the transfer is not completed in
this time frame, then EFI_TIMEOUT is returned.

Status This parameter indicates the USB transfer status.

 January 31, 2006
706 Version 2.0

Description

This function allows a USB device driver to communicate with a USB device through a
synchronous interrupt transfer. The UsbSyncInterruptTransfer() differs from
UsbAsyncInterruptTransfer() described in the previous section in that it is a blocking
transfer request. The caller must wait for the function return, either successfully or unsuccessfully.

Status Code Returned
EFI_SUCCESS The sync interrupt transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is returned
in Status.

January 31, 2006
Version 2.0 707

EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()

Summary

This function is used to manage a USB device with an isochronous transfer pipe. An Isochronous
transfer is typically used to transfer streaming data.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USB_IO_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an ISOCHRONOUS endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

DataLength The size, in bytes, of the data buffer specified by Data.

Status This parameter indicates the USB transfer status.

 January 31, 2006
708 Version 2.0

Description

This function allows a USB device driver to communicate with a USB device with an Isochronous
Transfer. The type of transfer is different than the other types because the USB Bus Driver will not
attempt to perform error recovery if transfer fails. If the USB transfer is completed successfully,
then EFI_SUCCESS is returned. The isochronous transfer is designed to be completed within 1
USB frame time, if it cannot be completed, EFI_TIMEOUT is returned. If the transfer fails due to
other reasons, then EFI_DEVICE_ERROR is returned and the detailed error status is returned in
Status. If the data length exceeds the maximum payload per USB frame time, then it is this
function’s responsibility to divide the data into a set of smaller packets that fit into a USB frame
time. If all the packets are transferred successfully, then EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The isochronous transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within the 1 USB frame time.

EFI_DEVICE_ERROR The transfer failed due to the reason other than timeout, The error status
is returned in Status.

January 31, 2006
Version 2.0 709

EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()

Summary

This function is used to manage a USB device with an isochronous transfer pipe. An asynchronous
Isochronous transfer is a nonblocking USB isochronous transfer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,
 IN VOID *Context OPTIONAL

);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request is
being sent. DeviceEndpoint must be between 0x01 and 0x0F or
between 0x81 and 0x8F, otherwise EFI_INVALID_PARAMETER is
returned. If the endpoint is not an ISOCHRONOUS endpoint,
EFI_INVALID_PARAMETER is returned. The MSB of this parameter
indicates the endpoint direction. The number “1” stands for an IN
endpoint, and “0” stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB device or
received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received from
the USB device.

Context Data passed to the IsochronousCallback() function. This is an
optional parameter and may be NULL.

IsochronousCallback
The IsochronousCallback() function. This function is called if
the requested isochronous transfer is completed. See the “Related
Definitions” section of the UsbAsyncInterruptTransfer()
function description.

 January 31, 2006
710 Version 2.0

Description

This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous
transfer request through this function, this function will return immediately. When the isochronous
transfer completes, the IsochronousCallback() function will be triggered, the caller can
know the transfer results. If the transfer is successful, the caller can get the data received or sent in
this callback function.

Status Code Returned
EFI_SUCCESS The asynchronous isochronous transfer has been successfully submitted

to the system.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be submitted due to a lack of resources.

January 31, 2006
Version 2.0 711

EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()

Summary

Retrieves the USB Device Descriptor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_DEVICE_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_DEVICE_DESCRIPTOR *DeviceDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceDescriptor A pointer to the caller allocated USB Device Descriptor. See “Related
Definitions” for a detailed description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT16 BcdUSB;
 UINT8 DeviceClass;
 UINT8 DeviceSubClass;
 UINT8 DeviceProtocol;
 UINT8 MaxPacketSize0;
 UINT16 IdVendor;
 UINT16 IdProduct;
 UINT16 BcdDevice;
 UINT8 StrManufacturer;
 UINT8 StrProduct;
 UINT8 StrSerialNumber;
 UINT8 NumConfigurations;
} EFI_USB_DEVICE_DESCRIPTOR;

 January 31, 2006
712 Version 2.0

Description

This function is used to retrieve information about USB devices. This information includes the
device class, subclass, and the number of configurations the USB device supports. If
DeviceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
device descriptor is not found, then EFI_NOT_FOUND is returned. Otherwise, the device
descriptor is returned in DeviceDescriptor, and EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The device descriptor was retrieved successfully.

EFI_INVALID_PARAMETER DeviceDescriptor is NULL.

EFI_NOT_FOUND The device descriptor was not found. The device may not be configured.

January 31, 2006
Version 2.0 713

EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()

Summary

Retrieves the USB Device Configuration Descriptor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_CONFIG_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_CONFIG_DESCRIPTOR *ConfigurationDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

ConfigurationDescriptor
A pointer to the caller allocated USB Active Configuration Descriptor.
See “Related Definitions” for a detailed description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT16 TotalLength;
 UINT8 NumInterfaces;
 UINT8 ConfigurationValue;
 UINT8 Configuration;
 UINT8 Attributes;
 UINT8 MaxPower;
} EFI_USB_CONFIG_DESCRIPTOR;

Description

This function is used to retrieve the active configuration that the USB device is currently using. If
ConfigurationDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the
USB controller does not contain an active configuration, then EFI_NOT_FOUND is returned.
Otherwise, the active configuration is returned in ConfigurationDescriptor, and
EFI_SUCCESS is returned.

 January 31, 2006
714 Version 2.0

Status Code Returned
EFI_SUCCESS The active configuration descriptor was retrieved successfully.
EFI_INVALID_PARAMETER ConfigurationDescriptor is NULL.

EFI_NOT_FOUND An active configuration descriptor cannot be found. The device may not
be configured.

January 31, 2006
Version 2.0 715

EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()

Summary

Retrieves the Interface Descriptor for a USB Device Controller. As stated earlier, an interface
within a USB device is equivalently to a USB Controller within the current configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_INTERFACE_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_INTERFACE_DESCRIPTOR *InterfaceDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

InterfaceDescriptor
A pointer to the caller allocated USB Interface Descriptor within the
configuration setting. See “Related Definitions” for a detailed
description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT8 InterfaceNumber;
 UINT8 AlternateSetting;
 UINT8 NumEndpoints;
 UINT8 InterfaceClass;
 UINT8 InterfaceSubClass;
 UINT8 InterfaceProtocol;
 UINT8 Interface;
} EFI_USB_INTERFACE_DESCRIPTOR;

 January 31, 2006
716 Version 2.0

Description

This function is used to retrieve the interface descriptor for the USB controller. If
InterfaceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
controller does not contain an interface descriptor, then EFI_NOT_FOUND is returned. Otherwise,
the interface descriptor is returned in InterfaceDescriptor, and EFI_SUCCESS is returned.

Status Code Returned
EFI_SUCCESS The interface descriptor retrieved successfully.
EFI_INVALID_PARAMETER InterfaceDescriptor is NULL.

EFI_NOT_FOUND The interface descriptor cannot be found. The device may not be
correctly configured.

January 31, 2006
Version 2.0 717

EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()

Summary

Retrieves an Endpoint Descriptor within a USB Controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 OUT EFI_USB_ENDPOINT_DESCRIPTOR *EndpointDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

EndpointIndex Indicates which endpoint descriptor to retrieve. The valid range is 0..15.

EndpointDescriptor
A pointer to the caller allocated USB Endpoint Descriptor of a USB
controller. See “Related Definitions” for a detailed description.

Related Definitions
//
// See USB1.1 for detail descrption.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT8 EndpointAddress;
 UINT8 Attributes;
 UINT16 MaxPacketSize;
 UINT8 Interval;
} EFI_USB_ENDPOINT_DESCRIPTOR;

Description

This function is used to retrieve an endpoint descriptor within a USB controller. If
EndpointIndex is not in the range 0..15, then EFI_INVALID_PARAMETER is returned. If
EndpointDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the
endpoint specified by EndpointIndex does not exist within the USB controller, then
EFI_NOT_FOUND is returned. Otherwise, the endpoint descriptor is returned in
EndpointDescriptor, and EFI_SUCCESS is returned.

 January 31, 2006
718 Version 2.0

Status Code Returned
EFI_SUCCESS The endpoint descriptor was retrieved successfully.

EFI_INVALID_PARAMETER EndpointIndex is not valid.

EFI_INVALID_PARAMETER EndpointDescriptor is NULL.

EFI_NOT_FOUND The endpoint descriptor cannot be found. The device may not be
correctly configured.

Examples

The following code fragment shows how to retrieve all the endpoint descriptors from a
USB controller.
EFI_USB_IO_PROTOCOL *UsbIo;
EFI_USB_INTERFACE_DESCRIPTOR InterfaceDesc;
EFI_USB_ENDPOINT_DESCRIPTOR EndpointDesc;
UINTN Index;

Status = UsbIo->GetInterfaceDescriptor (
 UsbIo,
 &InterfaceDesc
);
. . .
for(Index = 0; Index < InterfaceDesc.NumEndpoints; Index++) {
 Status = UsbIo->GetEndpointDescriptor(
 UsbIo,
 Index,
 &EndpointDesc
);
. . .
}

January 31, 2006
Version 2.0 719

EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()

Summary

Retrieves a Unicode string stored in a USB Device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_STRING_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT16 LangID,
 IN UINT8 StringID,
 OUT CHAR16 **String
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

LangID The Language ID for the string being retrieved. See the
UsbGetSupportedLanguages() function description for a more
detailed description.

StringID The ID of the string being retrieved.

String A pointer to a buffer allocated by this function with AllocatePool()
to store the string. If this function returns EFI_SUCCESS, it stores the
string the caller wants to get. The caller should release the string buffer
with FreePool() after the string is not used any more.

Description

This function is used to retrieve strings stored in a USB device. Strings are stored in a Unicode
format. The string to retrieve is identified by a language and an identifier. The language is
specified by LangID, and the identifier is specified by StringID. If the string is found, it is
returned in String, and EFI_SUCCESS is returned. If the string cannot be found, then
EFI_NOT_FOUND is returned. The string buffer is allocated by this function with
AllocatePool(). The caller is responsible for calling FreePool() for String when it is
no longer required.

Status Code Returned
EFI_SUCCESS The string was retrieved successfully.

EFI_NOT_FOUND The string specified by LangID and StringID was not found.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate the return buffer String.

 January 31, 2006
720 Version 2.0

EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()

Summary

Retrieves all the language ID codes that the USB device supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_SUPPORTED_LANGUAGES) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT UINT16 **LangIDTable,
 OUT UINT16 *TableSize
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

LangIDTable Language ID for the string the caller wants to get. This is a 16-bit ID
defined by Microsoft. This buffer pointer is allocated and maintained by
the USB Bus Driver, the caller should not modify its contents.

TableSize The size, in bytes, of the table LangIDTable.

Description

Retrieves all the language ID codes that the USB device supports.

Status Code Returned
EFI_SUCCESS The support languages were retrieved successfully.

January 31, 2006
Version 2.0 721

EFI_USB_IO_PROTOCOL.UsbPortReset()

Summary

Resets and reconfigures the USB controller. This function will work for all USB devices except
USB Hub Controllers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_PORT_RESET) (
 IN EFI_USB_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

Description

This function provides a reset mechanism by sending a RESET signal from the parent hub port. A
reconfiguration process will happen (that includes setting the address and setting the configuration).
This reset function does not change the bus topology. A USB hub controller cannot be reset using
this function, because it would impact the downstream USB devices. So if the controller is a USB
hub controller, then EFI_INVALID_PARAMETER is returned.

Status Code Returned
EFI_SUCCESS The USB controller was reset.

EFI_INVALID_PARAMETER If the controller specified by This is a USB hub.

EFI_DEVICE_ERROR An error occurred during the reconfiguration process.

 January 31, 2006
722 Version 2.0

January 31, 2006
Version 2.0 723

17
Protocols — Debugger Support

This chapter describes a minimal set of protocols and associated data structures necessary to enable
the creation of source level debuggers for EFI. It does not fully define a debugger design. Using
the services described in this document, it should also be possible to implement a variety of
debugger solutions.

17.1 Overview

Efficient UEFI driver and application development requires the availability of source level
debugging facilities. Although completely on-target debuggers are clearly possible, UEFI
debuggers are generally expected to be remotely hosted. That is to say, the debugger itself will be
split between two machines, which are the host and target. A majority of debugger code runs on
the host that is typically responsible for disassembly, symbol management, source display, and user
interface. Similarly, a smaller piece of code runs on the target that establishes the communication
to the host and proxies requests from the host. The on-target code is known as the “debug agent.”

The debug agent design is subdivided further into two parts, which are the processor/platform
abstraction and the debugger host specific communication grammar. This specification describes
architectural interfaces for the former only. Specific implementations for various debugger host
communication grammars can be created that make use of the facilities described in this
specification.

The processor/platform abstraction is presented as a pair of protocol interfaces, which are the
Debug Support protocol and the Debug Port protocol.

The Debug Support protocol abstracts the processor’s debugging facilities, namely a mechanism to
manage the processor’s context via caller-installable exception handlers.

The Debug Port protocol abstracts the device that is used for communication between the host and
target. Typically this will be a 16550 serial port, 1394 device, or other device that is nominally a
serial stream.

Furthermore, a table driven, quiescent, memory-only mechanism for determining the base address
of PE32+ images is provided to enable the debugger host to determine where images are located
in memory.

Aside from timing differences that occur because of running code associated with the debug agent
and user initiated changes to the machine context, the operation of the on-target debugger
component must be transparent to the rest of the system. In addition, no portion of the debug agent
that runs in interrupt context may make any calls to EFI services or other protocol interfaces.

The services described in this document do not comprise a complete debugger, rather they provide
a minimal abstraction required to implement a wide variety of debugger solutions.

 January 31, 2006
724 Version 2.0

17.2 EFI Debug Support Protocol

This section defines the EFI Debug Support protocol which is used by the debug agent.

17.2.1 EFI Debug Support Protocol Overview
The debug-agent needs to be able to gain control of the machine when certain types of events
occur; i.e. breakpoints, processor exceptions, etc. Additionally, the debug agent must also be able
to periodically gain control during operation of the machine to check for asynchronous commands
from the host. The EFI Debug Support protocol services enable these capabilities.

The EFI Debug Support protocol interfaces produce callback registration mechanisms which are
used by the debug agent to register functions that are invoked either periodically or when specific
processor exceptions. When they are invoked by the Debug Support driver, these callback
functions are passed the current machine context record. The debug agent may modify this context
record to change the machine context which is restored to the machine after the callback function
returns. The debug agent does not run in the same context as the rest of UEFI and all modifications
to the machine context are deferred until after the callback function returns.

It is expected that there will typically be two instances of the EFI Debug Support protocol in the
system. One associated with the native processor instruction set (IA-32, x64, or Itanium processor
family), and one for the EFI virtual machine that implements EFI byte code (EBC).

While multiple instances of the EFI Debug Support protocol are expected, there must never be
more than one for any given instruction set.

January 31, 2006
Version 2.0 725

EFI_DEBUG_SUPPORT_PROTOCOL

Summary

This protocol provides the services to allow the debug agent to register callback functions that are
called either periodically or when specific processor exceptions occur.

GUID
#define EFI_DEBUG_SUPPORT_PROTOCOL_GUID \
 {0x2755590C,0x6F3C,0x42FA,0x9E,0xA4,0xA3,0xBA,0x54,0x3C,

0xDA,0x25}

Protocol Interface Structure
typedef struct {
 EFI_INSTRUCTION_SET_ARCHITECTURE Isa;
 EFI_GET_MAXIMUM_PROCESSOR_INDEX GetMaximumProcessorIndex;
 EFI_REGISTER_PERIODIC_CALLBACK RegisterPeriodicCallback;
 EFI_REGISTER_EXCEPTION_CALLBACK RegisterExceptionCallback;
 EFI_INVALIDATE_INSTRUCTION_CACHE InvalidateInstructionCache;
} EFI_DEBUG_SUPPORT_PROTOCOL;

Parameters

Isa Declares the processor architecture for this instance of the EFI Debug
Support protocol.

GetMaximumProcessorIndex

 Returns the maximum processor index value that may be used with
RegisterPeriodicCallback() and
RegisterExceptionCallback(). See the
GetMaximumProcessorIndex() function description.

RegisterPeriodicCallback

 Registers a callback function that will be invoked periodically and
asynchronously to the execution of EFI. See the
RegisterPeriodicCallback() function description.

RegisterExceptionCallback

 Registers a callback function that will be called each time the
specified processor exception occurs. See the
RegisterExceptionCallback() function description.

 January 31, 2006
726 Version 2.0

InvalidateInstructionCache

Invalidate the instruction cache of the processor. This is required by
processor architectures where instruction and data caches are not
coherent when instructions in the code under debug has been modified
by the debug agent. See the
InvalidateInstructionCache() function description.

Related Definitions

Refer to the Microsoft PE/COFF Specification revision 6.2 or later for IMAGE_FILE_MACHINE
definitions.

NOTE

At the time of publication of this specification, the latest revision of the PE/COFF specification
was 6.2. The definition of IMAGE_FILE_MACHINE_EBC is not included in revision 6.2 of the
PE/COFF specification. It will be added in a future revision of the PE/COFF specification.

typedef enum {
 IsaIa32 = IMAGE_FILE_MACHINE_I386, // 0x014C
 IsaX64 = IMAGE_FILE_MACHINE_X64, // 0x8664
 IsaIpf = IMAGE_FILE_MACHINE_IA64, // 0x0200
 IsaEbc = IMAGE_FILE_MACHINE_EBC // 0x0EBC

 } EFI_INSTRUCTION_SET_ARCHITECTURE

Description

The EFI Debug Support protocol provides the interfaces required to register debug agent callback
functions and to manage the processor’s instruction stream as required. Registered callback
functions are invoked in interrupt context when the specified event occurs.

The driver that produces the EFI Debug Support protocol is also responsible for saving the
machine context prior to invoking a registered callback function and restoring it after the callback
function returns prior to returning to the code under debug. If the debug agent has modified the
context record, the modified context must be used in the restore operation.

Furthermore, if the debug agent modifies any of the code under debug (to set a software
breakpoint for example), it must call the InvalidateInstructionCache() function for
the region of memory that has been modified.

January 31, 2006
Version 2.0 727

EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()

Summary

Returns the maximum value that may be used for the ProcessorIndex parameter in
RegisterPeriodicCallback() and RegisterExceptionCallback().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MAXIMUM_PROCESSOR_INDEX) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 OUT UINTN *MaxProcessorIndex
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type

EFI_DEBUG_SUPPORT_PROTOCOL is defined in this section.

MaxProcessorIndex Pointer to a caller-allocated UINTN in which the maximum supported
processor index is returned.

Description

The GetMaximumProcessorIndex() function returns the maximum processor index in the
output parameter MaxProcessorIndex. This value is the largest value that may be used in the
ProcessorIndex parameter for both RegisterPeriodicCallback() and
RegisterExceptionCallback(). All values between 0 and MaxProcessorIndex must
be supported by RegisterPeriodicCallback() and
RegisterExceptionCallback().

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by GetMaximumProcessorIndex(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

 January 31, 2006
728 Version 2.0

EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()

Summary

Registers a function to be called back periodically in interrupt context.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REGISTER_PERIODIC_CALLBACK) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN EFI_PERIODIC_CALLBACK PeriodicCallback
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type

EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 17.2.

ProcessorIndex Specifies which processor the callback function applies to.

PeriodicCallback A pointer to a function of type PERIODIC_CALLBACK that is the main
periodic entry point of the debug agent. It receives as a parameter a
pointer to the full context of the interrupted execution thread.

Related Definitions
typedef
VOID (*EFI_PERIODIC_CALLBACK) (
 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

typedef union {
 EFI_SYSTEM_CONTEXT_EBC *SystemContextEbc,
 EFI_SYSTEM_CONTEXT_IA32 *SystemContextIa32,
 EFI_SYSTEM_CONTEXT_X64 *SystemContextX64;
 EFI_SYSTEM_CONTEXT_IPF *SystemContextIpf
} EFI_SYSTEM_CONTEXT;

// System context for virtual EBC processors
typedef struct {
 UINT64 R0, R1, R2, R3, R4, R5, R6, R7;
 UINT64 Flags;
 UINT64 ControlFlags;
 UINT64 Ip;
} EFI_SYSTEM_CONTEXT_EBC;

January 31, 2006
Version 2.0 729

NOTE

When the context record field is larger than the register being stored in it, the upper bits of the
context record field are unused and ignored

// System context for IA-32 processors
typedef struct {
 UINT32 ExceptionData; // ExceptionData is

// additional data pushed
// on the stack by some
// types of IA-32
// exceptions

 EFI_FX_SAVE_STATE_IA32 FxSaveState;
 UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;
 UINT32 Cr0, Cr1 /* Reserved */, Cr2,

Cr3, Cr4;
 UINT32 Eflags;
 UINT32 Ldtr, Tr;
 UINT32 Gdtr[2], Idtr[2];
 UINT32 Eip;
 UINT32 Gs, Fs, Es, Ds, Cs, Ss;
 UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx,

Ecx, Eax;
} EFI_SYSTEM_CONTEXT_IA32;

// FXSAVE_STATE - FP / MMX / XMM registers
typedef struct {
 UINT16 Fcw;
 UINT16 Fsw;
 UINT16 Ftw;
 UINT16 Opcode;
 UINT32 Eip;
 UINT16 Cs;
 UINT16 Reserved1;
 UINT32 DataOffset;
 UINT16 Ds;
 UINT8 Reserved2[10];
 UINT8 St0Mm0[10], Reserved3[6];
 UINT8 St1Mm1[10], Reserved4[6];
 UINT8 St2Mm2[10], Reserved5[6];
 UINT8 St3Mm3[10], Reserved6[6];
 UINT8 St4Mm4[10], Reserved7[6];
 UINT8 St5Mm5[10], Reserved8[6];
 UINT8 St6Mm6[10], Reserved9[6];
 UINT8 St7Mm7[10], Reserved10[6];
 UINT8 Xmm0[16];

 January 31, 2006
730 Version 2.0

 UINT8 Xmm1[16];
 UINT8 Xmm2[16];
 UINT8 Xmm3[16];
 UINT8 Xmm4[16];
 UINT8 Xmm5[16];
 UINT8 Xmm6[16];
 UINT8 Xmm7[16];
 UINT8 Reserved11[14 * 16];
} EFI_FX_SAVE_STATE_IA32

// System context for x64 processors
typedef struct {
 UINT64 ExceptionData; // ExceptionData is
 // additional data
pushed
 // on the stack by some
 // types of x64 64-bit
 // mode exceptions
 EFI_FX_SAVE_STATE_X64 FxSaveState;
 UINT64 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;
 UINT64 Cr0, Cr1 /* Reserved */, Cr2, Cr3,

Cr4, Cr8;
 UINT64 Rflags;
 UINT64 Ldtr, Tr;
 UINT64 Gdtr[2], Idtr[2];
 UINT64 Rip;
 UINT64 Gs, Fs, Es, Ds, Cs, Ss;
 UINT64 Rdi, Rsi, Rbp, Rsp, Rbx, Rdx, Rcx,

Rax;
 UINT64 R8, R9, R10, R11, R12, R13, R14, R15;
} EFI_SYSTEM_CONTEXT_X64;

 // FXSAVE_STATE – FP / MMX / XMM registers
typedef struct {
 UINT16 Fcw;
 UINT16 Fsw;
 UINT16 Ftw;
 UINT16 Opcode;
 UINT64 Rip;
 UINT64 DataOffset;
 UINT8 Reserved1[8];
 UINT8 St0Mm0[10], Reserved2[6];
 UINT8 St1Mm1[10], Reserved3[6];
 UINT8 St2Mm2[10], Reserved4[6];
 UINT8 St3Mm3[10], Reserved5[6];
 UINT8 St4Mm4[10], Reserved6[6];
 UINT8 St5Mm5[10], Reserved7[6];
 UINT8 St6Mm6[10], Reserved8[6];

January 31, 2006
Version 2.0 731

 UINT8 St7Mm7[10], Reserved9[6];
 UINT8 Xmm0[16];
 UINT8 Xmm1[16];
 UINT8 Xmm2[16];
 UINT8 Xmm3[16];
 UINT8 Xmm4[16];
 UINT8 Xmm5[16];
 UINT8 Xmm6[16];
 UINT8 Xmm7[16];
 UINT8 Reserved11[14 * 16];
} EFI_FX_SAVE_STATE_X64;

// System context for Itanium processor family
typedef struct {
 UINT64 Reserved;

 UINT64 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,
 R11, R12, R13, R14, R15, R16, R17, R18, R19, R20,
 R21, R22, R23, R24, R25, R26, R27, R28, R29, R30,
 R31;

 UINT64 F2[2], F3[2], F4[2], F5[2], F6[2],
 F7[2], F8[2], F9[2], F10[2], F11[2],
 F12[2], F13[2], F14[2], F15[2], F16[2],
 F17[2], F18[2], F19[2], F20[2], F21[2],
 F22[2], F23[2], F24[2], F25[2], F26[2],
 F27[2], F28[2], F29[2], F30[2], F31[2];

 UINT64 Pr;

 UINT64 B0, B1, B2, B3, B4, B5, B6, B7;

 // application registers
 UINT64 ArRsc, ArBsp, ArBspstore, ArRnat;
 UINT64 ArFcr;
 UINT64 ArEflag, ArCsd, ArSsd, ArCflg;
 UINT64 ArFsr, ArFir, ArFdr;
 UINT64 ArCcv;
 UINT64 ArUnat;
 UINT64 ArFpsr;
 UINT64 ArPfs, ArLc, ArEc;

 // control registers
 UINT64 CrDcr, CrItm, CrIva, CrPta, CrIpsr, CrIsr;
 UINT64 CrIip, CrIfa, CrItir, CrIipa, CrIfs, CrIim;

 January 31, 2006
732 Version 2.0

 UINT64 CrIha;

 // debug registers
 UINT64 Dbr0, Dbr1, Dbr2, Dbr3, Dbr4, Dbr5, Dbr6, Dbr7;
 UINT64 Ibr0, Ibr1, Ibr2, Ibr3, Ibr4, Ibr5, Ibr6, Ibr7;

 // virtual registers
 UINT64 IntNat; // nat bits for R1-R31

} EFI_SYSTEM_CONTEXT_IPF;

Description

The RegisterPeriodicCallback() function registers and enables the on-target debug
agent’s periodic entry point. To unregister and disable calling the debug agent’s periodic entry
point, call RegisterPeriodicCallback() passing a NULL PeriodicCallback
parameter.

The implementation must handle saving and restoring the processor context to/from the system
context record around calls to the registered callback function.

If the interrupt is also used by the firmware for the EFI time base or some other use, two rules must
be observed. First, the registered callback function must be called before any EFI processing takes
place. Second, the Debug Support implementation must perform the necessary steps to pass control
to the firmware’s corresponding interrupt handler in a transparent manner.

There is no quality of service requirement or specification regarding the frequency of calls to the
registered PeriodicCallback function. This allows the implementation to mitigate a potential
adverse impact to EFI timer based services due to the latency induced by the context save/restore
and the associated callback function.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterPeriodicCallback(). The implementation behavior when
an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL PeriodicCallback parameter when a callback

function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.

January 31, 2006
Version 2.0 733

EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()

Summary

Registers a function to be called when a given processor exception occurs.

Prototype
typedef
EFI_STATUS
(EFIAPI *REGISTER_EXCEPTION_CALLBACK) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN EFI_EXCEPTION_CALLBACK ExceptionCallback,
 IN EFI_EXCEPTION_TYPE ExceptionType
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type

EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 17.2.

ProcessorIndex Specifies which processor the callback function applies to.

ExceptionCallback A pointer to a function of type EXCEPTION_CALLBACK that is called
when the processor exception specified by ExceptionType occurs.
Passing NULL unregisters any previously registered function associated
with ExceptionType.

ExceptionType Specifies which processor exception to hook.

 January 31, 2006
734 Version 2.0

Related Definitions
typedef
VOID (*EFI_EXCEPTION_CALLBACK) (
 IN EFI_EXCEPTION_TYPE ExceptionType,
 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

typedef INTN EFI_EXCEPTION_TYPE;

// EBC Exception types
#define EXCEPT_EBC_UNDEFINED 0
#define EXCEPT_EBC_DIVIDE_ERROR 1
#define EXCEPT_EBC_DEBUG 2
#define EXCEPT_EBC_BREAKPOINT 3
#define EXCEPT_EBC_OVERFLOW 4
#define EXCEPT_EBC_INVALID_OPCODE 5
#define EXCEPT_EBC_STACK_FAULT 6
#define EXCEPT_EBC_ALIGNMENT_CHECK 7
#define EXCEPT_EBC_INSTRUCTION_ENCODING 8
#define EXCEPT_EBC_BAD_BREAK 9
#define EXCEPT_EBC_SINGLE_STEP 10

// IA-32 Exception types
#define EXCEPT_IA32_DIVIDE_ERROR 0
#define EXCEPT_IA32_DEBUG 1
#define EXCEPT_IA32_NMI 2
#define EXCEPT_IA32_BREAKPOINT 3
#define EXCEPT_IA32_OVERFLOW 4
#define EXCEPT_IA32_BOUND 5
#define EXCEPT_IA32_INVALID_OPCODE 6
#define EXCEPT_IA32_DOUBLE_FAULT 8
#define EXCEPT_IA32_INVALID_TSS 10
#define EXCEPT_IA32_SEG_NOT_PRESENT 11
#define EXCEPT_IA32_STACK_FAULT 12
#define EXCEPT_IA32_GP_FAULT 13
#define EXCEPT_IA32_PAGE_FAULT 14
#define EXCEPT_IA32_FP_ERROR 16
#define EXCEPT_IA32_ALIGNMENT_CHECK 17
#define EXCEPT_IA32_MACHINE_CHECK 18
#define EXCEPT_IA32_SIMD 19

//
// X64 Exception types
//
#define EXCEPT_X64_DIVIDE_ERROR 0
#define EXCEPT_X64_DEBUG 1

January 31, 2006
Version 2.0 735

#define EXCEPT_X64_NMI 2
#define EXCEPT_X64_BREAKPOINT 3
#define EXCEPT_X64_OVERFLOW 4
#define EXCEPT_X64_BOUND 5
#define EXCEPT_X64_INVALID_OPCODE 6
#define EXCEPT_X64_DOUBLE_FAULT 8
#define EXCEPT_X64_INVALID_TSS 10
#define EXCEPT_X64_SEG_NOT_PRESENT 11
#define EXCEPT_X64_STACK_FAULT 12
#define EXCEPT_X64_GP_FAULT 13
#define EXCEPT_X64_PAGE_FAULT 14
#define EXCEPT_X64_FP_ERROR 16
#define EXCEPT_X64_ALIGNMENT_CHECK 17
#define EXCEPT_X64_MACHINE_CHECK 18
#define EXCEPT_X64_SIMD 19

// Itanium Processor Family Exception types
#define EXCEPT_IPF_VHTP_TRANSLATION 0
#define EXCEPT_IPF_INSTRUCTION_TLB 1
#define EXCEPT_IPF_DATA_TLB 2
#define EXCEPT_IPF_ALT_INSTRUCTION_TLB 3
#define EXCEPT_IPF_ALT_DATA_TLB 4
#define EXCEPT_IPF_DATA_NESTED_TLB 5
#define EXCEPT_IPF_INSTRUCTION_KEY_MISSED 6
#define EXCEPT_IPF_DATA_KEY_MISSED 7
#define EXCEPT_IPF_DIRTY_BIT 8
#define EXCEPT_IPF_INSTRUCTION_ACCESS_BIT 9
#define EXCEPT_IPF_DATA_ACCESS_BIT 10
#define EXCEPT_IPF_BREAKPOINT 11
#define EXCEPT_IPF_EXTERNAL_INTERRUPT 12
// 13 - 19 reserved
#define EXCEPT_IPF_PAGE_NOT_PRESENT 20
#define EXCEPT_IPF_KEY_PERMISSION 21
#define EXCEPT_IPF_INSTRUCTION_ACCESS_RIGHTS 22
#define EXCEPT_IPF_DATA_ACCESS_RIGHTS 23
#define EXCEPT_IPF_GENERAL_EXCEPTION 24
#define EXCEPT_IPF_DISABLED_FP_REGISTER 25
#define EXCEPT_IPF_NAT_CONSUMPTION 26
#define EXCEPT_IPF_SPECULATION 27
// 28 reserved
#define EXCEPT_IPF_DEBUG 29
#define EXCEPT_IPF_UNALIGNED_REFERENCE 30
#define EXCEPT_IPF_UNSUPPORTED_DATA_REFERENCE 31
#define EXCEPT_IPF_FP_FAULT 32
#define EXCEPT_IPF_FP_TRAP 33
#define EXCEPT_IPF_LOWER_PRIVILEGE_TRANSFER_TRAP 34

 January 31, 2006
736 Version 2.0

#define EXCEPT_IPF_TAKEN_BRANCH 35
#define EXCEPT_IPF_SINGLE_STEP 36
// 37 - 44 reserved
#define EXCEPT_IPF_IA32_EXCEPTION 45
#define EXCEPT_IPF_IA32_INTERCEPT 46
#define EXCEPT_IPF_IA32_INTERRUPT 47

Description

The RegisterExceptionCallback() function registers and enables an exception callback
function for the specified exception. The specified exception must be valid for the instruction set
architecture. To unregister the callback function and stop servicing the exception, call
RegisterExceptionCallback() passing a NULL ExceptionCallback parameter.

The implementation must handle saving and restoring the processor context to/from the system
context record around calls to the registered callback function. No chaining of exception handlers
is allowed.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterExceptionCallback(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL ExceptionCallback parameter when a

callback function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.

January 31, 2006
Version 2.0 737

EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

Summary

Invalidates processor instruction cache for a memory range. Subsequent execution in this range
causes a fresh memory fetch to retrieve code to be executed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INVALIDATE_INSTRUCTION_CACHE) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN VOID *Start,
 IN UINT64 Length
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance. Type

EFI_DEBUG_SUPPORT_PROTOCOL is defined in Section 17.2.

ProcessorIndex Specifies which processor’s instruction cache is to be invalidated.

Start Specifies the physical base of the memory range to be invalidated.

Length Specifies the minimum number of bytes in the processor’s instruction
cache to invalidate.

Description

Typical operation of a debugger may require modifying the code image that is under debug. This
can occur for many reasons, but is typically done to insert/remove software break instructions.
Some processor architectures do not have coherent instruction and data caches so modifications to
the code image require that the instruction cache be explicitly invalidated in that memory region.

The InvalidateInstructionCache() function abstracts this operation from the debug
agent and provides a general purpose capability to invalidate the processor’s instruction cache.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterExceptionCallback(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

 January 31, 2006
738 Version 2.0

17.3 EFI Debugport Protocol

This section defines the EFI Debugport protocol. This protocol is used by debug agent to
communicate with the remote debug host.

EFI Debugport Overview
Historically, remote debugging has typically been done using a standard UART serial port to
connect the host and target. This is obviously not possible in a legacy reduced system that does not
have a UART. The Debugport protocol solves this problem by providing an abstraction that can
support many different types of debugport hardware. The debug agent should use this abstraction
to communicate with the host.

The interface is minimal with only reset, read, write, and poll abstractions. Since these functions
are called in interrupt context, none of them may call any EFI services or other protocol interfaces.

Debugport selection and configuration is handled by setting defaults via an environment variable
which contains a full device path to the debug port. This environment variable is used during the
debugport driver’s initialization to configure the debugport correctly. The variable contains a full
device path to the debugport, with the last node (prior to the terminal node) being a debugport
messaging node. See Section 17.3.1 for details.

The driver must also produce an instance of the EFI Device Path protocol to indicate what hardware
is being used for the debugport. This may be used by the OS to maintain the debugport across a
call to ExitBootServices().

January 31, 2006
Version 2.0 739

EFI_DEBUGPORT_PROTOCOL

Summary

This protocol provides the communication link between the debug agent and the remote host.

GUID
#define EFI_DEBUGPORT_PROTOCOL_GUID \
 {0xEBA4E8D2,0x3858,0x41EC,0xA2,0x81,0x26,0x47,0xBA,0x96,

0x60,0xD0}

Protocol Interface Structure
typedef struct {
 EFI_DEBUGPORT_RESET Reset;
 EFI_DEBUGPORT_WRITE Write;
 EFI_DEBUGPORT_READ Read;
 EFI_DEBUGPORT_POLL Poll;
} EFI_DEBUGPORT_PROTOCOL;

Parameters

Reset Resets the debugport hardware.

Write Send a buffer of characters to the debugport device.

Read Receive a buffer of characters from the debugport device.

Poll Determine if there is any data available to be read from the
debugport device.

Description

The Debugport protocol is used for byte stream communication with a debugport device. The
debugport can be a standard UART Serial port, a USB-based character device, or potentially any
character-based I/O device.

The attributes for all UART-style debugport device interfaces are defined in the DEBUGPORT
variable (see Section 17.3.1).

 January 31, 2006
740 Version 2.0

EFI_DEBUGPORT_PROTOCOL.Reset()

Summary

Resets the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_RESET) (
 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Description

The Reset() function resets the debugport device.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Reset(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The debugport device was reset and is in usable state.

EFI_DEVICE_ERROR The debugport device could not be reset and is unusable.

January 31, 2006
Version 2.0 741

EFI_DEBUGPORT_PROTOCOL.Write()

Summary

Writes data to the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_WRITE) (
 IN EFI_DEBUGPORT_PROTOCOL *This,
 IN UINT32 Timeout,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Timeout The number of microseconds to wait before timing out a write operation.

BufferSize On input, the requested number of bytes of data to write. On output, the
number of bytes of data actually written.

Buffer A pointer to a buffer containing the data to write.

Description

The Write() function writes the specified number of bytes to a debugport device. If a timeout
error occurs while data is being sent to the debugport, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the debugport
device is returned in BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Write(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.

 January 31, 2006
742 Version 2.0

EFI_DEBUGPORT_PROTOCOL.Read()

Summary

Reads data from the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_READ) (
 IN EFI_DEBUGPORT_PROTOCOL *This,
 IN UINT32 Timeout,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Timeout The number of microseconds to wait before timing out a read operation.

BufferSize A pointer to an integer which, on input contains the requested number of
bytes of data to read, and on output contains the actual number of bytes
of data read and returned in Buffer.

Buffer A pointer to a buffer into which the data read will be saved.

Description

The Read() function reads a specified number of bytes from a debugport. If a timeout error or an
overrun error is detected while data is being read from the debugport, then no more characters will
be read, and EFI_TIMEOUT will be returned. In all cases the number of bytes actually read is
returned in *BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Read(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The debugport device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

January 31, 2006
Version 2.0 743

EFI_DEBUGPORT_PROTOCOL.Poll()

Summary

Checks to see if any data is available to be read from the debugport device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_POLL) (
 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Description

The Poll() function checks if there is any data available to be read from the debugport device
and returns the result. No data is actually removed from the input stream. This function enables
simpler debugger design since buffering of reads is not necessary by the caller.

Status Codes Returned
EFI_SUCCESS At least one byte of data is available to be read.

EFI_NOT_READY No data is available to be read.

EFI_DEVICE_ERROR The debugport device is not functioning correctly.

 January 31, 2006
744 Version 2.0

17.3.1 Debugport Device Path
The debugport driver must establish and maintain an instance of the EFI Device Path protocol for
the debugport. A graceful handoff of debugport ownership between the EFI Debugport driver and
an OS debugport driver requires that the OS debugport driver can determine the type, location, and
configuration of the debugport device.

The Debugport Device Path is a vendor-defined messaging device path with no data, only a GUID.
It is used at the end of a conventional device path to tag the device for use as the debugport. For
example, a typical UART debugport would have the following fully qualified device path:

ACPI(PciRootBridge)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,n,8,1)/DebugPort()

The Vendor_GUID that defines the debugport device path is the same as the debugport protocol
GUID, as defined below.
#define DEVICE_PATH_MESSAGING_DEBUGPORT \

EFI_DEBUGPORT_PROTOCOL_GUID

Table 109 shows all fields of the debugport device path.

Table 109. Debugport Messaging Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path.

Sub Type 1 1 Sub Type 10 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Vendor_GUID 4 16 DEVICE_PATH_MESSAGING_DEBUGPORT.

January 31, 2006
Version 2.0 745

EFI Debugport Variable
Even though there may be more than one hardware device that could function as a debugport in a
system, only one debugport may be active at a time. The DEBUGPORT variable is used to declare
which hardware device will act as the debugport, and what communication parameters it should
assume.

Like all EFI variables, the DEBUGPORT variable has both a name and a GUID. The name is
“DEBUGPORT.” The GUID is the same as the EFI_DEBUGPORT_PROTOCOL_GUID:

#define EFI_DEBUGPORT_VARIABLE_NAME L"DEBUGPORT"
#define EFI_DEBUGPORT_VARIABLE_GUID EFI_DEBUGPORT_PROTOCOL_GUID

The data contained by the DEBUGPORT variable is a fully qualified debugport device path (see
Section 17.3.1).

The desired communication parameters for the debugport are declared in the DEBUGPORT
variable. The debugport driver must read this variable during initialization to determine how to
configure the debug port.

To reduce the required complexity of the debugport driver, the debugport driver is not required to
support all possible combinations of communication parameters. What combinations of parameters
are possible is implementation specific.

Additionally debugport drivers implemented for PNP0501 devices, that is debugport devices with a
PNP0501 ACPI node in the device path, must support the following defaults. These defaults must
be used in the absence of a DEBUGPORT variable, or when the communication parameters
specified in the DEBUGPORT variable are not supported by the driver.

• Baud : 115200
• 8 data bits
• No parity
• 1 stop bit
• No flow control (See Appendix A for flow control details)

In the absence of the DEBUGPORT variable, the selection of which port to use as the debug port is
implementation specific.

Future revisions of this specification may define new defaults for other debugport types.

The debugport device path must be constructed to reflect the actual settings for the debugport. Any
code needing to know the state of the debug port must reference the device path rather than the
DEBUGPORT variable, since the debugport may have assumed a default setting in spite of the
existence of the DEBUGPORT variable.

If it is not possible to configure the debug port using either the settings declared in the
DEBUGPORT variable or the default settings for the particular debugport type, the driver
initialization must not install any protocol interfaces and must exit with an error.

 January 31, 2006
746 Version 2.0

17.4 EFI Debug Support Table

This chapter defines the EFI Debug Support Table which is used by the debug agent or an external
debugger to determine loaded image information in a quiescent manner.

Overview
Every executable image loaded in EFI is represented by an EFI handle populated with an instance
of the LOADED_IMAGE protocol. This handle is known as an “image handle.” The associated
Loaded Image protocol provides image information that is of interest to a source level debugger.
Normal EFI executables can access this information by using EFI services to locate all instances of
the Loaded Image protocol.

A debugger has two problems with this scenario. First, if it is an external hardware debugger, the
location of the EFI system table is not known. Second, even if the location of the EFI system table
is known, the services contained therein are generally unavailable to a debugger either because it is
an on-target debugger that is running in interrupt context, or in the case of an external hardware
debugger there is no debugger code running on the target at all.

Since a source level debugger must be capable of determining image information for all loaded
images, an alternate mechanism that does not use EFI services must be provided. Two features are
added to the EFI system software to enable this capability.

First, an alternate mechanism of locating the EFI system table is required. A check-summed
structure containing the physical address of the EFI system table is created and located on a 4M
aligned memory address. A hardware debugger can search memory for this structure to determine
the location of the EFI system table.

Second, an EFI_CONFIGURATION_TABLE is published that leads to a database of pointers to all
instances of the Loaded Image protocol. Several layers of indirection are used to allow
dynamically managing the data as images are loaded and unloaded. Once the address of the EFI
system table is known, it is possible to discover a complete and accurate list of EFI images. (Note
that the EFI core itself must be represented by an instance of the Loaded Image protocol.)

January 31, 2006
Version 2.0 747

Figure 46 illustrates the table indirection and pointer usage.

Figure 46. Debug Support Table Indirection and Pointer Usage

EFI System Table Location
The EFI system table can be located by an off-target hardware debugger by searching for the
EFI_SYSTEM_TABLE_POINTER structure. The EFI_SYSTEM_TABLE_POINTER structure is
located on a 4M boundary as close to the top of physical memory as feasible. It may be found
searching for the EFI_SYSTEM_TABLE_SIGNATURE on each 4M boundary starting at the top
of memory and scanning down. When the signature is found, the entire structure must verified
using the Crc32 field. The 32-bit CRC of the entire structure is calculated assuming the Crc32
field is zero. This value is then written to the Crc32 field.

typedef struct _EFI_SYSTEM_TABLE_POINTER {
 UINT64 Signature;
 EFI_PHYSICAL_ADDRESS EfiSystemTableBase;
 UINT32 Crc32;
} EFI_SYSTEM_TABLE_POINTER;

Signature A constant UINT64 that has the value
EFI_SYSTEM_TABLE_SIGNATURE (see the EFI 1.0 specification).

 January 31, 2006
748 Version 2.0

EfiSystemTableBase
The physical address of the EFI system table.

Crc32 A 32-bit CRC value that is used to verify the
EFI_SYSTEM_TABLE_POINTER structure is valid.

EFI Image Info
The EFI_DEBUG_IMAGE_INFO_TABLE is an array of pointers to EFI_DEBUG_IMAGE_INFO
unions. Each member of an EFI_DEBUG_IMAGE_INFO union is a pointer to a data structure
representing a particular image type. For each image that has been loaded, there is an appropriate
image data structure with a pointer to it stored in the EFI_DEBUG_IMAGE_INFO_TABLE. Data
structures for normal images and SMM images are defined. All other image types are reserved for
future use.

The process of locating the EFI_DEBUG_IMAGE_INFO_TABLE begins with an EFI
configuration table.

//
// EFI_DEBUG_IMAGE_INFO_TABLE configuration table
// GUID declaration - {49152E77-1ADA-4764-B7A2-7AFEFED95E8B}
//
#define EFI_DEBUG_IMAGE_INFO_TABLE_GUID \

 { 0x49152E77,0x1ADA,0x4764,0xB7,0xA2,0x7A,0xFE,0xFE,0xD9,0x5E,0x8B }

The configuration table leads to an EFI_DEBUG_IMAGE_INFO_TABLE_HEADER structure that
contains a pointer to the EFI_DEBUG_IMAGE_INFO_TABLE and some status bits that are used
to control access to the EFI_DEBUG_IMAGE_INFO_TABLE when it is being updated.

//
// UpdateStatus bits
//
#define EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS 0x01
#define EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED 0x02

typedef struct {
 volatile UINT32 UpdateStatus;
 UINT32 TableSize;
 EFI_DEBUG_IMAGE_INFO *EfiDebugImageInfoTable;
} EFI_DEBUG_IMAGE_INFO_TABLE_HEADER;

UpdateStatus UpdateStatus is used by the system to indicate the state of
the debug image info table.

The EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS
bit must be set when the table is being modified. Software

January 31, 2006
Version 2.0 749

consuming the table must qualify the access to the table with
this bit.

The EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED bit is
always set by software that modifies the table. It may be cleared
by software that consumes the table once the entire table has
been read. It is essentially a sticky version of the
EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS bit
and is intended to provide an efficient mechanism to minimize
the number of times the table must be scanned by the consumer.

TableSize The number of EFI_DEBUG_IMAGE_INFO elements in the
array pointed to by EfiDebugImageInfoTable.

EfiDebugImageInfoTable
A pointer to the first element of an array of
EFI_DEBUG_IMAGE_INFO structures.

#define EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL 0x01

typdef union {
 UINT32 *ImageInfoType;
 EFI_DEBUG_IMAGE_INFO_NORMAL *NormalImage;
} EFI_DEBUG_IMAGE_INFO;

typedef struct {
 UINT32 ImageInfoType;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImageProtocolInstance;
 EFI_HANDLE ImageHandle;
} EFI_DEBUG_IMAGE_INFO_NORMAL;

ImageInfoType Indicates the type of image info structure. For PE32 EFI images,
this is set to EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL.

LoadedImageProtocolInstance
A pointer to an instance of the loaded image protocol for the
associated image.

ImageHandle Indicates the image handle of the associated image.

 January 31, 2006
750 Version 2.0

January 31, 2006
Version 2.0 751

18
Protocols — Compression Algorithm

Specification

In EFI firmware storage, binary codes/data are often compressed to save storage space. These
compressed codes/data are extracted into memory for execution at boot time. This demands an
efficient lossless compression/decompression algorithm. The compressor must produce small
compressed images, and the decompressor must operate fast enough to avoid delays at boot time.

This chapter describes in detail the UEFI compression/decompression algorithm, as well as the EFI
Decompress Protocol. The EFI Decompress Protocol provides a standard decompression interface
for use at boot time.

18.1 Algorithm Overview

In this chapter the term “character” denotes a single byte and the term “string” denotes a series of
concatenated characters.

The compression/decompression algorithm used in EFI firmware storage is a combination of the
LZ77 algorithm and Huffman Coding. The LZ77 algorithm replaces a repeated string with a
pointer to the previous occurrence of the string. Huffman Coding encodes symbols in a way that
the more frequently a symbol appears in a text, the shorter the code that is assigned to it.

The compression process contains two steps:

• The first step is to find repeated strings (using LZ77 algorithm) and produce intermediate data.

Beginning with the first character, the compressor scans the source data and determines if the
characters starting at the current position can form a string previously appearing in the text. If
a long enough matching string is found, the compressor will output a pointer to the string. If
the pointer occupies more space than the string itself, the compressor will output the original
character at the current position in the source data. Then the compressor advances to the next
position and repeats the process. To speed up the compression process, the compressor
dynamically maintains a String Info Log to record the positions and lengths of strings
encountered, so that string comparisons are performed quickly by looking up the String
Info Log.

Because a compressor cannot have unlimited resources, as the compression continues the
compressor removes “old” string information. This prevents the String Info Log from
becoming too large. As a result, the algorithm can only look up repeated strings within the
range of a fixed-sized “sliding window” behind the current position.

In this way, a stream of intermediate data is produced which contains two types of symbols:
the Original Characters (to be preserved in the decompressed data), and the Pointers
(representing a previous string). A Pointer consists of two elements: the String Position and
the String Length, representing the location and the length of the target string, respectively.

 January 31, 2006
752 Version 2.0

• To improve the compression ratio further, Huffman Coding is utilized as the second step.

The intermediate data (consisting of original characters and pointers) is divided into Blocks so
that the compressor can perform Huffman Coding on a Block immediately after it is generated;
eliminating the need for a second pass from the beginning after the intermediate data has been
generated. Also, since symbol frequency distribution may differ in different parts of the
intermediate data, Huffman Coding can be optimized for each specific Block. The compressor
determines Block Size for each Block according to the specifications defined in Section 18.2,
“Data Format.”

In each Block, two symbol sets are defined for Huffman Coding. The Char&Len Set consists
of the Original Characters plus the String Lengths and the Position Set consists of String
Positions (Note that the two elements of a Pointer belong to separate symbol sets). The
Huffman Coding schemes applied on these two symbol sets are independent.

The algorithm uses “canonical” Huffman Coding so a Huffman tree can be represented as an
array of code lengths in the order of the symbols in the symbol set. This code length array
represents the Huffman Coding scheme for the symbol set. Both the Char&Len Set code length
array and the Position Set code length array appear in the Block Header.

Huffman coding is used on the code length array of the Char&Len Set to define a third symbol
set. The Extra Set is defined based on the code length values in the Char&Len Set code length
array. The code length array for the Huffman Coding of Extra Set also appears in the Block
Header together with the other two code length arrays. For exact format of the Block Header,
see Section 18.2.3.1, “Block Header.”

The decompression process is straightforward given that the compression process is known. The
decompressor scans the compressed data and decodes the symbols one by one, according to the
Huffman code mapping tables generated from code length arrays. Along the process, if it
encounters an original character, it outputs it; if it encounters a pointer, it looks it up in the already
decompressed data and outputs the associated string.

January 31, 2006
Version 2.0 753

18.2 Data Format

This section describes in detail the format of the compressed data produced by the compressor. The
compressed data serves as input to the decompressor and can be fully extracted to the original
source data.

18.2.1 Bit Order
In computer data representation, a byte is the minimum unit and there is no differentiation in the
order of bits within a byte. However, the compressed data is a sequence of bits rather than a
sequence of bytes and as a result the order of bits in a byte needs to be defined. In a compressed
data stream, the higher bits are defined to precede the lower bits in a byte. Figure 47 illustrates a
compressed data sequence written as bytes from left to right. For each byte, the bits are written in
an order with bit 7 (the highest bit) at the left and bit 0 (the lowest bit) at the right. Concatenating
the bytes from left to right forms a bit sequence.

OM13173

Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0

Byte 0 Byte 1 Byte N

Overall Bit Sequence of Compressed Data

Figure 47. Bit Sequence of Compressed Data

The bits of the compressed data are actually formed by a sequence of data units. These data units
have variable bit lengths. The bits of each data unit are arranged so that the higher bit of the data
unit precedes the lower bit of the data unit.

18.2.2 Overall Structure
The compressed data begins with two 32-bit numerical fields: the compressed size and the original
size. The compressed data following these two fields is composed of one or more Blocks. Each
Block is a unit for Huffman Coding with a coding scheme independent of the other Blocks. Each
Block is composed of a Block Header containing the Huffman code trees for this Block and a Block
Body with the data encoded using the coding scheme defined by the Huffman trees. The
compressed data is terminated by an additional byte of zero.

 January 31, 2006
754 Version 2.0

The overall structure of the compressed data is shown in Figure 48.

OM13174

Compressed Size

4 Bytes 4 Bytes Terminator
1 Byte

0Block nBlock 1Block 0Original Size

Figure 48. Compressed Data Structure

Note the following:

• Blocks are of variable lengths.
• Block lengths are counted by bits and not necessarily divisible by 8. Blocks are tightly packed

(there are no padding bits between blocks). Neither the starting position nor ending position of
a Block is necessarily at a byte boundary. However, if the last Block is not terminated at a byte
boundary, there should be some bits of 0 to fill up the remaining bits of the last byte of the
block, before the terminator byte of 0.

• Compressed Size =
Size in bytes of (Block 0 + Block 1 + … + Block N + Filling Bits (if any) + Terminator).

• Original Size is the size in bytes of original data.
• Both Compressed Size and Original Size are “little endian” (starting from the least

significant byte).

18.2.3 Block Structure
A Block is composed of a Block Header and a Block Body, as shown in Figure 49. These two parts
are packed tightly (there are no padding bits between them). The lengths in bits of Block Header
and Block Body are not necessarily divisible by eight.

OM13175

Block Header Block BodyBlock:

Figure 49. Block Structure

18.2.3.1 Block Header
The Block Header contains the Huffman encoding information for this block. Since “canonical”
Huffman Coding is being used, a Huffman tree is represented as an array of code lengths in
increasing order of the symbols in the symbol set. Code lengths are limited to be less than or equal
to 16 bits. This requires some extra handling of Huffman codes in the compressor, which is
described in Section 18.3, “Compressor Design.”

There are three code length arrays for three different symbol sets in the Block Header: one for the
Extra Set, one for the Char&Len Set, and one for the Position Set.

January 31, 2006
Version 2.0 755

The Block Header is composed of the tightly packed (no padding bits) fields described in
Table 110.

Table 110. Block Header Fields

Field Name Length (bits) Description

Block Size 16 The size of this Block. Block Size is defined as the number of original
characters plus the number of pointers that appear in the Block Body:
Block Size = Number of Original Characters in the Block Body +
Number of Pointers in the Block Body.

Extra Set Code
Length Array
Size

5 The number of code lengths in the Extra Set Code Length Array. The
Extra Set Code Length Array contains code lengths of the Extra Set in
increasing order of the symbols, and if all symbols greater than a
certain symbol have zero code length, the Extra Set Code Length
Array terminates at the last nonzero code length symbol. Since there
are 19 symbols in the Extra Set (see the description of the Char&Len
Set Code Length Array), the maximum Extra Set Code Length Array
Size is 19.

Extra Set Code
Length Array

Variable If Extra Set Code Length Array Size is 0, then this field is a 5-bit value
that represents the only Huffman code used.

If Extra Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.

The concatenation of Code lengths are encoded as follows:

If a code length is less than 7, then it is encoded as a 3-bit value;

If a code length is equal to or greater than 7, then it is encoded as a
series of “1”s followed by a terminating “0.” The number of “1”s =
Code length – 4. For example, code length “ten” is encoded as
“1111110”; code length “seven” is encoded as “1110.”

After the third length of the code length concatenation, a 2-bit value is
used to indicate the number of consecutive zero lengths immediately
after the third length. (Note this 2-bit value only appears once after the
third length, and does NOT appear multiple times after every 3rd
length.) This 2-bit value ranges from 0 to 3. For example, if the 2-bit
value is “00,” then it means there are no zero lengths at the point, and
following encoding starts from the fourth code length; if the 2-bit value
is “10” then it means the fourth and fifth length are zero and following
encoding starts from the sixth code length.

Position Set
Code Length
Array Size

4 The number of code lengths in the Position Set Code Length Array.
The Position Set Code Length Array contains code lengths of Position
Set in increasing order of the symbols in the Position Set, and if all
symbols greater than a certain symbol have zero code length, the
Position Set Code Length Array terminates at the last nonzero code
length symbol. Since there are 14 symbols in the Position Set (see
3.3.2), the maximum Position Set Code Length Array Size is 14.

 January 31, 2006
756 Version 2.0

Field Name Length (bits) Description

Char&Len Set
Code Length
Array

Variable If Char&Len Set Code Length Array Size is 0, then this field is a 9-bit
value that represents the only Huffman code used.

Position Set
Code Length
Array Size

4 The number of code lengths in the Position Set Code Length Array.
The Position Set Code Length Array contains code lengths of Position
Set in increasing order of the symbols in the Position Set, and if all
symbols greater than a certain symbol have zero code length, the
Position Set Code Length Array terminates at the last nonzero code
length symbol. Since there are 14 symbols in the Position Set (see
3.3.2), the maximum Position Set Code Length Array Size is 14.

Position Set
Code Length
Array

Variable If Position Set Code Length Array Size is 0, then this field is a 5-bit
value that represents the only Huffman code used.

If Position Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.

The concatenation of Code lengths are encoded as follows:

If a code length is less than 7, then it is encoded as a normal 3-bit
value;

If a code length is equal to or greater than 7, then it is encoded as a
series of “1”s followed by a terminating “0.” The number of “1”s =
Code length – 4. For example, code length “10” is encoded as
“1111110”; code length “7” is encoded as “1110.”

January 31, 2006
Version 2.0 757

18.2.3.2 Block Body
The Block Body is simply a mixture of Original Characters and Pointers, while each Pointer has
two elements: String Length preceding String Position. All these data units are tightly packed
together.

OM13176

Orig Char

Pointer

Orig Char StrLen StrPos Orig Char StrLen StrPos

Pointer

StrLen StrPos

Pointer

Figure 50. Block Body

The Original Characters, String Lengths and String Positions are all Huffman coded using the
Huffman trees presented in the Block Header, with some additional variations. The exact format is
described below:

An Original Character is a byte in the source data. A String Length is a value that is greater than 3
and less than 257 (this range should be ensured by the compressor). By calculating “(String
Length – 3) | 0x100,” a value set is obtained that ranges from 256 to 509. By combining this value
set with the value set of Original Characters (0 ~ 255), the Char&Len Set (ranging from 0 to 509) is
generated for Huffman Coding.

A String Position is a value that indicates the distance between the current position and the target
string. The String Position value is defined as “Current Position – Starting Position of the target
string - 1.” The String Position value ranges from 0 to 8190 (so 8192 is the “sliding window”
size, and this range should be ensured by the compressor). The lengths of the String Position
values (in binary form) form a value set ranging from 0 to 13 (it is assumed that value 0 has length
of 0). This value set is the Position Set for Huffman Coding. The full representation of a String
Position value is composed of two consecutive parts: one is the Huffman code for the value length;
the other is the actual String Position value of “length - 1” bits (excluding the highest bit since the
highest bit is always “1”). For example, String Position value 18 is represented as: Huffman code
for “5” followed by “0010.” If the value length is 0 or 1, then no value is appended to the
Huffman code. This kind of representation favors small String Position values, which is a hint for
compressor design.

 January 31, 2006
758 Version 2.0

18.3 Compressor Design

The compressor takes the source data as input and produces a compressed image. This section
describes the design used in one possible implementation of a compressor that follows the EFI 1.10
Compression Algorithm. The source code that illustrates an implementation of this specific design
is listed in Appendix H.

18.3.1 Overall Process
The compressor scans the source data from the beginning, character by character. As the scanning
proceeds, the compressor generates Original Characters or Pointers and outputs the compressed
data packed in a series of Blocks representing individual Huffman coding units.

The compressor maintains a String Info Log containing data that facilitates string comparison. Old
data items are deleted and new data items are inserted regularly.

The compressor does not output a Pointer immediately after it sees a matching string for the current
position. Instead, it delays its decision until it gets the matching string for the next position. The
compressor has two criteria at hand: one is that the former match length should be no shorter than
three characters; the other is that the former match length should be no shorter than the latter match
length. Only when these two criteria are met does the compressor output a Pointer to the former
matching string.

The overall process of compression can be described by following pseudo code:
Set the Current Position at the beginning of the source data;
Delete the outdated string info from the String Info Log;
Search the String Info Log for matching string;
Add the string info of the current position into the String Info Log;
WHILE not end of source data DO
 Remember the last match;
 Advance the Current Position by 1;
 Delete the outdated String Info from the String Info Log;
 Search the String Info Log for matching string;
 Add the string info of the Current Position into the String Info Log;
 IF the last match is shorter than 3 characters or this match is longer than
 the last match THEN
 Call Output()* to output the character at the previous position as an
 Original Character;
 ELSE
 Call Output()* to output a Pointer to the last matching string;
 WHILE (--last match length) > 0 DO
 Advance the Current Position by 1;
 Delete the outdated piece of string info from the String Info Log;
 Add the string info of the current position into the String Info Log;
 ENDWHILE
 ENDIF
ENDWHILE

January 31, 2006
Version 2.0 759

The Output() is the function that is responsible for generating Huffman codes and Blocks. It
accepts an Original Character or a Pointer as input and maintains a Block Buffer to temporarily
store data units that are to be Huffman coded. The following pseudo code describes the function:

FUNCTION NAME: Output
INPUT: an Original Character or a Pointer

Put the Original Character or the Pointer into the Block Buffer;
Advance the Block Buffer position pointer by 1;
IF the Block Buffer is full THEN
 Encode the Char&Len Set in the Block buffer;
 Encode the Position Set in the Block buffer;
 Encode the Extra Set;
 Output the Block Header containing the code length arrays;
 Output the Block Body containing the Huffman encoded Original Characters and
 Pointers;
 Reset the Block Buffer position pointer to point to the beginning of the
 Block buffer;
ENDIF

18.3.2 String Info Log
The provision of the String Info Log is to speed up the process of finding matching strings. The
design of this has significant impact on the overall performance of the compressor. This section
describes in detail how String Info Log is implemented and the typical operations on it.

 January 31, 2006
760 Version 2.0

18.3.2.1 Data Structures
The String Info Log is implemented as a set of search trees. These search trees are dynamically
updated as the compression proceeds through the source data. The structure of a typical search tree
is depicted in Figure 51.

1 Char: "c"

"a" "m" "q"

2 3 4Level: 3
Pos: 500 Pos: 500 Pos: 600

Pos: 500
Level: 8
Pos: 400

Pos: 400 Pos: 350

5 6

7 8

"x" "k"

"p" "t"

OM13177

Figure 51. String Info Log Search Tree

There are three types of nodes in a search tree: the root node, internal nodes, and leaves. The root
node has a “character” attribute, which represents the starting character of a string. Each edge also
has a “character” attribute, which represents the next character in the string. Each internal node has
a “level” attribute, which indicates the character on any edge that leads to its child nodes is the
“level + 1”th character in the string. Each internal node or leaf has a “position” attribute that
indicates the string’s starting position in the source data.

To speed up the tree searching, a hash function is used. Given the parent node and the edge-
character, the hash function will quickly find the expected child node.

January 31, 2006
Version 2.0 761

18.3.2.2 Searching the Tree
Traversing the search tree is performed as follows:

The following example uses the search tree shown in Figure 51 above. Assume that the current
position in the source data contains the string “camxrsxpj….”

1. The starting character “c” is used to find the root of the tree. The next character “a” is used to
follow the edge from node 1 to node 2. The “position” of node 2 is 500, so a string starting
with “ca” can be found at position 500. The string at the current position is compared with the
string starting at position 500.

2. Node 2 is at Level 3; so at most three characters are compared. Assume that the three-character
comparison passes.

3. The fourth character “x” is used to follow the edge from Node 2 to Node 5. The position value
of node 5 is 400, which means there is a string located in position 400 that starts with “cam”
and the character at position 403 is an “x.”

4. Node 5 is at Level 8, so the fifth to eighth characters of the source data are compared with the
string starting at position 404. Assume the strings match.

5. At this point, the ninth character “p” has been reached. It is used to follow the edge from
Node 5 to Node 7.

6. This process continues until a mismatch occurs, or the length of the matching strings exceeds
the predefined MAX_MATCH_LENGTH. The most recent matching string (which is also the
longest) is the desired matching string.

18.3.2.3 Adding String Info
String info needs to be added to the String Info Log for each position in the source data. Each time
a search for a matching string is performed, the new string info is inserted for the current position.
There are several cases that can be discussed:

1. No root is found for the first character. A new tree is created with the root node labeled with
the starting character and a child leaf node with its edge to the root node labeled with the
second character in the string. The “position” value of the child node is set to the current
position.

2. One root node matches the first character, but the second character does not match any edge
extending from the root node. A new child leaf node is created with its edge labeled with the
second character. The “position” value of the new leaf child node is set to the current position.

3. A string comparison succeeds with an internal node, but a matching edge for the next character
does not exist. This is similar to (2) above. A new child leaf node is created with its edge
labeled with the character that does not exist. The “position” value of the new leaf child node
is set to the current position.

4. A string comparison exceeds MAX_MATCH_LENGTH. Note: This only happens with leaf
nodes. For this case, the “position” value in the leaf node is updated with the current position.

 January 31, 2006
762 Version 2.0

5. If a string comparison with an internal node or leaf node fails (mismatch occurs before the
“Level + 1”th character is reached or MAX_MATCH_LENGTH is exceeded), then a “split”
operation is performed as follows:

Suppose a comparison is being performed with a level 9 Node, at position 350, and the current
position is 1005. If the sixth character at position 350 is an “x” and the sixth character at
position 1005 is a “y,” then a mismatch will occur. In this case, a new internal node and a new
child node are inserted into the tree, as depicted in Figure 52.

Level: 9
Pos: 350

a) Original State

OM13178

Level: 5
Pos: 1005

Pos: 1005

"x"

Level: 9
Pos: 350

b) Node "Split"

Figure 52. Node Split

The b) portion of Figure 52 has two new inserted nodes, which reflects the new string information
that was found at the current position. The process splits the old node into two child nodes, and
that is why this operation is called a “split.”

18.3.2.4 Deleting String Info
The String Info Log will grow as more and more string information is logged. The size of the
String Info Log must be limited, so outdated information must be removed on a regular basis.
A sliding window is maintained behind the current position, and the searches are always limited
within the range of the sliding window. Each time the current position is advanced, outdated string
information that falls outside the sliding window should be removed from the tree. The search for
outdated string information is simplified by always updating the nodes’ “position” attribute when
searching for matching strings.

January 31, 2006
Version 2.0 763

18.3.3 Huffman Code Generation
Another major component of the compressor design is generation of the Huffman Code.

Huffman Coding is applied to the Char&Len Set, the Position Set, and the Extra Set. The Huffman
Coding used here has the following features:

1. The Huffman tree is represented as an array of code lengths (“canonical” Huffman Coding);
2. The maximum code length is limited to 16 bits.

The Huffman code generation process can be divided into three steps. These are the generation of
Huffman tree, the adjustment of code lengths, and the code generation.

18.3.3.1 Huffman Tree Generation
This process generates a typical Huffman tree. First, the frequency of each symbol is counted, and
a list of nodes is generated with each node containing a symbol and the symbol’s frequency. The
two nodes with the lowest frequency values are merged into a single node. This new node becomes
the parent node of the two nodes that are merged. The frequency value of this new parent node is
the sum of the two child nodes’ frequency values. The node list is updated to include the new
parent node but exclude the two child nodes that are merged. This process is repeated until there is
a single node remaining that is the root of the generated tree.

18.3.3.2 Code Length Adjustment
The leaf nodes of the tree generated by the previous step represent all the symbols that were
generated. Traditionally the code for each symbol is found by traversing the tree from the root
node to the leaf node. Going down a left edge generates a “0,” and going down a right edge
generates a “1.” However, a different approach is used here. The number of codes of each code
length is counted. This generates a 16-element LengthCount array, with LengthCount[i] = Number
Of Codes whose Code Length is i. Since a code length may be longer than 16 bits, the sixteenth
entry of the LengthCount array is set to the Number Of Codes whose Code Length is greater than
or equal to 16.

The LengthCount array goes through further adjustment described by following code:

INT32 i, k;
UINT32 cum;

cum = 0;
for (i = 16; i > 0; i--) {
 cum += LengthCount[i] << (16 - i);
}
while (cum != (1U << 16)) {
 LengthCount[16]--;
 for (i = 15; i > 0; i--) {
 if (LengthCount[i] != 0) {
 LengthCount[i]--;
 LengthCount[i+1] += 2;
 break;
 }
 }
 cum--;
}

 January 31, 2006
764 Version 2.0

18.3.3.3 Code Generation
In the previous step, the count of each length was obtained. Now, each symbol is going to be
assigned a code. First, the length of the code for each symbol is determined. Naturally, the code
lengths are assigned in such a way that shorter codes are assigned to more frequently appearing
symbols. A CodeLength array is generated with CodeLength[i] = the code length of symbol i.
Given this array, a code is assigned to each symbol using the algorithm described by the pseudo
code below (the resulting codes are stored in array Code such that Code[i] = the code assigned to
symbol i):

 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;

 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + LengthCount[i]) << 1);
 }

 for (i = 0; i < NumberOfSymbols; i++) {
 Code[i] = Start[CodeLength[i]]++;
 }

The code length adjustment process ensures that no code longer than the designated length will
be generated. As long as the decompressor has the CodeLength array at hand, it can regenerate
the codes.

January 31, 2006
Version 2.0 765

18.4 Decompressor Design

The decompressor takes the compressed data as input and produces the original source data. The
main tasks for the decompressor are decoding Huffman codes and restoring Pointers to the strings
to which they point.

The following pseudo code describes the algorithm used in the design of a decompressor. The
source code that illustrates an implementation of this design is listed in Appendix I.

WHILE not end of data DO
 IF at block boundary THEN
 Read in the Extra Set Code Length Array;
 Generate the Huffman code mapping table for the Extra Set;
 Read in and decode the Char&Len Set Code Length Array;
 Generate the Huffman code mapping table for the Char&Len Set;
 Read in the Position Set Code Length Array;
 Generate the Huffman code mapping table for the Position Set;
 ENDIF
 Get next code;
 Look the code up in the Char&Len Set code mapping table.
 Store the result as C;
 IF C < 256 (it represents an Original Character) THEN
 Output this character;
 ELSE (it represents a String Length)
 Transform C to be the actual String Length value;
 Get next code and look it up in the Position Set code mapping table, and
 with some additional transformation, store the result as P;
 Output C characters starting from the position “Current Position – P”;
 ENDIF
ENDWHILE

18.5 Decompress Protocol

This section provides a detailed description of the EFI_DECOMPRESS_PROTOCOL.

 January 31, 2006
766 Version 2.0

EFI_DECOMPRESS_PROTOCOL

Summary

Provides a decompression service.

GUID
#define EFI_DECOMPRESS_PROTOCOL_GUID \

{0xd8117cfe,0x94a6,0x11d4,0x9a,0x3a,0x0,0x90,0x27,0x3f,
0xc1,0x4d}

Protocol Interface Structure
typedef struct _EFI_DECOMPRESS_PROTOCOL {
 EFI_DECOMPRESS_GET_INFO GetInfo;
 EFI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_DECOMPRESS_PROTOCOL;

Parameters

GetInfo Given the compressed source buffer, this function retrieves the size of
the uncompressed destination buffer and the size of the scratch buffer
required to perform the decompression. It is the caller’s responsibility to
allocate the destination buffer and the scratch buffer prior to calling
Decompress(). See the GetInfo() function description.

Decompress Decompresses a compressed source buffer into an uncompressed
destination buffer. It is the caller’s responsibility to allocate the
destination buffer and a scratch buffer prior to making this call. See the
Decompress() function description.

Description

The EFI_DECOMPRESS_PROTOCOL provides a decompression service that allows a compressed
source buffer in memory to be decompressed into a destination buffer in memory. It also requires a
temporary scratch buffer to perform the decompression. The GetInfo() function retrieves the
size of the destination buffer and the size of the scratch buffer that the caller is required to allocate.
The Decompress() function performs the decompression. The scratch buffer can be freed after
the decompression is complete.

January 31, 2006
Version 2.0 767

EFI_DECOMPRESS_PROTOCOL.GetInfo()

Summary

Given a compressed source buffer, this function retrieves the size of the uncompressed buffer and
the size of the scratch buffer required to decompress the compressed source buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DECOMPRESS_GET_INFO) (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SourceSize,
 OUT UINT32 *DestinationSize,
 OUT UINT32 *ScratchSize
);

Parameters
This A pointer to the EFI_DECOMPRESS_PROTOCOL instance. Type

EFI_DECOMPRESS_PROTOCOL is defined in Section 18.5.

Source The source buffer containing the compressed data.

SourceSize The size, in bytes, of the source buffer.

DestinationSize A pointer to the size, in bytes, of the uncompressed buffer that will be
generated when the compressed buffer specified by Source and
SourceSize is decompressed.

ScratchSize A pointer to the size, in bytes, of the scratch buffer that is required to
decompress the compressed buffer specified by Source and
SourceSize.

 January 31, 2006
768 Version 2.0

Description

The GetInfo() function retrieves the size of the uncompressed buffer and the temporary scratch
buffer required to decompress the buffer specified by Source and SourceSize. If the size of
the uncompressed buffer or the size of the scratch buffer cannot be determined from the
compressed data specified by Source and SourceData, then EFI_INVALID_PARAMETER is
returned. Otherwise, the size of the uncompressed buffer is returned in DestinationSize, the
size of the scratch buffer is returned in ScratchSize, and EFI_SUCCESS is returned.

The GetInfo() function does not have scratch buffer available to perform a thorough checking
of the validity of the source data. It just retrieves the “Original Size” field from the beginning bytes
of the source data and output it as DestinationSize. And ScratchSize is specific to the
decompression implementation.

Status Codes Returned
EFI_SUCCESS The size of the uncompressed data was returned in

DestinationSize and the size of the scratch buffer was
returned in ScratchSize.

EFI_INVALID_PARAMETER The size of the uncompressed data or the size of the scratch buffer
cannot be determined from the compressed data specified by
Source and SourceSize.

January 31, 2006
Version 2.0 769

EFI_DECOMPRESS_PROTOCOL.Decompress()

Summary

Decompresses a compressed source buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DECOMPRESS_DECOMPRESS) (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID* Source,
 IN UINT32 SourceSize,
 IN OUT VOID* Destination,
 IN UINT32 DestinationSize,
 IN OUT VOID* Scratch,
 IN UINT32 ScratchSize
);

Parameters
This A pointer to the EFI_DECOMPRESS_PROTOCOL instance. Type

EFI_DECOMPRESS_PROTOCOL is defined in Section 18.5.

Source The source buffer containing the compressed data.

SourceSize The size of source data.

Destination On output, the destination buffer that contains the uncompressed data.

DestinationSize The size of the destination buffer. The size of the destination buffer
needed is obtained from GetInfo().

Scratch A temporary scratch buffer that is used to perform the decompression.

ScratchSize The size of scratch buffer. The size of the scratch buffer needed is
obtained from GetInfo().

 January 31, 2006
770 Version 2.0

Description

The Decompress() function extracts decompressed data to its original form.

This protocol is designed so that the decompression algorithm can be implemented without using
any memory services. As a result, the Decompress() function is not allowed to call
AllocatePool() or AllocatePages() in its implementation. It is the caller’s
responsibility to allocate and free the Destination and Scratch buffers.

If the compressed source data specified by Source and SourceSize is sucessfully
decompressed into Destination, then EFI_SUCCESS is returned. If the compressed source
data specified by Source and SourceSize is not in a valid compressed data format, then
EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS Decompression completed successfully, and the uncompressed

buffer is returned in Destination.

EFI_INVALID_PARAMETER The source buffer specified by Source and SourceSize is

corrupted (not in a valid compressed format).

January 31, 2006
Version 2.0 771

19
EFI Byte Code Virtual Machine

This chapter defines an EFI Byte Code (EBC) Virtual Machine that can provide platform- and
processor-independent mechanisms for loading and executing EFI device drivers.

19.1 Overview

The current design for option ROMs that are used in personal computer systems has been in place
since 1981. Attempts to change the basic design requirements have failed for a variety of reasons.
The EBC Virtual Machine described in this chapter is attempting to help achieve the following
goals:

• Abstract and extensible design
• Processor independence
• OS independence
• Build upon existing specifications when possible
• Facilitate the removal of legacy infrastructure
• Exclusive use of EFI Services

One way to satisfy many of these goals is to define a pseudo or virtual machine that can interpret
a predefined instruction set. This will allow the virtual machine to be ported across processor and
system architectures without changing or recompiling the option ROM. This specification defines
a set of machine level instructions that can be generated by a C compiler.

The following sections are a detailed description of the requirements placed on future
option ROMs.

19.1.1 Processor Architecture Independence
Option ROM images shall be independent of supported 32-bit and supported 64-bit architectures.
In order to abstract the architectural differences between processors option ROM images shall be
EBC. This model is presented below:

• 64-bit C source code
• The EFI EBC image is the flashed image
• The system BIOS implements the EBC interpreter
• The interpreter handles 32 vs. 64 bit issues

Current Option ROM technology is processor dependent and heavily reliant upon the existence of
the PC-AT infrastructure. These dependencies inhibit the evolution of both hardware and software
under the veil of “backward compatibility.” A solution that isolates the hardware and support
infrastructure through abstraction will facilitate the uninhibited progression of technology.

19.1.2 OS Independent
Option ROMs shall not require or assume the existence of a particular OS.

 January 31, 2006
772 Version 2.0

19.1.3 EFI Compliant
Option ROM compliance with EFI requires (but is not limited to) the following:

1. Little endian layout
2. Single-threaded model with interrupt polling if needed
3. Where EFI provides required services, EFI is used exclusively. These include:

• Console I/O

• Memory Management

• Timer services

• Global variable access

4. When an Option ROM provides EFI services, the EFI specification is strictly followed:

• Service/protocol installation

• Calling conventions

• Data structure layouts

• Guaranteed return on services

19.1.4 Coexistence of Legacy Option ROMs
The infrastructure shall support coexistent Legacy Option ROM and EBC Option ROM images.
This case would occur, for example, when a Plug and Play Card has both Legacy and EBC Option
ROM images flashed. The details of the mechanism used to select which image to load is beyond
the scope of this document. Basically, a legacy System BIOS would not recognize an EBC Option
ROM and therefore would never load it. Conversely, an EFI Firmware Boot Manager would only
load images that it supports.

The EBC Option ROM format must utilize a legacy format to the extent that a Legacy System
BIOS can:

1. Determine the type of the image, in order to ignore the image. The type must be incompatible
with currently defined types.

2. Determine the size of the image, in order to skip to the next image.

19.1.5 Relocatable Image
An EBC option ROM image shall be eligible for placement in any system memory area large
enough to accommodate it.

Current option ROM technology requires images to be shadowed in system memory address range
0xC0000 to 0xEFFFF on a 2048 byte boundary. This dependency not only limits the number of
Option ROMs, it results in unused memory fragments up to 2 KB.

19.1.6 Size Restrictions Based on Memory Available
EBC option ROM images shall not be limited to a predetermined fixed maximum size.

January 31, 2006
Version 2.0 773

Current option ROM technology limits the size of a preinitialization option ROM image to 128 KB
(126 KB actual). Additionally, in the DDIM an image is not allowed to grow during initialization.
It is inevitable that 64-bit solutions will increase in complexity and size. To avoid revisiting this
issue, EBC option ROM size is only limited by available system memory. EFI memory allocation
services allow device drivers to claim as much memory as they need, within limits of available
system memory.

The PCI specification limits the size of an image stored in an option ROM to 16 MB. If the driver
is stored on the hard drive then the 16MB option ROM limit does not apply. In addition, the
PE/COFF object format limits the size of images to 2 GB.

19.2 Memory Ordering

The term memory ordering refers to the order in which a processor issues reads (loads) and writes
(stores) out onto the bus to system memory. The EBC Virtual Machine enforces strong memory
ordering, where reads and writes are issued on the system bus in the order they occur in the
instruction stream under all circumstances.

19.3 Virtual Machine Registers

The EBC virtual machine utilizes a simple register set. There are two categories of VM registers:
general purpose registers and dedicated registers. All registers are 64-bits wide. There are eight (8)
general-purpose registers (R0-R7), which are used by most EBC instructions to manipulate or fetch
data. Table 111 lists the general-purpose registers in the VM and the conventions for their usage
during execution.

Table 111. General Purpose VM Registers

Index Register Description

0 R0 Points to the top of the stack

1-3 R1-R3 Preserved across calls

4-7 R4-R7 Scratch, not preserved across calls

Register R0 is used as a stack pointer and is used by the CALL, RET, PUSH, and POP instructions.
The VM initializes this register to point to the incoming arguments when an EBC image is started
or entered. This register may be modified like any other general purpose VM register using EBC
instructions. Register R7 is used for function return values.

 January 31, 2006
774 Version 2.0

Unlike the general-purpose registers, the VM dedicated registers have specific purposes. There are
two dedicated registers: the instruction pointer (IP), and the flags (Flags) register. Specialized
instructions provide access to the dedicated registers. These instructions reference the particular
dedicated register by its assigned index value. Table 112 lists the dedicated registers and their
corresponding index values.

Table 112. Dedicated VM Registers

Index Register Description

FLAGS

Bit Description

0 C = Condition code

1 SS = Single step

2..63 Reserved

0

1 IP Points to current instruction

2..7 Reserved Not defined

The VM Flags register contains VM status and context flags. Table 113 lists the descriptions of the
bits in the Flags register.

Table 113. VM Flags Register

Bit Flag Description

0 C Condition code. Set to 1 if the result of the last compare was true,
or set to 0 if the last compare was false. Used by conditional JMP
instructions.

1 S Single-step. If set, causes the VM to generate a single-step
exception after executing each instruction. The bit is not cleared
by the VM following the exception.

2..63 - Reserved

The VM IP register is used as an instruction pointer and holds the address of the currently
executing EBC instruction. The virtual machine will update the IP to the address of the next
instruction on completion of the current instruction, and will continue execution from the address
indicated in IP. The IP register can be moved into any general-purpose register (R0-R7). Data
manipulation and data movement instructions can then be used to manipulate the value. The only
instructions that may modify the IP are the JMP, CALL, and RET instructions. Since the
instruction set is designed to use words as the minimum instruction entity, the low order bit (bit 0)
of IP is always cleared to 0. If a JMP, CALL, or RET instruction causes bit 0 of IP to be set to 1,
then an alignment exception occurs.

January 31, 2006
Version 2.0 775

19.4 Natural Indexing

The natural indexing mechanism is the critical functionality that enables EBC to be executed
unchanged on 32- or 64-bit systems. Natural indexing is used to specify the offset of data relative
to a base address. However, rather than specifying the offset as a fixed number of bytes, the offset
is encoded in a form that specifies the actual offset in two parts: a constant offset, and an offset
specified as a number of natural units (where one natural unit = sizeof (VOID *)). These two
values are used to compute the actual offset to data at runtime. When the VM decodes an index
during execution, the resultant offset is computed based on the natural processor size. The encoded
indexes themselves may be 16, 32, or 64 bits in size. Table 114 describes the fields in a natural
index encoding.

Table 114. Index Encoding

Bit # Description

N Sign bit (sign), most significant bit

N-3..N-1 Bits assigned to natural units (w)

A..N-4 Constant units (c)

0..A-1 Natural units (n)

As shown in Table 114, for a given encoded index, the most significant bit (bit N) specifies the sign
of the resultant offset after it has been calculated. The sign bit is followed by three bits (N-3..N-1)
that are used to compute the width of the natural units field (n). The value (w) from this field is
multiplied by the index size in bytes to determine the actual width (A) of the natural units field (n).
Once the width of the natural units field has been determined, then the natural units (n) and constant
units (c) can be extracted. The offset is then calculated at runtime according to the following
equation:

Offset = (c + n * (sizeof (VOID *))) * sign

The following sections describe each of these fields in more detail.

19.4.1 Sign Bit
The sign bit determines the sign of the index once the offset calculation has been performed. All
index computations using “n” and “c” are done with positive numbers, and the sign bit is only used
to set the sign of the final offset computed.

 January 31, 2006
776 Version 2.0

19.4.2 Bits Assigned to Natural Units
This 3-bit field that is used to determine the width of the natural units field. The units vary based
on the size of the index according to Table 115. For example, for a 16-bit index, the value
contained in this field would be multiplied by 2 to get the actual width of the natural-units field.

Table 115. Index Size in Index Encoding

Index Size Units

16 bits 2 bits

32 bits 4 bits

64 bits 8 bits

19.4.3 Constant
The constant is the number of bytes in the index that do not scale with processor size. When the
index is a 16-bit value, the maximum constant is 4095. This index is achieved when the bits
assigned to natural units is 0.

19.4.4 Natural Units
Natural units are used when a structure has fields that can vary with the architecture of the
processor. Fields that precipitate the use of natural units include pointers and EFI INTN and
UINTN data types. The size of one pointer or INTN/UINTN equals one natural unit. The natural
units field in an index encoding is a count of the number of natural fields whose sizes (in bytes)
must be added to determine a field offset.

As an example, assume that a given EBC instruction specifies a 16-bit index of 0xA048. This
breaks down into:

• Sign bit (bit 15) = 1 (negative offset)
• Bits assigned to natural units (w, bits 14-12) = 2. Multiply by index size in bytes = 2 x 2 =

4 (A)
• c = bits 11-4 = 4
• n = bits 3-0 = 8

On a 32-bit machine, the offset is then calculated to be:

• Offset = (4 + 8 * 4) * -1 = -36
• On a 64-bit machine, the offset is calculated to be:
• Offset = (4 + 8 * 8) * -1 = -68

January 31, 2006
Version 2.0 777

19.5 EBC Instruction Operands

The VM supports an EBC instruction set that performs data movement, data manipulation,
branching, and other miscellaneous operations typical of a simple processor. Most instructions
operate on two operands, and have the general form:

INSTRUCTION Operand1, Operand2

Typically, instruction operands will be one of the following:

• Direct
• Indirect
• Indirect with index
• Immediate

The following subsections explain these operands.

19.5.1 Direct Operands
When a direct operand is specified for an instruction, the data to operate upon is contained in one of
the VM general-purpose registers R0-R7. Syntactically, an example of direct operand mode could
be the ADD instruction:

ADD64 R1, R2

This form of the instruction utilizes two direct operands. For this particular instruction, the VM
would take the contents of register R2, add it to the contents of register R1, and store the result in
register R1.

19.5.2 Indirect Operands
When an indirect operand is specified, a VM register contains the address of the operand data. This
is sometimes referred to as register indirect, and is indicated by prefixing the register operand with
“@.” Syntactically, an example of an indirect operand mode could be this form of the ADD
instruction:

ADD32 R1, @R2

For this instruction, the VM would take the 32-bit value at the address specified in R2, add it to the
contents of register R1, and store the result in register R1.

 January 31, 2006
778 Version 2.0

19.5.3 Indirect with Index Operands
When an indirect with index operand is specified, the address of the operand is computed by adding
the contents of a register to a decoded natural index that is included in the instruction. Typically
with indexed addressing, the base address will be loaded in the register and an index value will be
used to indicate the offset relative to this base address. Indexed addressing takes the form

@R1 (+n,+c)

where:

• R1 is one of the general-purpose registers (R0-R7) which contains the base address
• +n is a count of the number of “natural” units offset. This portion of the total offset is

computed at runtime as (n * sizeof (VOID *))
• +c is a byte offset to add to the natural offset to resolve the total offset

The values of n and c can be either positive or negative, though they must both have the same sign.
These values get encoded in the indexes associated with EBC instructions as shown in Table 114.
Indexes can be 16-, 32-, or 64-bits wide depending on the instruction. An example of indirect with
index syntax would be:

ADD32 R1, @R2 (+1, +8)

This instruction would take the address in register R2, add (8 + 1 * sizeof (VOID *)), read the
32-bit value at the address, add the contents of R1 to the value, and store the result back to R1.

19.5.4 Immediate Operands
Some instructions support an immediate operand, which is simply a value included in the
instruction encoding. The immediate value may or may not be sign extended, depending on the
particular instruction. One instruction that supports an immediate operand is MOVI. An example
usage of this instruction is:

MOVIww R1, 0x1234

This instruction moves the immediate value 0x1234 directly into VM register R1. The immediate
value is contained directly in the encoding for the MOVI instruction.

19.6 EBC Instruction Syntax

Most EBC instructions have one or more variations that modify the size of the instruction and/or
the behavior of the instruction itself. These variations will typically modify an instruction in one or
more of the following ways:

• The size of the data being operated upon
• The addressing mode for the operands
• The size of index or immediate data

January 31, 2006
Version 2.0 779

• To represent these variations syntactically in this specification the following conventions are
used:

• Natural indexes are indicated with the “Index” keyword, and may take the form of “Index16,”
“Index32,” or “Index64” to indicate the size of the index value supported. Sometimes the form
Index16|32|64 is used here, which is simply a shorthand notation for Index16|Index32|Index64.
A natural index is encoded per Table 114 and is resolved at runtime.

• Immediate values are indicated with the “Immed” keyword, and may take the form of
“Immed16,” “Immed32,” or “Immed64” to indicate the size of the immediate value supported.
The shorthand notation Immed16|32|64 is sometimes used when different size immediate
values are supported.

• Terms in brackets [] are required.
• Terms in braces { } are optional.
• Alternate terms are separated by a vertical bar |.
• The form R1 and R2 represent Operand 1 register and Operand 2 register respectfully, and can

typically be any VM general-purpose register R0-R7.
• Within descriptions of the instructions, brackets [] enclosing a register and/or index indicate

that the contents of the memory pointed to by the enclosed contents are used.

19.7 Instruction Encoding

Most EBC instructions take the form:

INSTRUCTION R1, R2 Index|Immed

For those instructions that adhere to this form, the binary encoding for the instruction will
typically consist of an opcode byte, followed by an operands byte, followed by two or more
bytes of immediate or index data. Thus the instruction stream will be:

(1 Byte Opcode) + (1 Byte Operands) + (Immediate data|Index data)

19.7.1 Instruction Opcode Byte Encoding
The first byte of an instruction is the opcode byte, and an instruction’s actual opcode value
consumes 6 bits of this byte. The remaining two bits will typically be used to indicate operand sizes
and/or presence or absence of index or immediate data. Table 116 defines the bits in the opcode
byte for most instructions, and their usage.

Table 116. Opcode Byte Encoding

Bit Sym Description

6..7 Modifiers One or more of:

• Index or immediate data present/absent

• Operand size

• Index or immediate data size

0..5 Op Instruction opcode

 January 31, 2006
780 Version 2.0

For those instructions that use bit 7 to indicate the presence of an index or immediate data and bit 6
to indicate the size of the index or immediate data, if bit 7 is 0 (no immediate data), then bit 6 is
ignored by the VM. Otherwise, unless otherwise specified for a given instruction, setting unused
bits in the opcode byte results in an instruction encoding exception when the instruction is
executed. Setting the modifiers field in the opcode byte to reserved values will also result in an
instruction encoding exception.

19.7.2 Instruction Operands Byte Encoding
The second byte of most encoded instructions is an operand byte, which encodes the registers for
the instruction operands and whether the operands are direct or indirect. Table 117 defines the
encoding for the operand byte for these instructions. Unless otherwise specified for a given
instruction, setting unused bits in the operand byte results in an instruction encoding exception
when the instruction is executed. Setting fields in the operand byte to reserved values will also
result in an instruction encoding exception.

Table 117. Operand Byte Encoding

Bit Description

7 0 = Operand 2 is direct
1 = Operand 2 is indirect

4..6 Operand 2 register

3 0 = Operand 1 is direct
1 = Operand 1 is indirect

0..2 Operand 1 register

19.7.3 Index/Immediate Data Encoding
Following the operand bytes for most instructions is the instruction’s immediate data. The
immediate data is, depending on the instruction and instruction encoding, either an unsigned or
signed literal value, or an index encoded using natural encoding. In either case, the size of the
immediate data is specified in the instruction encoding.

For most instructions, the index/immediate value in the instruction stream is interpreted as a signed
immediate value if the register operand is direct. This immediate value is then added to the
contents of the register to compute the instruction operand. If the register is indirect, then the data
is usually interpreted as a natural index (see Section 19.4) and the computed index value is added to
the contents of the register to get the address of the operand.

19.8 EBC Instruction Set

The following sections describe each of the EBC instructions in detail. Information includes an
assembly-language syntax, a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.

January 31, 2006
Version 2.0 781

ADD

SYNTAX

ADD[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Adds two signed operands and stores the result to Operand 1. The operation can be performed on
either 32-bit (ADD32) or 64-bit (ADD64) operands.

OPERATION

Operand 1 <= Operand 1 + Operand 2

Table 118. ADD Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0C

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the R2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is ADD32 and Operand 1 is direct, then the result is stored back to the

Operand 1 register with the upper 32 bits cleared.

 January 31, 2006
782 Version 2.0

AND

SYNTAX

AND[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs a logical AND operation on two operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (AND32) or 64-bit (AND64) operands.

OPERATION

Operand 1 <= Operand 1 AND Operand 2

Table 119. AND Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x14

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the register contents such that Operand 2 = R2 + Immed16.
• If the instruction is AND32 and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

January 31, 2006
Version 2.0 783

ASHR

SYNTAX

ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs an arithmetic right-shift of a signed 32-bit (ASHR32) or 64-bit (ASHR64) operand and
stores the result back to Operand 1

OPERATION

Operand 1 <= Operand 1 SHIFT-RIGHT Operand 2

Table 120. ASHR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x19

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2+ Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the register contents such that Operand 2 = R2 + Immed16.
• If the instruction is ASHR32, and Operand 1 is direct, then the result is stored back to the

Operand 1 register with the upper 32 bits cleared.

 January 31, 2006
784 Version 2.0

BREAK

SYNTAX

BREAK [break code]

DESCRIPTION

The BREAK instruction is used to perform special processing by the VM. The break code specifies
the functionality to perform.

BREAK 0 – Runaway program break. This indicates that the VM is likely executing code from
cleared memory. This results in a bad break exception.

BREAK 1 – Get virtual machine version. This instruction returns the 64-bit virtual machine
revision number in VM register R7. The encoding is shown in Table 121 and Table 122. A VM that
conforms to this version of the specification should return a version number of 0x00010000.

Table 121. VM Version Format

BITS DESCRIPTION

63-32 Reserved = 0

31..16 VM major version

15..0 VM minor version

BREAK 3 – Debug breakpoint. Executing this instruction results in a debug break exception. If a
debugger is attached or available, then it may halt execution of the image.

BREAK 4 – System call. There are no system calls supported for use with this break code, so the
VM will ignore the instruction and continue execution at the following instruction.

BREAK 5 – Create thunk. This causes the interpreter to create a thunk for the EBC entry point
whose 32-bit IP-relative offset is stored at the 64-bit address in VM register R7. The interpreter
then replaces the contents of the memory location pointed to by R7 to point to the newly created
thunk. Since all EBC IP-relative offsets are relative to the next instruction or data object, the
original offset is off by 4, so must be incremented by 4 to get the actual address of the entry point.

BREAK 6 – Set compiler version. An EBC C compiler can insert this break instruction into an
executable to set the compiler version used to build an EBC image. When the VM executes this
instruction it takes the compiler version from register R7 and may perform version compatibility
checking. The compiler version number follows the same format as the VM version number
returned by the BREAK 1 instruction.

January 31, 2006
Version 2.0 785

Table 122. BREAK Instruction Encoding

BYTE DESCRIPTION

0 Opcode = 0x00

1 0 = Runaway program break

1 = Get virtual machine version

3 = Debug breakpoint

4 = System call

5 = Create thunk

6 = Set compiler version

BEHAVIORS AND RESTRICTIONS
• Executing an undefined BREAK code results in a bad break exception.
• Executing BREAK 0 results in a bad break exception.

 January 31, 2006
786 Version 2.0

CALL

SYNTAX

CALL32{EX}{a} {@}R1 {Immed32|Index32}

CALL64{EX}{a} Immed64

DESCRIPTION

The CALL instruction pushes the address of the following instruction on the stack and jumps to a
subroutine. The subroutine may be either EBC or native code, and may be to an absolute or
IP-relative address. CALL32 is used to jump directly to EBC code within a given application,
whereas CALLEX is used to jump to external code (either native or EBC), which requires
thunking. Functionally, the CALL does the following:

 R0 = R0 - 8;
 PUSH64 ReturnAddress
 if (Opcode.ImmedData64Bit) {
 if (Operands.EbcCall) {
 IP = Immed64;
 } else {
 NativeCall (Immed64);
 }
 } else {
 if (Operand1 != R0) {
 Addr = Operand1;
 } else {
 Addr = Immed32;
 }
 if (Operands.EbcCall) {
 if (Operands.RelativeAddress) {
 IP += Addr + SizeOfThisInstruction;
 } else {
 IP = Addr
 }
 } else {
 if (Operands.RelativeAddress) {
 NativeCall (IP + Addr)
 } else {
 NativeCall (Addr)
 }
 }

January 31, 2006
Version 2.0 787

OPERATION

R0 <= R0 – 16

[R0] <= IP + SizeOfThisInstruction

IP <= IP + SizeOfThisInstruction + Operand 1 (relative CALL)

IP <= Operand 1 (absolute CALL)

Table 123. CALL Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index data absent

1 = Immediate/index data present

6 0 = CALL32 with 32-bit immediate data/index if present

1 = CALL64 with 64-bit immediate data

0

0..5 Opcode = 0x03

Bit Description

6..7 Reserved = 0

5 0 = Call to EBC

1 = Call to native code

4 0 = Absolute address

1 = Relative address

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..5 Optional 32-bit index/immediate for CALL32

2..9 Required 64-bit immediate data for CALL64

 January 31, 2006
788 Version 2.0

BEHAVIOR AND RESTRICTIONS
• For the CALL32 forms, if Operand 1 is indirect, then the immediate data is interpreted as an

index, and the Operand 1 value is fetched from memory address [R1 + Index32].
• For the CALL32 forms, if Operand 1 is direct, then the immediate data is considered a signed

immediate value and is added to the Operand 1 register contents such that Operand 1 = R1 +
Immed32.

• For the CALLEX forms, the VM must fix up the stack pointer and execute a call to native code
in a manner compatible with the native code such that the callee is able to access arguments
passed on the VM stack..

• For the CALLEX forms, the value returned by the callee should be returned in R7.
• For the CALL64 forms, the Operand 1 fields are ignored.
• If Byte7:Bit6 = 1 (CALL64), then Byte1:Bit4 is assumed to be 0 (absolute address)
• For CALL32 forms, if Operand 1 register = R0, then the register operand is ignored and only

the immediate data is used in the calculation of the call address.
• Prior to the call, the VM will decrement the stack pointer R0 by 16 bytes, and store the 64-bit

return address on the stack.
• Offsets for relative calls are relative to the address of the instruction following the CALL

instruction.

January 31, 2006
Version 2.0 789

CMP

SYNTAX

CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}

DESCRIPTION

The CMP instruction is used to compare Operand 1 to Operand 2. Supported comparison modes are
=, <=, >=, unsigned <=, and unsigned >=. The comparison size can be 32 bits (CMP32) or 64 bits
(CMP64). The effect of this instruction is to set or clear the condition code bit in the Flags register
per the comparison results. The operands are compared as signed values except for the CMPulte
and CMPugte forms.

OPERATION

CMPeq: Flags.C <= (Operand 1 == Operand 2)

CMPlte: Flags.C <= (Operand 1 <= Operand 2)

CMPgte: Flags.C <= (Operand 1 >= Operand 2)

CMPulte: Flags.C <= (Operand 1 <= Operand 2) (unsigned)

CMPugte: Flags.C <= (Operand 1>= Operand 2) (unsigned)

 January 31, 2006
790 Version 2.0

Table 124. CMP Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index data absent

1 = Immediate/index data present

6 0 = 32-bit comparison

1 = 64-bit comparison

Opcode

0

0..5

0x05 = CMPeq compare equal

0x06 = CMPlte compare signed less then/equal

0x07 = CMPgte compare signed greater than/equal

0x08 = CMPulte compare unsigned less than/equal

0x09 = CMPugte compare unsigned greater than/equal

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 Reserved = 0

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the register contents such that Operand 2 = R2 + Immed16.
• Only register direct is supported for Operand 1.

January 31, 2006
Version 2.0 791

CMPI

SYNTAX

CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}R1 {Index16}, Immed16|Immed32

DESCRIPTION

Compares two operands, one of which is an immediate value, for =, <=, >=, unsigned <=, or
unsigned >=, and sets or clears the condition flag bit in the Flags register accordingly. Comparisons
can be performed on a 32-bit (CMPI32) or 64-bit (CMPI64) basis. The size of the immediate data
can be either 16 bits (CMPIw) or 32 bits (CMPId).

OPERATION

CMPIeq: Flags.C <= (Operand 1 == Operand 2)

CMPIlte: Flags.C <= (Operand 1 <= Operand 2)

CMPIgte: Flags.C <= (Operand 1 >= Operand 2)

CMPIulte: Flags.C <= (Operand 1 <= Operand 2)

CMPIugte: Flags.C <= (Operand 1>= Operand 2)

 January 31, 2006
792 Version 2.0

Table 125. CMPI Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = 16-bit immediate data

1 = 32-bit immediate data

6 0 = 32-bit comparison

1 = 64-bit comparison

Opcode

0

0..5

0x2D = CMPIeq compare equal

0x2E = CMPIlte compare signed less then/equal

0x2F = CMPIgte compare signed greater than/equal

0x30 = CMPIulte compare unsigned less than/equal

0x31 = CMPIugte compare unsigned greater than/equal

Bit Description

5..7 Reserved = 0

4 0 = Operand 1 index absent

1 = Operand 1 index present

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data

BEHAVIORS AND RESTRICTIONS
• The immediate data is fetched as a signed value.
• If the immediate data is smaller than the comparison size, then the immediate data is sign-

extended appropriately.
• If Operand 1 is direct, and an Operand 1 index is specified, then an instruction encoding

exception is generated.

January 31, 2006
Version 2.0 793

DIV

SYNTAX

DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs a divide operation on two signed operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (DIV32) or 64-bit (DIV64) operands.

OPERATION

Operand 1 <= Operand 1 / Operand 2

Table 126. DIV Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x10

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2+ Index16].
• If Operand 2 is direct, then the immediate data is considered a signed value and is added to the

register contents such that Operand 2 = R2 + Immed16
• If the instruction is DIV32 form, and Operand 1 is direct, then the upper 32 bits of the result are

set to 0 before storing to the Operand 1 register.
• A divide-by-0 exception occurs if Operand 2 = 0.

 January 31, 2006
794 Version 2.0

DIVU

SYNTAX

DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs a divide operation on two unsigned operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (DIVU32) or 64-bit (DIVU64) operands.

OPERATION

Operand 1 <= Operand 1 / Operand 2

Table 127. DIVU Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x11

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the value is

fetched from memory as an unsigned value at address [R2+ Index16].
• If Operand 2 is direct, then the immediate data is considered an unsigned value and is added to

the Operand 2 register contents such that Operand 2 = R2 + Immed16
• For the DIVU32 form, if Operand 1 is direct then the upper 32 bits of the result are set to 0

before storing back to the Operand 1 register.
• A divide-by-0 exception occurs if Operand 2 = 0.

January 31, 2006
Version 2.0 795

EXTNDB

SYNTAX

EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Sign-extend a byte value and store the result to Operand 1. The byte can be signed extended to
32 bits (EXTNDB32) or 64 bits (EXTNDB64).

OPERATION

Operand 1 <= (sign extended) Operand 2

Table 128. EXTNDB Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x1A

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the byte

Operand 2 value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value, is added

to the signed-extended byte from the Operand 2 register, and the byte result is sign extended to
32 or 64 bits.

• If the instruction is EXTNDB32 and Operand 1 is direct, then the 32-bit result is stored in the
Operand 1 register with the upper 32 bits cleared.

 January 31, 2006
796 Version 2.0

EXTNDD

SYNTAX

EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Sign-extend a 32-bit Operand 2 value and store the result to Operand 1. The Operand 2 value can
be extended to 32 bits (EXTNDD32) or 64 bits (EXTNDD64).

OPERATION

Operand 1 <= (sign extended) Operand 2

Table 129. EXTNDD Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x1C

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the 32-bit value

is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that

Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.
• If the instruction is EXTNDD32 and Operand 1 is direct, then the result is stored in the

Operand 1 register with the upper 32 bits cleared.

January 31, 2006
Version 2.0 797

EXTNDW

SYNTAX

EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Sign-extend a 16-bit Operand 2 value and store the result back to Operand 1. The value can be
signed extended to 32 bits (EXTNDW32) or 64 bits (EXTNDW64).

OPERATION

Operand 1 <= (sign extended) Operand 2

Table 130. EXTNDW Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x1B

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the word value

is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that

Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.
• If the instruction is EXTNDW32 and Operand 1 is direct, then the 32-bit result is stored in the

Operand 1 register with the upper 32 bits cleared.

 January 31, 2006
798 Version 2.0

JMP

SYNTAX

JMP32{cs|cc} {@}R1 {Immed32|Index32}

JMP64{cs|cc} Immed64

DESCRIPTION

The JMP instruction is used to conditionally or unconditionally jump to a relative or absolute
address and continue executing EBC instructions. The condition test is done using the condition bit
in the VM Flags register. The JMP64 form only supports an immediate value that can be used for
either a relative or absolute jump. The JMP32 form adds support for indirect addressing of the JMP
offset or address. The JMP is implemented as:

if (ConditionMet) {
 if (Operand.RelativeJump) {
 IP += Operand1 + SizeOfThisInstruction;
 } else {
 IP = Operand1;
 }
}

OPERATION

IP <= Operand 1 (absolute address)

IP <= IP + SizeOfThisInstruction + Operand 1 (relative address)

January 31, 2006
Version 2.0 799

Table 131. JMP Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index data absent

1 = Immediate/index data present

6 0 = JMP32

1 = JMP64

0

0..5 Opcode = 0x01

Bit Description

7 0 = Unconditional jump

1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)

1 = Jump if Flags.C is set (cs)

5 Reserved = 0

4 0 = Absolute address

1 = Relative address

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..5 Optional 32-bit immediate data/index for JMP32

2..9 64-bit immediate data for JMP64

BEHAVIORS AND RESTRICTIONS
• Operand 1 fields are ignored for the JMP64 forms
• If the instruction is JMP32, and Operand 1 register = R0, then the register contents are assumed

to be 0.
• If the instruction is JMP32, and Operand 1 is indirect, then the immediate data is interpreted as

an index, and the jump offset or address is fetched as a 32-bit signed value from address [R1 +
Index32]

• If the instruction is JMP32, and Operand 1 is direct, then the immediate data is considered a
signed immediate value such that Operand 1 = R1 + Immed32

• If the jump is unconditional, then Byte1:Bit6 (condition) is ignored
• If the instruction is JMP64, and Byte0:Bit7 is clear (no immediate data), then an instruction

encoding exception is generated.
• If the instruction is JMP32, and Operand 2 is indirect, then the Operand 2 value is read as a

natural value from memory address [R1 + Index32]
• An alignment check exception is generated if the jump is taken and the target address is odd.

 January 31, 2006
800 Version 2.0

JMP8

SYNTAX

JMP8{cs|cc} Immed8

DESCRIPTION

Conditionally or unconditionally jump to a relative offset and continue execution. The offset is a
signed one-byte offset specified in the number of words. The offset is relative to the start of the
following instruction.

OPERATION

IP = IP + SizeOfThisInstruction + (Immed8 * 2)

Table 132. JMP8 Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Unconditional jump

1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)

1 = Jump if Flags.C is set (cs)

0

0..5 Opcode = 0x02

1 Immediate data (signed word offset)

BEHAVIORS AND RESTRICTIONS
• If the jump is unconditional, then Byte0:Bit6 (condition) is ignored

January 31, 2006
Version 2.0 801

LOADSP

SYNTAX

LOADSP [Flags], R2

DESCRIPTION

This instruction loads a VM dedicated register with the contents of a VM general-purpose register
R0-R7. The dedicated register is specified by its index as shown in Table 112.

OPERATION

Operand 1 <= R2

Table 133. LOADSP Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 Reserved = 0

0

0..5 Opcode = 0x29

7 Reserved

4..6 Operand 2 general purpose register

3 Reserved

1

0..2 Operand 1 dedicated register index

BEHAVIORS AND RESTRICTIONS
• Attempting to load any register (Operand 1) other than the Flags register results in an

instruction encoding exception.
• Specifying a reserved dedicated register index results in an instruction encoding exception.
• If Operand 1 is the Flags register, then reserved bits in the Flags register are not modified by

this instruction.

 January 31, 2006
802 Version 2.0

MOD

SYNTAX

MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Perform a modulus on two signed 32-bit (MOD32) or 64-bit (MOD64) operands and store the
result to Operand 1.

OPERATION

Operand 1 <= Operand 1 MOD Operand 2

Table 134. MOD Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x12

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that

Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.
• If Operand 2 = 0, then a divide-by-zero exception is generated.

January 31, 2006
Version 2.0 803

MODU

SYNTAX

MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Perform a modulus on two unsigned 32-bit (MODU32) or 64-bit (MODU64) operands and store the
result to Operand 1.

OPERATION

Operand 1 <= Operand 1 MOD Operand 2

Table 135. MODU Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x13

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered an unsigned immediate value such

that Operand 2 = R2 + Immed16.
• If Operand 2 = 0, then a divide-by-zero exception is generated.

 January 31, 2006
804 Version 2.0

MOV

SYNTAX

MOV[b|w|d|q]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

MOVqq {@}R1 {Index64}, {@}R2 {Index64}

DESCRIPTION

This instruction moves data from Operand 2 to Operand 1. Both operands can be indexed, though
both indexes are the same size. In the instruction syntax for the first form, the first variable
character indicates the size of the data move, which can be 8 bits (b), 16 bits (w), 32 bits (d), or
64 bits (q). The optional character indicates the presence and size of the index value(s), which may
be 16 bits (w) or 32 bits (d). The MOVqq instruction adds support for 64-bit indexes.

OPERATION

Operand 1 <= Operand 2

January 31, 2006
Version 2.0 805

Table 136. MOV Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 1 index absent

1 = Operand 1 index present

0

6 0 = Operand 2 index absent

1 = Operand 2 index present

 0..5 0x1D = MOVbw opcode

0x1E = MOVww opcode

0x1F = MOVdw opcode

0x20 = MOVqw opcode

0x21 = MOVbd opcode

0x22 = MOVwd opcode

0x23 = MOVdd opcode

0x24 = MOVqd opcode

0x28 = MOVqq opcode

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index

2..9 Optional Operand 1 64-bit index (MOVqq)

2..9/10..17 Optional Operand 2 64-bit index (MOVqq)

BEHAVIORS AND RESTRICTIONS
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding

exception is generated.

 January 31, 2006
806 Version 2.0

MOVI

SYNTAX

MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

DESCRIPTION

This instruction moves a signed immediate value to Operand 1. In the instruction syntax, the first
variable character specifies the width of the move, which may be 8 bits (b), 16 bits (w), 32-bits (d),
or 64 bits (q). The second variable character specifies the width of the immediate data, which may
be 16 bits (w), 32 bits (d), or 64 bits (q).

OPERATION

Operand 1 <= Operand 2

Table 137. MOVI Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 0 = Reserved

1 = Immediate data is 16 bits (w)

2 = Immediate data is 32 bits (d)

3 = Immediate data is 64 bits (q)

0

0..5 Opcode = 0x37

Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent

1 = Operand 1 index present

4..5 0 = 8 bit (b) move

1 = 16 bit (w) move

2 = 32 bit (d) move

3 = 64 bit (q) move

1

3 0 = Operand 1 direct

1 = Operand 1 indirect

 0..2 Operand 1

2..3 Optional 16-bit index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data

2..9/4..11 64-bit immediate data

January 31, 2006
Version 2.0 807

BEHAVIORS AND RESTRICTIONS
• Specifying an index value with Operand 1 direct results in an instruction encoding exception.
• If the immediate data is smaller than the move size, then the value is sign-extended to the

width of the move.
• If Operand 1 is a register, then the value is stored to the register with bits beyond the move

size cleared.

 January 31, 2006
808 Version 2.0

MOVIn

SYNTAX

MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

DESCRIPTION

This instruction moves an indexed value of form (+n,+c) to Operand 1. The index value is
converted from (+n, +c) format to a signed offset per the encoding described in Table 114. The size
of the Operand 2 index data can be 16 (w), 32 (d), or 64 (q) bits.

OPERATION

Operand 1 <= Operand 2 (index value)

Table 138. MOVIn Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 0 = Reserved

1 = Operand 2 index value is 16 bits (w)

2 = Operand 2 index value is 32 bits (d)

3 = Operand 2 index value is 64 bits (q)

0

0..5 Opcode = 0x38

Bit Description

7 Reserved

6 0 = Operand 1 index absent

1 = Operand 1 index present

4..5 Reserved = 0

1

3 0 = Operand 1 direct

1 = Operand 1 indirect

 0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit Operand 2 index

2..5/4..7 32-bit Operand 2 index

2..9/4..11 64-bit Operand 2 index

January 31, 2006
Version 2.0 809

BEHAVIORS AND RESTRICTIONS
• Specifying an Operand 1 index when Operand 1 is direct results in an instruction encoding

exception.
• The Operand 2 index is sign extended to the size of the move if necessary.
• If the Operand 2 index size is smaller than the move size, then the value is truncated.
• If Operand 1 is direct, then the Operand 2 value is sign extended to 64 bits and stored to the

Operand 1 register.

 January 31, 2006
810 Version 2.0

MOVn

SYNTAX

MOVn{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

DESCRIPTION

This instruction loads an unsigned natural value from Operand 2 and stores the value to Operand 1.
Both operands can be indexed, though both operand indexes are the same size. The operand
index(s) can be 16 bits (w) or 32 bits (d).

OPERATION

Operand1 <= (UINTN)Operand2

Table 139. MOVn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 1 index absent

1 = Operand 1 index present

0

6 0 = Operand 2 index absent

1 = Operand 2 index present

 0..5 0x32 = MOVnw opcode

0x33 = MOVnd opcode

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index

January 31, 2006
Version 2.0 811

BEHAVIORS AND RESTRICTIONS
• If an index is specified for Operand 2, and Operand 2 register is direct, then the Operand 2

index value is added to the register contents such that Operand 2 = (UINTN)(R2 + Index).
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding

exception is generated.
• If Operand 1 is direct, then the Operand 2 value will be 0-extended to 64 bits on a 32-bit

machine before storing to the Operand 1 register.

 January 31, 2006
812 Version 2.0

MOVREL

SYNTAX

MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

DESCRIPTION

This instruction fetches data at an IP-relative immediate offset (Operand 2) and stores the result to
Operand 1. The offset is a signed offset relative to the following instruction. The fetched data is
unsigned and may be 16 (w), 32 (d), or 64 (q) bits in size.

OPERATION

Operand 1 <= [IP + SizeOfThisInstruction + Immed]

Table 140. MOVREL Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 0 = Reserved

1 = Immediate data is 16 bits (w)

2 = Immediate data is 32 bits (d)

3 = Immediate data is 64 bits (q)

0

0..5 Opcode = 0x39

Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent

1 = Operand 1 index present

4..5 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate offset

2..5/4..7 32-bit immediate offset

2..9/4..11 64-bit immediate offset

BEHAVIORS AND RESTRICTIONS
• If an Operand 1 index is specified and Operand 1 is direct, then an instruction encoding

exception is generated.

January 31, 2006
Version 2.0 813

MOVsn

SYNTAX

MOVsn{w} {@}R1, {Index16}, {@}R2 {Index16|Immed16}

MOVsn{d} {@}R1 {Index32}, {@}R2 {Index32|Immed32}

DESCRIPTION

Moves a signed natural value from Operand 2 to Operand 1. Both operands can be indexed,
though the indexes are the same size. Indexes can be either 16 bits (MOVsnw) or 32 bits
(MOVsnd) in size.

OPERATION

Operand 1 <= Operand 2

Table 141. MOVsn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 1 index absent

1 = Operand 1 index present

0

6 0 = Operand 2 index/immediate data absent

1 = Operand 2 index/immediate data present

 0..5 0x25 = MOVsnw opcode

0x26 = MOVsnd opcode

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index (MOVsnw)

2..3/4..5 Optional 16-bit Operand 2 index (MOVsnw)

2..5 Optional 32-bit Operand 1 index/immediate data (MOVsnd)

2..5/6..9 Optional 32-bit Operand 2 index/immediate data (MOVsnd)

 January 31, 2006
814 Version 2.0

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is direct, and Operand 2 index/immediate data is specified, then the immediate

value is read as a signed immediate value and is added to the contents of Operand 2 register
such that Operand 2 = R2 + Immed.

• If Operand 2 is indirect, and Operand 2 index/immediate data is specified, then the immediate
data is interpreted as an index and the Operand 2 value is fetched from memory as a signed
value at address [R2 + Index16].

• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

• If Operand 1 is direct, then the Operand 2 value is sign-extended to 64-bits on 32-bit native
machines.

January 31, 2006
Version 2.0 815

MUL

SYNTAX

MUL[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Perform a signed multiply of two operands and store the result back to Operand 1. The operands
can be either 32 bits (MUL32) or 64 bits (MUL64).

OPERATION

Operand 1 <= Operand * Operand 2

Table 142. MUL Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0E

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit Operand 2 immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is MUL32, and Operand 1 is direct, then the result is stored to Operand 1

register with the upper 32 bits cleared.

 January 31, 2006
816 Version 2.0

MULU

SYNTAX

MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs an unsigned multiply of two 32-bit (MULU32) or 64-bit (MULU64) operands, and stores
the result back to Operand 1.

OPERATION

Operand 1 <= Operand * Operand 2

Table 143. MULU Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0F

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is MULU32 and Operand 1 is direct, then the result is written to the Operand

1 register with the upper 32 bits cleared.

January 31, 2006
Version 2.0 817

NEG

SYNTAX

NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Multiply Operand 2 by negative 1, and store the result back to Operand 1. Operand 2 is a signed
value and fetched as either a 32-bit (NEG32) or 64-bit (NEG64) value.

OPERATION

Operand 1 <= -1 * Operand 2

Table 144. NEG Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0B

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is NEG32 and Operand 1 is direct, then the result is stored in Operand 1

register with the upper 32-bits cleared.

 January 31, 2006
818 Version 2.0

NOT

SYNTAX

NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs a logical NOT operation on Operand 2, an unsigned 32-bit (NOT32) or 64-bit (NOT64)
value, and stores the result back to Operand 1.

OPERATION

Operand 1 <= NOT Operand 2

Table 145. NOT Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0A

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is NOT32 and Operand 1 is a register, then the result is stored in the

Operand 1 register with the upper 32 bits cleared.

January 31, 2006
Version 2.0 819

OR

SYNTAX

OR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs a bit-wise OR of two 32-bit (OR32) or 64-bit (OR64) operands, and stores the result back
to Operand 1.

OPERATION

Operand 1 <= Operand 1 OR Operand 2

Table 146. OR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x15

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is OR32 and Operand 1 is direct, then the result is stored to Operand 1 register

with the upper 32 bits cleared.

 January 31, 2006
820 Version 2.0

POP

SYNTAX

POP[32|64] {@}R1 {Index16|Immed16}

DESCRIPTION

This instruction pops a 32-bit (POP32) or 64-bit (POP64) value from the stack, stores the result to
Operand 1, and adjusts the stack pointer R0 accordingly.

OPERATION

Operand 1 <= [R0]

R0 <= R0 + 4 (POP32)

R0 <= R0 + 8 (POP64)

Table 147. POP Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x2C

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is read

as a signed value and is added to the value popped from the stack, and the result stored to the
Operand 1 register.

• If Operand 1 is indirect, then the immediate data is interpreted as an index, and the value
popped from the stack is stored to address [R1 + Index16].

• If the instruction is POP32, and Operand 1 is direct, then the popped value is sign-extended to
64 bits before storing to the Operand 1 register.

January 31, 2006
Version 2.0 821

POPn

SYNTAX

POPn {@}R1 {Index16|Immed16}

DESCRIPTION

Read an unsigned natural value from memory pointed to by stack pointer R0, adjust the stack
pointer accordingly, and store the value back to Operand 1.

OPERATION

Operand 1 <= (UINTN)[R0]

R0 <= R0 + sizeof (VOID *)

Table 148. POPn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 Reserved = 0

0

0..5 Opcode = 0x36

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is

fetched as a signed value and is added to the value popped from the stack and the result is
stored back to the Operand 1 register.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the value popped from the stack is stored at [R1 + Index16].

• If Operand 1 is direct, and the instruction is executed on a 32-bit machine, then the result is
stored to the Operand 1 register with the upper 32 bits cleared.

 January 31, 2006
822 Version 2.0

PUSH

SYNTAX

PUSH[32|64] {@}R1 {Index16|Immed16}

DESCRIPTION

Adjust the stack pointer R0 and store a 32-bit (PUSH32) or 64-bit (PUSH64) Operand 1 value on
the stack.

OPERATION

R0 <= R0 - 4 (PUSH32)

R0 <= R0 - 8 (PUSH64)

[R0] <= Operand 1

Table 149. PUSH Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x2B

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is read

as a signed value and is added to the Operand 1 register contents such that Operand 1 = R1 +
Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the pushed value is read from [R1 + Index16].

January 31, 2006
Version 2.0 823

PUSHn

SYNTAX

PUSHn {@}R1 {Index16|Immed16}

DESCRIPTION

Adjust the stack pointer R0, and store a natural value on the stack.

OPERATION

R0 <= R0 - sizeof (VOID *)

[R0] <= Operand 1

Table 150. PUSHn Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Immediate/index absent

1 = Immediate/index present

6 Reserved = 0

0

0..5 Opcode = 0x35

Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is

fetched as a signed value and is added to the Operand 1 register contents such that Operand 1 =
R1 + Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the Operand 1 value pushed is fetched from [R1 + Index16].

 January 31, 2006
824 Version 2.0

RET

SYNTAX

RET

DESCRIPTION

This instruction fetches the return address from the stack, sets the IP to the value, adjusts the stack
pointer register R0, and continues execution at the return address. If the RET is a final return from
the EBC driver, then execution control returns to the caller, which may be EBC or native code.

OPERATION

IP <= [R0]

R0 <= R0 + 16

Table 151. RET Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 Reserved = 0

0

0..5 Opcode = 0x04

1 Reserved = 0

BEHAVIORS AND RESTRICTIONS
• An alignment exception will be generated if the return address is not aligned on a 16-bit

boundary.

January 31, 2006
Version 2.0 825

SHL

SYNTAX

SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Left-shifts Operand 1 by Operand 2 bit positions and stores the result back to Operand 1. The
operand sizes may be either 32-bits (SHL32) or 64 bits (SHL64).

OPERATION

Operand 1 <= Operand 1 << Operand 2

Table 152. SHL Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x17

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is SHL32, and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

 January 31, 2006
826 Version 2.0

SHR

SYNTAX

SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Right-shifts unsigned Operand 1 by Operand 2 bit positions and stores the result back to Operand 1.
The operand sizes may be either 32-bits (SHR32) or 64 bits (SHR64).

OPERATION

Operand 1 <= Operand 1 >> Operand 2

Table 153. SHR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x18

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is SHR32, and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

January 31, 2006
Version 2.0 827

STORESP

SYNTAX

STORESP R1, [IP|Flags]

DESCRIPTION

This instruction transfers the contents of a dedicated register to a general-purpose register. See
Table 112 for the VM dedicated registers and their corresponding index values.

OPERATION

Operand 1 <= Operand 2

Table 154. STORESP Instruction Encoding

BYTE DESCRIPTION

Bit Description

6..7 Reserved = 0

0

0..5 Opcode = 0x2A

7 Reserved = 0

4..6 Operand 2 dedicated register index

3 Reserved = 0

1

0..2 Operand 1 general purpose register

BEHAVIORS AND RESTRICTIONS
• Specifying an invalid dedicated register index results in an instruction encoding exception.

 January 31, 2006
828 Version 2.0

SUB

SYNTAX

SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Subtracts a 32-bit (SUB32) or 64-bit (SUB64) signed Operand 2 value from a signed Operand 1
value of the same size, and stores the result to Operand 1.

OPERATION

Operand 1 <= Operand 1 - Operand 2

Table 155. SUB Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x0D

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is SUB32 and Operand 1 is direct, then the result is stored to the Operand 1

register with the upper 32 bits cleared.

January 31, 2006
Version 2.0 829

XOR

SYNTAX

XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}

DESCRIPTION

Performs a bit-wise exclusive OR of two 32-bit (XOR32) or 64-bit (XOR64) operands, and stores
the result back to Operand 1.

OPERATION

Operand 1 <= Operand 1 XOR Operand 2

Table 156. XOR Instruction Encoding

BYTE DESCRIPTION

Bit Description

7 0 = Operand 2 immediate/index absent

1 = Operand 2 immediate/index present

6 0 = 32-bit operation

1 = 64-bit operation

0

0..5 Opcode = 0x16

Bit Description

7 0 = Operand 2 direct

1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct

1 = Operand 1 indirect

1

0..2 Operand 1

2..3 Optional 16-bit immediate data/index

BEHAVIORS AND RESTRICTIONS
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].
• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is

added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.
• If the instruction is XOR32 and Operand1 is direct, then the result is stored to the Operand 1

register with the upper 32-bits cleared.

 January 31, 2006
830 Version 2.0

19.9 Runtime and Software Conventions

19.9.1 Calling Outside VM
Calls can be made to routines in other modules that are native or in another VM. It is the
responsibility of the calling VM to prepare the outgoing arguments correctly to make the call
outside the VM. It is also the responsibility of the VM to prepare the incoming arguments correctly
for the call from outside the VM. Calls outside the VM must use the CALLEX instruction.

19.9.2 Calling Inside VM
Calls inside VM can be made either directly using the CALL or CALLEX instructions. Using direct
CALL instructions is an optimization.

19.9.3 Parameter Passing
Parameters are pushed on the VM stack per the CDECL calling convention. Per this convention,
the last argument in the parameter list is pushed on the stack first, and the first argument in the
parameter list is pushed on the stack last.

All parameters are stored or accessed as natural size (using naturally sized instruction) except 64-bit
integers, which are pushed as 64-bit values. 32-bit integers are pushed as natural size (since they
should be passed as 64-bit parameter values on 64-bit machines).

19.9.4 Return Values
Return values of 8 bytes or less in size are returned in general-purpose register R7. Return values
larger than 8 bytes are not supported.

19.9.5 Binary Format
PE32+ format will be used for generating binaries for the VM. A VarBss section will be included
in the binary image. All global and static variables will be placed in this section. The size of the
section will be based on worst-case 64-bit pointers. Initialized data and pointers will also be placed
in the VarBss section, with the compiler generating code to initialize the values at runtime.

19.10 Architectural Requirements

This section provides a high level overview of the architectural requirements that are necessary to
support execution of EBC on a platform.

January 31, 2006
Version 2.0 831

19.10.1 EBC Image Requirements
All EBC images will be PE32+ format. Some minor additions to the format will be required to
support EBC images. See the Microsoft Portable Executable and Common Object File Format
Specification pointed to in the References appendix for details of this image file format.

A given EBC image must be executable on different platforms, independent of whether it is a 32- or
64-bit processor. All EBC images should be driver implementations.

19.10.2 EBC Execution Interfacing Requirements
EBC drivers will typically be designed to execute in an (usually preboot) EFI environment. As
such, EBC drivers must be able to invoke protocols and expose protocols for use by other drivers or
applications. The following execution transitions must be supported:

• EBC calling EBC
• EBC calling native code
• Native code calling EBC
• Native code calling native code
• Returning from all the above transitions

Obviously native code calling native code is available by default, so is not discussed in this
document.

To maintain backward compatibility with existing native code, and minimize the overhead for
non-EBC drivers calling EBC protocols, all four transitions must be seamless from the application
perspective. Therefore, drivers, whether EBC or native, shall not be required to have any
knowledge of whether or not the calling code, or the code being called, is native or EBC compiled
code. The onus is put on the tools and interpreter to support this requirement.

19.10.3 Interfacing Function Parameters Requirements
To allow code execution across protocol boundaries, the interpreter must ensure that parameters
passed across execution transitions are handled in the same manner as the standard parameter
passing convention for the native processor.

19.10.4 Function Return Requirements
The interpreter must support standard function returns to resume execution to the caller of external
protocols. The details of this requirement are specific to the native processor. The called function
must not be required to have any knowledge of whether or not the caller is EBC or native code.

 January 31, 2006
832 Version 2.0

19.10.5 Function Return Values Requirements
The interpreter must support standard function return values from called protocols. The exact
implementation of this functionality is dependent on the native processor. This requirement applies
to return values of 64 bits or less. The called function must not be required to have any knowledge
of whether or not the caller is EBC or native code. Note that returning of structures is not
supported.

19.11 EBC Interpreter Protocol

The EFI EBC protocol provides services to execute EBC images, which will typically be loaded
into option ROMs.

January 31, 2006
Version 2.0 833

EFI_EBC_PROTOCOL

Summary

This protocol provides the services that allow execution of EBC images.

GUID
#define EFI_EBC_PROTOCOL_GUID \
 {0x13AC6DD1,0x73D0,0x11D4,0xB0,0x6B,0x00,0xAA,0x00,0xBD,

0x6D,0xE7}

Protocol Interface Structure
typedef struct _EFI_EBC_PROTOCOL {
 EFI_EBC_CREATE_THUNK CreateThunk;
 EFI_EBC_UNLOAD_IMAGE UnloadImage;
 EFI_EBC_REGISTER_ICACHE_FLUSH RegisterICacheFlush;
 EFI_EBC_GET_VERSION GetVersion;
} EFI_EBC_PROTOCOL;

Parameters

CreateThunk Creates a thunk for an EBC image entry point or protocol
service, and returns a pointer to the thunk. See the
CreateThunk() function description.

UnloadImage Called when an EBC image is unloaded to allow the interpreter
to perform any cleanup associated with the image’s execution.
See the UnloadImage() function description.

RegisterICacheFlush
Called to register a callback function that the EBC interpreter
can call to flush the processor instruction cache after creating
thunks. See the RegisterICacheFlush() function
description.

GetVersion Called to get the version of the associated EBC interpreter. See
the GetVersion() function description.

Description

The EFI EBC protocol provides services to load and execute EBC images, which will typically be
loaded into option ROMs. The image loader will load the EBC image, perform standard
relocations, and invoke the CreateThunk() service to create a thunk for the EBC image’s entry
point. The image can then be run using the standard EFI start image services.

 January 31, 2006
834 Version 2.0

EFI_EBC_PROTOCOL.CreateThunk()

Summary

Creates a thunk for an EBC entry point, returning the address of the thunk.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EBC_CREATE_THUNK) (
 IN EFI_EBC_PROTOCOL *This,
 IN EFI_HANDLE ImageHandle,
 IN VOID *EbcEntryPoint,
 OUT VOID **Thunk
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

ImageHandle Handle of image for which the thunk is being created.

EbcEntryPoint Address of the actual EBC entry point or protocol service the thunk
should call.

Thunk Returned pointer to a thunk created.

Description

A PE32+ EBC image, like any other PE32+ image, contains an optional header that specifies the
entry point for image execution. However for EBC images this is the entry point of EBC
instructions, so is not directly executable by the native processor. Therefore when an EBC image is
loaded, the loader must call this service to get a pointer to native code (thunk) that can be executed
which will invoke the interpreter to begin execution at the original EBC entry point.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image entry point is not 2-byte aligned.

EFI_OUT_OF_RESOURCES Memory could not be allocated for the thunk.

January 31, 2006
Version 2.0 835

EFI_EBC_PROTOCOL.UnloadImage()

Summary

Called prior to unloading an EBC image from memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EBC_UNLOAD_IMAGE) (
 IN EFI_EBC_PROTOCOL *This,
 IN EFI_HANDLE ImageHandle
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

ImageHandle Image handle of the EBC image that is being unloaded from memory.

Description

This function is called after an EBC image has exited, but before the image is actually unloaded. It
is intended to provide the interpreter with the opportunity to perform any cleanup that may be
necessary as a result of loading and executing the image.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image handle is not recognized as belonging to an EBC image that
has been executed.

 January 31, 2006
836 Version 2.0

EFI_EBC_PROTOCOL.RegisterICacheFlush()

Summary

Registers a callback function that the EBC interpreter calls to flush the processor instruction cache
following creation of thunks.

Prototype
typedef
EFI_STATUS
(* EFI_EBC_REGISTER_ICACHE_FLUSH) (
 IN EFI_EBC_PROTOCOL *This,
 IN EBC_ICACHE_FLUSH Flush
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

Flush Pointer to a function of type EBC_ICACH_FLUSH. See “Related
Definitions” below for a detailed description of this type.

Related Definitions
typedef
EFI_STATUS
(* EBC_ICACHE_FLUSH) (
 IN EFI_PHYSICAL_ADDRESS Start,
 IN UINT64 Length
);

Start The beginning physical address to flush from the processor’s instruction
cache.

Length The number of bytes to flush from the processor’s instruction cache.

This is the prototype for the Flush callback routine. A pointer to a routine of this type is passed
to the EBC EFI_EBC_REGISTER_ICACHE_FLUSH protocol service.

January 31, 2006
Version 2.0 837

Description

An EBC image’s original PE32+ entry point is not directly executable by the native processor.
Therefore to execute an EBC image, a thunk (which invokes the EBC interpreter for the image’s
original entry point) must be created for the entry point, and the thunk is executed when the EBC
image is started. Since the thunks may be created on-the-fly in memory, the processor’s instruction
cache may require to be flushed after thunks are created. The caller to this EBC service can
provide a pointer to a function to flush the instruction cache for any thunks created after the
CreateThunk() service has been called. If an instruction-cache flush callback is not provided
to the interpreter, then the interpreter assumes the system has no instruction cache, or that flushing
the cache is not required following creation of thunks.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

 January 31, 2006
838 Version 2.0

EFI_EBC_PROTOCOL.GetVersion()

Summary

Called to get the version of the interpreter.

Prototype
typedef
EFI_STATUS
(* EFI_EBC_GET_VERSION) (
 IN EFI_EBC_PROTOCOL *This,
 OUT UINT64 *Version
);

Parameters

This A pointer to the EFI_EBC_PROTOCOL instance. This protocol is
defined in Section 19.11.

Version Pointer to where to store the returned version of the interpreter.

Description

This function is called to get the version of the loaded EBC interpreter. The value and format of the
returned version is identical to that returned by the EBC BREAK 1 instruction.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Version pointer is NULL.

January 31, 2006
Version 2.0 839

19.12 EBC Tools

19.12.1 EBC C Compiler
This section describes the responsibilities of the EBC C compiler. To fully specify these
responsibilities requires that the thunking mechanisms between EBC and native code be described.

19.12.2 C Coding Convention
The EBC C compiler supports only the C programming language. There is no support for C++,
inline assembly, floating point types/operations, or C calling conventions other than CDECL.

Pointer type in C is supported only as 64-bit pointer. The code should be 64-bit pointer ready (not
assign pointers to integers and vice versa).

The compiler does not support user-defined sections through pragmas.

Global variables containing pointers that are initialized will be put in the uninitialized VarBss
section and the compiler will generate code to initialize these variables during load time. The code
will be placed in an init text section. This compiler-generated code will be executed before the
actual image entry point is executed.

19.12.3 EBC Interface Assembly Instructions
The EBC instruction set includes two forms of a CALL instruction that can be used to invoke
external protocols. Their assembly language formats are:

CALLEX Immed64

CALLEX32 {@}R1 {Immed32}

Both forms can be used to invoke external protocols at an absolute address specified by the
immediate data and/or register operand. The second form also supports jumping to code at a
relative address. When one of these instructions is executed, the interpreter is responsible for
thunking arguments and then jumping to the destination address. When the called function returns,
code begins execution at the EBC instruction following the CALL instruction. The process by
which this happens is called thunking. Later sections describe this operation in detail.

19.12.4 Stack Maintenance and Argument Passing
There are several EBC assembly instructions that directly manipulate the stack contents and stack
pointer. These instructions operate on the EBC stack, not the interpreter stack. The instructions
include the EBC PUSH, POP, PUSHn, and POPn, and all forms of the MOV instructions.

These instructions must adjust the EBC stack pointer in the same manner as equivalent
instructions of the native instruction set. With this implementation, parameters pushed on the
stack by an EBC driver can be accessed normally for stack-based native code. If native code
expects parameters in registers, then the interpreter thunking process must transfer the arguments
from EBC stack to the appropriate processor registers. The process would need to be reversed
when native code calls EBC.

 January 31, 2006
840 Version 2.0

19.12.5 Native to EBC Arguments Calling Convention
The calling convention for arguments passed to EBC functions follows the standard CDECL calling
convention. The arguments must be pushed as their native size. After the function arguments have
been pushed on the stack, execution is passed to the called EBC function. The overhead of
thunking the function parameters depends on the standard parameter passing convention for the
host processor. The implementation of this functionality is left to the interpreter.

19.12.6 EBC to Native Arguments Calling Convention
When EBC makes function calls via function pointers, the EBC C compiler cannot determine
whether the calls are to native code or EBC. It therefore assumes that the calls are to native code,
and emits the appropriate EBC CALLEX instructions. To be compatible with calls to native code,
the calling convention of EBC calling native code must follow the parameter passing convention of
the native processor. The EBC C compiler generates EBC instructions that push all arguments on
the stack. The interpreter is then responsible for performing the necessary thunking. The exact
implementation of this functionality is left to the interpreter.

19.12.7 EBC to EBC Arguments Calling Convention
If the EBC C compiler is able to determine that a function call is to a local function, it can emit a
standard EBC CALL instruction. In this case, the function arguments are passed as described in the
other sections of this specification.

19.12.8 Function Returns
When EBC calls an external function, the thunking process includes setting up the host processor
stack or registers such that when the called function returns, execution is passed back to the EBC at
the instruction following the call. The implementation is left to the interpreter, but it must follow
the standard function return process of the host processor. Typically this will require the interpreter
to push the return address on the stack or move it to a processor register prior to calling the
external function.

19.12.9 Function Return Values
EBC function return values of 8 bytes or less are returned in VM general-purpose register R7.
Returning values larger than 8 bytes on the stack is not supported. Instead, the caller or callee must
allocate memory for the return value, and the caller can pass a pointer to the callee, or the callee can
return a pointer to the value in the standard return register R7.

If an EBC function returns to native code, then the interpreter thunking process is responsible for
transferring the contents of R7 to an appropriate location such that the caller has access to the value
using standard native code. Typically the value will be transferred to a processor register.
Conversely, if a native function returns to an EBC function, the interpreter is responsible for
transferring the return value from the native return memory or register location into VM
register R7.

January 31, 2006
Version 2.0 841

19.12.10 Thunking
Thunking is the process by which transitions between execution of native and EBC are handled.
The major issues that must be addressed for thunking are the handling of function arguments, how
the external function is invoked, and how return values and function returns are handled. The
following sections describe the thunking process for the possible transitions.

19.12.10.1 Thunking EBC to Native Code
By definition, all external calls from within EBC are calls to native code. The EBC CALLEX
instructions are used to make these calls. A typical application for EBC calling native code would
be a simple “Hello World” driver. For a UEFI driver, the code could be written as shown below.

EFI_STATUS EfiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *ST
)
{
 ST->ConOut->OutputString(ST->ConOut, L”Hello World!”);
 return EFI_SUCCESS;
}

This C code, when compiled to EBC assembly, could result in two PUSHn instructions to push the
parameters on the stack, some code to get the absolute address of the OutputString() function,
then a CALLEX instruction to jump to native code. Typical pseudo assembly code for the function
call could be something like the following:

PUSHn _HelloString
PUSHn _ConOut
MOVnw R1, _OutputString
CALLEX64 R1

The interpreter is responsible for executing the PUSHn instructions to push the arguments on the
EBC stack when interpreting the PUSHn instructions. When the CALLEX instruction is
encountered, it must thunk to external native code. The exact thunking mechanism is native
processor dependent. For example, a supported 32-bit thunking implementation could simply move
the system stack pointer to point to the EBC stack, then perform a CALL to the absolute address
specified in VM register R1. However, the function calling convention for the Itanium processor
family calls for the first 8 function arguments being passed in registers. Therefore, the Itanium
processor family thunking mechanism requires the arguments to be copied from the EBC stack into
processor registers. Then a CALL can be performed to jump to the absolute address in VM register
R1. Note that since the interpreter is not aware of the number of arguments to the function being
called, the maximum amount of data may be copied from the EBC stack into processor registers.

 January 31, 2006
842 Version 2.0

19.12.10.2 Thunking Native Code to EBC
An EBC driver may install protocols for use by other EBC drivers, or UEFI drivers or applications.
These protocols provide the mechanism by which external native code can call EBC. Typical C
code to install a generic protocol is shown below.

EFI_STATUS Foo(UINT32 Arg1, UINT32 Arg2);

MyProtInterface->Service1 = Foo;

Status = LibInstallProtocolInterfaces (&Handle, &MyProtGUID,
MyProtInterface, NULL);

To support thunking native code to EBC, the EBC compiler resolves all EBC function pointers
using one level of indirection. In this way, the address of an EBC function actually becomes the
address of a piece of native (thunk) code that invokes the interpreter to execute the actual EBC
function. As a result of this implementation, any time the address of an EBC function is taken, the
EBC C compiler must generate the following:

• A 64-bit function pointer data object that contains the actual address of the EBC function
• EBC initialization code that is executed before the image entry point that will execute EBC

BREAK 5 instructions to create thunks for each function pointer data object
• Associated relocations for the above

So for the above code sample, the compiler must generate EBC initialization code similar to the
following. This code is executed prior to execution of the actual EBC driver’s entry point.

MOVqq R7, Foo_pointer ; get address of Foo pointer
BREAK 5 ; create a thunk for the function

The BREAK instruction causes the interpreter to create native thunk code elsewhere in memory,
and then modify the memory location pointed to by R7 to point to the newly created thunk code for
EBC function Foo. From within EBC, when the address of Foo is taken, the address of the thunk is
actually returned. So for the assignment of the protocol Service1 above, the EBC C compiler will
generate something like the following:

MOVqq R7, Foo_pointer ; get address of Foo function pointer
MOVqq R7, @R7 ; one level of indirection
MOVn R6, _MyProtInterface->Service1 ; get address of variable
MOVqq @R6, R7 ; address of thunk to ->Service1

19.12.10.3 Thunking EBC to EBC
EBC can call EBC via function pointers or protocols. These two mechanisms are treated identically
by the EBC C compiler, and are performed using EBC CALLEX instructions. For EBC to call
EBC, the EBC being called must have provided the address of the function. As described above,
the address is actually the address of native thunk code for the actual EBC function. Therefore,
when EBC calls EBC, the interpreter assumes native code is being called so prepares function
arguments accordingly, and then makes the call. The native thunk code assumes native code is
calling EBC, so will basically “undo” the preparation of function arguments, and then invoke the
interpreter to execute the actual EBC function of interest.

January 31, 2006
Version 2.0 843

19.12.11 EBC Linker
New constants must be defined for use by the linker in processing EBC images. For EBC images,
the linker must set the machine type in the PE file header accordingly to indicate that the image
contains EBC.

#define IMAGE_FILE_MACHINE_EBC 0x0EBC

In addition, the linker must support EBC images with of the following subsystem types as set in a
PE32+ optional header:

#define IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

For EFI EBC images and object files, the following relocation types must be supported:

// No relocations required
#define IMAGE_REL_EBC_ABSOLUTE 0x0000
// 32-bit address w/o image base
#define IMAGE_REL_EBC_ADDR32NB 0x0001
// 32-bit relative address from byte following relocs
#define IMAGE_REL_EBC_REL32 0x0002
// Section table index
#define IMAGE_REL_EBC_SECTION 0x0003
// Offset within section
#define IMAGE_REL_EBC_SECREL 0x0004

The ADDR32NB relocation is used internally to the linker when RVAs are emitted. It also is used
for version resources which probably will not be used. The REL32 relocation is for PC relative
addressing on code. The SECTION and SECREL relocations are used for debug information.

19.12.12 Image Loader
The EFI image loader is responsible for loading an executable image into memory and applying
relocation information so that an image can execute at the address in memory where it has been
loaded prior to execution of the image. For EBC images, the image loader must also invoke the
interpreter protocol to create a thunk for the image entry point and return the address of this thunk.
After loading the image in this manner, the image can be executed in the standard manner. To
implement this functionality, only minor changes will be made to EFI service LoadImage(), and
no changes should be made to StartImage().

After the image is unloaded, the EFI image load service must call the EBC UnloadImage()
service to perform any cleanup to complete unloading of the image. Typically this will include
freeing up any memory allocated for thunks for the image during load and execution.

19.12.13 Debug Support
The interpreter must support debugging in an EFI environment per the EFI debug support protocol.

 January 31, 2006
844 Version 2.0

19.13 VM Exception Handling

This section lists the different types of exceptions that the VM may assert during execution of an
EBC image. If a debugger is attached to the EBC driver via the EFI debug support protocol, then
the debugger should be able to capture and identify the exception type. If a debugger is not
attached, then depending on the severity of the exception, the interpreter may do one of the
following:

• Invoke the EFI ASSERT() macro, which will typically display an error message and halt the
system

• Sit in a while(1) loop to hang the system
• Ignore the exception and continue execution of the image (minor exceptions only)

It is a platform policy decision as to the action taken in response to EBC exceptions. The following
sections describe the exceptions that may be generated by the VM.

19.13.1 Divide By 0 Exception
A divide-by-0 exception can occur for the EBC instructions DIV, DIVU, MOD, and MODU.

19.13.2 Debug Break Exception
A debug break exception occurs if the VM encounters a BREAK instruction with a break code of 3.

19.13.3 Invalid Opcode Exception
An invalid opcode exception will occur if the interpreter encounters a reserved opcode during
execution.

19.13.4 Stack Fault Exception
A stack fault exception can occur if the interpreter detects that function nesting within the
interpreter or system interrupts was sufficient to potentially corrupt the EBC image’s stack
contents. This exception could also occur if the EBC driver attempts to adjust the stack pointer
outside the range allocated to the driver.

19.13.5 Alignment Exception
An alignment exception can occur if the particular implementation of the interpreter does not
support unaligned accesses to data or code. It may also occur if the stack pointer or instruction
pointer becomes misaligned.

19.13.6 Instruction Encoding Exception
An instruction encoding exception can occur for the following:

• For some instructions, if an Operand 1 index is specified and Operand 1 is direct
• If an instruction encoding has reserved bits set to values other than 0
• If an instruction encoding has a field set to a reserved value.

January 31, 2006
Version 2.0 845

19.13.7 Bad Break Exception
A bad break exception occurs if the VM encounters a BREAK instruction with a break code of 0, or
any other unrecognized or unsupported break code.

19.13.8 Undefined Exception
An undefined exception can occur for other conditions detected by the VM. The cause of such an
exception is dependent on the VM implementation, but will most likely include internal VM faults.

19.14 Option ROM Formats

The new option ROM capability is designed to be a departure from the legacy method of formatting
an option ROM. PCI local bus add-in cards are the primary targets for this design although support
for future bus types will be added as necessary. EFI EBC drivers can be stored in option ROMs or
on hard drives in an EFI system partition.

The new format defined for the UEFI specification is intended to coexist with legacy format PCI
Expansion ROM images. This provides the ability for IHVs to make a single option ROM binary
that contains both legacy and new format images at the same time. This is important for the ability
to have single add-in card SKUs that can work in a variety of systems both with and without native
support for UEFI. Support for multiple image types in this way provides a smooth migration path
during the period before widespread adoption of UEFI drivers as the primary means of support for
software needed to accomplish add-in card operation in the pre-OS boot timeframe.

19.14.1 EFI Drivers for PCI Add-in Cards
The location mechanism for UEFI drivers in PCI option ROM containers is described fully in
Section 10.3. Readers should refer to this section for complete details of the scheme and associated
data structures.

19.14.2 Non-PCI Bus Support
EFI expansion ROMs are not supported on any other bus besides PCI local bus in the current
revision of the UEFI specification.

This means that support for UEFI drivers in legacy ISA add-in card ROMs is explicitly excluded.

Support for UEFI drivers to be located on add-in card type devices for future bus designs other than
PCI local bus will be added to future revisions of the uEFI specification. This support will depend
upon the specifications that govern such new bus designs with respect to the mechanisms defined
for support of driver code on devices.

 January 31, 2006
846 Version 2.0

January 31, 2006
Version 2.0 847

20
Network Protocols — SNP, PXE and BIS

20.1 EFI_SIMPLE_NETWORK_PROTOCOL

This section defines the Simple Network Protocol. This protocol provides a packet level interface to
a network adapter.

EFI_SIMPLE_NETWORK_PROTOCOL

Summary

The EFI_SIMPLE_NETWORK_PROTOCOL provides services to initialize a network interface,
transmit packets, receive packets, and close a network interface.

GUID
#define EFI_SIMPLE_NETWORK_PROTOCOL_GUID \

{0xA19832B9,0xAC25,0x11D3,0x9A2D,0x00,0x90,0x27,0x3f,0xc1,
 0x4d}

Revision Number
#define EFI_SIMPLE_NETWORK_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_SIMPLE_NETWORK_PROTOCOL_ {
 UINT64 Revision;
 EFI_SIMPLE_NETWORK_START Start;
 EFI_SIMPLE_NETWORK_STOP Stop;
 EFI_SIMPLE_NETWORK_INITIALIZE Initialize;
 EFI_SIMPLE_NETWORK_RESET Reset;
 EFI_SIMPLE_NETWORK_SHUTDOWN Shutdown;
 EFI_SIMPLE_NETWORK_RECEIVE_FILTERS ReceiveFilters;
 EFI_SIMPLE_NETWORK_STATION_ADDRESS StationAddress;
 EFI_SIMPLE_NETWORK_STATISTICS Statistics;
 EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC MCastIpToMac;
 EFI_SIMPLE_NETWORK_NVDATA NvData;
 EFI_SIMPLE_NETWORK_GET_STATUS GetStatus;
 EFI_SIMPLE_NETWORK_TRANSMIT Transmit;
 EFI_SIMPLE_NETWORK_RECEIVE Receive;
 EFI_EVENT WaitForPacket;
 EFI_SIMPLE_NETWORK_MODE *Mode;
} EFI_SIMPLE_NETWORK_PROTOCOL;

 January 31, 2006
848 Version 2.0

Parameters
Revision Revision of the EFI_SIMPLE_NETWORK_PROTOCOL. All future

revisions must be backwards compatible. If a future version is not
backwards compatible it is not the same GUID.

Start Prepares the network interface for further command operations. No other
EFI_SIMPLE_NETWORK_PROTOCOL interface functions will operate
until this call is made. See the Start() function description.

Stop Stops further network interface command processing. No other
EFI_SIMPLE_NETWORK_PROTOCOL interface functions will operate
after this call is made until another Start() call is made. See the
Stop() function description.

Initialize Resets the network adapter and allocates the transmit and receive buffers.
See the Initialize() function description.

Reset Resets the network adapter and reinitializes it with the parameters
provided in the previous call to Initialize(). See the Reset()
function description.

Shutdown Resets the network adapter and leaves it in a state safe for another driver
to initialize. The memory buffers assigned in the Initialize() call
are released. After this call, only the Initialize() or Stop() calls
may be used. See the Shutdown() function description.

ReceiveFilters Enables and disables the receive filters for the network interface and, if
supported, manages the filtered multicast HW MAC (Hardware Media
Access Control) address list. See the ReceiveFilters() function
description.

StationAddress Modifies or resets the current station address, if supported. See the
StationAddress() function description.

Statistics Collects statistics from the network interface and allows the statistics to
be reset. See the Statistics() function description.

MCastIpToMac Maps a multicast IP address to a multicast HW MAC address. See the
MCastIpToMac() function description.

NvData Reads and writes the contents of the NVRAM devices attached to the
network interface. See the NvData() function description.

GetStatus Reads the current interrupt status and the list of recycled transmit buffers
from the network interface. See the GetStatus() function
description.

Transmit Places a packet in the transmit queue. See the Transmit() function
description.

Receive Retrieves a packet from the receive queue, along with the status flags
that describe the packet type. See the Receive() function description.

WaitForPacket Event used with WaitForEvent() to wait for a packet to be received.

January 31, 2006
Version 2.0 849

Mode Pointer to the EFI_SIMPLE_NETWORK_MODE data for the device. See
“Related Definitions” below.

Related Definitions

//***
// EFI_SIMPLE_NETWORK_MODE
//
// Note that the fields in this data structure are read-only and
// are updated by the code that produces the
EFI_SIMPLE_NETWORK_PROTOCOL
// functions. All these fields must be discovered
// during driver initialization.
//***
typedef struct {

UINT32 State;
UINT32 HwAddressSize;
UINT32 MediaHeaderSize;
UINT32 MaxPacketSize;
UINT32 NvRamSize;
UINT32 NvRamAccessSize;
UINT32 ReceiveFilterMask;
UINT32 ReceiveFilterSetting;
UINT32 MaxMCastFilterCount;
UINT32 MCastFilterCount;
EFI_MAC_ADDRESS MCastFilter[MAX_MCAST_FILTER_CNT];
EFI_MAC_ADDRESS CurrentAddress;
EFI_MAC_ADDRESS BroadcastAddress;
EFI_MAC_ADDRESS PermanentAddress;
UINT8 IfType;
BOOLEAN MacAddressChangeable;
BOOLEAN MultipleTxSupported;
BOOLEAN MediaPresentSupported;
BOOLEAN MediaPresent;

} EFI_SIMPLE_NETWORK_MODE;

State Reports the current state of the network interface (see
EFI_SIMPLE_NETWORK_STATE below). When an
EFI_SIMPLE_NETWORK_PROTOCOL driver initializes a
network interface, the network interface is left in the
EfiSimpleNetworkStopped state.

HwAddressSize The size, in bytes, of the network interface’s HW address.

MediaHeaderSize The size, in bytes, of the network interface’s media header.

MaxPacketSize The maximum size, in bytes, of the packets supported by the
network interface.

 January 31, 2006
850 Version 2.0

NvRamSize The size, in bytes, of the NVRAM device attached to the
network interface. If an NVRAM device is not attached to the
network interface, then this field will be zero. This value must be
a multiple of NvramAccessSize.

NvRamAccessSize The size that must be used for all NVRAM reads and writes. The
start address for NVRAM read and write operations and the total
length of those operations, must be a multiple of this value. The
legal values for this field are 0, 1, 2, 4, and 8. If the value is zero,
then no NVRAM devices are attached to the network interface.

ReceiveFilterMask The multicast receive filter settings supported by the network
interface.

ReceiveFilterSetting The current multicast receive filter settings. See “Bit Mask
Values for ReceiveFilterSetting” below.

MaxMCastFilterCount The maximum number of multicast address receive filters
supported by the driver. If this value is zero, then
ReceiveFilters() cannot modify the multicast address receive
filters. This field may be less than MAX_MCAST_FILTER_CNT
(see below).

MCastFilterCount The current number of multicast address receive filters.

MCastFilter Array containing the addresses of the current multicast address
receive filters.

CurrentAddress The current HW MAC address for the network interface.

BroadcastAddress The current HW MAC address for broadcast packets.

PermanentAddress The permanent HW MAC address for the network interface.

IfType The interface type of the network interface. See RFC 1700,
section “Number Hardware Type.”

MacAddressChangeable TRUE if the HW MAC address can be changed.

MultipleTxSupported TRUE if the network interface can transmit more than one packet
at a time.

MediaPresentSupported TRUE if the presence of media can be determined; otherwise
FALSE. If FALSE, MediaPresent cannot be used.

MediaPresent TRUE if media are connected to the network interface; otherwise
FALSE. This field is only valid immediately after calling
Initialize().

//***
// EFI_SIMPLE_NETWORK_STATE
//***
typedef enum {

January 31, 2006
Version 2.0 851

EfiSimpleNetworkStopped,
EfiSimpleNetworkStarted,
EfiSimpleNetworkInitialized,
EfiSimpleNetworkMaxState

} EFI_SIMPLE_NETWORK_STATE;

//***
// MAX_MCAST_FILTER_CNT
//***
#define MAX_MCAST_FILTER_CNT 16

//***
// Bit Mask Values for ReceiveFilterSetting. bit mask values
//
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_UNICAST 0x01
#define EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST 0x02
#define EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST 0x04
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS 0x08
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST 0x10

Description

The EFI_SIMPLE_NETWORK_PROTOCOL protocol is used to initialize access to a network
adapter. Once the network adapter initializes, the EFI_SIMPLE_NETWORK_PROTOCOL protocol
provides services that allow packets to be transmitted and received. This provides a packet level
interface that can then be used by higher level drivers to produce boot services like DHCP, TFTP,
and MTFTP. In addition, this protocol can be used as a building block in a full UDP and TCP/IP
implementation that can produce a wide variety of application level network interfaces. See the
Preboot Execution Environment (PXE) Specification for more information.

Implementation Note

The underlying network hardware may only be able to access 4 GB (32-bits) of system memory.
Any requests to transfer data to/from memory above 4 GB with 32-bit network hardware will be
double-buffered (using intermediate buffers below 4 GB) and will reduce performance.

 January 31, 2006
852 Version 2.0

EFI_SIMPLE_NETWORK.Start()

Summary

Changes the state of a network interface from “stopped” to “started.”

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_START) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

Description

This function starts a network interface. If the network interface successfully starts, then
EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was started.

EFI_ALREADY_STARTED The network interface is already in the started state.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

January 31, 2006
Version 2.0 853

EFI_SIMPLE_NETWORK.Stop()

Summary

Changes the state of a network interface from “started” to “stopped.”

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STOP) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

Description

This function stops a network interface. This call is only valid if the network interface is in
the started state. If the network interface was successfully stopped, then EFI_SUCCESS will
be returned.

Status Codes Returned
EFI_SUCCESS The network interface was stopped.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 January 31, 2006
854 Version 2.0

EFI_SIMPLE_NETWORK.Initialize()

Summary

Resets a network adapter and allocates the transmit and receive buffers required by the network
interface; optionally, also requests allocation of additional transmit and receive buffers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_INITIALIZE) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN UINTN ExtraRxBufferSize OPTIONAL,
 IN UINTN ExtraTxBufferSize OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

ExtraRxBufferSize The size, in bytes, of the extra receive buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

ExtraTxBufferSize The size, in bytes, of the extra transmit buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

Description

This function allocates the transmit and receive buffers required by the network interface. If this
allocation fails, then EFI_OUT_OF_RESOURCES is returned. If the allocation succeeds and the
network interface is successfully initialized, then EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was initialized.

EFI_NOT_STARTED The network interface has not been started.

EFI_OUT_OF_RESOURCES There was not enough memory for the transmit and receive buffers.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED The increased buffer size feature is not supported.

January 31, 2006
Version 2.0 855

EFI_SIMPLE_NETWORK.Reset()

Summary

Resets a network adapter and reinitializes it with the parameters that were provided in the previous
call to Initialize().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RESET) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

This function resets a network adapter and reinitializes it with the parameters that were provided in
the previous call to Initialize(). The transmit and receive queues are emptied and all pending
interrupts are cleared. Receive filters, the station address, the statistics, and the multicast-IP-to-HW
MAC addresses are not reset by this call. If the network interface was successfully reset, then
EFI_SUCCESS will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will
be returned.

Status Codes Returned
EFI_SUCCESS The network interface was reset.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

 January 31, 2006
856 Version 2.0

EFI_SIMPLE_NETWORK.Shutdown()

Summary

Resets a network adapter and leaves it in a state that is safe for another driver to initialize.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_SHUTDOWN) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

Description

This function releases the memory buffers assigned in the Initialize() call. Pending transmits
and receives are lost, and interrupts are cleared and disabled. After this call, only the
Initialize() and Stop() calls may be used. If the network interface was successfully
shutdown, then EFI_SUCCESS will be returned. If the driver has not been initialized,
EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was shutdown.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

January 31, 2006
Version 2.0 857

EFI_SIMPLE_NETWORK.ReceiveFilters()

Summary
Manages the multicast receive filters of a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE_FILTERS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN UINT32 Enable,
 IN UINT32 Disable,
 IN BOOLEAN ResetMCastFilter,
 IN UINTN MCastFilterCnt OPTIONAL,
 IN EFI_MAC_ADDRESS *MCastFilter OPTIONAL,
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

Enable A bit mask of receive filters to enable on the network interface.

Disable A bit mask of receive filters to disable on the network interface.
For backward compatibility with EFI 1.1 platforms, the
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST bit must
be set when the ResetMCastFilter parameter is TRUE.

ResetMCastFilter Set to TRUE to reset the contents of the multicast receive filters
on the network interface to their default values.

MCastFilterCnt Number of multicast HW MAC addresses in the new
MCastFilter list. This value must be less than or equal to the
MCastFilterCnt field of EFI_SIMPLE_NETWORK_MODE.
This field is optional if ResetMCastFilter is TRUE.

MCastFilter A pointer to a list of new multicast receive filter HW MAC
addresses. This list will replace any existing multicast HW MAC
address list. This field is optional if ResetMCastFilter is
TRUE.

Description
This function is used enable and disable the hardware and software receive filters for the underlying
network device.

The receive filter change is broken down into three steps:

• The filter mask bits that are set (ON) in the Enable parameter are added to the current receive
filter settings.

 January 31, 2006
858 Version 2.0

• The filter mask bits that are set (ON) in the Disable parameter are subtracted from the updated
receive filter settings.

• If the resulting receive filter setting is not supported by the hardware a more liberal setting is
selected.

If the same bits are set in the Enable and Disable parameters, then the bits in the Disable parameter
takes precedence.

If the ResetMCastFilter parameter is TRUE, then the multicast address list filter is disabled
(irregardless of what other multicast bits are set in the Enable and Disable parameters). The SNP-
>Mode->MCastFilterCount field is set to zero. The Snp->Mode->MCastFilter contents are
undefined.

After enabling or disabling receive filter settings, software should verify the new settings by
checking the Snp->Mode->ReceiveFilterSettings, Snp->Mode->MCastFilterCount and Snp-
>Mode->MCastFilter fields.

Note: Some network drivers and/or devices will automatically promote receive filter
settings if the requested setting can not be honored. For example, if a request for four
multicast addresses is made and the underlying hardware only supports two multicast
addresses the driver might set the promiscuous or promiscuous multicast receive
filters instead. The receiving software is responsible for discarding any extra packets
that get through the hardware receive filters.

Note: To disable all receive filter hardware, the network driver must be Shutdown()
and Stopped(). Calling ReceiveFilters() with Disable set to Snp->Mode-
>ReceiveFilterSettings will make it so no more packets are returned by the Receive()
function, but the receive hardware may still be moving packets into system memory
before inspecting and discarding them. Unexpected system errors, reboots and hangs
can occur if an OS is loaded and the network devices are not Shutdown() and
Stopped().

January 31, 2006
Version 2.0 859

If ResetMCastFilter is TRUE, then the multicast receive filter list on the network interface
will be reset to the default multicast receive filter list. If ResetMCastFilter is FALSE, and this
network interface allows the multicast receive filter list to be modified, then the
MCastFilterCnt and MCastFilter are used to update the current multicast receive filter list.
The modified receive filter list settings can be found in the MCastFilter field of
EFI_SIMPLE_NETWORK_MODE. If the network interface does not allow the multicast receive
filter list to be modified, then EFI_INVALID_PARAMETER will be returned. If the driver has not
been initialized, EFI_DEVICE_ERROR will be returned.

If the receive filter mask and multicast receive filter list have been successfully updated on the
network interface, EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The multicast receive filter list was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER • One or more of the following conditions is TRUE:

• This is NULL

• There are bits set in Enable that are not set in Snp->Mode-
>ReceiveFilterMask

• There are bits set in Disable that are not set in Snp->Mode-
>ReceiveFilterMask

• Multicast is being enabled (the
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST bit is set in
Enable, it is not set in Disable, and ResetMCastFilter is FALSE)
and MCastFilterCount is zero

• Multicast is being enabled and MCastFilterCount is greater than
Snp->Mode->MaxMCastFilterCount

• Multicast is being enabled and MCastFilter is NULL

• Multicast is being enabled and one or more of the addresses in
the MCastFilter list are not valid multicast MAC addresses

EFI_DEVICE_ERROR • One or more of the following conditions is TRUE:

• The network interface has been started but has not been
initialized

• An unexpected error was returned by the underlying network
driver or device

EFI_UNSUPPORTED This function is not supported by the network interface.

 January 31, 2006
860 Version 2.0

EFI_SIMPLE_NETWORK.StationAddress()

Summary

Modifies or resets the current station address, if supported.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATION_ADDRESS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN Reset,
 IN EFI_MAC_ADDRESS *New OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

Reset Flag used to reset the station address to the network interface’s
permanent address.

New New station address to be used for the network interface.

Description

This function modifies or resets the current station address of a network interface, if supported. If
Reset is TRUE, then the current station address is set to the network interface’s permanent
address. If Reset is FALSE, and the network interface allows its station address to be modified,
then the current station address is changed to the address specified by New. If the network interface
does not allow its station address to be modified, then EFI_INVALID_PARAMETER will be
returned. If the station address is successfully updated on the network interface, EFI_SUCCESS
will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The Simple Network Protocol interface has not been started by
calling Start().

EFI_INVALID_PARAMETER The New station address was not accepted by the NIC.

EFI_INVALID_PARAMETER Reset is FALSE and New is NULL.

EFI_DEVICE_ERROR The Simple Network Protocol interface has not been initialized by
calling Initialize().

EFI_DEVICE_ERROR An error occurred attempting to set the new station address.

EFI_UNSUPPORTED The NIC does not support changing the network interface’s station
address.

January 31, 2006
Version 2.0 861

EFI_SIMPLE_NETWORK.Statistics()

Summary

Resets or collects the statistics on a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATISTICS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN Reset,
 IN OUT UINTN *StatisticsSize OPTIONAL,
 OUT EFI_NETWORK_STATISTICS *StatisticsTable OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

Reset Set to TRUE to reset the statistics for the network interface.

StatisticsSize On input the size, in bytes, of StatisticsTable. On output
the size, in bytes, of the resulting table of statistics.

StatisticsTable A pointer to the EFI_NETWORK_STATISTICS structure that
contains the statistics. Type EFI_NETWORK_STATISTICS is
defined in “Related Definitions” below.

Related Definitions

//***
// EFI_NETWORK_STATISTICS
//
// Any statistic value that is –1 is not available
// on the device and is to be ignored.
//***
typedef struct {
 UINT64 RxTotalFrames;
 UINT64 RxGoodFrames;
 UINT64 RxUndersizeFrames;
 UINT64 RxOversizeFrames;

UINT64 RxDroppedFrames;
UINT64 RxUnicastFrames;

 UINT64 RxBroadcastFrames;
 UINT64 RxMulticastFrames;

UINT64 RxCrcErrorFrames;

 January 31, 2006
862 Version 2.0

UINT64 RxTotalBytes;
 UINT64 TxTotalFrames;
 UINT64 TxGoodFrames;
 UINT64 TxUndersizeFrames;
 UINT64 TxOversizeFrames;
 UINT64 TxDroppedFrames;
 UINT64 TxUnicastFrames;
 UINT64 TxBroadcastFrames;
 UINT64 TxMulticastFrames;
 UINT64 TxCrcErrorFrames;
 UINT64 TxTotalBytes;
 UINT64 Collisions;
 UINT64 UnsupportedProtocol;
} EFI_NETWORK_STATISTICS;

RxTotalFrames Total number of frames received. Includes frames with errors
and dropped frames.

RxGoodFrames Number of valid frames received and copied into receive buffers.

RxUndersizeFrames Number of frames below the minimum length for the
communications device.

RxOversizeFrames Number of frames longer than the maximum length for the
communications device.

RxDroppedFrames Valid frames that were dropped because receive buffers
were full.

RxUnicastFrames Number of valid unicast frames received and not dropped.

RxBroadcastFrames Number of valid broadcast frames received and not dropped.

RxMulticastFrames Number of valid multicast frames received and not dropped.

RxCrcErrorFrames Number of frames with CRC or alignment errors.

RxTotalBytes Total number of bytes received. Includes frames with errors and
dropped frames.

TxTotalFrames Total number of frames transmitted. Includes frames with errors
and dropped frames.

TxGoodFrames Number of valid frames transmitted and copied into receive
buffers.

TxUndersizeFrames Number of frames below the minimum length for the media.
This would be less than 64 for Ethernet.

TxOversizeFrames Number of frames longer than the maximum length for the
media. This would be greater than 1500 for Ethernet.

TxDroppedFrames Valid frames that were dropped because receive buffers
were full.

January 31, 2006
Version 2.0 863

TxUnicastFrames Number of valid unicast frames transmitted and not dropped.

TxBroadcastFrames Number of valid broadcast frames transmitted and not dropped.

TxMulticastFrames Number of valid multicast frames transmitted and not dropped.

TxCrcErrorFrames Number of frames with CRC or alignment errors.

TxTotalBytes Total number of bytes transmitted. Includes frames with errors
and dropped frames.

Collisions Number of collisions detected on this subnet.

UnsupportedProtocol Number of frames destined for unsupported protocol.

Description

This function resets or collects the statistics on a network interface. If the size of the statistics table
specified by StatisticsSize is not big enough for all the statistics that are collected by the
network interface, then a partial buffer of statistics is returned in StatisticsTable,
StatisticsSize is set to the size required to collect all the available statistics, and
EFI_BUFFER_TOO_SMALL is returned.

If StatisticsSize is big enough for all the statistics, then StatisticsTable will be filled,
StatisticsSize will be set to the size of the returned StatisticsTable structure, and
EFI_SUCCESS is returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be
returned.

If Reset is FALSE, and both StatisticsSize and StatisticsTable are NULL, then no
operations will be performed, and EFI_SUCCESS will be returned.

If Reset is TRUE, then all of the supported statistics counters on this network interface will be
reset to zero.

Status Codes Returned
EFI_SUCCESS The requested operation succeeded.

EFI_NOT_STARTED The Simple Network Protocol interface has not been started by
calling Start().

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is
NULL. The current buffer size that is needed to hold all the statistics
is returned in StatisticsSize.

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is
not NULL. The current buffer size that is needed to hold all the
statistics is returned in StatisticsSize. A partial set of
statistics is returned in StatisticsTable.

EFI_INVALID_PARAMETER StatisticsSize is NULL and StatisticsTable is not
NULL.

EFI_DEVICE_ERROR The Simple Network Protocol interface has not been initialized by
calling Initialize().

EFI_DEVICE_ERROR An error was encountered collecting statistics from the NIC.

EFI_UNSUPPORTED The NIC does not support collecting statistics from the network
interface.

 January 31, 2006
864 Version 2.0

EFI_SIMPLE_NETWORK.MCastIPtoMAC()

Summary

Converts a multicast IP address to a multicast HW MAC address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN IPv6,
 IN EFI_IP_ADDRESS *IP,
 OUT EFI_MAC_ADDRESS *MAC
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

IPv6 Set to TRUE if the multicast IP address is IPv6 [RFC 2460]. Set
to FALSE if the multicast IP address is IPv4 [RFC 791].

IP The multicast IP address that is to be converted to a multicast
HW MAC address.

MAC The multicast HW MAC address that is to be generated from IP.

Description

This function converts a multicast IP address to a multicast HW MAC address for all packet
transactions. If the mapping is accepted, then EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC

address.

EFI_NOT_STARTED The Simple Network Protocol interface has not been started by
calling Start().

EFI_INVALID_PARAMETER IP is NULL.

EFI_INVALID_PARAMETER MAC is NULL.

EFI_INVALID_PARAMETER IP does not point to a valid IPv4 or IPv6 multicast address.

EFI_DEVICE_ERROR The Simple Network Protocol interface has not been initialized by
calling Initialize().

EFI_UNSUPPORTED IPv6 is TRUE and the implementation does not support IPv6

multicast to MAC address conversion.

January 31, 2006
Version 2.0 865

EFI_SIMPLE_NETWORK.NvData()

Summary

Performs read and write operations on the NVRAM device attached to a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_NVDATA) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
 IN BOOLEAN ReadWrite,
 IN UINTN Offset,
 IN UINTN BufferSize,
 IN OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

ReadWrite TRUE for read operations, FALSE for write operations.

Offset Byte offset in the NVRAM device at which to start the read or
write operation. This must be a multiple of
NvRamAccessSize and less than NvRamSize. (See
EFI_SIMPLE_NETWORK_MODE)

BufferSize The number of bytes to read or write from the NVRAM device.
This must also be a multiple of NvramAccessSize.

Buffer A pointer to the data buffer.

Description

This function performs read and write operations on the NVRAM device attached to a network
interface. If ReadWrite is TRUE, a read operation is performed. If ReadWrite is FALSE, a
write operation is performed.

Offset specifies the byte offset at which to start either operation. Offset must be a multiple of
NvRamAccessSize , and it must have a value between zero and NvRamSize.

BufferSize specifies the length of the read or write operation. BufferSize must also be a
multiple of NvRamAccessSize, and Offset + BufferSize must not exceed NvRamSize.

If any of the above conditions is not met, then EFI_INVALID_PARAMETER will be returned.

 January 31, 2006
866 Version 2.0

If all the conditions are met and the operation is “read,” the NVRAM device attached to the
network interface will be read into Buffer and EFI_SUCCESS will be returned. If this is a write
operation, the contents of Buffer will be used to update the contents of the NVRAM device
attached to the network interface and EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The NVRAM access was performed.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• The This parameter is NULL

• The This parameter does not point to a valid
EFI_SIMPLE_NETWORK_PROTOCOL structure

• The Offset parameter is not a multiple of
EFI_SIMPLE_NETWORK_MODE.NvRamAccessSize

• The Offset parameter is not less than
EFI_SIMPLE_NETWORK_MODE.NvRamSize

• The BufferSize parameter is not a multiple of
EFI_SIMPLE_NETWORK_MODE.NvRamAccessSize

The Buffer parameter is NULL

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

January 31, 2006
Version 2.0 867

EFI_SIMPLE_NETWORK.GetStatus()

Summary

Reads the current interrupt status and recycled transmit buffer status from a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_GET_STATUS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 OUT UINT32 *InterruptStatus OPTIONAL,
 OUT VOID **TxBuf OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

InterruptStatus A pointer to the bit mask of the currently active interrupts (see
“Related Definitions”). If this is NULL, the interrupt status will
not be read from the device. If this is not NULL, the interrupt
status will be read from the device. When the interrupt status is
read, it will also be cleared. Clearing the transmit interrupt does
not empty the recycled transmit buffer array.

TxBuf Recycled transmit buffer address. The network interface will not
transmit if its internal recycled transmit buffer array is full.
Reading the transmit buffer does not clear the transmit interrupt.
If this is NULL, then the transmit buffer status will not be read. If
there are no transmit buffers to recycle and TxBuf is not NULL,
* TxBuf will be set to NULL.

Related Definitions
//***
// Interrupt Bit Mask Settings for InterruptStatus.
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_INTERRUPT 0x01
#define EFI_SIMPLE_NETWORK_TRANSMIT_INTERRUPT 0x02
#define EFI_SIMPLE_NETWORK_COMMAND_INTERRUPT 0x04
#define EFI_SIMPLE_NETWORK_SOFTWARE_INTERRUPT 0x08

 January 31, 2006
868 Version 2.0

Description

This function gets the current interrupt and recycled transmit buffer status from the network
interface. The interrupt status is returned as a bit mask in InterruptStatus. If
InterruptStatus is NULL, the interrupt status will not be read. If TxBuf is not NULL, a
recycled transmit buffer address will be retrieved. If a recycled transmit buffer address is returned
in TxBuf, then the buffer has been successfully transmitted, and the status for that buffer is
cleared. If the status of the network interface is successfully collected, EFI_SUCCESS will be
returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The status of the network interface was retrieved.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

January 31, 2006
Version 2.0 869

EFI_SIMPLE_NETWORK.Transmit()

Summary

Places a packet in the transmit queue of a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_TRANSMIT) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
 IN UINTN HeaderSize,

IN UINTN BufferSize,
 IN VOID *Buffer,
 IN EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
 IN EFI_MAC_ADDRESS *DestAddr OPTIONAL,
 IN UINT16 *Protocol OPTIONAL,
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

HeaderSize The size, in bytes, of the media header to be filled in by the
Transmit() function. If HeaderSize is nonzero, then it
must be equal to This->Mode->MediaHeaderSize and
the DestAddr and Protocol parameters must not be NULL.

BufferSize The size, in bytes, of the entire packet (media header and data) to
be transmitted through the network interface.

Buffer A pointer to the packet (media header followed by data) to be
transmitted. This parameter cannot be NULL. If HeaderSize is
zero, then the media header in Buffer must already be filled in
by the caller. If HeaderSize is nonzero, then the media header
will be filled in by the Transmit() function.

SrcAddr The source HW MAC address. If HeaderSize is zero, then
this parameter is ignored. If HeaderSize is nonzero and
SrcAddr is NULL, then This->Mode->CurrentAddress
is used for the source HW MAC address.

DestAddr The destination HW MAC address. If HeaderSize is zero,
then this parameter is ignored.

Protocol The type of header to build. If HeaderSize is zero, then this
parameter is ignored. See RFC 1700, section “Ether Types,”
for examples.

 January 31, 2006
870 Version 2.0

Description

This function places the packet specified by Header and Buffer on the transmit queue. If
HeaderSize is nonzero and HeaderSize is not equal to
This->Mode->MediaHeaderSize, then EFI_INVALID_PARAMETER will be returned. If
BufferSize is less than This->Mode->MediaHeaderSize, then
EFI_BUFFER_TOO_SMALL will be returned. If Buffer is NULL, then
EFI_INVALID_PARAMETER will be returned. If HeaderSize is nonzero and DestAddr or
Protocol is NULL, then EFI_INVALID_PARAMETER will be returned. If the transmit engine
of the network interface is busy, then EFI_NOT_READY will be returned. If this packet can be
accepted by the transmit engine of the network interface, the packet contents specified by Buffer
will be placed on the transmit queue of the network interface, and EFI_SUCCESS will be returned.
GetStatus() can be used to determine when the packet has actually been transmitted. The
contents of the Buffer must not be modified until the packet has actually been transmitted.

The Transmit() function performs nonblocking I/O. A caller who wants to perform blocking
I/O, should call Transmit(), and then GetStatus() until the transmitted buffer shows up in
the recycled transmit buffer.

If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The packet was placed on the transmit queue.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY The network interface is too busy to accept this transmit request.

EFI_BUFFER_TOO_SMALL The BufferSize parameter is too small.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

January 31, 2006
Version 2.0 871

EFI_SIMPLE_NETWORK.Receive()

Summary

Receives a packet from a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
 OUT UINTN *HeaderSize OPTIONAL,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 OUT EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
 OUT EFI_MAC_ADDRESS *DestAddr OPTIONAL,
 OUT UINT16 *Protocol OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL
instance.

HeaderSize The size, in bytes, of the media header received on the network
interface. If this parameter is NULL, then the media header size
will not be returned.

BufferSize On entry, the size, in bytes, of Buffer. On exit, the size, in
bytes, of the packet that was received on the network interface.

Buffer A pointer to the data buffer to receive both the media header and
the data.

SrcAddr The source HW MAC address. If this parameter is NULL, the
HW MAC source address will not be extracted from the media
header.

DestAddr The destination HW MAC address. If this parameter is NULL,
the HW MAC destination address will not be extracted from the
media header.

Protocol The media header type. If this parameter is NULL, then the
protocol will not be extracted from the media header. See
RFC 1700 section “Ether Types” for examples.

 January 31, 2006
872 Version 2.0

Description

This function retrieves one packet from the receive queue of a network interface. If there are no
packets on the receive queue, then EFI_NOT_READY will be returned. If there is a packet on the
receive queue, and the size of the packet is smaller than BufferSize, then the contents of the
packet will be placed in Buffer, and BufferSize will be updated with the actual size of the
packet. In addition, if SrcAddr, DestAddr, and Protocol are not NULL, then these values
will be extracted from the media header and returned. EFI_SUCCESS will be returned if a packet
was successfully received. If BufferSize is smaller than the received packet, then the size of the
receive packet will be placed in BufferSize and EFI_BUFFER_TOO_SMALL will be returned.
If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The received data was stored in Buffer, and BufferSize

has been updated to the number of bytes received.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY No packets have been received on the network interface.

EFI_BUFFER_TOO_SMALL BufferSize is too small for the received packets.
BufferSize has been updated to the required size.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• The This parameter is NULL

• The This parameter does not point to a valid
EFI_SIMPLE_NETWORK_PROTOCOL structure.

• The BufferSize parameter is NULL
• The Buffer parameter is NULL

EFI_DEVICE_ERROR The command could not be sent to the network interface.

January 31, 2006
Version 2.0 873

20.2 Network Interface Identifier Protocol

This is an optional protocol that is used to describe details about the software layer that is used to
produce the Simple Network Protocol. This protocol is only required if the underlying network
interface is 16-bit UNDI, 32/64-bit S/W UNDI, or H/W UNDI. It is used to obtain type and revision
information about the underlying network interface.

An instance of the Network Interface Identifier protocol must be created for each physical external
network interface that is controlled by the !PXE structure. The !PXE structure is defined in the
32/64-bit UNDI Specification in Appendix E.

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

Summary

An optional protocol that is used to describe details about the software layer that is used to produce
the Simple Network Protocol.

GUID
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID \

{0xE18541CD,0xF755,0x4f73,0x928D,0x64,0x3C,0x8A,0x79,0xB2,
0x29}

Revision Number
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_REVISION \

0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
UINT64 Id;
UINT64 ImageAddr;
UINT32 ImageSize;
CHAR8 StringId[4];
UINT8 Type;
UINT8 MajorVer;
UINT8 MinorVer;
BOOLEAN Ipv6Supported;
UINT8 IfNum;

} EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL;

 January 31, 2006
874 Version 2.0

Parameters
Revision The revision of the EFI_NETWORK_INTERFACE_IDENTIFIER

protocol.

Id Address of the first byte of the identifying structure for this network
interface. This is only valid when the network interface is started (see
EFI_SIMPLE_NETWORK_PROTOCOL.Start()). When the network
interface is not started, this field is set to zero.

16-bit UNDI and 32/64-bit S/W UNDI:

Id contains the address of the first byte of the copy of the !PXE
structure in the relocated UNDI code segment. See the Preboot
Execution Environment (PXE) Specification and Appendix E.

H/W UNDI:

Id contains the address of the !PXE structure.

ImageAddr Address of the unrelocated network interface image.

16-bit UNDI:

ImageAddr is the address of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageAddr is the address of the unrelocated S/W UNDI image.

H/W UNDI:

 ImageAddr contains zero.

ImageSize Size of unrelocated network interface image.

16-bit UNDI:

ImageSize is the size of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageSize is the size of the unrelocated S/W UNDI image.

H/W UNDI:

ImageSize contains zero.

StringId A four-character ASCII string that is sent in the class identifier field of
option 60 in DHCP. For a Type of EfiNetworkInterfaceUndi,
this field is “UNDI.”

January 31, 2006
Version 2.0 875

Type Network interface type. This will be set to one of the values in
EFI_NETWORK_INTERFACE_TYPE (see “Related Definitions”
below).

MajorVer Major version number.

16-bit UNDI:

MajorVer comes from the third byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MajorVer comes from the Major field in the !PXE structure. See
Appendix E.

MinorVer Minor version number.

16-bit UNDI:

MinorVer comes from the second byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MinorVer comes from the Minor field in the !PXE structure. See
Appendix E.

Ipv6Supported TRUE if the network interface supports IPv6; otherwise FALSE.

IfNum The network interface number that is being identified by this Network
Interface Identifier Protocol. This field must be less than or equal to the
IFcnt field in the !PXE structure.

Related Definitions

//***
// EFI_NETWORK_INTERFACE_TYPE
//***
typedef enum {

EfiNetworkInterfaceUndi = 1
} EFI_NETWORK_INTERFACE_TYPE;

Description

The EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL is used by
EFI_PXE_BASE_CODE_PROTOCOL and OS loaders to identify the type of the underlying
network interface and to locate its initial entry point.

 January 31, 2006
876 Version 2.0

20.3 PXE Base Code Protocol

This section defines the Preboot Execution Environment (PXE) Base Code protocol, which is used
to access PXE-compatible devices for network access and network booting. More information
about PXE can be found in the Preboot Execution Environment (PXE) Specification at:
ftp://download.intel.com/ial/wfm/pxespec.pdf.

EFI_PXE_BASE_CODE_PROTOCOL

Summary

The EFI_PXE_BASE_CODE_PROTOCOL is used to control PXE-compatible devices. The
features of these devices are defined in the Preboot Execution Environment (PXE) Specification.
An EFI_PXE_BASE_CODE_PROTOCOL will be layered on top of an
EFI_SIMPLE_NETWORK_PROTOCOL protocol in order to perform packet level transactions. The
EFI_PXE_BASE_CODE_PROTOCOL handle also supports the LOAD_FILE protocol. This
provides a clean way to obtain control from the boot manager if the boot path is from the remote
device.

GUID
#define EFI_PXE_BASE_CODE_PROTOCOL_GUID \

{0x03C4E603,0xAC28,0x11d3,0x9A2D,0x00,0x90,0x27,0x3F,0xC1,
0x4D}

Revision Number
#define EFI_PXE_BASE_CODE_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
EFI_PXE_BASE_CODE_START Start;
EFI_PXE_BASE_CODE_STOP Stop;
EFI_PXE_BASE_CODE_DHCP Dhcp;
EFI_PXE_BASE_CODE_DISCOVER Discover;
EFI_PXE_BASE_CODE_MTFTP Mtftp;
EFI_PXE_BASE_CODE_UDP_WRITE UdpWrite;
EFI_PXE_BASE_CODE_UDP_READ UdpRead;
EFI_PXE_BASE_CODE_SET_IP_FILTER SetIpFilter;
EFI_PXE_BASE_CODE_ARP Arp;
EFI_PXE_BASE_CODE_SET_PARAMETERS SetParameters;
EFI_PXE_BASE_CODE_SET_STATION_IP SetStationIp;
EFI_PXE_BASE_CODE_SET_PACKETS SetPackets;
EFI_PXE_BASE_CODE_MODE *Mode;

} EFI_PXE_BASE_CODE_PROTOCOL;

ftp://download.intel.com/ial/wfm/pxespec.pdf

January 31, 2006
Version 2.0 877

Parameters

Revision The revision of the EFI_PXE_BASE_CODE_PROTOCOL. All
future revisions must be backwards compatible. If a future
version is not backwards compatible it is not the same GUID.

Start Starts the PXE Base Code Protocol. Mode structure information
is not valid and no other Base Code Protocol functions will
operate until the Base Code is started. See the Start()
function description.

Stop Stops the PXE Base Code Protocol. Mode structure information
is unchanged by this function. No Base Code Protocol functions
will operate until the Base Code is restarted. See the Stop()
function description.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover / offer /
request / acknowledge) or DHCPv6 S.A.R.R (solicit / advertise /
request / reply) sequence. See the Dhcp() function description.

Discover Attempts to complete the PXE Boot Server and/or boot image
discovery sequence. See the Discover() function description.

Mtftp Performs TFTP and MTFTP services. See the Mtftp()
function description.

UdpWrite Writes a UDP packet to the network interface. See the
UdpWrite() function description.

UdpRead Reads a UDP packet from the network interface. See the
UdpRead() function description.

SetIpFilter Updates the IP receive filters of the network device. See the
SetIpFilter() function description.

Arp Uses the ARP protocol to resolve a MAC address. See the
Arp() function description.

SetParameters Updates the parameters that affect the operation of the PXE Base
Code Protocol. See the SetParameters() function
description.

SetStationIp Updates the station IP address and subnet mask values. See the
SetStationIp() function description.

SetPackets Updates the contents of the cached DHCP and Discover packets.
See the SetPackets() function description.

Mode Pointer to the EFI_PXE_BASE_CODE_MODE data for this
device. The EFI_PXE_BASE_CODE_MODE structure is defined
in “Related Definitions” below.

 January 31, 2006
878 Version 2.0

Related Definitions

//***
// Maximum ARP and Route Entries
//***
#define EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES 8
#define EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES 8

//***
// EFI_PXE_BASE_CODE_MODE
//
// The data values in this structure are read-only and
// are updated by the code that produces the
// EFI_PXE_BASE_CODE_PROTOCOLfunctions.
//***
typedef struct {

BOOLEAN Started;
BOOLEAN Ipv6Available;
BOOLEAN Ipv6Supported;
BOOLEAN UsingIpv6;
BOOLEAN BisSupported;
BOOLEAN BisDetected;
BOOLEAN AutoArp;
BOOLEAN SendGUID;
BOOLEAN DhcpDiscoverValid;
BOOLEAN DhcpAckReceivd;
BOOLEAN ProxyOfferReceived;
BOOLEAN PxeDiscoverValid;
BOOLEAN PxeReplyReceived;
BOOLEAN PxeBisReplyReceived;
BOOLEAN IcmpErrorReceived;
BOOLEAN TftpErrorReceived;
BOOLEAN MakeCallbacks;
UINT8 TTL;
UINT8 ToS;
EFI_IP_ADDRESS StationIp;
EFI_IP_ADDRESS SubnetMask;
EFI_PXE_BASE_CODE_PACKET DhcpDiscover;
EFI_PXE_BASE_CODE_PACKET DhcpAck;
EFI_PXE_BASE_CODE_PACKET ProxyOffer;
EFI_PXE_BASE_CODE_PACKET PxeDiscover;
EFI_PXE_BASE_CODE_PACKET PxeReply;
EFI_PXE_BASE_CODE_PACKET PxeBisReply;

January 31, 2006
Version 2.0 879

EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
UINT32 ArpCacheEntries;
EFI_PXE_BASE_CODE_ARP_ENTRY
 ArpCache[EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES];
UINT32 RouteTableEntries;
EFI_PXE_BASE_CODE_ROUTE_ENTRY

RouteTable[EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES];
EFI_PXE_BASE_CODE_ICMP_ERROR IcmpError;
EFI_PXE_BASE_CODE_TFTP_ERROR TftpError;

} EFI_PXE_BASE_CODE_MODE;

Started TRUE if this device has been started by calling Start(). This
field is set to TRUE by the Start() function and to FALSE by
the Stop() function.

Ipv6Available TRUE if the Simple Network Protocol being used supports IPv6.

Ipv6Supported TRUE if this PXE Base Code Protocol implementation supports
IPv6.

UsingIpv6 TRUE if this device is currently using IPv6. This field is set by
the Start() function.

BisSupported TRUE if this PXE Base Code implementation supports Boot
Integrity Services (BIS). This field is set by the Start()
function.

BisDetected TRUE if this device and the platform support Boot Integrity
Services (BIS). This field is set by the Start() function.

AutoArp TRUE for automatic ARP packet generation; FALSE otherwise.
This field is initialized to TRUE by Start() and can be
modified with the SetParameters() function.

SendGUID This field is used to change the Client Hardware Address
(chaddr) field in the DHCP and Discovery packets. Set to TRUE
to send the SystemGuid (if one is available). Set to FALSE to
send the client NIC MAC address. This field is initialized to
FALSE by Start() and can be modified with the
SetParameters() function.

DhcpDiscoverValid This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpDiscover field is valid. This field can
also be changed by the SetPackets() function.

 January 31, 2006
880 Version 2.0

DhcpAckReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpAck field is valid. This field can also be
changed by the SetPackets() function.

ProxyOfferReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully
and a proxy DHCP offer packet was received. When TRUE, the
ProxyOffer packet field is valid. This field can also be
changed by the SetPackets() function.

PxeDiscoverValid When TRUE, the PxeDiscover packet field is valid. This field
is set to FALSE by the Start() and Dhcp() functions, and
can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeReplyReceived When TRUE, the PxeReply packet field is valid. This field is
set to FALSE by the Start() and Dhcp() functions, and can
be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeBisReplyReceived When TRUE, the PxeBisReply packet field is valid. This field
is set to FALSE by the Start() and Dhcp() functions, and
can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

IcmpErrorReceived Indicates whether the IcmpError field has been updated. This
field is reset to FALSE by the Start(), Dhcp(),
Discover(), Mtftp(), UdpRead(), UdpWrite() and
Arp() functions. If an ICMP error is received, this field will be
set to TRUE after the IcmpError field is updated.

TftpErrorReceived Indicates whether the TftpError field has been updated. This
field is reset to FALSE by the Start() and Mtftp()
functions. If a TFTP error is received, this field will be set to
TRUE after the TftpError field is updated.

MakeCallbacks When FALSE, callbacks will not be made. When TRUE, make
callbacks to the PXE Base Code Callback Protocol. This field is
reset to FALSE by the Start() function if the PXE Base Code
Callback Protocol is not available. It is reset to TRUE by the
Start() function if the PXE Base Code Callback Protocol is
available.

TTL The “time to live” field of the IP header. This field is initialized
to DEFAULT_TTL (See “Related Definitions”) by the Start()
function and can be modified by the SetParameters()
function.

January 31, 2006
Version 2.0 881

ToS The type of service field of the IP header. This field is initialized
to DEFAULT_ToS (See “Related Definitions”) by Start(),
and can be modified with the SetParameters() function.

StationIp The device’s current IP address. This field is initialized to a zero
address by Start(). This field is set when the Dhcp()
function completes successfully. This field can also be set by the
SetStationIp() function. This field must be set to a valid
IP address by either Dhcp() or SetStationIp() before the
Discover(), Mtftp(), UdpRead(), UdpWrite(), or
Arp() functions are called.

SubnetMask The device’s current subnet mask. This field is initialized to a
zero address by the Start() function. This field is set when
the Dhcp() function completes successfully. This field can also
be set by the SetStationIp() function. This field must be
set to a valid subnet mask by either Dhcp() or
SetStationIp() before the Discover(), Mtftp(),
UdpRead(), UdpWrite(), or Arp() functions are called.

DhcpDiscover Cached DHCP Discover packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can replaced
by the SetPackets() function.

DhcpAck Cached DHCP Ack packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

ProxyOffer Cached Proxy Offer packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeDiscover Cached PXE Discover packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeReply Cached PXE Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeBisReply Cached PXE BIS Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. This field can be replaced by the
SetPackets() function.

 January 31, 2006
882 Version 2.0

IpFilter The current IP receive filter settings. The receive filter is
disabled and the number of IP receive filters is set to zero by the
Start() function, and is set by the SetIpFilter()
function.

ArpCacheEntries The number of valid entries in the ARP cache. This field is reset
to zero by the Start() function.

ArpCache Array of cached ARP entries.

RouteTableEntries The number of valid entries in the current route table. This field
is reset to zero by the Start() function.

RouteTable Array of route table entries.

IcmpError ICMP error packet. This field is updated when an ICMP error is
received and is undefined until the first ICMP error is received.
This field is zero-filled by the Start() function.

TftpError TFTP error packet. This field is updated when a TFTP error is
received and is undefined until the first TFTP error is received.
This field is zero-filled by the Start() function.

//***
// EFI_PXE_BASE_CODE_UDP_PORT
//***
typedef UINT16 EFI_PXE_BASE_CODE_UDP_PORT;

//***
// EFI_IPv4_ADDRESS and EFI_IPv6_ADDRESS
//***
typedef struct {
 UINT8 Addr[4];
} EFI_IPv4_ADDRESS;

typedef struct {
 UINT8 Addr[16];
} EFI_IPv6_ADDRESS;

//***
// EFI_IP_ADDRESS
//***
typedef union {
 UINT32 Addr[4];
 EFI_IPv4_ADDRESS v4;
 EFI_IPv6_ADDRESS v6;
} EFI_IP_ADDRESS;

January 31, 2006
Version 2.0 883

//***
// EFI_MAC_ADDRESS
//***
typedef struct {
 UINT8 Addr[32];
} EFI_MAC_ADDRESS;

DHCP Packet Data Types

This section defines the data types for DHCP packets, ICMP error packets, and TFTP error packets.
All of these are byte-packed data structures.

NOTE

All the multibyte fields in these structures are stored in network order.

//***
// EFI_PXE_BASE_CODE_DHCPV4_PACKET
//***
typedef struct {

UINT8 BootpOpcode;
UINT8 BootpHwType;
UINT8 BootpHwAddrLen;
UINT8 BootpGateHops;
UINT32 BootpIdent;
UINT16 BootpSeconds;
UINT16 BootpFlags;
UINT8 BootpCiAddr[4];
UINT8 BootpYiAddr[4];
UINT8 BootpSiAddr[4];
UINT8 BootpGiAddr[4];
UINT8 BootpHwAddr[16];
UINT8 BootpSrvName[64];
UINT8 BootpBootFile[128];
UINT32 DhcpMagik;
UINT8 DhcpOptions[56];

} EFI_PXE_BASE_CODE_DHCPV4_PACKET;

//***
// EFI_PXE_BASE_CODE_PACKET
//***
typedef union {
 UINT8 Raw[1472];

EFI_PXE_BASE_CODE_DHCPV4_PACKET Dhcpv4;
// EFI_PXE_BASE_CODE_DHCPV6_PACKET Dhcpv6;

} EFI_PXE_BASE_CODE_PACKET;

 January 31, 2006
884 Version 2.0

//***
// EFI_PXE_BASE_CODE_ICMP_ERROR
//***
typedef struct {

UINT8 Type;
UINT8 Code;
UINT16 Checksum;
union {

UINT32 reserved;
UINT32 Mtu;
UINT32 Pointer;
struct {

UINT16 Identifier;
UINT16 Sequence;

} Echo;
} u;

UINT8 Data[494];
} EFI_PXE_BASE_CODE_ICMP_ERROR;

//***
// EFI_PXE_BASE_CODE_TFTP_ERROR
//***
typedef struct {

UINT8 ErrorCode;
CHAR8 ErrorString[127];

} EFI_PXE_BASE_CODE_TFTP_ERROR;

January 31, 2006
Version 2.0 885

IP Receive Filter Settings

This section defines the data types for IP receive filter settings.

#define EFI_PXE_BASE_CODE_MAX_IPCNT 8

//***
// EFI_PXE_BASE_CODE_IP_FILTER
//***
typedef struct {

UINT8 Filters;
UINT8 IpCnt;
UINT16 reserved;
EFI_IP_ADDRESS IpList[EFI_PXE_BASE_CODE_MAX_IPCNT];

} EFI_PXE_BASE_CODE_IP_FILTER;

#define EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP 0x0001
#define EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST 0x0002
#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS 0x0004
#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST 0x0008

ARP Cache Entries

This section defines the data types for ARP cache entries, and route table entries.

//***
// EFI_PXE_BASE_CODE_ARP_ENTRY
//***
typedef struct {

EFI_IP_ADDRESS IpAddr;
EFI_MAC_ADDRESS MacAddr;

} EFI_PXE_BASE_CODE_ARP_ENTRY;

//***
// EFI_PXE_BASE_CODE_ROUTE_ENTRY
//***
typedef struct {

EFI_IP_ADDRESS IpAddr;
EFI_IP_ADDRESS SubnetMask;
EFI_IP_ADDRESS GwAddr;

} EFI_PXE_BASE_CODE_ROUTE_ENTRY;

 January 31, 2006
886 Version 2.0

Filter Operations for UDP Read/Write Functions

This section defines the types of filter operations that can be used with the UdpRead() and
UdpWrite() functions.

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP 0x0001
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT 0x0002
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_IP 0x0004
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT 0x0008
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_USE_FILTER 0x0010
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT 0x0020
#define DEFAULT_TTL 16
#define DEFAULT_ToS 0

The following table defines values for the PXE DHCP and Bootserver Discover packet tags that are
specific to the UEFI environment. Complete definitions of all PXE tags are defined in Table 157
“PXE DHCP Options (Full List),” in the PXE Specification.

Table 157. PXE Tag Definitions for EFI

Tag Name Tag # Length Data Field

Client Network
Interface
Identifier

94 [0x5E] 3 [0x03] Type (1), MajorVer (1), MinorVer (1)

Type is a one byte field that identifies the network interface that
will be used by the downloaded program. Type is followed by two
one byte version number fields, MajorVer and MinorVer.

Type

UNDI (1) = 0x01

Versions

WfM-1.1a 16-bit UNDI: MajorVer = 0x02. MinorVer = 0x00

PXE-2.0 16-bit UNDI: MajorVer = 0x02, MinorVer = 0x01

32/64-bit UNDI & H/W UNDI: MajorVer = 0x03, MinorVer = 0x00

Client System
Architecture

93 [0x5D] 2 [0x02] Type (2)

Type is a two byte, network order, field that identifies the
processor and programming environment of the client system.

Types

Legacy x86 PC = 0x00 0x00

Supported Itanium PC = 0x00 0x02

IA-32 PC = 0x00 0x06

X64 EFI PC=0x00 0x07

January 31, 2006
Version 2.0 887

Tag Name Tag # Length Data Field

Class Identifier 60 [0x3C]

32 [0x20] "PXEClient:Arch:xxxxx:UNDI:yyyzzz"

"PXEClient:…" is used to identify communication between PXE
clients and servers. Information from tags 93 & 94 is embedded
in the Class Identifier string. (The strings defined in this tag are
case sensitive and must not be NULL-terminated.)

xxxxx = ASCII representation of Client System Architecture.

yyyzzz = ASCII representation of Client Network Interface
Identifier version numbers MajorVer(yyy) and MinorVer(zzz).

Example

"PXEClient:Arch:00002:UNDI:00300" identifies an IA64 PC w/
32/64-bit UNDI

Description

The basic mechanisms and flow for remote booting in UEFI are identical to the remote boot
functionality described in detail in the PXE Specification. However, the actual execution
environment, linkage, and calling conventions are replaced and enhanced for the UEFI
environment.

The DHCP Option for the Client System Architecture is used to inform the DHCP server if the
client is a UEFI environment in supported systems. The server may use this information to provide
default images if it does not have a specific boot profile for the client.

A handle that supports EFI_PXE_BASE_CODE_PROTOCOL is required to support
LOAD_FILE_Protocol. The LOAD_FILE_Protocol function LoadFile() is used by the
firmware to load files from devices that do not support file system type accesses. Specifically, the
firmware’s boot manager invokes LoadFile() with BootPolicy being TRUE when
attempting to boot from the device. The firmware then loads and transfers control to the
downloaded PXE boot image. Once the remote image is successfully loaded, it may utilize the
EFI_PXE_BASE_CODE_PROTOCOL interfaces, or even the
EFI_SIMPLE_NETWORK_PROTOCOL interfaces, to continue the remote process.

 January 31, 2006
888 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.Start()

Summary

Enables the use of the PXE Base Code Protocol functions.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_START) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN BOOLEAN UseIpv6
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

UseIpv6 Specifies the type of IP addresses that are to be used during the session
that is being started. Set to TRUE for IPv6 addresses, and FALSE for
IPv4 addresses.

Description

This function enables the use of the PXE Base Code Protocol functions. If the Started field of
the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then EFI_ALREADY_STARTED
will be returned. If UseIpv6 is TRUE, then IPv6 formatted addresses will be used in this session.
If UseIpv6 is FALSE, then IPv4 formatted addresses will be used in this session. If UseIpv6 is
TRUE, and the Ipv6Supported field of the EFI_PXE_BASE_CODE_MODE structure is
FALSE, then EFI_UNSUPPORTED will be returned. If there is not enough memory or other
resources to start the PXE Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned.
Otherwise, the PXE Base Code Protocol will be started, and all of the fields of the
EFI_PXE_BASE_CODE_MODE structure will be initialized as follows:

Started Set to TRUE.

Ipv6Supported Unchanged.

Ipv6Available Unchanged.

UsingIpv6 Set to UseIpv6.

BisSupported Unchanged.

BisDetected Unchanged.

AutoArp Set to TRUE.

SendGUID Set to FALSE.

TTL Set to DEFAULT_TTL.

January 31, 2006
Version 2.0 889

ToS Set to DEFAULT_ToS.

DhcpCompleted Set to FALSE.

ProxyOfferReceived Set to FALSE.

StationIp Set to an address of all zeros.

SubnetMask Set to a subnet mask of all zeros.

DhcpDiscover Zero-filled.

DhcpAck Zero-filled.

ProxyOffer Zero-filled.

PxeDiscoverValid Set to FALSE.

PxeDiscover Zero-filled.

PxeReplyValid Set to FALSE.

PxeReply Zero-filled.

PxeBisReplyValid Set to FALSE.

PxeBisReply Zero-filled.

IpFilter Set the Filters field to 0 and the IpCnt field to 0.

ArpCacheEntries Set to 0.

ArpCache Zero-filled.

RouteTableEntries Set to 0.

RouteTable Zero-filled.

IcmpErrorReceived Set to FALSE.

IcmpError Zero-filled.

TftpErroReceived Set to FALSE.

TftpError Zero-filled.

MakeCallbacks Set to TRUE if the PXE Base Code Callback Protocol is
available. Set to FALSE if the PXE Base Code Callback Protocol
is not available.

 January 31, 2006
890 Version 2.0

Status Codes Returned
EFI_SUCCESS The PXE Base Code Protocol was started.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
EFI_PXE_BASE_CODE_MODE structure is FALSE.

EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
PXE Base Code Protocol.

January 31, 2006
Version 2.0 891

EFI_PXE_BASE_CODE_PROTOCOL.Stop()

Summary

Disables the use of the PXE Base Code Protocol functions.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_STOP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Description

This function stops all activity on the network device. All the resources allocated in Start() are
released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is set to FALSE and
EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE structure
is already FALSE, then EFI_NOT_STARTED will be returned.

Status Codes Returned
EFI_SUCCESS The PXE Base Code Protocol was stopped.

EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

 January 31, 2006
892 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.Dhcp()

Summary

Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
S.A.R.R (solicit / advertise / request / reply) sequence.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DHCP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN BOOLEAN SortOffers
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

SortOffers TRUE if the offers received should be sorted. Set to FALSE to try the
offers in the order that they are received.

Description

This function attempts to complete the DHCP sequence. If this sequence is completed, then
EFI_SUCCESS is returned, and the DhcpCompleted, ProxyOfferReceived, StationIp,
SubnetMask, DhcpDiscover, DhcpAck, and ProxyOffer fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in.

If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before they are tried.
If SortOffers is FALSE, then the cached DHCP offer packets will be tried in the order in which
they are received. Please see the Preboot Execution Environment (PXE) Specification for additional
details on the implementation of DHCP.

This function can take at least 31 seconds to timeout and return control to the caller. If the DHCP
sequence does not complete, then EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the DHCP sequence will be
stopped and EFI_ABORTED will be returned.

January 31, 2006
Version 2.0 893

Status Codes Returned
EFI_SUCCESS Valid DHCP has completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.

EFI_ABORTED The callback function aborted the DHCP Protocol.

EFI_TIMEOUT The DHCP Protocol timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session. The
ICMP error packet has been cached in the
EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.

EFI_NO_RESPONSE Valid PXE offer was not received.

 January 31, 2006
894 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.Discover()

Summary

Attempts to complete the PXE Boot Server and/or boot image discovery sequence.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DISCOVER) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN UINT16 Type,
IN UINT16 *Layer,
IN BOOLEAN UseBis,
IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Type The type of bootstrap to perform. See “Related Definitions” below.

Layer Pointer to the boot server layer number to discover, which must be
PXE_BOOT_LAYER_INITIAL when a new server type is being
discovered. This is the only layer type that will perform multicast and
broadcast discovery. All other layer types will only perform unicast
discovery. If the boot server changes Layer, then the new Layer will
be returned.

UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.

Info Pointer to a data structure that contains additional information on the
type of discovery operation that is to be performed. If this field is NULL,
then the contents of the cached DhcpAck and ProxyOffer packets
will be used.

Related Definitions
//***
// Bootstrap Types
//***
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP 0
#define EFI_PXE_BASE_CODE_BOOT_TYPE_MS_WINNT_RIS 1
#define EFI_PXE_BASE_CODE_BOOT_TYPE_INTEL_LCM 2
#define EFI_PXE_BASE_CODE_BOOT_TYPE_DOSUNDI 3
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NEC_ESMPRO 4
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_WSoD 5
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_LCCM 6

January 31, 2006
Version 2.0 895

#define EFI_PXE_BASE_CODE_BOOT_TYPE_CA_UNICENTER_TNG 7
#define EFI_PXE_BASE_CODE_BOOT_TYPE_HP_OPENVIEW 8
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_9 9
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_10 10
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_11 11
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NOT_USED_12 12
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_INSTALL 13
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_BOOT 14
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REMBO 15
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BEOBOOT 16
//
// Values 17 through 32767 are reserved.
// Values 32768 through 65279 are for vendor use.
// Values 65280 through 65534 are reserved.
//
#define EFI_PXE_BASE_CODE_BOOT_TYPE_PXETEST 65535

#define EFI_PXE_BASE_CODE_BOOT_LAYER_MASK 0x7FFF
#define EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL 0x0000

//***
// EFI_PXE_BASE_CODE_DISCOVER_INFO
//***
typedef struct {

BOOLEAN UseMCast;
BOOLEAN UseBCast;
BOOLEAN UseUCast;
BOOLEAN MustUseList;
EFI_IP_ADDRESS ServerMCastIp;
UINT16 IpCnt;
EFI_PXE_BASE_CODE_SRVLIST SrvList[IpCnt];

} EFI_PXE_BASE_CODE_DISCOVER_INFO;

//***
// EFI_PXE_BASE_CODE_SRVLIST
//***
typedef struct {

UINT16 Type;
BOOLEAN AcceptAnyResponse;
UINT8 reserved;
EFI_IP_ADDRESS IpAddr;

} EFI_PXE_BASE_CODE_SRVLIST;

 January 31, 2006
896 Version 2.0

Description

This function attempts to complete the PXE Boot Server and/or boot image discovery sequence. If
this sequence is completed, then EFI_SUCCESS is returned, and the PxeDiscoverValid,
PxeDiscover, PxeReplyReceived, and PxeReply fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE
structure will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to
FALSE.

In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[], has two
uses: It is the Boot Server IP address list used for unicast discovery (if the UseUCast field is
TRUE), and it is the list used for Boot Server verification (if the MustUseList field is TRUE).
Also, if the MustUseList field in that structure is TRUE and the AcceptAnyResponse field
in the SrvList[] array is TRUE, any Boot Server reply of that type will be accepted. If the
AcceptAnyResponse field is FALSE, only responses from Boot Servers with matching IP
addresses will be accepted.

This function can take at least 10 seconds to timeout and return control to the caller. If the
Discovery sequence does not complete, then EFI_TIMEOUT will be returned. Please see the
Preboot Execution Environment (PXE) Specification for additional details on the implementation of
the Discovery sequence.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the Discovery sequence is
stopped and EFI_ABORTED will be returned.

January 31, 2006
Version 2.0 897

Status Codes Returned
EFI_SUCCESS The Discovery sequence has been completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

1. The This parameter was NULL

2. The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

3. The Layer parameter was NULL

4. The Info->ServerMCastIp parameter does not

contain a valid multicast IP address

5. The Info->UseUCast parameter is not FALSE and
the Info->IpCnt parameter is zero

One or more of the IP addresses in the Info->SrvList[]

array is not a valid unicast IP address.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.

EFI_ABORTED The callback function aborted the Discovery sequence.

EFI_TIMEOUT The Discovery sequence timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery
session. The ICMP error packet has been cached in the
EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.

 January 31, 2006
898 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.Mtftp()

Summary

Used to perform TFTP and MTFTP services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
IN OUT VOID *BufferPtr, OPTIONAL
IN BOOLEAN Overwrite,
IN OUT UINT64 *BufferSize,
IN UINTN *BlockSize, OPTIONAL
IN EFI_IP_ADDRESS *ServerIp,
IN CHAR8 *Filename, OPTIONAL
IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL
IN BOOLEAN DontUseBuffer

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Operation The type of operation to perform. See “Related Definitions” below for
the list of operation types.

BufferPtr A pointer to the data buffer. Ignored for read file if DontUseBuffer is
TRUE.

Overwrite Only used on write file operations. TRUE if a file on a remote server can
be overwritten.

BufferSize For get-file-size operations, *BufferSize returns the size of the
requested file. For read-file and write-file operations, this parameter is
set to the size of the buffer specified by the BufferPtr parameter. For
read-file operations, if EFI_BUFFER_TOO_SMALL is returned,
*BufferSize returns the size of the requested file.

BlockSize The requested block size to be used during a TFTP transfer. This must be
at least 512. If this field is NULL, then the largest block size supported by
the implementation will be used.

ServerIp The TFTP / MTFTP server IP address.

Filename A Null-terminated ASCII string that specifies a directory name or a file
name. This is ignored by MTFTP read directory.

January 31, 2006
Version 2.0 899

Info Pointer to the MTFTP information. This information is required to start
or join a multicast TFTP session. It is also required to perform the “get
file size” and “read directory” operations of MTFTP. See “Related
Definitions” below for the description of this data structure.

DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation. Setting
this to TRUE will cause TFTP and MTFTP read file operations to
function without a receive buffer, and all of the received packets are
passed to the Callback Protocol which is responsible for storing them.
This field is only used by TFTP and MTFTP read file.

Related Definitions
//***
// EFI_PXE_BASE_CODE_TFTP_OPCODE
//***
typedef enum {

EFI_PXE_BASE_CODE_TFTP_FIRST,
EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,
EFI_PXE_BASE_CODE_TFTP_READ_FILE,
EFI_PXE_BASE_CODE_TFTP_WRITE_FILE,
EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY,
EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE,
EFI_PXE_BASE_CODE_MTFTP_READ_FILE,
EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY,
EFI_PXE_BASE_CODE_MTFTP_LAST

} EFI_PXE_BASE_CODE_TFTP_OPCODE;

//***
// EFI_PXE_BASE_CODE_MTFTP_INFO
//***
typedef struct {

EFI_IP_ADDRESS MCastIp;
EFI_PXE_BASE_CODE_UDP_PORT CPort;
EFI_PXE_BASE_CODE_UDP_PORT SPort;
UINT16 ListenTimeout;
UINT16 TransmitTimeout;

} EFI_PXE_BASE_CODE_MTFTP_INFO;

MCastIp File multicast IP address. This is the IP address to which the
server will send the requested file.

CPort Client multicast listening port. This is the UDP port to which the
server will send the requested file.

SPort Server multicast listening port. This is the UDP port on which
the server listens for multicast open requests and data acks.

 January 31, 2006
900 Version 2.0

ListenTimeout The number of seconds a client should listen for an active
multicast session before requesting a new multicast session.

TransmitTimeout The number of seconds a client should wait for a packet from the
server before retransmitting the previous open request or data
ack packet.

Description

This function is used to perform TFTP and MTFTP services. This includes the TFTP operations to
get the size of a file, read a directory, read a file, and write a file. It also includes the MTFTP
operations to get the size of a file, read a directory, and read a file. The type of operation is
specified by Operation. If the callback function that is invoked during the TFTP/MTFTP
operation does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then
EFI_ABORTED will be returned.

For read operations, the return data will be placed in the buffer specified by BufferPtr. If
BufferSize is too small to contain the entire downloaded file, then
EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero or the size of
the requested file (the size of the requested file is only returned if the TFTP server supports TFTP
options). If BufferSize is large enough for the read operation, then BufferSize will be set to
the size of the downloaded file, and EFI_SUCCESS will be returned. Applications using the
PxeBc.Mtftp() services should use the get-file-size operations to determine the size of the
downloaded file prior to using the read-file operations—especially when downloading large
(greater than 64 MB) files—instead of making two calls to the read-file operation. Following this
recommendation will save time if the file is larger than expected and the TFTP server does not
support TFTP option extensions. Without TFTP option extension support, the client has to
download the entire file, counting and discarding the received packets, to determine the file size.

For write operations, the data to be sent is in the buffer specified by BufferPtr. BufferSize
specifies the number of bytes to send. If the write operation completes successfully, then
EFI_SUCCESS will be returned.

For TFTP “get file size” operations, the size of the requested file or directory is returned in
BufferSize, and EFI_SUCCESS will be returned. If the TFTP server does not support options,
the file will be downloaded into a bit bucket and the length of the downloaded file will be returned.
For MTFTP “get file size” operations, if the MTFTP server does not support the “get file size”
option, EFI_UNSUPPORTED will be returned.

January 31, 2006
Version 2.0 901

This function can take up to 10 seconds to timeout and return control to the caller. If the TFTP
sequence does not complete, EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the TFTP sequence is stopped
and EFI_ABORTED will be returned.

The format of the data returned from a TFTP read directory operation is a null-terminated filename
followed by a null-terminated information string, of the form “size year-month-day
hour:minute:second” (i.e. %d %d-%d-%d %d:%d:%f - note that the seconds field can be a decimal
number), where the date and time are UTC. For an MTFTP read directory command, there is
additionally a null-terminated multicast IP address preceding the filename of the form
%d.%d.%d.%d for IP v4. The final entry is itself null-terminated, so that the final information
string is terminated with two null octets.

Status Codes Returned
EFI_SUCCESS The TFTP/MTFTP operation was completed.
EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The Operation parameter was not one of the listed
EFI_PXE_BASE_CODE_TFTP_OPCODE constants

• The BufferPtr parameter was NULL and the DontUseBuffer
parameter was FALSE

• The BufferSize parameter was NULL

• The BlockSize parameter was not NULL and *BlockSize was
less than 512

• The ServerIp parameter was NULL or did not contain a valid
unicast IP address

• The Filename parameter was NULL for a file transfer or
information request

• The Info parameter was NULL for a multicast request

The Info->MCastIp parameter is not a valid multicast IP address
EFI_DEVICE_ERROR The network device encountered an error during this operation.
EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.
EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.
EFI_TIMEOUT The TFTP/MTFTP operation timed out.
EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session. The

TFTP error packet has been cached in the
EFI_PXE_BASE_CODE_MODE.TftpError packet
structure. Information about TFTP error packet contents can be
found in RFC 1350.

EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session.
The ICMP error packet has been cached in the
EFI_PXE_BASE_CODE_MODE.IcmpError packet
structure. Information about ICMP packet contents can be found in
RFC 792.

 January 31, 2006
902 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()

Summary

Writes a UDP packet to the network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_WRITE) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN UINT16 OpFlags,
IN EFI_IP_ADDRESS *DestIp,
IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
IN EFI_IP_ADDRESS *GatewayIp, OPTIONAL
IN EFI_IP_ADDRESS *SrcIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
IN UINTN *HeaderSize, OPTIONAL
IN VOID *HeaderPtr, OPTIONAL
IN UINTN *BufferSize,
IN VOID *BufferPtr

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

OpFlags The UDP operation flags. If MAY_FRAGMENT is set, then if required,
this UDP write operation may be broken up across multiple packets.

DestIp The destination IP address.

DestPort The destination UDP port number.

GatewayIp The gateway IP address. If DestIp is not in the same subnet as
StationIp, then this gateway IP address will be used. If this field is
NULL, and the DestIp is not in the same subnet as StationIp, then
the RouteTable will be used.

SrcIp The source IP address. If this field is NULL, then StationIp will be
used as the source IP address.

SrcPort The source UDP port number. If OpFlags has ANY_SRC_PORT set or
SrcPort is NULL, then a source UDP port will be automatically
selected. If a source UDP port was automatically selected, and SrcPort
is not NULL, then it will be returned in SrcPort.

HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prefixed to the data at BufferPtr.

January 31, 2006
Version 2.0 903

HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prefixed to the
data at BufferPtr.

BufferSize A pointer to the size of the data at BufferPtr.

BufferPtr A pointer to the data to be written.

Description

This function writes a UDP packet specified by the (optional HeaderPtr and) BufferPtr
parameters to the network interface. The UDP header is automatically built by this routine. It uses
the parameters OpFlags, DestIp, DestPort, GatewayIp, SrcIp, and SrcPort to build
this header. If the packet is successfully built and transmitted through the network interface, then
EFI_SUCCESS will be returned. If a timeout occurs during the transmission of the packet, then
EFI_TIMEOUT will be returned. If an ICMP error occurs during the transmission of the packet,
then the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be
returned.

Status Codes Returned
EFI_SUCCESS The UDP Write operation was completed.
EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The Thisparameter was NULL
• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure
• Reserved bits in the OpFlags parameter were not set to

zero
• The DestIp parameter was NULL
• The DestPort parameter was NULL
• The GatewayIp parameter was not NULL and did not

contain a valid unicast IP address.
• The HeaderSize parameter was not NULL and

*HeaderSize is zero
• The *HeaderSize parameter was not zero and the

HeaderPtr parameter was NULL
• The BufferSize parameter was NULL
• The *BufferSize parameter was not zero and the BufferPtr

parameter was NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.
EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.
EFI_ABORTED The callback function aborted the UDP Write operation.
EFI_TIMEOUT The UDP Write operation timed out.
EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session.

The ICMP error packet has been cached in the
EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.

 January 31, 2006
904 Version 2.0

January 31, 2006
Version 2.0 905

EFI_PXE_BASE_CODE_PROTOCOL.UdpRead()

Summary

Reads a UDP packet from the network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_READ) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This

IN UINT16 OpFlags,
IN OUT EFI_IP_ADDRESS *DestIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort, OPTIONAL
IN OUT EFI_IP_ADDRESS *SrcIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
IN UINTN *HeaderSize, OPTIONAL
IN VOID *HeaderPtr, OPTIONAL
IN OUT UINTN *BufferSize,
IN VOID *BufferPtr

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

OpFlags The UDP operation flags.

DestIp The destination IP address.

DestPort The destination UDP port number.

SrcIp The source IP address.

SrcPort The source UDP port number.

HeaderSize An optional field which may be set to the length of a header to be put in
HeaderPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a buffer to hold the
HeaderSize bytes which follow the UDP header.

BufferSize On input, a pointer to the size of the buffer at BufferPtr. On output,
the size of the data written to BufferPtr.

BufferPtr A pointer to the data to be read.

 January 31, 2006
906 Version 2.0

Description

This function reads a UDP packet from a network interface. The data contents are returned in (the
optional HeaderPtr and) BufferPtr, and the size of the buffer received is returned in
BufferSize . If the input BufferSize is smaller than the UDP packet received (less optional
HeaderSize), it will be set to the required size, and EFI_BUFFER_TOO_SMALL will be
returned. In this case, the contents of BufferPtr are undefined, and the packet is lost. If a UDP
packet is successfully received, then EFI_SUCCESS will be returned, and the information from the
UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if they are not
NULL. Depending on the values of OpFlags and the DestIp, DestPort, SrcIp, and
SrcPort input values, different types of UDP packet receive filtering will be performed. The
following tables summarize these receive filter operations.

Table 158. Destination IP Filter Operation

OpFlags
USE_FILTER

OpFlags
ANY_DEST_IP

DestIp

Action

0 0 NULL Receive a packet sent to StationIp.

0 1 NULL Receive a packet sent to any IP address.

1 x NULL Receive a packet whose destination IP address passes
the IP filter.

0 0 not NULL Receive a packet whose destination IP address matches
DestIp.

0 1 not NULL Receive a packet sent to any IP address and, return the
destination IP address in DestIp.

1 x not NULL Receive a packet whose destination IP address passes the
IP filter, and return the destination IP address in DestIp.

Table 159. Destination UDP Port Filter Operation

OpFlags
ANY_DEST_PORT

DestPort

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent to any UDP port.

0 not NULL Receive a packet whose destination Port matches DestPort.

1 not NULL Receive a packet sent to any UDP port, and return the destination port in
DestPort.

January 31, 2006
Version 2.0 907

Table 160. Source IP Filter Operation

OpFlags
ANY_SRC_IP

SrcIp

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any IP address.

0 not NULL Receive a packet whose source IP address matches SrcIp.

1 not NULL Receive a packet sent from any IP address, and return the source IP
address in SrcIp.

Table 161. Source UDP Port Filter Operation

OpFlags
ANY_SRC_PORT

SrcPort

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any UDP port.

0 not NULL Receive a packet whose source UDP port matches SrcPort.

1 not NULL Receive a packet sent from any UDP port, and return the source UPD
port in SrcPort.

Status Codes Returned
EFI_SUCCESS The UDP Read operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The Thisparameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• Reserved bits in the OpFlags parameter were not set to zero

• The HeaderSize parameter is not NULL and *HeaderSize is
zero

• The HeaderSize parameter is not NULL L and the
HeaderPtr parameter is NULL

• The BufferSize parameter is NULL

• The BufferPtr parameter is NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.

EFI_ABORTED The callback function aborted the UDP Read operation.

EFI_TIMEOUT The UDP Read operation timed out.

 January 31, 2006
908 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()

Summary

Updates the IP receive filters of a network device and enables software filtering.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_IP_FILTER) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewFilter Pointer to the new set of IP receive filters.

Description

The NewFilter field is used to modify the network device’s current IP receive filter settings and
to enable a software filter. This function updates the IpFilter field of the
EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter. The software filter
is used when the USE_FILTER in OpFlags is set to UdpRead(). The current hardware filter
remains in effect no matter what the settings of OpFlags are, so that the meaning of
ANY_DEST_IP set in OpFlags to UdpRead() is from those packets whose reception is enabled
in hardware – physical NIC address (unicast), broadcast address, logical address or addresses
(multicast), or all (promiscuous). UdpRead() does not modify the IP filter settings.

Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive filter list
emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. If an
application or driver wishes to preserve the IP receive filter settings, it will have to preserve the IP
receive filter settings before these calls, and use SetIpFilter() to restore them after the calls.
If incompatible filtering is requested (for example, PROMISCUOUS with anything else) or if the
device does not support a requested filter setting and it cannot be accommodated in software (for
example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned. The
IPlist field is used to enable IPs other than the StationIP. They may be multicast or unicast.
If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP, then both the
StationIP and the IPs from the IPlist will be used.

January 31, 2006
Version 2.0 909

Status Codes Returned
EFI_SUCCESS The IP receive filter settings were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE:

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewFilter parameter was NULL

• The NewFilter -> IPlist [] array contains one or more
broadcast IP addresses

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

 January 31, 2006
910 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.Arp()

Summary

Uses the ARP protocol to resolve a MAC address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_ARP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN EFI_IP_ADDRESS *IpAddr,
IN EFI_MAC_ADDRESS *MacAddr OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

IpAddr Pointer to the IP address that is used to resolve a MAC address. When
the MAC address is resolved, the ArpCacheEntries and ArpCache
fields of the EFI_PXE_BASE_CODE_MODE structure are updated.

MacAddr If not NULL, a pointer to the MAC address that was resolved with the
ARP protocol.

Description
This function uses the ARP protocol to resolve a MAC address. The UsingIpv6 field of the
EFI_PXE_BASE_CODE_MODE structure is used to determine if IPv4 or IPv6 addresses are being
used. The IP address specified by IpAddr is used to resolve a MAC address. If the ARP protocol
succeeds in resolving the specified address, then the ArpCacheEntries and ArpCache fields
of the EFI_PXE_BASE_CODE_MODE structure are updated, and EFI_SUCCESS is returned. If
MacAddr is not NULL, the resolved MAC address is placed there as well.

If the PXE Base Code protocol is in the stopped state, then EFI_NOT_STARTED is returned. If the
ARP protocol encounters a timeout condition while attempting to resolve an address, then
EFI_TIMEOUT is returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED is returned.

January 31, 2006
Version 2.0 911

Status Codes Returned
EFI_SUCCESS The IP or MAC address was resolved.

EFI_INVALID_PARAMETER One or more of the following conditions was :

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The IpAddr parameter was NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_TIMEOUT The ARP Protocol encountered a timeout condition.

EFI_ABORTED The callback function aborted the ARP Protocol.

 January 31, 2006
912 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()

Summary

Updates the parameters that affect the operation of the PXE Base Code Protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PARAMETERS) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN BOOLEAN *NewAutoArp, OPTIONAL
IN BOOLEAN *NewSendGUID, OPTIONAL
IN UINT8 *NewTTL, OPTIONAL
IN UINT8 *NewToS, OPTIONAL
IN BOOLEAN *NewMakeCallback OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
current value of AutoARP. TRUE for automatic ARP packet generation,
FALSE otherwise. If NULL, this parameter is ignored.

NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
current value of SendGUID. TRUE to send the SystemGUID (if there is
one) as the client hardware address in DHCP; FALSE to send client NIC
MAC address. If NULL, this parameter is ignored. If NewSendGUID is
TRUE and there is no SystemGUID, then EFI_INVALID_PARAMETER
is returned.

NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
the “time to live” field of the IP header. If NULL, this parameter is
ignored.

NewToS If not NULL, a pointer to be used in place of the current value of ToS,
the “type of service” field of the IP header. If NULL, this parameter is
ignored.

NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
current value of the MakeCallback field of the Mode structure. If
NULL, this parameter is ignored. If the Callback Protocol is not available
EFI_INVALID_PARAMETER is returned.

January 31, 2006
Version 2.0 913

Description

This function sets parameters that affect the operation of the PXE Base Code Protocol. The
parameter specified by NewAutoArp is used to control the generation of ARP protocol packets. If
NewAutoArp is TRUE, then ARP Protocol packets will be generated as required by the PXE Base
Code Protocol. If NewAutoArp is FALSE, then no ARP Protocol packets will be generated. In this
case, the only mappings that are available are those stored in the ArpCache of the
EFI_PXE_BASE_CODE_MODE structure. If there are not enough mappings in the ArpCache to
perform a PXE Base Code Protocol service, then the service will fail. This function updates the
AutoArp field of the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.

The EFI_PXE_BASE_CODE.SetParameters() call must be invoked after a Callback
Protocol is installed to enable the use of callbacks.

Status Codes Returned
EFI_SUCCESS The new parameters values were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE :

• The This parameter was NULL

• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewSendGUID parameter is not NULL and *
NewSendGUID is TRUE and a system GUID could not be
located

• The NewMakeCallback parameter is not NULL and *
NewMakeCallback is TRUE and an
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL could not
be located on the network device handle.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

 January 31, 2006
914 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()

Summary

Updates the station IP address and/or subnet mask values of a network device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_STATION_IP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,

IN EFI_IP_ADDRESS *NewStationIp, OPTIONAL
IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewStationIp Pointer to the new IP address to be used by the network device. If this
field is NULL, then the StationIp address will not be modified.

NewSubnetMask Pointer to the new subnet mask to be used by the network device. If this
field is NULL, then the SubnetMask will not be modified.

Description

This function updates the station IP address and/or subnet mask values of a network device.

The NewStationIp field is used to modify the network device’s current IP address. If
NewStationIP is NULL, then the current IP address will not be modified. Otherwise, this
function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure with
NewStationIp.

The NewSubnetMask field is used to modify the network device’s current subnet mask. If
NewSubnetMask is NULL, then the current subnet mask will not be modified. Otherwise, this
function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE structure with
NewSubnetMask.

January 31, 2006
Version 2.0 915

Status Codes Returned
EFI_SUCCESS The new station IP address and/or subnet mask were updated.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

1. The This s parameter was NULL

2. The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

3. The NewStationIp parameter is not NULL and *
NewStationIp is not a valid unicast IP address

4. The NewSubnetMask parameter is not NULL and *
NewSubnetMask does not contain a valid IP subnet mask

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

 January 31, 2006
916 Version 2.0

EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()

Summary

Updates the contents of the cached DHCP and Discover packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PACKETS) (
 IN EFI_PXE_BASE_CODE_PROTOCOL*This,

IN BOOLEAN *NewDhcpDiscoverValid, OPTIONAL
IN BOOLEAN *NewDhcpAckReceived, OPTIONAL
IN BOOLEAN *NewProxyOfferReceived,OPTIONAL
IN BOOLEAN *NewPxeDiscoverValid, OPTIONAL
IN BOOLEAN *NewPxeReplyReceived, OPTIONAL
IN BOOLEAN *NewPxeBisReplyReceived,OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewDhcpDiscoverValid Pointer to a value that will replace the current
DhcpDiscoverValid field. If NULL, this parameter is
ignored.

NewDhcpAckReceived Pointer to a value that will replace the current
DhcpAckReceived field. If NULL, this parameter is
ignored.

NewProxyOfferReceived Pointer to a value that will replace the current
ProxyOfferReceived field. If NULL, this parameter is
ignored.

NewPxeDiscoverValid Pointer to a value that will replace the current
ProxyOfferReceived field. If NULL, this parameter is
ignored.

NewPxeReplyReceived Pointer to a value that will replace the current
PxeReplyReceived field. If NULL, this parameter is
ignored.

January 31, 2006
Version 2.0 917

NewPxeBisReplyReceived Pointer to a value that will replace the current
PxeBisReplyReceived field. If NULL, this parameter is
ignored.

NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents. If
NULL, this parameter is ignored.

NewDhcpAck Pointer to the new cached DHCP Ack packet contents. If
NULL, this parameter is ignored.

NewProxyOffer Pointer to the new cached Proxy Offer packet contents. If
NULL, this parameter is ignored.

NewPxeDiscover Pointer to the new cached PXE Discover packet contents. If
NULL, this parameter is ignored.

NewPxeReply Pointer to the new cached PXE Reply packet contents. If
NULL, this parameter is ignored.

NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents. If
NULL, this parameter is ignored.

Description

The pointers to the new packets are used to update the contents of the cached packets in the
EFI_PXE_BASE_CODE_MODE structure.

Status Codes Returned
EFI_SUCCESS The cached packet contents were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE:

• The This parameter was NULL

The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

 January 31, 2006
918 Version 2.0

20.4 PXE Base Code Callback Protocol

This protocol is a specific instance of the PXE Base Code Callback Protocol that is invoked
when the PXE Base Code Protocol is about to transmit, has received, or is waiting to receive a
packet. The PXE Base Code Callback Protocol must be on the same handle as the PXE Base
Code Protocol.

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

Summary

Protocol that is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet.

GUID
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID \

{0x245DCA21,0xFB7B,0x11d3,0x8F01,0x00,0xA0,0xC9,0x69,0x72,
0x3B}

Revision Number
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION \

0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
EFI_PXE_CALLBACK Callback;

} EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL;

Parameters

Revision The revision of the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL.
All future revisions must be backwards compatible. If a future revision is
not backwards compatible, it is not the same GUID.

Callback Callback routine used by the PXE Base Code Dhcp(), Discover(),
Mtftp(), UdpWrite(), and Arp() functions.

January 31, 2006
Version 2.0 919

EFI_PXE_BASE_CODE_CALLBACK.Callback()

Summary

Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
received, or is waiting to receive a packet.

Prototype
typedef
EFI_PXE_BASE_CODE_CALLBACK_STATUS
(*EFI_PXE_CALLBACK) (
 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This,

IN EFI_PXE_BASE_CODE_FUNCTION Function,
IN BOOLEAN Received,
IN UINT32 PacketLen,
IN EFI_PXE_BASE_CODE_PACKET *Packet OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Function The PXE Base Code Protocol function that is waiting for an event.

Received TRUE if the callback is being invoked due to a receive event. FALSE if
the callback is being invoked due to a transmit event.

PacketLen The length, in bytes, of Packet. This field will have a value of zero if
this is a wait for receive event.

Packet If Received is TRUE, a pointer to the packet that was just received;
otherwise a pointer to the packet that is about to be transmitted. This
field will be NULL if this is not a packet event.

Related Definitions

//***
// EFI_PXE_BASE_CODE_CALLBACK_STATUS
//***
typedef enum {

EFI_PXE_BASE_CODE_CALLBACK_STATUS_FIRST,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_LAST

} EFI_PXE_BASE_CODE_CALLBACK_STATUS;

 January 31, 2006
920 Version 2.0

//***
// EFI_PXE_BASE_CODE_FUNCTION
//***
typedef enum {

EFI_PXE_BASE_CODE_FUNCTION_FIRST,
EFI_PXE_BASE_CODE_FUNCTION_DHCP,
EFI_PXE_BASE_CODE_FUNCTION_DISCOVER,
EFI_PXE_BASE_CODE_FUNCTION_MTFTP,
EFI_PXE_BASE_CODE_FUNCTION_UDP_WRITE,
EFI_PXE_BASE_CODE_FUNCTION_UDP_READ,
EFI_PXE_BASE_CODE_FUNCTION_ARP,
EFI_PXE_BASE_CODE_FUNCTION_IGMP,
EFI_PXE_BASE_CODE_PXE_FUNCTION_LAST

} EFI_PXE_BASE_CODE_FUNCTION;

Description

This function is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet. Parameters Function and Received specify the type of event.
Parameters PacketLen and Packet specify the packet that generated the event. If these fields
are zero and NULL respectively, then this is a status update callback. If the operation specified by
Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the
operation specified by Function should be aborted, then CALLBACK_STATUS_ABORT should
be returned. Due to the polling nature of UEFI device drivers, a callback function should not
execute for more than 5 ms.

The EFI_PXE_BASE_CODE.SetParameters() function must be called after a Callback
Protocol is installed to enable the use of callbacks.

January 31, 2006
Version 2.0 921

20.5 Boot Integrity Services Protocol

This chapter defines the Boot Integrity Services (BIS) protocol, which is used to check a digital
signature of a data block against a digital certificate for the purpose of an integrity and
authorization check. BIS is primarily used by the Preboot Execution Environment (PXE) Base
Code protocol EFI_PXE_BASE_CODE_PROTOCOL to check downloaded network boot images
before executing them. BIS is an UEFI Boot Services Driver, so its services are also available to
applications written to this specification until the time of ExitBootServices(). More
information about BIS can be found in the Boot Integrity Services Application Programming
Interface Version 1.0.

This section defines the Boot Integrity Services Protocol. This protocol is used to check a digital
signature of a data block against a digital certificate for the purpose of an integrity and
authorization check.

EFI_BIS_PROTOCOL

Summary

The EFI_BIS_PROTOCOL is used to check a digital signature of a data block against a digital
certificate for the purpose of an integrity and authorization check.

GUID
#define EFI_BIS_PROTOCOL_GUID \

{0x0b64aab0,0x5429,0x11d4,0x98,0x16,0x00,0xa0,0xc9,0x1f,
0xad,0xcf}

Protocol Interface Structure
typedef struct _EFI_BIS_PROTOCOL {
 EFI_BIS_INITIALIZE Initialize;
 EFI_BIS_SHUTDOWN Shutdown;
 EFI_BIS_FREE Free;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE
 GetBootObjectAuthorizationCertificate;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG
 GetBootObjectAuthorizationCheckFlag;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN
 GetBootObjectAuthorizationUpdateToken;
 EFI_BIS_GET_SIGNATURE_INFO
 GetSignatureInfo;
 EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION
 UpdateBootObjectAuthorization;
 EFI_BIS_VERIFY_BOOT_OBJECT
 VerifyBootObject;
 EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL
 VerifyObjectWithCredential;
} EFI_BIS_PROTOCOL;

 January 31, 2006
922 Version 2.0

Parameters

Initialize Initializes an application instance of the EFI_BIS protocol,
returning a handle for the application instance. Other functions in
the EFI_BIS protocol require a valid application instance
handle obtained from this function. See the Initialize()
function description.

Shutdown Ends the lifetime of an application instance of the EFI_BIS
protocol, invalidating its application instance handle. The
application instance handle may no longer be used in other
functions in the EFI_BIS protocol. See the Shutdown()
function description.

Free Frees memory structures allocated and returned by other
functions in the EFI_BIS protocol. See the Free() function
description.

GetBootObjectAuthorizationCertificate
Retrieves the current digital certificate (if any) used by the
EFI_BIS protocol as the source of authorization for verifying
boot objects and altering configuration parameters. See the
GetBootObjectAuthorizationCertificate()
function description.

GetBootObjectAuthorizationCheckFlag
Retrieves the current setting of the authorization check flag that
indicates whether or not authorization checks are required for
boot objects. See the
GetBootObjectAuthorizationCheckFlag() function
description.

GetBootObjectAuthorizationUpdateToken
Retrieves an uninterpreted token whose value gets included and
signed in a subsequent request to alter the configuration
parameters, to protect against attempts to “replay” such a
request. See the
GetBootObjectAuthorizationUpdateToken()
function description.

GetSignatureInfo
Retrieves information about the digital signature algorithms
supported and the identity of the installed authorization
certificate, if any. See the GetSignatureInfo() function
description.

UpdateBootObjectAuthorization
Requests that the configuration parameters be altered by
installing or removing an authorization certificate or changing
the setting of the check flag. See the

January 31, 2006
Version 2.0 923

UpdateBootObjectAuthorization() function
description.

VerifyBootObject
Verifies a boot object according to the supplied digital signature
and the current authorization certificate and check flag setting.
See the VerifyBootObject() function description.

VerifyObjectWithCredential

Verifies a data object according to a supplied digital signature
and a supplied digital certificate. See the
VerifyObjectWithCredential() function description.

Description

The EFI_BIS_PROTOCOL provides a set of functions as defined in this chapter. There is no
physical device associated with these functions, however, in the context of UEFI every protocol
operates on a device. Accordingly, BIS installs and operates on a single abstract device that has
only a software representation.

 January 31, 2006
924 Version 2.0

EFI_BIS_PROTOCOL.Initialize()

Summary

Initializes the BIS service, checking that it is compatible with the version requested by the caller.
After this call, other BIS functions may be invoked.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_INITIALIZE)(
 IN EFI_BIS_PROTOCOL *This,
 OUT BIS_APPLICATION_HANDLE *AppHandle,
 IN OUT EFI_BIS_VERSION *InterfaceVersion,
 IN EFI_BIS_DATA *TargetAddress
);

Parameters

This A pointer to the EFI_BIS_PROTOCOL object. The protocol
implementation may rely on the actual pointer value and object
location, so the caller must not copy the object to a new location.

AppHandle The function writes the new BIS_APPLICATION_HANDLE if
successful, otherwise it writes NULL. The caller must eventually
destroy this handle by calling Shutdown(). Type
BIS_APPLICATION_HANDLE is defined in “Related Definitions”
below.

InterfaceVersion
On input, the caller supplies the major version number of the
interface version desired. The minor version number supplied on
input is ignored since interface compatibility is determined solely by
the major version number. On output, both the major and minor
version numbers are updated with the major and minor version
numbers of the interface (and underlying implementation). This
update is done whether or not the initialization was successful. Type
EFI_BIS_VERSION is defined in “Related Definitions” below.

TargetAddress Indicates a network or device address of the BIS platform to connect
to. Local-platform BIS implementations require that the caller sets
TargetAddress.Data to NULL, but otherwise ignores this
parameter. BIS implementations that redirect calls to an agent at a
remote address must define their own format and interpretation of
this parameter outside the scope of this document. For all
implementations, if the TargetAddress is an unsupported value,
the function fails with the error EFI_UNSUPPORTED. Type
EFI_BIS_DATA is defined in “Related Definitions” below.

January 31, 2006
Version 2.0 925

Related Definitions
//***
// BIS_APPLICATION_HANDLE
//***
typedef VOID *BIS_APPLICATION_HANDLE;

This type is an opaque handle representing an initialized instance of the BIS interface. A
BIS_APPLICATION_HANDLE value is returned by the Initialize() function as an “out”
parameter. Other BIS functions take a BIS_APPLICATION_HANDLE as an “in” parameter to
identify the BIS instance.

//***
// EFI_BIS_VERSION
//***
typedef struct _EFI_BIS_VERSION {
 UINT32 Major;
 UINT32 Minor;
} EFI_BIS_VERSION;

Major This describes the major BIS version number. The major version number defines
version compatibility. That is, when a new version of the BIS interface is created
with new capabilities that are not available in the previous interface version, the
major version number is increased.

Minor This describes a minor BIS version number. This version number is increased
whenever a new BIS implementation is built that is fully interface compatible
with the previous BIS implementation. This number may be reset when the major
version number is increased.

This type represents a version number of the BIS interface. This is used as an “in out” parameter of
the Initialize() function for a simple form of negotiation of the BIS interface version
between the caller and the BIS implementation.

 January 31, 2006
926 Version 2.0

//***
// EFI_BIS_VERSION predefined values
// Use these values to initialize EFI_BIS_VERSION.Major
// and to interpret results of Initialize.
//***
#define BIS_CURRENT_VERSION_MAJOR BIS_VERSION_1
#define BIS_VERSION_1 1

These C preprocessor macros supply values for the major version number of an
EFI_BIS_VERSION. At the time of initialization, a caller supplies a value to request a BIS
interface version. On return, the (IN OUT) parameter is over-written with the actual version of the
interface.

//***
// EFI_BIS_DATA
//
// EFI_BIS_DATA instances obtained from BIS must be freed by
// calling Free().
//***
typedef struct _EFI_BIS_DATA {
 UINT32 Length;
 UINT8 *Data;
} EFI_BIS_DATA;

Length The length of the data buffer in bytes.

Data A pointer to the raw data buffer.

This type defines a structure that describes a buffer. BIS uses this type to pass back and forth most
large objects such as digital certificates, strings, etc.. Several of the BIS functions allocate a
EFI_BIS_DATA* and return it as an “out” parameter. The caller must eventually free any
allocated EFI_BIS_DATA* using the Free() function.

Description

This function must be the first BIS function invoked by an application. It passes back a
BIS_APPLICATION_HANDLE value that must be used in subsequent BIS functions. The handle
must be eventually destroyed by a call to the Shutdown() function, thus ending that handle’s
lifetime. After the handle is destroyed, BIS functions may no longer be called with that handle
value. Thus all other BIS functions may only be called between a pair of Initialize() and
Shutdown() functions.

There is no penalty for calling Initialize() multiple times. Each call passes back a distinct
handle value. Each distinct handle must be destroyed by a distinct call to Shutdown(). The
lifetimes of handles created and destroyed with these functions may be overlapped in any way.

January 31, 2006
Version 2.0 927

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_INCOMPATIBLE_VERSION The InterfaceVersion.Major requested by the

caller was not compatible with the interface version of the
implementation. The InterfaceVersion.Major has

been updated with the current interface version.

EFI_UNSUPPORTED This is a local-platform implementation and
TargetAddress.Data was not NULL, or
TargetAddress.Data was any other value that was not
supported by the implementation.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal failure while
initializing a cryptographic software module, or

No cryptographic software module with compatible version was
found, or
A resource limitation was encountered while using a
cryptographic software module.

EFI_INVALID_PARAMETER The This parameter supplied by the caller is NULL or does not
reference a valid EFI_BIS_PROTOCOL object, or
The AppHandle parameter supplied by the caller is NULL or
an invalid memory reference, or
The InterfaceVersion parameter supplied by the caller
is NULL or an invalid memory reference, or
The TargetAddress parameter supplied by the caller is
NULL or an invalid memory reference.

 January 31, 2006
928 Version 2.0

EFI_BIS_PROTOCOL.Shutdown()

Summary

Shuts down an application’s instance of the BIS service, invalidating the application handle. After
this call, other BIS functions may no longer be invoked using the application handle value.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_SHUTDOWN)(
 IN BIS_APPLICATION_HANDLE AppHandle
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of
initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Description

This function shuts down an application’s instance of the BIS service, invalidating the application
handle. After this call, other BIS functions may no longer be invoked using the application handle
value.

This function must be paired with a preceding successful call to the Initialize() function. The
lifetime of an application handle extends from the time the handle was returned from
Initialize() until the time the handle is passed to Shutdown(). If there are other remaining
handles whose lifetime is still active, they may still be used in calling BIS functions.

The caller must free all memory resources associated with this AppHandle that were allocated
and returned from other BIS functions before calling Shutdown(). Memory resources are freed
using the Free() function. Failure to free such memory resources is a caller error, however, this
function does not return an error code under this circumstance. Further attempts to access the
outstanding memory resources cause unspecified results.

January 31, 2006
Version 2.0 929

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_DEVICE_ERROR The function encountered an unexpected internal error while
returning resources associated with a cryptographic software
module, or
The function encountered an internal error while trying to shut down
a cryptographic software module.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

 January 31, 2006
930 Version 2.0

EFI_BIS_PROTOCOL.Free()

Summary

Frees memory structures allocated and returned by other functions in the EFI_BIS protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_FREE)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *ToFree
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of initialization
of the BIS service. Type BIS_APPLICATION_HANDLE is defined in
the Initialize() function description.

ToFree An EFI_BIS_DATA* and associated memory block to be freed. This
EFI_BIS_DATA* must have been allocated by one of the other BIS
functions. Type EFI_BIS_DATA is defined in the Initialize()
function description.

Description

This function deallocates an EFI_BIS_DATA* and associated memory allocated by one of the
other BIS functions.

Callers of other BIS functions that allocate memory in the form of an EFI_BIS_DATA* must
eventually call this function to deallocate the memory before calling the Shutdown() function for
the application handle under which the memory was allocated. Failure to do so causes unspecified
results, and the continued correct operation of the BIS service cannot be guaranteed.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The ToFree parameter is not or is no longer a memory resource
associated with this AppHandle.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

January 31, 2006
Version 2.0 931

EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()

Summary

Retrieves the certificate that has been configured as the identity of the organization designated as
the source of authorization for signatures of boot objects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **Certificate
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of
initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Certificate The function writes an allocated EFI_BIS_DATA* containing the Boot
Object Authorization Certificate object. The caller must eventually free
the memory allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Description

This function retrieves the certificate that has been configured as the identity of the organization
designated as the source of authorization for signatures of boot objects.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_NOT_FOUND There is no Boot Object Authorization Certificate currently installed.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The Certificate parameter supplied by the caller is NULL or
an invalid memory reference.

 January 31, 2006
932 Version 2.0

EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()

Summary

Retrieves the current status of the Boot Authorization Check Flag.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT BOOLEAN *CheckIsRequired
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of initialization of

the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

CheckIsRequired The function writes the value TRUE if a Boot Authorization Check is
currently required on this platform, otherwise the function writes
FALSE.

Description

This function retrieves the current status of the Boot Authorization Check Flag (in other words,
whether or not a Boot Authorization Check is currently required on this platform).

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid
application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The CheckIsRequired parameter supplied by the caller is
NULL or an invalid memory reference.

January 31, 2006
Version 2.0 933

EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()

Summary

Retrieves a unique token value to be included in the request credential for the next update of any
parameter in the Boot Object Authorization set (Boot Object Authorization Certificate and Boot
Authorization Check Flag).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **UpdateToken
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of initialization of

the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

UpdateToken The function writes an allocated EFI_BIS_DATA* containing the new
unique update token value. The caller must eventually free the memory
allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

Description

This function retrieves a unique token value to be included in the request credential for the next
update of any parameter in the Boot Object Authorization set (Boot Object Authorization
Certificate and Boot Authorization Check Flag). The token value is unique to this platform,
parameter set, and instance of parameter values. In particular, the token changes to a new unique
value whenever any parameter in this set is changed.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module.

EFI_INVALID_PARAMETER The UpdateToken parameter supplied by the caller is NULL or

an invalid memory reference.

 January 31, 2006
934 Version 2.0

EFI_BIS_PROTOCOL.GetSignatureInfo()

Summary

Retrieves a list of digital certificate identifier, digital signature algorithm, hash algorithm, and key-
length combinations that the platform supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_SIGNATURE_INFO)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **SignatureInfo
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of initialization of

the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

SignatureInfo
The function writes an allocated EFI_BIS_DATA* containing the array
of EFI_BIS_SIGNATURE_INFO structures representing the supported
digital certificate identifier, algorithm, and key length combinations. The
caller must eventually free the memory allocated by this function using
the function Free(). Type EFI_BIS_DATA is defined in the
Initialize() function description. Type
EFI_BIS_SIGNATURE_INFO is defined in “Related Definitions”
below.

Related Definitions
//***
// EFI_BIS_SIGNATURE_INFO
//***
typedef struct _EFI_BIS_SIGNATURE_INFO {
 BIS_CERT_ID CertificateID;
 BIS_ALG_ID AlgorithmID;
 UINT16 KeyLength;
} EFI_BIS_SIGNATURE_INFO;

CertificateID A shortened value identifying the platform’s currently
configured Boot Object Authorization Certificate, if one is
currently configured. The shortened value is derived from the
certificate as defined in the Related Definition for
BIS_CERT_ID below. If there is no certificate currently
configured, the value is one of the reserved
BIS_CERT_ID_XXX values defined below. Type

January 31, 2006
Version 2.0 935

BIS_CERT_ID and its predefined reserved values are defined
in “Related Definitions” below.

AlgorithmID A predefined constant representing a particular digital signature
algorithm. Often this represents a combination of hash algorithm
and encryption algorithm, however, it may also represent a
standalone digital signature algorithm. Type BIS_ALG_ID and
its permitted values are defined in “Related Definitions” below.

KeyLength The length of the public key, in bits, supported by this digital
signature algorithm.

This type defines a digital certificate, digital signature algorithm, and key-length combination that
may be supported by the BIS implementation. This type is returned by GetSignatureInfo()
to describe the combination(s) supported by the implementation.

//***
// BIS_GET_SIGINFO_COUNT macro
// Tells how many EFI_BIS_SIGNATURE_INFO elements are contained
// in a EFI_BIS_DATA struct pointed to by the provided
// EFI_BIS_DATA*.
//***
#define BIS_GET_SIGINFO_COUNT(BisDataPtr) \
 ((BisDataPtr)->Length/sizeof(EFI_BIS_SIGNATURE_INFO))

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The number of EFI_BIS_SIGNATURE_INFO elements
contained in the array.

This macro computes how many EFI_BIS_SIGNATURE_INFO elements are contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo(). The number returned is the
count of items in the list of supported digital certificate, digital signature algorithm, and key-
length combinations.

//***
// BIS_GET_SIGINFO_ARRAY macro
// Produces a EFI_BIS_SIGNATURE_INFO* from a given
// EFI_BIS_DATA*.
//***
#define BIS_GET_SIGINFO_ARRAY(BisDataPtr) \
 ((EFI_BIS_SIGNATURE_INFO*)(BisDataPtr)->Data)

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The pointer to the EFI_BIS_SIGNATURE_INFO array, cast as
an EFI_BIS_SIGNATURE_INFO*.

 January 31, 2006
936 Version 2.0

This macro returns a pointer to the EFI_BIS_SIGNATURE_INFO array contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo() representing the list of
supported digital certificate, digital signature algorithm, and key-length combinations.

//***
// BIS_CERT_ID
//***
typedef UINT32 BIS_CERT_ID;

This type represents a shortened value that identifies the platform’s currently configured Boot
Object Authorization Certificate. The value is the first four bytes, in “little-endian” order, of the
SHA-1 hash of the certificate, except that the most-significant bits of the second and third bytes
are reserved, and must be set to zero regardless of the outcome of the hash function. This type is
included in the array of values returned from the GetSignatureInfo() function to indicate
the required source of a signature for a boot object or a configuration update request. There are a
few predefined reserved values with special meanings as described below.

//***
// BIS_CERT_ID predefined values
// Currently defined values for EFI_BIS_SIGNATURE_INFO.
// CertificateId.
//***
#define BIS_CERT_ID_DSA BIS_ALG_DSA //CSSM_ALGID_DSA
#define BIS_CERT_ID_RSA_MD5 BIS_ALG_RSA_MD5 //CSSM_ALGID_MD5_WITH_RSA

These C preprocessor symbols provide values for the BIS_CERT_ID type. These values are
used when the platform has no configured Boot Object Authorization Certificate. They indicate
the signature algorithm that is supported by the platform. Users must be careful to avoid
constructing Boot Object Authorization Certificates that transform to BIS_CERT_ID values that
collide with these predefined values or with the BIS_CERT_ID values of other Boot Object
Authorization Certificates they use.

//***
// BIS_CERT_ID_MASK
// The following is a mask value that gets applied to the
// truncated hash of a platform Boot Object Authorization
// Certificate to create the CertificateId. A CertificateId
// must not have any bits set to the value 1 other than bits in
// this mask.
//***
#define BIS_CERT_ID_MASK (0xFF7F7FFF)

This C preprocessor symbol may be used as a bit-wise “AND” value to transform the first four
bytes (in little-endian order) of a SHA-1 hash of a certificate into a certificate ID with the
“reserved” bits properly set to zero.

January 31, 2006
Version 2.0 937

//***
// BIS_ALG_ID
//***
typedef UINT16 BIS_ALG_ID;

This type represents a digital signature algorithm. A digital signature algorithm is often composed
of a particular combination of secure hash algorithm and encryption algorithm. This type also
allows for digital signature algorithms that cannot be decomposed. Predefined values for this type
are as defined below.

//***
// BIS_ALG_ID predefined values
// Currently defined values for EFI_BIS_SIGNATURE_INFO.
// AlgorithmID. The exact numeric values come from “Common
// Data Security Architecture (CDSA) Specification.”
//***
#define BIS_ALG_DSA (41) //CSSM_ALGID_DSA
#define BIS_ALG_RSA_MD5 (42) //CSSM_ALGID_MD5_WITH_RSA

These values represent the two digital signature algorithms predefined for BIS. Each
implementation of BIS must support at least one of these digital signature algorithms. Values for
the digital signature algorithms are chosen by an industry group known as The Open Group.
Developers planning to support additional digital signature algorithms or define new digital
signature algorithms should refer to The Open Group for interoperable values to use.

Description

This function retrieves a list of digital certificate identifier, digital signature algorithm, hash
algorithm, and key-length combinations that the platform supports. The list is an array of
(certificate id, algorithm id, key length) triples, where the certificate id is derived from the
platform’s Boot Object Authorization Certificate as described in the Related Definition for
BIS_CERT_ID above, the algorithm id represents the combination of signature algorithm and
hash algorithm, and the key length is expressed in bits. The number of array elements can be
computed using the Length field of the retrieved EFI_BIS_DATA*.

The retrieved list is in order of preference. A digital signature algorithm for which the platform has
a currently configured Boot Object Authorization Certificate is preferred over any digital signature
algorithm for which there is not a currently configured Boot Object Authorization Certificate. Thus
the first element in the list has a CertificateID representing a Boot Object Authorization
Certificate if the platform has one configured. Otherwise the CertificateID of the first
element in the list is one of the reserved values representing a digital signature algorithm.

 January 31, 2006
938 Version 2.0

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module, or
The function encountered an unexpected internal consistency
check failure (possible corruption of stored Boot Object
Authorization Certificate).

EFI_INVALID_PARAMETER The SignatureInfo parameter supplied by the caller is NULL

or an invalid memory reference.

January 31, 2006
Version 2.0 939

EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()

Summary

Updates one of the configurable parameters of the Boot Object Authorization set (Boot Object
Authorization Certificate or Boot Authorization Check Flag).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *RequestCredential,
 OUT EFI_BIS_DATA **NewUpdateToken
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of initialization of

the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

RequestCredential
This is a Signed Manifest with embedded attributes that carry the details
of the requested update. The required syntax of the Signed Manifest is
described in the Related Definition for Manifest Syntax below. The key
used to sign the request credential must be the private key corresponding
to the public key in the platform’s configured Boot Object Authorization
Certificate. Authority to update parameters in the Boot Object
Authorization set cannot be delegated.

 If there is no Boot Object Authorization Certificate, the request
credential may be signed with any private key. In this case, this function
interacts with the user in a platform-specific way to determine whether
the operation should succeed. Type EFI_BIS_DATA is defined in the
Initialize() function description.

NewUpdateToken The function writes an allocated EFI_BIS_DATA* containing the new
unique update token value. The caller must eventually free the memory
allocated by this function using the function Free(). Type
EFI_BIS_DATA is defined in the Initialize() function
description.

 January 31, 2006
940 Version 2.0

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap
archive as described in [SM spec]: a manifest file, a signer’s information file, and a signature
block file. These three parts, along with examples are described in the following sections. In these
examples, text in parentheses is a description of the text that would appear in the signed manifest.
Text outside of parentheses must appear exactly as shown. Also note that manifest files and
signer’s information files must conform to a 72-byte line-length limit. Continuation lines (lines
beginning with a single “space” character) are used for lines longer than 72 bytes. The examples
given here follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII (not
Unicode) text files. In cases where these files contain a base-64 encoded string, the string is an
ASCII (not Unicode) string before base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the reserved
name as shown in the example below. This data object is a zero-length object whose sole purpose
in the manifest is to serve as a named collection point for the attributes that carry the details of the
requested update. The attributes are also contained in the manifest file. An example manifest file
is shown below.

January 31, 2006
Version 2.0 941

Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)
X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
Name: memory:UpdateRequestParameters

This identifies the manifest section that carries a dummy zero-length data object serving as the
collection point for the attribute values appearing later in this manifest section (lines prefixed
with “X-Intel-BIS-”). The string “memory:UpdateRequestParameters” must
appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object.
These are required even though the data object is zero-length. For systems with DSA signing,
SHA-1 hash, and 1024-bit key length, the digest algorithm must be “SHA-1.” For systems with
RSA signing, MD5 hash, and 512-bit key length, the digest algorithm must be “MD5.” Multiple
algorithms can be specified as a whitespace-separated list. For every digest algorithm XXX listed,
there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)

Gives the corresponding digest value for the dummy zero-length data object. The value is base-64
encoded. Note that for both MD5 and SHA-1, the digest value for a zero-length data object is not
zero.
X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)

A named attribute value that distinguishes updates of BIS parameters from updates of other
parameters. The left-hand attribute-name keyword must appear exactly as shown. The GUID
value for the right-hand side is always the same, and can be found under the preprocessor symbol

 January 31, 2006
942 Version 2.0

BOOT_OBJECT_AUTHORIZATION_PARMSET_GUIDVALUE. The representation inserted into
the manifest is base-64 encoded.

Note the “X-Intel-BIS-” prefix on this and the following attributes. The “X-” part of the
prefix was chosen to avoid collisions with future reserved keywords defined by future versions of
the signed manifest specification. The “Intel-BIS-” part of the prefix was chosen to avoid
collisions with other user-defined attribute names within the user-defined attribute name space.
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)

A named attribute value that makes this update of BIS parameters different from any other on the
same target platform. The left-hand attribute-name keyword must appear exactly as shown. The
value for the right-hand side is generally different for each update-request manifest generated.
The value to be base-64 encoded is retrieved through the functions
GetBootObjectAuthorizationUpdateToken() or
UpdateBootObjectAuthorization().
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)

A named attribute value that indicates which BIS parameter is to be updated. The left-hand
attribute-name keyword must appear exactly as shown. The value for the right-hand side is the
base-64 encoded representation of one of the two strings shown.
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A named attribute value that indicates the new value to be set for the indicated parameter. The
left-hand attribute-name keyword must appear exactly as shown. The value for the right-hand side
is the appropriate base-64 encoded new value to be set. In the case of the Boot Object
Authorization Certificate, the value is the new digital certificate raw data. A zero-length value
removes the certificate altogether. In the case of the Boot Authorization Check Flag, the value is a
single-byte Boolean value, where a nonzero value “turns on” the check and a zero value “turns
off” the check.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file
carries the integrity data for the attributes in the corresponding section in the manifest file. An
example signer’s information file is shown below.

January 31, 2006
Version 2.0 943

Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)
SignerInformationName: BIS_UpdateManifestSignerInfoName

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every signer’s information file created. The Win32 function UuidCreate() can be used for this
on Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a
simple encoding scheme for representing binary values that uses only printing characters. Base-
64 encoding is described in [BASE-64].
SignerInformationName: BIS_UpdateManifestSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: memory:UpdateRequestParameters

This identifies the section in the signer’s information file corresponding to the section with the
same name in the manifest file described earlier. The string
“memory:UpdateRequestParameters” must appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The
digest algorithms specified here must match those specified in the manifest file. For every digest
algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the
blank line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or
end-of-file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.

 January 31, 2006
944 Version 2.0

There must be a correspondence between the name of the signer’s information file and the
signature block file. The base name matches, and the three-character extension is modified to
reflect the signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.
• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

//**
// “X-Intel-BIS-ParameterSet” Attribute value
// Binary Value of “X-Intel-BIS-ParameterSet” Attribute.
// (Value is Base-64 encoded in actual signed manifest).
//**

#define BOOT_OBJECT_AUTHORIZATION_PARMSET_GUID \
 {0xedd35e31,0x7b9,0x11d2,0x83,0xa3,0x0,0xa0,0xc9,0x1f,0xad,0xcf}

This preprocessor symbol gives the value for an attribute inserted in signed manifests to distinguish
updates of BIS parameters from updates of other parameters. The representation inserted into the
manifest is base-64 encoded.

January 31, 2006
Version 2.0 945

Description

This function updates one of the configurable parameters of the Boot Object Authorization set
(Boot Object Authorization Certificate or Boot Authorization Check Flag). It passes back a new
unique update token that must be included in the request credential for the next update of any
parameter in the Boot Object Authorization set. The token value is unique to this platform,
parameter set, and instance of parameter values. In particular, the token changes to a new unique
value whenever any parameter in this set is changed.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid
application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module.

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter was invalid (could not be parsed),
 or
The signed manifest supplied as the RequestCredential

parameter failed to verify using the installed Boot Object
Authorization Certificate or the signer’s Certificate in
RequestCredential,
 or
Platform-specific authorization failed,
 or

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-ParameterSet
attribute value,
 or
The X-Intel-BIS-ParameterSet attribute value

supplied did not match the required GUID value,
 or
The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-
ParameterSetToken attribute value,
 or
The X-Intel-BIS-ParameterSetToken attribute value supplied
did not match the platform’s current update-token value,
 or
The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-ParameterId
attribute value,
 or
The X-Intel-BIS-ParameterId attribute value supplied did not
match one of the permitted values,
 or

 January 31, 2006
946 Version 2.0

The signed manifest supplied as the RequestCredential
parameter did not include the X-Intel-BIS-ParameterValue
attribute value,
 or
Any other required attribute value was missing,
 or
The new certificate supplied was too big to store,
 or
The new certificate supplied was invalid (could not be parsed),
 or
The new certificate supplied had an unsupported combination of
key algorithm and key length,
 or

The new check flag value supplied is the wrong length (1 byte),
 or
The signed manifest supplied as the RequestCredential
parameter did not include a signer certificate,
 or
The signed manifest supplied as the RequestCredential

parameter did not include the manifest section named
“memory:UpdateRequestParameters,”
 or

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter had a signing certificate with an unsupported public-key
algorithm,
 or

The manifest section named
“memory:UpdateRequestParameters” did not include a digest
with a digest algorithm corresponding to the signing certificate’s
public key algorithm,
 or
The zero-length data object referenced by the manifest section
named “memory:UpdateRequestParameters” did not verify
with the digest supplied in that manifest section,
 or
The signed manifest supplied as the RequestCredential

parameter did not include a signer’s information file with the
SignerInformationName identifying attribute value
“BIS_UpdateManifestSignerInfoName,”
 or
There were no signers associated with the identified signer’s
information file,
 or
There was more than one signer associated with the identified
signer’s information file,
 or
Any other unspecified security violation occurred.

January 31, 2006
Version 2.0 947

EFI_DEVICE_ERROR An unexpected internal error occurred while analyzing the new
certificate’s key algorithm,
 or
An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,
 or
An unexpected internal error occurred in a cryptographic software
module.

EFI_INVALID_PARAMETER The RequestCredential parameter supplied by the caller is
NULL or an invalid memory reference,
 or
The RequestCredential.Data parameter supplied by the
caller is NULL or an invalid memory reference,
 or
The NewUpdateToken parameter supplied by the caller is
NULL or an invalid memory reference.

 January 31, 2006
948 Version 2.0

EFI_BIS_PROTOCOL.VerifyBootObject()

Summary

Verifies the integrity and authorization of the indicated data object according to the
indicated credentials.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_VERIFY_BOOT_OBJECT)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *Credentials,
 IN EFI_BIS_DATA *DataObject,
 OUT BOOLEAN *IsVerified
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of initialization of

the BIS service. Type BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Credentials A Signed Manifest containing verification information for the indicated
data object. The Manifest signature itself must meet the requirements
described below. This parameter is optional if a Boot Authorization
Check is currently not required on this platform (Credentials.Data
may be NULL), otherwise this parameter is required. The required syntax
of the Signed Manifest is described in the Related Definition for
Manifest Syntax below. Type EFI_BIS_DATA is defined in the
Initialize() function description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

IsVerified The function writes TRUE if the verification succeeded, otherwise
FALSE.

January 31, 2006
Version 2.0 949

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap
archive as described in [SM spec]: a manifest file, a signer’s information file, and a signature block
file. These three parts along with examples are described in the following sections. In these
examples, text in parentheses is a description of the text that would appear in the signed manifest.
Text outside of parentheses must appear exactly as shown. Also note that manifest files and signer’s
information files must conform to a 72-byte line-length limit. Continuation lines (lines beginning
with a single “space” character) are used for lines longer than 72 bytes. The examples given here
follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII (not
Unicode) text files. In cases where these files contain a base-64 encoded string, the string is an
ASCII (not Unicode) string before base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the reserved
name as shown in the example below. This data object is the Boot Object to be verified. An
example manifest file is shown below.
Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 boot object)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
 Name: memory:BootObject

 January 31, 2006
950 Version 2.0

This identifies the section that carries the integrity data for the Boot Object. The string
“memory:BootObject” must appear exactly as shown. Note that the Boot Object cannot be
found directly from this manifest. A caller verifying the Boot Object integrity must load the Boot
Object into memory and specify its memory location explicitly to this verification function through
the DataObject parameter.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be
“SHA-1.” For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm
must be “MD5.” Multiple algorithms can be specified as a whitespace-separated list. For every
digest algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the boot object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the corresponding section in the manifest file. An example signer’s
information file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
 unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every signer’s information file created. The Win32 function UuidCreate() can be used for this
on Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64
encoding is described in [BASE-64].
SignerInformationName: BIS_VerifiableObjectSignerInfoName

January 31, 2006
Version 2.0 951

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: memory:BootObject

This identifies the section in the signer’s information file corresponding to the section with the
same name in the manifest file described earlier. The string “memory:BootObject” must
appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The
digest algorithms specified here must match those specified in the manifest file. For every digest
algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank
line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or end-of-
file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.
• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

 January 31, 2006
952 Version 2.0

Description

This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials. The rules for successful verification depend on whether or not a Boot
Authorization Check is currently required on this platform.

If a Boot Authorization Check is not currently required on this platform, no authorization check is
performed. However, the following rules are applied for an integrity check:

• In this case, the credentials are optional. If they are not supplied (Credentials.Data is
NULL), no integrity check is performed, and the function returns immediately with a “success”
indication and IsVerified is TRUE.

• If the credentials are supplied (Credentials.Data is other than NULL), integrity checks
are performed as follows:

 Verify the credentials – The credentials parameter is a valid signed Manifest, with a single
signer. The signer’s identity is included in the credential as a certificate.

 Verify the data object – The Manifest must contain a section named
“memory:BootObject,” with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed
over the specified DataObject data.

 If these checks succeed, the function returns with a “success” indication and IsVerified
is TRUE. Otherwise, IsVerified is FALSE and the function returns with a “security
violation” indication.

If a Boot Authorization Check is currently required on this platform, authorization and integrity
checks are performed. The integrity check is the same as in the case above, except that it is
required. The following rules are applied:

• Verify the credentials – The credentials parameter is required in this case
(Credentials.Data must be other than NULL). The credentials parameter is a valid Signed
Manifest, with a single signer. The signer’s identity is included in the credential as a certificate.

• Verify the data object – The Manifest must contain a section named
“memory:BootObject,” with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over the
specified DataObject data.

• Do Authorization check – This happens one of two ways depending on whether or not the
platform currently has a Boot Object Authorization Certificate configured.

 If a Boot Object Authorization Certificate is not currently configured, this function
interacts with the user in a platform-specific way to determine whether the operation should
succeed.

 If a Boot Object Authorization Certificate is currently configured, this function uses the
Boot Object Authorization Certificate to determine whether the operation should succeed.
The public key certified by the signer’s certificate must match the public key in the Boot
Object Authorization Certificate configured for this platform. The match must be direct,
that is, the signature authority cannot be delegated along a certificate chain.

January 31, 2006
Version 2.0 953

 If these checks succeed, the function returns with a “success” indication and IsVerified
is TRUE. Otherwise, IsVerified is FALSE and the function returns with a “security
violation” indication.

Note that if a Boot Authorization Check is currently required on this platform this function always
performs an authorization check, either through platform-specific user interaction or through a
signature generated with the private key corresponding to the public key in the platform’s Boot
Object Authorization Certificate.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The Boot Authorization Check is currently required on this platform
and the Credentials.Data parameter supplied by the caller
is NULL or an invalid memory reference,
 or
The DataObject parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The DataObject.Data parameter supplied by the caller is
NULL or an invalid memory reference,
 or
The IsVerified parameter supplied by the caller is NULL or
an invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter

was invalid (could not be parsed),
 or
The signed manifest supplied as the Credentials parameter
failed to verify using the installed Boot Object Authorization
Certificate or the signer’s Certificate in Credentials,

 or
Platform-specific authorization failed,
 or
Any other required attribute value was missing,
 or
The signed manifest supplied as the Credentials parameter

did not include a signer certificate,
 or

 January 31, 2006
954 Version 2.0

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter

did not include the manifest section named
“memory:BootObject,”
 or
The signed manifest supplied as the Credentials parameter
had a signing certificate with an unsupported public-key algorithm,
 or
The manifest section named “memory:BootObject” did not
include a digest with a digest algorithm corresponding to the
signing certificate’s public key algorithm,
 or
The data object supplied as the DataObject parameter and
referenced by the manifest section named “memory:BootObject”
did not verify with the digest supplied in that manifest section,
 or
The signed manifest supplied as the Credentials parameter

did not include a signer’s information file with the
SignerInformationName identifying attribute value
“BIS_VerifiableObjectSignerInfoName,”
 or
There were no signers associated with the identified signer’s
information file,
 or
There was more than one signer associated with the identified
signer’s information file,
 or
The platform’s check flag is “on” (requiring authorization checks)
but the Credentials.Data supplied by the caller is NULL,
 or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,
 or
An unexpected internal error occurred in a cryptographic software
module.

January 31, 2006
Version 2.0 955

EFI_BIS_PROTOCOL.VerifyObjectWithCredential()

Summary

Verifies the integrity and authorization of the indicated data object according to the indicated
credentials and authority certificate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *Credentials,
 IN EFI_BIS_DATA *DataObject,
 IN EFI_BIS_DATA *SectionName,
 IN EFI_BIS_DATA *AuthorityCertificate,
 OUT BOOLEAN *IsVerified
);

Parameters

AppHandle An opaque handle that identifies the caller’s instance of
initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Credentials A Signed Manifest containing verification information for the
indicated data object. The Manifest signature itself must meet the
requirements described below. The required syntax of the Signed
Manifest is described in the Related Definition of Manifest
Syntax below. Type EFI_BIS_DATA is defined in the
Initialize() function description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

SectionName An ASCII (not Unicode) string giving the section name in the
manifest holding the verification information (in other words,
hash value) that corresponds to DataObject. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

 January 31, 2006
956 Version 2.0

AuthorityCertificate
A digital certificate whose public key must match the signer’s
public key which is found in the credentials. This parameter is
optional (AuthorityCertificate.Data may be NULL).
Type EFI_BIS_DATA is defined in the Initialize()
function description.

IsVerified The function writes TRUE if the verification was successful.
Otherwise, the function writes FALSE.

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap
archive as described in [SM spec]: a manifest file, a signer’s information file, and a signature block
file. These three parts along with examples are described in the following sections. In these
examples, text in parentheses is a description of the text that would appear in the signed manifest.
Text outside of parentheses must appear exactly as shown. Also note that manifest files and signer’s
information files must conform to a 72-byte line-length limit. Continuation lines (lines beginning
with a single “space” character) are used for lines longer than 72 bytes. The examples given here
follow this rule for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII (not
Unicode) text files. In cases where these files contain a base-64 encoded string, the string is an
ASCII (not Unicode) string before base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the caller-
chosen name as shown in the example below. This data object is the Data Object to be verified. An
example manifest file is shown below.
Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 data object)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

January 31, 2006
Version 2.0 957

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
Name: (a memory-type data object name)

This identifies the section that carries the integrity data for the target Data Object. The right-hand
string must obey the syntax for memory-type references, that is, it is of the form
“memory:SomeUniqueName.” The “memory:” part of this string must appear exactly. The
“SomeUniqueName” part is chosen by the caller. It must be unique within the section names in
this manifest file. The entire “memory:SomeUniqueName” string must match exactly the
corresponding string in the signer’s information file described below. Furthermore, this entire string
must match the value given for the SectionName parameter to this function. Note that the target
Data Object cannot be found directly from this manifest. A caller verifying the Data Object
integrity must load the Data Object into memory and specify its memory location explicitly to this
verification function through the DataObject parameter.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be
“SHA-1.” For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm
must be “MD5.” Multiple algorithms can be specified as a whitespace-separated list. For every
digest algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the data object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the corresponding section in the manifest file. An example signer’s
information file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique GUID)

 January 31, 2006
958 Version 2.0

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID
for every signer’s information file created. The Win32 function UuidCreate() can be used for this
on Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64
encoding is described in [BASE-64].
SignerInformationName: BIS_VerifiableObjectSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: (a memory-type data object name)

This identifies the section in the signer’s information file corresponding to the section with the
same name in the manifest file described earlier. The right-hand string must match exactly the
corresponding string in the manifest file described above.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The
digest algorithms specified here must match those specified in the manifest file. For every digest
algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank
line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or end-of-
file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.
• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

January 31, 2006
Version 2.0 959

Description

This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials and authority certificate.

Both an integrity check and an authorization check are performed. The rules for a successful
integrity check are:

• Verify the credentials – The credentials parameter is a valid Signed Manifest, with a single
signer. The signer’s identity is included in the credential as a certificate.

• Verify the data object – The Manifest must contain a section with the name as specified by the
SectionName parameter, with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over the
data specified by the DataObject parameter of this function.

The authorization check is optional. It is performed only if the
AuthorityCertificate.Data parameter is other than NULL. If it is other than NULL, the
rules for a successful authorization check are:

• The AuthorityCertificate parameter is a valid digital certificate. There is no
requirement regarding the signer (issuer) of this certificate.

• The public key certified by the signer’s certificate must match the public key in the
AuthorityCertificate. The match must be direct, that is, the signature authority cannot
be delegated along a certificate chain.

If all of the integrity and authorization check rules are met, the function returns with a “success”
indication and IsVerified is TRUE. Otherwise, it returns with a nonzero specific error code and
IsVerified is FALSE.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The Credentials.Data parameter supplied by the caller is
NULL or an invalid memory reference,
 or
The Credentials.Length supplied by the caller is zero,

 or
The DataObject parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The DataObject.Data parameter supplied by the caller is
NULL or an invalid memory reference,
 or

 January 31, 2006
960 Version 2.0

EFI_INVALID_PARAMETER The SectionName parameter supplied by the caller is NULL or

an invalid memory reference,
 or
The SectionName.Data parameter supplied by the caller is
NULL or an invalid memory reference,
 or
The SectionName.Length supplied by the caller is zero,

 or
The AuthorityCertificate parameter supplied by the
caller is NULL or an invalid memory reference,
 or
The IsVerified parameter supplied by the caller is NULL or
an invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_SECURITY_VIOLATION The Credentials.Data supplied by the caller is NULL,

 or
The AuthorityCertificate supplied by the caller was
invalid (could not be parsed),
 or
The signed manifest supplied as Credentials failed to verify
using the AuthorityCertificate supplied by the caller or

the manifest’s signer’s certificate,
 or
Any other required attribute value was missing,
 or
The signed manifest supplied as the Credentials parameter
did not include a signer certificate,
 or
The signed manifest supplied as the Credentials parameter

did not include the manifest section named according to
SectionName,

 or
The signed manifest supplied as the Credentials parameter

had a signing certificate with an unsupported public-key algorithm,
 or
The manifest section named according to SectionName did not
include a digest with a digest algorithm corresponding to the
signing certificate’s public key algorithm,
 or
The data object supplied as the DataObject parameter and

referenced by the manifest section named according to
SectionName did not verify with the digest supplied in that

manifest section,
 or

January 31, 2006
Version 2.0 961

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter

did not include a signer’s information file with the
SignerInformationName identifying attribute value
“BIS_VerifiableObjectSignerInfoName,”
 or
There were no signers associated with the identified signer’s
information file,
 or
There was more than one signer associated with the identified
signer’s information file,
 or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,
 or
An unexpected internal error occurred in a cryptographic software
module.

 January 31, 2006
962 Version 2.0

January 31, 2006
Version 2.0 963

21
Network Protocols — Managed Network

21.1 EFI Managed Network Protocol

This chapter defines the EFI Managed Network Protocol. It is split into the following two main
sections:

• Managed Network Service Binding Protocol (MNSBP)
• Managed Network Protocol (MNP)

The MNP provides raw (unformatted) asynchronous network packet I/O services. These services
make it possible for multiple-event-driven drivers and applications to access and use the system
network interfaces at the same time.

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL

Summary
The MNSBP is used to locate communication devices that are supported by an MNP driver and to
create and destroy instances of the MNP child protocol driver that can use the underlying
communications device.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the MNP.

GUID
#define EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID \

{0xf36ff770,0xa7e1,0x42cf,0x9ed2,0x56,0xf0,0xf2,0x71,0xf4,
0x4c}

Description
A network application (or driver) that requires shared network access can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
MNSBP GUID. Each device with a published MNSBP GUID supports MNP and may be available
for use.

After a successful call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.CreateChild() function,
the child MNP driver instance is in an unconfigured state; it is not ready to send and receive data
packets.

Before a network application terminates execution, every successful call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.CreateChild() function
must be matched with a call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

 January 31, 2006
964 Version 2.0

EFI_MANAGED_NETWORK_PROTOCOL

Summary

The MNP is used by network applications (and drivers) to perform raw (unformatted) asynchronous
network packet I/O.

GUID
#define EFI_MANAGED_NETWORK_PROTOCOL_GUID \

{0x3b95aa31,0x3793,0x434b,0x8667,0xc8,0x07,0x08,0x92,0xe0,0x5e}

Protocol Interface Structure
typedef struct _EFI_MANAGED_NETWORK_PROTOCOL {
 EFI_MANAGED_NETWORK_GET_MODE_DATA GetModeData;
 EFI_MANAGED_NETWORK_CONFIGURE Configure;
 EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC McastIpToMac;
 EFI_MANAGED_NETWORK_GROUPS Groups;
 EFI_MANAGED_NETWORK_TRANSMIT Transmit;
 EFI_MANAGED_NETWORK_RECEIVE Receive;
 EFI_MANAGED_NETWORK_CANCEL Cancel;
 EFI_MANAGED_NETWORK_POLL Poll;
} EFI_MANAGED_NETWORK_PROTOCOL;

Parameters

GetModeData Returns the current MNP child driver operational parameters.
May also support returning underlying Simple Network Protocol
(SNP) driver mode data. See the GetModeData() function
description.

Configure Sets and clears operational parameters for an MNP child driver.
See the Configure() function description.

McastIpToMac Translates a software (IP) multicast address to a hardware
(MAC) multicast address. This function may be unsupported in
some MNP implementations. See the McastIpToMac()
function description.

Groups Enables and disables receive filters for multicast addresses. This
function may be unsupported in some MNP implementations.
See the Groups() function description.

Transmit Places asynchronous outgoing data packets into the transmit
queue. See the Transmit() function description.

Receive Places an asynchronous receiving request into the receiving
queue. See the Receive() function description.

January 31, 2006
Version 2.0 965

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The services that are provided by MNP child drivers make it possible for multiple drivers and
applications to send and receive network traffic using the same network device.

Before any network traffic can be sent or received, the
EFI_MANAGED_NETWORK_PROTOCOL.Configure() function must initialize the operational
parameters for the MNP child driver instance. Once configured, data packets can be received and
sent using the following functions:

• EFI_MANAGED_NETWORK_PROTOCOL.Transmit()

• EFI_MANAGED_NETWORK_PROTOCOL.Receive()

• EFI_MANAGED_NETWORK_PROTOCOL.Poll()

 January 31, 2006
966 Version 2.0

EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()

Summary

Returns the operational parameters for the current MNP child driver. May also support returning
the underlying SNP driver mode data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_GET_MODE_DATA) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

MnpConfigData Pointer to storage for MNP operational parameters. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
“Related Definitions” below.

SnpModeData Pointer to storage for SNP operational parameters. This feature
may be unsupported. Type EFI_SIMPLE_NETWORK_MODE is
defined in the EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function is used to read the current mode data (operational parameters)
from the MNP or the underlying SNP.

January 31, 2006
Version 2.0 967

Related Definitions
//**
// EFI_MANAGED_NETWORK_CONFIG_DATA
//**
typedef struct {
 UINT32 ReceivedQueueTimeoutValue;
 UINT32 TransmitQueueTimeoutValue;
 UINT16 ProtocolTypeFilter;
 BOOLEAN EnableUnicastReceive;
 BOOLEAN EnableMulticastReceive;
 BOOLEAN EnableBroadcastReceive;
 BOOLEAN EnablePromiscuousReceive;
 BOOLEAN FlushQueuesOnReset;
 BOOLEAN EnableReceiveTimestamps;
 BOOLEAN DisableBackgroundPolling;
} EFI_MANAGED_NETWORK_CONFIG_DATA;

ReceivedQueueTimeoutValue
Timeout value for a UEFI one-shot timer event. A packet that
has not been removed from the MNP receive queue by a call to
EFI_MANAGED_NETWORK_PROTOCOL.Poll() will be
dropped if its receive timeout expires. If this value is zero, then
there is no receive queue timeout. If the receive queue fills up,
then the device receive filters are disabled until there is room in
the receive queue for more packets. The startup default value is
10,000,000 (10 seconds).

TransmitQueueTimeoutValue
Timeout value for a UEFI one-shot timer event. A packet that
has not been removed from the MNP transmit queue by a call to
EFI_MANAGED_NETWORK_PROTOCOL.Poll() will be
dropped if its transmit timeout expires. If this value is zero, then
there is no transmit queue timeout. If the transmit queue fills up,
then the
EFI_MANAGED_NETWORK_PROTOCOL.Transmit()
function will return EFI_NOT_READY until there is room in the
transmit queue for more packets. The startup default value is
10,000,000 (10 seconds).

ProtocolTypeFilter Ethernet type II 16-bit protocol type in host byte order. Valid
values are zero and 1,500 to 65,535. Set to zero to receive
packets with any protocol type. The startup default value is zero.

EnableUnicastReceive
Set to TRUE to receive packets that are sent to the network
device MAC address. The startup default value is FALSE.

 January 31, 2006
968 Version 2.0

EnableMulticastReceive
Set to TRUE to receive packets that are sent to any of the active
multicast groups. The startup default value is FALSE.

EnableBroadcastReceive
Set to TRUE to receive packets that are sent to the network
device broadcast address. The startup default value is FALSE.

EnablePromiscuousReceive
Set to TRUE to receive packets that are sent to any MAC
address. Note that setting this field to TRUE may cause packet
loss and degrade system performance on busy networks. The
startup default value is FALSE.

FlushQueuesOnReset
Set to TRUE to drop queued packets when the configuration is
changed. The startup default value is FALSE.

EnableReceiveTimestamps
Set to TRUE to timestamp all packets when they are received by
the MNP. Note that timestamps may be unsupported in some
MNP implementations. The startup default value is FALSE.

DisableBackgroundPolling
Set to TRUE to disable background polling in this MNP instance.
Note that background polling may not be supported in all MNP
implementations. The startup default value is FALSE, unless
background polling is not supported.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

EFI_NOT_STARTED This MNP child driver instance has not been configured. The default
values are returned in MnpConfigData if it is not NULL.

Other The mode data could not be read.

January 31, 2006
Version 2.0 969

EFI_MANAGED_NETWORK_PROTOCOL.Configure()

Summary

Sets or clears the operational parameters for the MNP child driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_CONFIGURE) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

MnpConfigData Pointer to configuration data that will be assigned to the MNP
child driver instance. If NULL, the MNP child driver instance is
reset to startup defaults and all pending transmit and receive
requests are flushed. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

Description

The Configure() function is used to set, change, or reset the operational parameters for the
MNP child driver instance. Until the operational parameters have been set, no network traffic can
be sent or received by this MNP child driver instance. Once the operational parameters have been
reset, no more traffic can be sent or received until the operational parameters have been set again.

Each MNP child driver instance can be started and stopped independently of each other by setting
or resetting their receive filter settings with the Configure() function.

After any successful call to Configure(), the MNP child driver instance is started. The internal
periodic timer (if supported) is enabled. Data can be transmitted and may be received if the receive
filters have also been enabled.

PERFORMANCE NOTE

If multiple MNP child driver instances will receive the same packet because of overlapping receive
filter settings, then the first MNP child driver instance will receive the original packet and
additional instances will receive copies of the original packet. Receive filter settings that overlap
will consume extra processor and/or DMA resources and degrade system and network
performance.

 January 31, 2006
970 Version 2.0

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• MnpConfigData.ProtocolTypeFilter is not
valid.

The operational data for the MNP child driver instance is
unchanged.

EFI_OUT_OF_RESOURCES Required system resources (usually memory) could not be
allocated.

The MNP child driver instance has been reset to startup defaults.

EFI_UNSUPPORTED The requested feature is unsupported in this [MNP]
implementation.

The operational data for the MNP child driver instance is
unchanged.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

The MNP child driver instance has been reset to startup defaults.

Other The MNP child driver instance has been reset to startup defaults.

January 31, 2006
Version 2.0 971

EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()

Summary

Translates an IP multicast address to a hardware (MAC) multicast address. This function may be
unsupported in some MNP implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN BOOLEAN Ipv6Flag,
 IN EFI_IP_ADDRESS *IpAddress,
 OUT EFI_MAC_ADDRESS *MacAddress
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

Ipv6Flag Set to TRUE to if IpAddress is an IPv6 multicast address.
Set to FALSE if IpAddress is an IPv4 multicast address.

IpAddress Pointer to the multicast IP address (in network byte order) to
convert.

MacAddress Pointer to the resulting multicast MAC address.

Description

The McastIpToMac() function translates an IP multicast address to a hardware (MAC)
multicast address.

This function may be implemented by calling the underlying
EFI_SIMPLE_NETWORK.MCastIpToMac() function, which may also be unsupported in some
MNP implementations.

 January 31, 2006
972 Version 2.0

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One of the following conditions is TRUE:

• This is NULL.

• IpAddress is NULL.

• *IpAddress is not a valid multicast IP address.

• MacAddress is NULL.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

Other The address could not be converted.

January 31, 2006
Version 2.0 973

EFI_MANAGED_NETWORK_PROTOCOL.Groups()

Summary

Enables and disables receive filters for multicast address. This function may be unsupported in
some MNP implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_GROUPS) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_MAC_ADDRESS *MacAddress OPTIONAL
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

JoinFlag Set to TRUE to join this multicast group.
Set to FALSE to leave this multicast group.

MacAddress Pointer to the multicast MAC group (address) to join or leave.

Description

The Groups() function only adds and removes multicast MAC addresses from the filter list. The
MNP driver does not transmit or process Internet Group Management Protocol (IGMP) packets.

If JoinFlag is FALSE and MacAddress is NULL, then all joined groups are left.

 January 31, 2006
974 Version 2.0

Status Codes Returned
EFI_SUCCESS The requested operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• JoinFlag is TRUE and MacAddress is NULL.

• *MacAddress is not a valid multicast MAC address.

The MNP multicast group settings are unchanged.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_ALREADY_STARTED The supplied multicast group is already joined.

EFI_NOT_FOUND The supplied multicast group is not joined.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

The MNP child driver instance has been reset to startup defaults.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

Other The requested operation could not be completed.

The MNP multicast group settings are unchanged.

January 31, 2006
Version 2.0 975

EFI_MANAGED_NETWORK_PROTOCOL.Transmit()

Summary

Places asynchronous outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_TRANSMIT) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

Token Pointer to a token associated with the transmit data descriptor.
Type EFI_MANAGED_NETWORK_COMPLETION_TOKEN is
defined in “Related Definitions” below.

Description

The Transmit() function places a completion token into the transmit packet queue. This
function is always asynchronous.

The caller must fill in the Token.Event and Token.TxData fields in the completion token,
and these fields cannot be NULL. When the transmit operation completes, the MNP updates the
Token.Status field and the Token.Event is signaled.

NOTE

There may be a performance penalty if the packet needs to be defragmented before it can be
transmitted by the network device. Systems in which performance is critical should review the
requirements and features of the underlying communications device and drivers.

 January 31, 2006
976 Version 2.0

Related Definitions
//**
// EFI_MANAGED_NETWORK_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_MANAGED_NETWORK_RECEIVE_DATA *RxData;
 EFI_MANAGED_NETWORK_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_MANAGED_NETWORK_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the MNP. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

Status This field will be set to one of the following values:

• EFI_SUCCESS: The receive or transmit completed successfully.

• EFI_ABORTED: The receive or transmit was aborted.

• EFI_TIMEOUT: The transmit timeout expired.

• EFI_DEVICE_ERROR: There was an unexpected system or network error.

RxData When this token is used for receiving, RxData is a pointer to
the EFI_MANAGED_NETWORK_RECEIVE_DATA.

TxData When this token is used for transmitting, TxData is a pointer to
the EFI_MANAGED_NETWORK_TRANSMIT_DATA.

The EFI_MANAGED_NETWORK_COMPLETION_TOKEN structure is used for both transmit and
receive operations.

When it is used for transmitting, the Event and TxData fields must be filled in by the MNP
client. After the transmit operation completes, the MNP updates the Status field and the Event
is signaled.

When it is used for receiving, only the Event field must be filled in by the MNP client. After a
packet is received, the MNP fills in the RxData and Status fields and the Event is signaled.

January 31, 2006
Version 2.0 977

//**
// EFI_MANAGED_NETWORK_RECEIVE_DATA
//**
typedef struct {

EFI_TIME Timestamp;
EFI_EVENT RecycleEvent;
UINT32 PacketLength;
UINT32 HeaderLength;
UINT32 AddressLength;
UINT32 DataLength;
BOOLEAN BroadcastFlag;
BOOLEAN MulticastFlag;
BOOLEAN PromiscuousFlag;
UINT16 ProtocolType;
VOID *DestinationAddress;
VOID *SourceAddress;
VOID *MediaHeader;
VOID *PacketData;

} EFI_MANAGED_NETWORK_RECEIVE_DATA;

Timestamp System time when the MNP received the packet. Timestamp is
zero filled if receive timestamps are disabled or unsupported.

RecycleEvent MNP clients must signal this event after the received data has
been processed so that the receive queue storage can be
reclaimed. Once RecycleEvent is signaled, this structure and
the received data that is pointed to by this structure must not be
accessed by the client.

PacketLength Length of the entire received packet (media header plus the
data).

HeaderLength Length of the media header in this packet.

AddressLength Length of a MAC address in this packet.

DataLength Length of the data in this packet.

BroadcastFlag Set to TRUE if this packet was received through the broadcast
filter. (The destination MAC address is the broadcast MAC
address.)

MulticastFlag Set to TRUE if this packet was received through the multicast
filter. (The destination MAC address is in the multicast filter
list.)

PromiscuousFlag Set to TRUE if this packet was received through the promiscuous
filter. (The destination address does not match any of the other
hardware or software filter lists.)

 January 31, 2006
978 Version 2.0

ProtocolType 16-bit protocol type in host byte order. Zero if there is no
protocol type field in the packet header.

DestinationAddress Pointer to the destination address in the media header.

SourceAddress Pointer to the source address in the media header.

MediaHeader Pointer to the first byte of the media header.

PacketData Pointer to the first byte of the packet data (immediately
following media header).

An EFI_MANAGED_NETWORK_RECEIVE_DATA structure is filled in for each packet that is
received by the MNP.

If multiple instances of this MNP driver can receive a packet, then the receive data structure and the
received packet are duplicated for each instance of the MNP driver that can receive the packet.

//**
// EFI_MANAGED_NETWORK_TRANSMIT_DATA
//**
typedef struct {
 EFI_MAC_ADDRESS *DestinationAddress OPTIONAL;
 EFI_MAC_ADDRESS *SourceAddress OPTIONAL;
 UINT16 ProtocolType OPTIONAL;
 UINT32 DataLength;
 UINT16 HeaderLength OPTIONAL;
 UINT16 FragmentCount;
 EFI_MANAGED_NETWORK_FRAGMENT_DATA FragmentTable[1];
} EFI_MANAGED_NETWORK_TRANSMIT_DATA;

DestinationAddress
Pointer to the destination MAC address if the media header is
not included in FragmentTable[]. If NULL, then the media
header is already filled in FragmentTable[].

SourceAddress Pointer to the source MAC address if the media header is not
included in FragmentTable[]. Ignored if
DestinationAddress is NULL.

ProtocolType The protocol type of the media header in host byte order. Ignored
if DestinationAddress is NULL.

DataLength Sum of all FragmentLength fields in FragmentTable[]
minus the media header length.

January 31, 2006
Version 2.0 979

HeaderLength Length of the media header if it is included in the
FragmentTable. Must be zero if DestinationAddress
is not NULL.

FragmentCount Number of data fragments in FragmentTable[]. This field
cannot be zero.

FragmentTable Table of data fragments to be transmitted. The first byte of the
first entry in FragmentTable[] is also the first byte of the
media header or, if there is no media header, the first byte of
payload. Type EFI_MANAGED_NETWORK_FRAGMENT_DATA
is defined below.

The EFI_MANAGED_NETWORK_TRANSMIT_DATA structure describes a (possibly fragmented)
packet to be transmitted.

The DataLength field plus the HeaderLength field must be equal to the sum of all of the
FragmentLength fields in the FragmentTable.

If the media header is included in FragmentTable[], then it cannot be split between fragments.

//**
// EFI_MANAGED_NETWORK_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_MANAGED_NETWORK_FRAGMENT_DATA;

FragmentLength Number of bytes in the FragmentBuffer. This field may not
be set to zero.

FragmentBuffer Pointer to the fragment data. This field may not be set to NULL.

The EFI_MANAGED_NETWORK_FRAGMENT_DATA structure describes the location and length of
a packet fragment to be transmitted.

 January 31, 2006
980 Version 2.0

Status Codes Returned
EFI_SUCCESS The transmit completion token was cached.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

• Token.TxData.FragmentCount is zero.

• (Token.TxData.HeaderLength +
Token.TxData.DataLength) is not equal to the sum of the
Token.TxData.FragmentTable[].FragmentLength
fields.

• One or more of the
Token.TxData.FragmentTable[].FragmentLength
fields is zero.

• One or more of the
Token.TxData.FragmentTable[].FragmentBufferf
ields is NULL.

• (Token.TxData.HeaderLength +
Token.TxData.DataLength) is greater than MTU if the
Token.TxData.FragmentTable[] contains the media
header.

EFI_ACCESS_DENIED The transmit completion token is already in the transmit queue.

EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources
(usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

The MNP child driver instance has been reset to startup defaults.

EFI_NOT_READY The transmit request could not be queued because the transmit queue is full.

January 31, 2006
Version 2.0 981

EFI_MANAGED_NETWORK_PROTOCOL.Receive()

Summary

Places an asynchronous receiving request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_RECEIVE) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

Token Pointer to a token associated with the receive data descriptor.
Type EFI_MANAGED_NETWORK_COMPLETION_TOKEN is
defined in
EFI_MANAGED_NETWORK_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function
is always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be
NULL. When the receive operation completes, the MNP updates the Token.Status and
Token.RxData fields and the Token.Event is signaled.

Status Codes Returned
EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL

EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system resources
(usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

The MNP child driver instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token was already in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.

 January 31, 2006
982 Version 2.0

EFI_MANAGED_NETWORK_PROTOCOL.Cancel()

Summary

Aborts an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_CANCEL)(
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

Token Pointer to a token that has been issued by
EFI_MANAGED_NETWORK_PROTOCOL.Transmit() or
EFI_MANAGED_NETWORK_PROTOCOL.Receive(). If
NULL, all pending tokens are aborted. Type
EFI_MANAGED_NETWORK_COMPLETION_TOKEN is defined
in EFI_MANAGED_NETWORK_PROTOCOL.Transmit().

Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in
the transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues,
which usually means that the asynchronous operation has completed, this function will not signal
the token and EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event

was signaled. When Token is NULL, all pending requests were

aborted and their events were signaled.

EFI_NOT_STARTED This MNP child driver instance has not been configured.
EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was

not found in the transmit or receive queue. It has either completed
or was not issued by Transmit() and Receive().

January 31, 2006
Version 2.0 983

EFI_MANAGED_NETWORK_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_POLL) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This
);

Parameters

This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL
instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

Normally, a periodic timer event internally calls the Poll() function. But, in some systems, the
periodic timer event may not call Poll() fast enough to transmit and/or receive all data packets
without missing packets. Drivers and applications that are experiencing packet loss should try
calling the Poll() function more often.

Status Codes Returned
EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

The MNP child driver instance has been reset to startup defaults.

EFI_NOT_READY No incoming or outgoing data was processed. Consider increasing
the polling rate.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.

 January 31, 2006
984 Version 2.0

January 31, 2006
Version 2.0 985

22
Network Protocols — ARP and DHCPv4

22.1 ARP Protocol

This section defines the EFI Address Resolution Protocol (ARP) Protocol interface. It is split into
the following two main sections:

• ARP Service Binding Protocol (ARPSBP)
• ARP Protocol (ARP)

ARP provides a generic implementation of the Address Resolution Protocol that is described in
RFCs 826 and 1122. RFCs can be found at http://www.ietf.org/.

EFI_ARP_SERVICE_BINDING_PROTOCOL

Summary

The ARPSBP is used to locate communication devices that are supported by an ARP driver and to
create and destroy instances of the ARP child protocol driver.

The EFI Service Binding Protocol in section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the ARP.

GUID
#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \

{0xf44c00ee,0x1f2c,0x4a00,0xaa09,0x1c,0x9f,0x3e,0x08,0x00,0xa3}

Description

A network application (or driver) that requires network address resolution can use one of the
protocol handler services, such as BS->LocateHandleBuffer(), to search for devices that
publish a ARPSBP GUID. Each device with a published ARPSBP GUID supports ARP and may be
available for use.

After a successful call to the EFI_ARP_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the child ARP driver instance is in an unconfigured state; it is not ready to resolve
addresses.

All child ARP driver instances that are created by one
EFI_ARP_SERVICE_BINDING_PROTOCOL instance will share an ARP cache to improve
efficiency.

http://www.ietf.org/

 January 31, 2006
986 Version 2.0

Before a network application terminates execution, every successful call to the
EFI_ARP_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_ARP_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_ARP_PROTOCOL

Summary

ARP is used to resolve local network protocol addresses into network hardware addresses.

GUID
#define EFI_ARP_PROTOCOL_GUID \

{0xf4b427bb,0xba21,0x4f16,0xbc4e,0x43,0xe4,0x16,0xab,0x61,0x9c}

Protocol Interface Structure
typedef struct _EFI_ARP_PROTOCOL {
 EFI_ARP_CONFIGURE Configure;
 EFI_ARP_ADD Add;
 EFI_ARP_FIND Find;
 EFI_ARP_DELETE Delete;
 EFI_ARP_FLUSH Flush;
 EFI_ARP_REQUEST Request;
 EFI_ARP_CANCEL Cancel;
} EFI_ARP_PROTOCOL;

Parameters

Configure Adds a new station address (protocol type and network address)
to the ARP cache. See the Configure() function description.

Add Manually inserts an entry to the ARP cache for administrative
purpose. See the Add() function description.

Find Locates one or more entries in the ARP cache. See the Find()
function description.

Delete Removes an entry from the ARP cache. See the Delete()
function description.

Flush Removes all dynamic ARP cache entries of a specified protocol
type. See the Flush() function description.

Request Starts an ARP request session. See the Request() function
description.

Cancel Abort previous ARP request session. See the Cancel()
function description.

January 31, 2006
Version 2.0 987

Description

The EFI_ARP_PROTOCOL defines a set of generic ARP services that can be used by any network
protocol driver to resolve subnet local network addresses into hardware addresses. Normally, a
periodic timer event internally sends and receives packets for ARP. But in some systems where the
periodic timer is not supported, drivers and applications that are experiencing packet loss should try
calling the Poll() function of the EFI Managed Network Protocol frequently.

NOTE

Add() and Delete() are typically used for administrative purposes, such as denying traffic to
and from a specific remote machine, preventing ARP requests from coming too fast, and providing
static address pairs to save time. Find() is also used to update an existing ARP cache entry.

 January 31, 2006
988 Version 2.0

EFI_ARP_PROTOCOL.Configure()

Summary

Assigns a station address (protocol type and network address) to this instance of the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_CONFIGURE) (
 IN EFI_ARP_PROTOCOL *This,
 IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

ConfigData A pointer to the EFI_ARP_CONFIG_DATA structure. Type
EFI_ARP_CONFIG_DATA is defined in “Related Definitions”
below.

Description

The Configure() function is used to assign a station address to the ARP cache for this instance
of the ARP driver. Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver
will respond to ARP requests that match this registered station address. A call to
Configure()with the ConfigData field set to NULL will reset this ARP instance.

Once a protocol type and station address have been assigned to this ARP instance, all the following
ARP functions will use this information. Attempting to change the protocol type or station address
to a configured ARP instance will result in errors.

Related Definitions
//**
// EFI_ARP_CONFIG_DATA
//**
typedef struct {
 UINT16 SwAddressType;
 UINT8 SwAddressLength;
 VOID *StationAddress;
 UINT32 EntryTimeOut;
 UINT32 RetryCount;
 UINT32 RetryTimeOut;
} EFI_ARP_CONFIG_DATA;

January 31, 2006
Version 2.0 989

SwAddressType 16-bit protocol type number in host byte order. More information
can be found at http://www.iana.org/assignments/ethernet-
numbers.

SwAddressLength Length in bytes of the station’s protocol address to register.

StationAddress Pointer to the first byte of the protocol address to register. For
example, if SwAddressType is 0x0800 (IP), then
StationAddress points to the first byte of this station’s IP
address stored in network byte order.

EntryTimeOut The timeout value in 100-ns units that is associated with each
new dynamic ARP cache entry. If it is set to zero, the value is
implementation-specific.

RetryCount The number of retries before a MAC address is resolved. If it is
set to zero, the value is implementation-specific.

RetryTimeOut The timeout value in 100-ns units that is used to wait for the
ARP reply packet or the timeout value between two retries. Set
to zero to use implementation-specific value.

Status Codes Returned
EFI_SUCCESS The new station address was successfully registered.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SwAddressLength is zero when ConfigData is not
NULL.

• StationAddress is NULL when ConfigData is not
NULL.

EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or

StationAddress is different from the one that is already

registered.

EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be

allocated.

http://www.iana.org/assignments/ethernet-numbers
http://www.iana.org/assignments/ethernet-numbers

 January 31, 2006
990 Version 2.0

EFI_ARP_PROTOCOL.Add()

Summary

Inserts an entry to the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_ADD) (
 IN EFI_ARP_PROTOCOL *This,

IN BOOLEAN DenyFlag,
IN VOID *TargetSwAddress OPTIONAL,
IN VOID *TargetHwAddress OPTIONAL,
IN UINT32 TimeoutValue,
IN BOOLEAN Overwrite
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance..

DenyFlag Set to TRUE if this entry is a “deny” entry. Set to FALSE if this
entry is a “normal” entry.

TargetSwAddress Pointer to a protocol address to add (or deny). May be set to
NULL if DenyFlag is TRUE.

TargetHwAddress Pointer to a hardware address to add (or deny). May be set to
NULL if DenyFlag is TRUE.

TimeoutValue Time in 100-ns units that this entry will remain in the ARP
cache. A value of zero means that the entry is permanent. A
nonzero value will override the one given by Configure() if
the entry to be added is dynamic entry.

Overwrite If TRUE, the matching cache entry will be overwritten with the
supplied parameters. If FALSE, EFI_ACCESS_DENIED is
returned if the corresponding cache entry already exists.

Description

The Add() function is used to insert entries into the ARP cache.

ARP cache entries are typically inserted and updated by network protocol drivers as network traffic
is processed. Most ARP cache entries will time out and be deleted if the network traffic stops. ARP
cache entries that were inserted by the Add() function may be static (will not time out) or dynamic
(will time out).

January 31, 2006
Version 2.0 991

Default ARP cache timeout values are not covered in most network protocol specifications
(although RFC 1122 comes pretty close) and will only be discussed in general in this specification.
The timeout values that are used in the EFI Sample Implementation should be used only as a
guideline. Final product implementations of the EFI network stack should be tuned for their
expected network environments.

The Add() function can insert the following two types of entries into the ARP cache:

• “Normal” entries
• “Deny” entries

“Normal” entries must have both a TargetSwAddress and TargetHwAddress and are used
to resolve network protocol addresses into network hardware addresses. Entries are keyed by
TargetSwAddress. Each TargetSwAddress can have only one TargetHwAddress. A
TargetHwAddress may be referenced by multiple TargetSwAddress entries.

“Deny” entries may have a TargetSwAddress and/or a TargetHwAddress. Deny” entries
may have a TargetSwAddress or a TargetHwAddress, but not both. These entries tell the ARP
driver to ignore any traffic to and from (and to) these addresses. If a request comes in from an
address that is being denied, then the request is ignored.

Yuanhao: In the sentence in yellow above, would it be clearer to say it this way?
“Deny” entries may have a TargetSwAddress or a TargetHwAddress, but not both.

If a normal entry to be added matches a deny entry of this driver, Overwrite decides whether to
remove the matching deny entry. On the other hand, an existing normal entry can be removed based
on the value of Overwrite if a deny entry to be added matches the existing normal entry. Two
entries are matched only when they have the same addresses or when one of the normal entry
addresses is the same as the address of a deny entry.

Status Codes Returned
EFI_SUCCESS The entry has been added or updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

DenyFlag is FALSE and TargetHwAddress is NULL.

DenyFlag is FALSE and TargetSwAddress is NULL.
TargetHwAddress is NULL and TargetSwAddress is
NULL.

Both TargetSwAddress and TargetHwAddress
are not NULL when DenyFlag is TRUE

EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.

EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite is not
true.

EFI_NOT_STARTED The ARP driver instance has not been configured.

 January 31, 2006
992 Version 2.0

EFI_ARP_PROTOCOL.Find()

Summary

Locates one or more entries in the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_FIND) (
 IN EFI_ARP_PROTOCOL *This,
 IN BOOLEAN BySwAddress,

IN VOID *AddressBuffer OPTIONAL,
OUT UINT32 *EntryLength OPTIONAL,
OUT UINT32 *EntryCount OPTIONAL,
OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
IN BOOLEAN Refresh
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

BySwAddress Set to TRUE to look for matching software protocol addresses.
Set to FALSE to look for matching hardware protocol addresses.

AddressBuffer Pointer to address buffer. Set to NULL to match all addresses.

EntryLength The size of an entry in the entries buffer. To keep the
EFI_ARP_FIND_DATA structure properly aligned, this field
may be longer than sizeof(EFI_ARP_FIND_DATA) plus
the length of the software and hardware addresses.

EntryCount The number of ARP cache entries that are found by the specified
criteria.

Entries Pointer to the buffer that will receive the ARP cache entries.
Type EFI_ARP_FIND_DATA is defined in “Related
Definitions” below.

Refresh Set to TRUE to refresh the timeout value of the matching ARP
cache entry.

Description

The Find() function searches the ARP cache for matching entries and allocates a buffer into
which those entries are copied. The first part of the allocated buffer is EFI_ARP_FIND_DATA,
following which are protocol address pairs and hardware address pairs.

January 31, 2006
Version 2.0 993

When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer is not
NULL), the ARP cache timeout for the found entry is reset if Refresh is set to TRUE. If the found
ARP cache entry is a permanent entry, it is not affected by Refresh.

Related Definitions
//***
// EFI_ARP_FIND_DATA
//***
typedef struct {

UINT32 Size;
BOOLEAN DenyFlag;
BOOLEAN StaticFlag;
UINT16 HwAddressType;
UINT16 SwAddressType;
UINT8 HwAddressLength;
UINT8 SwAddressLength;

} EFI_ARP_FIND_DATA;

Size Length in bytes of this entry.

DenyFlag Set to TRUE if this entry is a “deny” entry.
Set to FALSE if this entry is a “normal” entry.

StaticFlag Set to TRUE if this entry will not time out.
Set to FALSE if this entry will time out.

HwAddressType 16-bit ARP hardware identifier number.

SwAddressType 16-bit protocol type number.

HwAddressLength Length of the hardware address.

SwAddressLength Length of the protocol address.

Status Codes Returned
EFI_SUCCESS The requested ARP cache entries were copied into the buffer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Both EntryCount and EntryLength are NULL, when
Refresh is FALSE.

EFI_NOT_FOUND No matching entries were found.

EFI_NOT_STARTED The ARP driver instance has not been configured.

 January 31, 2006
994 Version 2.0

EFI_ARP_PROTOCOL.Delete()

Summary

Removes entries from the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_DELETE) (
 IN EFI_ARP_PROTOCOL *This,
 IN BOOLEAN BySwAddress,
 IN VOID *AddressBuffer OPTIONAL
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

BySwAddress Set to TRUE to delete matching protocol addresses.
Set to FALSE to delete matching hardware addresses.

AddressBuffer Pointer to the address buffer that is used as a key to look for the
cache entry. Set to NULL to delete all entries.

Description

The Delete() function removes specified ARP cache entries.

Status Codes Returned
EFI_SUCCESS The entry was removed from the ARP cache.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND The specified deletion key was not found.

EFI_NOT_STARTED The ARP driver instance has not been configured.

January 31, 2006
Version 2.0 995

EFI_ARP_PROTOCOL.Flush()

Summary

Removes all dynamic ARP cache entries that were added by this interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_FLUSH) (
 IN EFI_ARP_PROTOCOL *This
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

Description

The Flush() function deletes all dynamic entries from the ARP cache that match the specified
software protocol type.

Status Codes Returned
EFI_SUCCESS The cache has been flushed.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND There are no matching dynamic cache entries.

EFI_NOT_STARTED The ARP driver instance has not been configured.

 January 31, 2006
996 Version 2.0

EFI_ARP_PROTOCOL.Request()

Summary

Starts an ARP request session.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_REQUEST) (

IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL,
OUT VOID *TargetHwAddress
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance..

TargetSwAddress Pointer to the protocol address to resolve.

ResolvedEvent Pointer to the event that will be signaled when the address is
resolved or some error occurs.

TargetHwAddress Pointer to the buffer for the resolved hardware address in
network byte order. The buffer must be large enough to hold the
resulting hardware address. TargetHwAddress must not be
NULL.

Description

The Request() function tries to resolve the TargetSwAddress and optionally returns a
TargetHwAddress if it already exists in the ARP cache.

If the registered SwAddressType (see EFI_ARP_PROTOCOL.Add()) is IPv4 or IPv6 and the
TargetSwAddress is a multicast address, then the TargetSwAddress is resolved using the
underlying EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac() function.

If the TargetSwAddress is NULL, then the network interface hardware broadcast address is
returned immediately in TargetHwAddress.

If the ResolvedEvent is not NULL and the address to be resolved is not in the ARP cache, then
the event will be signaled when the address request completes and the requested hardware address
is returned in the TargetHwAddress. If the timeout expires and the retry count is exceeded or an
unexpected error occurs, the event will be signaled to notify the caller, which should check the
TargetHwAddress to see if the requested hardware address is available. If it is not available, the
TargetHwAddress is filled by zero.

January 31, 2006
Version 2.0 997

If the address to be resolved is already in the ARP cache and resolved, then the event will be
signaled immediately if it is not NULL, and the requested hardware address is also returned in
TargetHwAddress.

Status Codes Returned
EFI_SUCCESS The data was copied from the ARP cache into the

TargetHwAddress buffer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL

TargetHwAddress is NULL

EFI_ACCESS_DENIED The requested address is not present in the normal ARP cache but
is present in the deny address list. Outgoing traffic to that address is
forbidden.

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_NOT_READY The request has been started and is not finished.

EFI_UNSUPPORTED The requested conversion is not supported in this implementation or
configuration.

 January 31, 2006
998 Version 2.0

EFI_ARP_PROTOCOL.Cancel()

Summary

Cancels an ARP request session.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_CANCEL) (

IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL
);

Parameters

This A pointer to the EFI_ARP_PROTOCOL instance.

TargetSwAddress Pointer to the protocol address in previous request session.

ResolvedEvent Pointer to the event that is used as the notification event in
previous request session.

Description

The Cancel() function aborts the previous ARP request (identified by This,
TargetSwAddress and ResolvedEvent) that is issued by
EFI_ARP_PROTOCOL.Request(). If the request is in the internal ARP request queue, the
request is aborted immediately and its ResolvedEvent is signaled. Only an asynchronous
address request needs to be canceled. If TargeSwAddress and ResolveEvent are both NULL,
all the pending asynchronous requests that have been issued by This instance will be cancelled
and their corresponding events will be signaled.

Status Codes Returned
EFI_SUCCESS The pending request session(s) is/are aborted and corresponding

event(s) is/are signaled.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• TargetSwAddress is not NULL and ResolvedEvent
is NULL.

• TargetSwAddress is NULL and ResolvedEvent is
not NULL

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_NOT_FOUND The request is not issued by
EFI_ARP_PROTOCOL.Request().

January 31, 2006
Version 2.0 999

22.2 EFI DHCPv4 Protocol

This section provides a detailed description of the EFI_DHCP4_PROTOCOL and the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL. The EFI DHCPv4 Protocol is used to collect
configuration information for the EFI IPv4 Protocol drivers and to provide DHCPv4 server and
PXE boot server discovery services.

EFI_DHCP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI DHCPv4 Service Binding Protocol is used to locate communication devices that are
supported by an EFI DHCPv4 Protocol driver and to create and destroy EFI DHCPv4 Protocol
child driver instances that can use the underlying communications device.

GUID
#define EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x9d9a39d8,0xbd42,0x4a73,0xa4d5,0x8e,0xe9,0x4b,0xe1,0x13,0x80}

Description

A network application or driver that requires basic DHCPv4 services can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI DHCPv4 Service Binding Protocol GUID. Each device with a published EFI DHCPv4 Service
Binding Protocol GUID supports the EFI DHCPv4 Protocol and may be available for use.

After a successful call to the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly created
EFI DHCPv4 Protocol child driver instance is ready to be used by a network application or driver.

Before a network application or driver terminates execution, every successful call to the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_DHCP4_SERVICE_BINDING_PROTOCOL.DestroyChild()
function.

 January 31, 2006
1000 Version 2.0

EFI_DHCP4_PROTOCOL

Summary

This protocol is used to collect configuration information for the EFI IPv4 Protocol drivers and to
provide DHCPv4 server and PXE boot server discovery services.

GUID
#define EFI_DHCP4_PROTOCOL_GUID \

{0x8a219718,0x4ef5,0x4761,0x91c8,0xc0,0xf0,0x4b,0xda,0x9e,0x56}

Protocol Interface Structure
typedef struct _EFI_DHCP4_PROTOCOL {
 EFI_DHCP4_GET_MODE_DATA GetModeData;
 EFI_DHCP4_CONFIGURE Configure;
 EFI_DHCP4_START Start;
 EFI_DHCP4_RENEW_REBIND RenewRebind;
 EFI_DHCP4_RELEASE Release;
 EFI_DHCP4_STOP Stop;
 EFI_DHCP4_BUILD Build;
 EFI_DHCP4_TRANSMIT_RECEIVE TransmitReceive;
 EFI_DHCP4_PARSE Parse;
} EFI_DHCP4_PROTOCOL;

Parameters

GetModeData Gets the EFI DHCPv4 Protocol driver status and operational
data. See the GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI
DHCPv4 Protocol driver. See the Configure() function
description.

Start Starts the DHCP configuration process. See the Start()
function description.

RenewRebind Tries to manually extend the lease time by sending a request
packet. See the RenewRebind() function description.

Release Releases the current configuration and returns the EFI DHCPv4
Protocol driver to the initial state. See the Release() function
description.

Stop Stops the DHCP configuration process no matter what state the
driver is in. After being stopped, this driver will not
automatically communicate with the DHCP server. See the
Stop() function description.

January 31, 2006
Version 2.0 1001

Build Puts together a DHCP or PXE packet. See the Build()
function description.

TransmitReceive Transmits a DHCP or PXE packet and waits for response
packets. See the TransmitReceive() function description.

Parse Parses the packed DHCP or PXE option data. See the Parse()
function description.

Description

The EFI_DHCP4_PROTOCOL is used to collect configuration information for the EFI IPv4
Protocol driver and provide DHCP server and PXE boot server discovery services.

 January 31, 2006
1002 Version 2.0

EFI_DHCP4_PROTOCOL.GetModeData()

Summary

Returns the current operating mode and cached data packet for the EFI DHCPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_GET_MODE_DATA)(
 IN EFI_DHCP4_PROTOCOL *This,
 OUT EFI_DHCP4_MODE_DATA *Dhcp4ModeData
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Dhcp4ModeData Pointer to storage for the EFI_DHCP4_MODE_DATA structure.
Type EFI_DHCP4_MODE_DATA is defined in “Related
Definitions” below.

Description

The GetModeData() function returns the current operating mode and cached data packet for the
EFI DHCPv4 Protocol driver.

Related Definitions
//**
// EFI_DHCP4_MODE_DATA
//**
typedef struct {
 EFI_DHCP4_STATE State;
 EFI_DHCP4_CONFIG_DATA ConfigData;
 EFI_IPv4_ADDRESS ClientAddress;
 EFI_MAC_ADDRESS ClientMacAddress;
 EFI_IPv4_ADDRESS ServerAddress;
 EFI_IPv4_ADDRESS RouterAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT32 LeaseTime;
 EFI_DHCP4_PACKET *ReplyPacket;
} EFI_DHCP4_MODE_DATA;

State The EFI DHCPv4 Protocol driver operating state. Type
EFI_DHCP4_STATE is defined below.

January 31, 2006
Version 2.0 1003

ConfigData The configuration data of the current EFI DHCPv4 Protocol
driver instance. Type EFI_DHCP4_CONFIG_DATA is defined
in EFI_DHCP4_PROTOCOL.Configure().

ClientAddress The client IP address that was acquired from the DHCP server. If
it is zero, the DHCP acquisition has not completed yet and the
following fields in this structure are undefined.

ClientMacAddress The local hardware address.

ServerAddress The server IP address that is providing the DHCP service to this
client.

RouterAddress The router IP address that was acquired from the DHCP server.
May be zero if the server does not offer this address.

SubnetMask The subnet mask of the connected network that was acquired
from the DHCP server.

LeaseTime The lease time (in 1-second units) of the configured IP address.
The value 0xFFFFFFFF means that the lease time is infinite. A
default lease of 7 days is used if the DHCP server does not
provide a value.

ReplyPacket The cached latest DHCPACK or DHCPNAK or BOOTP REPLY
packet. May be NULL if no packet is cached.

The EFI_DHCP4_MODE_DATA structure describes the operational data of the current DHCP
procedure.

//**
// EFI_DHCP4_STATE
//**
typedef enum {
 Dhcp4Stopped = 0x0,
 Dhcp4Init = 0x1,
 Dhcp4Selecting = 0x2,
 Dhcp4Requesting = 0x3,
 Dhcp4Bound = 0x4
 Dhcp4Renewing = 0x5,
 Dhcp4Rebinding = 0x6,
 Dhcp4InitReboot = 0x7,
 Dhcp4Rebooting = 0x8
} EFI_DHCP4_STATE;

 January 31, 2006
1004 Version 2.0

Table 162 describes the fields in the above enumeration.

Table 162. DHCP4 Enumerations
Dhcp4Stopped The EFI DHCPv4 Protocol driver is stopped and

EFI_DHCP4_PROTOCOL.Configure() needs to be called. The rest of
the EFI_DHCP4_MODE_DATA structure is undefined in this state.

Dhcp4Init The EFI DHCPv4 Protocol driver is inactive and
EFI_DHCP4_PROTOCOL.Start() needs to be called. The rest of the
EFI_DHCP4_MODE_DATA structure is undefined in this state.

Dhcp4Selecting The EFI DHCPv4 Protocol driver is collecting DHCP offer packets from DHCP
servers. The rest of the EFI_DHCP4_MODE_DATA structure is undefined in

this state.

Dhcp4Requesting The EFI DHCPv4 Protocol driver has sent the request to the DHCP server and is
waiting for a response. The rest of the EFI_DHCP4_MODE_DATA structure

is undefined in this state.

Dhcp4Bound The DHCP configuration has completed. All of the fields in the
EFI_DHCP4_MODE_DATA structure are defined.

Dhcp4Renewing The DHCP configuration is being renewed and another request has been sent
out, but it has not received a response from the server yet. All of the fields in the
EFI_DHCP4_MODE_DATA structure are available but may change soon.

Dhcp4Rebinding The DHCP configuration has timed out and the EFI DHCPv4 Protocol driver is
trying to extend the lease time. The rest of the EFI_DHCP4_MODE structure

is undefined in this state.

Dhcp4InitReboot The EFI DHCPv4 Protocol driver is initialized with a previously allocated or
known IP address. EFI_DHCP4_PROTOCOL.Start() needs to be

called to start the configuration process. The rest of the
EFI_DHCP4_MODE_DATA structure is undefined in this state.

Dhcp4Rebooting The EFI DHCPv4 Protocol driver is seeking to reuse the previously allocated IP
address by sending a request to the DHCP server. The rest of the
EFI_DHCP4_MODE_DATA structure is undefined in this state.

EFI_DHCP4_STATE defines the DHCP operational states that are described in RFC 2131, which
can be obtained from the following URL:

http://www.ietf.org/rfc/rfc2131.txt

A variable number of EFI DHCPv4 Protocol driver instances can coexist but they share the same
state machine. More precisely, each communication device has a separate DHCP state machine if
there are multiple communication devices. Each EFI DHCPv4 Protocol driver instance that is
created by the same EFI DHCPv4 Service Binding Protocol driver instance shares the same state
machine. In this document, when we refer to the state of EFI DHCPv4 Protocol driver, we actually
refer to the state of the communication device from which the current EFI DHCPv4 Protocol Driver
instance is created.

http://www.ietf.org/rfc/rfc2131.txt

January 31, 2006
Version 2.0 1005

//***
// EFI_DHCP4_PACKET
//***
#pragma pack(1)
typedef struct {
 UINT32 Size;
 UINT32 Length;
 struct{
 EFI_DHCP4_HEADER Header;
 UINT32 Magik;
 UINT8 Option[1];
 } Dhcp4;
} EFI_DHCP4_PACKET;
#pragma pack()

Size Size of the EFI_DHCP4_PACKET buffer.

Length Length of the EFI_DHCP4_PACKET from the first byte of the
Header field to the last byte of the Option[] field.

Header DHCP packet header.

Magik DHCP magik cookie in network byte order.

Option Start of the DHCP packed option data.

EFI_DHCP4_PACKET defines the format of DHCPv4 packets. See RFC 2131 for more
information.

Status Codes Returned
EFI_SUCCESS The mode data was returned.

EFI_INVALID_PARAMETER This is NULL.

 January 31, 2006
1006 Version 2.0

EFI_DHCP4_PROTOCOL.Configure()

Summary

Initializes, changes, or resets the operational settings for the EFI DHCPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_CONFIGURE) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_CONFIG_DATA *Dhcp4CfgData OPTIONAL
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Dhcp4CfgData Pointer to the EFI_DHCP4_CONFIG_DATA. Type
EFI_DHCP4_CONFIG_DATA is defined in “Related
Definitions” below.

Description

The Configure() function is used to initialize, change, or reset the operational settings of the
EFI DHCPv4 Protocol driver for the communication device on which the EFI DHCPv4 Service
Binding Protocol is installed. This function can be successfully called only if both of the following
are true:

• This instance of the EFI DHCPv4 Protocol driver is in the Dhcp4Stopped, Dhcp4Init,
Dhcp4InitReboot, or Dhcp4Bound states.

• No other EFI DHCPv4 Protocol driver instance that is controlled by this EFI DHCPv4 Service
Binding Protocol driver instance has configured this EFI DHCPv4 Protocol driver.

When this driver is in the Dhcp4Stopped state, it can transfer into one of the following two
possible initial states:

• Dhcp4Init

• Dhcp4InitReboot

The driver can transfer into these states by calling Configure() with a non-NULL
Dhcp4CfgData. It can transfer into Dhcp4Init when no IP address is provided in
Dhcp4CfgData or into Dhcp4InitReboot state if there is a previously assigned IP address.
Otherwise, the state of EFI DHCPv4 Protocol driver will not be changed.

When Configure() is called successfully while Dhcp4CfgData is set to NULL, the default
configuring data will be reset in the EFI DHCPv4 Protocol driver and the state of the EFI DHCPv4
Protocol driver will not be changed. If one instance wants to make it possible for another instance

January 31, 2006
Version 2.0 1007

to configure the EFI DHCPv4 Protocol driver, it must call this function with Dhcp4CfgData set
to NULL.

Related Definitions
//***
// EFI_DHCP4_CONFIG_DATA
//***
typedef struct {
 UINT32 DiscoverTryCount OPTIONAL;
 UINT32 *DiscoverTimeout OPTIONAL;
 UINT32 RequestTryCount OPTIONAL;
 UINT32 *RequestTimeout OPTIONAL;
 EFI_IPv4_ADDRESS ClientAddress;
 EFI_DHCP4_CALLBACK Dhcp4Callback OPTIONAL;
 VOID *CallbackContext OPTIONAL;
 UINT32 OptionCount;
 EFI_DHCP4_PACKET_OPTION **OptionList OPTIONAL;
} EFI_DHCP4_CONFIG_DATA;

DiscoverTryCount Number of times to try sending DHCPDISCOVER packets and
waiting for DHCPOFFER packets before accepting failure. (This
value is also the number of entries in the DiscoverTimeout
array.) Set to zero to use the default try counts and timeout
values.

DiscoverTimeout Maximum amount of time (in seconds) to wait for DHCPOFFER
packets in each of the retries. Timeout values of zero will default
to a timeout value of one second. Set to NULL to use default
timeout values.

RequestTryCount Number of times to try sending DHCPREQUEST packets and
waiting for DHCPACK packets before accepting failure. (This
value is also the number of entries in the RequestTimeout
array.) Set to zero to use the default try counts and timeout
values.

RequestTimeout Maximum amount of time (in seconds) to wait for DHCPACK
packets in each of the retries. Timeout values of zero will default
to a timeout value of one second. Set to NULL to use default
timeout values.

ClientAddress Setting this parameter to the previously allocated IP address will
cause the EFI DHCPv4 Protocol driver to enter the
Dhcp4InitReboot state. Set this field to 0.0.0.0 to enter the
Dhcp4Init state.

 January 31, 2006
1008 Version 2.0

Dhcp4Callback The callback function to intercept various events that occurred in
the DHCP configuration process. Set to NULL to ignore all those
events. Type EFI_DHCP4_CALLBACK is defined below.

CallbackContext Pointer to the context that will be passed to Dhcp4Callback
when it is called.

OptionCount Number of DHCP options in the OptionList.

OptionList List of DHCP options to be included in every DHCPDISCOVER
packet and subsequent DHCPREQUEST packet that is generated
from DHCPOFFER packets. Pad options are appended
automatically by DHCP driver in outgoing DHCP packets. If
OptionList itself contains pad option, they are ignored by
driver. OptionList can be freed after
EFI_DHCP4_PROTOCOL.Configure() returns. Ignored if
OptionCount is zero. Type EFI_DHCP4_PACKET_OPTION
is defined below.

//***
// EFI_DHCP4_CALLBACK
//***
typedef EFI_STATUS (*EFI_DHCP4_CALLBACK)(
 IN EFI_DHCP4_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_DHCP4_STATE CurrentState,
 IN EFI_DHCP4_EVENT Dhcp4Event,
 IN EFI_DHCP4_PACKET *Packet, OPTIONAL
 OUT EFI_DHCP4_PACKET **NewPacket OPTIONAL
);

This Pointer to the EFI DHCPv4 Protocol instance that is used to
configure this callback function.

Context Pointer to the context that is initialized by
EFI_DHCP4_PROTOCOL.Configure().

CurrentState The current operational state of the EFI DHCPv4 Protocol
driver. Type EFI_DHCP4_STATE is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

Dhcp4Event The event that occurs in the current state, which usually means a
state transition. Type EFI_DHCP4_EVENT is defined below.

January 31, 2006
Version 2.0 1009

Packet The DHCP packet that is going to be sent or already received.
May be NULL if the event has no associated packet. Do not
cache this packet except for copying it. Type
EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

NewPacket The packet that is used to replace the above Packet. Do not set
this pointer exactly to the above Packet or a modified
Packet. NewPacket can be NULL if the EFI DHCPv4
Protocol driver does not expect a new packet to be returned. The
user may set *NewPacket to NULL if no replacement occurs.

EFI_DHCP4_CALLBACK is provided by the consumer of the EFI DHCPv4 Protocol driver to
intercept events that occurred in the configuration process. This structure provides advanced control
of each state transition of the DHCP process. The returned status code determines the behavior of
the EFI DHCPv4 Protocol driver. There are three possible returned values, which are described in
the following table.

EFI_SUCCESS Tells the EFI DHCPv4 Protocol driver to continue the DHCP process.

When it is in the Dhcp4Selecting state, it tells the EFI DHCPv4

Protocol driver to stop collecting more DHCPOFFER packets and go
ahead to requesting the state after asking the user to provide a selected
DHCPOFFER packet.

EFI_NOT_READY Only used in the Dhcp4Selecting state. The EFI DHCPv4 Protocol

driver will continue to wait for more DHCPOFFER packets until the retry
timeout expires.

EFI_ABORTED Tells the EFI DHCPv4 Protocol driver to abort the current process and
return to the Dhcp4Init or Dhcp4InitReboot state.

 January 31, 2006
1010 Version 2.0

//***
// EFI_DHCP4_EVENT
//***
typedef enum {
 Dhcp4SendDiscover = 0x01,
 Dhcp4RcvdOffer = 0x02,
 Dhcp4SelectOffer = 0x03,
 Dhcp4SendRequest = 0x04,
 Dhcp4RcvdAck = 0x05,
 Dhcp4RcvdNak = 0x06,
 Dhcp4SendDecline = 0x07,
 Dhcp4BoundCompleted = 0x08,
 Dhcp4EnterRenewing = 0x09,
 Dhcp4EnterRebinding = 0x0a,
 Dhcp4AddressLost = 0x0b,
 Dhcp4Fail = 0x0c
} EFI_DHCP4_EVENT;

January 31, 2006
Version 2.0 1011

Following is a description of the fields in the above enumeration.

Dhcp4SendDiscover A DHCPDISCOVER packet is about to be sent. The packet
is passed to Dhcp4Callback and can be modified or
replaced in Dhcp4Callback.

Dhcp4RcvdOffer A DHCPOFFER packet was just received. This packet is
passed to Dhcp4Callback, which may copy this packet
and cache it for selecting a task later. If the callback returns
EFI_SUCCESS, this driver will finish the selecting state. If
EFI_NOT_READY is returned, this driver will continue to
wait for DHCPOFFER packets until the timer expires. In
either case, Dhcp4SelectOffer will occur for the user to
select an offer.

Dhcp4SelectOffer It is time for Dhcp4Callback to select an offer. This
driver passes the latest received DHCPOFFER packet to the
callback. The Dhcp4Callback may store one packet in
the NewPacket parameter of the function that was selected
from previously received DHCPOFFER packets. If the latest
packet is the selected one or if the user does not care about
it, no extra overhead is needed. Simply skipping this event is
enough.

Dhcp4SendRequest A request packet is about to be sent. The user can modify or
replace this packet.

Dhcp4RcvdAck A DHCPACK packet was received and will be passed to
Dhcp4Callback. The callback may decline this
DHCPACK packet by returning EFI_ABORTED. In this
case, the EFI DHCPv4 Protocol driver will send a
DHCPDECLINE packet to the server and then return to the
Dhcp4Init state.

Dhcp4RcvdNak A DHCPNAK packet was received and will be passed to
Dhcp4Callback. The EFI DHCPv4 Protocol driver will
then return to the Dhcp4Init state no matter what status
code is returned from the callback function.

Dhcp4SendDecline A decline packet is about to be sent. Dhcp4Callback can
modify or replace this packet.

Dhcp4BoundCompleted The DHCP configuration process has completed. No packet
is associated with this event.

Dhcp4EnterRenewing It is time to enter the Dhcp4Renewing state and to contact
the server that originally issued the network address. No
packet is associated with this event.

 January 31, 2006
1012 Version 2.0

Dhcp4EnterRebinding It is time to enter the Dhcp4Rebinding state and to
contact any server. No packet is associated with this event.

Dhcp4AddressLost The configured IP address was lost either because the lease
has expired, the user released the configuration, or a
DHCPNAK packet was received in the Dhcp4Renewing
or Dhcp4Rebinding state. No packet is associated with
this event.

Dhcp4Fail The DHCP process failed because a DHCPNAK packet was
received or the user aborted the DHCP process at a time
when the configuration was not available yet. No packet is
associated with this event.

//***
// EFI_DHCP4_HEADER
//***
#pragma pack(1)
typedef struct{
 UINT8 OpCode;
 UINT8 HwType;
 UINT8 HwAddrLen;
 UINT8 Hops;
 UINT32 Xid;
 UINT16 Seconds;
 UINT16 Reserved;
 EFI_IPv4_ADDRESS ClientAddr;
 EFI_IPv4_ADDRESS YourAddr;
 EFI_IPv4_ADDRESS ServerAddr;
 EFI_IPv4_ADDRESS GatewayAddr;
 UINT8 ClientHwAddr[16];
 CHAR8 ServerName[64];
 CHAR8 BootFileName[128];
} EFI_DHCP4_HEADER;
#pragma pack()

OpCode Message type. 1 = BOOTREQUEST, 2 = BOOTREPLY.

HwType Hardware address type.

HwAddrLen Hardware address length.

Hops Maximum number of hops (routers, gateways, or relay agents)
that this DHCP packet can go through before it is dropped.

Xid DHCP transaction ID.

January 31, 2006
Version 2.0 1013

Seconds Number of seconds that have elapsed since the client began
address acquisition or the renewal process.

Reserved Reserved for future use.

ClientAddr Client IP address from the client.

YourAddr Client IP address from the server.

ServerAddr IP address of the next server in bootstrap.

GatewayAddr Relay agent IP address.

ClientHwAddr Client hardware address.

ServerName Optional server host name.

BootFileName Boot file name.

EFI_DHCP4_HEADER describes the semantics of the DHCP packet header. This packet header is
in network byte order.

 January 31, 2006
1014 Version 2.0

//***
// EFI_DHCP4_PACKET_OPTION
//***
#pragma pack(1)
typedef struct {
 UINT8 OpCode;
 UINT8 Length;
 UINT8 Data[1];
} EFI_DHCP4_PACKET_OPTION;
#pragma pack()

OpCode DHCP option code.

Length Length of the DHCP option data. Not present if OpCode is 0 or
255.

Data Start of the DHCP option data. Not present if OpCode is 0
or 255 or if Length is zero.

The DHCP packet option data structure is used to reference option data that is packed in the DHCP
packets. Use caution when accessing multibyte fields because the information in the DHCP packet
may not be properly aligned for the machine architecture.

Status Codes Returned

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init or
Dhcp4InitReboot state, if the original state of this driver
was Dhcp4Stopped and the value of Dhcp4CfgData was
not NULL. Otherwise, the state was left unchanged.

EFI_ACCESS_DENIED This instance of the EFI DHCPv4 Protocol driver was not in the
Dhcp4Stopped, Dhcp4Init, Dhcp4InitReboot, or
Dhcp4Bound state.

EFI_ACCESS_DENIED Another instance of this EFI DHCPv4 Protocol driver is already in
a valid configured state.

EFI_INVALID_PARAMETER • One or more following conditions are TRUE:

• This is NULL.

• DiscoverTryCount > 0 and DiscoverTimeout is
NULL

• RequestTryCount > 0 and RequestTimeout is
NULL.

• OptionCount >0 and OptionList is NULL.

• ClientAddress is not a valid unicast address.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

January 31, 2006
Version 2.0 1015

EFI_DEVICE_ERROR An unexpected system or network error occurred.

 January 31, 2006
1016 Version 2.0

EFI_DHCP4_PROTOCOL.Start()

Summary

Starts the DHCP configuration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_START) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_EVENT CompletionEvent OPTIONAL
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

CompletionEvent If not NULL, indicates the event that will be signaled when the
EFI DHCPv4 Protocol driver is transferred into the
Dhcp4Bound state or when the DHCP process is aborted.
EFI_DHCP4_PROTOCOL.GetModeData() can be called to
check the completion status. If NULL,
EFI_DHCP4_PROTOCOL.Start() will wait until the driver
is transferred into the Dhcp4Bound state or the process fails.

Description

The Start() function starts the DHCP configuration process. This function can be called only
when the EFI DHCPv4 Protocol driver is in the Dhcp4Init or Dhcp4InitReboot state.

If the DHCP process completes successfully, the state of the EFI DHCPv4 Protocol driver will be
transferred through Dhcp4Selecting and Dhcp4Requesting to the Dhcp4Bound state.
The CompletionEvent will then be signaled if it is not NULL.

If the process aborts, either by the user or by some unexpected network error, the state is restored to
the Dhcp4Init state. The Start() function can be called again to restart the process.

Refer to RFC 2131 for precise state transitions during this process. At the time when each event
occurs in this process, the callback function that was set by
EFI_DHCP4_PROTOCOL.Configure() will be called and the user can take this opportunity to
control the process.

January 31, 2006
Version 2.0 1017

Status Codes Returned
EFI_SUCCESS The DHCP configuration process has started, or it has completed

when CompletionEvent is NULL.

EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped
state. EFI_DHCP4_PROTOCOL.Configure() needs to

be called.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TIMEOUT The DHCP configuration process failed because no response was
received from the server within the specified timeout value.

EFI_ABORTED The user aborted the DHCP process.

EFI_ALREADY_STARTED Some other EFI DHCPv4 Protocol instance already started the
DHCP process.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

 January 31, 2006
1018 Version 2.0

EFI_DHCP4_PROTOCOL.RenewRebind()

Summary

Extends the lease time by sending a request packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_RENEW_REBIND) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN BOOLEAN RebindRequest,
 IN EFI_EVENT CompletionEvent OPTIONAL
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

RebindRequest If TRUE, this function broadcasts the request packets and enters
the Dhcp4Rebinding state. Otherwise, it sends a unicast
request packet and enters the Dhcp4Renewing state.

CompletionEvent If not NULL, this event is signaled when the renew/rebind phase
completes or some error occurs.
EFI_DHCP4_PROTOCOL.GetModeData() can be called to
check the completion status. If NULL,
EFI_DHCP4_PROTOCOL.RenewRebind() will busy-wait
until the DHCP process finishes.

Description

The RenewRebind() function is used to manually extend the lease time when the EFI DHCPv4
Protocol driver is in the Dhcp4Bound state and the lease time has not expired yet. This function
will send a request packet to the previously found server (or to any server when RebindRequest
is TRUE) and transfer the state into the Dhcp4Renewing state (or Dhcp4Rebinding when
RebindingRequest is TRUE). When a response is received, the state is returned to
Dhcp4Bound.

If no response is received before the try count is exceeded (the RequestTryCount field that is
specified in EFI_DHCP4_CONFIG_DATA) but before the lease time that was issued by the
previous server expires, the driver will return to the Dhcp4Bound state and the previous
configuration is restored. The outgoing and incoming packets can be captured by the
EFI_DHCP4_CALLBACK function.

January 31, 2006
Version 2.0 1019

Status Codes Returned
EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the

Dhcp4Renewing state or is back to the Dhcp4Bound

state.

EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped
state. EFI_DHCP4_PROTOCOL.Configure()needs to

be called.

EFI_INVALID_PARAMETER This is NULL.

EFI_TIMEOUT There was no response from the server when the try count was
exceeded.

EFI_ACCESS_DENIED The driver is not in the Dhcp4Bound state.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

 January 31, 2006
1020 Version 2.0

EFI_DHCP4_PROTOCOL.Release()

Summary

Releases the current address configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_RELEASE) (
 IN EFI_DHCP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Description

The Release() function releases the current configured IP address by doing either of the
following:

• Sending a DHCPRELEASE packet when the EFI DHCPv4 Protocol driver is in the
Dhcp4Bound state

• Setting the previously assigned IP address that was provided with the
EFI_DHCP4_PROTOCOL.Configure() function to 0.0.0.0 when the driver is in
Dhcp4InitReboot state

After a successful call to this function, the EFI DHCPv4 Protocol driver returns to the Dhcp4Init
state and any subsequent incoming packets will be discarded silently.

Status Codes Returned
EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init phase.

EFI_INVALID_PARAMETER This is NULL.

EFI_ACCESS_DENIED The EFI DHCPv4 Protocol driver is not in the Dhcp4Bound or
Dhcp4InitReboot state.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

January 31, 2006
Version 2.0 1021

EFI_DHCP4_PROTOCOL.Stop()

Summary

Stops the DHCP configuration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_STOP) (
 IN EFI_DHCP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Description

The Stop() function is used to stop the DHCP configuration process. After this function is called
successfully, the EFI DHCPv4 Protocol driver is transferred into the Dhcp4Stopped state.
EFI_DHCP4_PROTOCOL.Configure() needs to be called before DHCP configuration process
can be started again. This function can be called when the EFI DHCPv4 Protocol driver is in any
state.

Status Codes Returned
EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Stopped

state.

EFI_INVALID_PARAMETER This is NULL.

 January 31, 2006
1022 Version 2.0

EFI_DHCP4_PROTOCOL.Build()

Summary

Builds a DHCP packet, given the options to be appended or deleted or replaced.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_BUILD) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_PACKET *SeedPacket,
 IN UINT32 DeleteCount,
 IN UINT8 *DeleteList OPTIONAL,
 IN UINT32 AppendCount,
 IN EFI_DHCP4_PACKET_OPTION *AppendList[] OPTIONAL,
 OUT EFI_DHCP4_PACKET **NewPacket
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

SeedPacket Initial packet to be used as a base for building new packet. Type
EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

DeleteCount Number of opcodes in the DeleteList.

DeleteList List of opcodes to be deleted from the seed packet. Ignored if
DeleteCount is zero.

AppendCount Number of entries in the OptionList.

AppendList Pointer to a DHCP option list to be appended to SeedPacket.
If SeedPacket also contains options in this list, they are
replaced by new options (except pad option). Ignored if
AppendCount is zero. Type EFI_DHCP4_PACKET_OPTION
is defined in EFI_DHCP4_PROTOCOL.Configure().

NewPacket Pointer to storage for the pointer to the new allocated packet.
Use the EFI Boot Service FreePool() on the resulting pointer
when done with the packet.

January 31, 2006
Version 2.0 1023

Description

The Build() function is used to assemble a new packet from the original packet by replacing or
deleting existing options or appending new options. This function does not change any state of the
EFI DHCPv4 Protocol driver and can be used at any time.

Status Codes Returned
EFI_SUCCESS The new packet was built.

EFI_OUT_OF_RESOURCES Storage for the new packet could not be allocated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SeedPacket is NULL.

• SeedPacket is not a well-formed DHCP packet.

• AppendCount is not zero and AppendList is NULL.

• DeleteCount is not zero and DeleteList is NULL.

• NewPacket is NULL

• Both DeleteCount and AppendCount are zero and
NewPacket is not NULL.

 January 31, 2006
1024 Version 2.0

EFI_DHCP4_PROTOCOL.TransmitReceive()

Summary

Transmits a DHCP formatted packet and optionally waits for responses.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_TRANSMIT_RECEIVE) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN *Token
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Token Pointer to the EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN
structure. Type EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN
is defined in “Related Definitions” below.

Description

The TransmitReceive() function is used to transmit a DHCP packet and optionally wait for
the response from servers. This function does not change the state of the EFI DHCPv4 Protocol
driver and thus can be used at any time.

Related Definitions
//***
// EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN
//***
typedef struct {
 OUT EFI_STATUS Status;
 IN EFI_EVENT CompletionEvent OPTIONAL;
 IN EFI_IPv4_ADDRESS RemoteAddress;
 IN UINT16 RemotePort;
 IN EFI_IPv4_ADDRESS GatewayAddress OPTIONAL;
 IN UINT32 ListenPointCount;
 IN EFI_DHCP4_LISTEN_POINT *ListenPoints OPTIONAL;
 IN UINT32 TimeoutValue;
 IN EFI_DHCP4_PACKET *Packet;
 OUT UINT32 ResponseCount OPTIONAL;
 OUT EFI_DHCP4_PACKET *ResponseList OPTIONAL
} EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN;

January 31, 2006
Version 2.0 1025

Status The completion status of transmitting and receiving. Possible
values are described in the “Status Codes Returned” table below.
When CompletionEvent is NULL, this status is the same as
the one returned by the TransmitReceive() function.

CompletionEvent If not NULL, the event that will be signaled when the collection
process completes. If NULL, this function will busy-wait until
the collection process competes.

RemoteAddress Pointer to the server IP address. This address may be a unicast,
multicast, or broadcast address.

RemotePort Server listening port number. If zero, the default server listening
port number (67) will be used.

GatewayAddress Pointer to the gateway address to override the existing setting.

ListenPointCount The number of entries in ListenPoints. If zero, the default
station address and port number 68 are used.

ListenPoints An array of station address and port number pairs that are used
as receiving filters. The first entry is also used as the source
address and source port of the outgoing packet. Type
EFI_DHCP4_LISTEN_POINT is defined below.

TimeoutValue Number of seconds to collect responses. Zero is invalid.

Packet Pointer to the packet to be transmitted. Type
EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

ResponseCount Number of received packets.

ResponseList Pointer to the allocated list of received packets. The caller must
use the EFI Boot Service FreePool() when done using the
received packets.

//***
// EFI_DHCP4_LISTEN_POINT
//***
typedef struct {
 EFI_IPv4_ADDRESS ListenAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 ListenPort;
} EFI_DHCP4_LISTEN_POINT;

 January 31, 2006
1026 Version 2.0

ListenAddress Alternate listening address. It can be a unicast, multicast, or
broadcast address. The TransmitReceive() function will
collect only those packets that are destined to this address. If
NULL, the default (unicast) station address will be used.

SubnetMask The subnet mask of above listening unicast/broadcast IP address.
Ignored if ListenAddress is a multicast address. If NULL,
the subnet mask is automatically computed from unicast
ListenAddress.Cannot be NULL if ListenAddress is
direct broadcast address on subnet.

ListenPort Alternate station source (or listening) port number. If zero, then
the default station port number (68) will be used.

Status Codes Returned

EFI_SUCCESS The packet was successfully queued for transmission.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token.RemoteAddress is zero.

• Token.Packet is NULL.

• Token.Packet is not a well-formed DHCP packet.

• The transaction ID in Token.Packet is in use by another
DHCP process.

EFI_NOT_READY The previous call to this function has not finished yet. Try to call
this function after collection process completes.

EFI_NO_MAPPING The default station address is not available yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

Others Some other unexpected error occurred.

January 31, 2006
Version 2.0 1027

EFI_DHCP4_PROTOCOL.Parse()

Summary

Parses the packed DHCP option data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_PARSE) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_PACKET *Packet
 IN OUT UINT32 *OptionCount,
 IN OUT EFI_DHCP4_PACKET_OPTION *PacketOptionList[] OPTIONAL
);

Parameters

This Pointer to the EFI_DHCP4_PROTOCOL instance.

Packet Pointer to packet to be parsed. Type EFI_DHCP4_PACKET is
defined in EFI_DHCP4_PROTOCOL.GetModeData().

OptionCount On input, the number of entries in the PacketOptionList.
On output, the number of entries that were written into the
PacketOptionList.

PacketOptionList
List of packet option entries to be filled in. End option or pad
options are not included. Type
EFI_DHCP4_PACKET_OPTION is defined in
EFI_DHCP4_PROTOCOL.Configure().

 January 31, 2006
1028 Version 2.0

Description

The Parse() function is used to retrieve the option list from a DHCP packet.

Status Codes Returned
EFI_SUCCESS The packet was successfully parsed.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Packet is NULL.

• Packet is not a well-formed DHCP packet.

• OptionCount is NULL.

EFI_BUFFER_TOO_SMALL One or more of the following conditions is TRUE:

• *OptionCount is smaller than the number of options that
were found in the Packet.

• PacketOptionList is NULL.

January 31, 2006
Version 2.0 1029

23
Network Protocols —TCPv4, IPv4 and

Configuration

23.1 EFI TCPv4 Protocol

This section defines the EFI TCPv4 (Transmission Control Protocol version 4) Protocol.

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI TCPv4 Service Binding Protocol is used to locate EFI TCPv4 Protocol drivers to create
and destroy child of the driver to communicate with other host using TCP protocol.

GUID
#define EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x00720665,0x67EB,0x4a99,0xBAF7,0xD3,0xC3,0x3A,0x1C,0x7C,0xC9}

Description

A network application that requires TCPv4 I/O services can call one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search devices that publish an EFI TCPv4
Service Binding Protocol GUID. Such device supports the EFI TCPv4 Protocol and may be
available for use.

After a successful call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI TCPv4 Protocol driver is in an un-configured state; it is not
ready to do any operation except Poll() send and receive data packets until configured as the
purpose of the user and perhaps some other indispensable function belonged to TCPv4 Protocol
driver is called properly.

Every successful call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function must be matched with a call to the
EFI_TCP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function to release the
protocol driver.

 January 31, 2006
1030 Version 2.0

EFI TCP4 Variable

Summary

A list of all the IPv4 addresses and port numbers in use must be maintained for each
communications device. This list is stored as volatile variable so it can be publicly read.

Vendor GUID
gEfiTcp4ServiceBindingProtocolGuid ;

Variable Name
CHAR16 *MacAddress;

Attribute

 EFI_VARIABLE_BOOTSERVICE_ACCESS

Description

MacAddress is the string of printed hexadecimal value for each byte in hardware address (of
type EFI_MAC_ADDRESS) of the communications device. No 0x or h is included in each hex
value. The length of MacAddress is determined by the hardware address length. For example: if
the hardware address is 00-07-E9-51-60-D7, and address length is 6 bytes, then MacAddress is
�“0007E95160D7”.

Related Definitions
//**
// EFI_TCP4_VARIABLE_DATA
//**
typedef struct {
 EFI_HANDLE DriverHandle;
 UINTN ServiceCount;
 EFI_TCP4_SERVICE_POINT Services[1];
} EFI_TCP4_VARIABLE_DATA;

DriverHandle The handle of the driver that creates this entry.

ServiceCount The number of address/port pairs following this data structure.

Services List of address/port pairs that are currently in use. Type
EFI_TCP4_SERVICE_POINT is defined below.

January 31, 2006
Version 2.0 1031

//**
// EFI_TCP4_SERVICE_POINT
//**
typedef struct{
 EFI_IPv4_ADDRESS LocalAddress;
 UINT16 LocalPort;
 EFI_IPv4_ADDRESS RemoteAddress;
 UINT16 RemotePort;
} EFI_TCP4_SERVICE_POINT;

LocalAddress The local IPv4 address to which this TCPv4 protocol instance is
 bound.

LocalPort The local port number in host byte order.

RemoteAddress The remote IPv4 address. It may be 0.0.0.0 if it isn’t connected
to any remote host.

RemotePort The remote port number in host byte order. It may be zero if it
isn’t connected to any remote host

 January 31, 2006
1032 Version 2.0

EFI_TCP4_PROTOCOL

Summary

The EFI TCPv4 Protocol provides services to send and receive data stream.

GUID
#define EFI_TCP4_PROTOCOL_GUID \

{0x65530BC7,0xA359,0x410f,0xB010,0x5A,0xAD,0xC7,0xEC,0x2B,0x62}

Protocol Interface Structure
typedef struct _EFI_TCP4_PROTOCOL {

EFI_TCP4_GET_MODE_DATA GetModeData;
 EFI_TCP4_CONFIGURE Configure;
 EFI_TCP4_ROUTES Routes;
 EFI_TCP4_CONNECT Connect;

EFI_TCP4_ACCEPT Accept;
 EFI_TCP4_TRANSMIT Transmit;
 EFI_TCP4_RECEIVE Receive;
 EFI_TCP4_CLOSE Close;
 EFI_TCP4_CANCEL Cancel;
 EFI_TCP4_POLL Poll;
} EFI_TCP4_PROTOCOL;

Parameters

GetModeData Get the current operational status. See the GetModeData()
function description.

Configure Initialize, change, or brutally reset operational settings of the EFI
TCPv4 Protocol. See the Configure() function description.

Routes Add or delete routing entries for this TCP4 instance. See the
Routes() function description.

Connect Initiate the TCP three-way handshake to connect to the remote
peer configured in this TCP instance. The function is a
nonblocking operation. See the Connect() function
description.

Accept Listen for incoming TCP connection request. This function is a
nonblocking operation. See the Accept() function description.

Transmit Queue outgoing data to the transmit queue. This function is a
nonblocking operation. See the Transmit() function
description.

January 31, 2006
Version 2.0 1033

Receive Queue a receiving request token to the receive queue. This
function is a nonblocking operation. See the Receive()
function description.

Close Gracefully disconnecting a TCP connection follow RFC 793 or
reset a TCP connection. This function is a nonblocking
operation. See the Close() function description.

Cancel Abort a pending connect, listen, transmit or receive request. See
the Cancel() function description.

Poll Poll to receive incoming data and transmit outgoing TCP
segments. See the Poll() function description.

Description

The EFI_TCP4_PROTOCOL defines the EFI TCPv4 Protocol child to be used by any network
drivers or applications to send or receive data stream. It can either listen on a specified port as a
service or actively connected to remote peer as a client. Each instance has its own independent
settings, such as the routing table.

BYTE ORDER NOTE

In this document, all IPv4 addresses and incoming/outgoing packets are stored in network byte
order. All other parameters in the functions and data structures that are defined in this document
are stored in host byte order unless explicitly specified.

 January 31, 2006
1034 Version 2.0

EFI_TCP4_PROTOCOL.GetModeData()

Summary

Get the current operational status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_GET_MODE_DATA) (
 IN EFI_TCP4_PROTOCOL *This,
 OUT EFI_TCP4_CONNECTION_STATE *Tcp4State OPTIONAL,
 OUT EFI_TCP4_CONFIG_DATA *Tcp4ConfigData OPTIONAL,
 OUT EFI_IPv4_MODE_DATA *Ip4ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

Tcp4State Pointer to the buffer to receive the current TCP state. Type
EFI_TCP4_CONNECTION_STATE is defined in “Related
Definitions” below.

Tcp4ConfigData Pointer to the buffer to receive the current TCP configuration.
Type EFI_TCP4_CONFIG_DATA is defined in “Related
Definitions” below.

Ip4ModeData Pointer to the buffer to receive the current IPv4 configuration
data used by the TCPv4 instance. Type EFI_IP4_MODE_DATA
is defined in EFI_IP4_PROTOCOL.GetModeData().

MnpConfigData Pointer to the buffer to receive the current MNP configuration
data used indirectly by the TCPv4 instance. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData Pointer to the buffer to receive the current SNP configuration
data used indirectly by the TCPv4 instance. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

January 31, 2006
Version 2.0 1035

Description

The GetModeData() function copies the current operational settings of this EFI TCPv4 Protocol
instance into user-supplied buffers. This function can also be used to retrieve the operational setting
of underlying drivers such as IPv4, MNP, or SNP.

Related Definition

typedef struct {
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 StationPort;
 EFI_IPv4_ADDRESS RemoteAddress;

UINT16 RemotePort;

 BOOLEAN ActiveFlag;

}EFI_TCP4_ACCESS_POINT;

UseDefaultAddress Set to TRUE to use the default IP address and default routing
table. If the default IP address is not available yet, then the
underlying EFI IPv4 Protocol driver will use
EFI_IP4_CONFIG_PROTOCOL to retrieve the IP address and
subnet information.

StationAddress The local IP address assigned to this EFI TCPv4 Protocol
instance. The EFI TCPv4 and EFI IPv4 Protocol drivers will
only deliver incoming packets whose destination addresses
exactly match the IP address. Not used when
UseDefaultAddress is TRUE.

SubnetMask The subnet mask associated with the station address. Not used
when UseDefaultAddress is TRUE.

StationPort The local port number to which this EFI TCPv4 Protocol
instance is bound. If the instance doesn’t care the local port
number, set StationPort to zero to use an ephemeral port.

RemoteAddress The remote IP address to which this EFI TCPv4 Protocol
instance is connected. If ActiveFlag is FALSE (i.e. a passive
TCPv4 instance), the instance only accepts connections from the
RemoteAddress. If ActiveFlag is TRUE the instance is
connected to the RemoteAddress, i.e., outgoing segments will
be sent to this address and only segments from this address will
be delivered to the application. When ActiveFlag is FALSE
it can be set to zero and means that incoming connection request
from any address will be accepted.

 January 31, 2006
1036 Version 2.0

RemotePort The remote port to which this EFI TCPv4 Protocol instance is
connects or connection request from which is accepted by this
EFI TCPv4 Protocol instance. If ActiveFlag is FALSE it can
be zero and means that incoming connection request from any
port will be accepted. Its value can not be zero when
ActiveFlag is TRUE.

ActiveFlag Set it to TRUE to initiate an active open. Set it to FALSE to
initiate a passive open to act as a server.

typedef struct {
 UINTN ReceiveBufferSize;

UINTN SendBufferSize;
UINTN MaxSynBackLog;
UINTN ConnectionTimeout;
UINTN DataRetries;
UINTN FinTimeout;
UINTN TimeWaitTimeout;
UINTN KeepAliveProbes;
UINTN KeepAliveTime;
UINTN KeepAliveInterval;
BOOLEAN EnableNagle;
BOOLEAN EnableTimeStamp;
BOOLEAN EnableWindowScaling;
BOOLEAN EnableSelectiveAck;
BOOLEAN EnablePathMtuDiscovery;

}EFI_TCP4_OPTION;

ReceiveBufferSize The size of the TCP receive buffer.

SendBufferSize The size of the TCP send buffer.

MaxSynBackLog The length of incoming connect request queue for a passive
instance. When set to zero, the value is implementation specific.

ConnectionTimeout The maximum seconds a TCP instance will wait for before a
TCP connection established. When set to zero, the value is
implementation specific.

DataRetries The number of times TCP will attempt to retransmit a packet on
an established connection. When set to zero, the value is
implementation specific.

January 31, 2006
Version 2.0 1037

FinTimeout How many seconds to wait in the FIN_WAIT_2 states for a final
FIN flag before the TCP instance is closed. This timeout is in
effective only if the application has called Close() to
disconnect the connection completely. It is also called
FIN_WAIT_2 timer in other implementations. When set to zero,
it should be disabled because the FIN_WAIT_2 timer itself is
against the standard. The default value is 60.

TimeWaitTimeout How many seconds to wait in TIME_WAIT state before the TCP
instance is closed. The timer is disabled completely to provide a
method to close the TCP connection quickly if it is set to zero. It
is against the related RFC documents.

KeepAliveProbes The maximum number of TCP keep-alive probes to send before
giving up and resetting the connection if no response from the
other end. Set to zero to disable keep-alive probe.

KeepAliveTime The number of seconds a connection needs to be idle before TCP
sends out periodical keep-alive probes. When set to zero, the
value is implementation specific. It should be ignored if keep-
alive probe is disabled.

KeepAliveInterval The number of seconds between TCP keep-alive probes after the
periodical keep-alive probe if no response. When set to zero, the
value is implementation specific. It should be ignored if keep-
alive probe is disabled.

EnableNagle Set it to TRUE to enable the Nagle algorithm as defined in
RFC896. Set it to FALSE to disable it.

EnableTimeStamp Set it to TRUE to enable TCP timestamps option as defined in
RFC1323. Set to FALSE to disable it.

EnableWindowScaling Set it to TRUE to enable TCP window scale option as defined in
RFC1323. Set it to FALSE to disable it.

EnableSelectiveAck Set it to TRUE to enable selective acknowledge mechanism
described in RFC 2018. Set it to FALSE to disable it.
Implementation that supports SACK can optionally support
DSAK as defined in RFC 2883.

EnablePathMtudiscovery Set it to TRUE to enable path MTU discovery as defined in
RFC 1191. Set to FALSE to disable it.

Option setting with digital value will be modified by driver if it is set out of the implementation
specific range and an implementation specific default value will be set accordingly.

 January 31, 2006
1038 Version 2.0

//***
// EFI_TCP4_CONFIG_DATA
//***
typedef struct {
 // Receiving Filters
 // I/O parameters
 UINT8 TypeOfService;
 UINT8 TimeToLive;

 // Access Point

EFI_TCP4_ACCESS_POINT AccessPoint;

// TCP Control Options
EFI_TCP4_OPTION * ControlOption;

} EFI_TCP4_CONFIG_DATA;

TypeOfService TypeOfService field in transmitted IPv4 packets.

TimeToLive TimeToLive field in transmitted IPv4 packets.

AccessPoint Used to specify TCP communication end settings for a TCP
instance.

ControlOption Used to configure the advance TCP option for a connection. If
set to NULL, implementation specific options for TCP
connection will be used.

//***
// EFI_TCP4_CONNECTION_STATE
//***

typedef enum {

Tcp4StateClosed = 0,
Tcp4StateListen = 1,
Tcp4StateSynSent = 2,
Tcp4StateSynReceived = 3,
Tcp4StateEstablished = 4,
Tcp4StateFinWait1 = 5,
Tcp4StateFinWait2 = 6,
Tcp4StateClosing = 7,
Tcp4StateTimeWait = 8,
Tcp4StateCloseWait = 9,
Tcp4StateLastAck = 10

} EFI_TCP4_CONNECTION_STATE;

January 31, 2006
Version 2.0 1039

Status Codes Returned
EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED No configuration data is available because this instance hasn’t
been started.

EFI_INVALID_PARAMETER This is NULL.

 January 31, 2006
1040 Version 2.0

EFI_TCP4_PROTOCOL.Configure()

Summary
Initialize or brutally reset the operational parameters for this EFI TCPv4 instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CONFIGURE) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_CONFIG_DATA *TcpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

TcpConfigData Pointer to the configure data to configure the instance.

Description

The Configure() function does the following:

• Initialize this EFI TCPv4 instance, i.e., initialize the communication end setting, specify active
open or passive open for an instance.

• Reset this TCPv4 instance brutally, i.e., cancel all pending asynchronous tokens, flush
transmission and receiving buffer directly without informing the communication peer.

No other TCPv4 Protocol operation can be executed by this instance until it is configured properly.
For an active TCP4 instance, after a proper configuration it may call Connect() to initiates the
three-way handshake. For a passive TCP4 instance, its state will transit to Tcp4StateListen
after configuration, and Accept() may be called to listen the incoming TCP connection request.
If TcpConfigData is set to NULL, the instance is reset. Resetting process will be done brutally,
the state machine will be set to Tcp4StateClosed directly, the receive queue and transmit
queue will be flushed, and no traffic is allowed through this instance.

January 31, 2006
Version 2.0 1041

Status Codes Returned
EFI_SUCCESS The operational settings are set, changed, or reset

successfully.

EFI_NO_MAPPING When using a default address, configuration (through
DHCP, BOOTP, RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• TcpConfigData
• ->AccessPoint.StationAddress

• isn’t a valid unicast IPv4 address when
TcpConfigData

• ->AccessPoint.UseDefaultAddress
is FALSE.

• TcpConfigData

• ->AccessPoint.SubnetMask isn’t a valid
IPv4 address mask when TcpConfigData

• -> AccessPoint.UseDefaultAddress
is FALSE. The subnet mask must be contiguous.

• TcpConfigData-
>AccessPoint.RemoteAddress isn’t a
valid unicast IPv4 address.

• TcpConfigData

• ->AccessPoint.RemoteAddress is zero
or TcpConfigData

• ->AccessPoint.RemotePort is zero when
TcpConfigData

• ->AccessPoint.ActiveFlag is TRUE.

• A same access point has been configured in other
TCP instance properly.

EFI_ACCESS_DENIED Configuring TCP instance when it is configured without
calling Configure() with NULL to reset it.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_UNSUPPORTED One or more of the control options are not supported in
the implementation.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when
executing Configure().

 January 31, 2006
1042 Version 2.0

EFI_TCP4_PROTOCOL.Routes()

Summary

Add or delete routing entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_ROUTES) (
 IN EFI_TCP4_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv4_ADDRESS *SubnetAddress,
 IN EFI_IPv4_ADDRESS *SubnetMask,
 IN EFI_IPv4_ADDRESS *GatewayAddress
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

DeleteRoute Set it to TRUE to delete this route from the routing table. Set it to
FALSE to add this route to the routing table.
DestinationAddress and SubnetMask are used as the
keywords to search route entry.

SubnetAddress The destination network.

SubnetMask The subnet mask of the destination network.

GatewayAddress The gateway address for this route. It must be on the same
subnet with the station address unless a direct route is specified.

Description

The Routes() function adds or deletes a route from the instance’s routing table.

The most specific route is selected by comparing the SubnetAddress with the destination IP
address’s arithmetical AND to the SubnetMask.

The default route is added with both SubnetAddress and SubnetMask set to 0.0.0.0. The
default route matches all destination IP addresses if there is no more specific route.

Direct route is added with GatewayAddress set to 0.0.0.0. Packets are sent to the destination
host if its address can be found in the Address Resolution Protocol (ARP) cache or it is on the local
subnet. If the instance is configured to use default address, a direct route to the local network will
be added automatically.

January 31, 2006
Version 2.0 1043

Each TCP instance has its own independent routing table. Instance that uses the default IP address
will have a copy of the EFI_IP4_CONFIG_PROTOCOL’s routing table. The copy will be updated
automatically whenever the IP driver reconfigures its instance. As a result, the previous
modification to the instance’s local copy will be lost.

The priority of checking the route table is specific with IP implementation and every IP
implementation must comply with RFC 1122.

NOTE

There is no way to set up routes to other network interface cards (NICs) because each NIC has its
own independent network stack that shares information only through EFI TCP4 variable.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.
• SubnetAddress is NULL.

• SubnetMask is NULL.
• GatewayAddress is NULL.

• *SubnetAddress is not NULL a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IP address or it
is not in the same subnet.

EFI_OUT_OF_RESOURCES Could not allocate enough resources to add the entry to the
routing table.

EFI_NOT_FOUND This route is not in the routing table.

EFI_ACCESS_DENIED The route is already defined in the routing table.

EFI_UNSUPPORTED The TCP driver does not support this operation.

 January 31, 2006
1044 Version 2.0

EFI_TCP4_PROTOCOL.Connect()

Summary

Initiate a nonblocking TCP connection request for an active TCP instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CONNECT) (

IN EFI_TCP4_PROTOCOL *This,
IN EFI_TCP4_CONNECTION_TOKEN *ConnectionToken,

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

ConnectionToken Pointer to the connection token to return when the TCP three
way handshake finishes. Type
EFI_TCP4_CONNECTION_TOKEN is defined in “Related
Definition” below.

Description

The Connect() function will initiate an active open to the remote peer configured in current
TCP instance if it is configured active. If the connection succeeds or fails due to any error, the
ConnectionToken->CompletionToken.Event will be signaled and
ConnectionToken->CompletionToken.Status will be updated accordingly. This
function can only be called for the TCP instance in Tcp4StateClosed state. The instance will
transfer into Tcp4StateSynSent if the function returns EFI_SUCCESS. If TCP three way
handshake succeeds, its state will become Tcp4StateEstablished, otherwise, the state will
return to Tcp4StateClosed.

Related Definitions

//***
// EFI_TCP4_COMPLETION_TOKEN
//***
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
} EFI_TCP4_COMPLETION_TOKEN;

January 31, 2006
Version 2.0 1045

Event The Event to signal after request is finished and Status field is
updated by the EFI TCPv4 Protocol driver. The type of Event must be
EVT_NOTIFY_SIGNAL, and its Task Priority Level (TPL) must be
lower than or equal to TPL_CALLBACK.

Status The variable to receive the result of the completed operation.

The EFI_TCP4_COMPLETION_TOKEN is used as a common header for various asynchronous
tokens.

//***
// EFI_TCP4_CONNECTION_TOKEN
//***
typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
} EFI_TCP4_CONNECTION_TOKEN;

Status The Status in the CompletionToken will be set to one of the
following values if the active open succeeds or an unexpected error
happens:

EFI_SUCCESS The active open succeeds and the instance is in
Tcp4StateEstablished.

EFI_CONNECTION_RESET
The connect fails because the connection is reset either by instance itself
or communication peer.

EFI_ABORTED The active open was aborted.

EFI_TIMEOUT The connection establishment timer expired and no more specific
information is available.

EFI_NETWORK_UNREACHABLE
The active open fails because an ICMP network unreachable error is
received.

EFI_HOST_UNREACHABLE
The active open fails because an ICMP host unreachable error is
received.

EFI_PROTOCOL_UNREACHABLE
The active open fails because an ICMP protocol unreachable error is
received.

EFI_PORT_UNREACHABLE
The connection establishment timer times out and an ICMP port
unreachable error is received.

EFI_ICMP_ERROR The connection establishment timer timeout and some other ICMP error
is received.

 January 31, 2006
1046 Version 2.0

EFI_DEVICE_ERROR
An unexpected system or network error occurred.

Status Codes Returned
EFI_SUCCESS The connection request is successfully initiated and the state

of this TCPv4 instance has been changed to
Tcp4StateSynSent.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

• This instance is not configured as an active one.

• This instance is not in Tcp4StateClosed state.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ConnectionToken is NULL.

• ConnectionToken-
>CompletionToken.Event is NULL.

EFI_OUT_OF_RESOURCES The driver can’t allocate enough resource to initiate the active
open.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

January 31, 2006
Version 2.0 1047

EFI_TCP4_PROTOCOL.Accept()

Summary

Listen on the passive instance to accept an incoming connection request. This is a nonblocking
operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_ACCEPT) (

IN EFI_TCP4_PROTOCOL *This,
IN EFI_TCP4_LISTEN_TOKEN *ListenToken

);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

ListenToken Pointer to the listen token to return when operation finishes.
Type EFI_TCP4_LISTEN_TOKEN is defined in “Related
Definition” below.

Related Definitions
//***
// EFI_TCP4_LISTEN_TOKEN
//***
typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
 EFI_HANDLE NewChildHandle;
} EFI_TCP4_LISTEN_TOKEN;

Status The Status in CompletionToken will be set to the
following value if accept finishes:

EFI_SUCCESS: A remote peer has successfully established a connection to this
instance. A new TCP instance has also been created for the connection.

EFI_CONNECTION_RESET:
The accept fails because the connection is reset either by instance itself
or communication peer.

EFI_ABORTED: The accept request has been aborted.

NewChildHandle The new TCP instance handle created for the established
connection.

 January 31, 2006
1048 Version 2.0

Description

The Accept() function initiates an asynchronous accept request to wait for an incoming
connection on the passive TCP instance. If a remote peer successfully establishes a connection with
this instance, a new TCP instance will be created and its handle will be returned in
ListenToken->NewChildHandle. The newly created instance is configured by inheriting the
passive instance’s configuration and is ready for use upon return. The instance is in the
Tcp4StateEstablished state.

The ListenToken->CompletionToken.Event will be signaled when a new connection is
accepted, user aborts the listen or connection is reset.

This function only can be called when current TCP instance is in Tcp4StateListen state.

Status Codes Returned
EFI_SUCCESS The listen token has been queued successfully.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

• This instance is not a passive instance.

• This instance is not in Tcp4StateListen state.

• The same listen token has already existed in the listen
token queue of this TCP instance.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ListenToken is NULL.

• ListentToken->CompletionToken.Event
is NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.

January 31, 2006
Version 2.0 1049

EFI_TCP4_PROTOCOL.Transmit()

Summary

Queues outgoing data into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_TRANSMIT) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_IO_TOKEN *Token
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

Token Pointer to the completion token to queue to the transmit queue.
Type EFI_TCP4_IO_TOKEN is defined in “Related
Definitions” below.

Description

The Transmit() function queues a sending request to this TCPv4 instance along with the user
data. The status of the token is updated and the event in the token will be signaled once the data is
sent out or some error occurs.

Related Definitions

//***
// EFI_TCP4_IO_TOKEN
//***
typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
 union {
 EFI_TCP4_RECEIVE_DATA *RxData;
 EFI_TCP4_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_TCP4_IO_TOKEN;

Status When transmission finishes or meets any unexpected error it will
be set to one of the following values:

EFI_SUCCESS: The receiving or transmission operation completes successfully.

 January 31, 2006
1050 Version 2.0

EFI_CONNECTION_RESET:
The receiving or transmission operation fails because this connection is
reset either by instance itself or communication peer.

EFI_ABORTED: The receiving or transmission is aborted.

EFI_TIMEOUT: The transmission timer expires and no more specific information is
available.

EFI_NETWORK_UNREACHABLE:
The transmission fails because an ICMP network unreachable error is
received.

EFI_HOST_UNREACHABLE:
The transmission fails because an ICMP host unreachable error is
received.

EFI_PROTOCOL_UNREACHABLE:
The transmission fails because an ICMP protocol unreachable error is
received.

EFI_PORT_UNREACHABLE:
The transmission fails and an ICMP port unreachable error is received.

EFI_ICMP_ERROR:
The transmission fails and some other ICMP error is received.

EFI_DEVICE_ERROR:
An unexpected system or network error occurs.

RxData When this token is used for receiving, RxData is a pointer to
EFI_TCP4_RECEIVE_DATA. Type
EFI_TCP4_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
EFI_TCP4_TRANSMIT_DATA. Type
EFI_TCP4_TRANSMIT_DATA is defined below.

The EFI_TCP4_IO_TOKEN structures are used for both transmit and receive operations.

When used for transmitting, the CompletionToken.Event and TxData fields must be filled
in by the user. After the transmit operation completes, the CompletionToken.Status field is
updated by the instance and the Event is signaled.

When used for receiving, the CompletionToken.Event and RxData fields must be filled in
by the user. After a receive operation completes, RxData and Status are updated by the instance
and the Event is signaled.

January 31, 2006
Version 2.0 1051

//***
// EFI_TCP4_RECEIVE_DATA
//***
typedef struct {
 BOOLEAN UrgentFlag;
 IN OUT UINTN DataLength;
 UINTN FragmentCount;
 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP4_RECEIVE_DATA;

UrgentFlag Whether those data are urgent. When this flag is set, the instance
is in urgent mode. The implementations of this specification
should follow RFC793 to process urgent data, and should NOT
mix the data across the urgent point in one token.

DataLength When calling Receive() function, it is the byte counts of all
Fragmentbuffer in FragmentTable allocated by user.
When the token is signaled by TCPv4 driver it is the length of
received data in the fragments.

FragmentCount Number of fragments.

FragmentTable An array of fragment descriptors. Type
EFI_TCP4_FRAGMENT_DATA is defined below.

When TCPv4 driver wants to deliver received data to the application, it will pick up the first queued
receiving token, update its Token->Packet.RxData then signal the Token-
>CompletionToken.Event.

The FragmentBuffers in FragmentTable are allocated by the application when calling
Receive() function and received data will be copied to those buffers by the driver.
FragmentTable may contain multiple buffers that are NOT in the continuous memory locations.
The application should combine those buffers in the FragmentTable to process data if
necessary.

//***
// EFI_TCP4_FRAGMENT_DATA
//***
typedef struct {
 UINTN FragmentLength;
 VOID *FragmentBuffer;
} EFI_TCP4_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.

FragmentBuffer Pointer to the data buffer in the fragment.

 January 31, 2006
1052 Version 2.0

EFI_TCP4_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The
purpose of this structure is to provide scattered read and write.

//**
// EFI_TCP4_TRANSMIT_DATA
//**
typedef struct {
 BOOLEAN Push;
 BOOLEAN Urgent;
 UINTN DataLength;
 UINTN FragmentCount;
 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP4_TRANSMIT_DATA;

Push If TRUE, data must be transmitted promptly, and the PUSH bit in
the last TCP segment created will be set. If FALSE, data
transmission may be delay to combine with data from
subsequent Transmit()s for efficiency.

Urgent The data in the fragment table are urgent and urgent point is in
effect if TRUE. Otherwise those data are NOT considered urgent.

DataLength Length of the data in the fragments.

FragmentCount Number of fragments.

FragmentTable A array of fragment descriptors. Type
EFI_TCP4_FRAGMENT_DATA is defined above.

The EFI TCPv4 Protocol user must fill this data structure before sending a packet. The packet may
contain multiple buffers in non-continuous memory locations.

Status Codes Returned
EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

January 31, 2006
Version 2.0 1053

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.
• Token->Packet.TxData is NULL L.

• Token->Packet.FragmentCount is zero.

• Token->Packet.DataLength is not equal to the
sum of fragment lengths.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A transmit completion token with the same Token->
CompletionToken.Event was already in the
transmission queue.

• The current instance is in Tcp4StateClosed state.

• The current instance is a passive one and it is in
Tcp4StateListen state.

• User has called Close() to disconnect this connection.

EFI_NOT_READY The completion token could not be queued because the
transmit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource
shortage.

EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.

 January 31, 2006
1054 Version 2.0

EFI_TCP4_PROTOCOL.Receive()

Summary

Places an asynchronous receive request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_RECEIVE) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_IO_TOKEN *Token
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_TCP4_IO_TOKEN is defined in
EFI_TCP4_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function
is always asynchronous. The caller must allocate the Token->CompletionToken.Event and
the FragmentBuffer used to receive data. He also must fill the DataLength which represents
the whole length of all FragmentBuffer. When the receive operation completes, the EFI TCPv4
Protocol driver updates the Token->CompletionToken.Status and Token-
>Packet.RxData fields and the Token->CompletionToken.Event is signaled. If got
data the data and its length will be copy into the FragmentTable, in the same time the full
length of received data will be recorded in the DataLength fields. Providing a proper notification
function and context for the event will enable the user to receive the notification and receiving
status. That notification function is guaranteed to not be re-entered.

Status Codes Returned
EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

January 31, 2006
Version 2.0 1055

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.
• Token->CompletionToken.Event is NULL.

• Token->Packet.RxData is NULL.

• Token->Packet.RxData->DataLength is 0.
• The Token->Packet.RxData->DataLength is not

the sum of all FragmentBuffer length in
FragmentTable.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

The EFI TCPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A receive completion token with the same Token-
>CompletionToken.Event was already in the receive
queue.

• The current instance is in Tcp4StateClosed state.

• The current instance is a passive one and it is in
Tcp4StateListen state.

• User has called Close() to disconnect this connection.

EFI_CONNECTION_FIN • The communication peer has closed the connection and there is
no any buffered data in the receive buffer of this instance.

EFI_NOT_READY The receive request could not be queued because the receive queue
is full.

 January 31, 2006
1056 Version 2.0

EFI_TCP4_PROTOCOL.Close()

Summary

Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a
nonblocking operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CLOSE)(
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_CLOSE_TOKEN *CloseToken
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

CloseToken Pointer to the close token to return when operation finishes. Type
EFI_TCP4_CLOSE_TOKEN is defined in “Related Definition” below.

Related Definitions
//***
// EFI_TCP4_CLOSE_TOKEN
//***
typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
BOOLEAN AbortOnClose;

} EFI_TCP4_CLOSE_TOKEN;

Status When close finishes or meets any unexpected error it will be set
to one of the following values:

EFI_SUCCESS: The close operation completes successfully.

EFI_ABORTED: User called configure with NULL without close stopping.

AbortOnClose Abort the TCP connection on close instead of the standard TCP
close process when it is set to TRUE. This option can be used to
satisfy a fast disconnect.

January 31, 2006
Version 2.0 1057

Description

Initiate an asynchronous close token to TCP driver. After Close() is called, any buffered
transmission data will be sent by TCP driver and the current instance will have a graceful close
working flow described as RFC 793 if AbortOnClose is set to FALSE, otherwise, a rest packet
will be sent by TCP driver to fast disconnect this connection. When the close operation completes
successfully the TCP instance is in Tcp4StateClosed state, all pending asynchronous operation
is signaled and any buffers used for TCP network traffic is flushed.

Status Codes Returned
EFI_SUCCESS The Close() is called successfully.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

• Configure() has been called with
TcpConfigData set to NULL and this function has
not returned.

• Previous Close() call on this instance has not
finished.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• CloseToken is NULL.

• CloseToken->CompletionToken.Event is
NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.

 January 31, 2006
1058 Version 2.0

EFI_TCP4_PROTOCOL.Cancel()

Summary

Abort an asynchronous connection, listen, transmission or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CANCEL)(
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_TCP4_PROTOCOL.Connect(),
EFI_TCP4_PROTOCOL.Accept(),
EFI_TCP4_PROTOCOL.Transmit() or
EFI_TCP4_PROTOCOL.Receive(). If NULL, all pending
tokens issued by above four functions will be aborted. Type
EFI_TCP4_COMPLETION_TOKEN is defined in
EFI_TCP4_PROTOCOL.Connect().

Description

The Cancel() function aborts a pending connection, listen, transmit or receive request. If Token
is not NULL and the token is in the connection, listen, transmission or receive queue when it is
being cancelled, its Token->Status will be set to EFI_ABORTED and then Token->Event
will be signaled. If the token is not in one of the queues, which usually means that the asynchronous
operation has completed, EFI_NOT_FOUND is returned. If Token is NULL all asynchronous token
issued by Connect(), Accept(), Transmit() and Receive()will be aborted.

Status Codes Returned
EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event

is signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) hasn’t finished yet.

EFI_NOT_FOUND The asynchronous I/O request isn’t found in the transmission or
receive queue. It has either completed or wasn’t issued by
Transmit() and Receive().

January 31, 2006
Version 2.0 1059

EFI_TCP4_PROTOCOL.Poll()

Summary

Poll to receive incoming data and transmit outgoing segments.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_POLL) (
 IN EFI_TCP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_TCP4_PROTOCOL instance.

Description

The Poll() function increases the rate that data is moved between the network and application
and can be called when the TCP instance is created successfully. Its use is optional.

In some implementations, the periodical timer in the MNP driver may not poll the underlying
communications device fast enough to avoid drop packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function in a high frequency.

Status Codes Returned
EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmission or receive queue.

Consider increasing the polling rate.

 January 31, 2006
1060 Version 2.0

23.2 EFI IPv4 Protocol

This section defines the EFI IPv4 (Internet Protocol version 4) Protocol interface. It is split into the
following three main sections:

• EFI IPv4 Service Binding Protocol
• EFI IPv4 Variable
• EFI IPv4 Protocol

The EFI IPv4 Protocol provides basic network IPv4 packet I/O services, which includes support for
a subset of the Internet Control Message Protocol (ICMP) and may include support for the Internet
Group Management Protocol (IGMP).

EFI_IP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI IPv4 Service Binding Protocol is used to locate communication devices that are supported
by an EFI IPv4 Protocol driver and to create and destroy instances of the EFI IPv4 Protocol child
protocol driver that can use the underlying communications device.

GUID
#define EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID \

0xc51711e7,0xb4bf,0x404a,0xbfb8,0x0a,0x04,0x8e,0xf1,0xff,0xe4}

Description

A network application that requires basic IPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI
IPv4 Service Binding Protocol GUID. Each device with a published EFI IPv4 Service Binding
Protocol GUID supports the EFI IPv4 Protocol and may be available for use.

After a successful call to the EFI_IP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI IPv4 Protocol driver is in an unconfigured state; it is not
ready to send and receive data packets.

Before a network application terminates execution, every successful call to the
EFI_IP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_IP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

January 31, 2006
Version 2.0 1061

EFI IPv4 Variable

Summary

An accurate list of all of the IPv4 addresses and subnet masks that are currently being used must be
maintained for each communications device. This list is stored as a volatile variable so it can be
publicly read.

Vendor GUID
gEfiIp4ServiceBindingProtocolGuid

Variable Name

 CHAR16 *MacAddress;

Attribute
 EFI_VARIABLE_BOOTSERVICE_ACCESS

Description

MacAddress is the string of printed hexadecimal value for each byte in hardware address (of
type EFI_MAC_ADDRESS) of the communications device. No 0x or h is included in each hex
value. The length of MacAddress is determined by the hardware address length. For example: if
the hardware address is 00-07-E9-51-60-D7, and address length is 6 bytes, then MacAddress is
�“0007E95160D7”.

Related Definitions
//**
// EFI_IP4_VARIABLE DATA_
//**
typedef struct {
 EFI_GUID ProtocolGuid;
 EFI_HANDLE DriverHandle;
 UINT32 AddressCount;
 EFI_IP4_ADDRESS_PAIR AddressPairs[1];
} EFI_IP4_VARIABLE_DATA;

DriverHandle The handle of the driver that creates this entry.

AddressCount The number of IPv4 address and subnet mask pairs that follow
this data structure.

AddressPairs List of IPv4 address and subnet mask pairs that are currently in
use. Type EFI_IP4_ADDRESS_PAIR is defined below.

 January 31, 2006
1062 Version 2.0

//**
// EFI_IP4_ADDRESS_PAIR
//**
typedef struct{
 EFI_IPv4_ADDRESS Ip4Address;
 EFI_IPv4_ADDRESS SubnetMask;
} EFI_IP4_ADDRESS_PAIR;

Ip4Address IPv4 address in network byte order.

SubnetMask Subnet mask in network byte order.

EFI_IP4_PROTOCOL

Summary

The EFI IPv4 Protocol implements a simple packet-oriented interface that can be used by drivers,
daemons, and applications to transmit and receive network packets.

GUID
#define EFI_IP4_PROTOCOL_GUID \

{0x41d94cd2,0x35b6,0x455a,0x8258,0xd4,0xe5,0x13,0x34,0xaa,0xdd}

Protocol Interface Structure
typedef struct _EFI_IP4_PROTOCOL {
 EFI_IP4_GET_MODE_DATA GetModeData;
 EFI_IP4_CONFIGURE Configure;
 EFI_IP4_GROUPS Groups;
 EFI_IP4_ROUTES Routes;
 EFI_IP4_TRANSMIT Transmit;
 EFI_IP4_RECEIVE Receive;
 EFI_IP4_CANCEL Cancel;
 EFI_IP4_POLL Poll;
} EFI_IP4_PROTOCOL;

January 31, 2006
Version 2.0 1063

Parameters

GetModeData Gets the current operational settings for this instance of the EFI
IPv4 Protocol driver. See the GetModeData() function
description.

Configure Changes or resets the operational settings for the EFI IPv4
Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Adds and deletes routing table entries. See the Routes()
function description.

Transmit Places outgoing data packets into the transmit queue. See the
Transmit() function description.

Receive Places a receiving request into the receiving queue. See the
Receive() function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_IP4_PROTOCOL defines a set of simple IPv4, ICMPv4, and IGMPv4 services that can
be used by any network protocol driver, daemon, or application to transmit and receive IPv4 data
packets.

BYTE ORDER NOTE

All the IPv4 addresses that are described in EFI_IP4_PROTOCOL are stored in network byte
order. Both incoming and outgoing IP packets are also in network byte order. All other parameters
that are defined in functions or data structures are stored in host byte order.

 January 31, 2006
1064 Version 2.0

EFI_IP4_PROTOCOL.GetModeData()

Summary

Gets the current operational settings for this instance of the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_GET_MODE_DATA) (
 IN EFI_IP4_PROTOCOL *This,
 OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

Ip4ModeData Pointer to the EFI IPv4 Protocol mode data structure. Type
EFI_IP4_MODE_DATA is defined in “Related Definitions”
below.

MnpConfigData Pointer to the managed network configuration data structure.
Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function returns the current operational mode data for this driver instance.
The data fields in EFI_IP4_MODE_DATA are read only. This function is used optionally to
retrieve the operational mode data of underlying networks or drivers.

January 31, 2006
Version 2.0 1065

Related Definitions
//**
// EFI_IP4_MODE_DATA
//**
typedef struct {
 BOOLEAN IsStarted;
 EFI_IP4_CONFIG_DATA ConfigData;
 BOOLEAN IsConfigured;
 UINT32 GroupCount;
 EFI_IPv4_ADDRESS *GroupTable;
 UINT32 RouteCount;
 EFI_IP4_ROUTE_TABLE *RouteTable;
 UINT32 IcmpTypeCount;
 EFI_IP4_ICMP_TYPE *IcmpTypeList;
} EFI_IP4_MODE_DATA;

IsStarted Set to TRUE after this EFI IPv4 Protocol instance is started. All
other fields in this structure are undefined until this field is
TRUE.
Set to FALSE when the EFI IPv4 Protocol instance is stopped.

ConfigData Current configuration settings. Undefined until IsStarted is
TRUE. Type EFI_IP4_CONFIG_DATA is defined below.

IsConfigured Set to TRUE when the EFI IPv4 Protocol driver is configured.
The driver is configured when it has a station address and subnet
mask.
Set to FALSE when the EFI IPv4 Protocol driver is not
configured.

GroupCount Number of joined multicast groups. Undefined until
IsConfigured is TRUE.

GroupTable List of joined multicast group addresses. Undefined until
IsConfigured is TRUE.

RouteCount Number of entries in the routing table. Undefined until
IsConfigured is TRUE.

RouteTable Routing table entries. Undefined until IsConfigured is
TRUE. Type EFI_IP4_ROUTE_TABLE is defined below.

IcmpTypeCount Number of entries in the supported ICMP types list.

IcmpTypeList Array of ICMP types and codes that are supported by this EFI
IPv4 Protocol driver. Type EFI_IP4_ICMP_TYPE is defined
below.

 January 31, 2006
1066 Version 2.0

The EFI_IP4_MODE_DATA structure describes the operational state of this IPv4 interface.

//**
// EFI_IP4_CONFIG_DATA
//**
typedef struct {
 UINT8 DefaultProtocol;
 BOOLEAN AcceptAnyProtocol;
 BOOLEAN AcceptIcmpErrors;
 BOOLEAN AcceptBroadcast;
 BOOLEAN AcceptPromiscuous;
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT8 TypeOfService;
 UINT8 TimeToLive;
 BOOLEAN DoNotFragment;
 BOOLEAN RawData;
 UINT32 ReceiveTimeout;
 UINT32 TransmitTimeout;
} EFI_IP4_CONFIG_DATA;

DefaultProtocol The default IPv4 protocol packets to send and receive. Ignored when
AcceptPromiscuous is TRUE. An updated list of protocol
numbers can be found at http://www.iana.org/assignments/protocol-
numbers.

AcceptAnyProtocol Set to TRUE to receive all IPv4 packets that get through the receive
filters.
Set to FALSE to receive only the DefaultProtocol IPv4 packets
that get through the receive filters. Ignored when
AcceptPromiscuous is TRUE.

AcceptIcmpErrors Set to TRUE to receive ICMP error report packets. Ignored when
AcceptPromiscuous or AcceptAnyProtocol is TRUE.

AcceptBroadcast Set to TRUE to receive broadcast IPv4 packets. Ignored when
AcceptPromiscuous is TRUE.
Set to FALSE to stop receiving broadcast IPv4 packets.

AcceptPromiscuous Set to TRUE to receive all IPv4 packets that are sent to any hardware
address or any protocol address.
Set to FALSE to stop receiving all promiscuous IPv4 packets.

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

January 31, 2006
Version 2.0 1067

UseDefaultAddress Set to TRUE to use the default IPv4 address and default routing table.
If the default IPv4 address is not available yet, then the EFI IPv4
Protocol driver will use EFI_IP4_CONFIG_PROTOCOL to retrieve
the IPv4 address and subnet information. (This field can be set and
changed only when the EFI IPv4 driver is transitioning from the
stopped to the started states.)

StationAddress The station IPv4 address that will be assigned to this EFI IPv4
Protocol instance. The EFI IPv4 Protocol driver will deliver only
incoming IPv4 packets whose destination matches this IPv4 address
exactly. Address 0.0.0.0 is also accepted as a special case in which
incoming packets destined to any station IP address are always
delivered. Not used when UseDefaultAddress is TRUE.

SubnetMask The subnet address mask that is associated with the station address.
Not used when UseDefaultAddress is TRUE.

TypeOfService TypeOfService field in transmitted IPv4 packets.

TimeToLive TimeToLive field in transmitted IPv4 packets.

DoNotFragment State of the DoNotFragment bit in transmitted IPv4 packets.

RawData Set to TRUE to send and receive unformatted packets. The other IPv4
receive filters are still applied. Fragmentation is disabled for
RawData mode. NOTE: Unformatted packets include the IP header
and payload. The media header is appended automatically for
outgoing packets by underlying network drivers.

ReceiveTimeout The timer timeout value (number of microseconds) for the receive
timeout event to be associated with each assembled packet. Zero
means do not drop assembled packets.

TransmitTimeout The timer timeout value (number of microseconds) for the transmit
timeout event to be associated with each outgoing packet. Zero means
do not drop outgoing packets.

The EFI_IP4_CONFIG_DATA structure is used to report and change IPv4 session parameters.

 January 31, 2006
1068 Version 2.0

//**
// EFI_IP4_ROUTE_TABLE
//**
typedef struct {
 EFI_IPv4_ADDRESS SubnetAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 EFI_IPv4_ADDRESS GatewayAddress;
} EFI_IP4_ROUTE_TABLE;

SubnetAddress The subnet address to be routed.

SubnetMask The subnet mask. If (DestinationAddress &
SubnetMask == SubnetAddress), then the packet is to
be directed to the GatewayAddress.

GatewayAddress The IPv4 address of the gateway that redirects packets to this
subnet. If the IPv4 address is 0.0.0.0, then packets to this subnet
are not redirected.

EFI_IP4_ROUTE_TABLE is the entry structure that is used in routing tables.

//**
// EFI_IP4_ICMP_TYPE
//**
typedef struct {
 UINT8 Type;
 UINT8 Code;
} EFI_IP4_ICMP_TYPE

Type The type of ICMP message. See RFC 792 and RFC 950.

Code The code of the ICMP message, which further describes the
different ICMP message formats under the same Type. See RFC
792 and RFC 950.

EFI_IP4_ICMP_TYPE is used to describe those ICMP messages that are supported by this EFI
IPv4 Protocol driver.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.

January 31, 2006
Version 2.0 1069

EFI_IP4_PROTOCOL.Configure()

Summary

Assigns an IPv4 address and subnet mask to this EFI IPv4 Protocol driver instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIGURE) (
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_CONFIG_DATA *IpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

IpConfigData Pointer to the EFI IPv4 Protocol configuration data structure.
Type EFI_IP4_CONFIG_DATA is defined in
EFI_IP4_PROTOCOL.GetModeData().

Description

The Configure() function is used to set, change, or reset the operational parameters and filter
settings for this EFI IPv4 Protocol instance. Until these parameters have been set, no network
traffic can be sent or received by this instance. Once the parameters have been reset (by calling this
function with IpConfigData set to NULL), no more traffic can be sent or received until these
parameters have been set again. Each EFI IPv4 Protocol instance can be started and stopped
independently of each other by enabling or disabling their receive filter settings with the
Configure() function.

When IpConfigData.UseDefaultAddress is set to FALSE, the new station address will be
appended as an alias address into the addresses list in the EFI IPv4 Protocol driver. While set to
TRUE, Configure() will trigger the EFI_IP4_CONFIG_PROTOCOL to retrieve the default
IPv4 address if it is not available yet. Clients could frequently call GetModeData() to check the
status to ensure that the default IPv4 address is ready.

If operational parameters are reset or changed, any pending transmit and receive requests will be
cancelled. Their completion token status will be set to EFI_ABORTED and their events will be
signaled.

 January 31, 2006
1070 Version 2.0

Status Codes Returned
EFI_SUCCESS The driver instance was successfully opened.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• IpConfigData.StationAddress is not a unicast
IPv4 address.

• IpConfigData.SubnetMask is not a valid IPv4 subnet
mask.

EFI_UNSUPPORTED One or more of the following conditions is TRUE:

• A configuration protocol (DHCP, BOOTP, RARP, etc.) could
not be located when clients choose to use the default IPv4
address. This EFI IPv4 Protocol implementation does not
support this requested filter or timeout setting.

EFI_OUT_OF_RESOURCES The EFI IPv4 Protocol driver instance data could not be allocated.

EFI_ALREADY_STARTED The interface is already open and must be stopped before the
IPv4 address or subnet mask can be changed. The interface must
also be stopped when switching to/from raw packet mode.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv4
Protocol driver instance is not opened.

January 31, 2006
Version 2.0 1071

EFI_IP4_PROTOCOL.Groups()

Summary

Joins and leaves multicast groups.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_GROUPS) (
 IN EFI_IP4_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_IPv4_ADDRESS *GroupAddress OPTIONAL
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

JoinFlag Set to TRUE to join the multicast group session and FALSE to
leave.

GroupAddress Pointer to the IPv4 multicast address.

Description

The Groups() function is used to join and leave multicast group sessions. Joining a group will
enable reception of matching multicast packets. Leaving a group will disable the multicast packet
reception.

If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.

 January 31, 2006
1072 Version 2.0

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• JoinFlag is TRUE and GroupAddress is NULL.

• GroupAddress is not NULL and *GroupAddress is
not a multicast IPv4 address.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES System resources could not be allocated.

EFI_UNSUPPORTED This EFI IPv4 Protocol implementation does not support multicast
groups.

EFI_ALREADY_STARTED The group address is already in the group table (when
JoinFlag is TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is
FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

January 31, 2006
Version 2.0 1073

EFI_IP4_PROTOCOL.Routes()

Summary

Adds and deletes routing table entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_ROUTES) (
 IN EFI_IP4_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv4_ADDRESS *SubnetAddress,
 IN EFI_IPv4_ADDRESS *SubnetMask,
 IN EFI_IPv4_ADDRESS *GatewayAddress
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

DeleteRoute Set to TRUE to delete this route from the routing table. Set to
FALSE to add this route to the routing table. SubnetAddress
and SubnetMask are used as the key to each route entry.

SubnetAddress The address of the subnet that needs to be routed.

SubnetMask The subnet mask of SubnetAddress.

GatewayAddress The unicast gateway IPv4 address for this route.

Description

The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the SubnetAddress with the destination IPv4 address
arithmetically AND-ed with the SubnetMask. The gateway address must be on the same subnet as
the configured station address.

The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. The
default route matches all destination IPv4 addresses that do not match any other routes.

A GatewayAddress that is zero is a nonroute. Packets are sent to the destination IP address if it
can be found in the ARP cache or on the local subnet. One automatic nonroute entry will be
inserted into the routing table for outgoing packets that are addressed to a local subnet (gateway
address of 0.0.0.0).

 January 31, 2006
1074 Version 2.0

Each EFI IPv4 Protocol instance has its own independent routing table. Those EFI IPv4 Protocol
instances that use the default IPv4 address will also have copies of the routing table that was
provided by the EFI_IP4_CONFIG_PROTOCOL, and these copies will be updated whenever the
EIF IPv4 Protocol driver reconfigures its instances. As a result, client modification to the routing
table will be lost.

NOTE

There is no way to set up routes to other network interface cards because each network interface
card has its own independent network stack that shares information only through EFI IPv4
variable..

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.
• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IPv4 address.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is
TRUE).

EFI_ACCESS_DENIED The route is already defined in the routing table (when
DeleteRoute is FALSE).

January 31, 2006
Version 2.0 1075

EFI_IP4_PROTOCOL.Transmit()

Summary

Places outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_TRANSMIT) (
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

Token Pointer to the transmit token. Type
EFI_IP4_COMPLETION_TOKEN is defined in “Related
Definitions” below.

Description

The Transmit() function places a sending request in the transmit queue of this EFI IPv4
Protocol instance. Whenever the packet in the token is sent out or some errors occur, the event in
the token will be signaled and the status is updated.

Related Definitions
//**
// EFI_IP4_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_IP4_RECEIVE_DATA *RxData;
 EFI_IP4_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_IP4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI IPv4 Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

 January 31, 2006
1076 Version 2.0

Status Will be set to one of the following values:

• EFI_SUCCESS: The receive or transmit completed successfully.

• EFI_ABORTED: The receive or transmit was aborted.

• EFI_TIMEOUT: The transmit timeout expired.

• EFI_ICMP_ERROR: An ICMP error packet was received.

• EFI_DEVICE_ERROR: An unexpected system or network error occurred.

RxData When this token is used for receiving, RxData is a pointer to
the EFI_IP4_RECEIVE_DATA.. Type
EFI_IP4_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
the EFI_IP4_TRANSMIT_DATA.. Type
EFI_IP4_TRANSMIT_DATA is defined below.

EFI_IP4_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When the structure is used for transmitting, the Event and TxData fields must be filled in by the
EFI IPv4 Protocol client. After the transmit operation completes, EFI IPv4 Protocol updates the
Status field and the Event is signaled.

When the structure is used for receiving, only the Event field must be filled in by the EFI IPv4
Protocol client. After a packet is received, the EFI IPv4 Protocol fills in the RxData and Status
fields and the Event is signaled.

//**
// EFI_IP4_RECEIVE_DATA
//**

typedef struct {
 EFI_TIME TimeStamp;
 EFI_EVENT RecycleSignal;
 UINT32 HeaderLength;
 EFI_IP4_HEADER *Header;
 UINT32 OptionsLength;
 VOID *Options;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_IP4_FRAGMENT_DATA FragmentTable[1];
} EFI_IP4_RECEIVE_DATA;

TimeStamp Time when the EFI IPv4 Protocol driver accepted the packet.

January 31, 2006
Version 2.0 1077

RecycleSignal After this event is signaled, the receive data structure is released
and must not be referenced.

HeaderLength Length of the IPv4 packet header. Zero if
ConfigData.RawData is TRUE.

Header Pointer to the IPv4 packet header. If the IPv4 packet was
fragmented, this argument is a pointer to the header in the first
fragment. NULL if ConfigData.RawData is TRUE. Type
EFI_IP4_HEADER is defined below.

OptionsLength Length of the IPv4 packet header options. May be zero.

Options Pointer to the IPv4 packet header options. If the IPv4 packet was
fragmented, this argument is a pointer to the options in the first
fragment. May be NULL.

DataLength Sum of the lengths of IPv4 packet buffers in FragmentTable.
May be zero.

FragmentCount Number of IPv4 payload (or raw) fragments. If
ConfigData.RawData is TRUE, this count is the number of
raw IPv4 fragments received so far. May be zero.

FragmentTable Array of payload (or raw) fragment lengths and buffer pointers.
If ConfigData.RawData is TRUE, each buffer points to a
raw IPv4 fragment and thus IPv4 header and options are
included in each buffer. Otherwise, IPv4 headers and options are
not included in these buffers. Type
EFI_IP4_FRAGMENT_DATA is defined below.

The EFI IPv4 Protocol receive data structure is filled in when IPv4 packets have been assembled
(or when raw packets have been received). In the case of IPv4 packet assembly, the individual
packet fragments are only verified and are not reorganized into a single linear buffer.

The FragmentTable contains a sorted list of zero or more packet fragment descriptors. The
referenced packet fragments may not be in contiguous memory locations.

 January 31, 2006
1078 Version 2.0

//**
// EFI_IP4_HEADER
//**
#pragma pack(1)
typedef struct {
 UINT8 HeaderLength:4;
 UINT8 Version:4;
 UINT8 TypeOfService;
 UINT16 TotalLength;
 UINT16 Identification;
 UINT16 Fragmentation;
 UINT8 TimeToLive;
 UINT8 Protocol;
 UINT16 Checksum;
 EFI_IPv4_ADDRESS SourceAddress;
 EFI_IPv4_ADDRESS DestinationAddress;
} EFI_IP4_HEADER;
#pragma pack()

The fields in the IPv4 header structure are defined in the Internet Protocol version 4 specification,
which can be found at: ftp://ftp.rfc-editor.org/in-notes/rfc791.txt.

//**
// EFI_IP4_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_IP4_FRAGMENT_DATA;

FragmentLength Length of fragment data. This field may not be set to zero.

FragmentBuffer Pointer to fragment data. This field may not be set to NULL.

The EFI_IP4_FRAGMENT_DATA structure describes the location and length of the IPv4 packet
fragment to transmit or that has been received.

ftp://ftp.rfc-editor.org/in-notes/rfc791.txt

January 31, 2006
Version 2.0 1079

//**
// EFI_IP4_TRANSMIT_DATA
//**
typedef struct {
 EFI_IPv4_ADDRESS DestinationAddress;
 EFI_IP4_OVERRIDE_DATA *OverrideData OPTIONAL;
 UINT32 OptionsLength OPTIONAL;
 VOID *OptionsBuffer OPTIONAL;
 UINT32 TotalDataLength;
 UINT32 FragmentCount;
 EFI_IP4_FRAGMENT_DATA FragmentTable[1];
} EFI_IP4_TRANSMIT_DATA;

DestinationAddress
The destination IPv4 address. Ignored if RawData is TRUE.

OverrideData If not NULL, the IPv4 transmission control override data.
Ignored if RawData is TRUE. Type
EFI_IP4_OVERRIDE_DATA is defined below.

OptionsLength Length of the IPv4 header options data. Must be zero if the IPv4
driver does not support IPv4 options. Ignored if RawData is
TRUE.

OptionsBuffer Pointer to the IPv4 header options data. Ignored if
OptionsLength is zero. Ignored if RawData is TRUE.

TotalDataLength Total length of the FragmentTable data to transmit.

FragmentCount Number of entries in the fragment data table.

FragmentTable Start of the fragment data table. Type
EFI_IP4_FRAGMENT_DATA is defined above.

The EFI_IP4_TRANSMIT_DATA structure describes a possibly fragmented packet to be
transmitted.

 January 31, 2006
1080 Version 2.0

//**
// EFI_IP4_OVERRIDE_DATA
//**
typedef struct {
 EFI_IPv4_ADDRESS SourceAddress;
 EFI_IPv4_ADDRESS GatewayAddress;
 UINT8 Protocol;
 UINT8 TypeOfService;
 UINT8 TimeToLive;
 BOOLEAN DoNotFragment;
} EFI_IP4_OVERRIDE_DATA;

SourceAddress Source address override.

GatewayAddress Gateway address to override the one selected from the routing
table. This address must be on the same subnet as this station
address. If set to 0.0.0.0, the gateway address selected from
routing table will not be overridden.

Protocol Protocol type override.

TypeOfService Type-of-service override.

TimeToLive Time-to-live override.

DoNotFragment Do-not-fragment override.

The information and flags in the override data structure will override default parameters or settings
for one Transmit() function call.

January 31, 2006
Version 2.0 1081

Status Codes Returned
EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL
• Token.Packet.TxData is NULL.

• Token.Packet.TxData.OverrideData.
GatewayAddress in the override data structure is not a
unicast IPv4 address if OverrideData is not NULL.

• Token.Packet.TxData.OverrideData.
SourceAddress is not a unicast IPv4 address if
OverrideData is not NULL.

• Token.Packet.OptionsLength is not zero and
Token.Packet.OptionsBuffer is NULL.

• Token.Packet.FragmentCount is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentLength fields is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentBuffer fields is NULL.

• Token.Packet.TxData.TotalDataLength is
zero or not equal to the sum of fragment lengths.

• The IP header in FragmentTable is not a well-formed
header when RawData is TRUE.

EFI_ACCESS_DENIED The transmit completion token with the same Token.Event
was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the transmit
queue is full.

EFI_NOT_FOUND Not route is found to destination address.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_BUFFER_TOO_SMALL Token.Packet.TxData.TotalDataLength is too
short to transmit.

EFI_BAD_BUFFER_SIZE The length of the IPv4 header + option length + total data length is
greater than MTU (or greater than the maximum packet size if
Token.Packet.TxData.OverrideData.
DoNotFragment is TRUE.)

 January 31, 2006
1082 Version 2.0

EFI_IP4_PROTOCOL.Receive()

Summary

Places a receiving request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_RECEIVE) (
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_IP4_COMPLETION_TOKEN is defined
in “Related Definitions” of above Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function
is always asynchronous.

The Token.Event field in the completion token must be filled in by the caller and cannot be
NULL. When the receive operation completes, the EFI IPv4 Protocol driver updates the
Token.Status and Token.Packet.RxData fields and the Token.Event is signaled.

January 31, 2006
Version 2.0 1083

Status Codes Returned
EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

The EFI IPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token with the same Token.Event was already
in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.

EFI_ICMP_ERROR An ICMP error packet was received.

 January 31, 2006
1084 Version 2.0

EFI_IP4_PROTOCOL.Cancel()

Summary

Abort an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CANCEL)(
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_IP4_PROTOCOL.Transmit() or
EFI_IP4_PROTOCOL.Receive(). If NULL, all pending
tokens are aborted. Type EFI_IP4_COMPLETION_TOKEN is
defined in EFI_IP4_PROTOCOL.Transmit().

Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in
the transmit or receive request queues, after calling this function, Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of the
queues, which usually means the asynchronous operation has completed, this function will not
signal the token and EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS The asynchronous I/O request was aborted and

Token.->Event was signaled. When Token is NULL, all

pending requests were aborted and their events were signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was

not found in the transmit or receive queue. It has either completed
or was not issued by Transmit() and Receive().

January 31, 2006
Version 2.0 1085

EFI_IP4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_POLL) (
 IN EFI_IP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_IP4_PROTOCOL instance.

Description

The Poll() function polls for incoming data packets and processes outgoing data packets.
Network drivers and applications can call the EFI_IP4_PROTOCOL.Poll() function to
increase the rate that data packets are moved between the communications device and the transmit
and receive queues.

In some systems the periodic timer event may not poll the underlying communications device fast
enough to transmit and/or receive all data packets without missing incoming packets or dropping
outgoing packets. Drivers and applications that are experiencing packet loss should try calling the
EFI_IP4_PROTOCOL.Poll() function more often.

Status Codes Returned
EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.

Consider increasing the polling rate.

23.3 EFI IPv4 Configuration Protocol

This section provides a detailed description of the EFI IPv4 Configuration Protocol.

 January 31, 2006
1086 Version 2.0

EFI_IP4_CONFIG_PROTOCOL

Summary

The EFI_IP4_CONFIG_PROTOCOL driver performs platform- and policy-dependent
configuration for the EFI IPv4 Protocol driver.

GUID
#define EFI_IP4_CONFIG_PROTOCOL_GUID \

{0x3b95aa31,0x3793,0x434b,0x8667,0xc8,0x07,0x08,0x92,0xe0,0x5e}

Protocol Interface Structure
typedef struct _EFI_IP4_CONFIG_PROTOCOL {
 EFI_IP4_CONFIG_START Start;
 EFI_IP4_CONFIG_STOP Stop;
 EFI_IP4_CONFIG_GET_DATA GetData;
} EFI_IP4_CONFIG_PROTOCOL;

Parameters

Start Starts running the configuration policy for the EFI IPv4 Protocol
driver. See the Start() function description.

Stop Stops running the configuration policy for the EFI IPv4 Protocol
driver. See the Stop() function description.

GetData Returns the default configuration data (if any) for the EFI IPv4
Protocol driver. See the GetData() function description.

Description

In an effort to keep platform policy code out of the EFI IPv4 Protocol driver, the
EFI_IP4_CONFIG_PROTOCOL driver will be used as the central repository of any platform- and
policy-specific configuration for the EFI IPv4 Protocol driver.

An EFI IPv4 Configuration Protocol interface will be installed on each communications device
handle that is managed by the platform setup policy. The driver that is responsible for creating EFI
IPv4 variable must open the EFI IPv4 Configuration Protocol driver interface
BY_DRIVER|EXCLUSIVE.

An example of a configuration policy decision for the EFI IPv4 Protocol driver would be to use a
static IP address/subnet mask pair on the platform management network interface and then use
dynamic IP addresses that are configured by DHCP on the remaining network interfaces.

January 31, 2006
Version 2.0 1087

EFI_IP4_CONFIG_PROTOCOL.Start()

Summary

Starts running the configuration policy for the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG_START) (
 IN EFI_IP4_CONFIG_PROTOCOL *This,
 IN EFI_EVENT DoneEvent,
 IN EFI_EVENT ReconfigEvent
);

Parameters

This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

DoneEvent Event that will be signaled when the EFI IPv4 Protocol driver
configuration policy completes execution. This event must be of
type EVT_NOTIFY_SIGNAL.

ReconfigEvent Event that will be signaled when the EFI IPv4 Protocol driver
configuration needs to be updated. This event must be of type
EVT_NOTIFY_SIGNAL.

Description

The Start() function is called to determine and to begin the platform configuration policy by the
EFI IPv4 Protocol driver. This determination may be as simple as returning EFI_UNSUPPORTED
if there is no EFI IPv4 Protocol driver configuration policy. It may be as involved as loading some
defaults from nonvolatile storage, downloading dynamic data from a DHCP server, and checking
permissions with a site policy server.

Starting the configuration policy is just the beginning. It may finish almost instantly or it may take
several minutes before it fails to retrieve configuration information from one or more servers. Once
the policy is started, drivers should use the DoneEvent parameter to determine when the
configuration policy has completed. EFI_IP4_CONFIG_PROTOCOL.GetData() must then be
called to determine if the configuration succeeded or failed.

Until the configuration completes successfully, EFI IPv4 Protocol driver instances that are
attempting to use default configurations must return EFI_NO_MAPPING.

 January 31, 2006
1088 Version 2.0

Once the configuration is complete, the EFI IPv4 Configuration Protocol driver signals
DoneEvent. The configuration may need to be updated in the future, however; in this case, the
EFI IPv4 Configuration Protocol driver must signal ReconfigEvent, and all EFI IPv4 Protocol
driver instances that are using default configurations must return EFI_NO_MAPPING until the
configuration policy has been rerun.

Status Codes Returned
EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol driver is now

running.

EFI_INVALID_PARAMETER One or more of the following parameters is NULL:
• This

• DoneEvent

• ReconfigEvent
EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ALREADY_STARTED The configuration policy for the EFI IPv4 Protocol driver was
already started.

EFI_DEVICE_ERROR An unexpected system error or network error occurred.

EFI_UNSUPPORTED This interface does not support the EFI IPv4 Protocol driver
configuration.

January 31, 2006
Version 2.0 1089

EFI_IP4_CONFIG_PROTOCOL.Stop()

Summary

Stops running the configuration policy for the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG_STOP) (
 IN EFI_IP4_CONFIG_PROTOCOL *This
);

Parameters

This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

Description

The Stop() function stops the configuration policy for the EFI IPv4 Protocol driver. All
configuration data will be lost after calling Stop().

Status Codes Returned
EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol driver has been

stopped.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol driver was not
started.

 January 31, 2006
1090 Version 2.0

EFI_IP4_CONFIG_PROTOCOL.GetData()

Summary

Returns the default configuration data (if any) for the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG_GET_DATA) (
 IN EFI_IP4_CONFIG_PROTOCOL *This,
 IN OUT UINTN *IpConfigDataSize,
 OUT EFI_IP4_IPCONFIG_DATA *IpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

IpConfigDataSize
On input, the size of the IpConfigData buffer. On output, the
count of bytes that were written into the IpConfigData
buffer.

IpConfigData Pointer to the EFI IPv4 Configuration Protocol driver
configuration data structure. Type
EFI_IP4_IPCONFIG_DATA is defined in “Related
Definitions” below.

Description

The GetData() function returns the current configuration data for the EFI IPv4 Protocol driver
after the configuration policy has completed.

Related Definitions
//**
// EFI_IP4_IPCONFIG_DATA
//**
typedef struct {
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT32 RouteTableSize;
 EFI_IP4_ROUTE_TABLE *RouteTable OPTIONAL;
} EFI_IP4_IPCONFIG_DATA;

January 31, 2006
Version 2.0 1091

StationAddress Default station IP address, stored in network byte order.

SubnetMask Default subnet mask, stored in network byte order.

RouteTableSize Number of entries in the following RouteTable. May be zero.

RouteTable Default routing table data (stored in network byte order). Ignored
if RouteTableSize is zero. Type
EFI_IP4_ROUTE_TABLE is defined in
EFI_IP4_PROTOCOL.GetModeData().

EFI_IP4_IPCONFIG_DATA contains the minimum IPv4 configuration data that is needed to
start basic network communication. The StationAddress and SubnetMask must be a valid
unicast IP address and subnet mask.

If RouteTableSize is not zero, then RouteTable contains a properly formatted routing table
for the StationAddress/SubnetMask, with the last entry in the table being the default route.

Status Codes Returned
EFI_SUCCESS The EFI IPv4 Protocol driver configuration has been returned.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol driver is not
running.

EFI_NOT_READY EFI IPv4 Protocol driver configuration is still running.

EFI_ABORTED EFI IPv4 Protocol driver configuration could not complete.

EFI_BUFFER_TOO_SMALL *IpConfigDataSize is smaller than the configuration data
buffer or IpConfigData is NULL.

 January 31, 2006
1092 Version 2.0

January 31, 2006
Version 2.0 1093

24
Network Protocols — UDPv4 and MTFTPv4

24.1 EFI UDPv4 Protocol

This section defines the EFI UDPv4 (User Datagram Protocol version 4) Protocol that interfaces
over the EFI IPv4 Protocol.

EFI_UDP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI UDPv4 Service Binding Protocol is used to locate communication devices that are
supported by an EFI UDPv4 Protocol driver and to create and destroy instances of the EFI UDPv4
Protocol child protocol driver that can use the underlying communications device.

GUID
#define EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x83f01464,0x99bd,0x45e5,0xb383,0xaf,0x63,0x05,0xd8,0xe9,0xe6}

Description

A network application that requires basic UDPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish a EFI
UDPv4 Service Binding Protocol GUID. Each device with a published EFI UDPv4 Service Binding
Protocol GUID supports the EFI UDPv4 Protocol and may be available for use.

After a successful call to the EFI_UDP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI UDPv4 Protocol driver is in an unconfigured state; it is not
ready to send and receive data packets.

Before a network application terminates execution every successful call to the
EFI_UDP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_UDP4_SERVICE_BINDING_PROTOCOL.DestroyChild()function.

EFI UDP4 Variable

Summary

An accurate list of all of the IPv4 addresses and port number that are currently being used must be
maintained for each communications device. This list is stored as a volatile EFI variable so it can be
publicly read.

 January 31, 2006
1094 Version 2.0

Vendor GUID

gEfiUdp4ServiceBindingProtocolGuid

Variable Name

 CHAR16 *MacAddress;

Attribute
 EFI_VARIABLE_BOOTSERVICE_ACCESS

Description

MacAddress is the string of printed hexadecimal value for each byte in hardware address (of
type EFI_MAC_ADDRESS) of the communications device. No 0x or h is included in each hex
value. The length of MacAddress is determined by the hardware address length. For example: if
the hardware address is 00-07-E9-51-60-D7, and address length is 6 bytes, then MacAddress
is�“0007E95160D7”.

Related Definitions
//**
// EFI_UDP4_VARIABLE_DATA
//**
typedef struct {
 EFI_HANDLE DriverHandle;
 UINT32 ServiceCount;
 EFI_UDP4_SERVICE_POINT Services[1];
} EFI_UDP4_VARIABLE_DATA;

DriverHandle The handle of the driver that creates this entry.

ServiceCount The number of address/port pairs that follow this data structure.

Services List of address/port pairs that are currently in use. Type
EFI_UDP4_SERVICE_POINT is defined below.

January 31, 2006
Version 2.0 1095

//**
// EFI_UDP4_SERVICE_POINT
//**
typedef struct{
 EFI_HANDLE InstanceHandle;
 EFI_IPv4_ADDRESS LocalAddress;
 UINT16 LocalPort;
 EFI_IPv4_ADDRESS RemoteAddress;
 UINT16 RemotePort;
} EFI_UDP4_SERVICE_POINT;

InstanceHandle The EFI UDPv4 Protocol instance handle that is using this
address/port pair. May be NULL if no instance is associated with
this service access point.

LocalAddress The IPv4 address to which this instance of the EFI UDPv4
Protocol is bound.

LocalPort The port number in host byte order on which the service is
listening.

RemoteAddress The IPv4 address of the remote host. May be 0.0.0.0 if it is not
connected to any remote host.

RemotePort The port number in host byte order on which the remote host is
listening. May be zero if it is not connected to any remote host.

 January 31, 2006
1096 Version 2.0

EFI_UDP4_PROTOCOL

Summary

The EFI UDPv4 Protocol provides simple packet-oriented services to transmit and receive UDP
packets.

GUID
#define EFI_UDP4_PROTOCOL_GUID \

{0x3ad9df29,0x4501,0x478d,0xb1f8,0x7f,0x7f,0xe7,0x0e,0x50,0xf3}

Protocol Interface Structure
typedef struct _EFI_UDP4_PROTOCOL {

EFI_UDP4_GET_MODE_DATA GetModeData;
 EFI_UDP4_CONFIGURE Configure;
 EFI_UDP4_GROUPS Groups;
 EFI_UDP4_ROUTES Routes;
 EFI_UDP4_TRANSMIT Transmit;
 EFI_UDP4_RECEIVE Receive;
 EFI_UDP4_CANCEL Cancel;
 EFI_UDP4_POLL Poll;
} EFI_UDP4_PROTOCOL;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI
UDPv4 Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Add and deletes routing table entries. See the Routes()
function description.

Transmit Queues outgoing data packets into the transmit queue. This
function is a nonblocked operation. See the Transmit()
function description.

Receive Places a receiving request token into the receiving queue. This
function is a nonblocked operation. See the Receive()
function description.

Cancel Aborts a pending transmit or receive request. See the
Cancel() function description.

January 31, 2006
Version 2.0 1097

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_UDP4_PROTOCOL defines an EFI UDPv4 Protocol session that can be used by any
network drivers, applications, or daemons to transmit or receive UDP packets. This protocol
instance can either be bound to a specified port as a service or connected to some remote peer as an
active client. Each instance has its own settings, such as the routing table and group table, which are
independent from each other.

BYTE ORDER NOTE

In this document, all IPv4 addresses and incoming/outgoing packets are stored in network byte
order. All other parameters in the functions and data structures that are defined in this document
are stored in host byte order.

 January 31, 2006
1098 Version 2.0

EFI_UDP4_PROTOCOL.GetModeData()

Summary

Reads the current operational settings.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_GET_MODE_DATA) (
 IN EFI_UDP4_PROTOCOL *This,
 OUT EFI_UDP4_CONFIG_DATA *Udp4ConfigData OPTIONAL,
 OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

Udp4ConfigData Pointer to the buffer to receive the current configuration data.
Type EFI_UDP4_CONFIG_DATA is defined in “Related
Definitions” below.

Ip4ModeData Pointer to the EFI IPv4 Protocol mode data structure. Type
EFI_IP4_MODE_DATA is defined in
EFI_IP4_PROTOCOL.GetModeData().

MnpConfigData Pointer to the managed network configuration data structure.
Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description

The GetModeData() function copies the current operational settings of this EFI UDPv4 Protocol
instance into user-supplied buffers. This function is used optionally to retrieve the operational mode
data of underlying networks or drivers.

January 31, 2006
Version 2.0 1099

Related Definition
//***
// EFI_UDP4_CONFIG_DATA
//***
typedef struct {
 //Receiving Filters
 BOOLEAN AcceptBroadcast;
 BOOLEAN AcceptPromiscuous;
 BOOLEAN AcceptAnyPort;
 BOOLEAN AllowDuplicatePort;
 //I/O parameters
 UINT8 TypeOfService;
 UINT8 TimeToLive;
 BOOLEAN DoNotFragment;
 UINT32 ReceiveTimeout;
 UINT32 TransmitTimeout;
 //Access Point
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 StationPort;
 EFI_IPv4_ADDRESS RemoteAddress;
 UINT16 RemotePort;
} EFI_UDP4_CONFIG_DATA;

AcceptBroadcast Set to TRUE to accept broadcast UDP packets.

AcceptPromiscuous Set to TRUE to accept UDP packets that are sent to any address.

AcceptAnyPort Set to TRUE to accept UDP packets that are sent to any port.

AllowDuplicatePort Set to TRUE to allow this EFI UDPv4 Protocol child instance to
open a port number that is already being used by another EFI
UDPv4 Protocol child instance.

TypeOfService TypeOfService field in transmitted IPv4 packets.

TimeToLive TimeToLive field in transmitted IPv4 packets.

DoNotFragment Set to TRUE to disable IP transmit fragmentation.

ReceiveTimeout The receive timeout value (number of microseconds) to be
associated with each incoming packet. Zero means do not drop
incoming packets.

TransmitTimeout The transmit timeout value (number of microseconds) to be
associated with each outgoing packet. Zero means do not drop
outgoing packets.

 January 31, 2006
1100 Version 2.0

UseDefaultAddress Set to TRUE to use the default IP address and default routing
table. If the default IP address is not available yet, then the
underlying EFI IPv4 Protocol driver will use
EFI_IP4_CONFIG_PROTOCOL to retrieve the IP address and
subnet information. Ignored for incoming filtering if
AcceptPromiscuous is set to TRUE.

StationAddress The station IP address that will be assigned to this EFI UDPv4
Protocol instance. The EFI UDPv4 and EFI IPv4 Protocol
drivers will only deliver incoming packets whose destination
matches this IP address exactly. Address 0.0.0.0 is also accepted
as a special case in which incoming packets destined to any
station IP address are always delivered. Not used when
UseDefaultAddress is TRUE. Ignored for incoming
filtering if AcceptPromiscuous is TRUE.

SubnetMask The subnet address mask that is associated with the station
address. Not used when UseDefaultAddress is TRUE.

StationPort The port number to which this EFI UDPv4 Protocol instance is
bound. If a client of the EFI UDPv4 Protocol does not care about
the port number, set StationPort to zero. The EFI UDPv4
Protocol driver will assign a random port number to transmitted
UDP packets. Ignored if AcceptAnyPort is set to TRUE.

RemoteAddress The IP address of remote host to which this EFI UDPv4 Protocol
instance is connecting. If RemoteAddress is not 0.0.0.0, this
EFI UDPv4 Protocol instance will be connected to
RemoteAddress; i.e., outgoing packets of this EFI UDPv4
Protocol instance will be sent to this address by default and only
incoming packets from this address will be delivered to client.
Ignored for incoming filtering if AcceptPromiscuous is
TRUE.

RemotePort The port number of the remote host to which this EFI UDPv4
Protocol instance is connecting. If it is not zero, outgoing packets
of this EFI UDPv4 Protocol instance will be sent to this port
number by default and only incoming packets from this port will
be delivered to client. Ignored if RemoteAddress is 0.0.0.0
and ignored for incoming filtering if AcceptPromiscuous is
TRUE.

Status Codes Returned
EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED When Udp4ConfigData is queried, no configuration data is

available because this instance has not been started.
EFI_INVALID_PARAMETER This is NULL.

January 31, 2006
Version 2.0 1101

EFI_UDP4_PROTOCOL.Configure()

Summary
Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv4
Protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_CONFIGURE) (
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_CONFIG_DATA *UdpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

UdpConfigData Pointer to the buffer to receive the current mode data.

Description

The Configure() function is used to do the following:

• Initialize and start this instance of the EFI UDPv4 Protocol.
• Change the filtering rules and operational parameters.
• Reset this instance of the EFI UDPv4 Protocol.

Until these parameters are initialized, no network traffic can be sent or received by this instance.
This instance can be also reset by calling Configure() with UdpConfigData set to NULL.
Once reset, the receiving queue and transmitting queue are flushed and no traffic is allowed through
this instance.

With different parameters in UdpConfigData, Configure() can be used to bind this instance
to specified port.

 January 31, 2006
1102 Version 2.0

Status Codes Returned
EFI_SUCCESS The configuration settings were set, changed, or reset

successfully.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.
• UdpConfigData.StationAddress is not a valid

unicast IPv4 address.

• UdpConfigData.SubnetMask is not a valid IPv4
address mask. The subnet mask must be contiguous.

• UdpConfigData.RemoteAddress is not a valid
unicast IPv4 address if it is not zero.

EFI_ALREADY_STARTED The EFI UDPv4 Protocol instance is already started/configured
and must be stopped/reset before it can be reconfigured. Only
TypeOfService, TimeToLive, DoNotFragment,
ReceiveTimeout, and TransmitTimeout can be
reconfigured without stopping the current instance of the EFI
UDPv4 Protocol.

EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE
and UdpConfigData.StationPort is already used by
other instance.

EFI_OUT_OF_RESOURCES The EFI UDPv4 Protocol driver cannot allocate memory for this
EFI UDPv4 Protocol instance.

EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance
was not opened.

January 31, 2006
Version 2.0 1103

EFI_UDP4_PROTOCOL.Groups()

Summary

Joins and leaves multicast groups.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_GROUPS) (
 IN EFI_UDP4_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_IPv4_ADDRESS *MulticastAddress OPTIONAL
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave one
or all multicast groups.

MulticastAddress
Pointer to multicast group address to join or leave.

Description

The Groups() function is used to enable and disable the multicast group filtering.

If the JoinFlag is FALSE and the MulticastAddress is NULL, then all currently joined
groups are left.

 January 31, 2006
1104 Version 2.0

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• JoinFlag is TRUE and MulticastAddress is
NULL.

• JoinFlag is TRUE and *MulticastAddress is not
a valid multicast address.

EFI_ALREADY_STARTED The group address is already in the group table (when
JoinFlag is TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is
FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

January 31, 2006
Version 2.0 1105

EFI_UDP4_PROTOCOL.Routes()

Summary

Adds and deletes routing table entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_ROUTES) (
 IN EFI_UDP4_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv4_ADDRESS *SubnetAddress,
 IN EFI_IPv4_ADDRESS *SubnetMask,
 IN EFI_IPv4_ADDRESS *GatewayAddress
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

DeleteRoute Set to TRUE to delete this route from the routing table. Set to
FALSE to add this route to the routing table.
DestinationAddress and SubnetMask are used as the
key to each route entry.

SubnetAddress The destination network address that needs to be routed.

SubnetMask The subnet mask of SubnetAddress.

GatewayAddress The gateway IP address for this route.

Description

The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the SubnetAddress with the destination IP address and
arithmetically AND-ing it with the SubnetMask. The gateway address must be on the same subnet
as the configured station address.

The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. The
default route matches all destination IP addresses that do not match any other routes.

A zero GatewayAddress is a nonroute. Packets are sent to the destination IP address if it can be
found in the Address Resolution Protocol (ARP) cache or on the local subnet. One automatic
nonroute entry will be inserted into the routing table for outgoing packets that are addressed to a
local subnet (gateway address of 0.0.0.0).

 January 31, 2006
1106 Version 2.0

Each instance of the EFI UDPv4 Protocol has its own independent routing table. Instances of the
EFI UDPv4 Protocol that use the default IP address will also have copies of the routing table
provided by the EFI_IP4_CONFIG_PROTOCOL. These copies will be updated automatically
whenever the IP driver reconfigures its instances; as a result, the previous modification to these
copies will be lost.

NOTE

There is no way to set up routes to other network interface cards (NICs) because each NIC has its
own independent network stack that shares information only through EFI UDP4 Variable.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.
• SubnetAddress is NULL.

• SubnetMask is NULL.
• GatewayAddress is NULL.

• *SubnetAddress is not a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IP address.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table.

EFI_ACCESS_DENIED The route is already defined in the routing table.

January 31, 2006
Version 2.0 1107

EFI_UDP4_PROTOCOL.Transmit()

Summary

Queues outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_TRANSMIT) (
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

Token Pointer to the completion token that will be placed into the
transmit queue. Type EFI_UDP4_COMPLETION_TOKEN is
defined in “Related Definitions” below.

Description

The Transmit() function places a sending request to this instance of the EFI UDPv4 Protocol,
alongside the transmit data that was filled by the user. Whenever the packet in the token is sent out
or some errors occur, the Token.Event will be signaled and Token.Status is updated.
Providing a proper notification function and context for the event will enable the user to receive the
notification and transmitting status.

Related Definitions
//***
// EFI_UDP4_COMPLETION_TOKEN
//***
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_UDP4_RECEIVE_DATA *RxData;
 EFI_UDP4_TRANSMIT_DATA *TxData;
 } Packet;

} EFI_UDP4_COMPLETION_TOKEN;

 January 31, 2006
1108 Version 2.0

Event This Event will be signaled after the Status field is updated by the
EFI UDPv4 Protocol driver. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of Event
must be lower than or equal to TPL_CALLBACK.

Status Will be set to one of the following values:

EFI_SUCCESS: The receive or transmit operation completed successfully.

EFI_ABORTED: The receive or transmit was aborted.

EFI_TIMEOUT: The transmit timeout expired.

EFI_NETWORK_UNREACHABLE:
The destination network is unreachable. RxData is set to NULL in this
situation.

EFI_HOST_UNREACHABLE:
The destination host is unreachable. RxData is set to NULL in this
situation.

EFI_PROTOCOL_UNREACHABLE:
The UDP protocol is unsupported in the remote system. RxData is set to
NULL in this situation.

EFI_PORT_UNREACHABLE:
No service is listening on the remote port. RxData is set to NULL in this
situation.

EFI_ICMP_ERROR: Some other Internet Control Message Protocol (ICMP) error report
was received. For example, packets are being sent too fast for the
destination to receive them and the destination sent an ICMP source
quench report. RxData is set to NULL in this situation.

EFI_DEVICE_ERROR:
An unexpected system or network error occurred.

RxData When this token is used for receiving, RxData is a pointer to
EFI_UDP4_RECEIVE_DATA.. Type EFI_UDP4_RECEIVE_DATA is
defined below.

TxData When this token is used for transmitting, TxData is a pointer to
EFI_UDP4_TRANSMIT_DATA. Type EFI_UDP4_TRANSMIT_DATA
is defined below.

The EFI_UDP4_COMPLETION_TOKEN structures are used for both transmit and receive
operations.

When used for transmitting, the Event and TxData fields must be filled in by the EFI UDPv4
Protocol client. After the transmit operation completes, the Status field is updated by the EFI
UDPv4 Protocol and the Event is signaled.

When used for receiving, only the Event field must be filled in by the EFI UDPv4 Protocol client.
After a packet is received, RxData and Status are filled in by the EFI UDPv4 Protocol and the
Event is signaled.

January 31, 2006
Version 2.0 1109

The ICMP related status codes filled in Status are defined as follows:
//***
// UDP4 Token Status definition
//***
#define EFI_NETWORK_UNREACHABLE EFIERR(100)
#define EFI_HOST_UNREACHABLE EFIERR(101)
#define EFI_PROTOCOL_UNREACHABLE EFIERR(102)
#define EFI_PORT_UNREACHABLE EFIERR(103)

//***
// EFI_UDP4_RECEIVE_DATA
//***
typedef struct {
 EFI_TIME TimeStamp;
 EFI_EVENT RecycleSignal;
 EFI_UDP4_SESSION_DATA UdpSession;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_UDP4_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP4_RECEIVE_DATA;

TimeStamp Time when the EFI UDPv4 Protocol accepted the packet.

RecycleSignal Indicates the event to signal when the received data has been
processed.

UdpSession The UDP session data including SourceAddress,
SourcePort, DestinationAddress, and
DestinationPort. Type EFI_UDP4_SESSION_DATA is
defined below.

DataLength The sum of the fragment data length.

FragmentCount Number of fragments. May be zero.

FragmentTable Array of fragment descriptors. IP and UDP headers are included
in these buffers if ConfigData.RawData is TRUE.
Otherwise they are stripped. May be zero. Type
EFI_UDP4_FRAGMENT_DATA is defined below.

EFI_UDP4_RECEIVE_DATA is filled by the EFI UDPv4 Protocol driver when this EFI UDPv4
Protocol instance receives an incoming packet. If there is a waiting token for incoming packets, the
CompletionToken.Packet.RxData field is updated to this incoming packet and the
CompletionToken.Event is signaled. The EFI UDPv4 Protocol client must signal the
RecycleSignal after processing the packet.

 January 31, 2006
1110 Version 2.0

FragmentTable could contain multiple buffers that are not in the continuous memory locations.
The EFI UDPv4 Protocol client might need to combine two or more buffers in FragmentTable
to form their own protocol header.

//***
// EFI_UDP4_SESSION_DATA
//***
typedef struct {
 EFI_IPv4_ADDRESS SourceAddress;
 UINT16 SourcePort;
 EFI_IPv4_ADDRESS DestinationAddress;
 UINT16 DestinationPort;
} EFI_UDP4_SESSION_DATA;

SourceAddress Address from which this packet is sent. If this field is set to zero
when sending packets, the address that is assigned in
EFI_UDP4_PROTOCOL.Configure() is used.

SourcePort Port from which this packet is sent. It is in host byte order. If
this field is set to zero when sending packets, the port that is
assigned in EFI_UDP4_PROTOCOL.Configure() is used.
If this field is set to zero and unbound, a call to
EFI_UDP4_PROTOCOL.Transmit() will fail.

DestinationAddress Address to which this packet is sent.

DestinationPort Port to which this packet is sent. It is in host byte order. If this
field is set to zero and unconnected, the call to
EFI_UDP4_PROTOCOL.Transmit() will fail.

The EFI_UDP4_SESSION_DATA is used to retrieve the settings when receiving packets or to
override the existing settings of this EFI UDPv4 Protocol instance when sending packets.

//***
// EFI_UDP4_FRAGMENT_DATA
//***
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_UDP4_FRAGMENT_DATA;

FragmentLength Length of the fragment data buffer.

FragmentBuffer Pointer to the fragment data buffer.

January 31, 2006
Version 2.0 1111

EFI_UDP4_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The
purpose of this structure is to avoid copying the same packet multiple times.

//**
// EFI_UDP4_TRANSMIT_DATA
//**
typedef struct {
 EFI_UDP4_SESSION_DATA *UdpSessionData OPTIONAL;
 EFI_IPv4_ADDRESS *GatewayAddress OPTIONAL;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_UDP4_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP4_TRANSMIT_DATA;

UdpSessionData If not NULL, the data that is used to override the transmitting
settings. Type EFI_UDP4_SESSION_DATA is defined above.

GatewayAddress The next-hop address to override the setting from the routing
table.

DataLength Sum of the fragment data length. Must not exceed the maximum
UDP packet size.

FragmentCount Number of fragments.

FragmentTable Array of fragment descriptors. Type
EFI_UDP4_FRAGMENT_DATA is defined above.

The EFI UDPv4 Protocol client must fill this data structure before sending a packet. The packet
may contain multiple buffers that may be not in a continuous memory location.

 January 31, 2006
1112 Version 2.0

Status Codes Returned
EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.
• Token.Packet.TxData is NULL.

• Token.Packet.TxData.FragmentCount is
zero.

• Token.Packet.TxData.DataLength is not
equal to the sum of fragment lengths.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentLength fields is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentBuffer fields is NULL.

• Token.Packet.TxData. GatewayAddress
is not a unicast IPv4 address if it is not NULL.

• One or more IPv4 addresses in
Token.Packet.TxData.UdpSessionData
are not valid unicast IPv4 addresses if the
UdpSessionData is not NULL.

EFI_ACCESS_DENIED The transmit completion token with the same
Token.Event was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the
transmit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_NOT_FOUND There is no route to the destination network or address.

EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet
size. Or the length of the IP header + UDP header + data
length is greater than MTU if DoNotFragment is TRUE.

January 31, 2006
Version 2.0 1113

EFI_UDP4_PROTOCOL.Receive()

Summary

Places an asynchronous receive request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_RECEIVE) (
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_COMPLETION_TOKEN *Token
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_UDP4_COMPLETION_TOKEN is defined
in EFI_UDP4_PROTOCOL.Transmit().

Description

The Receive() function places a completion token into the receive packet queue. This function
is always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be
NULL. When the receive operation completes, the EFI UDPv4 Protocol driver updates the
Token.Status and Token.Packet.RxData fields and the Token.Event is signaled.
Providing a proper notification function and context for the event will enable the user to receive the
notification and receiving status. That notification function is guaranteed to not be re-entered.

 January 31, 2006
1114 Version 2.0

Status Codes Returned
EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.
• Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.

The EFI UDPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already in

the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.

January 31, 2006
Version 2.0 1115

EFI_UDP4_PROTOCOL.Cancel()

Summary

Aborts an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_CANCEL)(
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_UDP4_PROTOCOL.Transmit() or
EFI_UDP4_PROTOCOL.Receive().If NULL, all pending
tokens are aborted. Type EFI_UDP4_COMPLETION_TOKEN is
defined in EFI_UDP4_PROTOCOL.Transmit().

Description

The Cancel() function is used to abort a pending transmit or receive request. If the token is in
the transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues,
which usually means that the asynchronous operation has completed, this function will not signal
the token and EFI_NOT_FOUND is returned.

Status Codes Returned
EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event

was signaled. When Token is NULL, all pending requests are

aborted and their events are signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was

not found in the transmit or receive queue. It has either completed
or was not issued by Transmit() and Receive().

 January 31, 2006
1116 Version 2.0

EFI_UDP4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_POLL) (
 IN EFI_UDP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_UDP4_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned
EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.

Consider increasing the polling rate.

January 31, 2006
Version 2.0 1117

24.2 EFI MTFTPv4 Protocol

This section defines the EFI MTFTPv4 Protocol interface that is built upon the EFI UDPv4
Protocol.

EFI_MTFTP4_SERVICE_BINDING_PROTOCOL

Summary

The EFI MTFTPv4 Service Binding Protocol is used to locate communication devices that are
supported by an EFI MTFTPv4 Protocol driver and to create and destroy instances of the EFI
MTFTPv4 Protocol child protocol driver that can use the underlying communications device.

GUID
#define EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x2E800BE,0x8F01,0x4aa6,0x946B,0xD7,0x13,0x88,0xE1,0x83,0x3F}

Description

A network application or driver that requires MTFTPv4 I/O services can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI MTFTPv4 Service Binding Protocol GUID. Each device with a published EFI MTFTPv4
Service Binding Protocol GUID supports the EFI MTFTPv4 Protocol service and may be available
for use.

After a successful call to the
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly
created child EFI MTFTPv4 Protocol driver instance is in an unconfigured state; it is not ready to
transfer data.

Before a network application terminates execution, every successful call to the
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.DestroyChild()
function.

Each instance of the EFI MTFTPv4 Protocol driver can support one file transfer operation at a time.
To download two files at the same time, two instances of the EFI MTFTPv4 Protocol driver will
need to be created.

 January 31, 2006
1118 Version 2.0

EFI_MTFTP4_PROTOCOL

Summary

The EFI MTFTPv4 Protocol provides basic services for client-side unicast and/or multicast TFTP
operations.

GUID
#define EFI_MTFTP4_PROTOCOL_GUID \

{0x3ad9df29,0x4501,0x478d,0xb1f8,0x7f,0x7f,0xe7,0x0e,0x50,0xf3}

Protocol Interface Structure
typedef struct _EFI_MTFTP4_PROTOCOL {
 EFI_MTFTP4_GET_MODE_DATA GetModeData;
 EFI_MTFTP4_CONFIGURE Configure;
 EFI_MTFTP4_GET_INFO GetInfo;
 EFI_MTFTP4_PARSE_OPTIONS ParseOptions;
 EFI_MTFTP4_READ_FILE ReadFile;
 EFI_MTFTP4_WRITE_FILE WriteFile;
 EFI_MTFTP4_READ_DIRECTORY ReadDirectory;
 EFI_MTFTP4_POLL Poll;
} EFI_MTFTP4_PROTOCOL;

Parameters

GetModeData Reads the current operational settings. See the
GetModeData() function description.

Configure Initializes, changes, or resets the operational settings for this
instance of the EFI MTFTPv4 Protocol driver. See the
Configure() function description.

GetInfo Retrieves information about a file from an MTFTPv4 server. See
the GetInfo() function description.

ParseOptions Parses the options in an MTFTPv4 OACK (options
acknowledgement) packet. See the ParseOptions()
function description.

ReadFile Downloads a file from an MTFTPv4 server. See the
ReadFile() function description.

WriteFile Uploads a file to an MTFTPv4 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.

January 31, 2006
Version 2.0 1119

ReadDirectory Downloads a related file “directory” from an MTFTPv4 server.
This function may be unsupported in some EFI implementations.
See the ReadDirectory() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description

The EFI_MTFTP4_PROTOCOL is designed to be used by UEFI drivers and applications to
transmit and receive data files. The EFI MTFTPv4 Protocol driver uses the underlying EFI UDPv4
Protocol driver and EFI IPv4 Protocol driver.

 January 31, 2006
1120 Version 2.0

EFI_MTFTP4_PROTOCOL.GetModeData()

Summary

Reads the current operational settings.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_GET_MODE_DATA)(
 IN EFI_MTFTP4_PROTOCOL *This,
 OUT EFI_MTFTP4_MODE_DATA *ModeData
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

ModeData Pointer to storage for the EFI MTFTPv4 Protocol driver mode
data. Type EFI_MTFTP4_MODE_DATA is defined in “Related
Definitions” below.

Description

The GetModeData() function reads the current operational settings of this EFI MTFTPv4
Protocol driver instance.

Related Definitions
//***
// EFI_MTFTP4_MODE_DATA
//***
typedef struct {
 EFI_MTFTP4_CONFIG_DATA ConfigData;
 UINT8 SupportedOptionCount;
 UINT8 **SupportedOptions;
 UINT8 UnsupportedOptionCount;
 UINT8 **UnsupportedOptions;
} EFI_MTFTP4_MODE_DATA;

ConfigData The configuration data of this instance. Type
EFI_MTFTP4_CONFIG_DATA is defined below.

SupportedOptionCount
The number of option strings in the following
SupportedOptions array.

January 31, 2006
Version 2.0 1121

SupportedOptions An array of option strings that are recognized and supported by
this EFI MTFTPv4 Protocol driver implementation.

UnsupportedOptionCount
The number of option strings in the following
UnsupportedOptions array.

UnsupportedOptions
An array of option strings that are recognized but are not
supported by this EFI MTFTPv4 Protocol driver implementation.

The EFI_MTFTP4_MODE_DATA structure describes the operational state of this instance.

//***
// EFI_MTFTP4_CONFIG_DATA
//***
typedef struct {
 BOOLEAN UseDefaultSetting;
 EFI_IPv4_ADDRESS StationIp;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 LocalPort;
 EFI_IPv4_ADDRESS GatewayIp;
 EFI_IPv4_ADDRESS ServerIp;
 UINT16 InitialServerPort;
 UINT16 TryCount;
 UINT16 TimeoutValue;
} EFI_MTFTP4_CONFIG_DATA;

UseDefaultSetting
Set to TRUE to use the default station address/subnet mask and
the default route table information.

StationIp If UseDefaultSetting is FALSE, indicates the station
address to use.

SubnetMask If UseDefaultSetting is FALSE, indicates the subnet mask
to use.

LocalPort Local port number. Set to zero to use the automatically assigned
port number.

GatewayIp if UseDefaultSetting is FALSE, indicates the gateway IP
address to use.

ServerIp The IP address of the MTFTPv4 server.

InitialServerPort
The initial MTFTPv4 server port number. Request packets are
sent to this port. This number is almost always 69 and using zero
defaults to 69.

 January 31, 2006
1122 Version 2.0

TryCount The number of times to transmit MTFTPv4 request packets and
wait for a response.

TimeoutValue The number of seconds to wait for a response after sending the
MTFTPv4 request packet.

The EFI_MTFTP4_CONFIG_DATA structure is used to report and change MTFTPv4 session
parameters.

Status Codes Returned

EFI_SUCCESS The configuration data was successfully returned.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.

January 31, 2006
Version 2.0 1123

EFI_MTFTP4_PROTOCOL.Configure()

Summary

Initializes, changes, or resets the default operational setting for this EFI MTFTPv4 Protocol driver
instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_CONFIGURE)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_CONFIG_DATA *MtftpConfigData OPTIONAL
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

MtftpConfigData Pointer to the configuration data structure. Type
EFI_MTFTP4_CONFIG_DATA is defined in
EFI_MTFTP4_PROTOCOL.GetModeData().

Description

The Configure() function is used to set and change the configuration data for this EFI
MTFTPv4 Protocol driver instance. The configuration data can be reset to startup defaults by
calling Configure() with MtftpConfigData set to NULL. Whenever the instance is reset,
any pending operation is aborted. By changing the EFI MTFTPv4 Protocol driver instance
configuration data, the client can connect to different MTFTPv4 servers. The configuration
parameters in MtftpConfigData are used as the default parameters in later MTFTPv4
operations and can be overridden in later operations.

 January 31, 2006
1124 Version 2.0

Status Codes Returned

EFI_SUCCESS The EFI MTFTPv4 Protocol driver was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• MtftpConfigData.UseDefaultSetting is
FALSE and MtftpConfigData.StationIp is not a
valid IPv4 unicast address.

• MtftpCofigData.UseDefaultSetting is
FALSE and MtftpConfigData.SubnetMask is
invalid.

• MtftpCofigData.ServerIp is not a valid IPv4
unicast address.

• MtftpConfigData.UseDefaultSetting is
FALSE and MtftpConfigData.GatewayIp is not a
valid IPv4 unicast address or is not in the same subnet with
station address.

EFI_ACCESS_DENIED The EFI configuration could not be changed at this time because
there is one MTFTP background operation in progress.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) has not finished yet.

EFI_UNSUPPORTED A configuration protocol (DHCP, BOOTP, RARP, etc.) could not
be located when clients choose to use the default address
settings.

EFI_OUT_OF_RESOURCES The EFI MTFTPv4 Protocol driver instance data could not be
allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI
MTFTPv4 Protocol driver instance is not configured.

January 31, 2006
Version 2.0 1125

EFI_MTFTP4_PROTOCOL.GetInfo()

Summary

Gets information about a file from an MTFTPv4 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_GET_INFO)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_OVERRIDE_DATA *OverrideData OPTIONAL,
 IN UINT8 *Filename,
 IN UINT8 *ModeStr OPTIONAL,
 IN UINT8 OptionCount,
 IN EFI_MTFTP4_OPTION *OptionList OPTIONAL,
 OUT UINT32 *PacketLength,
 OUT EFI_MTFTP4_PACKET **Packet OPTIONAL
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

OverrideData Data that is used to override the existing parameters. If NULL,
the default parameters that were set in the
EFI_MTFTP4_PROTOCOL.Configure() function are used.
Type EFI_MTFTP4_OVERRIDE_DATA is defined in “Related
Definitions” below.

Filename Pointer to ASCIIZ file name string.

ModeStr Pointer to ASCIIZ mode string. If NULL, “octet” will be used.

OptionCount Number of option/value string pairs in OptionList.

OptionList Pointer to array of option/value string pairs. Ignored if
OptionCount is zero. Type EFI_MTFTP4_OPTION is
defined in “Related Definitions” below.

PacketLength The number of bytes in the returned packet.

Packet The pointer to the received packet. This buffer must be freed by
the caller. Type EFI_MTFTP4_PACKET is defined in “Related
Definitions” below.

 January 31, 2006
1126 Version 2.0

Description

The GetInfo() function assembles an MTFTPv4 request packet with options; sends it to the
MTFTPv4 server; and may return an MTFTPv4 OACK, MTFTPv4 ERROR, or ICMP ERROR
packet. Retries occur only if no response packets are received from the MTFTPv4 server before the
timeout expires.

Related Definitions
//***
// EFI_MTFTP_OVERRIDE_DATA
//***
typedef struct {
 EFI_IPv4_ADDRESS GatewayIp;
 EFI_IPv4_ADDRESS ServerIp;
 UINT16 ServerPort;
 UINT16 TryCount;
 UINT16 TimeoutValue;
} EFI_MTFTP4_OVERRIDE_DATA;

GatewayIp IP address of the gateway. If set to
0.0.0.0, the default gateway address that
was set by the
EFI_MTFTP4_PROTOCOL.Configure() function will not
be overridden.

ServerIp IP address of the MTFTPv4 server. If set to 0.0.0.0, it will use
the value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.

ServerPort MTFTPv4 server port number. If set to zero,
it will use the value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.

TryCount Number of times to transmit MTFTPv4 request packets and wait
for a response. If set to zero, it will use the
value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.

TimeoutValue Number of seconds to wait for a response after sending the
MTFTPv4 request packet. If set to zero, it will
use the value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.

January 31, 2006
Version 2.0 1127

The EFI_MTFTP4_OVERRIDE_DATA structure is used to override the existing parameters that
were set by the EFI_MTFTP4_PROTOCOL.Configure() function.

//***
// EFI_MTFTP4_OPTION
//***
typedef struct {
 UINT8 *OptionStr;
 UINT8 *ValueStr;
} EFI_MTFTP4_OPTION;

OptionStr Pointer to the ASCIIZ MTFTPv4 option string.

ValueStr Pointer to the ASCIIZ MTFTPv4 value string.

#pragma pack(1)

//***
// EFI_MTFTP4_PACKET
//***
typedef union {
 UINT16 OpCode;
 EFI_MTFTP4_REQ_HEADER Rrq, Wrq;
 EFI_MTFTP4_OACK_HEADER Oack;
 EFI_MTFTP4_DATA_HEADER Data;
 EFI_MTFTP4_ACK_HEADER Ack;
 EFI_MTFTP4_DATA8_HEADER Data8;
 EFI_MTFTP4_ACK8_HEADER Ack8;
 EFI_MTFTP4_ERROR_HEADER Error;
} EFI_MTFTP4_PACKET;

//***
// EFI_MTFTP4_REQ_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT8 Filename[1];
} EFI_MTFTP4_REQ_HEADER;

 January 31, 2006
1128 Version 2.0

//***
// EFI_MTFTP4_OACK_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT8 Data[1];
} EFI_MTFTP4_OACK_HEADER;

//***
// EFI_MTFTP4_DATA_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 Block;
 UINT8 Data[1];
} EFI_MTFTP4_DATA_HEADER;

//***
// EFI_MTFTP4_ACK_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 Block[1];
} EFI_MTFTP4_ACK_HEADER;

//***
// EFI_MTFTP4_DATA8_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT64 Block;
 UINT8 Data[1];
} EFI_MTFTP4_DATA8_HEADER;

//***
// EFI_MTFTP4_ACK8_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT64 Block[1];
} EFI_MTFTP4_ACK8_HEADER;

January 31, 2006
Version 2.0 1129

//***
// EFI_MTFTP4_ERROR_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 ErrorCode;
 UINT8 ErrorMessage[1];
} EFI_MTFTP4_ERROR_HEADER;

#pragma pack()

Table 163 below describes the parameters that are listed in the MTFTPv4 packet structure
definitions above. All the above structures are byte packed. The pragmas may vary from compiler
to compiler. The MTFTPv4 packet structures are also used by the following functions:

• EFI_MTFTP4_PROTOCOL.ReadFile()

• EFI_MTFTP4_PROTOCOL.WriteFile()

• EFI_MTFTP4_PROTOCOL.ReadDirectory()
• The EFI MTFTPv4 Protocol packet check callback functions

BYTE ORDER NOTE

Both incoming and outgoing MTFTPv4 packets are in network byte order. All other parameters
defined in functions or data structures are stored in host byte order.

Table 163. Descriptions of Parameters in MTFTPv4 Packet Structures

Data Structure Parameter Description
OpCode Type of packets as defined by the MTFTPv4

packet opcodes. Opcode values are defined
below.

Rrq, Wrq Read request or write request packet header. See
the description for
EFI_MTFTP4_REQ_HEADER below in this

table.
Oack Option acknowledge packet header. See the

description for
EFI_MTFTP4_OACK_HEADER below in this

table.
Data Data packet header. See the description for

EFI_MTFTP4_DATA_HEADER below in this

table.

EFI_MTFTP4_PACKET

Ack Acknowledgement packet header. See the
description for EFI_MTFTP4_ACK_HEADER

below in this table.

 January 31, 2006
1130 Version 2.0

Data Structure Parameter Description
Data8 Data packet header with big block number. See

the description for
EFI_MTFTP4_DATA8_HEADER below in

this table.
Ack8 Acknowledgement header with big block number.

See the description for
EFI_MTFTP4_ACK8_HEADER below in this

table.

Error Error packet header. See the description for
EFI_MTFTP4_ERROR_HEADER below in

this table.
OpCode For this packet type, OpCode =

EFI_MTFTP4_OPCODE_RRQ for a read
request or OpCode =
EFI_MTFTP4_OPCODE_WRQ for a write

request.

EFI_MTFTP4_REQ_HEADER

Filename The file name to be downloaded or uploaded.
OpCode For this packet type, OpCode =

EFI_MTFTP4_OPCODE_OACK.
EFI_MTFTP4_OACK_HEADER

Data The option strings in the option acknowledgement
packet.

OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_DATA.

Block Block number of this data packet.

EFI_MTFTP4_DATA_HEADER

Data The content of this data packet.
OpCode For this packet type, OpCode =

EFI_MTFTP4_OPCODE_ACK.
EFI_MTFTP4_ACK_HEADER

Block The block number of the data packet that is being
acknowledged.

OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_DATA8.

Block The block number of data packet.

EFI_MTFTP4_DATA8_HEADER

Data The content of this data packet.
OpCode For this packet type, OpCode =

EFI_MTFTP4_OPCODE_ACK8.
EFI_MTFTP4_ACK8_HEADER

Block The block number of the data packet that is being
acknowledged.

OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ERROR.

ErrorCode The error number as defined by the MTFTPv4
packet error codes. Values for ErrorCode are
defined below.

EFI_MTFTP4_ERROR_HEADER

ErrorMessage Error message string.

January 31, 2006
Version 2.0 1131

//
// MTFTP Packet OpCodes
//
#define EFI_MTFTP4_OPCODE_RRQ 1
#define EFI_MTFTP4_OPCODE_WRQ 2
#define EFI_MTFTP4_OPCODE_DATA 3
#define EFI_MTFTP4_OPCODE_ACK 4
#define EFI_MTFTP4_OPCODE_ERROR 5
#define EFI_MTFTP4_OPCODE_OACK 6
#define EFI_MTFTP4_OPCODE_DIR 7
#define EFI_MTFTP4_OPCODE_DATA8 8
#define EFI_MTFTP4_OPCODE_ACK8 9

Following is a description of the fields in the above definition.

EFI_MTFTP4_OPCODE_RRQ The MTFTPv4 packet is a read request.

EFI_MTFTP4_OPCODE_WRQ The MTFTPv4 packet is a write request.

EFI_MTFTP4_OPCODE_DATA The MTFTPv4 packet is a data packet.

EFI_MTFTP4_OPCODE_ACK The MTFTPv4 packet is an acknowledgement packet.

EFI_MTFTP4_OPCODE_ERROR The MTFTPv4 packet is an error packet.

EFI_MTFTP4_OPCODE_OACK The MTFTPv4 packet is an option acknowledgement
packet.

EFI_MTFTP4_OPCODE_DIR The MTFTPv4 packet is a directory query packet.

EFI_MTFTP4_OPCODE_DATA8 The MTFTPv4 packet is a data packet with a big block
number.

EFI_MTFTP4_OPCODE_ACK8 The MTFTPv4 packet is an acknowledgement packet with
a big block number.

 January 31, 2006
1132 Version 2.0

//
// MTFTP ERROR Packet ErrorCodes
//
#define EFI_MTFTP4_ERRORCODE_NOT_DEFINED 0
#define EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND 1
#define EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION 2
#define EFI_MTFTP4_ERRORCODE_DISK_FULL 3
#define EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION 4
#define EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID 5
#define EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS 6
#define EFI_MTFTP4_ERRORCODE_NO_SUCH_USER 7
#define EFI_MTFTP4_ERRORCODE_REQUEST_DENIED 8

EFI_MTFTP4_ERRORCODE_NOT_DEFINED The error code is not defined. See the

error message in the packet (if any) for
details.

EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND The file was not found.

EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION There was an access violation.

EFI_MTFTP4_ERRORCODE_DISK_FULL The disk was full or its allocation was
exceeded.

EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION The MTFTPv4 operation was illegal.

EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID The transfer ID is unknown.

EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS The file already exists.

EFI_MTFTP4_ERRORCODE_NO_SUCH_USER There is no such user.

EFI_MTFTP4_ERRORCODE_REQUEST_DENIED The request has been denied due to
option negotiation.

January 31, 2006
Version 2.0 1133

Status Codes Returned

EFI_SUCCESS An MTFTPv4 OACK packet was received and is in the Buffer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Filename is NULL.

• OptionCount is not zero and OptionList is NULL.

• One or more options in OptionList have wrong format.

• PacketLength is NULL.

• One or more IPv4 addresses in OverrideData are not
valid unicast IPv4 addresses if OverrideData is not
NULL.

EFI_UNSUPPORTED • One or more options in the OptionList are in the
unsupported list of structure
EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) has not finished yet.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received and is in the
Buffer.

EFI_ICMP_ERROR An ICMP ERROR packet was received and is in the Buffer.

EFI_PROTOCOL_ERROR An unexpected MTFTPv4 packet was received and is in the
Buffer.

EFI_TIMEOUT No responses were received from the MTFTPv4 server.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

 January 31, 2006
1134 Version 2.0

EFI_MTFTP4_PROTOCOL.ParseOptions()

Summary

Parses the options in an MTFTPv4 OACK packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_PARSE_OPTIONS)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN UINT32 PacketLen,
 IN EFI_MTFTP4_PACKET *Packet,
 OUT UINT32 *OptionCount,
 OUT EFI_MTFT4P_OPTION **OptionList OPTIONAL
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

PacketLen Length of the OACK packet to be parsed.

Packet Pointer to the OACK packet to be parsed. Type
EFI_MTFTP4_PACKET is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

OptionCount Pointer to the number of options in following OptionList.

OptionList Pointer to EFI_MTFTP4_OPTION storage. Call the EFI Boot
Service FreePool() to release each option if they are not
needed any more. Type EFI_MTFTP4_OPTION is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

Description

The ParseOptions() function parses the option fields in an MTFTPv4 OACK packet and
returns the number of options that were found and optionally a list of pointers to the options in the
packet.

If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned and
*OptionCount and *OptionList stop at the last valid option.

January 31, 2006
Version 2.0 1135

Status Codes Returned

EFI_SUCCESS The OACK packet was valid and the OptionCount and
OptionList parameters have been updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• PacketLen is 0.

• Packet is NULL or Packet is not a valid MTFTPv4 packet.

• OptionCount is NULL.

EFI_NOT_FOUND No options were found in the OACK packet.

EFI_OUT_OF_RESOURCES Storage for the OptionList array cannot be allocated.

EFI_PROTOCOL_ERROR One or more of the option fields is invalid.

 January 31, 2006
1136 Version 2.0

EFI_MTFTP4_PROTOCOL.ReadFile()

Summary

Downloads a file from an MTFTPv4 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_READ_FILE)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_MTFTP4_TOKEN is defined
in “Related Definitions” below.

Description

The ReadFile() function is used to initialize and start an MTFTPv4 download process and
optionally wait for completion. When the download operation completes, whether successfully or
not, the Token.Status field is updated by the EFI MTFTPv4 Protocol driver and then
Token.Event is signaled (if it is not NULL).

Data can be downloaded from the MTFTPv4 server into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
will be called first. If the call is successful, the packet will be stored in Token.Buffer.

January 31, 2006
Version 2.0 1137

Related Definitions
//***
// EFI_MTFTP4_TOKEN
//***
typedef struct {
 OUT EFI_STATUS Status;
 IN EFI_EVENT Event OPTIONAL;
 IN EFI_MTFTP4_OVERRIDE_DATA *OverrideData OPTIONAL;
 IN UINT8 *Filename;
 IN UINT8 *ModeStr OPTIONAL;
 IN UINT32 OptionCount;
 IN EFI_MTFTP4_OPTION *OptionList OPTIONAL;
 IN OUT UINT64 BufferSize;
 IN OUT VOID *Buffer OPTIONAL;
 IN EFI_MTFTP4_CHECK_PACKET CheckPacket OPTIONAL;
 IN EFI_MTFTP4_TIMEOUT_CALLBACK TimeoutCallback OPTIONAL;
 IN EFI_MTFTP4_PACKET_NEEDED PacketNeeded OPTIONAL;
} EFI_MTFTP4_TOKEN;

Status The status that is returned to the caller at the end of the operation
to indicate whether this operation completed successfully.
Defined Status values are listed below.

Event The event that will be signaled when the operation completes. If
set to NULL, the corresponding function will wait until the read
or write operation finishes. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

OverrideData If not NULL, the data that will be used to override the existing
configure data. Type EFI_MTFTP4_OVERRIDE_DATA is
defined in EFI_MTFTP4_PROTOCOL.GetInfo().

Filename Pointer to the ASCIIZ file name string.

ModeStr Pointer to the ASCIIZ mode string. If NULL, “octet” is used.

OptionCount Number of option/value string pairs.

OptionList Pointer to an array of option/value string pairs. Ignored if
OptionCount is zero. Both a remote server and this driver
implementation should support these options. If one or more
options are unrecognized by this implementation, it is sent to the
remote server without being changed. Type
EFI_MTFTP4_OPTION is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

BufferSize Size of the data buffer.

 January 31, 2006
1138 Version 2.0

Buffer Pointer to the data buffer. Data that is downloaded from the
MTFTPv4 server is stored here. Data that is uploaded to the
MTFTPv4 server is read from here. Ignored if BufferSize is
zero.

CheckPacket Pointer to the callback function to check the contents of the
received packet. Type EFI_MTFTP4_CHECK_PACKET is
defined below.

TimeoutCallback Pointer to the function to be called when a timeout occurs. Type
EFI_MTFTP4_TIMEOUT_CALLBACK is defined below.

PacketNeeded Pointer to the function to provide the needed packet contents.
Only used in WriteFile() operation. Type
EFI_MTFTP4_PACKET_NEEDED is defined below.

The EFI_MTFTP4_TOKEN structure is used for both the MTFTPv4 reading and writing
operations. The caller uses this structure to pass parameters and indicate the operation context.
After the reading or writing operation completes, the EFI MTFTPv4 Protocol driver updates the
Status parameter and the Event is signaled if it is not NULL. The following table lists the status
codes that are returned in the Status parameter.

Status Codes Returned in the Status Parameter

EFI_SUCCESS The data file has been transferred successfully.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_BUFFER_TOO_SMALL BufferSize is not large enough to hold the downloaded data

in downloading process.

EFI_ABORTED Current operation is aborted by user.

EFI_ICMP_ERROR An ICMP ERROR packet was received.

EFI_TIMEOUT No responses were received from the MTFTPv4 server.

EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

January 31, 2006
Version 2.0 1139

//***
// EFI_MTFTP4_CHECK_PACKET
//***
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_CHECK_PACKET)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token,
 IN UINT16 PacketLen,
 IN EFI_MTFTP4_PACKET *Packet
);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token The token that the caller provided in the
EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile()
or ReadDirectory() function. Type
EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

PacketLen Indicates the length of the packet.

Packet Pointer to an MTFTPv4 packet. Type EFI_MTFTP4_PACKET
is defined in EFI_MTFTP4_PROTOCOL.GetInfo().

EFI_MTFTP4_CHECK_PACKET is a callback function that is provided by the caller to intercept
the EFI_MTFTP4_OPCODE_DATA or EFI_MTFTP4_OPCODE_DATA8 packets processed in the
EFI_MTFTP4_PROTOCOL.ReadFile() function, and alternatively to intercept
EFI_MTFTP4_OPCODE_OACK or EFI_MTFTP4_OPCODE_ERROR packets during a call to
EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory(). Whenever
an MTFTPv4 packet with the type described above is received from a server, the EFI MTFTPv4
Protocol driver will call EFI_MTFTP4_CHECK_PACKET function to let the caller have an
opportunity to process this packet. Any status code other than EFI_SUCCESS that is returned from
this function will abort the transfer process.

//***
// EFI_MTFTP4_TIMEOUT_CALLBACK
//***
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_TIMEOUT_CALLBACK)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

 January 31, 2006
1140 Version 2.0

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token The token that is provided in the
EFI_MTFTP4_PROTOCOL.ReadFile() or
EFI_MTFTP4_PROTOCOL.WriteFile() or
EFI_MTFTP4_PROTOCOL.ReadDirectory() functions
by the caller. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

EFI_MTFTP4_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
timeout event in the EFI_MTFTP4_PROTOCOL.ReadFile(),
EFI_MTFTP4_PROTOCOL.WriteFile() or
EFI_MTFTP4_PROTOCOL.ReadDirectory() functions. Whenever a timeout occurs, the
EFI MTFTPv4 Protocol driver will call the EFI_MTFTP4_TIMEOUT_CALLBACK function to
notify the caller of the timeout event. Any status code other than EFI_SUCCESS that is returned
from this function will abort the current download process.

//***
// EFI_MTFTP4_PACKET_NEEDED
//***
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_PACKET_NEEDED)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token,
 IN OUT UINT16 *Length,
 OUT VOID **Buffer
);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token The token provided in the
EFI_MTFTP4_PROTOCOL.WriteFile() by the caller.

Length Indicates the length of the raw data wanted on input, and the
length the data available on output.

Buffer Pointer to the buffer where the data is stored.

EFI_MTFTP4_PACKET_NEEDED is a callback function that the caller provides to feed data to the
EFI_MTFTP4_PROTOCOL.WriteFile() function. EFI_MTFTP4_PACKET_NEEDED
provides another mechanism for the caller to provide data to upload other than a static buffer. The
EFI MTFTP4 Protocol driver always calls EFI_MTFTP4_PACKET_NEEDED to get packet data
from the caller if no static buffer was given in the initial call to
EFI_MTFTP4_PROTOCOL.WriteFile() function. Setting *Length to zero signals the end
of the session. Returning a status code other than EFI_SUCCESS aborts the session.

January 31, 2006
Version 2.0 1141

Status Codes Returned

EFI_SUCCESS The data file is being downloaded.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have
wrong format.

• Token.Buffer and Token.CheckPacket are both
NULL.

• One or more IPv4 addresses in Token.OverrideData
are not valid unicast IPv4 addresses if
Token.OverrideData is not NULL.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in the
unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_ALREADY_STARTED This Token is being used in another MTFTPv4 session.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

 January 31, 2006
1142 Version 2.0

EFI_MTFTP4_PROTOCOL.WriteFile()

Summary

Sends a data file to an MTFTPv4 server. May be unsupported in some EFI implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_WRITE_FILE)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this function. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

Description

The WriteFile() function is used to initialize an uploading operation with the given option list
and optionally wait for completion. If one or more of the options is not supported by the server, the
unsupported options are ignored and a standard TFTP process starts instead. When the upload
process completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv4
Protocol driver updates Token.Status.

The caller can supply the data to be uploaded in the following two modes:

• Through the user-provided buffer
• Through a callback function

With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer,
and the driver will upload the data in the buffer. With an EFI_MTFTP4_PACKET_NEEDED
callback function, the driver will call this callback function to get more data from the user to
upload. See the definition of EFI_MTFTP4_PACKET_NEEDED for more information. These two
modes cannot be used at the same time. The callback function will be ignored if the user provides
the buffer.

January 31, 2006
Version 2.0 1143

Status Codes Returned

EFI_SUCCESS The upload session has started.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have
wrong format.

• Token.Buffer and Token.PacketNeeded are
both NULL.

• One or more IPv4 addresses in Token.OverrideData
are not valid unicast IPv4 addresses if
Token.OverrideData is not NULL.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in
the unsupported list of structure
EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

 January 31, 2006
1144 Version 2.0

EFI_MTFTP4_PROTOCOL.ReadDirectory()

Summary

Downloads a data file “directory” from an MTFTPv4 server. May be unsupported in some EFI
implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_READ_DIRECTORY)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this function. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

Description

The ReadDirectory() function is used to return a list of files on the MTFTPv4 server that are
logically (or operationally) related to Token.Filename. The directory request packet that is sent
to the server is built with the option list that was provided by caller, if present.

The file information that the server returns is put into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
will be called first. If the call is successful, the packet will be stored in Token.Buffer.

The returned directory listing in the Token.Buffer or EFI_MTFTP4_PACKET consists of a
list of two or three variable-length ASCII strings, each terminated by a null character, for each file
in the directory. If the multicast option is involved, the first field of each directory entry is the static
multicast IP address and UDP port number that is associated with the file name. The format of the
field is ip:ip:ip:ip:port. If the multicast option is not involved, this field and its terminating
null character are not present.

The next field of each directory entry is the file name and the last field is the file information string.
The information string contains the file size and the create/modify timestamp. The format of the
information string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is
Coordinated Universal Time (UTC; also known as Greenwich Mean Time [GMT]).

January 31, 2006
Version 2.0 1145

Status Codes Returned
EFI_SUCCESS The MTFTPv4 related file "directory" has been downloaded.

EFI_UNSUPPORTED The EFI MTFTPv4 Protocol driver does not support this function.

EFI_INVALID_PARAMETER One or more of these conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have
wrong format.

• Token.Buffer and Token.CheckPacket are both
NULL.

• One or more IPv4 addresses in Token.OverrideData
are not valid unicast IPv4 addresses if
Token.OverrideData is not NULL.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in
the unsupported list of structure
EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

 January 31, 2006
1146 Version 2.0

EFI_MTFTP4_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_POLL) (
 IN EFI_MTFTP4_PROTOCOL *This
);

Parameters

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Description

The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned
EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI MTFTPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.

Consider increasing the polling rate.

January 31, 2006
Version 2.0 1147

25
Security — Secure Boot, Driver Signing and

Hash

25.1 Secure Boot

This protocol is intended to provide access for generic authentication information associated with
specific device paths. The authentication information is configurable using the defined interfaces.
Successive configuration of the authentication information will overwrite the previously configured
information. Once overwritten, the previous authentication information will not be retrievable.

EFI_AUTHENTICATION_INFO_PROTOCOL

Summary

This protocol is used on any device handle to obtain authentication information associated with the
physical or logical device.

GUID
#define EFI_AUTHENTICATION_INFO_PROTOCOL_GUID \

{0x7671d9d0,0x53db,0x4173,0xaa,0x69,0x23,0x27,0xf2,0x1f,
0xb,0xc7}

Protocol Interface Structure
typedef struct _EFI_AUTHENTICATION_INFO_PROTOCOL {

 EFI_AUTHENTICATION_PROTOCOL_INFO_GET Get;
 EFI_AUTHENTICATION_PROTOCOL_INFO_SET Set;

} EFI_AUTHENTICATION_INFO_PROTOCOL;

Parameters
Get Used to retrieve the Authentication Information associated with the

controller handle

Set Used to set the Authentication information associated with the controller
handle

Description

The EFI_AUTHENTICATION_INFO_PROTOCOL provides the ability to get and set the
authentication information associated with the controller handle.

 January 31, 2006
1148 Version 2.0

EFI_AUTHENTICATION_INFO_PROTOCOL.Get()

Summary

Retrieves the Authentication information associated with a particular controller handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_AUTHENTICATION_INFO_PROTOCOL_GET) {
 IN EFI_AUTHENTICATION_INFO_PROTOCOL *This,
 IN EFI_HANDLE *ControllerHandle,
 OUT VOID *Buffer
}

Parameters
This Pointer to the EFI_AUTHENTICATION_INFO_PROTOCOL

ControllerHandle Handle to the Controller

Buffer Pointer to the authentication information. This function is responsible for
allocating the buffer and it is the caller’s responsibility to free buffer
when the caller is finished with buffer.

Description

This function retrieves the Authentication Node for a given controller handle.

Status Codes Returned
EFI_SUCCESS Successfully retrieved Authentication information for the given

ControllerHandle

EFI_INVALID_PARAMETER No matching Authentication information found for the given
ControllerHandle

EFI_DEVICE_ERROR The authentication information could not be retrieved due to a
hardware error.

January 31, 2006
Version 2.0 1149

EFI_AUTHENTICATION_INFO_PROTOCOL.Set()

Summary

Set the Authentication information for a given controller handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_AUTHENTICATION_INFO_PROTOCOL_SET) {
 IN EFI_AUTHENTICATION_INFO_PROTOCOL *This,
 IN EFI_HANDLE *ControllerHandle
 IN VOID *Buffer
}

Parameters
This Pointer to the EFI_AUTHENTICATION_INFO_PROTOCOL

ControllerHandle Handle to the controller.

Buffer Pointer to the authentication information.

Description

This function sets the authentication information for a given controller handle. If the authentication
node exists corresponding to the given controller handle this function overwrites the previously
present authentication information.

Status Codes Returned
EFI_SUCCESS Successfully set the Authentication node information for the given

ControllerHandle.

EFI_UNSUPPORTED If the platform policies do not allow setting of the Authentication
information.

EFI_DEVICE_ERROR The authentication node information could not be configured due
to a hardware error.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the data.

 January 31, 2006
1150 Version 2.0

Authentication Nodes

The authentication node is associated with specific controller paths. There can be various types of
authentication nodes, each describing a particular authentication method and associated properties.

Generic Authentication Node Structures

An authentication node is a variable length binary structure that is made up of variable length
authentication information. Table 164 defines the generic structure. The Authentication type GUID
defines the corresponding authentication node.

Table 164. Generic Authentication Node Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type GUID 0 16 Authentication Type GUID

Length 16 2 Length of this structure in bytes.

Specific Authentication
Data

18 n Specific Authentication Data. Type defines the
authentication method and associated type of data.
Size of the data is included in the length.

All Authentication Nodes are byte-packed data structures that may appear on any byte boundary.
All code references to Authentication Nodes must assume all fields are UNALIGNED. Since every
Authentication Node contains a length field in a known place, it is possible to traverse
Authentication Node of unknown type.

CHAP (using RADIUS) Authentication Node

This Authentication Node type defines the CHAP authentication using RADIUS information.

GUID
#define EFI_AUTHENTICATION_CHAP_RADIUS_GUID \

{0xd6062b50,0x15ca,0x11da,0x9219,0x00,0x10,0x83,0xff,0xca,
0x4d}

January 31, 2006
Version 2.0 1151

Node Definition

Table 165. CHAP Authentication Node Structure using RADIUS

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 16 EFI_AUTHENTICATION_CHAP_RADIUS_GUID

Length 1 2 Length of this structure in bytes.

RADIUS IP Address 1 16 Radius IPv4 or IPv6 Address

Reserved 3 2 Reserved

NAS IP Address 3 16 NAS IPv4 or IPv6 Address

NAS Secret Length 5 2 NAS Secret Length

NAS Secret 5 p NAS Secret

CHAP Secret Length 5 2 CHAP Secret Length

CHAP Secret 5 q CHAP Secret

CHAP Name Length 5 2 CHAP Name Length

CHAP Name 5 r CHAP Name String

Summary

RADIUS IP Address RADIUS Server IPv4 or IPv6 Address

NAS IP Address Network Access Server IPv4 or IPv6 Address (OPTIONAL)

NAS Secret Length Network Access Server Secret Length in bytes (OPTIONAL)

NAS Secret Network Access Server secret (OPTIONAL)

CHAP Secret Length CHAP Initiator Secret length in bytes

CHAP Secret CHAP Initiator Secret

CHAP Name Length CHAP Initiator Name Length in bytes

CHAP Name CHAP Initiator Name

CHAP (using local database) Authentication Node

 This Authentication Node type defines CHAP using local
database information.

GUID
#define EFI_AUTHENTICATION_CHAP_LOCAL_GUID \

{0xc280c73e,0x15ca,0x11da,0xb0ca,0x00.0x10,0x83,0xff,0xca,
0x4d}

 January 31, 2006
1152 Version 2.0

Node Definition

Table 166. CHAP Authentication Node Structure using Local Database

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 16 EFI_AUTHENTICATION_CHAP_LOCAL_GUID

Length 16 2 Length of this structure in bytes.

Reserved 18 2 Reserved for future use

User Secret Length 20 2 User Secret Length

User Secret 22 p User Secret

User Name Length 22+p 2 User Name Length

User Name 24+p q User Name

CHAP Secret Length 24+p+q 2 CHAP Secret Length

CHAP Secret 26+p+q r CHAP Secret

CHAP Name Length 26+p+q+r 2 CHAP Name Length

CHAP Name 28+p+q+r s CHAP Name String

Summary

User Secret Length User Secret Length in bytes

User Secret User Secret

User Name Length User Name Length in bytes

User Name User Name

CHAP Secret Length CHAP Initiator Secret length in bytes

CHAP Secret CHAP Initiator Secret

CHAP Name Length CHAP Initiator Name Length in bytes

CHAP Name CHAP Initiator Name

25.2 UEFI Driver Signing Overview

This section describes a means of generating a digital signature for a UEFI executable, embedding
that digital signature within the UEFI executable and verifying that the digital signature is from an
authorized source.

The UEFI specification provides a standard format for executables. These executables may be
located on un-secured media (such as a hard drive or unprotected flash device) or may be delivered
via a un-secured transport layer (such as a network) or originate from a un-secured port (such as
ExpressCard device or USB device). In each of these cases, the system provider may decide to
authenticate either the origin of the executable or its integrity (i.e. it has not been tampered with).
This section describes a means of doing so.

January 31, 2006
Version 2.0 1153

25.2.1 Digital Signatures
As a rule, digital signatures require two pieces: the data (often referred to as the message) and a
public/private key pair. In order to create a digital signature, the message is processed by a hashing
algorithm to create a hash value. This hash value is, in turn, encrypted using a signature algorithm
and the private key to create the digital signature.

Private Key

Message

Hashing Algorithm

Message

Signature Algorithm

Hash Value

Digital
Signature

D
Signed

Message

D

Figure 53. Creating A Digital Signature

In order to verify a signature, two pieces of data are required: the original message and the public
key. First, the hash must be calculated exactly as it was calculated when the signature was created.
Then the digital signature is decoded using the public key and the result is compared against the
computed hash. If the two are identical, then you can be sure that message data is the one originally
signed and it has not been tampered with.

 January 31, 2006
1154 Version 2.0

Public Key

Hashing Algorithm

Message

Signature Algorithm

Hash Value

D

Signed
Message

D

Digital
Signature

Validation Signature

Figure 54. Verifying A Digital Signature

25.2.2 Embedded Signatures
The signatures used for digital signing of UEFI executables are embedded directly within the
executable itself. Within the header is an array of directory entries. Each of these entries points to
interesting places within the executable image. The fifth data directory entry contains a pointer to a
list of certificates along with the length of the certificate areas. Each certificate may contain a
digital signature used for validating the driver.

The following diagram illustrates how certificates are embedded in the PE/COFF file:

January 31, 2006
Version 2.0 1155

MS-DOS Header

PE Header Offset

PE Header

Sections Directory

Section #1

Section #n

Section #2

Debug Information

Certificate #1

PE Signature

Standard Header

Optional Header

Optional Data Directory

Image Data Directory Entry
#1

Image Data Directory Entry
#2

Image Data Directory Entry
#3

Image Data Directory Entry
#4

Image Data Directory Entry
#5 (Certificate Table)

Certificate #2

Certificate #n

Figure 55. Embedded Digital Certificates

Within the PE/COFF optional header is a data directory. The 5th entry, if filled, points to a list of
certificates. Normally, these certificates are appended to the end of the file.

25.2.3 Creating Message from Executables
One of the pieces required for creating a digital signature is the message. For a UEFI executable,
the message is created from the PE/COFF image, starting at the first byte, but excluding the
following portions:

5. The checksum field in the PE/COFF header
6. The certificate data directory structure (entry 5 in the data directory)
7. The certificates themselves

25.2.4 Code Definitions
This section describes the new data structures used for signing UEFI executables.

 January 31, 2006
1156 Version 2.0

WIN_CERTIFICATE

The WIN_CERTIFICATE structure is part of the PE/COFF specification and has the following
definition:
typedef struct _WIN_CERTIFICATE {
 UINT32 dwLength;
 UINT16 wRevision;
 UINT16 wCertificateType;
 UINT8 bCertificate[ANYSIZE_ARRAY];
} WIN_CERTIFICATE;

dwLength

The length of the entire certificate, including the length of the header, in bytes.

wRevision

The revision level of the WIN_CERTIFICATE structure. The current revision level
is 0x0200.

wCertificateType

The certificate type. See WIN_CERT_TYPE_xxx for the UEFI certificate types. The
UEFI specification reserves the range of certificate type values from 0x0EF0 to
0x0EFF.

bCertificate

The actual certificate. The format of the certificate depends on wCertificateType. The
format of the UEFI certificates is defined below.

Related Definitions
#define WIN_CERT_TYPE_EFI_PKCS115 0x0EF0
#define WIN_CERT_TYPE_EFI_GUID 0x0EF1

January 31, 2006
Version 2.0 1157

WIN_CERTIFICATE_EFI_PKCS1_15

Description

Certificate which encapsulates the RSASSA_PKCS1-v1_5 digital signature.

Prototype
typedef struct _WIN_CERTIFICATE_EFI_PKCS1_15 {
 WIN_CERTIFICATE Hdr;
 UINT32 HashType;
 UINT8 Signature[ANYSIZE_ARRAY];
} WIN_CERTIFICATE_EFI_PKCS1_15;

Hdr

This is the standard WIN_CERTIFICATE header, where wCertificateType is set to
WIN_CERT_TYPE_UEFI_PKCS1_15.

HashType

This is the hashing algorithm which was performed on the UEFI executable when
creating the digital signature. It is one of the enumerated values defined in chapter x.
See EFI_HASH_ALGORITHM_x.

Signature

This is the actual digital signature. The size of the signature is the same size as the
key (1024-bit key is 128 bytes) and can be determined by subtracting the length of
the other parts of this header from the total length of the certificate as found in
Hdr.dwLength.

Information

The WIN_CERTIFICATE_UEFI_PKCS1_15 structure is derived from WIN_CERTIFICATE and
encapsulate the information needed to implement the RSASSA-PKCS1-v1_5 digital signature
algorithm as specified in RFC2437.

25.2.5 WIN_CERTIFICATE_UEFI_GUID

Description

Certificate which encapsulates a GUID-specific digital signature.

 January 31, 2006
1158 Version 2.0

Prototype
typedef struct _WIN_CERTIFICATE_UEFI_GUID {
 WIN_CERTIFICATE Hdr;
 EFI_GUID CertType;
 UINT8 CertData[ANYSIZE_ARRAY];
} WIN_CERTIFICATE_UEFI_GUID;

Hdr This is the standard WIN_CERTIFICATE header, where
wCertificateType is set to WIN_CERT_TYPE_UEFI_GUID.

CertType This is the unique id which determines the format of the CertData.

CertData This is the certificate data. The format of the data is determined by the
CertType.

Information

The UEFI GUID certificate type allows new types of certificates to be developed for driver
authentication without requiring a new certificate type. The CertType defines the format of the
CertData, which length is defined by the size of the certificate less the fixed size of the
WIN_CERTIFICATE_UEFI_GUID structure.

25.3 Hash Overview

For the purposes of this specification, a hash function takes a variable length input and generates a
fixed length hash value. In general, hash functions are collision-resistant, which means that it is
infeasible to find two distinct inputs which produce the same hash value. Hash functions are
generally one-way which means that it is infeasible to find an input based on the output hash value.

This specification describes a protocol which allows a driver to produce a protocol which supports
zero or more hash functions.

25.3.1 Hash References
The following references define the standard means of creating the hashes used in this
specification:

Secure Hash Signature Standard (SHS) (FIPS PUB 180-2), National Institute of Standards and
Technology (August 1, 2002). See http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512)

MD5 Message-Digest Algorithm, R. Rivest (April 1992). See http://www.ietf.org/rfc/rfc1321.txt

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://www.ietf.org/rfc/rfc1321.txt

January 31, 2006
Version 2.0 1159

25.4 EFI Hash Protocols

EFI_HASH_SERVICE_BINDING_PROTOCOL

Summary

The EFI Hash Service Binding Protocol is used to locate hashing services support provided by a
driver and create and destroy instances of the EFI Hash Protocol so that a multiple drivers can use
the underlying hashing services.

The EFI Service Binding Protocol that is defined in Section 2.5.8 defines the generic Service
Binding Protocol functions. This section discusses the details that are specific to the EFI Hash
Protocol.

GUID
#define EFI_HASH_SERVICE_BINDING_PROTOCOL \

{0x42881c98,0xa4f3,0x44b0,0xa3,0x9d,0xdf,0xa1,0x86,0x67,
0xd8, 0xcd};

Description

An application (or driver) that requires hashing services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI
Hash Service Binding Protocol. Each device with a published the EFI Hash Service Binding
Protocol supports the EFI Hash Protocol and may be available for use.

After a successful call to the EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()function, the
child EFI Hash Protocol driver instance is ready for use.

Before a network application terminates execution, every successful call to the
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched with a call to
the EFI_HASH_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

 January 31, 2006
1160 Version 2.0

EFI_HASH_PROTOCOL

Summary

This protocol describes standard hashing functions.

GUID
#define EFI_HASH_PROTOCOL_GUID \

{0xc5184932,0xdba5,0x46db,0xa5,0xba,0xcc,0xb,0xda,0x9c,
0x14,0x35}

Protocol Interface Structure
typedef _EFI_HASH_PROTOCOL {
 EFI_HASH_GET_HASH_SIZE GetHashSize;
 EFI_HASH_HASH Hash;
} EFI_HASH_PROTOCOL;

Parameters
GetHashSize Return the size of a specific type of resulting hash.

Hash Create a hash for the specified message.

Description

This protocol allows creating a hash of an arbitrary message digest using one or more hash
algorithms. The GetHashSize returns the expected size of the hash for a particular algorithm and
whether or not that algorithm is, in fact, supported. The Hash actually creates a hash using the
specified algorithm.

Related Definitions
None

January 31, 2006
Version 2.0 1161

EFI_HASH_PROTOCOL.GetHashSize()

Summary

Returns the size of the hash which results from a specific algorithm.

Prototype
EFI_STATUS
EFIAPI
GetHashSize(
 IN CONST EFI_HASH_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
 OUT UINTN *HashSize
);

Parameters

This Points to this instance of EFI_HASH_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use. See EFI
Hash Algorithms.

HashSize Holds the returned size of the algorithm’s hash.

Description

This function returns the size of the hash which will be produced by the specified algorithm.

Related Definitions
None

Status Codes Returned
EFI_SUCCESS Hash size returned successfully.

EFI_INVALID_PARAMETER HashSize is NULL

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by this
driver.

 January 31, 2006
1162 Version 2.0

EFI_HASH_PROTOCOL.Hash()

Summary

Creates a hash for the specified message text.

Prototype
EFI_STATUS
EFIAPI
Hash(
 IN CONST EFI_HASH_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
 IN BOOLEAN Extend,
 IN CONST UINT8 *Message,
 IN UINT64 MessageSize,
 IN OUT EFI_HASH_OUTPUT *Hash
);

Parameters

This Points to this instance of EFI_HASH_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use. See EFI
Hash Algorithms.

Extend Specifies whether to create a new hash (FALSE) or extend the specified
existing hash (TRUE).

Message Points to the start of the message.

MessageSize The size of Message, in bytes.

Hash On input, if Extend is TRUE, then this holds the hash to extend. On
output, holds the resulting hash computed from the message.

Description

This function creates the hash of the specified message text based on the specified algorithm
HashAlgorithm and copies the result to the caller-provided buffer Hash. If Extend is TRUE, then
the hash specified on input by Hash is extended. If Extend is FALSE, then the starting hash value
will be that specified by the algorithm.

Related Definitions

EFI_HASH_OUTPUT

January 31, 2006
Version 2.0 1163

Status Codes Returned
EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER Message or Hash is NULL

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by this
driver.

EFI_UNSUPPORTED Extend is TRUE and the algorithm doesn’t support extending the
hash.

 January 31, 2006
1164 Version 2.0

25.4.1 Other Code Definitions

EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH,
EFI_SHA384_HASH, EFI_SHA512HASH, EFI_MD5_HASH

Summary

Data structure which holds the result of the hash.

Prototype
typedef UINT8 EFI_MD5_HASH[16];
typedef UINT8 EFI_SHA1_HASH[20];
typedef UINT8 EFI_SHA224_HASH[28];
typedef UINT8 EFI_SHA256_HASH[32];
typedef UINT8 EFI_SHA384_HASH[48];
typedef UINT8 EFI_SHA512_HASH[64];
typedef union _EFI_HASH_OUTPUT {
 EFI_MD5_HASH *Md5Hash;
 EFI_SHA1_HASH *Sha1Hash;
 EFI_SHA224_HASH *Sha224Hash;
 EFI_SHA256_HASH *Sha256Hash;
 EFI_SHA384_HASH *Sha384Hash;
 EFI_SHA512_HASH *Sha512Hash;
} EFI_HASH_OUTPUT;

Description

These prototypes describe the expected hash output values from the Hash function of the
EFI_HASH_PROTOCOL.

Related Definitions
None

January 31, 2006
Version 2.0 1165

25.4.1.1 EFI Hash Algorithms
The following table gives the EFI_GUID for standard hash algorithms and the corresponding
ASN.1 OID (Object Identifier)

Table 167. EFI Hash Algorithms
Algorithm EFI_GUID OID

SHA-1 #define
EFI_HASH_ALGORITHM_SHA1_GUID
{0x2ae9d80f, 0x3fb2, 0x4095, {
0xb7, 0xb1, 0xe9, 0x31, 0x57,
0xb9, 0x46, 0xb6}}

id-sha1 OBJECT IDENTIFIER ::=
{
iso(1) identified-
organization(3) oiw(14)
secsig(3) algorithms(2) 26
}

SHA-
224

#define
EFI_HASH_ALGORITHM_SHA224_GUID {
0x8df01a06, 0x9bd5, 0x4bf7, {
0xb0, 0x21, 0xdb, 0x4f, 0xd9,
0xcc, 0xf4, 0x5b } };

SHA-
256

#define
EFI_HASH_ALGORITHM_SHA256_GUID {
0x51aa59de, 0xfdf2, 0x4ea3, {
0xbc, 0x63, 0x87, 0x5f, 0xb7,
0x84, 0x2e, 0xe9 } };

id-sha256 OBJECT IDENTIFIER
::= {
joint-iso-itu-t (2) country
(16) us (840) organization
(1) gov (101)
csor (3) nistalgorithm (4)
hashalgs (2) 1}

SHA-
384

#define
EFI_HASH_ALGORITHM_SHA384_GUID {
0xefa96432, 0xde33, 0x4dd2, {
0xae, 0xe6, 0x32, 0x8c, 0x33,
0xdf, 0x77, 0x7a } };

id-sha384 OBJECT IDENTIFIER
::= {
joint-iso-itu-t (2) country
(16) us (840) organization
(1) gov (101)
csor (3) nistalgorithm (4)
hashalgs (2) 2}

SHA-
512

#define
EFI_HASH_ALGORITHM_SHA512_GUID {
0xcaa4381e, 0x750c, 0x4770, {
0xb8, 0x70, 0x7a, 0x23, 0xb4,
0xe4, 0x21, 0x30 } };

. id-sha512 OBJECT IDENTIFIER
::= {

. joint-iso-itu-t (2) country
(16) us (840) organization
(1) gov (101)

. csor (3) nistalgorithm (4)
hashalgs (2) 3}

MD5 #define
EFI_HASH_ALGORTIHM_MD5_GUID {
0xaf7c79c, 0x65b5, 0x4319, {
0xb0, 0xae, 0x44, 0xec, 0x48,
0x4e, 0x4a, 0xd7 } };

. id-md5 OBJECT IDENTIFIER ::=
{

. iso (1) member-body (2) us
(840) rsadsi (113549)
digestAlgorithm (2) 5}

 January 31, 2006
1166 Version 2.0

January 31, 2006
Version 2.0 1167

Appendix A
GUID and Time Formats

All EFI GUIDs (Globally Unique Identifiers) have the format described in Appendix J of the
Wired for Management Baseline Specification. This document references the format of the GUID,
but implementers must reference the Wired for Management specifications for algorithms to
generate GUIDs. The following table defines the format of an EFI GUID (128 bits).

Table 168. EFI GUID Format

Mnemonic

Byte
Offset

Byte
Length

Description

TimeLow 0 4 The low field of the timestamp.

TimeMid 4 2 The middle field of the timestamp.

TimeHighAndVersion 6 2 The high field of the timestamp multiplexed with the
version number.

ClockSeqHighAndReserved 8 1 The high field of the clock sequence multiplexed with
the variant.

ClockSeqLow 9 1 The low field of the clock sequence.

Node 10 6 The spatially unique node identifier. This can be
based on any IEEE 802 address obtained from a
network card. If no network card exists in the system,
a cryptographic-quality random number can be used.

All EFI time is stored in the format described by Appendix J of the Wired for Management
Baseline Specification. This appendix for GUID defines a 60-bit timestamp format that is used to
generate the GUID. All EFI time information is stored in 64-bit structures that contain the
following format: The timestamp is a 60-bit value that is represented by Coordinated Universal
Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date
of Gregorian reform to the Christian calendar). This time value will not roll over until the year
3400 AD. It is assumed that a future version of the EFI specification can deal with the year-3400
issue by extending this format if necessary.

 January 31, 2006
1168 Version 2.0

January 31, 2006
Version 2.0 1169

Appendix B
Console

The EFI console was designed so that it could map to common console devices. This appendix
explains how an EFI console could map to a VGA with PC AT 101/102, PC ANSI, or
ANSI X3.64 consoles.

B.1 Simple _Input Protocol

Table 169 gives examples of how an EFI scan code can be mapped to ANSI X3.64 terminal,
PCANSI terminal, or an AT 101/102 keyboard. PC ANSI terminals support an escape sequence
that begins with the ASCII character 0x1b and is followed by the ASCII character 0x5B, “ [”.
ASCII characters that define the control sequence that should be taken follow the escape sequence.
(The escape sequence does not contain spaces, but spaces are used in Table 169 to ease the reading
of the table.) ANSI X3.64, when combined with ISO 6429, can be used to represent the same
subset of console support required by EFI. ANSI X3.64 uses a single character escape sequence
CSI: ASCII character 0x9B. ANSI X3.64 can optionally use the same two-character escape
sequence “ESC [”. ANSI X3.64 and ISO 6429 support the same escape codes as PC ANSI.

Table 169. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL

EFI Scan Code

Description

ANSI X3.64
Codes

PC ANSI
Codes

AT 101/102 Keyboard
Scan Codes

0x00 Null scan code N/A N/A N/A

0x01 Move cursor up 1 row CSI A ESC [A 0xe0, 0x48

0x02 Move cursor down 1 row CSI B ESC [B 0xe0, 0x50

0x03 Move cursor right 1 column CSI C ESC [C 0xe0, 0x4d

0x04 Move cursor left 1 column CSI D ESC [D 0xe0, 0x4b

0x05 Home CSI H ESC [H 0xe0, 0x47

0x06 End CSI K ESC [K 0xe0, 0x4f

0x07 Insert CSI @ ESC [@ 0xe0, 0x52

0x08 Delete CSI P ESC [P 0xe0, 0x53

0x09 Page Up CSI ? ESC [? 0xe0, 0x49

0x0a Page Down CSI / ESC [/ 0xe0, 0x51

0x0b Function 1 CSI O P ESC [O P 0x3b

0x0c Function 2 CSI O Q ESC [O Q 0x3c

0x0d Function 3 CSI O w ESC [O w 0x3d

0x0e Function 4 CSI O x ESC [O x 0x3e

0x0f Function 5 CSI O t ESC [O t 0x3f

0x10 Function 6 CSI O u ESC [O u 0x40

 January 31, 2006
1170 Version 2.0

EFI Scan Code

Description

ANSI X3.64
Codes

PC ANSI
Codes

AT 101/102 Keyboard
Scan Codes

0x11 Function 7 CSI O q ESC [O q 0x41

0x12 Function 8 CSI O r ESC [O r 0x42

0x13 Function 9 CSI O p ESC [O p 0x43

0x14 Function 10 CSI O M ESC [O M 0x44

0x17 Escape CSI ESC 0x01

B.2 SIMPLE_TEXT_OUTPUT

Table 170 defines how the programmatic methods of the
EFI_SIMPLE_TEXT_OUPUT_PROTOCOL could be implemented as PC ANSI or ANSI X3.64
terminals. Detailed descriptions of PC ANSI and ANSI X3.64 escape sequences are as follows.
The same type of operations can be supported via a PC AT type INT 10h interface.

Table 170. Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL

PC ANSI
Codes

ANSI X3.64
Codes

Description

ESC [2 J CSI 2 J Clear Display Screen.

ESC [0 m CSI 0 m Normal Text.

ESC [1 m CSI 1 m Bright Text.

ESC [7 m CSI 7 m Reversed Text.

ESC [30 m CSI 30 m Black foreground, compliant with ISO Standard 6429.

ESC [31 m CSI 31 m Red foreground, compliant with ISO Standard 6429.

ESC [32 m CSI 32 m Green foreground, compliant with ISO Standard 6429.

ESC [33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429.

ESC [34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429.

ESC [35 m CSI 35 m Magenta foreground, compliant with ISO Standard 6429.

ESC [36 m CSI 36 m Cyan foreground, compliant with ISO Standard 6429.

ESC [37 m CSI 37 m White foreground, compliant with ISO Standard 6429.

ESC [40 m CSI 40 m Black background, compliant with ISO Standard 6429.

ESC [41 m CSI 41 m Red background, compliant with ISO Standard 6429.

ESC [42 m CSI 42 m Green background, compliant with ISO Standard 6429.

ESC [43 m CSI 43 m Yellow background, compliant with ISO Standard 6429.

ESC [44 m CSI 44 m Blue background, compliant with ISO Standard 6429.

ESC [45 m CSI 45 m Magenta background, compliant with ISO Standard 6429.

ESC [46 m CSI 46 m Cyan background, compliant with ISO Standard 6429.

ESC [47 m CSI 47 m White background, compliant with ISO Standard 6429.

ESC [= 3 h CSI = 3 h Set Mode 80x25 color.

ESC [row;col H CSI row;col H Set cursor position to row;col. Row and col are strings of ASCII digits.

January 31, 2006
Version 2.0 1173

Appendix C
Device Path Examples

This appendix presents an example EFI Device Path and explains its relationship to the ACPI name
space. An example system design is presented along with its corresponding ACPI name space.
These physical examples are mapped back to EFI Device Paths.

C.1 Example Computer System

Figure 56 represents a hypothetical computer system architecture that will be used to discuss the
construction of EFI Device Paths. The system consists of a memory controller that connects
directly to the processors’ front side bus. The memory controller is only part of a larger chipset,
and it connects to a root PCI host bridge chip, and a secondary root PCI host bridge chip. The
secondary PCI host bridge chip produces a PCI bus that contains a PCI to PCI bridge. The root PCI
host bridge produces a PCI bus, and also contains USB, ATA66, and AC ’97 controllers. The root
PCI host bridge also contains an LPC bus that is used to connect a SIO (Super IO) device. The SIO
contains a PC-AT-compatible floppy disk controller, and other PC-AT-compatible devices like a
keyboard controller.

OM13179

CPU CPU

AGP PDRAM

PCI 33MHz

LPC

PCI Slots

3

P
C

I S
lo

ts

PCI Slots

2

1FDC
KBD
GPIO
Serial

Parallel
Mouse

IR

SIO

USB ATA66 AC'97

Memory
Controller Secondary

PCI Host
Bridge

Root PCI
Host

Bridge

Memory
Controller

PCI to PCI
Bridge

Figure 56. Example Computer System

 January 31, 2006
1174 Version 2.0

The remainder of this appendix describes how to construct a device path for three example devices
from the system in Figure 56. The following is a list of the examples used:

• Legacy floppy
• IDE Disk
• Secondary root PCI bus with PCI to PCI bridge

Figure 57 is a partial ACPI name space for the system in Figure 56. Figure 57 is based on
Figure 5-3 in the Advanced Configuration and Power Interface Specification.

OM13180

Root of ACPI Name Space

_ SB - System Bus Tree

PCI0 - Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

IDE0 - IDE Device

_ADR - PCI Device #, Function #

 PRIM - Primary IDE Channel

_ADR - Primary 0, Secondary 1

 MAST - Master IDE Device
2

_ADR - Master 0, Slave 1

ISA0 - ISA Bridge

_HID & _UID - ACPI Device ID and Unique ID
_ADR - PCI Device #, Function #

FLPY - Legacy Floppy

_HID - Address of Floppy

PCI0 - Secondary Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

1

3

KEY...

Device Object

Data Object

Example Platform
Reference1

Figure 57. Partial ACPI Name Space for Example System

C.2 Legacy Floppy

The legacy floppy controller is contained in the SIO chip that is connected root PCI bus host bridge
chip. The root PCI host bridge chip produces PCI bus 0, and other resources that appear directly to
the processors in the system.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The SIO appears to the system to
be a set of ISA devices, so it is represented as a child of PCI0 with the name ISA0. The floppy
controller is represented by FLPY as a child of the ISA0 bus.

January 31, 2006
Version 2.0 1175

The EFI Device Path for the legacy floppy is defined in Table 171. It would contain entries for the
following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0
• PCI to ISA Bridge. PCI Device Path with device and function of the PCI to ISA bridge. ACPI

name space _SB\PCI0\ISA0
• Floppy Plug and Play ID. ACPI Device Path _HID PNP0303, _UID 0. ACPI name space

_SB\PCI0\ISA0\FLPY
• End Device Path

Table 171. Legacy Floppy Device Path

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function

11 1 0x10 PCI Device

12 1 0x02 Generic Device Path Header – Type ACPI Device Path

13 1 0x01 Sub type – ACPI Device Path

14 2 0x0C Length

16 4 0x41D0,
0x0303

_HID PNP0303

1A 4 0x0000 _UID

1E 1 0xFF Generic Device Path Header – Type End Device Path

1F 1 0xFF Sub type – End Device Path

20 2 0x04 Length

C.3 IDE Disk

The IDE Disk controller is a PCI device that is contained in a function of the root PCI host bridge.
The root PCI host bridge is a multi function device and has a separate function for chipset registers,
USB, and IDE. The disk connected to the IDE ATA bus is defined as being on the primary or
secondary ATA bus, and of being the master or slave device on that bus.

 January 31, 2006
1176 Version 2.0

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The IDE controller appears to the
system to be a PCI device with some legacy properties, so it is represented as a child of PCI0 with
the name IDE0. PRIM is a child of IDE0 and it represents the primary ATA bus of the IDE
controller. MAST is a child of PRIM and it represents that this device is the ATA master device on
this primary ATA bus.

The EFI Device Path for the PCI IDE controller is defined in Table 172. It would contain entries
for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0
• PCI IDE controller. PCI Device Path with device and function of the IDE controller. ACPI

name space _SB\PCI0\IDE0
• ATA Address. ATA Messaging Device Path for Primary bus and Master device. ACPI name

space _SB\PCI0\IDE0\PRIM\MAST
• End Device Path

Table 172. IDE Disk Device Path

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x01 PCI Function

11 1 0x10 PCI Device

12 1 0x03 Generic Device Path Header – Messaging Device Path

13 1 0x01 Sub type – ATAPI Device Path

14 2 0x06 Length

16 1 0x00 Primary =0, Secondary = 1

17 1 0x00 Master = 0, Slave = 1

18 2 0x0000 LUN

1A 1 0xFF Generic Device Path Header – Type End Device Path

1B 1 0xFF Sub type – End Device Path

1C 2 0x04 Length

January 31, 2006
Version 2.0 1177

C.4 Secondary Root PCI Bus with PCI to PCI Bridge

The secondary PCI host bridge materializes a second set of PCI buses into the system. The PCI
buses on the secondary PCI host bridge are totally independent of the PCI buses on the root PCI
host bridge. The only relationship between the two is they must be configured to not consume the
same resources. The primary PCI bus of the secondary PCI host bridge also contains a PCI to PCI
bridge. There is some arbitrary PCI device plugged in behind the PCI to PCI bridge in a PCI slot.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI1 is a child of _SB and it represents the secondary PCI host bridge. The PCI to PCI bridge and
the device plugged into the slot on its primary bus are not described in the ACPI name space.
These devices can be fully configured by following the applicable PCI specification.

The EFI Device Path for the secondary root PCI bridge with a PCI to PCI bridge is defined in
Table 173. It would contain entries for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 1. ACPI name space _SB\PCI1
• PCI to PCI Bridge. PCI Device Path with device and function of the PCI Bridge. ACPI name

space _SB\PCI1, PCI to PCI bridges are defined by PCI specification and not ACPI.
• PCI Device. PCI Device Path with the device and function of the PCI device. ACPI name

space _SB\PCI1, PCI devices are defined by PCI specification and not ACPI.
• End Device Path.

Table 173. Secondary Root PCI Bus with PCI to PCI Bridge Device Path

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0001 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function for PCI to PCI bridge

11 1 0x0c PCI Device for PCI to PCI bridge

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type PCI Device Path

14 2 0x08 Length

16 1 0x00 PCI Function for PCI Device

17 1 0x00 PCI Device for PCI Device

18 1 0xFF Generic Device Path Header – Type End Device Path

19 1 0xFF Sub type – End Device Path

1A 2 0x04 Length

 January 31, 2006
1178 Version 2.0

C.5 ACPI Terms

Names in the ACPI name space that start with an underscore (“_”) are reserved by the ACPI
specification and have architectural meaning. All ACPI names in the name space are four
characters in length. The following four ACPI names are used in this specification.

_ADR. The Address on a bus that has standard enumeration. An example would be PCI, where
the enumeration method is described in the PCI Local Bus specification.

_CRS. The current resource setting of a device. A _CRS is required for devices that are not
enumerated in a standard fashion. _CRS is how ACPI converts nonstandard devices into Plug and
Play devices.

_HID. Represents a device’s Plug and Play hardware ID, stored as a 32-bit compressed EISA ID.
_HID objects are optional in ACPI. However, a _HID object must be used to describe any device
that will be enumerated by the ACPI driver in the OS. This is how ACPI deals with non–Plug and
Play devices.

_UID. Is a serial number style ID that does not change across reboots. If a system contains more
than one device that reports the same _HID, each device must have a unique _UID. The _UID only
needs to be unique for device that have the exact same _HID value.

January 31, 2006
Version 2.0 1179

C.6 EFI Device Path as a Name Space

Figure 58 shows the EFI Device Path for the example system represented as a name space. The
Device Path can be represented as a name space, but EFI does support manipulating the Device
Path as a name space. You can only access Device Path information by locating the
DEVICE_PATH_INTERFACE from a handle. Not all the nodes in a Device Path will have a
handle.

OM13181

PCI (Device)
Dev, Func

3

Media (Hard Drive)
Partition 1

ACPI (Root PCI Bridge)
_HID PNP0A03
_UID 0

Root
/

ACPI (Root PCI Bridge)
_HID PNP0A03
_UID 1

PCI (ISA Bridge)
Dev, Func

PCI (ISA Bridge)
Dev, Func

PCI (PCI to PCI Bridge)
Dev, Func

ACPI (Legacy Floppy)
_HID PNP0303
_UID 0

Message (ATA)
Primary
Maste1 2

1

KEY...
Device Path Node
with EFI Handles

Device Path Node
only in other device paths

Example Platform
Reference

Figure 58. EFI Device Path Displayed As a Name Space

 January 31, 2006
1180 Version 2.0

January 31, 2006
Version 2.0 1181

Appendix D
Status Codes

EFI interfaces return an EFI_STATUS code. Table 175, Table 176, and Table 177 list these codes
for success, errors, and warnings, respectively. Error codes also have their highest bit set, so all
error codes have negative values. The range of status codes that have the highest bit set and the
next to highest bit clear are reserved for use by EFI. The range of status codes that have both the
highest bit set and the next to highest bit set are reserved for use by OEMs. Success and warning
codes have their highest bit clear, so all success and warning codes have positive values. The range
of status codes that have both the highest bit clear and the next to highest bit clear are reserved for
use by EFI. The range of status code that have the highest bit clear and the next to highest bit set
are reserved for use by OEMs. Table 174 lists the status code ranges described above.

Table 174. EFI_STATUS Codes Ranges

Supported
32-bit Range

Supported 64-bit
Architecture Ranges

Description

0x00000000-
0x3fffffff

0x0000000000000000-
0x3fffffffffffffff

Success and warning codes reserved for use by EFI. See
Table 9 and Table 177 for valid values in this range.

0x40000000-
0x7fffffff

0x4000000000000000-
0x7fffffffffffffff

Success and warning codes reserved for use by OEMs.

0x80000000-
0xbfffffff

0x8000000000000000-
0xbfffffffffffffff

Error codes reserved for use by EFI. See Table 10 for
valid values for this range.

0xc0000000-
0xffffffff

0xc000000000000000-
0xffffffffffffffff

Error codes reserved for use by OEMs.

Table 175. EFI_STATUS Success Codes (High Bit Clear)

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Table 176. EFI_STATUS Error Codes (High Bit Set)

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request.

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested data.
The required buffer size is returned in the appropriate
parameter when this error occurs.

EFI_NOT_READY 6 There is no data pending upon return.

 January 31, 2006
1182 Version 2.0

Mnemonic Value Description

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on the file system causing
the operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file system.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the
operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last
access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version that was
incompatible with a version requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_END_OF_MEDIA 28 Beginning or end of media was reached

EFI_END_OF_FILE 31 The end of the file was reached.

January 31, 2006
Version 2.0 1183

Table 177. EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic Value Description

EFI_WARN_UNKOWN_GLYPH 1 The Unicode string contained one or more characters that
the device could not render and were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file was not
flushed properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data was
truncated to the buffer size.

 January 31, 2006
1184 Version 2.0

January 31, 2006
Version 2.0 1185

Appendix E
Universal Network Driver Interfaces

E.1 Introduction

This appendix defines the 32/64-bit H/W and S/W Universal Network Driver Interfaces (UNDIs).
These interfaces provide one method for writing a network driver; other implementations are
possible.

E.1.1 Definitions

Table 178. Definitions

Term Definition

BC BaseCode
The PXE BaseCode, included as a core protocol in EFI, is comprised of a simple network stack
(UDP/IP) and a few common network protocols (DHCP, Bootserver Discovery, TFTP) that are
useful for remote booting machines.

LOM LAN On Motherboard
This is a network device that is built onto the motherboard (or baseboard) of the machine.

NBP Network Bootstrap Program
This is the first program that is downloaded into a machine that has selected a PXE capable
device for remote boot services.

A typical NBP examines the machine it is running on to try to determine if the machine is
capable of running the next layer (OS or application). If the machine is not capable of running
the next layer, control is returned to the EFI boot manager and the next boot device is selected.
If the machine is capable, the next layer is downloaded and control can then be passed to the
downloaded program.

Though most NBPs are OS loaders, NBPs can be written to be standalone applications such as
diagnostics, backup/restore, remote management agents, browsers, etc.

NIC Network Interface Card
Technically, this is a network device that is inserted into a bus on the motherboard or in an
expansion board. For the purposes of this document, the term NIC will be used in a generic
sense, meaning any device that enables a network connection (including LOMs and network
devices on external busses (USB, 1394, etc.)).

ROM Read-Only Memory
When used in this specification, ROM refers to a nonvolatile memory storage device on a NIC.

 January 31, 2006
1186 Version 2.0

Term Definition

PXE Preboot Execution Environment

The complete PXE specification covers three areas; the client, the network and the server.

Client

• Makes network devices into bootable devices.

• Provides APIs for PXE protocol modules in EFI and for universal drivers in the OS.

Network

• Uses existing technology: DHCP, TFTP, etc.

• Adds “vendor specific” tags to DHCP to define PXE specific operation within DHCP.

• Adds multicast TFTP for high bandwidth remote boot applications.

• Defines Bootserver discovery based on DHCP packet format.

Server

• Bootserver: Responds to Bootserver discovery requests and serves up remote boot
images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into existing network
infrastructure. proxyDHCP provides the additional DHCP information that is needed by PXE
clients and Bootservers without making changes to existing DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.

• Plug-In Modules: Example proxyDHCP and Bootservers provided in the PXE SDK
(software development kit) have the ability to take plug-in modules (PIMs). These PIMs are
used to change/enhance the capabilities of the proxyDHCP and Bootservers.

UNDI Universal Network Device Interface

UNDI is an architectural interface to NICs. Traditionally NICs have had custom interfaces and
custom drivers (each NIC had a driver for each OS on each platform architecture). Two
variations of UNDI are defined in this specification: H/W UNDI and S/W UNDI. H/W UNDI is an
architectural hardware interface to a NIC. S/W UNDI is a software implementation of the H/W
UNDI.

January 31, 2006
Version 2.0 1187

E.1.2 Referenced Specifications

When implementing PXE services, protocols, ROMs or drivers, it is a good idea to understand the
related network protocols and BIOS specifications. Table 179 below includes all of the
specifications referenced in this document.

Table 179. Referenced Specifications

Acronym Protocol/Specification

ARP Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt. Required reading for
those implementing the PXE Base Code Protocol.

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc3232.txt

BIOS Basic Input/Output System – Contact your BIOS manufacturer for reference and
programming manuals.

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt,

http://www.ietf.org/rfc/rfc1542.txt, and http://www.ietf.org/rfc/rfc1534.txt. - These references
are included for backward compatibility. BC protocol supports DHCP and BOOTP.

Required reading for those implementing the PXE Base Code Protocol BC protocol or PXE
Bootservers.

DHCP Dynamic Host Configuration Protocol

DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt, http://www.ietf.org/rfc/rfc3203.txt,
http://www.ietf.org/rfc/rfc3396.txt, http://www.ietf.org/rfc/rfc1534.txt)

Required reading for those implementing the PXE Base Code Protocol or PXE Bootservers.

EFI Extensible Firmware Interface – http://developer.intel.com/technology/efi/index.htm

Required reading for those implementing NBPs, OS loaders and preboot applications for
machines with the EFI preboot environment.

ICMP Internet Control Message Protocol
ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt

ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt

Required reading for those implementing the BC protocol.

IETF Internet Engineering Task Force – http://www.ietf.org/

This is a good starting point for obtaining electronic copies of Internet standards, drafts,
and RFCs.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc3376.txt.
Required reading for those implementing the PXE Base Code Protocol.

IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt

Ipv6: http://www.ietf.org/rfc/rfc2460.txt and http://www.ipv6.org

Required reading for those implementing the BC protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.
Required reading for those implementing the PXE Base Code Protocol.

PCI Peripheral Component Interface – http://www.pcisig.com/ - Source for PCI specifications.
Required reading for those implementing S/W or H/W UNDI on a PCI NIC or LOM.

PnP Plug-and-Play – http://www.phoenix.com/en/support/white+papers-specs/

Source for PnP specifications.

http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc3232.txt
http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc1542.txt
http://www.ietf.org/rfc/rfc1534.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc3203.txt
http://www.ietf.org/rfc/rfc3396.txt
http://www.ietf.org/rfc/rfc1534.txt
http://developer.intel.com/technology/efi/index.htm
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/
http://www.ietf.org/rfc/rfc3376.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org/
http://www.pcisig.com/
http://www.phoenix.com/en/support/white+papers-specs/

 January 31, 2006
1188 Version 2.0

Acronym Protocol/Specification

PXE Preboot eXecution Environment
16-bit PXE v2.1: ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf

Required reading.

RFC Request For Comments – http://www.ietf.org/rfc.html and
http://www.keywave.ad.jp/RFC/index.html

TCP Transmission Control Protocol
TCPv4: http://www.ietf.org/rfc/rfc0793.txt
TCPv6: ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt

Required reading for those implementing the PXE Base Code Protocol .

TFTP Trivial File Transfer Protocol
TFTP (protocol: http://www.ietf.org/rfc/rfc1350.txt, options: http://www.ietf.org/rfc/rfc2347.txt,
http://www.ietf.org/rfc/rfc2348.txt, and http://www.ietf.org/rfc/rfc2349.txt).
Required reading for those implementing the PXE Base Code Protocol.

UDP User Datagram Protocol
UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt

UDP over IPv6: http://www.ietf.org/rfc/rfc2454.txt

Required reading for those implementing the PXE Base Code Protocol.

WfM Wired for Management

http://www.intel.com/labs/manage/wfm/wfmspecs.htm

Recommended reading for those implementing the PXE Base Code Protocol or PXE
Bootservers.

ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf
http://www.ietf.org/rfc.html
http://www.keywave.ad.jp/RFC/index.html
http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

January 31, 2006
Version 2.0 1189

E.1.3 OS Network Stacks

This is a simplified overview of three OS network stacks that contain three types of network
drivers: Custom, S/W UNDI and H/W UNDI. Figure 59 depicts an application bound to an OS
protocol stack, which is in turn bound to a protocol driver that is bound to three NICs. Table 180
below gives a brief list of pros and cons about each type of driver implementation.

OM13182

Application - 1

OS Protocol Stack

Custom

NIC
Specific
Protocol

Driver

NIC Specific
Protocol Driver

Application - 2

OS Protocol Stack

S/W UNDI

OS Universal Protocol Driver

Application - 3

OS Protocol Stack

H/W UNDI

OS Universal Protocol Driver

NIC - 2
Vend - B

NIC - 3
Vend - B

NIC - 1
Vendor - A

NIC - 5
Vend - D

NIC - 6
Vend - D

NIC - 4
Vendor - C

H/W UNDI
NIC - 9

Vendor - F

H/W UNDI
NIC - 8

Vendor - F

H/W UNDI
NIC - 7

Vendor - E

Figure 59. Network Stacks with Three Classes of Drivers

 January 31, 2006
1190 Version 2.0

Table 180. Driver Types: Pros and Cons

Driver Pro Con

Custom • Can be very fast and efficient.
NIC vendor tunes driver to OS
& device.

• OS vendor does not have to
write NIC driver.

• New driver for each OS/architecture must be
maintained by NIC vendor.

• OS vendor must trust code supplied by third-party.

• OS vendor cannot test all possible driver/NIC
versions.

• Driver must be installed before NIC can be used.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

S/W UNDI • S/W UNDI driver is simpler
than a Custom driver. Easier
to test outside of the OS
environment.

• OS vendor can tune the
universal protocol driver for
best OS performance.

• NIC vendor only has to write
one driver per processor
architecture.

• Slightly slower than Custom or H/W UNDI because of
extra call layer between protocol stack and NIC.

• S/W UNDI driver must be loaded before NIC can be
used.

• OS vendor has to write the universal driver.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

H/W UNDI • H/W UNDI provides a
common architectural
interface to all network
devices.

• OS vendor controls all security
and performance issues in
network stack.

• NIC vendor does not have to
write any drivers.

• NIC can be used without an
OS or driver installed (preboot
management).

• OS vendor has to write the universal driver (this might
also be a Pro, depending on your point of view).

January 31, 2006
Version 2.0 1191

E.2 Overview

There are three major design changes between this specification and the 16-bit UNDI in version 2.1
of the PXE Specification:

• A new architectural hardware interface has been added.
• All UNDI commands use the same command format.
• BC is no longer part of the UNDI ROM.

E.2.1 32/64-bit UNDI Interface

The !PXE structures are used locate and identify the type of 32/64-bit UNDI interface (H/W or
S/W), as shown in Figure 60. These structures are normally only used by the system BIOS and
universal network drivers.

OM13183

!PXE
H/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature

Len Fudge Rev IFcnt

Major Minor reserved

 Implementation

Status

Command

CDBaddr

Len

Len +
0x04
Len +
0x08
Len +
0x0C

!PXE
S/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature

 Len Fudge Rev IFcnt

Major Minor reserved

 Implementation

Entry Point

 reserved #bus

BusTypes(s)

0x10

0x14

0x18

0x1C

0x10 reserved

0x20 More BusTypes(s)

Figure 60. !PXE Structures for H/W and S/W UNDI

The !PXE structures used for H/W and S/W UNDIs are similar but not identical. The difference in
the format is tied directly to the differences required by the implementation. The !PXE structures
for 32/64-bit UNDI are not compatible with the !PXE structure for 16-bit UNDI.

The !PXE structure for H/W UNDI is built into the NIC hardware. The first nine fields (from
offsets 0x00 to 0x0F) are implemented as read-only memory (or ports). The last three fields (from
Len to Len + 0x0F) are implemented as read/write memory (or ports). The optional reserved field
at 0x10 is not defined in this specification and may be used for vendor data. How the location of
the !PXE structure is found in system memory, or in I/O space is outlined in Section E.5, “UNDI as
an EFI Runtime Driver.”

 January 31, 2006
1192 Version 2.0

The !PXE structure for S/W UNDI can be loaded into system memory from one of three places;
ROM on a NIC, system nonvolatile storage, or external storage. Since there are no direct memory
or I/O ports available in the S/W UNDI !PXE structure, an indirect callable entry point is provided.
S/W UNDI developers are free to make their internal designs as simple or complex as they desire,
as long as all of the UNDI commands in this specification are implemented.

Descriptions of the fields in the !PXE structures is given in Table 181.

Table 181. !PXE Structure Field Definitions

Identifier Value Description

Signature “!PXE” !PXE structure signature. This field is used to locate an UNDI hardware or
software interface in system memory (or I/O) space. ‘!’ is in the first (lowest
address) byte, ‘P’ is in the second byte, ‘X’ in the third and ‘E’ in the last. This
field must be aligned on a 16-byte boundary (the last address byte must be
zero).

Len Varies Number of !PXE structure bytes to checksum.

When computing the checksum of this structure the Len field MUST be used
as the number of bytes to checksum. The !PXE structure checksum is
computed by adding all of the bytes in the structure, starting with the first byte
of the structure Signature: '!'. If the 8-bit sum of all of the unsigned bytes in
this structure is not zero, this is not a valid !PXE structure.

Fudge Varies This field is used to make the 8-bit checksum of this structure equal zero.

Rev 0x02 Revision of this structure.

IFcnt Varies This field reports the number (minus one) of physical external network
connections that are controlled by this !PXE interface. (If there is one network
connector, this field is zero. If there are two network connectors, this field is
one.)

Major Varies UNDI command interface. Minor revision number.

0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The
callback interface defined in the UNDI Start command is required.

0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The
callback interface defined in the UNDI Start command is required

Minor Varies UNDI command interface. Minor revision number.

0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The
callback interface defined in the UNDI Start command is required.

0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The
callback interface defined in the UNDI Start command is required.

reserved 0x0000 This field is reserved and must be set to zero.

Implementation Varies Identifies type of UNDI

 (S/W or H/W, 32 bit or 64 bit) and what features have been implemented.
The implementation bits are defined below. Undefined bits must be set to zero
by UNDI implementers. Applications/drivers must not rely on the contents of
undefined bits (they may change later revisions).

Bit 0x00: Command completion interrupts supported (1) or not supported (0)

Bit 0x01: Packet received interrupts supported (1) or not supported (0)

January 31, 2006
Version 2.0 1193

Identifier Value Description

Bit 0x02: Transmit complete interrupts supported (1) or not supported (0)

Bit 0x03: Software interrupt supported (1) or not supported (0)

Bit 0x04: Filtered multicast receives supported (1) or not supported (0)

Bit 0x05: Broadcast receives supported (1) or not supported (0)

Bit 0x06: Promiscuous receives supported (1) or not supported (0)

Bit 0x07: Promiscuous multicast receives supported (1) or not supported (0)

Bit 0x08: Station MAC address settable (1) or not settable (0)

Bit 0x09: Statistics supported (1) or not supported (0)

Bit 0x0A,0x0B: NvData not available (0), read only (1), sparse write supported
(2), bulk write supported (3)

Bit 0x0C: Multiple frames per command supported (1) or not supported (0)

Bit 0x0D: Command queuing supported (1) or not supported (0)

Bit 0x0E: Command linking supported (1) or not supported (0)

Bit 0x0F: Packet fragmenting supported (1) or not supported (0)

Bit 0x10: Device can address 64 bits (1) or only 32 bits (0)

Bit 0x1E: S/W UNDI: Entry point is virtual address (1) or unsigned offset from
start of !PXE structure (0).

Bit 0x1F: Interface type: H/W UNDI (1) or S/W UNDI (0)

H/W UNDI Fields

Reserved Varies This field is optional and may be used for OEM & vendor unique data. If this
field is present its length must be a multiple of 16 bytes and must be included
in the !PXE structure checksum. This field, if present, will always start on a
16-byte boundary.

Note: The size/contents of the !PXE structure may change in future revisions
of this specification. Do not rely on OEM & vendor data starting at the same
offset from the beginning of the !PXE structure. It is recommended that the
OEM & vendor data include a signature that drivers/applications can
search for.

Status Varies UNDI operation, command and interrupt status flags.

This is a read-only port. Undefined status bits must be set to zero. Reading
this port does NOT clear the status.

Bit 0x00: Command completion interrupt pending (1) or not pending (0)

Bit 0x01: Packet received interrupt pending (1) or not pending (0)

Bit 0x02: Transmit complete interrupt pending (1) or not pending (0)

Bit 0x03: Software interrupt pending (1) or not pending (0)

Bit 0x04: Command completion interrupts enabled (1) or disabled (0)

Bit 0x05: Packet receive interrupts enabled (1) or disabled (0)

Bit 0x06: Transmit complete interrupts enabled (1) or disabled (0)

Bit 0x07: Software interrupts enabled (1) or disabled (0)

Bit 0x08: Unicast receive enabled (1) or disabled (0)

Bit 0x09: Filtered multicast receive enabled (1) or disabled (0)

Bit 0x0A: Broadcast receive enabled (1) or disabled (0)

 January 31, 2006
1194 Version 2.0

Identifier Value Description

Bit 0x0B: Promiscuous receive enabled (1) or disabled (0)

Bit 0x0C: Promiscuous multicast receive enabled (1) or disabled (0)

Bit 0x1D: Command failed (1) or command succeeded (0)

Bits 0x1F:0x1E: UNDI state: Stopped (0), Started (1), Initialized (2), Busy (3)

Command Varies Use to execute commands, clear interrupt status and enable/disable receive
levels. This is a read/write port. Read reflects the last write.

Bit 0x00: Clear command completion interrupt (1) or NOP (0)

Bit 0x01: Clear packet received interrupt (1) or NOP (0)

Bit 0x02: Clear transmit complete interrupt (1) or NOP (0)

Bit 0x03: Clear software interrupt (1) or NOP (0)

Bit 0x04: Command completion interrupt enable (1) or disable (0)

Bit 0x05: Packet receive interrupt enable (1) or disable (0)

Bit 0x06: Transmit complete interrupt enable (1) or disable (0)

Bit 0x07: Software interrupt enable (1) or disable (0). Setting this bit to (1)
also generates a software interrupt.

Bit 0x08: Unicast receive enable (1) or disable (0)

Bit 0x09: Filtered multicast receive enable (1) or disable (0)

Bit 0x0A: Broadcast receive enable (1) or disable (0)

Bit 0x0B: Promiscuous receive enable (1) or disable (0)

Bit 0x0C: Promiscuous multicast receive enable (1) or disable (0)

Bit 0x1F: Operation type: Clear interrupt and/or filter (0), Issue command (1)

CDBaddr Varies Write the physical address of a CDB to this port. (Done with one 64-bit or two
32-bit writes, depending on processor architecture.) When done, use one
32-bit write to the command port to send this address into the command
queue. Unused upper address bits must be set to zero.

S/W UNDI Fields

EntryPoint Varies S/W UNDI API entry point address. This is either a virtual address or an offset
from the start of the !PXE structure. Protocol drivers will push the 64-bit virtual
address of a CDB on the stack and then call the UNDI API entry point. When
control is returned to the protocol driver, the protocol driver must remove the
address of the CDB from the stack.

reserved Zero Reserved for future use.

BusTypeCnt Varies This field is the count of 4-byte BusType entries in the next field.

BusType Varies This field defines the type of bus S/W UNDI is written to support:

“PCIR,” “PCCR,” “USBR” or “1394.” This field is formatted like the Signature
field. If the S/W UNDI supports more than one BusType there will be more
than one BusType identifier in this field.

January 31, 2006
Version 2.0 1195

E.2.1.1 Issuing UNDI Commands
How commands are written and status is checked varies a little depending on the type of UNDI
(H/W or S/W) implementation being used. The command flowchart shown in Figure 61 is a high-
level diagram on how commands are written to both H/W and S/W UNDI.

OM13184

Step 1
Fill in CDB(s). Commands may
be linked if supported by UNDI.

Step 2 (H/W UNDI)
Write physical address of first
CDB to CDBaddr register.

Step 3 (H/W UNDI)
Initiate command execution
(write to UNDI Command port)

Step 4 (H/W UNDI)
Wait for completion status. Can
be polled in separate thread of
interrupt driven, if supported by
UNDI.

Step 2 (S/W UNDI)
Push virtual address of first CDB
onto CPU stack.

Step 3 (S/W UNDI)
Initiate command execution (Call
S/W UNDI API entry point).

Step 4 (S/W UNDI)
Wait for completion status. Some
S/W UNDI implementations can
be polled or interrupt driven,
others will not return until
command execution completes.

CDB

Step 5
Issue more commands.

Figure 61. Issuing UNDI Commands

 January 31, 2006
1196 Version 2.0

E.2.2 UNDI Command Format

The format of the CDB is the same for all UNDI commands. Figure 62 shows the structure of the
CDB. Some of the commands do not use or always require the use of all of the fields in the CDB.
When fields are not used they must be initialized to zero or the UNDI will return an error. The
StatCode and StatFlags fields must always be initialized to zero or the UNDI will return an error.
All reserved fields (and bit fields) must be initialized to zero or the UNDI will return an error.

Basically, the rule is: Do it right, or don’t do it at all.

OM13185

CDB
Command Descriptor Block

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

OpCode OpFlags

CPBaddr

DBaddr
0x10

0x14

0x18

0x1C

CPBsize DBsize

StatCode StatFlags

IFnum Control

Figure 62. UNDI Command Descriptor Block (CDB)

Descriptions of the CDB fields are given in Table 182.

Table 182. UNDI CDB Field Definitions

Identifier Description

OpCode Operation Code (Function Number, Command Code, etc.)

This field is used to identify the command being sent to the UNDI. The meanings of
some of the bits in the OpFlags and StatFlags fields, and the format of the CPB and DB
structures depends on the value in the OpCode field. Commands sent with an OpCode
value that is not defined in this specification will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

OpFlags Operation Flags

This bit field is used to enable/disable different features in a specific command operation.
It is also used to change the format/contents of the CPB and DB structures. Commands
sent with reserved bits set in the OpFlags field will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

January 31, 2006
Version 2.0 1197

Identifier Description

CPBsize Command Parameter Block Size

This field should be set to a number that is equal to the number of bytes that will be read
from CPB structure during command execution. Setting this field to a number that is too
small will cause the command to not be executed and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

The contents of the CPB structure will not be modified.

DBsize Data Block Size

This field should be set to a number that is equal to the number of bytes that will be
written into the DB structure during command execution. Setting this field to a number
that is smaller than required will cause an error. It may be zero in some cases where the
information is not needed.

CPBaddr Command Parameter Block Address

For H/W UNDI, this field must be the physical address of the CPB structure. For S/W
UNDI, this field must be the virtual address of the CPB structure. If the operation does
not have/use a CPB, this field must be initialized to PXE_CPBADDR_NOT_USED. Setting
up this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

DBaddr Data Block Address

For H/W UNDI, this field must be the physical address of the DB structure. For S/W
UNDI, this field must be the virtual address of the DB structure. If the operation does not
have/use a CPB, this field must be initialized to PXE_DBADDR_NOT_USED. Setting up
this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

StatCode Status Code

This field is used to report the type of command completion: success or failure (and the
type of failure). This field must be initialized to zero before the command is issued. The
contents of this field is not valid until the PXE_STATFLAGS_COMMAND_COMPLETE status
flag is set. If this field is not initialized to PXE_STATCODE_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

StatFlags Status Flags

This bit field is used to report command completion and identify the format, if any, of the
DB structure. This field must be initialized to zero before the command is issued. Until
the command state changes to error or complete, all other CDB fields must not be
changed. If this field is not initialized to PXE_STATFLAGS_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

Bits 0x0F & 0x0E: Command state: Not started (0), Queued (1), Error (2), Complete (3).

IFnum Interface Number

This field is used to identify which network adapter (S/W UNDI) or network connector
(H/W UNDI) this command is being sent to. If an invalid interface number is given, the
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

 January 31, 2006
1198 Version 2.0

Identifier Description

Control Process Control

This bit field is used to control command UNDI inter-command processing. Setting
control bits that are not supported by the UNDI will cause the command execution to fail
with a StatCode of PXE_STATCODE_INVALID_CDB.

Bit 0x00: Another CDB follows this one (1) or this is the last or only CDB in the list (0).

Bit 0x01: Queue command if busy (1), fail if busy (0).

E.3 UNDI C Definitions

The definitions in this section are used to aid in the portability and readability of the example
32/64-bit S/W UNDI source code and the rest of this specification.

E.3.1 Portability Macros

These macros are used for storage and communication portability.

E.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER
This macro is used to control conditional compilation in the S/W UNDI source code. One of these
definitions needs to be uncommented in a common PXE header file.
//#define PXE_INTEL_ORDER 1 // little-endian
//#define PXE_NETWORK_ORDER 1 // big-endian

E.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT
This macro is used to control conditional compilation in the PXE source code. One of these
definitions must to be uncommented in the common PXE header file.
//#define PXE_UINT64_SUPPORT 1 // UINT64 supported
//#define PXE_NO_UINT64_SUPPORT 1 // UINT64 not supported

January 31, 2006
Version 2.0 1199

E.3.1.3 PXE_BUSTYPE
Used to convert a 4-character ASCII identifier to a 32-bit unsigned integer.
#if PXE_INTEL_ORDER
#define PXE_BUSTYPE(a,b,c,d) \
((((PXE_UINT32)(d) & 0xFF) << 24) | \
(((PXE_UINT32)(c) & 0xFF) << 16) | \
(((PXE_UINT32)(b) & 0xFF) << 8) | \
((PXE_UINT32)(a) & 0xFF))
#else
#define PXE_BUSTYPE(a,b,c,d) \
((((PXE_UINT32)(a) & 0xFF) << 24) | \
(((PXE_UINT32)(b) & 0xFF) << 16) | \
(((PXE_UINT32)(c) & 0xFF) << 8) | \
((PXE_UINT32)(f) & 0xFF))
#endif

//***
// UNDI ROM ID and devive ID signature
//***
#define PXE_BUSTYPE_PXE PXE_BUSTYPE('!', 'P', 'X', 'E')

//***
// BUS ROM ID signatures
//***
#define PXE_BUSTYPE_PCI PXE_BUSTYPE('P', 'C', 'I', 'R')
#define PXE_BUSTYPE_PC_CARD PXE_BUSTYPE('P', 'C', 'C', 'R')
#define PXE_BUSTYPE_USB PXE_BUSTYPE('U', 'S', 'B', 'R')
#define PXE_BUSTYPE_1394 PXE_BUSTYPE('1', '3', '9', '4')

E.3.1.4 PXE_SWAP_UINT16
This macro swaps bytes in a 16-bit word.
#ifdef PXE_INTEL_ORDER
#define PXE_SWAP_UINT16(n) \
((((PXE_UINT16)(n) & 0x00FF) << 8) | \
(((PXE_UINT16)(n) & 0xFF00) >> 8))
#else
#define PXE_SWAP_UINT16(n) (n)
#endif

 January 31, 2006
1200 Version 2.0

E.3.1.5 PXE_SWAP_UINT32
This macro swaps bytes in a 32-bit word.
#ifdef PXE_INTEL_ORDER
#define PXE_SWAP_UINT32(n) \
((((PXE_UINT32)(n) & 0x000000FF) << 24) | \
(((PXE_UINT32)(n) & 0x0000FF00) << 8) | \
(((PXE_UINT32)(n) & 0x00FF0000) >> 8) | \
(((PXE_UINT32)(n) & 0xFF000000) >> 24)
#else
#define PXE_SWAP_UINT32(n) (n)
#endif

E.3.1.6 PXE_SWAP_UINT64
This macro swaps bytes in a 64-bit word for compilers that support 64-bit words.
#if PXE_UINT64_SUPPORT != 0
#ifdef PXE_INTEL_ORDER
#define PXE_SWAP_UINT64(n) \
((((PXE_UINT64)(n) & 0x00000000000000FF) << 56) | \
(((PXE_UINT64)(n) & 0x000000000000FF00) << 40) | \
(((PXE_UINT64)(n) & 0x0000000000FF0000) << 24) | \
(((PXE_UINT64)(n) & 0x00000000FF000000) << 8) | \
(((PXE_UINT64)(n) & 0x000000FF00000000) >> 8) | \
(((PXE_UINT64)(n) & 0x0000FF0000000000) >> 24) | \
(((PXE_UINT64)(n) & 0x00FF000000000000) >> 40) | \
(((PXE_UINT64)(n) & 0xFF00000000000000) >> 56)
#else
#define PXE_SWAP_UINT64(n) (n)
#endif
#endif // PXE_UINT64_SUPPORT

This macro swaps bytes in a 64-bit word, in place, for compilers that do not support 64-bit words.
This version of the 64-bit swap macro cannot be used in expressions.
#if PXE_NO_UINT64_SUPPORT != 0
#if PXE_INTEL_ORDER
#define PXE_SWAP_UINT64(n) \
{
 \
PXE_UINT32 tmp = (PXE_UINT64)(n)[1]; \
(PXE_UINT64)(n)[1] = PXE_SWAP_UINT32((PXE_UINT64)(n)[0]); \
(PXE_UINT64)(n)[0] = PXE_SWAP_UINT32(tmp); \
}
#else
#define PXE_SWAP_UINT64(n) (n)
#endif
#endif // PXE_NO_UINT64_SUPPORT

January 31, 2006
Version 2.0 1201

E.3.2 Miscellaneous Macros

E.3.2.1 Miscellaneous
#define PXE_CPBSIZE_NOT_USED 0 // zero
#define PXE_DBSIZE_NOT_USED 0 // zero
#define PXE_CPBADDR_NOT_USED (PXE_UINT64)0 // zero
#define PXE_DBADDR_NOT_USED (PXE_UINT64)0 // zero

E.3.3 Portability Types

The examples given below are just that, examples. The actual typedef instructions used in a new
implementation may vary depending on the compiler and processor architecture.

The storage sizes defined in this section are critical for PXE module inter-operation. All of the
portability typedefs define little endian (Intel® format) storage. The least significant byte is stored
in the lowest memory address and the most significant byte is stored in the highest memory
address, as shown in Figure 63.

OM13186

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

UINT8 UINT16 UINT32 UINT64

LSB MSB

Figure 63. Storage Types

E.3.3.1 PXE_CONST
The const type does not allocate storage. This type is a modifier that is used to help the compiler
optimize parameters that do not change across function calls.
#define PXE_CONST const

E.3.3.2 PXE_VOLATILE
The volatile type does not allocate storage. This type is a modifier that is used to help the compiler
deal with variables that can be changed by external procedures or hardware events.
#define PXE_VOLATILE volatile

 January 31, 2006
1202 Version 2.0

E.3.3.3 PXE_VOID
The void type does not allocate storage. This type is used only to prototype functions that do not
return any information and/or do not take any parameters.
typedef void PXE_VOID;

E.3.3.4 PXE_UINT8
Unsigned 8-bit integer.
typedef unsigned char PXE_UINT8;

E.3.3.5 PXE_UINT16
Unsigned 16-bit integer.
typedef unsigned short PXE_UINT16;

E.3.3.6 PXE_UINT32
Unsigned 32-bit integer.
typedef unsigned PXE_UINT32;

E.3.3.7 PXE_UINT64
Unsigned 64-bit integer.
#if PXE_UINT64_SUPPORT != 0
typedef unsigned long PXE_UINT64;
#endif // PXE_UINT64_SUPPORT

If a 64-bit integer type is not available in the compiler being used, use this definition:
#if PXE_NO_UINT64_SUPPORT != 0
typedef PXE_UINT32 PXE_UINT64[2];
#endif // PXE_NO_UINT64_SUPPORT

E.3.3.8 PXE_UINTN
Unsigned integer that is the default word size used by the compiler. This needs to be at least a
32-bit unsigned integer.
typedef unsigned PXE_UINTN;

January 31, 2006
Version 2.0 1203

E.3.4 Simple Types

The PXE simple types are defined using one of the portability types from the previous section.

E.3.4.1 PXE_BOOL
Boolean (true/false) data type. For PXE zero is always false and nonzero is always true.
typedef PXE_UINT8 PXE_BOOL;
#define PXE_FALSE 0 // zero
#define PXE_TRUE (!PXE_FALSE)

E.3.4.2 PXE_OPCODE
UNDI OpCode (command) descriptions are given in the next chapter. There are no BC OpCodes,
BC protocol functions are discussed later in this document.

typedef PXE_UINT16 PXE_OPCODE;

// Return UNDI operational state.
#define PXE_OPCODE_GET_STATE 0x0000

// Change UNDI operational state from Stopped to Started.
#define PXE_OPCODE_START 0x0001

// Change UNDI operational state from Started to Stopped.
#define PXE_OPCODE_STOP 0x0002

// Get UNDI initialization information.
#define PXE_OPCODE_GET_INIT_INFO 0x0003

// Get NIC configuration information.
#define PXE_OPCODE_GET_CONFIG_INFO 0x0004

// Changed UNDI operational state from Started to Initialized.
#define PXE_OPCODE_INITIALIZE 0x0005

// Reinitialize the NIC H/W.
#define PXE_OPCODE_RESET 0x0006

// Change the UNDI operational state from Initialized to Started.
#define PXE_OPCODE_SHUTDOWN 0x0007

// Read & change state of external interrupt enables.
#define PXE_OPCODE_INTERRUPT_ENABLES 0x0008

// Read & change state of packet receive filters.
#define PXE_OPCODE_RECEIVE_FILTERS 0x0009

 January 31, 2006
1204 Version 2.0

// Read & change station MAC address.
#define PXE_OPCODE_STATION_ADDRESS 0x000A

// Read traffic statistics.
#define PXE_OPCODE_STATISTICS 0x000B

// Convert multicast IP address to multicast MAC address.
#define PXE_OPCODE_MCAST_IP_TO_MAC 0x000C

// Read or change nonvolatile storage on the NIC.
#define PXE_OPCODE_NVDATA 0x000D

// Get & clear interrupt status.
#define PXE_OPCODE_GET_STATUS 0x000E

// Fill media header in packet for transmit.
#define PXE_OPCODE_FILL_HEADER 0x000F

// Transmit packet(s).
#define PXE_OPCODE_TRANSMIT 0x0010

// Receive packet.
#define PXE_OPCODE_RECEIVE 0x0011

// Last valid PXE UNDI OpCode number.
#define PXE_OPCODE_LAST_VALID 0x0011

E.3.4.3 PXE_OPFLAGS

typedef PXE_UINT16 PXE_OPFLAGS;

#define PXE_OPFLAGS_NOT_USED 0x0000

//***
// UNDI Get State
//***

// No OpFlags

//***
// UNDI Start
//***

// No OpFlags

January 31, 2006
Version 2.0 1205

//***
// UNDI Stop
//***

// No OpFlags

//***
// UNDI Get Init Info
//***

// No Opflags

//***
// UNDI Get Config Info
//***

// No Opflags

//***
// UNDI Initialize
//***

#define PXE_OPFLAGS_INITIALIZE_CABLE_DETECT_MASK 0x0001
#define PXE_OPFLAGS_INITIALIZE_DETECT_CABLE 0x0000
#define PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE 0x0001

//***
// UNDI Reset
//***

#define PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS 0x0001
#define PXE_OPFLAGS_RESET_DISABLE_FILTERS 0x0002

//***
// UNDI Shutdown
//***

// No OpFlags

//***
// UNDI Interrupt Enables
//***

// Select whether to enable or disable external interrupt
// signals. Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPFLAGS.

 January 31, 2006
1206 Version 2.0

#define PXE_OPFLAGS_INTERRUPT_OPMASK 0xC000
#define PXE_OPFLAGS_INTERRUPT_ENABLE 0x8000
#define PXE_OPFLAGS_INTERRUPT_DISABLE 0x4000
#define PXE_OPFLAGS_INTERRUPT_READ 0x0000

// Enable receive interrupts. An external interrupt will be
// generated after a complete non-error packet has been received.

#define PXE_OPFLAGS_INTERRUPT_RECEIVE 0x0001

// Enable transmit interrupts. An external interrupt will be
// generated after a complete non-error packet has been
// transmitted.

#define PXE_OPFLAGS_INTERRUPT_TRANSMIT 0x0002

// Enable command interrupts. An external interrupt will be
// generated when command execution stops.

#define PXE_OPFLAGS_INTERRUPT_COMMAND 0x0004

// Generate software interrupt. Setting this bit generates an
// externalinterrupt, if it is supported by the hardware.

#define PXE_OPFLAGS_INTERRUPT_SOFTWARE 0x0008

//***
// UNDI Receive Filters
//***

// Select whether to enable or disable receive filters.
// Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPCODE.

#define PXE_OPFLAGS_RECEIVE_FILTER_OPMASK 0xC000
#define PXE_OPFLAGS_RECEIVE_FILTER_ENABLE 0x8000
#define PXE_OPFLAGS_RECEIVE_FILTER_DISABLE 0x4000
#define PXE_OPFLAGS_RECEIVE_FILTER_READ 0x0000

// To reset the contents of the multicast MAC address filter
// list,set this OpFlag:

#define PXE_OPFLAGS_RECEIVE_FILTERS_RESET_MCAST_LIST 0x2000

// Enable unicast packet receiving. Packets sent to the
// current station MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_UNICAST 0x0001

January 31, 2006
Version 2.0 1207

// Enable broadcast packet receiving. Packets sent to the
// broadcast MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// Enable filtered multicast packet receiving. Packets sent to
// anyof the multicast MAC addresses in the multicast MAC address
// filter list will be received. If the filter list is empty, no
// multicast

#define PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// Enable promiscuous packet receiving. All packets will be
// received.

#define PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// Enable promiscuous multicast packet receiving. All multicast
// packets will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***
// UNDI Station Address
//***

#define PXE_OPFLAGS_STATION_ADDRESS_READ 0x0000
#define PXE_OPFLAGS_STATION_ADDRESS_WRITE 0x0000
#define PXE_OPFLAGS_STATION_ADDRESS_RESET 0x0001

//***
// UNDI Statistics
//***

#define PXE_OPFLAGS_STATISTICS_READ 0x0000
#define PXE_OPFLAGS_STATISTICS_RESET 0x0001

//***
// UNDI MCast IP to MAC
//***

// Identify the type of IP address in the CPB.

#define PXE_OPFLAGS_MCAST_IP_TO_MAC_OPMASK 0x0003
#define PXE_OPFLAGS_MCAST_IPV4_TO_MAC 0x0000
#define PXE_OPFLAGS_MCAST_IPV6_TO_MAC 0x0001

 January 31, 2006
1208 Version 2.0

//***
// UNDI NvData
//***

// Select the type of nonvolatile data operation.

#define PXE_OPFLAGS_NVDATA_OPMASK 0x0001
#define PXE_OPFLAGS_NVDATA_READ 0x0000
#define PXE_OPFLAGS_NVDATA_WRITE 0x0001

//***
// UNDI Get Status
//***

// Return current interrupt status. This will also clear any
// interrupts that are currently set. This can be used in a
// polling routine. The interrupt flags are still set and
// cleared even when the interrupts are disabled.

#define PXE_OPFLAGS_GET_INTERRUPT_STATUS 0x0001

// Return list of transmitted buffers for recycling. Transmit
// buffers must not be changed or unallocated until they have
// recycled. After issuing a transmit command, wait for a
// transmit complete interrupt. When a transmit complete
// interrupt is received, read the transmitted buffers. Do not
// plan on getting one buffer per interrupt. Some NICs and UNDIs
// may transmit multiple buffers per interrupt.

#define PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS 0x0002

//***
// UNDI Fill Header
//***

#define PXE_OPFLAGS_FILL_HEADER_OPMASK 0x0001
#define PXE_OPFLAGS_FILL_HEADER_FRAGMENTED 0x0001
#define PXE_OPFLAGS_FILL_HEADER_WHOLE 0x0000

//***
// UNDI Transmit
//***

// S/W UNDI only. Return after the packet has been transmitted.
// A transmit complete interrupt will still be generated and the
// transmit buffer will have to be recycled.

#define PXE_OPFLAGS_SWUNDI_TRANSMIT_OPMASK 0x0001
#define PXE_OPFLAGS_TRANSMIT_BLOCK 0x0001
#define PXE_OPFLAGS_TRANSMIT_DONT_BLOCK 0x0000

January 31, 2006
Version 2.0 1209

#define PXE_OPFLAGS_TRANSMIT_OPMASK 0x0002
#define PXE_OPFLAGS_TRANSMIT_FRAGMENTED 0x0002
#define PXE_OPFLAGS_TRANSMIT_WHOLE 0x0000

//***
// UNDI Receive
//***

// No OpFlags

E.3.4.4 PXE_STATFLAGS

typedef PXE_UINT16 PXE_STATFLAGS;

#define PXE_STATFLAGS_INITIALIZE 0x0000

//***
// Common StatFlags that can be returned by all commands.
//***

// The COMMAND_COMPLETE and COMMAND_FAILED status flags must be
// implemented by all UNDIs. COMMAND_QUEUED is only needed by
// UNDIs that support command queuing.

#define PXE_STATFLAGS_STATUS_MASK 0xC000
#define PXE_STATFLAGS_COMMAND_COMPLETE 0xC000
#define PXE_STATFLAGS_COMMAND_FAILED 0x8000
#define PXE_STATFLAGS_COMMAND_QUEUED 0x4000

//***
// UNDI Get State
//***

#define PXE_STATFLAGS_GET_STATE_MASK 0x0003
#define PXE_STATFLAGS_GET_STATE_INITIALIZED 0x0002
#define PXE_STATFLAGS_GET_STATE_STARTED 0x0001
#define PXE_STATFLAGS_GET_STATE_STOPPED 0x0000

//***
// UNDI Start
//***

// No additional StatFlags

 January 31, 2006
1210 Version 2.0

//***
// UNDI Get Init Info
//***

#define PXE_STATFLAGS_CABLE_DETECT_MASK 0x0001
#define PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED 0x0000
#define PXE_STATFLAGS_CABLE_DETECT_SUPPORTED 0x0001

//***
// UNDI Initialize
//***

#define PXE_STATFLAGS_INITIALIZED_NO_MEDIA 0x0001

//***
// UNDI Reset
//***

#define PXE_STATFLAGS_RESET_NO_MEDIA 0x0001

//***
// UNDI Shutdown
//***

// No additional StatFlags

//***
// UNDI Interrupt Enables
//***

// If set, receive interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_RECEIVE 0x0001

// If set, transmit interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_TRANSMIT 0x0002

// If set, command interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_COMMAND 0x0004

//***
// UNDI Receive Filters
//***

// If set, unicast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_UNICAST 0x0001

January 31, 2006
Version 2.0 1211

// If set, broadcast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// If set, multicast packets that match up with the multicast
// address filter list will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// If set, all packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// If set, all multicast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***
// UNDI Station Address
//***

// No additional StatFlags

//***
// UNDI Statistics
//***

// No additional StatFlags

//***
// UNDI MCast IP to MAC
//***

// No additional StatFlags

//***
// UNDI NvData
//***

// No additional StatFlags

//***
// UNDI Get Status
//***

// Use to determine if an interrupt has occurred.
#define PXE_STATFLAGS_GET_STATUS_INTERRUPT_MASK 0x000F
#define PXE_STATFLAGS_GET_STATUS_NO_INTERRUPTS 0x0000

 January 31, 2006
1212 Version 2.0

// If set, at least one receive interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_RECEIVE 0x0001

// If set, at least one transmit interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_TRANSMIT 0x0002

// If set, at least one command interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_COMMAND 0x0004

// If set, at least one software interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_SOFTWARE 0x0008

// This flag is set if the transmitted buffer queue is empty.
// This flag will be set if all transmitted buffer addresses
// get written into the DB.
#define PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY 0x0010

// This flag is set if no transmitted buffer addresses were
// written into the DB. (This could be because DBsize was
// too small.)
#define PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN 0x0020

//***
// UNDI Fill Header
//***

// No additional StatFlags

//***
// UNDI Transmit
//***

// No additional StatFlags.

//***
// UNDI Receive
//***

// No additional StatFlags.

January 31, 2006
Version 2.0 1213

E.3.4.5 PXE_STATCODE
typedef PXE_UINT16 PXE_STATCODE;

#define PXE_STATCODE_INITIALIZE 0x0000

//***
// Common StatCodes returned by all UNDI commands, UNDI protocol
// functions and BC protocol functions.
//***

#define PXE_STATCODE_SUCCESS 0x0000
#define PXE_STATCODE_INVALID_CDB 0x0001
#define PXE_STATCODE_INVALID_CPB 0x0002
#define PXE_STATCODE_BUSY 0x0003
#define PXE_STATCODE_QUEUE_FULL 0x0004
#define PXE_STATCODE_ALREADY_STARTED 0x0005
#define PXE_STATCODE_NOT_STARTED 0x0006
#define PXE_STATCODE_NOT_SHUTDOWN 0x0007
#define PXE_STATCODE_ALREADY_INITIALIZED 0x0008
#define PXE_STATCODE_NOT_INITIALIZED 0x0009
#define PXE_STATCODE_DEVICE_FAILURE 0x000A
#define PXE_STATCODE_NVDATA_FAILURE 0x000B
#define PXE_STATCODE_UNSUPPORTED 0x000C
#define PXE_STATCODE_BUFFER_FULL 0x000D
#define PXE_STATCODE_INVALID_PARAMETER 0x000E
#define PXE_STATCODE_INVALID_UNDI 0x000F
#define PXE_STATCODE_IPV4_NOT_SUPPORTED 0x0010
#define PXE_STATCODE_IPV6_NOT_SUPPORTED 0x0011
#define PXE_STATCODE_NOT_ENOUGH_MEMORY 0x0012
#define PXE_STATCODE_NO_DATA 0x0013

E.3.4.6 PXE_IFNUM
typedef PXE_UINT16 PXE_IFNUM;

// This interface number must be passed to the S/W UNDI Start
// command.

#define PXE_IFNUM_START 0x0000

// This interface number is returned by the S/W UNDI Get State
// and Start commands if information in the CDB, CPB or DB is
// invalid.

#define PXE_IFNUM_INVALID 0x0000

 January 31, 2006
1214 Version 2.0

E.3.4.7 PXE_CONTROL
typedef PXE_UINT16 PXE_CONTROL;

// Setting this flag directs the UNDI to queue this command for
// later execution if the UNDI is busy and it supports command
// queuing. If queuing is not supported, a
// PXE_STATCODE_INVALID_CONTROL error is returned. If the queue
// is full, a PXE_STATCODE_CDB_QUEUE_FULL error is returned.

#define PXE_CONTROL_QUEUE_IF_BUSY 0x0002

// These two bit values are used to determine if there are more
// UNDI CDB structures following this one. If the link bit is
// set, there must be a CDB structure following this one.
// Execution will start on the next CDB structure as soon as this
// one completes successfully. If an error is generated by this
// command, execution will stop.

#define PXE_CONTROL_LINK 0x0001
#define PXE_CONTROL_LAST_CDB_IN_LIST 0x0000

E.3.4.8 PXE_FRAME_TYPE
typedef PXE_UINT8 PXE_FRAME_TYPE;

#define PXE_FRAME_TYPE_NONE 0x00
#define PXE_FRAME_TYPE_UNICAST 0x01
#define PXE_FRAME_TYPE_BROADCAST 0x02
#define PXE_FRAME_TYPE_FILTERED_MULTICAST 0x03
#define PXE_FRAME_TYPE_PROMISCUOUS 0x04
#define PXE_FRAME_TYPE_PROMISCUOUS_MULTICAST 0x05

E.3.4.9 PXE_IPV4
This storage type is always big endian, not little endian.
typedef PXE_UINT32 PXE_IPV4;

E.3.4.10 PXE_IPV6
This storage type is always big endian, not little endian.
typedef struct s_PXE_IPV6 {
 PXE_UINT32 num[4];
} PXE_IPV6;

E.3.4.11 PXE_MAC_ADDR
This storage type is always big endian, not little endian.
typedef struct {
 PXE_UINT8 num[32];
} PXE_MAC_ADDR;

January 31, 2006
Version 2.0 1215

E.3.4.12 PXE_IFTYPE
The interface type is returned by the Get Initialization Information command and is used by the BC
DHCP protocol function. This field is also used for the low order 8-bits of the H/W type field in
ARP packets. The high order 8-bits of the H/W type field in ARP packets will always be set to
0x00 by the BC.
typedef PXE_UINT8 PXE_IFTYPE;

// This information is from the ARP section of RFC 3232.

// 1 Ethernet (10Mb)
// 2 Experimental Ethernet (3Mb)
// 3 Amateur Radio AX.25
// 4 Proteon ProNET Token Ring
// 5 Chaos
// 6 IEEE 802 Networks
// 7 ARCNET
// 8 Hyperchannel
// 9 Lanstar
// 10 Autonet Short Address
// 11 LocalTalk
// 12 LocalNet (IBM PCNet or SYTEK LocalNET)
// 13 Ultra link
// 14 SMDS
// 15 Frame Relay
// 16 Asynchronous Transmission Mode (ATM)
// 17 HDLC
// 18 Fibre Channel
// 19 Asynchronous Transmission Mode (ATM)
// 20 Serial Line
// 21 Asynchronous Transmission Mode (ATM)

#define PXE_IFTYPE_ETHERNET 0x01
#define PXE_IFTYPE_TOKENRING 0x04
#define PXE_IFTYPE_FIBRE_CHANNEL 0x12

 January 31, 2006
1216 Version 2.0

E.3.5 Compound Types

All PXE structures must be byte packed.

E.3.5.1 PXE_HW_UNDI
This section defines the C structures and #defines for the !PXE H/W UNDI interface.
#pragma pack(1)
typedef struct s_pxe_hw_undi {
 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_HW_UNDI)
 PXE_UINT8 Fudge; // makes 8-bit cksum equal zero
 PXE_UINT8 Rev; // PXE_ROMID_REV
 PXE_UINT8 IFcnt; // physical connector count
 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER
 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER
 PXE_UINT16 reserved; // zero, not used
 PXE_UINT32 Implementation; // implementation flags
} PXE_HW_UNDI;
#pragma pack()

// Status port bit definitions

// UNDI operation state

#define PXE_HWSTAT_STATE_MASK 0xC0000000
#define PXE_HWSTAT_BUSY 0xC0000000
#define PXE_HWSTAT_INITIALIZED 0x80000000
#define PXE_HWSTAT_STARTED 0x40000000
#define PXE_HWSTAT_STOPPED 0x00000000

// If set, last command failed

#define PXE_HWSTAT_COMMAND_FAILED 0x20000000

// If set, identifies enabled receive filters

#define PXE_HWSTAT_PROMISCUOUS_MULTICAST_RX_ENABLED 0x00001000
#define PXE_HWSTAT_PROMISCUOUS_RX_ENABLED 0x00000800
#define PXE_HWSTAT_BROADCAST_RX_ENABLED 0x00000400
#define PXE_HWSTAT_MULTICAST_RX_ENABLED 0x00000200
#define PXE_HWSTAT_UNICAST_RX_ENABLED 0x00000100

January 31, 2006
Version 2.0 1217

// If set, identifies enabled external interrupts

#define PXE_HWSTAT_SOFTWARE_INT_ENABLED 0x00000080
#define PXE_HWSTAT_TX_COMPLETE_INT_ENABLED 0x00000040
#define PXE_HWSTAT_PACKET_RX_INT_ENABLED 0x00000020
#define PXE_HWSTAT_CMD_COMPLETE_INT_ENABLED 0x00000010

// If set, identifies pending interrupts

#define PXE_HWSTAT_SOFTWARE_INT_PENDING 0x00000008
#define PXE_HWSTAT_TX_COMPLETE_INT_PENDING 0x00000004
#define PXE_HWSTAT_PACKET_RX_INT_PENDING 0x00000002
#define PXE_HWSTAT_CMD_COMPLETE_INT_PENDING 0x00000001

// Command port definitions

// If set, CDB identified in CDBaddr port is given to UNDI.
// If not set, other bits in this word will be processed.

#define PXE_HWCMD_ISSUE_COMMAND 0x80000000
#define PXE_HWCMD_INTS_AND_FILTS 0x00000000

// Use these to enable/disable receive filters.

#define PXE_HWCMD_PROMISCUOUS_MULTICAST_RX_ENABLE 0x00001000
#define PXE_HWCMD_PROMISCUOUS_RX_ENABLE 0x00000800
#define PXE_HWCMD_BROADCAST_RX_ENABLE 0x00000400
#define PXE_HWCMD_MULTICAST_RX_ENABLE 0x00000200
#define PXE_HWCMD_UNICAST_RX_ENABLE 0x00000100

// Use these to enable/disable external interrupts

#define PXE_HWCMD_SOFTWARE_INT_ENABLE 0x00000080
#define PXE_HWCMD_TX_COMPLETE_INT_ENABLE 0x00000040
#define PXE_HWCMD_PACKET_RX_INT_ENABLE 0x00000020
#define PXE_HWCMD_CMD_COMPLETE_INT_ENABLE 0x00000010

// Use these to clear pending external interrupts

#define PXE_HWCMD_CLEAR_SOFTWARE_INT 0x00000008
#define PXE_HWCMD_CLEAR_TX_COMPLETE_INT 0x00000004
#define PXE_HWCMD_CLEAR_PACKET_RX_INT 0x00000002
#define PXE_HWCMD_CLEAR_CMD_COMPLETE_INT 0x00000001

 January 31, 2006
1218 Version 2.0

E.3.5.2 PXE_SW_UNDI
This section defines the C structures and #defines for the !PXE S/W UNDI interface.
#pragma pack(1)
typedef struct s_pxe_sw_undi {
 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_SW_UNDI)
 PXE_UINT8 Fudge; // makes 8-bit cksum zero
 PXE_UINT8 Rev; // PXE_ROMID_REV
 PXE_UINT8 IFcnt; // physical connector count
 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER
 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER
 PXE_UINT16 reserved1; // zero, not used
 PXE_UINT32 Implementation; // Implementation flags
 PXE_UINT64 EntryPoint; // API entry point
 PXE_UINT8 reserved2[3]; // zero, not used
 PXE_UINT8 BusCnt; // number of bustypes supported
 PXE_UINT32 BusType[1]; // list of supported bustypes
} PXE_SW_UNDI;
#pragma pack()

E.3.5.3 PXE_UNDI
PXE_UNDI combines both the H/W and S/W UNDI types into one typedef and has #defines for
common fields in both H/W and S/W UNDI types.
#pragma pack(1)
typedef union u_pxe_undi {
 PXE_HW_UNDI hw;
 PXE_SW_UNDI sw;
} PXE_UNDI;
#pragma pack()

// Signature of !PXE structure

#define PXE_ROMID_SIGNATURE PXE_BUSTYPE('!', 'P', 'X', 'E')

// !PXE structure format revision

#define PXE_ROMID_REV 0x02

// UNDI command interface revision. These are the values that
// get sent in option 94 (Client Network Interface Identifier) in
// the DHCP Discover and PXE Boot Server Request packets.

#define PXE_ROMID_MAJORVER 0x03
#define PXE_ROMID_MINORVER 0x01

January 31, 2006
Version 2.0 1219

// Implementation flags

#define PXE_ROMID_IMP_HW_UNDI 0x80000000
#define PXE_ROMID_IMP_SW_VIRT_ADDR 0x40000000
#define PXE_ROMID_IMP_64BIT_DEVICE 0x00010000
#define PXE_ROMID_IMP_FRAG_SUPPORTED 0x00008000
#define PXE_ROMID_IMP_CMD_LINK_SUPPORTED 0x00004000
#define PXE_ROMID_IMP_CMD_QUEUE_SUPPORTED 0x00002000
#define PXE_ROMID_IMP_MULTI_FRAME_SUPPORTED 0x00001000
#define PXE_ROMID_IMP_NVDATA_SUPPORT_MASK 0x00000C00
#define PXE_ROMID_IMP_NVDATA_BULK_WRITABLE 0x00000C00
#define PXE_ROMID_IMP_NVDATA_SPARSE_WRITABLE 0x00000800
#define PXE_ROMID_IMP_NVDATA_READ_ONLY 0x00000400
#define PXE_ROMID_IMP_NVDATA_NOT_AVAILABLE 0x00000000
#define PXE_ROMID_IMP_STATISTICS_SUPPORTED 0x00000200
#define PXE_ROMID_IMP_STATION_ADDR_SETTABLE 0x00000100
#define PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED \

 0x00000080
#define PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED \ 0x00000040
#define PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED \ 0x00000020
#define PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED \

 0x00000010
#define PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED \ 0x00000008
#define PXE_ROMID_IMP_TX_COMPLETE_INT_SUPPORTED \ 0x00000004
#define PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED \ 0x00000002
#define PXE_ROMID_IMP_CMD_COMPLETE_INT_SUPPORTED \ 0x00000001

E.3.5.4 PXE_CDB
PXE UNDI command descriptor block.
#pragma pack(1)
typedef struct s_pxe_cdb {
 PXE_OPCODE OpCode;
 PXE_OPFLAGS OpFlags;
 PXE_UINT16 CPBsize;
 PXE_UINT16 DBsize;
 PXE_UINT64 CPBaddr;
 PXE_UINT64 DBaddr;
 PXE_STATCODE StatCode;
 PXE_STATFLAGS StatFlags;
 PXE_UINT16 IFnum;
 PXE_CONTROL Control;
} PXE_CDB;
#pragma pack()

 January 31, 2006
1220 Version 2.0

E.3.5.5 PXE_IP_ADDR
This storage type is always big endian, not little endian.
#pragma pack(1)
typedef union u_pxe_ip_addr {
 PXE_IPV6 IPv6;
 PXE_IPV4 IPv4;
} PXE_IP_ADDR;
#pragma pack()

E.3.5.6 PXE_DEVICE
This typedef is used to identify the network device that is being used by the UNDI. This
information is returned by the Get Config Info command.
#pragma pack(1)
typedef union pxe_device {

// PCI and PC Card NICs are both identified using bus, device
// and function numbers. For PC Card, this may require PC
// Card services to be loaded in the BIOS or preboot
// environment.
struct {
// See S/W UNDI ROMID structure definition for PCI and
// PCC BusType definitions.
PXE_UINT32 BusType;

// Bus, device & function numbers that locate this device.
PXE_UINT16 Bus;
PXE_UINT8 Device;
PXE_UINT8 Function;
} PCI, PCC;

} PXE_DEVICE;
#pragma pack()

January 31, 2006
Version 2.0 1221

E.4 UNDI Commands

All 32/64-bit UNDI commands use the same basic command format, the CDB (Command
Descriptor Block). CDB fields that are not used by a particular command must be initialized to
zero by the application/driver that is issuing the command.

All UNDI implementations must set the command completion status
(PXE_STATFLAGS_COMMAND_COMPLETE) after command execution completes. Applications
and drivers must not alter or rely on the contents of any of the CDB, CPB or DB fields until the
command completion status is set.

All commands return status codes for invalid CDB contents and, if used, invalid CPB contents.
Commands with invalid parameters will not execute. Fix the error and submit the command again.

Figure 64 describes the different UNDI states (Stopped, Started and Initialized), shows the
transitions between the states and which UNDI commands are valid in each state.

Figure 64. UNDI States, Transitions & Valid Commands

 January 31, 2006
1222 Version 2.0

NOTE

All memory addresses including the CDB address, CPB address, and the DB address submitted to
the S/W UNDI by the protocol drivers must be processor-based addresses. All memory addresses
submitted to the H/W UNDI must be device based addresses.

NOTE

Additional requirements for S/W UNDI implementations: Processor register contents must be
unchanged by S/W UNDI command execution (the application/driver does not have to save
processor registers when calling S/W UNDI). Processor arithmetic flags are undefined
(application/driver must save processor arithmetic flags if needed). Application/driver must
remove CDB address from stack after control returns from S/W UNDI.

NOTE

Additional requirements for 32-bit network devices: All addresses given to the S/W UNDI must be
32-bit addresses. Any address that exceeds 32 bits (4 GB) will result in a return of one of the
following status codes: PXE_STATCODE_INVALID_PARAMETER,
PXE_STATCODE_INVALID_CDB or PXE_STATCODE_INVALID_CPB.

When executing linked commands, command execution will stop at the end of the CDB list (when
the PXE_CONTROL_LINK bit is not set) or when a command returns an error status code.

E.4.1 Command Linking and Queuing

When linking commands, the CDBs must be stored consecutively in system memory without any
gaps in between. Do not set the Link bit in the last CDB in the list. As shown in Figure 65, the
Link bit must be set in all other CDBs in the list.

January 31, 2006
Version 2.0 1223

OM13188

Linked CDBs
0x00

0x1F
0x20

0x3F

Set Link bit.

0x40

0x5F

Set Link bit.

Do not set
Link bit.

CDB

CDB

CDB

Figure 65. Linked CDBs

 January 31, 2006
1224 Version 2.0

When the H/W UNDI is executing commands, the State bits in the Status field in the !PXE
structure will be set to Busy (3).

When H/W or S/W UNDI is executing commands and a new command is issued, a StatCode of
PXE_STATCODE_BUSY and a StatFlag of PXE_STATFLAG_COMMAND_FAILURE is set in the
CDB. For linked commands, only the first CDB will be set to Busy, all other CDBs will be
unchanged. When a linked command fails, execution on the list stops. Commands after the failing
command will not be run.

As shown in Figure 66, when queuing commands, only the first CDB needs to have the Queue
Control flag set. If queuing is supported and the UNDI is busy and there is room in the command
queue, the command (or list of commands) will be queued.

OM13189

Queued CDBs
0x00

0x1F
0x20

0x3F

Set Queue bit.
Set Link bit.

0x40

0x5F

Set Queue bit.
Set Link bit.

Set Queue bit.
Set Link bit.

CDB

CDB

CDB

Figure 66. Queued CDBs

When a command is queued a StatFlag of PXE_STATFLAG_COMMAND_QUEUED is set (if linked
commands are queued only the StatFlag of the first CDB gets set). This signals that the command
was added to the queue. Commands in the queue will be run on a first-in, first-out, basis. When a
command fails, the next command in the queue is run. When a linked command in the queue fails,
execution on the list stops. The next command, or list of commands, that was added to the
command queue will be run.

January 31, 2006
Version 2.0 1225

E.4.2 Get State

This command is used to determine the operational state of the UNDI. An UNDI has three possible
operational states:

Stopped: A stopped UNDI is free for the taking. When all interface numbers (IFnum)
for a particular S/W UNDI are stopped, that S/W UNDI image can be relocated or
removed. A stopped UNDI will accept Get State and Start commands.

Started: A started UNDI is in use. A started UNDI will accept Get State, Stop,
Get Init Info, and Initialize commands.

Initialized: An initialized UNDI is in used. An initialized UNDI will accept all
commands except: Start, Stop, and Initialize.

Drivers and applications must not start using UNDIs that have been placed into the Started or
Initialized states by another driver or application.

3.0 and 3.1 S/W UNDI: No callbacks are performed by this UNDI command.

E.4.2.1 Issuing the Command
To issue a Get State command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get State command

OpCode PXE_OPCODE_GET_STATE

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

 January 31, 2006
1226 Version 2.0

E.4.2.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags contain operational state.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued. All other fields are unchanged.

INITIALIZE Command has not been executed or queued.

E.4.2.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. StatFlags contain operational state.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

If the command completes successfully, use PXE_STATFLAGS_GET_STATE_MASK to check the
state of the UNDI.

StatFlags Reason

STOPPED The UNDI is stopped.

STARTED The UNDI is started, but not initialized.

INITIALIZED The UNDI is initialized.

January 31, 2006
Version 2.0 1227

E.4.3 Start

This command is used to change the UNDI operational state from stopped to started. No other
operational checks are made by this command. Protocol driver makes this call for each network
interface supported by the UNDI with a set of call back routines and a unique identifier to identify
the particular interface. UNDI does not interpret the unique identifier in any way except that it is a
64-bit value and it will pass it back to the protocol driver as a parameter to all the call back routines
for any particular interface. If this is a S/W UNDI, the callback functions Delay(), Virt2Phys(),
Map_Mem(), UnMap_Mem(), and Sync_Mem() functions will not be called by this command.

E.4.3.1 Issuing the Command
To issue a Start command for H/W UNDI, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a H/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

To issue a Start command for S/W UNDI, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a S/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize sizeof(PXE_CPB_START)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_START structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

 January 31, 2006
1228 Version 2.0

E.4.3.2 Preparing the CPB
For the 3.1 S/W UNDI Start command, the CPB structure shown below must be filled in and the
CDB must be set to sizeof(struct s_pxe_cpb_start_31).

#pragma pack(1)
typedef struct s_pxe_cpb_start_31 {
 UINT64 Delay;
 //
 // Address of the Delay() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Delay(
 // IN UINT64 UniqueId,
 // IN UINT64 Microseconds);
 //
 // UNDI will never request a delay smaller than 10 microseconds
 // and will always request delays in increments of 10
 // microseconds. The Delay() callback routine must delay
 // between n and n + 10 microseconds before returning control
 // to the UNDI.
 //

 UINT64 Block;
 //
 // Address of the Block() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Block(
 // IN UINT64 UniqueId,
 // IN UINT32 Enable);
 //
 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. When UNDI needs a block, it will call the
 // Block()callback service with Enable set to a non-zero value.
 // When UNDI no longer needs the block, it will call Block()
 // with Enable set to zero.
 //

 UINT64 Virt2Phys;
 //
 // Convert a virtual address to a physical address.
 // This field can be set to zero if virtual and physical
 // addresses are identical.
 //
 // VOID
 // Virt2Phys(

January 31, 2006
Version 2.0 1229

 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // OUT UINT64 PhysicalPtr);
 //
 // UNDI will pass in a virtual address and a pointer to storage
 // for a physical address. The Virt2Phys() service converts
 // the virtual address to a physical address and stores the
 // resulting physical address in the supplied buffer. If no
 // conversion is needed, the virtual address must be copied
 // into the supplied physical address buffer.
 //

 UINT64 MemIo;
 //
 // Read/Write network device memory and/or I/O register space.
 // This field cannot be set to zero.
 //
 // VOID
 // MemIo(
 // IN UINT64 UniqueId,
 // IN UINT8 AccessType,
 // IN UINT8 Length,
 // IN UINT64 Port,
 // IN OUT UINT64 BufferPtr);
 //
 // UNDI uses the MemIo() service to access the network device
 // memory and/or I/O registers. The AccessType is one of the
 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of
 // this section. The Length is 1, 2, 4 or 8. The Port number
 // is relative to the base memory or I/O address space for this
 // device.BufferPtr points to the data to be written to the
 // Port or will contain the data that is read from the Port.
 //

 UINT64 MapMem;
 //
 // Map virtual memory address for DMA.
 // This field can be set to zero if there is no mapping
 // service.
 //
 // VOID
 // MapMem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // OUT UINT64 PhysicalPtr);
 //
 // When UNDI needs to perform a DMA transfer it will request a

 January 31, 2006
1230 Version 2.0

 // virtual-to-physical mapping using the MapMem() service. The
 // Virtual parameter contains the virtual address to be mapped.
 // The minimum Size of the virtual memory buffer to be mapped.
 // Direction is one of the TO_DEVICE, FROM_DEVICE or
 // TO_AND_FROM_DEVICE constants defined at the end of this
 // section.PhysicalPtr contains the mapped physical address or
 // a copy of the Virtual address if no mapping is required.
 //

 UINT64 UnMapMem;
 //
 // Un-map previously mapped virtual memory address.
 // This field can be set to zero only if the MapMem() service
 // is also set to zero.
 //
 // VOID
 // UnMapMem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // IN UINT64 PhysicalPtr);
 //
 // When UNDI is done with the mapped memory, it will use the
 // UnMapMem() service to release the mapped memory.
 //

 UINT64 SyncMem;
 //
 // Synchronise mapped memory.
 // This field can be set to zero only if the MapMem() service
 // is also set to zero.
 //
 // VOID
 // SyncMem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // IN UINT64 PhysicalPtr);
 //
 // When the virtual and physical buffers need to be
 // synchronized, UNDI will call the SyncMem() service.
 //

 UINT64 UniqueId;
 //
 // UNDI will pass this value to each of the callback services.
 // A unique ID number should be generated for each instance of

January 31, 2006
Version 2.0 1231

 // the UNDI driver that will be using these callback services.
 //
} PXE_CPB_START_31;
#pragma pack()

For the 3.0 S/W UNDI Start command, the CPB structure shown below must be filled in and the
CDB must be set to sizeof(struct s_pxe_cpb_start_30).

#pragma pack(1)
typedef struct s_pxe_cpb_start_30 {
 UINT64 Delay;
 //
 // Address of the Delay() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Delay(
 // IN UINT64 Microseconds);
 //
 // UNDI will never request a delay smaller than 10 microseconds
 // and will always request delays in increments of 10.
 // microseconds The Delay() callback routine must delay between
 // n and n + 10 microseconds before returning control to the
 // UNDI.
 //

 UINT64 Block;
 //
 // Address of the Block() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Block(
 // IN UINT32 Enable);
 //
 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. When UNDI needs a block, it will call the
 // Block()callback service with Enable set to a non-zero value.
 // When UNDI no longer needs the block, it will call Block()
 // with Enable set to zero.
 //

 UINT64 Virt2Phys;
 //
 // Convert a virtual address to a physical address.
 // This field can be set to zero if virtual and physical

 January 31, 2006
1232 Version 2.0

 // addresses are identical.
 //
 // VOID
 // Virt2Phys(
 // IN UINT64 Virtual,
 // OUT UINT64 PhysicalPtr);
 //
 // UNDI will pass in a virtual address and a pointer to storage
 // for a physical address. The Virt2Phys() service converts
 // the virtual address to a physical address and stores the
 // resulting physical address in the supplied buffer. If no
 // conversion is needed, the virtual address must be copied
 // into the supplied physical address buffer.
 //

 UINT64 MemIo;
 //
 // Read/Write network device memory and/or I/O register space.
 // This field cannot be set to zero.
 //
 // VOID
 // MemIo(
 // IN UINT8 AccessType,
 // IN UINT8 Length,
 // IN UINT64 Port,
 // IN OUT UINT64 BufferPtr);
 //
 // UNDI uses the MemIo() service to access the network device
 // memory and/or I/O registers. The AccessType is one of the
 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of
 // this section. The Length is 1, 2, 4 or 8. The Port number
 // is relative to the base memory or I/O address space for this
 // device.BufferPtr points to the data to be written to the
 // Port or will contain the data that is read from the Port.
 //
} PXE_CPB_START_30;
#pragma pack()

January 31, 2006
Version 2.0 1233

E.4.3.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now started.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.3.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now started.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

ALREADY_STARTED The UNDI is already started.

 January 31, 2006
1234 Version 2.0

E.4.4 Stop

This command is used to change the UNDI operational state from started to stopped.

E.4.4.1 Issuing the Command
To issue a Stop command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Stop command

OpCode PXE_OPCODE_STOP

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

E.4.4.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now stopped.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has not been executed or queued.

E.4.4.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now stopped.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_SHUTDOWN The UNDI is initialized and must be shutdown before it can be stopped.

January 31, 2006
Version 2.0 1235

E.4.5 Get Init Info

This command is used to retrieve initialization information that is needed by drivers and
applications to initialized UNDI.

E.4.5.1 Issuing the Command
To issue a Get Init Info command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Get Init Info command

OpCode PXE_OPCODE_GET_INIT_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_INIT_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_INIT_INFO structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.5.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB can be used.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.5.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB can be used.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

 January 31, 2006
1236 Version 2.0

E.4.5.4 StatFlags
To determine if cable detection is supported by this UNDI/NIC, use these macros with the value
returned in the CDB.StatFlags field:
PXE_STATFLAGS_CABLE_DETECT_MASK
PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED
PXE_STATFLAGS_CABLE_DETECT_SUPPORTED

E.4.5.5 DB
#pragma pack(1)
typedef struct s_pxe_db_get_init_info {

 // Minimum length of locked memory buffer that must be given to
 // the Initialize command. Giving UNDI more memory will
 // generally give better performance.

 // If MemoryRequired is zero, the UNDI does not need and will
 // not use system memory to receive and transmit packets.

 PXE_UINT32 MemoryRequired;

 // Maximum frame data length for Tx/Rx excluding the media
 // header.
 //
 PXE_UINT32 FrameDataLen;

 // Supported link speeds are in units of mega bits. Common
 // ethernet values are 10, 100 and 1000. Unused LinkSpeeds[]
 // entries are zero filled.

 PXE_UINT32 LinkSpeeds[4];

 // Number of nonvolatile storage items.

 PXE_UINT32 NvCount;

 // Width of nonvolatile storage item in bytes. 0, 1, 2 or 4

 PXE_UINT16 NvWidth;

 // Media header length. This is the typical media header
 // length for this UNDI. This information is needed when
 // allocating receive and transmit buffers.

 PXE_UINT16 MediaHeaderLen;

 // Number of bytes in the NIC hardware (MAC) address.

January 31, 2006
Version 2.0 1237

 PXE_UINT16 HWaddrLen;

 // Maximum number of multicast MAC addresses in the multicast
 // MAC address filter list.

 PXE_UINT16 MCastFilterCnt;

 // Default number and size of transmit and receive buffers that
 // will be allocated by the UNDI. If MemoryRequired is
 // nonzero, this allocation will come out of the memory buffer
 // given to the Initialize command. If MemoryRequired is zero,
 // this allocation will come out of memory on the NIC.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize;

 // Hardware interface types defined in the Assigned Numbers RFC
 // and used in DHCP and ARP packets.
 // See the PXE_IFTYPE typedef and PXE_IFTYPE_xxx macros.

 PXE_UINT8 IFtype;

 // Supported duplex options. This can be one or a combination
 // of more than one constants defined as PXE_DUPLEX_xxxxx
 // below. This value indicates the ability of UNDI to
 // change/control the duplex modes of the NIC.

 PXE_UINT8 SupportedDuplexModes;

 // Supported loopback options. This field can be one or a
 // combination of more than one constants defined as
 // PXE_LOOPBACK_xxxxx #defines below. This value indicates
 // the ability of UNDI to change/control the loopback modes
 // of the NIC

 PXE_UINT8 SupportedLoopBackModes;
} PXE_DB_GET_INIT_INFO;
#pragma pack()

#define PXE_MAX_TXRX_UNIT_ETHER 1500
#define PXE_HWADDR_LEN_ETHER 0x0006

#define PXE_DUPLEX_DEFAULT 0
#define PXE_DUPLEX_ENABLE_FULL_SUPPORTED 1
#define PXE_DUPLEX_FORCE_ FULL_SUPPORTED 2

#define PXE_LOOPBACK_INTERNAL_SUPPORTED 1
#define PXE_LOOPBACK_EXTERNAL_SUPPORTED 2

 January 31, 2006
1238 Version 2.0

E.4.6 Get Config Info

This command is used to retrieve configuration information about the NIC being controlled by
 the UNDI.

E.4.6.1 Issuing the Command
To issue a Get Config Info command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get Config Info command

OpCode PXE_OPCODE_GET_CONFIG_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_CONFIG_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_CONFIG_INFO structure

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt

Control Set as needed

E.4.6.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

January 31, 2006
Version 2.0 1239

E.4.6.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB has been written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

E.4.6.4 DB
#pragma pack(1)
typedef struct s_pxe_pci_config_info {

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.
 // For PCI bus devices, this field is set to PXE_BUSTYPE_PCI.

 PXE_UINT32 BusType;

 // This identifies the PCI network device that this UNDI
 // interface is bound to.

 PXE_UINT16 Bus;
 PXE_UINT8 Device;
 PXE_UINT8 Function;

 // This is a copy of the PCI configuration space for this
 // network device.

 union {

PXE_UINT8 Byte[256];
PXE_UINT16 Word[128];
PXE_UINT32 Dword[64];

 } Config;
} PXE_PCI_CONFIG_INFO;
#pragma pack()
#pragma pack(1)
typedef struct s_pxe_pcc_config_info {

 January 31, 2006
1240 Version 2.0

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.
 // For PCC bus devices, this field is set to PXE_BUSTYPE_PCC.

 PXE_UINT32 BusType;

 // This identifies the PCC network device that this UNDI
 // interface is bound to.

 PXE_UINT16 Bus;
 PXE_UINT8 Device;
 PXE_UINT8 Function;

 // This is a copy of the PCC configuration space for this
 // network device.

 union {

PXE_UINT8 Byte[256];
PXE_UINT16 Word[128];
PXE_UINT32 Dword[64];

} Config;
} PXE_PCC_CONFIG_INFO;
#pragma pack()

#pragma pack(1)
typedef union u_pxe_db_get_config_info {
 PXE_PCI_CONFIG_INFO pci;
 PXE_PCC_CONFIG_INFO pcc;
} PXE_DB_GET_CONFIG_INFO;
#pragma pack()

January 31, 2006
Version 2.0 1241

E.4.7 Initialize

This command resets the network adapter and initializes UNDI using the parameters supplied in the
CPB. The Initialize command must be issued before the network adapter can be setup to transmit
and receive packets. This command will not enable the receive unit or external interrupts.

Once the memory requirements of the UNDI are obtained by using the Get Init Info command, a
block of kernel (nonswappable) memory may need to be allocated by the protocol driver. The
address of this kernel memory must be passed to UNDI using the Initialize command CPB. This
memory is used for transmit and receive buffers and internal processing.

Initializing the network device will take up to four seconds for most network devices and in some
extreme cases (usually poor cables) up to twenty seconds. Control will not be returned to the caller
and the COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.

E.4.7.1 Issuing the Command
To issue an Initialize command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Initialize command

OpCode PXE_OPCODE_INITIALIZE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_INITIALIZE)

DBsize sizeof(PXE_DB_INITIALIZE)

CPBaddr Address of a PXE_CPB_INITIALIZE structure.

Dbaddr Address of a PXE_DB_INITIALIZE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.7.2 OpFlags
Cable detection can be enabled or disabled by setting one of the following OpFlags:
PXE_OPFLAGS_INITIALIZE_CABLE_DETECT
PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE

 January 31, 2006
1242 Version 2.0

E.4.7.3 Preparing the CPB
If the MemoryRequired field returned in the PXE_DB_GET_INIT_INFO structure is zero, the
Initialize command does not need to be given a memory buffer or even a CPB structure. If the
MemoryRequired field is nonzero, the Initialize command does need a memory buffer.
#pragma pack(1)
typedef struct s_pxe_cpb_initialize {

 // Address of first (lowest) byte of the memory buffer.
 // This buffer must be in contiguous physical memory and cannot
 // be swapped out. The UNDI will be using this for transmit
 // and receive buffering. This address must be a processor-
 // based address for S/W UNDI and a device-based address for
 // H/W UNDI.

 PXE_UINT64 MemoryAddr;

 // MemoryLength must be greater than or equal to MemoryRequired
 // returned by the Get Init Info command.

 PXE_UINT32 MemoryLength;

 // Desired link speed in Mbit/sec. Common ethernet values are
 // 10, 100 and 1000. Setting a value of zero will auto-detect
 // and/or use the default link speed (operation depends on
 // UNDI/NIC functionality).

 PXE_UINT32 LinkSpeed;

 // Suggested number and size of receive and transmit buffers to
 // allocate. If MemoryAddr and MemoryLength are nonzero, this
 // allocation comes out of the supplied memory buffer. If
 // MemoryAddr and MemoryLength are zero, this allocation comes
 // out of memory on the NIC.

 // If these fields are set to zero, the UNDI will allocate
 // buffer counts and sizes as it sees fit.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize;

January 31, 2006
Version 2.0 1243

 // The following configuration parameters are optional and must
 // be zero to use the default values.
 // The possible values for these parameters are defined below.

 PXE_UINT8 DuplexMode;

 PXE_UINT8 LoopBackMode;
} PXE_CPB_INITIALIZE;
#pragma pack()

#define PXE_DUPLEX_AUTO_DETECT 0x00
#define PXE_FORCE_FULL_DUPLEX 0x01

#define PXE_FORCE_HALF_DUPLEX 0x02

#define PXE_LOOPBACK_NORMAL 0
#define PXE_LOOPBACK_INTERNAL 1
#define PXE_LOOPBACK_EXTERNAL 2

E.4.7.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device is now
initialized. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

 January 31, 2006
1244 Version 2.0

E.4.7.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device is now
initialized. DB has been written. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

ALREADY_INITIALIZED The UNDI is already initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage could not be read.

E.4.7.6 StatFlags
Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still initialized.

PXE_STATFLAGS_INITIALIZED_NO_MEDIA

E.4.7.7 Before Using the DB
#pragma pack(1)
typedef struct s_pxe_db_initialize {

 // Actual amount of memory used from the supplied memory
 // buffer. This may be less that the amount of memory
 // supplied and may be zero if the UNDI and network device
 // do not use external memory buffers. Memory used by the
 // UNDI and network device is allocated from the lowest
 // memory buffer address.

 PXE_UINT32 MemoryUsed;

 // Actual number and size of receive and transmit buffers that
 // were allocated.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize
} PXE_DB_INITIALIZE;
#pragma pack()

January 31, 2006
Version 2.0 1245

E.4.8 Reset

This command resets the network adapter and reinitializes the UNDI with the same parameters
provided in the Initialize command. The transmit and receive queues are emptied and any pending
interrupts are cleared. Depending on the state of the OpFlags, the receive filters and external
interrupt enables may also be reset.

Resetting the network device may take up to four seconds and in some extreme cases (usually poor
cables) up to twenty seconds. Control will not be returned to the caller and the
COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.

E.4.8.1 Issuing the Command
To issue a Reset command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Reset command

OpCode PXE_OPCODE_RESET

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.8.2 OpFlags
Normally the settings of the receive filters and external interrupt enables are unchanged by the
Reset command. These two OpFlags will alter the operation of the Reset command.
PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS
PXE_OPFLAGS_RESET_DISABLE_FILTERS

 January 31, 2006
1246 Version 2.0

E.4.8.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.8.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage is not valid.

E.4.8.5 StatFlags
Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still reset.

PXE_STATFLAGS_RESET_NO_MEDIA

January 31, 2006
Version 2.0 1247

E.4.9 Shutdown

The Shutdown command resets the network adapter and leaves it in a safe state for another driver to
initialize. Any pending transmits or receives are lost. Receive filters and external interrupt enables
are reset (disabled). The memory buffer assigned in the Initialize command can be released or
reassigned.

Once UNDI has been shutdown, it can then be stopped or initialized again. The Shutdown
command changes the UNDI operational state from initialized to started.

E.4.9.1 Issuing the Command
To issue a Shutdown command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Shutdown command

OpCode PXE_OPCODE_SHUTDOWN

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

 January 31, 2006
1248 Version 2.0

E.4.9.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device are shutdown.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.9.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device are shutdown.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

January 31, 2006
Version 2.0 1249

E.4.10 Interrupt Enables

The Interrupt Enables command can be used to read and/or change the current external interrupt
enable settings. Disabling an external interrupt enable prevents an external (hardware) interrupt
from being signaled by the network device, internally the interrupt events can still be polled by
using the Get Status command.

E.4.10.1 Issuing the Command
To issue an Interrupt Enables command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Interrupt Enables command

OpCode PXE_OPCODE_INTERRUPT_ENABLES

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.10.2 OpFlags
To read the current external interrupt enables settings set CDB.OpFlags to:

• PXE_OPFLAGS_INTERRUPT_READ

To enable or disable external interrupts set one of these OpFlags:

• PXE_OPFLAGS_INTERRUPT_DISABLE

• PXE_OPFLAGS_INTERRUPT_ENABLE

When enabling or disabling interrupt settings, the following additional OpFlag bits are used to
specify which types of external interrupts are to be enabled or disabled:

• PXE_OPFLAGS_INTERRUPT_RECEIVE

• PXE_OPFLAGS_INTERRUPT_TRANSMIT

• PXE_OPFLAGS_INTERRUPT_COMMAND

• PXE_OPFLAGS_INTERRUPT_SOFTWARE

Setting PXE_OPFLAGS_INTERRUPT_SOFTWARE does not enable an external interrupt type, it
generates an external interrupt.

 January 31, 2006
1250 Version 2.0

E.4.10.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.10.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

E.4.10.5 StatFlags
If the command was successful, the CDB.StatFlags field reports which external interrupt
enable types are currently set. Possible CDB.StatFlags bit settings are:

• PXE_STATFLAGS_INTERRUPT_RECEIVE

• PXE_STATFLAGS_INTERRUPT_TRANSMIT

• PXE_STATFLAGS_INTERRUPT_COMMAND

The bits set in CDB.StatFlags may be different than those that were requested in
CDB.OpFlags. For example: If transmit and receive share an external interrupt line, setting
either the transmit or receive interrupt will always enable both transmit and receive interrupts. In
this case both transmit and receive interrupts will be reported in CDB.StatFlags. Always
expect to get more than you ask for!

January 31, 2006
Version 2.0 1251

E.4.11 Receive Filters

This command is used to read and change receive filters and, if supported, read and change the
multicast MAC address filter list. Control will not be returned to the caller and the
COMMAND_COMPLETE status flag will not be set until the NIC is ready to receive.

E.4.11.1 Issuing the Command
To issue a Receive Filters command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Receive Filters command

OpCode PXE_OPCODE_RECEIVE_FILTERS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE_FILTERS)

DBsize sizeof(PXE_DB_RECEIVE_FILTERS)

CPBaddr Address of PXE_CPB_RECEIVE_FILTERS structure.

DBaddr Address of PXE_DB_RECEIVE_FILTERS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.11.2 OpFlags
To read the current receive filter settings set the CDB.OpFlags field to:

PXE_OPFLAGS_RECEIVE_FILTER_READ

To change the current receive filter settings set one of these OpFlag bits:

PXE_OPFLAGS_RECEIVE_FILTER_ENABLE

PXE_OPFLAGS_RECEIVE_FILTER_DISABLE

When changing the receive filter settings, at least one of the OpFlag bits in this list must be
selected:

PXE_OPFLAGS_RECEIVE_FILTER_UNICAST

PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST

PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS

PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST

To clear the contents of the multicast MAC address filter list, set this OpFlag:

PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST

 January 31, 2006
1252 Version 2.0

E.4.11.3 Preparing the CPB
The receive filter CPB is used to change the contents multicast MAC address filter list. To leave
the multicast MAC address filter list unchanged, set the CDB.CPBsize field to
PXE_CPBSIZE_NOT_USED and CDB.CPBaddr to PXE_CPBADDR_NOT_USED.

To change the multicast MAC address filter list, set CDB.CPBsize to the size, in bytes, of the
multicast MAC address filter list and set CDB.CPBaddr to the address of the first entry in the
multicast MAC address filter list.
typedef struct s_pxe_cpb_receive_filters {

 // List of multicast MAC addresses. This list, if present,
 // will replace the existing multicast MAC address filter list.

 PXE_MAC_ADDR MCastList[n];
} PXE_CPB_RECEIVE_FILTERS;

E.4.11.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.11.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

January 31, 2006
Version 2.0 1253

E.4.11.6 StatFlags
The receive filter settings in CDB.StatFlags are:

• PXE_STATFLAGS_RECEIVE_FILTER_UNICAST

• PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST

Unsupported receive filter settings in OpFlags are promoted to the next more liberal receive filter
setting. For example: If broadcast or filtered multicast are requested and are not supported by the
network device, but promiscuous is; the promiscuous status flag will be set.

E.4.11.7 DB
The DB is used to read the current multicast MAC address filter list. The CDB.DBsize and
CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and PXE_DBADDR_NOT_USED if
the multicast MAC address filter list does not need to be read. When reading the multicast MAC
address filter list extra entries in the DB will be filled with zero.
typedef struct s_pxe_db_receive_filters {

 // Filtered multicast MAC address list.

 PXE_MAC_ADDR MCastList[n];
} PXE_DB_RECEIVE_FILTERS;

 January 31, 2006
1254 Version 2.0

E.4.12 Station Address

This command is used to get current station and broadcast MAC addresses and, if supported, to
change the current station MAC address.

E.4.12.1 Issuing the Command
To issue a Station Address command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Station Address command

OpCode PXE_OPCODE_STATION_ADDRESS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_STATION_ADDRESS)

DBsize sizeof(PXE_DB_STATION_ADDRESS)

CPBaddr Address of PXE_CPB_STATION_ADDRESS structure.

DBaddr Address of PXE_DB_STATION_ADDRESS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.12.2 OpFlags
To read current station and broadcast MAC addresses set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_READ

To change the current station to the address given in the CPB set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_WRITE

To reset the current station address back to the power on default, set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_RESET

E.4.12.3 Preparing the CPB
To change the current station MAC address the CDB.CPBsize and CDB.CPBaddr fields must
be set.
typedef struct s_pxe_cpb_station_address {

 // If supplied and supported, the current station MAC address
 // will be changed.

 PXE_MAC_ADDR StationAddr;
} PXE_CPB_STATION_ADDRESS;

January 31, 2006
Version 2.0 1255

E.4.12.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.12.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED The requested operation is not supported.

E.4.12.6 Before Using the DB
The DB is used to read the current station, broadcast and permanent station MAC addresses. The
CDB.DBsize and CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and
PXE_DBADDR_NOT_USED if these addresses do not need to be read.
typedef struct s_pxe_db_station_address {

 // Current station MAC address.
 PXE_MAC_ADDR StationAddr;

 // Station broadcast MAC address.
 PXE_MAC_ADDR BroadcastAddr;

 // Permanent station MAC address.
 PXE_MAC_ADDR PermanentAddr;
} PXE_DB_STATION_ADDRESS;

 January 31, 2006
1256 Version 2.0

E.4.13 Statistics

This command is used to read and clear the NIC traffic statistics. Before using this command check
to see if statistics is supported in the !PXE.Implementation flags.

E.4.13.1 Issuing the Command
To issue a Statistics command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Statistics command

OpCode PXE_OPCODE_STATISTICS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_STATISTICS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_STATISTICS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.13.2 OpFlags
To read the current statistics counters set the OpFlags field to:
PXE_OPFLAGS_STATISTICS_READ

To reset the current statistics counters set the OpFlags field to:
PXE_OPFLAGS_STATISTICS_RESET

E.4.13.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

January 31, 2006
Version 2.0 1257

E.4.13.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED This command is not supported.

E.4.13.5 DB
Unsupported statistics counters will be zero filled by UNDI.
typedef struct s_pxe_db_statistics {

 // Bit field identifying what statistic data is collected by
 // the UNDI/NIC.
 // If bit 0x00 is set, Data[0x00] is collected.
 // If bit 0x01 is set, Data[0x01] is collected.
 // If bit 0x20 is set, Data[0x20] is collected.
 // If bit 0x21 is set, Data[0x21] is collected.
 // Etc.
 PXE_UINT64 Supported;

 // Statistic data.

 PXE_UINT64 Data[64];
} PXE_DB_STATISTICS;

// Total number of frames received. Includes frames with errors
// and dropped frames.
#define PXE_STATISTICS_RX_TOTAL_FRAMES 0x00

// Number of valid frames received and copied into receive
// buffers.
#define PXE_STATISTICS_RX_GOOD_FRAMES 0x01

// Number of frames below the minimum length for the media.
// This would be <64 for ethernet.
#define PXE_STATISTICS_RX_UNDERSIZE_FRAMES 0x02

 January 31, 2006
1258 Version 2.0

// Number of frames longer than the maxminum length for the
// media. This would be >1500 for ethernet.
#define PXE_STATISTICS_RX_OVERSIZE_FRAMES 0x03

// Valid frames that were dropped because receive buffers
// were full.
#define PXE_STATISTICS_RX_DROPPED_FRAMES 0x04

// Number of valid unicast frames received and not dropped.
#define PXE_STATISTICS_RX_UNICAST_FRAMES 0x05

// Number of valid broadcast frames received and not dropped.
#define PXE_STATISTICS_RX_BROADCAST_FRAMES 0x06

// Number of valid mutlicast frames received and not dropped.
#define PXE_STATISTICS_RX_MULTICAST_FRAMES 0x07

// Number of frames w/ CRC or alignment errors.
#define PXE_STATISTICS_RX_CRC_ERROR_FRAMES 0x08

// Total number of bytes received. Includes frames with errors
// and dropped frames.
#define PXE_STATISTICS_RX_TOTAL_BYTES 0x09

// Transmit statistics.
#define PXE_STATISTICS_TX_TOTAL_FRAMES 0x0A
#define PXE_STATISTICS_TX_GOOD_FRAMES 0x0B
#define PXE_STATISTICS_TX_UNDERSIZE_FRAMES 0x0C
#define PXE_STATISTICS_TX_OVERSIZE_FRAMES 0x0D
#define PXE_STATISTICS_TX_DROPPED_FRAMES 0x0E
#define PXE_STATISTICS_TX_UNICAST_FRAMES 0x0F
#define PXE_STATISTICS_TX_BROADCAST_FRAMES 0x10
#define PXE_STATISTICS_TX_MULTICAST_FRAMES 0x11
#define PXE_STATISTICS_TX_CRC_ERROR_FRAMES 0x12
#define PXE_STATISTICS_TX_TOTAL_BYTES 0x13

// Number of collisions detection on this subnet.
#define PXE_STATISTICS_COLLISIONS 0x14

// Number of frames destined for unsupported protocol.
#define PXE_STATISTICS_UNSUPPORTED_PROTOCOL 0x15

January 31, 2006
Version 2.0 1259

E.4.14 MCast IP To MAC

Translate a multicast IPv4 or IPv6 address to a multicast MAC address.

E.4.14.1 Issuing the Command
To issue a MCast IP To MAC command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a MCast IP To MAC command

OpCode PXE_OPCODE_MCAST_IP_TO_MAC

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_MCAST_IP_TO_MAC)

DBsize sizeof(PXE_DB_MCAST_IP_TO_MAC)

CPBaddr Address of PXE_CPB_MCAST_IP_TO_MAC structure.

Dbaddr Address of PXE_DB_MCAST_IP_TO_MAC structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.14.2 OpFlags
To convert a multicast IP address to a multicast MAC address the UNDI needs to know the format
of the IP address. Set one of these OpFlags to identify the format of the IP addresses in the CPB:
PXE_OPFLAGS_MCAST_IPV4_TO_MAC
PXE_OPFLAGS_MCAST_IPV6_TO_MAC

E.4.14.3 Preparing the CPB
Fill in an array of one or more multicast IP addresses. Be sure to set the CDB.CPBsize and
CDB.CPBaddr fields accordingly.
typedef struct s_pxe_cpb_mcast_ip_to_mac {

 // Multicast IP address to be converted to multicast
 // MAC address.
 PXE_IP_ADDR IP[n];
} PXE_CPB_MCAST_IP_TO_MAC;

 January 31, 2006
1260 Version 2.0

E.4.14.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.14.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

E.4.14.6 Before Using the DB
The DB is where the multicast MAC addresses will be written.
typedef struct s_pxe_db_mcast_ip_to_mac {

 // Multicast MAC address.

 PXE_MAC_ADDR MAC[n];
} PXE_DB_MCAST_IP_TO_MAC;

January 31, 2006
Version 2.0 1261

E.4.15 NvData

This command is used to read and write (if supported by NIC H/W) nonvolatile storage on the NIC.
Nonvolatile storage could be EEPROM, FLASH or battery backed RAM.

E.4.15.1 Issuing the Command
To issue a NvData command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a NvData command

OpCode PXE_OPCODE_NVDATA

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_NVDATA)

DBsize sizeof(PXE_DB_NVDATA)

CPBaddr Address of PXE_CPB_NVDATA structure.

Dbaddr Address of PXE_DB_NVDATA structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.15.2 Preparing the CPB
There are two types of nonvolatile data CPBs, one for sparse updates and one for bulk updates.
Sparse updates allow updating of single nonvolatile storage items. Bulk updates always update all
nonvolatile storage items. Check the !PXE.Implementation flags to see which type of
nonvolatile update is supported by this UNDI and network device.

If you do not need to update the nonvolatile storage set the CDB.CPBsize and CDB.CPBaddr
fields to PXE_CPBSIZE_NOT_USED and PXE_CPBADDR_NOT_USED.

E.4.15.2.1 Sparse NvData CPB
typedef struct s_pxe_cpb_nvdata_sparse {
 // NvData item list. Only items in this list will be updated.

 struct {

// Nonvolatile storage address to be changed.
PXE_UINT32 Addr;

// Data item to write into above storage address.
union {
 PXE_UINT8 Byte;
 PXE_UINT16 Word;
 PXE_UINT32 Dword;
} Data;

 } Item[n];
} PXE_CPB_NVDATA_SPARSE;

 January 31, 2006
1262 Version 2.0

E.4.15.2.2 Bulk NvData CPB
// When using bulk update, the size of the CPB structure must be
// the same size as the nonvolatile NIC storage.

typedef union u_pxe_cpb_nvdata_bulk {

 // Array of byte-wide data items.
 PXE_UINT8 Byte[n];

 // Array of word-wide data items.
 PXE_UINT16 Word[n];

 // Array of dword-wide data items.
 PXE_UINT32 Dword[n];
} PXE_CPB_NVDATA_BULK;

E.4.15.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Nonvolatile data is updated from CPB
and/or written to DB.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.15.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Nonvolatile data is updated from CPB
and/or written to DB.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED Requested operation is unsupported.

January 31, 2006
Version 2.0 1263

E.4.15.4.1 DB

Check the width and number of nonvolatile storage items. This information is returned by the Get
Init Info command.
typedef struct s_pxe_db_nvdata {

 // Arrays of data items from nonvolatile storage.
 union {

// Array of byte-wide data items.
PXE_UINT8 Byte[n];

// Array of word-wide data items.
PXE_UINT16 Word[n];

// Array of dword-wide data items.
PXE_UINT32 Dword[n];

 } Data;
} PXE_DB_NVDATA;

E.4.16 Get Status

This command returns the current interrupt status and/or the transmitted buffer addresses. If the
current interrupt status is returned, pending interrupts will be acknowledged by this command.
Transmitted buffer addresses that are written to the DB are removed from the transmitted buffer
queue.

This command may be used in a polled fashion with external interrupts disabled.

E.4.16.1 Issuing the Command
To issue a Get Status command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Get Status command

OpCode PXE_OPCODE_GET_STATUS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize Sizeof(PXE_DB_GET_STATUS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_GET_STATUS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

 January 31, 2006
1264 Version 2.0

E.4.16.1.1 Setting OpFlags

Set one or both of the OpFlags below to return the interrupt status and/or the transmitted buffer
addresses.
PXE_OPFLAGS_GET_INTERRUPT_STATUS
PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS

E.4.16.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags and/or DB are updated.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.16.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. StatFlags and/or DB are updated.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

E.4.16.4 StatFlags
If the command completes successfully and the PXE_OPFLAGS_GET_INTERRUPT_STATUS
OpFlag was set in the CDB, the current interrupt status is returned in the CDB.StatFlags field
and any pending interrupts will have been cleared.
PXE_STATFLAGS_GET_STATUS_RECEIVE
PXE_STATFLAGS_GET_STATUS_TRANSMIT
PXE_STATFLAGS_GET_STATUS_COMMAND
PXE_STATFLAGS_GET_STATUS_SOFTWARE

The StatFlags above may not map directly to external interrupt signals. For example: Some NICs
may combine both the receive and transmit interrupts to one external interrupt line. When a receive
and/or transmit interrupt occurs, use the Get Status to determine which type(s) of interrupt(s)
occurred.

January 31, 2006
Version 2.0 1265

This flag is set if the transmitted buffer queue is empty. This flag will be set if all transmitted
buffer addresses get written t into the DB.
PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY

This flag is set if no transmitted buffer addresses were written into the DB.
PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN

E.4.16.5 Using the DB
When reading the transmitted buffer addresses there should be room for at least one 64-bit address
in the DB. Once a complete transmitted buffer address is written into the DB, the address is
removed from the transmitted buffer queue. If the transmitted buffer queue is full, attempts to use
the Transmit command will fail.
#pragma pack(1)
typedef struct s_pxe_db_get_status {

 // Length of next receive frame (header + data). If this is
 // zero, there is no next receive frame available.

 PXE_UINT32 RxFrameLen;

 // Reserved, set to zero.

 PXE_UINT32 reserved;

 // Addresses of transmitted buffers that need to be recycled.

 PXE_UINT64 xBuffer[n];
} PXE_DB_GET_STATUS;
#pragma pack()

 January 31, 2006
1266 Version 2.0

E.4.17 Fill Header

This command is used to fill the media header(s) in transmit packet(s).

E.4.17.1 Issuing the Command
To issue a Fill Header command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Fill Header command

OpCode PXE_OPCODE_FILL_HEADER

OpFlags Set as needed.

CPBsize PXE_CPB_FILL_HEADER

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_FILL_HEADER structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.17.2 OpFlags
Select one of the OpFlags below so the UNDI knows what type of CPB is being used.
PXE_OPFLAGS_FILL_HEADER_WHOLE
PXE_OPFLAGS_FILL_HEADER_FRAGMENTED

E.4.17.3 Preparing the CPB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how many CPBs are
packed together.

E.4.17.4 Nonfragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_fill_header {

 // Source and destination MAC addresses. These will be copied
 // into the media header without doing byte swapping.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Address of first byte of media header. The first byte of
 // packet data follows the last byte of the media header.
 PXE_UINT64 MediaHeader;

January 31, 2006
Version 2.0 1267

 // Length of packet data in bytes (not including the media
 // header).
 PXE_UINT32 PacketLen;

 // Protocol type. This will be copied into the media header
 // without doing byte swapping. Protocol type numbers can be
 // obtained from the Assigned Numbers RFC 1700.
 PXE_UINT16 Protocol;

 // Length of the media header in bytes.
 PXE_UINT16 MediaHeaderLen;
} PXE_CPB_FILL_HEADER;
#pragma pack()

#define PXE_PROTOCOL_ETHERNET_IP 0x0800
#define PXE_PROTOCOL_ETHERNET_ARP 0x0806

E.4.17.5 Fragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_fill_header_fragmented {

 // Source and destination MAC addresses. These will be copied
 // into the media header without doing byte swapping.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Length of packet data in bytes (not including the media
 // header).

 PXE_UINT32 PacketLen;
 // Protocol type. This will be copied into the media header
 // without doing byte swapping. Protocol type numbers can be
 // obtained from the Assigned Numbers RFC 1700.
 PXE_MEDIA_PROTOCOL Protocol;

 // Length of the media header in bytes.
 PXE_UINT16 MediaHeaderLen;

 // Number of packet fragment descriptors.
 PXE_UINT16 FragCnt;

 // Reserved, must be set to zero.
 PXE_UINT16 reserved;

 // Array of packet fragment descriptors. The first byte of the
 // media header is the first byte of the first fragment.

 struct {

 January 31, 2006
1268 Version 2.0

// Address of this packet fragment.
PXE_UINT64 FragAddr;

// Length of this packet fragment.
PXE_UINT32 FragLen;

// Reserved, must be set to zero.
PXE_UINT32 reserved;

 } FragDesc[n];
} PXE_CPB_FILL_HEADER_FRAGMENTED;
#pragma pack()

E.4.17.6 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frame is ready to transmit.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.17.7 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Frame is ready to transmit.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

January 31, 2006
Version 2.0 1269

E.4.18 Transmit

The Transmit command is used to place a packet into the transmit queue. The data buffers given to
this command are to be considered locked and the application or universal network driver loses the
ownership of those buffers and must not free or relocate them until the ownership returns.

When the packets are transmitted, a transmit complete interrupt is generated (if interrupts are
disabled, the transmit interrupt status is still set and can be checked using the Get Status command).

Some UNDI implementations and network adapters support transmitting multiple packets with one
transmit command. If this feature is supported, multiple transmit CPBs can be linked in one
transmit command.

Though all UNDIs support fragmented frames, the same cannot be said for all network devices or
protocols. If a fragmented frame CPB is given to UNDI and the network device does not support
fragmented frames (see !PXE.Implementation flags), the UNDI will have to copy the
fragments into a local buffer before transmitting.

E.4.18.1 Issuing the Command
To issue a Transmit command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Transmit command

OpCode PXE_OPCODE_TRANSMIT

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_TRANSMIT)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_TRANSMIT structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

 January 31, 2006
1270 Version 2.0

E.4.18.2 OpFlags
Check the !PXE.Implementation flags to see if the network device support fragmented
packets. Select one of the OpFlags below so the UNDI knows what type of CPB is being used.
PXE_OPFLAGS_TRANSMIT_WHOLE
PXE_OPFLAGS_TRANSMIT_FRAGMENTED

In addition to selecting whether or not fragmented packets are being given, S/W UNDI needs to
know if it should block until the packets are transmitted. H/W UNDI cannot block, these two
OpFlag settings have no affect when used with H/W UNDI.
PXE_OPFLAGS_TRANSMIT_BLOCK
PXE_OPFLAGS_TRANSMIT_DONT_BLOCK

E.4.18.3 Preparing the CPB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how may frames are
to be transmitted.

E.4.18.4 Nonfragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_transmit {

 // Address of first byte of frame buffer. This is also the
 // first byte of the media header. This address must be a
 // processor-based address for S/W UNDI and a device-based
 // address for H/W UNDI.
 PXE_UINT64 FrameAddr;

 // Length of the data portion of the frame buffer in bytes. Do
 // not include the length of the media header.
 PXE_UINT32 DataLen;

 // Length of the media header in bytes.
 PXE_UINT16 MediaheaderLen;

 // Reserved, must be zero.
 PXE_UINT16 reserved;
} PXE_CPB_TRANSMIT;
#pragma pack()

January 31, 2006
Version 2.0 1271

E.4.18.5 Fragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_transmit_fragments {

 // Length of packet data in bytes (not including the media
 // header).
 PXE_UINT32 FrameLen;

 // Length of the media header in bytes.
 PXE_UINT16 MediaheaderLen;

 // Number of packet fragment descriptors.
 PXE_UINT16 FragCnt;

 // Array of frame fragment descriptors. The first byte of the
 // first fragment is also the first byte of the media header.
 struct {

// Address of this frame fragment. This address must be a
// processor-based address for S/W UNDI and a device-based
// address for H/W UNDI.
PXE_UINT64 FragAddr;

// Length of this frame fragment.
PXE_UINT32 FragLen;

// Reserved, must be set to zero.
PXE_UINT32 reserved;

 } FragDesc[n];
} PXE_CPB_TRANSMIT_FRAGMENTS;
#pragma pack()

 January 31, 2006
1272 Version 2.0

E.4.18.6 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Use the Get Status command to see
when frame buffers can be reused.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.18.7 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Use the Get Status command to see
when frame buffers can be reused.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

BUFFER_FULL Transmit buffer is full. Call Get Status command to empty buffer.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

January 31, 2006
Version 2.0 1273

E.4.19 Receive

When the network adapter has received a frame, this command is used to copy the frame into
driver/application storage. Once a frame has been copied, it is removed from the receive queue.

E.4.19.1 Issuing the Command
To issue a Receive command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Receive command

OpCode PXE_OPCODE_RECEIVE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE)

DBsize sizeof(PXE_DB_RECEIVE)

CPBaddr Address of a PXE_CPB_RECEIVE structure.

DBaddr Address of a PXE_DB_RECEIVE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

E.4.19.2 Preparing the CPB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. For each complete received frame, a receive buffer large enough to
contain the entire unfragmented frame needs to be described in the CPB. Note that if a smaller than
required buffer is provided, only a portion of the packet is received into the buffer, and the
remainder of the packet is lost. Subsequent attempts to receive the same packet with a corrected
(larger) buffer will be unsuccessful, because the packet will have been flushed from the queue.
#pragma pack(1)
typedef struct s_pxe_cpb_receive {

 // Address of first byte of receive buffer. This is also the
 // first byte of the frame header. This address must be a
 // processor-based address for S/W UNDI and a device-based
 // address for H/W UNDI.

 PXE_UINT64 BufferAddr;

 // Length of receive buffer. This must be large enough to hold
 // the received frame (media header + data). If the length of
 // smaller than the received frame, data will be lost.
 PXE_UINT32 BufferLen;

 // Reserved, must be set to zero.
 PXE_UINT32 reserved;
} PXE_CPB_RECEIVE;
#pragma pack()

 January 31, 2006
1274 Version 2.0

E.4.19.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frames received and DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

E.4.19.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Frames received and DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

NO_DATA Receive buffers are empty.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

January 31, 2006
Version 2.0 1275

E.4.19.5 Using the DB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
DBs can be packed together.
#pragma pack(1)
typedef struct s_pxe_db_receive {

 // Source and destination MAC addresses from media header.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Length of received frame. May be larger than receive buffer
 // size. The receive buffer will not be overwritten. This is
 // how to tell if data was lost because the receive buffer was
 // too small.
 PXE_UINT32 FrameLen;

 // Protocol type from media header.
 PXE_PROTOCOL Protocol;

 // Length of media header in received frame.
 PXE_UINT16 MediaHeaderLen;

 // Type of receive frame.
 PXE_FRAME_TYPE Type;

 // Reserved, must be zero.
 PXE_UINT8 reserved[7];
} PXE_DB_RECEIVE;
#pragma pack()

 January 31, 2006
1276 Version 2.0

E.5 UNDI as an EFI Runtime Driver

This section defines the interface between UNDI and EFI and how UNDI must be initialized as an
EFI runtime driver.

In the EFI environment, UNDI must implement the Network Interface Identifier (NII) protocol and
install an interface pointer of the type NII protocol with EFI. It must also install a device path
protocol with a device path that includes the hardware device path (such as PCI) appended with the
NIC’s MAC address. If the UNDI drives more than one NIC device, it must install one set of NII
and device path protocols for each device it controls.

UNDI must be compiled as a runtime driver so that when the operating system loads, a universal
protocol driver can use the UNDI driver to access the NIC hardware.

For the universal driver to be able to find UNDI, UNDI must install a configuration table (using the
EFI boot service InstallConfigurationTable()) for the GUID
NETWORK_INTERFACE_IDENTIFIER_PROTOCOL. The format of the configuration table for
UNDI is defined as follows.
struct undiconfig_table {
 UINT32 NumberOfInterfaces; // The number of NIC devices

// that this UNDI controls.
UINT32 reserved;

 struct undiconfigtable *nextlink;
// A pointer to the next UNDI
// configuration table.

 struct {
 VOID *NII_InterfacePointer;

// Pointer to the NII interface structure.
 VOID *DevicePathPointer;

// pointer to the device path for this NIC
 } NII_entry[n]; // The length of this array is given in

// the NumberOfInterfaces field.
} UNDI_CONFIG_TABLE;

Since there can only be one configuration table associated with any GUID and there can be more
than one UNDI loaded, every instance of UNDI must check for any previous installations of the
configuration tables and if there are any, it must traverse through the list of all UNDI configuration
tables using the nextlink and install itself as the nextlink of the last table in the list.

The universal protocol driver is responsible for converting all the pointers in the
UNDI_CONFIGURATION_TABLE to virtual addresses before accessing them. However, UNDI
must install an event handler for the SET_VIRTUAL_ADDRESS event and convert all its internal
pointers into virtual addresses when the event occurs for the universal protocol driver to be able
to use UNDI.

January 31, 2006
Version 2.0 1277

Appendix F
Using the Simple Pointer Protocol

The Simple Pointer Protocol is intended to provide a simple mechanism for an application to
interact with the user with some type of pointer device. To keep this interface simple, many of the
custom controls that are typically present in an OS-present environment were left out. This
includes the ability to adjust the double-click speed and the ability to adjust the pointer speed.
Instead, the recommendations for how the Simple Pointer Protocol should be used are listed here.

X-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output
display, the movement along the x-axis should move the pointer or cursor horizontally.

Y-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output
display, the movement along the y-axis should move the pointer or cursor vertically.

Z-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output
display, and the application that is using the Simple Pointer Protocol supports scrolling, then the
movement along the z-axis should scroll the output display.

Double Click Speed:

If two clicks of the same button on a pointer occur in less than 0.5 seconds, then a double-click
event has occurred. If a the same button is pressed with more than 0.5 seconds between clicks,
then this is interpreted as two single-click events.

Pointer Speed:

The Simple Pointer Protocol returns the movement of the pointer device along an axis in counts.
The Simple Pointer Protocol also contains a set of resolution fields that define the number of
counts that will be received for each millimeter of movement of the pointer device along an axis.
From these two values, the consumer of this protocol can determine the distance the pointer
device has been moved in millimeters along an axis. For most applications, movement of a
pointer device will result in the movement of a pointer on the screen. For each millimeter of
motion by the pointer device in the x-axis, the pointer on the screen will be moved 2 percent of
the screen width. For each millimeter of motion by the pointer device in the y-axis, the pointer on
the screen will be moved 2 percent of the screen height.

 January 31, 2006
1278 Version 2.0

January 31, 2006
Version 2.0 1279

Appendix G
Using the EFI SCSI Pass Thru Protocol

This appendix describes how an EFI utility might gain access to the EFI SCSI Pass Thru interfaces.
The basic concept is to use the LocateHandle() boot service to retrieve the list of handles that
support the EFI_SCSI_PASS_THRU_Protocol. Each of these handles represents a different
SCSI channel present in the system. Each of these handles can then be used the retrieve the
EFI_SCSI_PASS_THRU_Protocol interface with the HandleProtocol() boot service.
The EFI_SCSI_PASS_THRU_Protocol interface provides the services required to access any
of the SCSI devices attached to a SCSI channel. The services of the
EFI_SCSI_PASS_THRU_Protocol are then to loop through the Target IDs of all the SCSI
devices on the SCSI channel.

#include “efi.h”
#include “efilib.h”

#include EFI_PROTOCOL_DEFINITION(ScsiPassThru)

EFI_GUID gEfiScsiPassThruProtocolGuid = EFI_SCSI_PASS_THRU_PROTOCOL_GUID;

EFI_STATUS
UtilityEntryPoint(
 EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE SystemTable
)
{
 EFI_STATUS Status;
 UINTN NoHandles;
 EFI_HANDLE *HandleBuffer;
 UINTN Index;
 EFI_SCSI_PASS_THRU_PROTOCOL *ScsiPassThruProtocol;

 //
 // Initialize EFI Library
 //
 InitializeLib (ImageHandle, SystemTable);

 //
 // Get list of handles that support the
 // EFI_SCSI_PASS_THRU_PROTOCOL
 //
 NoHandles = 0;
 HandleBuffer = NULL;
 Status = LibLocateHandle(
 ByProtocol,
 &gEfiScsiPassThruProtocolGuid,
 NULL,
 &NoHandles,
 &HandleBuffer
);

 January 31, 2006
1280 Version 2.0

 if (EFI_ERROR(Status)) {
 BS->Exit(ImageHandle,EFI_SUCCESS,0,NULL);
 }

 //
 // Loop through all the handles that support
 // EFI_SCSI_PASS_THRU
 //
 for (Index = 0; Index < NoHandles; Index++) {

 //
 // Get the EFI_SCSI_PASS_THRU_PROTOCOL Interface
 // on each handle
 //
 BS->HandleProtocol(
 HandleBuffer[Index],
 &gEfiScsiPassThruProtocolGuid,
 (VOID **)&ScsiPassThruProtocol
);

 if (!EFI_ERROR(Status)) {

 //
 // Use the EFI_SCSI_PASS_THRU Interface to
 // perform tests
 //
 Status = DoScsiTests(ScsiPassThruProtocol);
 }
 }
 return EFI_SUCCESS;
}

EFI_STATUS
DoScsiTests(
 EFI_SCSI_PASS_THRU _PROTOCOL *ScsiPassThruProtocol
)

{
 EFI_STATUS Status;
 UINT32 Target;
 UINT64 Lun;
 EFI_SCSI_PASS_THRU_SCSI_REQUEST_PACKET Packet;
 EFI_EVENT Event;

January 31, 2006
Version 2.0 1281

 //
 // Get first Target ID and LUN on the SCSI channel
 //
 Target = 0xffffffff;
 Lun = 0;
 Status = ScsiPassThruProtocol->GetNextDevice(
 ScsiPassThruProtocol,
 &Target,
 &Lun
);

 //
 // Loop through all the SCSI devices on the SCSI channel
 //
 while (!EFI_ERROR (Status)) {

 //
 // Blocking I/O example.
 // Fill in Packet before calling PassThru()
 //
 Status = ScsiPassThruProtocol->PassThru(
 ScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 NULL
);

 //
 // Non Blocking I/O
 // Fill in Packet and create Event before calling PassThru()
 //
 Status = ScsiPassThruProtocol->PassThru(
 ScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 &Event
);

 //
 // Get next Target ID and LUN on the SCSI channel
 //
 Status = ScsiPassThruProtocol->GetNextDevice(
 ScsiPassThruProtocol,
 &Target,
 &Lun
);
 }

 return EFI_SUCCESS;
}

 January 31, 2006
1282 Version 2.0

January 31, 2006
Version 2.0 1283

Appendix H
Compression Source Code

/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Compress.c

Abstract:

 Compression routine. The compression algorithm is a mixture of
 LZ77 and Huffman Coding. LZ77 transforms the source data into a
 sequence of Original Characters and Pointers to repeated strings.
 This sequence is further divided into Blocks and Huffman codings
 are applied to each Block.

Revision History:
--*/

#include <string.h>
#include <stdlib.h>
#include "eficommon.h"

//
// Macro Definitions
//

typedef INT16 NODE;
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define PERC_FLAG 0x8000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(p, c) ((p) + ((c) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(c) mCrc = mCrcTable[(mCrc ^ (c)) & 0xFF] ^ (mCrc >>
UINT8_BIT)

//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//

#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)

 January 31, 2006
1284 Version 2.0

#define PBIT 4
#define NT (CODE_BIT + 3)
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

//
// Function Prototypes
//

STATIC
VOID
PutDword(
 IN UINT32 Data
);

STATIC
EFI_STATUS
AllocateMemory (
);

STATIC
VOID
FreeMemory (
);

STATIC
VOID
InitSlide (
);

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
);

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
);

STATIC
VOID
Split (
 IN NODE Old
);

STATIC
VOID
InsertNode (
);

January 31, 2006
Version 2.0 1285

STATIC
VOID
DeleteNode (
);

STATIC
VOID
GetNextMatch (
);

STATIC
EFI_STATUS
Encode (
);

STATIC
VOID
CountTFreq (
);

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
);

STATIC
VOID
WriteCLen (
);

STATIC
VOID
EncodeC (
 IN INT32 c
);

STATIC
VOID
EncodeP (
 IN UINT32 p
);

STATIC
VOID
SendBlock (
);

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
);

 January 31, 2006
1286 Version 2.0

STATIC
VOID
HufEncodeStart (
);

STATIC
VOID
HufEncodeEnd (
);

STATIC
VOID
MakeCrcTable (
);

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
);

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
);

STATIC
VOID
InitPutBits (
);

STATIC
VOID
CountLen (
 IN INT32 i
);

STATIC
VOID
MakeLen (
 IN INT32 Root
);

STATIC
VOID
DownHeap (
 IN INT32 i
);

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
);

January 31, 2006
Version 2.0 1287

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
);

//
// Global Variables
//

STATIC UINT8 *mSrc, *mDst, *mSrcUpperLimit, *mDstUpperLimit;

STATIC UINT8 *mLevel, *mText, *mChildCount, *mBuf, mCLen[NC], mPTLen[NPT],
*mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder, mMatchLen, mBitCount, mHeapSize, mN;
STATIC UINT32 mBufSiz = 0, mOutputPos, mOutputMask, mSubBitBuf, mCrc;
STATIC UINT32 mCompSize, mOrigSize;

STATIC UINT16 *mFreq, *mSortPtr, mLenCnt[17], mLeft[2 * NC - 1], mRight[2 * NC
- 1],
 mCrcTable[UINT8_MAX + 1], mCFreq[2 * NC - 1], mCTable[4096],
mCCode[NC],
 mPFreq[2 * NP - 1], mPTCode[NPT], mTFreq[2 * NT - 1];

STATIC NODE mPos, mMatchPos, mAvail, *mPosition, *mParent, *mPrev, *mNext =
NULL;

//
// functions
//

EFI_STATUS
Compress (
 IN UINT8 *SrcBuffer,
 IN UINT32 SrcSize,
 IN UINT8 *DstBuffer,
 IN OUT UINT32 *DstSize
)
/*++

Routine Description:

 The main compression routine.

Arguments:

 SrcBuffer - The buffer storing the source data
 SrcSize - The size of the source data
 DstBuffer - The buffer to store the compressed data
 DstSize - On input, the size of DstBuffer; On output,
 the size of the actual compressed data.

 January 31, 2006
1288 Version 2.0

Returns:

 EFI_BUFFER_TOO_SMALL - The DstBuffer is too small. In this case,
 DstSize contains the size needed.
 EFI_SUCCESS - Compression is successful.

--*/
{
 EFI_STATUS Status = EFI_SUCCESS;

 //
 // Initializations
 //

 mBufSiz = 0;
 mBuf = NULL;
 mText = NULL;
 mLevel = NULL;
 mChildCount = NULL;
 mPosition = NULL;
 mParent = NULL;
 mPrev = NULL;
 mNext = NULL;

 mSrc = SrcBuffer;
 mSrcUpperLimit = mSrc + SrcSize;
 mDst = DstBuffer;
 mDstUpperLimit = mDst + *DstSize;

 PutDword(0L);
 PutDword(0L);

 MakeCrcTable ();

 mOrigSize = mCompSize = 0;
 mCrc = INIT_CRC;

 //
 // Compress it
 //

 Status = Encode();
 if (EFI_ERROR (Status)) {
 return EFI_OUT_OF_RESOURCES;
 }

 //
 // Null terminate the compressed data
 //
 if (mDst < mDstUpperLimit) {
 *mDst++ = 0;
 }

 //
 // Fill in compressed size and original size
 //
 mDst = DstBuffer;
 PutDword(mCompSize+1);
 PutDword(mOrigSize);

January 31, 2006
Version 2.0 1289

 //
 // Return
 //

 if (mCompSize + 1 + 8 > *DstSize) {
 *DstSize = mCompSize + 1 + 8;
 return EFI_BUFFER_TOO_SMALL;
 } else {
 *DstSize = mCompSize + 1 + 8;
 return EFI_SUCCESS;
 }

}

STATIC
VOID
PutDword(
 IN UINT32 Data
)
/*++

Routine Description:

 Put a dword to output stream

Arguments:

 Data - the dword to put

Returns: (VOID)

--*/
{
 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x08)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x10)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x18)) & 0xff);
 }
}

STATIC
EFI_STATUS
AllocateMemory ()
/*++

 January 31, 2006
1290 Version 2.0

Routine Description:

 Allocate memory spaces for data structures used in compression process

Argements: (VOID)

Returns:

 EFI_SUCCESS - Memory is allocated successfully
 EFI_OUT_OF_RESOURCES - Allocation fails

--*/
{
 UINT32 i;

 mText = malloc (WNDSIZ * 2 + MAXMATCH);
 for (i = 0; i < WNDSIZ * 2 + MAXMATCH; i ++) {
 mText[i] = 0;
 }
 mLevel = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mLevel));
 mChildCount = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mChildCount));
 mPosition = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mPosition));
 mParent = malloc (WNDSIZ * 2 * sizeof(*mParent));
 mPrev = malloc (WNDSIZ * 2 * sizeof(*mPrev));
 mNext = malloc ((MAX_HASH_VAL + 1) * sizeof(*mNext));

 mBufSiz = 16 * 1024U;
 while ((mBuf = malloc(mBufSiz)) == NULL) {
 mBufSiz = (mBufSiz / 10U) * 9U;
 if (mBufSiz < 4 * 1024U) {
 return EFI_OUT_OF_RESOURCES;
 }
 }
 mBuf[0] = 0;

 return EFI_SUCCESS;
}

VOID
FreeMemory ()
/*++

Routine Description:

 Called when compression is completed to free memory previously allocated.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 if (mText) {
 free (mText);
 }

 if (mLevel) {
 free (mLevel);
 }

January 31, 2006
Version 2.0 1291

 if (mChildCount) {
 free (mChildCount);
 }

 if (mPosition) {
 free (mPosition);
 }

 if (mParent) {
 free (mParent);
 }

 if (mPrev) {
 free (mPrev);
 }

 if (mNext) {
 free (mNext);
 }

 if (mBuf) {
 free (mBuf);
 }

 return;
}

STATIC
VOID
InitSlide ()
/*++

Routine Description:

 Initialize String Info Log data structures

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE i;

 for (i = WNDSIZ; i <= WNDSIZ + UINT8_MAX; i++) {
 mLevel[i] = 1;
 mPosition[i] = NIL; /* sentinel */
 }
 for (i = WNDSIZ; i < WNDSIZ * 2; i++) {
 mParent[i] = NIL;
 }
 mAvail = 1;
 for (i = 1; i < WNDSIZ - 1; i++) {
 mNext[i] = (NODE)(i + 1);
 }

 January 31, 2006
1292 Version 2.0

 mNext[WNDSIZ - 1] = NIL;
 for (i = WNDSIZ * 2; i <= MAX_HASH_VAL; i++) {
 mNext[i] = NIL;
 }
}

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
)
/*++

Routine Description:

 Find child node given the parent node and the edge character

Arguments:

 q - the parent node
 c - the edge character

Returns:

 The child node (NIL if not found)

--*/
{
 NODE r;

 r = mNext[HASH(q, c)];
 mParent[NIL] = q; /* sentinel */
 while (mParent[r] != q) {
 r = mNext[r];
 }

 return r;
}

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
)
/*++

Routine Description:

 Create a new child for a given parent node.

Arguments:

 q - the parent node
 c - the edge character
 r - the child node

January 31, 2006
Version 2.0 1293

Returns: (VOID)

--*/
{
 NODE h, t;

 h = (NODE)HASH(q, c);
 t = mNext[h];
 mNext[h] = r;
 mNext[r] = t;
 mPrev[t] = r;
 mPrev[r] = h;
 mParent[r] = q;
 mChildCount[q]++;
}

STATIC
VOID
Split (
 NODE Old
)
/*++

Routine Description:

 Split a node.

Arguments:

 Old - the node to split

Returns: (VOID)

--*/
{
 NODE New, t;

 New = mAvail;
 mAvail = mNext[New];
 mChildCount[New] = 0;
 t = mPrev[Old];
 mPrev[New] = t;
 mNext[t] = New;
 t = mNext[Old];
 mNext[New] = t;
 mPrev[t] = New;
 mParent[New] = mParent[Old];
 mLevel[New] = (UINT8)mMatchLen;
 mPosition[New] = mPos;
 MakeChild(New, mText[mMatchPos + mMatchLen], Old);
 MakeChild(New, mText[mPos + mMatchLen], mPos);
}

STATIC
VOID
InsertNode ()
/*++

 January 31, 2006
1294 Version 2.0

Routine Description:

 Insert string info for current position into the String Info Log

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, j, t;
 UINT8 c, *t1, *t2;

 if (mMatchLen >= 4) {

 //
 // We have just got a long match, the target tree
 // can be located by MatchPos + 1. Travese the tree
 // from bottom up to get to a proper starting point.
 // The usage of PERC_FLAG ensures proper node deletion
 // in DeleteNode() later.
 //

 mMatchLen--;
 r = (INT16)((mMatchPos + 1) | WNDSIZ);
 while ((q = mParent[r]) == NIL) {
 r = mNext[r];
 }
 while (mLevel[q] >= mMatchLen) {
 r = q; q = mParent[q];
 }
 t = q;
 while (mPosition[t] < 0) {
 mPosition[t] = mPos;
 t = mParent[t];
 }
 if (t < WNDSIZ) {
 mPosition[t] = (NODE)(mPos | PERC_FLAG);
 }
 } else {

 //
 // Locate the target tree
 //

 q = (INT16)(mText[mPos] + WNDSIZ);
 c = mText[mPos + 1];
 if ((r = Child(q, c)) == NIL) {
 MakeChild(q, c, mPos);
 mMatchLen = 1;
 return;
 }
 mMatchLen = 2;
 }

 //
 // Traverse down the tree to find a match.
 // Update Position value along the route.
 // Node split or creation is involved.
 //

January 31, 2006
Version 2.0 1295

 for (; ;) {
 if (r >= WNDSIZ) {
 j = MAXMATCH;
 mMatchPos = r;
 } else {
 j = mLevel[r];
 mMatchPos = (NODE)(mPosition[r] & ~PERC_FLAG);
 }
 if (mMatchPos >= mPos) {
 mMatchPos -= WNDSIZ;
 }
 t1 = &mText[mPos + mMatchLen];
 t2 = &mText[mMatchPos + mMatchLen];
 while (mMatchLen < j) {
 if (*t1 != *t2) {
 Split(r);
 return;
 }
 mMatchLen++;
 t1++;
 t2++;
 }
 if (mMatchLen >= MAXMATCH) {
 break;
 }
 mPosition[r] = mPos;
 q = r;
 if ((r = Child(q, *t1)) == NIL) {
 MakeChild(q, *t1, mPos);
 return;
 }
 mMatchLen++;
 }
 t = mPrev[r];
 mPrev[mPos] = t;
 mNext[t] = mPos;
 t = mNext[r];
 mNext[mPos] = t;
 mPrev[t] = mPos;
 mParent[mPos] = q;
 mParent[r] = NIL;

 //
 // Special usage of 'next'
 //
 mNext[r] = mPos;

}

STATIC
VOID
DeleteNode ()
/*++

Routine Description:

 Delete outdated string info. (The Usage of PERC_FLAG
 ensures a clean deletion)

 January 31, 2006
1296 Version 2.0

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, s, t, u;

 if (mParent[mPos] == NIL) {
 return;
 }

 r = mPrev[mPos];
 s = mNext[mPos];
 mNext[r] = s;
 mPrev[s] = r;
 r = mParent[mPos];
 mParent[mPos] = NIL;
 if (r >= WNDSIZ || --mChildCount[r] > 1) {
 return;
 }
 t = (NODE)(mPosition[r] & ~PERC_FLAG);
 if (t >= mPos) {
 t -= WNDSIZ;
 }
 s = t;
 q = mParent[r];
 while ((u = mPosition[q]) & PERC_FLAG) {
 u &= ~PERC_FLAG;
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ);
 q = mParent[q];
 }
 if (q < WNDSIZ) {
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ | PERC_FLAG);
 }
 s = Child(r, mText[t + mLevel[r]]);
 t = mPrev[s];
 u = mNext[s];
 mNext[t] = u;
 mPrev[u] = t;
 t = mPrev[r];
 mNext[t] = s;
 mPrev[s] = t;
 t = mNext[r];
 mPrev[t] = s;
 mNext[s] = t;

January 31, 2006
Version 2.0 1297

 mParent[s] = mParent[r];
 mParent[r] = NIL;
 mNext[r] = mAvail;
 mAvail = r;
}

STATIC
VOID
GetNextMatch ()
/*++

Routine Description:

 Advance the current position (read in new data if needed).
 Delete outdated string info. Find a match string for current position.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 n;

 mRemainder--;
 if (++mPos == WNDSIZ * 2) {
 memmove(&mText[0], &mText[WNDSIZ], WNDSIZ + MAXMATCH);
 n = FreadCrc(&mText[WNDSIZ + MAXMATCH], WNDSIZ);
 mRemainder += n;
 mPos = WNDSIZ;
 }
 DeleteNode();
 InsertNode();
}

STATIC
EFI_STATUS
Encode ()
/*++

Routine Description:

 The main controlling routine for compression process.

Arguments: (VOID)

Returns:

 EFI_SUCCESS - The compression is successful
 EFI_OUT_0F_RESOURCES - Not enough memory for compression process

--*/
{
 EFI_STATUS Status;
 INT32 LastMatchLen;
 NODE LastMatchPos;

 Status = AllocateMemory();
 if (EFI_ERROR(Status)) {
 FreeMemory();

 January 31, 2006
1298 Version 2.0

 return Status;
 }

 InitSlide();

 HufEncodeStart();

 mRemainder = FreadCrc(&mText[WNDSIZ], WNDSIZ + MAXMATCH);

 mMatchLen = 0;
 mPos = WNDSIZ;
 InsertNode();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 while (mRemainder > 0) {
 LastMatchLen = mMatchLen;
 LastMatchPos = mMatchPos;
 GetNextMatch();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }

 if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {

 //
 // Not enough benefits are gained by outputting a pointer,
 // so just output the original character
 //

 Output(mText[mPos - 1], 0);
 } else {

 //
 // Outputting a pointer is beneficial enough, do it.
 //

 Output(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
 (mPos - LastMatchPos - 2) & (WNDSIZ - 1));
 while (--LastMatchLen > 0) {
 GetNextMatch();
 }
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 }
 }

 HufEncodeEnd();
 FreeMemory();
 return EFI_SUCCESS;
}

STATIC
VOID
CountTFreq ()
/*++

January 31, 2006
Version 2.0 1299

Routine Description:

 Count the frequencies for the Extra Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 for (i = 0; i < NT; i++) {
 mTFreq[i] = 0;
 }
 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;
 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 mTFreq[0] = (UINT16)(mTFreq[0] + Count);
 } else if (Count <= 18) {
 mTFreq[1]++;
 } else if (Count == 19) {
 mTFreq[0]++;
 mTFreq[1]++;
 } else {
 mTFreq[2]++;
 }
 } else {
 mTFreq[k + 2]++;
 }
 }
}

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
)
/*++

Routine Description:

 Outputs the code length array for the Extra Set or the Position Set.

 January 31, 2006
1300 Version 2.0

Arguments:

 n - the number of symbols
 nbit - the number of bits needed to represent 'n'
 Special - the special symbol that needs to be take care of

Returns: (VOID)

--*/
{
 INT32 i, k;

 while (n > 0 && mPTLen[n - 1] == 0) {
 n--;
 }
 PutBits(nbit, n);
 i = 0;
 while (i < n) {
 k = mPTLen[i++];
 if (k <= 6) {
 PutBits(3, k);
 } else {
 PutBits(k - 3, (1U << (k - 3)) - 2);
 }
 if (i == Special) {
 while (i < 6 && mPTLen[i] == 0) {
 i++;
 }
 PutBits(2, (i - 3) & 3);
 }
 }
}

STATIC
VOID
WriteCLen ()
/*++

Routine Description:

 Outputs the code length array for Char&Length Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 PutBits(CBIT, n);
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;

January 31, 2006
Version 2.0 1301

 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 for (k = 0; k < Count; k++) {
 PutBits(mPTLen[0], mPTCode[0]);
 }
 } else if (Count <= 18) {
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, Count - 3);
 } else if (Count == 19) {
 PutBits(mPTLen[0], mPTCode[0]);
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, 15);
 } else {
 PutBits(mPTLen[2], mPTCode[2]);
 PutBits(CBIT, Count - 20);
 }
 } else {
 PutBits(mPTLen[k + 2], mPTCode[k + 2]);
 }
 }
}

STATIC
VOID
EncodeC (
 IN INT32 c
)
{
 PutBits(mCLen[c], mCCode[c]);
}

STATIC
VOID
EncodeP (
 IN UINT32 p
)
{
 UINT32 c, q;

 c = 0;
 q = p;
 while (q) {
 q >>= 1;
 c++;
 }
 PutBits(mPTLen[c], mPTCode[c]);
 if (c > 1) {
 PutBits(c - 1, p & (0xFFFFU >> (17 - c)));
 }
}

STATIC
VOID
SendBlock ()
/*++

 January 31, 2006
1302 Version 2.0

Routine Description:

 Huffman code the block and output it.

Argument: (VOID)

Returns: (VOID)

--*/
{
 UINT32 i, k, Flags, Root, Pos, Size;
 Flags = 0;

 Root = MakeTree(NC, mCFreq, mCLen, mCCode);
 Size = mCFreq[Root];
 PutBits(16, Size);
 if (Root >= NC) {
 CountTFreq();
 Root = MakeTree(NT, mTFreq, mPTLen, mPTCode);
 if (Root >= NT) {
 WritePTLen(NT, TBIT, 3);
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, Root);
 }
 WriteCLen();
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, 0);
 PutBits(CBIT, 0);
 PutBits(CBIT, Root);
 }
 Root = MakeTree(NP, mPFreq, mPTLen, mPTCode);
 if (Root >= NP) {
 WritePTLen(NP, PBIT, -1);
 } else {
 PutBits(PBIT, 0);
 PutBits(PBIT, Root);
 }
 Pos = 0;
 for (i = 0; i < Size; i++) {
 if (i % UINT8_BIT == 0) {
 Flags = mBuf[Pos++];
 } else {
 Flags <<= 1;
 }
 if (Flags & (1U << (UINT8_BIT - 1))) {
 EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));
 k = mBuf[Pos++] << UINT8_BIT;
 k += mBuf[Pos++];
 EncodeP(k);
 } else {
 EncodeC(mBuf[Pos++]);
 }
 }
 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }

January 31, 2006
Version 2.0 1303

 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
}

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
)
/*++

Routine Description:

 Outputs an Original Character or a Pointer

Arguments:

 c - The original character or the 'String Length' element of a Pointer
 p - The 'Position' field of a Pointer

Returns: (VOID)

--*/
{
 STATIC UINT32 CPos;

 if ((mOutputMask >>= 1) == 0) {
 mOutputMask = 1U << (UINT8_BIT - 1);
 if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
 SendBlock();
 mOutputPos = 0;
 }
 CPos = mOutputPos++;
 mBuf[CPos] = 0;
 }
 mBuf[mOutputPos++] = (UINT8) c;
 mCFreq[c]++;
 if (c >= (1U << UINT8_BIT)) {
 mBuf[CPos] |= mOutputMask;
 mBuf[mOutputPos++] = (UINT8)(p >> UINT8_BIT);
 mBuf[mOutputPos++] = (UINT8) p;
 c = 0;
 while (p) {
 p >>= 1;
 c++;
 }
 mPFreq[c]++;
 }
}

 January 31, 2006
1304 Version 2.0

STATIC
VOID
HufEncodeStart ()
{
 INT32 i;

 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }
 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
 mOutputPos = mOutputMask = 0;
 InitPutBits();
 return;
}

STATIC
VOID
HufEncodeEnd ()
{
 SendBlock();

 //
 // Flush remaining bits
 //
 PutBits(UINT8_BIT - 1, 0);

 return;
}

STATIC
VOID
MakeCrcTable ()
{
 UINT32 i, j, r;

 for (i = 0; i <= UINT8_MAX; i++) {
 r = i;
 for (j = 0; j < UINT8_BIT; j++) {
 if (r & 1) {
 r = (r >> 1) ^ CRCPOLY;
 } else {
 r >>= 1;
 }
 }
 mCrcTable[i] = (UINT16)r;
 }
}

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
)
/*++

January 31, 2006
Version 2.0 1305

Routine Description:

 Outputs rightmost n bits of x

Argments:

 n - the rightmost n bits of the data is used
 x - the data

Returns: (VOID)

--*/
{
 UINT8 Temp;

 if (n < mBitCount) {
 mSubBitBuf |= x << (mBitCount -= n);
 } else {

 Temp = (UINT8)(mSubBitBuf | (x >> (n -= mBitCount)));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 if (n < UINT8_BIT) {
 mSubBitBuf = x << (mBitCount = UINT8_BIT - n);
 } else {

 Temp = (UINT8)(x >> (n - UINT8_BIT));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - n);
 }
 }
}

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
)
/*++

Routine Description:

 Read in source data

Arguments:

 p - the buffer to hold the data
 n - number of bytes to read

 January 31, 2006
1306 Version 2.0

Returns:

 number of bytes actually read

--*/
{
 INT32 i;

 for (i = 0; mSrc < mSrcUpperLimit && i < n; i++) {
 *p++ = *mSrc++;
 }
 n = i;

 p -= n;
 mOrigSize += n;
 while (--i >= 0) {
 UPDATE_CRC(*p++);
 }
 return n;
}

STATIC
VOID
InitPutBits ()
{
 mBitCount = UINT8_BIT;
 mSubBitBuf = 0;
}

STATIC
VOID
CountLen (
 IN INT32 i
)
/*++

Routine Description:

 Count the number of each code length for a Huffman tree.

Arguments:

 i - the top node

Returns: (VOID)

--*/
{
 STATIC INT32 Depth = 0;

 if (i < mN) {
 mLenCnt[(Depth < 16) ? Depth : 16]++;
 } else {
 Depth++;
 CountLen(mLeft [i]);
 CountLen(mRight[i]);
 Depth--;
 }
}

January 31, 2006
Version 2.0 1307

STATIC
VOID
MakeLen (
 IN INT32 Root
)
/*++

Routine Description:

 Create code length array for a Huffman tree

Arguments:

 Root - the root of the tree

--*/
{
 INT32 i, k;
 UINT32 Cum;

 for (i = 0; i <= 16; i++) {
 mLenCnt[i] = 0;
 }
 CountLen(Root);

 //
 // Adjust the length count array so that
 // no code will be generated longer than the designated length
 //

 Cum = 0;
 for (i = 16; i > 0; i--) {
 Cum += mLenCnt[i] << (16 - i);
 }
 while (Cum != (1U << 16)) {
 mLenCnt[16]--;
 for (i = 15; i > 0; i--) {
 if (mLenCnt[i] != 0) {
 mLenCnt[i]--;
 mLenCnt[i+1] += 2;
 break;
 }
 }
 Cum--;
 }
 for (i = 16; i > 0; i--) {
 k = mLenCnt[i];
 while (--k >= 0) {
 mLen[*mSortPtr++] = (UINT8)i;
 }
 }
}

 January 31, 2006
1308 Version 2.0

STATIC
VOID
DownHeap (
 IN INT32 i
)
{
 INT32 j, k;

 //
 // priority queue: send i-th entry down heap
 //

 k = mHeap[i];
 while ((j = 2 * i) <= mHeapSize) {
 if (j < mHeapSize && mFreq[mHeap[j]] > mFreq[mHeap[j + 1]]) {
 j++;
 }
 if (mFreq[k] <= mFreq[mHeap[j]]) {
 break;
 }
 mHeap[i] = mHeap[j];
 i = j;
 }
 mHeap[i] = (INT16)k;
}

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
)
/*++

Routine Description:

 Assign code to each symbol based on the code length array

Arguments:

 n - number of symbols
 Len - the code length array
 Code - stores codes for each symbol

Returns: (VOID)

--*/
{
 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;
 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + mLenCnt[i]) << 1);
 }
 for (i = 0; i < n; i++) {
 Code[i] = Start[Len[i]]++;
 }
}

January 31, 2006
Version 2.0 1309

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
)
/*++

Routine Description:

 Generates Huffman codes given a frequency distribution of symbols

Arguments:

 NParm - number of symbols
 FreqParm - frequency of each symbol
 LenParm - code length for each symbol
 CodeParm - code for each symbol

Returns:

 Root of the Huffman tree.

--*/
{
 INT32 i, j, k, Avail;

 //
 // make tree, calculate len[], return root
 //

 mN = NParm;
 mFreq = FreqParm;
 mLen = LenParm;
 Avail = mN;
 mHeapSize = 0;
 mHeap[1] = 0;
 for (i = 0; i < mN; i++) {
 mLen[i] = 0;
 if (mFreq[i]) {
 mHeap[++mHeapSize] = (INT16)i;
 }
 }
 if (mHeapSize < 2) {
 CodeParm[mHeap[1]] = 0;
 return mHeap[1];
 }
 for (i = mHeapSize / 2; i >= 1; i--) {

 //
 // make priority queue
 //
 DownHeap(i);
 }
 mSortPtr = CodeParm;
 do {
 i = mHeap[1];

 January 31, 2006
1310 Version 2.0

 if (i < mN) {
 *mSortPtr++ = (UINT16)i;
 }
 mHeap[1] = mHeap[mHeapSize--];
 DownHeap(1);
 j = mHeap[1];
 if (j < mN) {
 *mSortPtr++ = (UINT16)j;
 }
 k = Avail++;
 mFreq[k] = (UINT16)(mFreq[i] + mFreq[j]);
 mHeap[1] = (INT16)k;
 DownHeap(1);
 mLeft[k] = (UINT16)i;
 mRight[k] = (UINT16)j;
 } while (mHeapSize > 1);

 mSortPtr = CodeParm;
 MakeLen(k);
 MakeCode(NParm, LenParm, CodeParm);

 //
 // return root
 //
 return k;
}

January 31, 2006
Version 2.0 1311

Appendix I
Decompression Source Code

/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Decompress.c

Abstract:

 Decompressor.

--*/

#include "EfiCommon.h"

#define BITBUFSIZ 16
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define THRESHOLD 3
#define CODE_BIT 16
#define UINT8_MAX 0xff
#define BAD_TABLE -1

//
// C: Char&Len Set; P: Position Set; T: exTra Set
//

#define NC (0xff + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define NT (CODE_BIT + 3)
#define PBIT 4
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

typedef struct {
 UINT8 *mSrcBase; //Starting address of compressed data
 UINT8 *mDstBase; //Starting address of decompressed data

 UINT16 mBytesRemain;
 UINT16 mBitCount;
 UINT16 mBitBuf;
 UINT16 mSubBitBuf;
 UINT16 mBufSiz;

 January 31, 2006
1312 Version 2.0

 UINT16 mBlockSize;
 UINT32 mDataIdx;
 UINT32 mCompSize;
 UINT32 mOrigSize;
 UINT32 mOutBuf;
 UINT32 mInBuf;

 UINT16 mBadTableFlag;

 UINT8 mBuffer[WNDSIZ];
 UINT16 mLeft[2 * NC - 1];
 UINT16 mRight[2 * NC - 1];
 UINT32 mBuf;
 UINT8 mCLen[NC];
 UINT8 mPTLen[NPT];
 UINT16 mCTable[4096];
 UINT16 mPTTable[256];
} SCRATCH_DATA;

//
// Function Prototypes
//

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
);

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
);

//
// Functions
//

EFI_STATUS
EFIAPI
GetInfo (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 OUT UINT32 *DstSize,
 OUT UINT32 *ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.GetInfo().

January 31, 2006
Version 2.0 1313

Arguments:

 This - Protocol instance pointer.
 Source - The source buffer containing the compressed data.
 SrcSize - The size of source buffer
 DstSize - The size of destination buffer.
 ScratchSize - The size of scratch buffer.

Returns:

 EFI_SUCCESS - The size of destination buffer and the size of
scratch buffer are successull retrieved.
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT8 *Src;

 *ScratchSize = sizeof (SCRATCH_DATA);

 Src = Source;
 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 *DstSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);
 return EFI_SUCCESS;
}

EFI_STATUS
EFIAPI
Decompress (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 IN OUT VOID *Destination,
 IN UINT32 DstSize,
 IN OUT VOID *Scratch,
 IN UINT32 ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.Decompress().

Arguments:

 This - The protocol instance.
 Source - The source buffer containing the compressed data.
 SrcSize - The size of the source buffer
 Destination - The destination buffer to store the decompressed data
 DstSize - The size of the destination buffer.
 Scratch - The buffer used internally by the decompress routine. This
buffer is needed to store intermediate data.
 ScratchSize - The size of scratch buffer.

 January 31, 2006
1314 Version 2.0

Returns:

 EFI_SUCCESS - Decompression is successfull
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT32 Index;
 UINT16 Count;
 UINT32 CompSize;
 UINT32 OrigSize;
 UINT8 *Dst1;
 EFI_STATUS Status;
 SCRATCH_DATA *Sd;
 UINT8 *Src;
 UINT8 *Dst;

 Status = EFI_SUCCESS;
 Src = Source;
 Dst = Destination;
 Dst1 = Dst;

 if (ScratchSize < sizeof (SCRATCH_DATA)) {
 return EFI_INVALID_PARAMETER;
 }

 Sd = (SCRATCH_DATA *)Scratch;

 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 CompSize = Src[0] + (Src[1] << 8) + (Src[2] << 16) + (Src[3] << 24);
 OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);

 if (SrcSize < CompSize + 8) {
 return EFI_INVALID_PARAMETER;
 }

 Src = Src + 8;

 for (Index = 0; Index < sizeof(SCRATCH_DATA); Index++) {
 ((UINT8*)Sd)[Index] = 0;
 }

 Sd->mBytesRemain = (UINT16)(-1);
 Sd->mSrcBase = Src;
 Sd->mDstBase = Dst;
 Sd->mCompSize = CompSize;
 Sd->mOrigSize = OrigSize;

 //
 // Fill the first two bytes
 //
 FillBuf(Sd, BITBUFSIZ);

 while (Sd->mOrigSize > 0) {

 Count = (UINT16) (WNDSIZ < Sd->mOrigSize? WNDSIZ: Sd->mOrigSize);
 Decode (Sd, Count);

January 31, 2006
Version 2.0 1315

 if (Sd->mBadTableFlag != 0) {
 //
 // Something wrong with the source
 //
 return EFI_INVALID_PARAMETER;
 }

 for (Index = 0; Index < Count; Index ++) {
 if (Dst1 < Dst + DstSize) {
 *Dst1++ = Sd->mBuffer[Index];
 } else {
 return EFI_INVALID_PARAMETER;
 }
 }

 Sd->mOrigSize -= Count;
 }

 if (Sd->mBadTableFlag != 0) {
 Status = EFI_INVALID_PARAMETER;
 } else {
 Status = EFI_SUCCESS;
 }

 return Status;
}

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Shift mBitBuf NumOfBits left. Read in NumOfBits of bits from source.

Arguments:

 Sd - The global scratch data
 NumOfBit - The number of bits to shift and read.

Returns: (VOID)

--*/
{
 Sd->mBitBuf = (UINT16)(Sd->mBitBuf << NumOfBits);

 while (NumOfBits > Sd->mBitCount) {

 Sd->mBitBuf |= (UINT16)(Sd->mSubBitBuf <<
 (NumOfBits = (UINT16)(NumOfBits - Sd->mBitCount)));

 if (Sd->mCompSize > 0) {

 January 31, 2006
1316 Version 2.0

 //
 // Get 1 byte into SubBitBuf
 //
 Sd->mCompSize --;
 Sd->mSubBitBuf = 0;
 Sd->mSubBitBuf = Sd->mSrcBase[Sd->mInBuf ++];
 Sd->mBitCount = 8;

 } else {

 Sd->mSubBitBuf = 0;
 Sd->mBitCount = 8;

 }
 }

 Sd->mBitCount = (UINT16)(Sd->mBitCount - NumOfBits);
 Sd->mBitBuf |= Sd->mSubBitBuf >> Sd->mBitCount;
}

STATIC
UINT16
GetBits(
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Get NumOfBits of bits out from mBitBuf. Fill mBitBuf with subsequent
 NumOfBits of bits from source. Returns NumOfBits of bits that are
 popped out.

Arguments:

 Sd - The global scratch data.
 NumOfBits - The number of bits to pop and read.

Returns:

 The bits that are popped out.

--*/
{
 UINT16 OutBits;

 OutBits = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - NumOfBits));

 FillBuf (Sd, NumOfBits);

 return OutBits;
}

January 31, 2006
Version 2.0 1317

STATIC
UINT16
MakeTable (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfChar,
 IN UINT8 *BitLen,
 IN UINT16 TableBits,
 OUT UINT16 *Table
)
/*++

Routine Description:

 Creates Huffman Code mapping table according to code length array.

Arguments:

 Sd - The global scratch data
 NumOfChar - Number of symbols in the symbol set
 BitLen - Code length array
 TableBits - The width of the mapping table
 Table - The table

Returns:

 0 - OK.
 BAD_TABLE - The table is corrupted.

--*/
{
 UINT16 Count[17];
 UINT16 Weight[17];
 UINT16 Start[18];
 UINT16 *p;
 UINT16 k;
 UINT16 i;
 UINT16 Len;
 UINT16 Char;
 UINT16 JuBits;
 UINT16 Avail;
 UINT16 NextCode;
 UINT16 Mask;

 for (i = 1; i <= 16; i ++) {
 Count[i] = 0;
 }

 for (i = 0; i < NumOfChar; i++) {
 Count[BitLen[i]]++;
 }

 Start[1] = 0;

 for (i = 1; i <= 16; i ++) {
 Start[i + 1] = (UINT16)(Start[i] + (Count[i] << (16 - i)));
 }

 January 31, 2006
1318 Version 2.0

 if (Start[17] != 0) {/*(1U << 16)*/
 return (UINT16)BAD_TABLE;
 }

 JuBits = (UINT16)(16 - TableBits);

 for (i = 1; i <= TableBits; i ++) {
 Start[i] >>= JuBits;
 Weight[i] = (UINT16)(1U << (TableBits - i));
 }

 while (i <= 16) {
 Weight[i++] = (UINT16)(1U << (16 - i));
 }

 i = (UINT16)(Start[TableBits + 1] >> JuBits);

 if (i != 0) {
 k = (UINT16)(1U << TableBits);
 while (i != k) {
 Table[i++] = 0;
 }
 }

 Avail = NumOfChar;
 Mask = (UINT16)(1U << (15 - TableBits));

 for (Char = 0; Char < NumOfChar; Char++) {

 Len = BitLen[Char];
 if (Len == 0) {
 continue;
 }

 NextCode = (UINT16)(Start[Len] + Weight[Len]);

 if (Len <= TableBits) {

 for (i = Start[Len]; i < NextCode; i ++) {
 Table[i] = Char;
 }

 } else {

 k = Start[Len];
 p = &Table[k >> JuBits];
 i = (UINT16)(Len - TableBits);

 while (i != 0) {
 if (*p == 0) {
 Sd->mRight[Avail] = Sd->mLeft[Avail] = 0;
 *p = Avail ++;
 }

 if (k & Mask) {
 p = &Sd->mRight[*p];
 } else {
 p = &Sd->mLeft[*p];
 }

January 31, 2006
Version 2.0 1319

 k <<= 1;
 i --;
 }

 *p = Char;

 }

 Start[Len] = NextCode;
 }

 //
 // Succeeds
 //
 return 0;
}

STATIC
UINT16
DecodeP (
 IN SCRATCH_DATA *Sd
)
/*++

Routine description:

 Decodes a position value.

Arguments:

 Sd - the global scratch data

Returns:

 The position value decoded.

--*/
{
 UINT16 Val;
 UINT16 Mask;

 Val = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];

 if (Val >= NP) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Sd->mBitBuf & Mask) {
 Val = Sd->mRight[Val];
 } else {
 Val = Sd->mLeft[Val];
 }

 Mask >>= 1;
 } while (Val >= NP);
 }

 January 31, 2006
1320 Version 2.0

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[Val]);

 if (Val) {
 Val = (UINT16)((1U << (Val - 1)) + GetBits (Sd, (UINT16)(Val - 1)));
 }

 return Val;
}

STATIC
UINT16
ReadPTLen (
 IN SCRATCH_DATA *Sd,
 IN UINT16 nn,
 IN UINT16 nbit,
 IN UINT16 Special
)
/*++

Routine Descriptiion:

 Reads code lengths for the Extra Set or the Position Set

Arguments:

 Sd - The global scratch data
 nn - Number of symbols
 nbit - Number of bits needed to represent nn
 Special - The special symbol that needs to be taken care of

Returns:

 0 - OK.
 BAD_TABLE - Table is corrupted.

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 n = GetBits (Sd, nbit);

 if (n == 0) {
 c = GetBits (Sd, nbit);

 for (i = 0; i < 256; i ++) {
 Sd->mPTTable[i] = c;
 }

 for (i = 0; i < nn; i++) {
 Sd->mPTLen[i] = 0;
 }

January 31, 2006
Version 2.0 1321

 return 0;
 }

 i = 0;

 while (i < n) {

 c = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - 3));

 if (c == 7) {
 Mask = 1U << (BITBUFSIZ - 1 - 3);
 while (Mask & Sd->mBitBuf) {
 Mask >>= 1;
 c += 1;
 }
 }

 FillBuf (Sd, (UINT16)((c < 7) ? 3 : c - 3));

 Sd->mPTLen [i++] = (UINT8)c;

 if (i == Special) {
 c = GetBits (Sd, 2);
 while ((INT16)(--c) >= 0) {
 Sd->mPTLen[i++] = 0;
 }
 }
 }

 while (i < nn) {
 Sd->mPTLen [i++] = 0;
 }

 return (MakeTable (Sd, nn, Sd->mPTLen, 8, Sd->mPTTable));
}

STATIC
VOID
ReadCLen (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Reads code lengths for Char&Len Set.

Arguments:

 Sd - the global scratch data

Returns: (VOID)

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 January 31, 2006
1322 Version 2.0

 n = GetBits(Sd, CBIT);

 if (n == 0) {
 c = GetBits(Sd, CBIT);

 for (i = 0; i < NC; i ++) {
 Sd->mCLen[i] = 0;
 }

 for (i = 0; i < 4096; i ++) {
 Sd->mCTable[i] = c;
 }

 return;
 }

 i = 0;
 while (i < n) {

 c = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];
 if (c >= NT) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Mask & Sd->mBitBuf) {
 c = Sd->mRight [c];
 } else {
 c = Sd->mLeft [c];
 }

 Mask >>= 1;

 }while (c >= NT);
 }

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[c]);

 if (c <= 2) {

 if (c == 0) {
 c = 1;
 } else if (c == 1) {
 c = (UINT16)(GetBits (Sd, 4) + 3);
 } else if (c == 2) {
 c = (UINT16)(GetBits (Sd, CBIT) + 20);
 }

 while ((INT16)(--c) >= 0) {
 Sd->mCLen[i++] = 0;
 }

 } else {

January 31, 2006
Version 2.0 1323

 Sd->mCLen[i++] = (UINT8)(c - 2);

 }
 }

 while (i < NC) {
 Sd->mCLen[i++] = 0;
 }

 MakeTable (Sd, NC, Sd->mCLen, 12, Sd->mCTable);

 return;
}

STATIC
UINT16
DecodeC (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Decode a character/length value.

Arguments:

 Sd - The global scratch data.

Returns:

 The value decoded.

--*/
{
 UINT16 j;
 UINT16 Mask;

 if (Sd->mBlockSize == 0) {

 //
 // Starting a new block
 //

 Sd->mBlockSize = GetBits(Sd, 16);
 Sd->mBadTableFlag = ReadPTLen (Sd, NT, TBIT, 3);
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }

 ReadCLen (Sd);

 Sd->mBadTableFlag = ReadPTLen (Sd, NP, PBIT, (UINT16)(-1));
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }
 }

 January 31, 2006
1324 Version 2.0

 Sd->mBlockSize --;
 j = Sd->mCTable[Sd->mBitBuf >> (BITBUFSIZ - 12)];

 if (j >= NC) {
 Mask = 1U << (BITBUFSIZ - 1 - 12);

 do {
 if (Sd->mBitBuf & Mask) {
 j = Sd->mRight[j];
 } else {
 j = Sd->mLeft[j];
 }

 Mask >>= 1;
 } while (j >= NC);
 }

 //
 // Advance what we have read
 //
 FillBuf(Sd, Sd->mCLen[j]);

 return j;
}

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
)
 /*++

Routine Description:

 Decode NumOfBytes and put the resulting data at starting point of mBuffer.
 The buffer is circular.

Arguments:

 Sd - The global scratch data
 NumOfBytes - Number of bytes to decode

Returns: (VOID)

 --*/
{
 UINT16 di;
 UINT16 r;
 UINT16 c;

 r = 0;
 di = 0;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];

January 31, 2006
Version 2.0 1325

 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (r >= NumOfBytes) {
 return;
 }
 Sd->mBytesRemain --;
 }

 for (;;) {
 c = DecodeC (Sd);
 if (Sd->mBadTableFlag != 0) {
 return;
 }

 if (c < 256) {

 //
 // Process an Original character
 //

 Sd->mBuffer[di++] = (UINT8)c;
 r ++;
 if (di >= WNDSIZ) {
 return;
 }

 } else {

 //
 // Process a Pointer
 //

 c = (UINT16)(c - (UINT8_MAX + 1 - THRESHOLD));
 Sd->mBytesRemain = c;

 Sd->mDataIdx = (r - DecodeP(Sd) - 1) & (WNDSIZ - 1); //Make circular

 di = r;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];
 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (di >= WNDSIZ) {
 return;
 }
 Sd->mBytesRemain --;
 }
 }
 }

 return;
}

 January 31, 2006
1326 Version 2.0

January 31, 2006
Version 2.0 1327

Appendix J
EFI Byte Code Virtual Machine Opcode List

The following table lists the opcodes for EBC instructions. Note that opcodes only require 6 bits of
the opcode byte of EBC instructions. The other two bits are used for other encodings that are
dependent on the particular instruction.

Table 183. EBC Virtual Machine Opcode Summary

Opcode Description
0x00 BREAK [break code]
0x01 JMP32{cs|cc} {@}R1 {Immed32|Index32}

JMP64{cs|cc} Immed64
0x02 JMP8{cs|cc} Immed8
0x03 CALL32{EX}{a} {@}R1 {Immed32|Index32}

CALL64{EX}{a} Immed64
0x04 RET
0x05 CMP[32|64]eq R1, {@}R2 {Index16|Immed16}
0x06 CMP[32|64]lte R1, {@}R2 {Index16|Immed16}
0x07 CMP[32|64]gte R1, {@}R2 {Index16|Immed16}
0x08 CMP[32|64]ulte R1, {@}R2 {Index16|Immed16}
0x09 CMP[32|64]ugte R1, {@}R2 {Index16|Immed16}
0x0A NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}
0x0B NEG[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x0C ADD[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x0D SUB[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x0E MUL[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x0F MULU[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x10 DIV[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x11 DIVU[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x12 MOD[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x13 MODU[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x14 AND[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x15 OR[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x16 XOR[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x17 SHL[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x18 SHR[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x19 ASHR[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x1A EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}
0x1B EXTNDW[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x1C EXTNDD[32|64] {@}R1,{@}R2 {Index16|Immed16}
0x1D MOVbw {@}R1 {Index16}, {@}R2 {Index16}
0x1E MOVww {@}R1 {Index16}, {@}R2 {Index16}
0x1F MOVdw {@}R1 {Index16}, {@}R2 {Index16}
0x20 MOVqw {@}R1 {Index16}, {@}R2 {Index16}

 January 31, 2006
1328 Version 2.0

Opcode Description
0x21 MOVbd {@}R1 {Index32}, {@}R2 {Index32}
0x22 MOVwd {@}R1 {Index32}, {@}R2 {Index32}
0x23 MOVdd {@}R1 {Index32}, {@}R2 {Index32}
0x24 MOVqd {@}R1 {Index32}, {@}R2 {Index32}
0x25 MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}
0x26 MOVsnd {@}R1 {Index32}, {@}R2 {Index32|Immed32}
0x27 Reserved
0x28 MOVqq {@}R1 {Index64}, {@}R2 {Index64}
0x29 LOADSP [Flags], R2
0x2A STORESP R1, [IP|Flags]
0x2B PUSH[32|64] {@}R1 {Index16|Immed16}
0x2C POP[32|64] {@}R1 {Index16|Immed16}
0x2D CMPI[32|64][w|d]eq {@}R1 {Index16}, Immed16|Immed32
0x2E CMPI[32|64][w|d]lte {@}R1 {Index16}, Immed16|Immed32
0x2F CMPI[32|64][w|d]gte {@}R1 {Index16}, Immed16|Immed32
0x30 CMPI[32|64][w|d]ulte {@}R1 {Index16}, Immed16|Immed32
0x31 CMPI[32|64][w|d]ugte {@}R1 {Index16}, Immed16|Immed32
0x32 MOVnw {@}R1 {Index16}, {@}R2 {Index16}
0x33 MOVnd {@}R1 {Index32}, {@}R2 {Index32}
0x34 Reserved
0x35 PUSHn {@}R1 {Index16|Immed16}
0x36 POPn {@}R1 {Index16|Immed16}
0x37 MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64
0x38 MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64
0x39 MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64
0x3A Reserved
0x3B Reserved
0x3C Reserved
0x3D Reserved
0x3E Reserved
0x3F Reserved

January 31, 2006
Version 2.0 1329

Appendix K
Alphabetic Function Lists

This appendix contains two tables that list all EFI functions alphabetically. Table 184 lists the
functions in pure alphabetic order. Functions that have the same name can be distinguished by the
associated service or protocol (column 2). For example, there are two “Flush” functions, one from
the Device I/O Protocol and one from the File System Protocol. Table 185 orders the functions
alphabetically within a service or protocol. That is, column one names the service or protocol, and
column two lists the functions in the service or protocol.

Table 184. Functions Listed in Alphabetic Order

Function Name Service or Protocol Subservice Function Description

AllocateBuffer Device I/O Protocol Allocates pages that are suitable
for a common buffer mapping.

AllocateBuffer PCI I/O Protocol Allocates pages that are suitable
for a common buffer mapping.

AllocateBuffer PCI Root Bridge I/O
Protocol

 Allocates pages that are suitable
for a common buffer mapping.

AllocatePages Boot Services Memory Allocation
Services

Allocates memory pages of a
particular type.

AllocatePool Boot Services Memory Allocation
Services

Allocates pool of a particular type.

Arp PXE Base Code
Protocol

 Uses the ARP protocol to resolve
a MAC address.

AsyncInterruptTransfer USB2 Host
Controller Protocol

 Submits an asynchronous
interrupt transfer to an interrupt
endpoint of a USB device.

AsyncIsochronousTransfer USB2 Host
Controller Protocol

 Submits nonblocking USB
isochronous transfer.

Attributes PCI I/O Protocol Performs an operation on the
attributes that this PCI controller
supports.

Blt Graphics Output
Protocol

 Blt a rectangle of pixels on the
graphics screen. Blt stands for
BLock Transfer.

BuildDevicePath Extended SCSI
Passthru Protocol

 Used to allocate and build a
device path node for a SCSI
device on a SCSI channel.

BulkTransfer USB2 Host
Controller Protocol

 Submits a bulk transfer to a bulk
endpoint of a USB device.

CalculateCrc32 Boot Services Miscellaneous
Services

Computes and returns a 32-bit
CRC for a data buffer.

 January 31, 2006
1330 Version 2.0

Function Name Service or Protocol Subservice Function Description

Callback PXE Base Code
Callback Protocol

 Callback routine used by the PXE
Base Code Dhcp(),
Discover(), Mtftp(),
UdpWrite(), and Arp()
functions.

CheckEvent Boot Services Event Services Checks whether an event is in the
signaled state.

ClearRootHubPortFeature USB2 Host
Controller Protocol

 Clears the feature for the specified
root hub port.

ClearScreen Simple Text Output
Protocol

 Clears the screen with the
currently set background color.

Close File System Protocol Closes the current file handle.

CloseEvent Boot Services Event Services Closes and frees an event
structure.

CloseProtocol Boot Services Protocol Handler
Services

Removes elements from the list of
agents consuming a protocol
interface.

Configuration PCI Root Bridge I/O
Protocol

 Gets the current resource settings
for this PCI root bridge

ConnectController Boot Services Protocol Handler
Services

Uses a set of precedence rules to
find the best set of drivers to
manage a controller.

ControlTransfer USB2 Host
Controller Protocol

 Submits a control transfer to a
target USB device.

ConvertPointer Runtime Services Virtual Memory
Services

Converts internal pointers when
switching to virtual addressing.

CopyMem Boot Services Miscellaneous
Services

Copies the contents of one buffer
to another buffer.

CopyMem PCI I/O Protocol Allows one region of PCI memory
space to be copied to another
region of PCI memory space

CopyMem PCI Root Bridge I/O
Protocol

 Allows one region of PCI root
bridge memory space to be copied
to another region of PCI root
bridge memory space.

CreateEvent Boot Services Event Services Creates a general-purpose event
structure.

CreateEventEx Boot Services Event Services Create an event structure as part
of an event group.

CreateThunk EFI Byte Code
Protocol

 Creates a thunk for an EBC image
entry point or protocol service, and
returns a pointer to the thunk.

January 31, 2006
Version 2.0 1331

Function Name Service or Protocol Subservice Function Description

Decompress Decompress
Protocol

 Decompresses a compressed
source buffer into an
uncompressed destination buffer.

Delete File System Protocol Deletes a file.

Dhcp PXE Base Code
Protocol

 Attempts to complete a DHCPv4
D.O.R.A. (discover / offer / request
/ acknowledge) or DHCPv6
S.A.R.R (solicit / advertise /
request / reply) sequence.

DisconnectController Boot Services Protocol Handler
Services

Informs a set of drivers to stop
managing a controller.

Discover PXE Base Code
Protocol

 Attempts to complete the PXE
Boot Server and/or boot image
discovery sequence.

DriverLoaded EFI Driver Override
Protocol

 Used to associate a driver image
handle with a device path returned
on a prior call.

EFI_IMAGE_ENTRY_POINT Boot Services Image Services Prototype of an EFI Image’s entry
point.

EFI_PXE_BASE_CODE
_CALLBACK

PXE Base Code
Protocol

 Callback function that is invoked
when the PXE Base Code
Protocol is waiting for an event.

EnableCursor Simple Text Output
Protocol

 Turns the visibility of the cursor
on/off.

Exit Boot Services Image Services Exits the image’s entry point.

ExitBootServices Boot Services Image Services Terminates boot services.

FatToStr Unicode Collation
Protocol

 Converts an 8.3 FAT file name in
an OEM character set to a Null-
terminated Unicode string.

Fill Header UNDI Commands This command is used to fill the
media header(s) in transmit
packet(s).

Flush Device I/O Protocol Flushes any posted write data to
the device.

Flush File System Protocol Flushes all modified data
associated with the file to the
device.

Flush PCI I/O Protocol Flushes all PCI posted write
transactions to system memory.

Flush PCI Root Bridge I/O
Protocol

 Flushes all PCI posted write
transactions to system memory.

FlushBlocks Block I/O Protocol Flushes any cached blocks.

 January 31, 2006
1332 Version 2.0

Function Name Service or Protocol Subservice Function Description

ForceDefaults EFI Driver
Configuration
Protocol

 Forces a driver to set the default
configuration options for a
controller.

Free Boot Integrity
Services Protocol

 Frees memory structures allocated
and returned by other functions in
the EFI_BIS protocol.

FreeBuffer Device I/O Protocol Frees pages that were allocated
with AllocateBuffer().

FreeBuffer PCI I/O Protocol Frees pages that were allocated
with AllocateBuffer().

FreeBuffer PCI Root Bridge I/O
Protocol

 Free pages that were allocated
with AllocateBuffer().

FreePages Boot Services Memory Allocation
Services

Frees memory pages.

FreePool Boot Services Memory Allocation
Services

Frees allocated pool.

Get Config Info UNDI Commands This command is used to retrieve
configuration information about the
NIC being controlled by the UNDI.

Get Init Info UNDI Commands This command is used to retrieve
initialization information that is
needed by drivers and
applications to initialized UNDI.

Get State UNDI Commands This command is used to
determine the operational state of
the UNDI.

Get Status UNDI Commands This command returns the current
interrupt status and/or the
transmitted buffer addresses.

GetAttributes PCI Root Bridge I/O
Protocol

 Gets the attributes that a PCI root
bridge supports setting with
SetAttributes(), and the
attributes that a PCI root bridge is
currently using.

GetBarAttributes PCI I/O Protocol Gets the attributes that this PCI
controller supports setting on a
BAR using
SetBarAttributes(), and
retrieves the list of resource
descriptors for a BAR.

January 31, 2006
Version 2.0 1333

Function Name Service or Protocol Subservice Function Description

GetBootObjectAuthorization
Certificate

Boot Integrity
Services Protocol

 Retrieves the current digital
certificate (if any) used by the
EFI_BIS protocol as the source
of authorization for verifying boot
objects and altering configuration
parameters

GetBootObjectAuthorization
CheckFlag

Boot Integrity
Services Protocol

 Retrieves the current setting of the
authorization check flag that
indicates whether or not
authorization checks are required
for boot objects.

GetBootObjectAuthorization
UpdateToken

Boot Integrity
Services Protocol

 Retrieves an uninterpreted token
whose value gets included and
signed in a subsequent request to
alter the configuration parameters,
to protect against attempts to
“replay” such a request.

GetControl Serial I/O Protocol Reads the status of the control bits
on a serial device.

GetControllerName EFI Component
Name Protocol

 Retrieves a Unicode string that is
the user readable name of the
controller that is being managed
by a UEFI driver.

GetDriver EFI Bus-Specific
Driver Override
Protocol

 Uses a bus-specific algorithm to
retrieve a driver image handle for
a controller.

GetDriver EFI Driver Override
Protocol

 Retrieves the image handle of the
platform override driver for a
controller in the system.

GetDriverName EFI Component
Name Protocol

 Retrieves a Unicode string that is
the user readable name of the
UEFI driver.

GetDriverPath EFI Driver Override
Protocol

 Retrieves the device path of the
platform override driver for a
controller in the system.

GetInfo Decompress
Protocol

 Given the compressed source
buffer, this function retrieves the
size of the uncompressed
destination buffer and the size of
the scratch buffer required to
perform the decompression.

GetInfo File System Protocol Gets the requested file or volume
information.

GetLocation PCI I/O Protocol Retrieves this PCI controller’s
current PCI bus number, device
number, and function number.

 January 31, 2006
1334 Version 2.0

Function Name Service or Protocol Subservice Function Description

GetMaximumProcessor
Index

Debug Support
Protocol

 Returns the maximum processor
index value that may be used with
RegisterPeriodicCallback()
and
RegisterExceptionCallback()

GetMemoryMap Boot Services Memory Allocation
Services

Returns the current boot services
memory map and memory
map key.

GetMode Graphics Output
Protocol

 Return the current frame buffer
geometry and display refresh rate.

GetNextDevice Extended SCSI
Passthru Protocol

 Used to retrieve the list of legal
Target IDs for the SCSI devices
on a SCSI channel.

GetNextHighMonotonicCount Runtime Services Miscellaneous
Services

Returns the next high 32 bits of a
platform's monotonic counter.

GetNextMonotonicCount Boot Services Miscellaneous
Services

Returns a monotonically
increasing count for the platform.

GetNextVariableName Runtime Services Variable Services Enumerates the current variable
names.

GetPosition File System Protocol Returns the current file position.

GetRootHubPortNumber USB2 Host
Controller Protocol

 Retrieves the number of root hub
ports that are produced by the
USB host controller.

GetRootHubPortStatus USB2 Host
Controller Protocol

 Retrieves the status of the
specified root hub port.

GetSignatureInfo Boot Integrity
Services Protocol

 Retrieves information about the
digital signature algorithms
supported and the identity of the
installed authorization certificate, if
any.

GetState Simple Pointer
Protocol

 Retrieves the current state of a
pointer device.

GetState USB2 Host
Controller Protocol

 Retrieves the current state of the
USB host controller.

GetStatus Simple Network
Protocol

 Reads the current interrupt status
and recycled transmit buffer status
from the network interface.

GetTargetLun Extended SCSI
Passthru Protocol

 Used to translate a device path
node to a Target ID and LUN.

GetTime Runtime Services Time Services Returns the current time and date,
and the time-keeping capabilities
of the platform.

GetVariable Runtime Services Variable Services Returns the value of the specific
variable.

January 31, 2006
Version 2.0 1335

Function Name Service or Protocol Subservice Function Description

GetWakeupTime Runtime Services Time Services Returns the current wakeup alarm
clock setting.

HandleProtocol Boot Services Protocol Handler
Services

Queries the list of protocol
handlers on a device handle for
the requested Protocol Interface.

Initialize Boot Integrity
Services Protocol

 Initializes an application instance
of the EFI_BIS protocol, returning
a handle for the application
instance.

Initialize Simple Network
Protocol

 Resets the network adapter and
allocates the transmit and receive
buffers required by the network
interface; also optionally allows
space for additional transmit and
receive buffers to be allocated

Initialize UNDI Commands This command resets the network
adapter and initializes UNDI using
the parameters supplied in the
CPB.

InstallConfigurationTable Boot Services Miscellaneous
Services

Adds, updates, or removes a
configuration table from the EFI
System Table.

InstallMultipleProtocol
Interfaces

Boot Services Protocol Handler
Services

Installs one or more protocol
interfaces onto a handle.

InstallProtocolInterface Boot Services Protocol Handler
Services

Adds a protocol interface to an
existing or new device handle.

Interrupt Enables UNDI Commands The Interrupt Enables command
can be used to read and/or
change the current external
interrupt enable settings.

InvalidateInstructionCache Debug Support
Protocol

 Invalidate the instruction cache of
the processor.

Io.Read Device I/O Protocol Reads from I/O ports on a bus.

Io.Read PCI I/O Protocol Allows BAR relative reads to PCI
I/O space.

Io.Read PCI Root Bridge I/O
Protocol

 Allows reads from I/O space.

Io.Write Device I/O Protocol Writes to I/O ports on a bus.

Io.Write PCI I/O Protocol Allows BAR relative writes to PCI
I/O space.

Io.Write PCI Root Bridge I/O
Protocol

 Allows writes to I/O space.

 January 31, 2006
1336 Version 2.0

Function Name Service or Protocol Subservice Function Description

IsochronousTransfer USB2 Host
Controller Protocol

 Submits isochronous transfer to
an isochronous endpoint of a USB
device.

LoadFile Load File Protocol Causes the driver to load the
requested file.

LoadImage Boot Services Image Services Function to dynamically load
another EFI Image.

LocateDevicePath Boot Services Protocol Handler
Services

Locates the closest handle that
supports the specified protocol on
the specified device path.

LocateHandle Boot Services Protocol Handler
Services

Locates the handle(s) that support
the specified protocol.

LocateHandleBuffer Boot Services Protocol Handler
Services

Retrieves the list of handles from
the handle database that meet the
search criteria. The return buffer
is automatically allocated.

LocateProtocol Boot Services Protocol Handler
Services

Finds the first handle in the handle
database the supports the
requested protocol.

Map Device I/O Protocol Provides the device specific
addresses needed to access host
memory for DMA.

Map PCI I/O Protocol Provides the PCI controller
specific address needed to access
system memory for DMA.

Map PCI Root Bridge I/O
Protocol

 Provides the PCI controller
specific addresses needed to
access system memory for DMA.

MCast IP to MAC UNDI Commands Translate a multicast IPv4 or IPv6
address to a multicast MAC
address.

MCastIPtoMAC Simple Network
Protocol

 Allows a multicast IP address to
be mapped to a multicast HW
MAC address.

Mem.Read Device I/O Protocol Reads from memory on a bus.

Mem.Read PCI I/O Protocol Allows BAR relative reads to PCI
memory space.

Mem.Read PCI Root Bridge I/O
Protocol

 Allows reads from memory
mapped I/O space.

Mem.Write Device I/O Protocoll Writes to memory on a bus.

Mem.Write PCI I/O Protocol Allows BAR relative writes to PCI
memory space.

Mem.Write PCI Root Bridge I/O
Protocol

 Allows writes to memory mapped
I/O space.

January 31, 2006
Version 2.0 1337

Function Name Service or Protocol Subservice Function Description

MetaiMatch Unicode Collation
Protocol

 Performs a case insensitive
comparison between a Unicode
pattern string and a Unicode
string.

Mtftp PXE Base Code
Protocol

 Is used to perform TFTP and
MTFTP services.

No associated function EFI Device Path
Protocol

 Can be used on any device handle
to obtain generic path/location
information concerning the
physical device or logical device.

No associated function EFI Driver Entry
Point

 The main entry point for a UEFI
driver.

NVData Simple Network
Protocol

 Allows read and writes to the
NVRAM device attached to a
network interface.

NvData UNDI Commands This command is used to read
and write (if supported by NIC
hardware) nonvolatile storage
on the NIC.

Open File System Protocol Opens or creates a new file.

OpenProtocol Boot Services Protocol Handler
Services

Adds elements to the list of agents
consuming a protocol interface.

OpenProtocolInformation Boot Services Protocol Handler
Services

Retrieve the list of agents that are
currently consuming a protocol
interface.

OpenVolume Simple File System
Protocol

 Opens the volume for file I/O
access.

OptionsValid EFI Driver
Configuration
Protocol

 Tests to see if a controller's
current configuration options are
valid.

OutputString Simple Text Output
Protocol

 Displays the Unicode string on the
device at the current cursor
location.

PassThru Extended SCSI
Passthru Protocol

 Sends a SCSI Request Packet to
a SCSI device that is connected to
the SCSI channel.

Pci.Read Device I/O Protocol Reads from PCI Configuration
Space.

Pci.Read PCI I/O Protocol Allows PCI controller relative
reads to PCI configuration space.

Pci.Read PCI Root Bridge I/O
Protocol

 Allows reads from PCI
configuration space.

Pci.Write Device I/O Protocol Writes to PCI Configuration
Space.

 January 31, 2006
1338 Version 2.0

Function Name Service or Protocol Subservice Function Description

Pci.Write PCI I/O Protocol Allows PCI controller relative
writes to PCI configuration space.

Pci.Write PCI Root Bridge I/O
Protocol

 Allows writes to PCI configuration
space

PciDevicePath Device I/O Protocol Provides an EFI Device Path for a
PCI device with the given PCI
configuration space address.

Poll Debugport Protocol Determine if there is any data
available to be read from the
debugport device.

PollIo PCI I/O Protocol Polls an address in PCI I/O space
until an exit condition is met, or a
timeout occurs.

PollIo PCI Root Bridge I/O
Protocol

 Polls an address in I/O space until
an exit condition is met, or a
timeout occurs.

PollMem PCI I/O Protocol Polls an address in PCI memory
space until an exit condition is
met, or a timeout occurs

PollMem PCI Root Bridge I/O
Protocol

 Polls an address in memory
mapped I/O space until an exit
condition is met, or a timeout
occurs.

ProtocolsPerHandle Boot Services Protocol Handler
Services

Retrieves the list of protocols
installed on a handle. The return
buffer is automatically allocated.

QueryMode Simple Text Output
Protocol

 Queries information concerning
the output device’s supported text
mode.

RaiseTPL Boot Services Task Priority
Services

Raises the task priority level.

Read Debugport Protocol Receive a buffer of characters
from the debugport device.

Read File System Protocol Reads bytes from a file.

Read Serial I/O Protocol Receives a buffer of characters
from a serial device.

ReadBlocks Block I/O Protocol Reads the requested number of
blocks from the device.

ReadDisk Disk I/O Protocol Reads data from the disk.

ReadKeyStroke Simple Input
Protocol

 Reads a keystroke from a simple
input device.

Receive Simple Network
Protocol

 Receives a packet from the
network interface.

January 31, 2006
Version 2.0 1339

Function Name Service or Protocol Subservice Function Description

Receive UNDI Commands When the network adapter has
received a frame, this command is
used to copy the frame into
driver/application storage.

ReceiveFilters UNDI Commands This command is used to read and
change receive filters and, if
supported, read and change the
multicast MAC address filter list.

ReceiveFilters Simple Network
Protocol

 Enables and disables the receive
filters for the network interface
and, if supported, manages the
filtered multicast HW MAC
address list.

RegisterCacheFlush EFI Byte Code
Protocol

 Called to register a callback
function that the EBC interpreter
can call to flush the processor
instruction cache after creating
thunks.

RegisterExceptionCallback Debug Support
Protocol

 Registers a callback function that
will be called each time the
specified processor exception
occurs.

RegisterPeriodicCallback Debug Support
Protocol

 Registers a callback function that
will be invoked periodically and
asynchronously to the execution of
EFI.

RegisterProtocolNotify Boot Services Protocol Handler
Services

Registers for protocol interface
installation notifications.

ReinstallProtocolInterface Boot Services Protocol Handler
Services

Replaces a protocol interface.

Reset Block I/O Protocol Resets the block device hardware.

Reset Debugport Protocol Resets the debugport hardware.

Reset Serial I/O Protocol Resets the hardware device.

Reset Simple Input
Protocol

 Resets a simple input device.

Reset Simple Network
Protocol

 Resets the network adapter, and
reinitializes it with the parameters
that were provided in the previous
call to Initialize().

Reset Simple Pointer
Protocol

 Resets the pointer device
hardware.

Reset Simple Text Output
Protocol

 Resets the ConsoleOut device.

 January 31, 2006
1340 Version 2.0

Function Name Service or Protocol Subservice Function Description

Reset UNDI Commands This command resets the network
adapter and reinitializes the UNDI
with the same parameters
provided in the Initialize()
command.

Reset USB2 Host
Controller Protocol

 Software reset of USB.

ResetChannel Extended SCSI
Passthru Protocol

 Resets the SCSI channel.

ResetSystem Runtime Services Miscellaneous
Services

Resets the entire platform.

ResetTarget Extended SCSI
Passthru Protocol

 Resets a SCSI device that is
connected to the SCSI channel.

RestoreTPL Boot Services Event Services Restores/lowers the task priority
level.

RunDiagnostics EFI Driver
Diagnostics Protocol

 Runs diagnostics on a controller.

SetAttribute Simple Text Output
Protocol

 Sets the foreground and
background color of the text that is
output.

SetAttributes PCI Root Bridge I/O
Protocol

 Sets attributes for a resource
range on a PCI root bridge.

SetAttributes Serial I/O Protocol Sets communication parameters
for a serial device.

SetBarAttributes PCI I/O Protocol Sets the attributes for a range of a
BAR on a PCI controller.

SetControl Serial I/O Protocol Sets the control bits on a serial
device.

SetCursorPosition Simple Text Output
Protocol

 Sets the current cursor position.

SetInfo File System Protocol Sets the requested file
information.

SetIpFilter PXE Base Code
Protocol

 Updates the IP receive filters of a
network device and enables
software filtering.

SetMem Boot Services Miscellaneous
Services

Fills a buffer with a specified
value.

SetMode Simple Text Output
Protocol

 Sets the current mode of the
output device.

SetMode Graphics Output
Protocol

 Set the video device into the
specified mode and clears the
output display to black.

January 31, 2006
Version 2.0 1341

Function Name Service or Protocol Subservice Function Description

SetOptions EFI Driver
Configuration
Protocol

 Allows the user to set controller
specific options for a controller
that a driver is currently managing.

SetPackets PXE Base Code
Protocol

 Updates the contents of the
cached DHCP and Discover
packets.

SetParameters PXE Base Code
Protocol

 Updates the parameters that affect
the operation of the PXE Base
Code Protocol.

SetPosition File System Protocol Sets the current file position.

SetRootHubPortFeature USB2 Host
Controller Protocol

 Sets the feature for the specified
root hub port.

SetState USB2 Host
Controller Protocol

 Sets the USB host controller to a
specific state.

SetStationIp PXE Base Code
Protocol

 Updates the station IP address
and/or subnet mask values.

SetTime Runtime Services Time Services Sets the current local time and
date information.

SetTimer Boot Services Event Services Sets an event to be signaled at a
particular time.

SetVariable Runtime Services Variable Services Sets the value of the specified
variable.

SetVirtualAddressMap Runtime Services Virtual Memory
Services

Used by an OS loader to convert
from physical addressing to virtual
addressing.

SetWakeupTime Runtime Services Time Services Sets the system wakeup alarm
clock time.

SetWatchdogTimer Boot Services Miscellaneous
Services

Resets and sets the system's
watchdog timer.

Shutdown Boot Integrity
Services Protocol

 Ends the lifetime of an application
instance of the EFI_BIS protocol,
invalidating its application instance
handle.

Shutdown Simple Network
Protocol

 Resets the network adapter and
leaves it in a state safe for another
driver to initialize.

Shutdown UNDI Commands Resets the network adapter and
leaves it in a safe state for another
driver to initialize.

SignalEvent Boot Services Event Services Signals an event.

Stall Boot Services Miscellaneous
Services

Stalls the processor.

 January 31, 2006
1342 Version 2.0

Function Name Service or Protocol Subservice Function Description

Start EFI Driver Binding
Protocol

 Starts a device controller or a bus
controller.

Start PXE Base Code
Protocol

 Enables the use of PXE Base
Code Protocol functions.

Start Simple Network
Protocol

 Changes the network interface
from the stopped state to the
started state.

Start UNDI Commands This command is used to change
the UNDI operational state from
stopped to started.

StartImage Boot Services Image Services Function to transfer control to the
Image’s entry point.

Station Address UNDI Commands This command is used to get
current station and broadcast
MAC addresses and, if supported,
to change the current station MAC
address.

StationAddress Simple Network
Protocol

 Allows the station address of the
network interface to be modified.

Statistics Simple Network
Protocol

 Allows the statistics on the
network interface to be reset
and/or collected.

Statistics UNDI Commands This command is used to read and
clear the NIC traffic statistics.

Stop EFI Driver Binding
Protocol

 Stops a device controller or a bus
controller.

Stop PXE Base Code
Protocol

 Disables the use of PXE Base
Code Protocol functions.

Stop Simple Network
Protocol

 Changes the network interface
from the started state to the
stopped state.

Stop UNDI Commands This command is used to change
the UNDI operational state from
started to stopped.

StriColl Unicode Collation
Protocol

 Performs a case-insensitive
comparison between two Unicode
strings.

StrLwr Unicode Collation
Protocol

 Converts all the Unicode
characters in a Null-terminated
Unicode string to lower case
Unicode characters.

January 31, 2006
Version 2.0 1343

Function Name Service or Protocol Subservice Function Description

StrToFat Unicode Collation
Protocol

 Converts a Null-terminated
Unicode string to legal characters
in a FAT filename using an OEM
character set.

StrUpr Unicode Collation
Protocol

 Converts all the Unicode
characters in a Null-terminated
Unicode string to upper case
Unicode characters.

Supported EFI Driver Binding
Protocol

 Tests to see if driver supports a
given controller, and further tests
to see if driver supports creating a
handle for a specified child device.

SyncInterruptTransfer USB2 Host
Controller Protocol

 Submits a synchronous interrupt
transfer to an interrupt endpoint of
a USB device.

TestString Simple Text Output
Protocol

 Tests to see if the ConsoleOut
device supports this Unicode
string.

Transmit Simple Network
Protocol

 Places a packet in the transmit
queue of the network interface.

Transmit UNDI Commands The Transmit command is used to
place a packet into the transmit
queue.

UdpRead PXE Base Code
Protocol

 Reads a UDP packet from a
network interface.

UdpWrite PXE Base Code
Protocol

 Writes a UDP packet to a network
interface.

UninstallMultipleProtocol
Interfaces

Boot Services Protocol Handler
Services

Uninstalls one or more protocol
interfaces from a handle.

UninstallProtocolInterface Boot Services Protocol Handler
Services

Removes a protocol interface from
a device handle.

Unload Loaded Image
Protocol

 Requests an image to unload.

UnloadImage Boot Services Image Services Unloads an image.

UnloadImage EFI Byte Code
Protocol

 Called when an EBC image is
unloaded to allow the interpreter to
perform any cleanup associated
with the image’s execution.

Unmap Device I/O Protocol Releases any resources allocated
by Map().

Unmap PCI I/O Protocol Releases any resources allocated
by Map().

Unmap PCI Root Bridge I/O
Protocol

 Releases any resources allocated
by Map().

 January 31, 2006
1344 Version 2.0

Function Name Service or Protocol Subservice Function Description

UpdateBootObject
Authorization

Boot Integrity
Services Protocol

 Requests that the configuration
parameters be altered by installing
or removing an authorization
certificate or changing the setting
of the check flag.

UsbAsyncInterruptTransfer USB I/O Protocol Nonblock USB interrupt transfer.

UsbAsyncIsochronous
Transfer

USB I/O Protocol Nonblock USB isochronous
transfer.

UsbBulkTransfer USB I/O Protocol Accesses the USB Device through
USB Bulk Transfer Pipe.

UsbControlTransfer USB I/O Protocol Accesses the USB Device through
USB Control Transfer Pipe.

UsbGetConfigDescriptor USB I/O Protocol Retrieves the activated
configuration descriptor of a USB
device.

UsbGetDeviceDescriptor USB I/O Protocol Retrieves the device descriptor of
a USB device.

UsbGetEndpointDescriptor USB I/O Protocol Retrieves the endpoint descriptor
of a USB Controller.

UsbGetInterfaceDescriptor USB I/O Protocol Retrieves the interface descriptor
of a USB Controller.

UsbGetStringDescriptor USB I/O Protocol Retrieves the string descriptor
inside a USB Device.

UsbGetSupported
Languages

USB I/O Protocol Retrieves the array of languages
that the USB device supports.

UsbIsochronousTransfer USB I/O Protocol Accesses the USB Device through
USB Isochronous Transfer Pipe.

UsbPortReset USB I/O Protocol Resets and reconfigures the USB
controller.

UsbSyncInterruptTransfer USB I/O Protocol Accesses the USB Device through
USB Synchronous Interrupt
Transfer Pipe.

VerifyBootObject Boot Integrity
Services Protocol

 Verifies a boot object according to
the supplied digital signature and
the current authorization certificate
and check flag setting.

VerifyObjectWithCredential Boot Integrity
Services Protocol

 Verifies a data object according to
a supplied digital signature and a
supplied digital certificate.

WaitForEvent Boot Services Event Services Stops execution until an event is
signaled.

Write Debugport Protocol Send a buffer of characters to the
debugport device.

January 31, 2006
Version 2.0 1345

Function Name Service or Protocol Subservice Function Description

Write File System Protocol Writes bytes to a file.

Write Serial I/O Protocol Sends a buffer of characters to a
serial device.

WriteBlocks Block I/O Protocol Writes the requested number of
blocks to the device.

WriteDisk Disk I/O Protocol Writes data to the disk.

 January 31, 2006
1346 Version 2.0

Table 185. Functions Listed Alphabetically within a Service or Protocol

Service or Protocol Function Function Description

FlushBlocks Flushes any cached blocks.

ReadBlocks Reads the requested number of blocks from the
device.

Reset Resets the block device hardware.

Block I/O Protocol

WriteBlocks Writes the requested number of blocks to the device.

Free Frees memory structures allocated and returned by
other functions in the EFI_BIS protocol.

GetBootObjectAuthorization
Certificate

Retrieves the current digital certificate (if any) used
by the EFI_BIS protocol as the source of
authorization for verifying boot objects and altering
configuration parameters.

GetBootObjectAuthorization
CheckFlag

Retrieves the current setting of the authorization
check flag that indicates whether or not authorization
checks are required for boot objects.

GetBootObjectAuthorization
UpdateToken

Retrieves an uninterpreted token whose value gets
included and signed in a subsequent request to alter
the configuration parameters, to protect against
attempts to “replay” such a request.

GetSignatureInfo Retrieves information about the digital signature
algorithms supported and the identity of the installed
authorization certificate, if any.

Initialize Initializes an application instance of the EFI_BIS
protocol, returning a handle for the application
instance.

Shutdown Ends the lifetime of an application instance of the
EFI_BIS protocol, invalidating its application
instance handle.

UpdateBootObject
Authorization

Requests that the configuration parameters be
altered by installing or removing an authorization
certificate or changing the setting of the check flag.

VerifyBootObject Verifies a boot object according to the supplied
digital signature and the current authorization
certificate and check flag setting.

Boot Integrity Services
Protocol

VerifyObjectWithCredential Verifies a data object according to a supplied digital
signature and a supplied digital certificate.

AllocatePages Allocates memory pages of a particular type.

AllocatePool Allocates pool of a particular type.

CalculateCrc32 Computes and returns a 32-bit CRC for a data
buffer.

CheckEvent Checks whether an event is in the signaled state.

Boot Services

CloseEvent Closes and frees an event structure.

January 31, 2006
Version 2.0 1347

Service or Protocol Function Function Description

CloseProtocol Removes elements from the list of agents
consuming a protocol interface.

ConnectController Uses a set of precedence rules to find the best set of
drivers to manage a controller.

CopyMem Copies the contents of one buffer to another buffer.

CreateEvent Creates a general-purpose event structure.

DisconnectController Informs a set of drivers to stop managing a
controller.

EFI_IMAGE_
ENTRY_POINT

Prototype of an EFI Image’s entry point.

Exit Exits the image’s entry point.

ExitBootServices Terminates boot services.

FreePages Frees memory pages.

FreePool Frees allocated pool.

GetMemoryMap Returns the current boot services memory map and
memory map key.

GetNextMonotonicCount Returns a monotonically increasing count for the
platform.

HandleProtocol Queries the list of protocol handlers on a device
handle for the requested Protocol Interface.

InstallConfigurationTable Adds, updates, or removes a configuration table
from the EFI System Table

InstallMultipleProtocol
Interfaces

Installs one or more protocol interfaces onto a
handle.

InstallProtocolInterface Adds a protocol interface to an existing or new
device handle.

LoadImage Function to dynamically load another EFI Image.

LocateDevicePath Locates the closest handle that supports the
specified protocol on the specified device path.

LocateHandle Locates the handle(s) that support the specified
protocol.

LocateHandleBuffer Retrieves the list of handles from the handle
database that meet the search criteria. The return
buffer is automatically allocated.

LocateProtocol Finds the first handle in the handle database the
supports the requested protocol.

OpenProtocol Adds elements to the list of agents consuming a
protocol interface.

OpenProtocolInformation Retrieve the list of agents that are currently
consuming a protocol interface.

Boot Services

ProtocolsPerHandle Retrieves the list of protocols installed on a handle.
The return buffer is automatically allocated.

 January 31, 2006
1348 Version 2.0

Service or Protocol Function Function Description

RaiseTPL Raises the task priority level.

RegisterProtocolNotify Registers for protocol interface installation
notifications

ReinstallProtocolInterface Replaces a protocol interface.

RestoreTPL Restores/lowers the task priority level.

SetMem Fills a buffer with a specified value.

SetTimer Sets an event to be signaled at a particular time.

SetWatchdogTimer Resets and sets the system's watchdog timer.

SignalEvent Signals an event.

Stall Stalls the processor.

StartImage Function to transfer control to the Image’s entry
point.

UninstallMultipleProtocol
Interfaces

Uninstalls one or more protocol interfaces from a
handle.

UninstallProtocolInterface Removes a protocol interface from a device handle.

UnloadImage Unloads an image.

WaitForEvent Stops execution until an event is signaled.

Poll Determine if there is any data available to be read
from the debugport device.

Read Receive a buffer of characters from the debugport
device.

Reset Resets the debugport hardware.

Debugport Protocol

Write Send a buffer of characters to the debugport device.

GetMaximumProcessor
Index

Returns the maximum processor index value that
may be used with
RegisterPeriodicCallback() and
RegisterExceptionCallback().

InvalidateInstructionCache Invalidate the instruction cache of the processor.

RegisterExceptionCallback Registers a callback function that will be called each
time the specified processor exception occurs.

Debug Support
Protocol

RegisterPeriodicCallback Registers a callback function that will be invoked
periodically and asynchronously to the execution
of EFI.

Decompress Decompresses a compressed source buffer into an
uncompressed destination buffer.

Decompress Protocol

GetInfo Given the compressed source buffer, this function
retrieves the size of the uncompressed destination
buffer and the size of the scratch buffer required to
perform the decompression.

Device I/O Protocol AllocateBuffer Allocates pages that are suitable for a common
buffer mapping.

January 31, 2006
Version 2.0 1349

Service or Protocol Function Function Description

Flush Flushes any posted write data to the device.

FreeBuffer Frees pages that were allocated with
AllocateBuffer().

Io.Read Reads from I/O ports on a bus.

Io.Write Writes to I/O ports on a bus.

Map Provides the device specific addresses needed to
access host memory for DMA.

Mem.Read Reads from memory on a bus.

Mem.Write Writes to memory on a bus.

Pci.Read Reads from PCI Configuration Space.

Pci.Write Writes to PCI Configuration Space.

PciDevicePath Provides an EFI Device Path for a PCI device with
the given PCI configuration space address.

Unmap Releases any resources allocated by Map().

ReadDisk Reads data from the disk. Disk I/O Protocol

WriteDisk Writes data to the disk.

EFI Bus-Specific Driver
Override Protocol

GetDriver Uses a bus specific algorithm to retrieve a driver
image handle for a controller.

CreateThunk Creates a thunk for an EBC image entry point or
protocol service, and returns a pointer to the thunk.

RegisterCacheFlush Called to register a callback function that the EBC
interpreter can call to flush the processor instruction
cache after creating thunks.

EFI Byte Code
Protocol

UnloadImage Called when an EBC image is unloaded to allow the
interpreter to perform any cleanup associated with
the image’s execution.

GetControllerName Retrieves a Unicode string that is the user readable
name of the controller that is being managed by a
UEFI driver.

EFI Component Name
Protocol

GetDriverName Retrieves a Unicode string that is the user readable
name of the UEFI driver.

EFI Device Path
Protocol

No associated function Can be used on any device handle to obtain generic
path/location information concerning the physical
device or logical device.

Start Starts a device controller or a bus controller.

Stop Stops a device controller or a bus controller.

EFI Driver Binding
Protocol

Supported Tests to see if driver supports a given controller, and
further tests to see if driver supports creating a
handle for a specified child device.

EFI Driver
Configuration Protocol

ForceDefaults Forces a driver to set the default configuration
options for a controller.

 January 31, 2006
1350 Version 2.0

Service or Protocol Function Function Description

OptionsValid Tests to see if a controller's current configuration
options are valid.

SetOptions Allows the user to set controller specific options for a
controller that a driver is currently managing.

EFI Driver Diagnostics
Protocol

RunDiagnostics Runs diagnostics on a controller.

EFI Driver Entry Point No associated function The main entry point for a UEFI Driver.

DriverLoaded Used to associate a driver image handle with a
device path returned on a prior call.

GetDriver Retrieves the image handle of the platform override
driver for a controller in the system.

EFI Driver Override
Protocol

GetDriverPath Retrieves the device path of the platform override
driver for a controller in the system.

Close Closes the current file handle.

Delete Deletes a file.

Flush Flushes all modified data associated with the file to
the device.

GetInfo Gets the requested file or volume information.

GetPosition Returns the current file position.

Open Opens or creates a new file.

Read Reads bytes from a file.

SetInfo Sets the requested file information.

SetPosition Sets the current file position.

File System Protocol

Write Writes bytes to a file.

Load File Protocol LoadFile Causes the driver to load the requested file.

Loaded Image Protocol Unload Requests an image to unload.

AllocateBuffer Allocates pages that are suitable for a common
buffer mapping.

Attributes Performs an operation on the attributes that this
PCI controller supports.

CopyMem Allows one region of PCI memory space to be
copied to another region of PCI memory space

Flush Flushes all PCI posted write transactions to system
memory.

FreeBuffer Frees pages that were allocated with
AllocateBuffer().

PCI I/O Protocol

GetBarAttributes Gets the attributes that this PCI controller supports
setting on a BAR using SetBarAttributes(),
and retrieves the list of resource descriptors for a
BAR.

January 31, 2006
Version 2.0 1351

Service or Protocol Function Function Description

GetLocation Retrieves this PCI controller’s current PCI bus
number, device number, and function number.

Io.Read Allows BAR relative reads to PCI I/O space.

Io.Write Allows BAR relative writes to PCI I/O space.

Map Provides the PCI controller specific address needed
to access system memory for DMA.

Mem.Read Allows BAR relative reads to PCI memory space.

Mem.Write Allows BAR relative writes to PCI memory space.

Pci.Read Allows PCI controller relative reads to PCI
configuration space.

Pci.Write Allows PCI controller relative writes to PCI
configuration space.

PollIo Polls an address in PCI I/O space until an exit
condition is met, or a timeout occurs.

PollMem Polls an address in PCI memory space until an exit
condition is met, or a timeout occurs

SetBarAttributes Sets the attributes for a range of a BAR on a PCI
controller.

PCI I/O Protocol

Unmap Releases any resources allocated by Map().

AllocateBuffer Allocates pages that are suitable for a common
buffer mapping.

Configuration Gets the current resource settings for this PCI root
bridge

CopyMem Allows one region of PCI root bridge memory space
to be copied to another region of PCI root bridge
memory space.

Flush Flushes all PCI posted write transactions to system
memory.

FreeBuffer Free pages that were allocated with
AllocateBuffer().

GetAttributes Gets the attributes that a PCI root bridge supports
setting with SetAttributes(), and the attributes
that a PCI root bridge is currently using.

Io.Read Allows reads from I/O space.

Io.Write Allows writes to I/O space.

Map Provides the PCI controller specific addresses
needed to access system memory for DMA.

Mem.Read Allows reads from memory mapped I/O space.

Mem.Write Allows writes to memory mapped I/O space.

Pci.Read Allows reads from PCI configuration space.

PCI Root Bridge I/O
Protocol

Pci.Write Allows writes to PCI configuration space

 January 31, 2006
1352 Version 2.0

Service or Protocol Function Function Description

PollIo Polls an address in I/O space until an exit condition
is met, or a timeout occurs.

PollMem Polls an address in memory mapped I/O space until
an exit condition is met, or a timeout occurs.

SetAttributes Sets attributes for a resource range on a PCI root
bridge.

Unmap Releases any resources allocated by Map().

PXE Base Code
Callback Protocol

Callback Callback routine used by the PXE Base Code
Dhcp(), Discover(), Mtftp(), UdpWrite(),
and Arp() functions.

Arp Uses the ARP protocol to resolve a MAC address.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover
/ offer / request / acknowledge) or DHCPv6 S.A.R.R
(solicit / advertise / request / reply) sequence.

Discover Attempts to complete the PXE Boot Server and/or
boot image discovery sequence.

EFI_PXE_BASE_CODE
_CALLBACK

Callback function that is invoked when the PXE
Base Code Protocol is waiting for an event.

Mtftp Is used to perform TFTP and MTFTP services.

SetIpFilter Updates the IP receive filters of a network device
and enables software filtering.

SetPackets Updates the contents of the cached DHCP and
Discover packets.

SetParameters Updates the parameters that affect the operation of
the PXE Base Code Protocol.

SetStationIp Updates the station IP address and/or subnet mask
values.

Start Enables the use of PXE Base Code Protocol
functions.

Stop Disables the use of PXE Base Code Protocol
functions.

UdpRead Reads a UDP packet from a network interface.

PXE Base Code
Protocol

UdpWrite Writes a UDP packet to a network interface.

ConvertPointer Used by EFI components to convert internal pointers
when switching to virtual addressing.

GetNextHigh
MonotonicCount

Returns the next high 32 bits of a platform's
monotonic counter.

GetNextVariableName Enumerates the current variable names.

GetTime Returns the current time and date, and the time-
keeping capabilities of the platform.

GetVariable Returns the value of the specific variable.

Runtime Services

GetWakeupTime Returns the current wakeup alarm clock setting.

January 31, 2006
Version 2.0 1353

Service or Protocol Function Function Description

ResetSystem Resets the entire platform.

SetTime Sets the current local time and date information.

SetVariable Sets the value of the specified variable.

SetVirtualAddressMap Used by an OS loader to convert from physical
addressing to virtual addressing.

SetWakeupTime Sets the system wakeup alarm clock time.

BuildDevicePath Used to allocate and build a device path node for a
SCSI device on a SCSI channel.

GetNextDevice Used to retrieve the list of legal Target IDs for the
SCSI devices on a SCSI channel.

GetTargetLun Used to translate a device path node to a Target ID
and LUN.

PassThru Sends a SCSI Request Packet to a SCSI device that
is connected to the SCSI channel.

ResetChannel Resets the SCSI channel.

Extended SCSI
Passthru Protocol

ResetTarget Resets a SCSI device that is connected to the SCSI
channel.

GetControl Reads the status of the control bits on a serial
device.

Read Receives a buffer of characters from a serial device.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device.

SetControl Sets the control bits on a serial device.

Serial I/O Protocol

Write Sends a buffer of characters to a serial device.

Simple File System
Protocol

OpenVolume Opens the volume for file I/O access.

ReadKeyStroke Reads a keystroke from a simple input device. Simple Input Protocol

Reset Resets a simple input device.

GetStatus Reads the current interrupt status and recycled
transmit buffer status from the network interface.

Initialize Resets the network adapter and allocates the
transmit and receive buffers required by the network
interface; also optionally allows space for additional
transmit and receive buffers to be allocated

MCastIPtoMAC Allows a multicast IP address to be mapped to a
multicast HW MAC address.

NVData Allows read and writes to the NVRAM device
attached to a network interface.

Simple Network
Protocol

Receive Receives a packet from the network interface.

 January 31, 2006
1354 Version 2.0

Service or Protocol Function Function Description

ReceiveFilters Enables and disables the receive filters for the
network interface and, if supported, manages the
filtered multicast HW MAC address list

Reset Resets the network adapter, and reinitializes it with
the parameters that were provided in the previous
call to Initialize().

Shutdown Resets the network adapter and leaves it in a state
safe for another driver to initialize.

Start Changes the network interface from the stopped
state to the started state.

StationAddress Allows the station address of the network interface to
be modified.

Statistics Allows the statistics on the network interface to be
reset and/or collected.

Stop Changes the network interface from the started state
to the stopped state.

Simple Network
Protocol

Transmit Places a packet in the transmit queue of the network
interface.

GetState Retrieves the current state of a pointer device. Simple Pointer
Protocol Reset Resets the pointer device hardware.

ClearScreen Clears the screen with the currently set background
color.

EnableCursor Turns the visibility of the cursor on/off.

OutputString Displays the Unicode string on the device at the
current cursor location.

QueryMode Queries information concerning the output device’s
supported text mode.

Reset Resets the ConsoleOut device.

SetAttribute Sets the foreground and background color of the text
that is output.

SetCursorPosition Sets the current cursor position.

SetMode Sets the current mode of the output device.

Simple Text Output
Protocol

TestString Tests to see if the ConsoleOut device supports this
Unicode string.

Blt Blt a rectangle of pixels on the graphics screen. Blt
stands for BLock Transfer.

QueryMode Returns information for an available graphics mode
that the graphics device and the set of active video
output devices supports.

EFI_GRAPHICS_OUT
PUT_PROTOCOL

SetMode Set the video device into the specified mode and
clears the visible portions of the output display to
black.

January 31, 2006
Version 2.0 1355

Service or Protocol Function Function Description

Fill Header This command is used to fill the media header(s) in
transmit packet(s).

Get Config Info This command is used to retrieve configuration
information about the NIC being controlled by the
UNDI.

Get Init Info This command is used to retrieve initialization
information that is needed by drivers and
applications to initialized UNDI.

Get State This command is used to determine the operational
state of the UNDI.

Get Status This command returns the current interrupt status
and/or the transmitted buffer addresses.

Initialize This command resets the network adapter and
initializes UNDI using the parameters supplied in the
CPB.

Interrupt Enables The Interrupt Enables command can be used to
read and/or change the current external interrupt
enable settings.

MCast IP to MAC Translate a multicast IPv4 or IPv6 address to a
multicast MAC address.

NvData This command is used to read and write (if
supported by NIC H/W) nonvolatile storage on the
NIC.

Receive When the network adapter has received a frame,
this command is used to copy the frame into
driver/application storage.

Receive Filters This command is used to read and change receive
filters and, if supported, read and change the
multicast MAC address filter list.

Reset This command resets the network adapter and
reinitializes the UNDI with the same parameters
provided in the Initialize command.

UNDI Commands

Shutdown The Shutdown command resets the network adapter
and leaves it in a safe state for another driver to
initialize.

Start This command is used to change the UNDI
operational state from stopped to started.

Station Address This command is used to get current station and
broadcast MAC addresses and, if supported, to
change the current station MAC address.

Statistics This command is used to read and clear the NIC
traffic statistics.

UNDI Commands

Stop This command is used to change the UNDI
operational state from started to stopped.

 January 31, 2006
1356 Version 2.0

Service or Protocol Function Function Description

 Transmit The Transmit command is used to place a packet
into the transmit queue.

FatToStr Converts an 8.3 FAT file name in an OEM character
set to a Null-terminated Unicode string.

MetaiMatch Performs a case insensitive comparison between a
Unicode pattern string and a Unicode string.

StriColl Performs a case-insensitive comparison between
two Unicode strings.

StrLwr Converts all the Unicode characters in a Null-
terminated Unicode string to lower case Unicode
characters.

StrToFat Converts a Null-terminated Unicode string to legal
characters in a FAT filename using an OEM
character set.

Unicode Collation
Protocol

StrUpr Converts all the Unicode characters in a Null-
terminated Unicode string to upper case Unicode
characters.

AsyncInterruptTransfer Submits an asynchronous interrupt transfer to an
interrupt endpoint of a USB device.

AsyncIsochronousTransfer Submits nonblocking USB isochronous transfer.

BulkTransfer Submits a bulk transfer to a bulk endpoint of a USB
device.

ClearRootHubPortFeature Clears the feature for the specified root hub port.

ControlTransfer Submits a control transfer to a target USB device.

GetRootHubPortNumber Retrieves the number of root hub ports that are
produced by the USB host controller.

GetRootHubPortStatus Retrieves the status of the specified root hub port.

USB Host Controller
Protocol

GetState Retrieves the current state of the USB host
controller.

IsochronousTransfer Submits isochronous transfer to an isochronous
endpoint of a USB device.

Reset Software reset of USB.

SetRootHubPortFeature Sets the feature for the specified root hub port.

SetState Sets the USB host controller to a specific state.

USB Host Controller
Protocol

SyncInterruptTransfer Submits a synchronous interrupt transfer to an
interrupt endpoint of a USB device.

UsbAsyncInterruptTransfer Nonblock USB interrupt transfer.

UsbAsyncIsochronous
Transfer

Nonblock USB isochronous transfer.

USB I/O Protocol

UsbBulkTransfer Accesses the USB Device through USB Bulk
Transfer Pipe.

January 31, 2006
Version 2.0 1357

Service or Protocol Function Function Description

UsbControlTransfer Accesses the USB Device through USB Control
Transfer Pipe.

UsbGetConfigDescriptor Retrieves the activated configuration descriptor of a
USB device.

UsbGetDeviceDescriptor Retrieves the device descriptor of a USB device.

UsbGetEndpointDescriptor Retrieves the endpoint descriptor of a USB
Controller.

UsbGetInterfaceDescriptor Retrieves the interface descriptor of a USB
Controller.

UsbGetStringDescriptor Retrieves the string descriptor inside a USB Device.

UsbGetSupported
Languages

Retrieves the array of languages that the USB
device supports.

UsbIsochronousTransfer Accesses the USB Device through USB Isochronous
Transfer Pipe.

UsbPortReset Resets and reconfigures the USB controller.

UsbSyncInterruptTransfer Accesses the USB Device through USB
Synchronous Interrupt Transfer Pipe.

 January 31, 2006
1358 Version 2.0

January 31, 2006
Version 2.0 1359

Appendix L
EFI 1.10 Protocol Changes and Deprecation List

L.1 Protocol and GUID Name Changes from EFI 1.10

This appendix lists the Protocol , GUID, and revision identifier name changes and the deprecated
protocols compared to the EFI Specification 1.10. The protocols listed are not Runtime, Reentrant
or MP Safe. Protocols are listed by EFI 1.10 name.

For protocols in the table whose TPL is not <= TPL_NOTIFY:

This function must be called at a TPL level less then or equal to %%%%.

%%%% is TPL_CALLBACK or TPL_APPLICATION. The <= is done via text.

Table 186. Protocol Name changes
EFI 11.0 Protocol Name UEFI 2.0 Protocol Name

EFI_LOADED_IMAGE EFI_LOADED_IMAGE_PROTOCOL

 TPL <= TPL_NOTIFY

New GUID name EFI_LOADED_IMAGE_PROTOCOL_GUID

EFI_DEVICE_PATH EFI_DEVICE_PATH_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_DEVICE_PATH_PROTOCOL_GUID

SIMPLE_INPUT_INTERFACE EFI_SIMPLE_INPUT_PROTOCOL

TPL <= TPL_APPLICATION

New GUID name EFI_SIMPLE_INPUT_PROTOCOL_GUID

SIMPLE_TEXT_OUTPUT_INTERFACE EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID

SERIAL_IO_INTERFACE EFI_SERIAL_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SERIAL_IO_PROTOCOL_GUID

EFI_LOAD_FILE_INTERFACE EFI_LOAD_FILE_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_LOAD_FILE_PROTOCOL_GUID

EFI_FILE_IO_INTERFACE EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_FILE_SYSTEM_PROTOCOL_GUID

EFI_FILE EFI_FILE_PROTOCOL

TPL <= TPL_CALLBACK

 January 31, 2006
1360 Version 2.0

EFI 11.0 Protocol Name UEFI 2.0 Protocol Name

New GUID name EFI_FILE_PROTOCOL_GUID

EFI_DISK_IO EFI_DISK_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_DISK_IO_PROTOCOL_GUID

EFI_BLOCK_IO EFI_BLOCK_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_BLOCK_IO_PROTOCOL_GUID

UNICODE_COLLATION_INTERFACE EFI_UNICODE_COLLATION_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_UNICODE_COLLATION_PROTOCOL_GUID

EFI_SIMPLE_NETWORK EFI_SIMPLE_NETWORK_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SIMPLE_NETWORK_PROTOCOL_GUID

EFI_NETWORK_INTERFACE_IDENTIFIER

_INTERFACE

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID

EFI_PXE_BASE_CODE EFI_PXE_BASE_CODE_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_ PXE_BASE_CODE _PROTOCOL_GUID

EFI_PXE_BASE_CODE_CALLBACK EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID

EFI_DEVICE_IO_INTERFACE EFI_DEVICE_IO_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_DEVICE_IO_PROTOCOL_GUID

Table 187. Revision Identifier Name Changes

EFI 11.0 Revision Identifier Name UEFI 2.0 Revision Identifier Name

EFI_LOADED_IMAGE_INFORMATION_REVISION EFI_LOADED_IMAGE_PROTOCOL_REVISION

SERIAL_IO_INTERFACE_REVISION EFI_SERIAL_IO_PROTOCOL_REVISION

EFI_FILE_IO_INTERFACE_REVISION EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISION

EFI_FILE_REVISION EFI_FILE_PROTOCOL_REVISION

EFI_DISK_IO_INTERFACE_REVISION EFI_DISK_IO_PROTOCOL_REVISION

EFI_BLOCK_IO_INTERFACE_REVISION EFI_BLOCK_IO_PROTOCOL_REVISION

EFI_SIMPLE_NETWORK_INTERFACE_REVISION EFI_SIMPLE_NETWORK_PROTOCOL_REVISION

EFI_NETWORK_INTERFACE_IDENTIFIER_INTERFACE

_REVISION

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

_REVISION

January 31, 2006
Version 2.0 1361

EFI_PXE_BASE_CODE_INTERFACE_REVISION EFI_PXE_BASE_CODE_PROTOCOL_REVISION

EFI_PXE_BASE_CODE_CALLBACK_INTERFACE

_REVISION

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

_REVISION

L.2 Deprecated Protocols

Device I/O Protocol – The support of the Device I/O Protocol (see EFI 1.1 Chapter 18) has been
replaced by the use of the PCI Root Bridge I/O protocols which are described in Chapter 13.2 of
the UEFI 2.0 specification. Note: certain “legacy” EFI applications such as some of the ones that
reside in the EFI Toolkit assume the presence of Device I/O.

 UGA I/O + UGA Draw Protocol – The support of the UGA * Protocols (see EFI 1.1 Section
10.7) have been replaced by the use of the EFI Graphics Output Protocol described in
Chapter 11.7 of the UEFI 2.0 specification.

USB Host Controller Protocol (version that existed for EFI 1.1) – The support of the USB Host
Controller Protocol (see EFI 1.1 Section 14.1) has been replaced by the use of a UEFI 2.0 instance
that covers both USB 1.1 and USB 2.0 support, and is described in Chapter 16.1 of the UEFI 2.0
specification. It replaces the pre-existing protocol definition.

SCSI Passthru Protocol – The support of the SCSI Passthru Protocol (see EFI 1.1 Section 13.1)
has been replaced by the use of the Extended SCSI Passthru Protocol which is described in
Chapter 14.8 of the UEFI 2.0 specification.

BIS Protocol – Remains as an optional protocol.

See the UEFI Differences Document for details.

 January 31, 2006
1362 Version 2.0

January 31, 2006
Version 2.0 1363

Appendix M
Formats--Language Codes and Language Code

Arrays

This appendix lists the formats for language codes and language code arrays.

Specifying individual language codes

The preferred representation of a language code is done via an RFC 3066 language code
identifier*.

*The following alias codes are also supported in addition to RFC 3066:

RFC string Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht

An RFC 3066 language code is represented as a NULL terminated char8 string.

To provide backwards compatibility with preexisting EFI 1.10 drivers, a UEFI platforms may
support deprecated protocols which represent languages in the ISO 639-2 format. This includes
the following protocols: UNICODE_COLLATION_INTERFACE,
EFI_DRIVER_CONFIGURATION_PROTOCOL,

EFI_DRIVER_DIAGNOSTICS_PROTOCOL, and EFI_COMPONENT_NAME_PROTOCOL.
The deprecated LangCodes and Lang global variables may also be supported by a platform for
backwards compatibility.

Specifying language code arrays:

Native RFC 3066 format array:

An array of RFC 3066 character codes is represented as a NULL terminated char8 array of RFC
3066 language code strings. Each of these strings is delimited by a semicolon (';') character. For
example, an array of US English and Traditional Chinese would be represented as the NULL-
terminated string "en-us;zh-Hant”.

 January 31, 2006
1364 Version 2.0

January 31, 2006
Version 2.0 1365

Glossary

_ADR A reserved name in ACPI name space. It refers to an address on a bus that has
standard enumeration. An example would be PCI, where the enumeration
method is described in the PCI Local Bus specification.

_CRS A reserved name in ACPI name space. It refers to the current resource setting of
a device. A _CRS is required for devices that are not enumerated in a standard
fashion. _CRS is how ACPI converts nonstandard devices into Plug and Play
devices.

_HID A reserved name in ACPI name space. It represents a device’s plug and play
hardware ID and is stored as a 32-bit compressed EISA ID. _HID objects are
optional in ACPI. However, a _HID object must be used to describe any device
that will be enumerated by the ACPI driver in the OS. This is how ACPI deals
with non–Plug and Play devices.

_UID A reserved name in ACPI name space. It is a serial number style ID that does
not change across reboots. If a system contains more than one device that reports
the same _HID, each device must have a unique _UID. The _UID only needs to
be unique for device that have the exact same _HID value.

ACPI Device Path
A Device Path that is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described
using ACPI AML in the ACPI name space; this type of node provides linkage to
the ACPI name space.

ACPI Refers to the Advanced Configuration and Power Interface Specification and to
the concepts and technology it discusses. The specification defines a new
interface to the system board that enables the operating system to implement
operating system-directed power management and system configuration.

Base Code (BC) The PXE Base Code, included as a core protocol in EFI, is comprised of a
simple network stack (UDP/IP) and a few common network protocols (DHCP,
Bootserver Discovery, TFTP) that are useful for remote booting machines.

BC See Base Code

Big Endian A memory architecture in which the low-order byte of a multibyte datum is at the
highest address, while the high-order byte is at the lowest address. See Little
Endian.

BIOS Boot Specification Device Path
A Device Path that is used to point to boot legacy operating systems; it is based
on the BIOS Boot Specification, Version 1.01.

 January 31, 2006
1366 Version 2.0

BIOS Parameter Block (BPB)
The first block (sector) of a partition. It defines the type and location of the FAT
File System on a drive.

BIOS Basic Input/Output System. A collection of low-level I/O service routines.

Block I/O Protocol
A protocol that is used during boot services to abstract mass storage devices. It
allows boot services code to perform block I/O without knowing the type of a
device or its controller.

Block Size The fundamental allocation unit for devices that support the Block I/O Protocol.
Not less than 512 bytes. This is commonly referred to as sector size on hard disk
drives.

Boot Device The device handle that corresponds to the device from which the currently
executing image was loaded.

Boot Manager The part of the firmware implementation that is responsible for implementing
system boot policy. Although a particular boot manager implementation is not
specified in this document, such code is generally expected to be able to
enumerate and handle transfers of control to the available OS loaders as well as
UEFI applications and drivers on a given system. The boot manager would
typically be responsible for interacting with the system user, where applicable, to
determine what to load during system startup. In cases where user interaction is
not indicated, the boot manager would determine what to load and, if multiple
items are to be loaded, what the sequencing of such loads would be.

Boot Services Driver
A program that is loaded into boot services memory and stays resident until boot
services terminates.

Boot Services Table
A table that contains the firmware entry points for accessing boot services
functions such as Task Priority Services and Memory Allocation Services.
The table is accessed through a pointer in the System Table.

Boot Services Time
The period of time between platform initialization and the call to
ExitBootServices(). During this time, EFI drivers and applications are
loaded iteratively and the system boots from an ordered list of EFI OS loaders.

Boot Services The collection of interfaces and protocols that are present in the boot
environment. The services minimally provide an OS loader with access to
platform capabilities required to complete OS boot. Services are also available to
drivers and applications that need access to platform capability. Boot services
are terminated once the operating system takes control of the platform.

BPB See BIOS Parameter Block.

January 31, 2006
Version 2.0 1367

CIM See Common Information Model.

Cluster A collection of disk sectors. Clusters are the basic storage units for disk files.
See File Allocation Table.

COFF Common Object File Format, a standard file format for binary images.

Coherency Domain
(1) The global set of resources that is visible to at least one processor in a
platform.
(2) The address resources of a system as seen by a processor. It consists of both
system memory and I/O space.

Common Information Model (CIM)
An object-oriented schema defined by the DMTF. CIM is an information model
that provides a common way to describe and share management information
enterprise-wide.

Console I/O Protocol
A protocol that is used during boot services to handle input and output of text-
based information intended for the system administrator. It has two parts, a
Simple Input Protocol that is used to obtain input from the ConsoleIn device
and a Simple Text Output Protocol that is used to control text-based output
devices. The Console I/O Protocol is also known as the EFI Console I/O
Protocol.

ConsoleIn The device handle that corresponds to the device used for user input in the boot
services environment. Typically the system keyboard.

ConsoleOut The device handle that corresponds to the device used to display messages to the
user from the boot services environment. Typically a display screen.

Desktop Management Interface (DMI)
A platform management information framework, built by the DMTF and
designed to provide manageability for desktop and server computing platforms
by providing an interface that is:
(1) independent of any specific desktop operating system, network operating
system, network protocol, management protocol, processor, or hardware
platform;
(2) easy for vendors to implement; and
(3) easily mapped to higher-level protocols.

Desktop Management Task Force (DMTF)
The DMTF is a standards organization comprised of companies from all areas of
the computer industry. Its purpose is to create the standards and infrastructure
for cost-effective management of PC systems.

Device Handle A handle points to a list of one or more protocols that can respond to requests for
services for a given device referred to by the handle.

 January 31, 2006
1368 Version 2.0

Device I/O Protocol
A protocol that is used during boot services to access memory and I/O. Also
called the EFI Device I/O Protocol.

Device Path Instance
When an environment variable represents multiple devices, it is possible for a
device path to contain multiple device paths. An example of this would be the
ConsoleOut environment variable that consists of both a VGA console and a
serial output console. This environment variable would describe a console output
stream that would send output to both devices and therefore has a Device Path
that consists of two complete device paths. Each of these paths is a device path
instance.

Device Path Node
A variable-length generic data structure that is used to build a device path.
Nodes are distinguished by type, subtype, length, and path-specific data. See
Device Path.

Device Path Protocol
A protocol that is used during boot services to provide the information needed to
construct and manage Device Paths. Also called the EFI Device Path Protocol.

Device Path A variable-length binary data structure that is composed of variable-length
generic device path nodes and is used to define the programmatic path to a
logical or physical device. There are six major types of device paths: Hardware
Device Path, ACPI Device Path, Messaging Device Path, Media Device Path,
BIOS Boot Specification Device Path, and End Of Hardware Device Path.

DHCP See Dynamic Host Configuration Protocol.

Disk I/O Protocol
A protocol that is used during boot services to abstract Block I/O devices to
allow non-block-sized I/O operations. Also called the EFI Disk I/O Protocol.

DMI See Desktop Management Interface.

DMTF See Desktop Management Task Force.

Dynamic Host Configuration Protocol (DHCP)
A protocol that is used to get information from a configuration server. DHCP is
defined by the Desktop Management Task Force, not EFI.

EBC Image Executable EBC image following the PE32 file format.

EBC See EFI Byte Code.

EFI Extensible Firmware Interface. An interface between the operating system (OS)
and the platform firmware.

January 31, 2006
Version 2.0 1369

EFI Application Modular code that may be loaded in the boot services environment to accomplish
platform specific tasks within that environment. Examples of possible
applications might include diagnostics or disaster recovery tools shipped with a
platform that run outside the OS environment. Applications may be loaded in
accordance with policy implemented by the platform firmware to accomplish a
specific task. Control is then returned from the application to the platform
firmware.

EFI Byte Code (EBC)
The binary encoding of instructions as output by the EBC C compiler and linker.
The EBC image is executed by the interpreter.

EFI Driver A module of code typically inserted into the firmware via protocol interfaces.
Drivers may provide device support during the boot process or they may provide
platform services. It is important not to confuse drivers in this specification with
OS drivers that load to provide device support once the OS takes control of the
platform.

EFI File A container consisting of a number of blocks that holds an image or a data file
within a file system that complies with this specification.

EFI Hard Disk A hard disk that supports the new EFI partitioning scheme (GUID Partitions).

EFI OS Loader The first piece of operating system code loaded by the firmware to initiate the OS
boot process. This code is loaded at a fixed address and then executed. The OS
takes control of the system prior to completing the OS boot process by calling the
interface that terminates all boot services.

EFI-compliant Refers to a platform that complies with this specification.

EFI-conformant See EFI-compliant.

End of Hardware Device Path
A Device Path which, depending on the subtype, is used to indicate the end of the
Device Path instance or Device Path structure.

Enhanced Mode (EM)
The 64-bit architecture extension that makes up part of the Intel® Itanium®
architecture.

Event Services The set of functions used to manage events. Includes CheckEvent(),
CreateEvent(), CloseEvent(), SignalEvent(), and
WaitForEvent().

Event An EFI data structure that describes an “event”—for example, the expiration
of a timer.

 January 31, 2006
1370 Version 2.0

Event Services The set of functions used to manage events. Includes CheckEvent(),
CreateEvent(), CreateEventEx(),CloseEvent(),
SignalEvent(), and WaitForEvent().

FAT File System The file system on which the EFI file system is based. See File Allocation
Table and System Partition.

FAT See File Allocation Table.

File Allocation Table (FAT)
A table that is used to identify the clusters that make up a disk file. File
allocation tables come in three flavors: FAT12, which uses 12 bits for cluster
numbers; FAT16, which uses 16 bits; and FAT32, which allots 32 bits but only
uses 28 (the other 4 bits are reserved for future use).

File Handle Protocol
A component of the File System Protocol. It provides access to a file or
directory. Also called the EFI File Handle Protocol.

File System Protocol
A protocol that is used during boot services to obtain file-based access to a
device. It has two parts, a Simple File System Protocol that provides a minimal
interface for file-type access to a device, and a File Handle Protocol that
provides access to a file or directory.

Firmware Any software that is included in read-only memory (ROM).

Globally Unique Identifier (GUID)
A 128-bit value used to differentiate services and structures in the boot services
environment. The format of a GUID is defined in Appendix A. See Protocol.

GUID Partition Entry
A data structure that characterizes a GUID Partition. Among other things, it
specifies the starting and ending LBA of the partition.

GUID Partition Table Header
The header in a GUID Partition Table. Among other things, it contains the
number of partition entries in the table and the first and last blocks that can be
used for the entries.

GUID Partition Table
A data structure that describes a GUID Partition. It consists of an GUID
Partition Table Header and, typically, at least one GUID Partition Entry.
There are two partition tables on an EFI Hard Disk: the Primary Partition Table
(located in block 1 of the disk) and a Backup Partition Table (located in the last
block of the disk). The Backup Table is a copy of the Primary Table.

GUID Partition A contiguous group of sectors on an EFI Hard Disk.

January 31, 2006
Version 2.0 1371

Handle See Device Handle.

Hardware Device Path
A Device Path that defines how a hardware device is attached to the resource
domain of a system (the resource domain is simply the shared memory, memory
mapped I/O, and I/O space of the system).

IA-32 See Intel Architecture-32.

Image Handle A handle for a loaded image; image handles support the loaded image protocol.

Image Handoff State
The information handed off to a loaded image as it begins execution; it consists
of the image’s handle and a pointer to the image’s system table.

Image Header The initial set of bytes in a loaded image. They define the image’s encoding.

Image Services The set of functions used to manage EFI images. Includes LoadImage(),
StartImage(), UnloadImage(), Exit(), ExitBootServices(),
and EFI_IMAGE_ENTRY_POINT.

Image (1) An executable file stored in a file system that complies with this
specification. Images may be drivers, applications or OS loaders. Also called
an EFI Image.

(2) Executable binary file containing EBC and data. Output by the EBC linker.

Intel® Architecture-32 (IA-32)
The 32-bit and 16-bit architecture described in the Intel Architecture Software
Developer’s Manual. IA-32 is the architecture of the Intel® P6 family of
processors, which includes the Intel® Pentium® Pro, Pentium II, Pentium III, and
Pentium 4 processors.

Intel® Itanium® Architecture
The Intel architecture that has 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set. This architecture is
described in the Itanium™ Architecture Software Developer’s Manual.

Interpreter The software implementation that decodes EBC binary instructions and executes
them on a VM. Also called EBC interpreter.

LAN On Motherboard (LOM)
This is a network device that is built onto the motherboard (or baseboard) of the
machine.

Legacy Platform A platform which, in the interests of providing backward-compatibility, retains
obsolete technology.

LFN See Long File Names.

 January 31, 2006
1372 Version 2.0

Little Endian A memory architecture in which the low-order byte of a multibyte datum is at the
lowest address, while the high-order byte is at the highest address. See Big
Endian.

Load File Protocol
A protocol that is used during boot services to find and load other modules
of code.

Loaded Image Protocol
A protocol that is used during boot services to obtain information about a loaded
image. Also called the EFI Loaded Image Protocol.

Loaded Image A file containing executable code. When started, a loaded image is given its
image handle and can use it to obtain relevant image data.

LOM See LAN On Motherboard.

Long File Names (LFN)
Refers to an extension to the FAT File System that allows file names to be
longer than the original standard (eight characters plus a three-character
extension).

Machine Check Abort (MCA)
The system management and error correction facilities built into the Intel Itanium
processors.

Master Boot Record (MBR)
The data structure that resides on the first sector of a hard disk and defines the
partitions on the disk.

MBR See Master Boot Record.

MCA See Machine Check Abort.

Media Device Path
A Device Path that is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define
which partition on a hard drive was being used.

Memory Allocation Services
The set of functions used to allocate and free memory, and to retrieve the
memory map. Includes AllocatePages(), FreePages(),
AllocatePool(), FreePool(), and GetMemoryMap().

January 31, 2006
Version 2.0 1373

Memory Map A collection of structures that defines the layout and allocation of system
memory during the boot process. Drivers and applications that run during the
boot process prior to OS control may require memory. The boot services
implementation is required to ensure that an appropriate representation of
available and allocated memory is communicated to the OS as part of the hand-
off of control.

Memory Type One of the memory types defined by UEFI for use by the firmware and UEFI
applications. Among others, there are types for boot services code, boot services
data, runtime services code, and runtime services data. Some of the types are
used for one purpose before ExitBootServices() is called and another
purpose after.

Messaging Device Path
A Device Path that is used to describe the connection of devices outside the
Coherency Domain of the system. This type of node can describe physical
messaging information (e.g., a SCSI ID) or abstract information (e.g., networking
protocol IP addresses).

Miscellaneous Services
Various functions that are needed to support the EFI environment. Includes
InstallConfigurationTable(), ResetSystem(), Stall(),
SetWatchdogTimer(), GetNextMonotonicCount(), and
GetNextHighMonotonicCount().

MTFTP See Multicast Trivial File Transfer Protocol.

Multicast Trivial File Transfer Protocol (MTFTP)
A protocol used to download a Network Boot Program to many clients
simultaneously from a TFTP server.

Name Space In general, a collection of device paths; in an EFI Device Path.

Native Code Low level instructions that are native to the host processor. As such, the
processor executes them directly with no overhead of interpretation. Contrast this
with EBC, which must be interpreted by native code to operate on a VM.

NBP See Network Bootstrap Program or Network Boot Program.

Network Boot Program
A remote boot image downloaded by a PXE client using the Trivial File
Transfer Protocol or the Multicast Trivial File Transfer Protocol. See
Network Bootstrap Program.

 January 31, 2006
1374 Version 2.0

Network Bootstrap Program (NBP)
This is the first program that is downloaded into a machine that has selected a
PXE capable device for remote boot services.

A typical NBP examines the machine it is running on to try to determine if the
machine is capable of running the next layer (OS or application). If the machine
is not capable of running the next layer, control is returned to the EFI boot
manager and the next boot device is selected. If the machine is capable, the next
layer is downloaded and control can then be passed to the downloaded program.

Though most NBPs are OS loaders, NBPs can be written to be standalone
applications such as diagnostics, backup/restore, remote management agents,
browsers, etc.

Network Interface Card (NIC)
Technically, this is a network device that is inserted into a bus on the
motherboard or in an expansion board. For the purposes of this document, the
term NIC will be used in a generic sense, meaning any device that enables a
network connection (including LOMs and network devices on external buses
(USB, 1394, etc.)).

NIC See Network Interface Card.

Page Memory A set of contiguous pages. Page memory is allocated by AllocatePages()
and returned by FreePages().

Partition Discovery
The process of scanning a block device to determine whether it contains a
Partition.

Partition See System Partition.

PC-AT Refers to a PC platform that uses the AT form factor for their motherboards.

PCI Bus Driver Software that creates a handle for every PCI controller on a PCI Host Bus
Controller and installs both the PCI I/O Protocol and the Device Path Protocol
onto that handle. It may optionally perform PCI Enumeration if resources have
not already been allocated to all the PCI Controllers on a PCI Host Bus
Controller. It also loads and starts any UEFI drivers found in any PCI Option
ROMs discovered during PCI Enumeration. If a driver is found in a PCI Option
ROM, the PCI Bus Driver will also attach the Bus Specific Driver Override
Protocol to the handle for the PCI Controller that is associated with the PCI
Option ROM that the driver was loaded from.

PCI Bus A collection of up to 32 physical PCI Devices that share the same physical PCI
bus. All devices on a PCI Bus share the same PCI Configuration Space.

January 31, 2006
Version 2.0 1375

PCI Configuration Space
The configuration channel defined by PCI to configure PCI Devices into the
resource domain of the system. Each PCI device must produce a standard set of
registers in the form of a PCI Configuration Header, and can optionally produce
device specific registers. The registers are addressed via Type 0 or Type 1 PCI
Configuration Cycles as described by the PCI Specification. The PCI
Configuration Space can be shared across multiple PCI Buses. On most PC-AT
architecture systems and typical Intel® chipsets, the PCI Configuration Space is
accessed via I/O ports 0xCF8 and 0xCFC. Many other implementations are
possible.

PCI Controller A hardware components that is discovered by a PCI Bus Driver, and is managed
by a PCI Device Driver. PCI Function and PCI Controller are used
equivalently in this document.

PCI Device Driver
Software that manages one or more PCI Controllers of a specific type. A driver
will use the PCI I/O Protocol to produce a device I/O abstraction in the form of
another protocol (i.e. Block I/O, Simple Network, Simple Input, Simple Text
Output, Serial I/O, Load File).

PCI Device A collection of up to 8 PCI Functions that share the same PCI Configuration
Space. A PCI Device is physically connected to a PCI bus.

PCI Enumeration
The process of assigning resources to all the PCI Controllers on a given PCI
Host Bus Controller. This includes PCI Bus Number assignments, PCI
Interrupt assignments, PCI I/O resource allocation, the PCI Memory resource
allocation, the PCI Prefetchable Memory resource allocation, and miscellaneous
PCI DMA settings.

PCI Function A controller that provides some type of I/O services. It consumes some
combination of PCI I/O, PCI Memory, and PCI Prefetchable Memory regions,
and up to 256 bytes of the PCI Configuration Space. The PCI Function is the
basic unit of configuration for PCI.

PCI Host Bus Controller
A chipset component that produces PCI I/O, PCI Memory, and PCI Prefetchable
Memory regions in a single Coherency Domain. A PCI Host Bus Controller is
composed of one or more PCI Root Bridges.

PCI I/O Protocol A software interface that provides access to PCI Memory, PCI I/O, and PCI
Configuration spaces for a PCI Controller. It also provides an abstraction for PCI
Bus Master DMA.

 January 31, 2006
1376 Version 2.0

PCI Option ROM
A ROM device that is accessed through a PCI Controller, and is described in the
PCI Controller’s Configuration Header. It may contain one or more PCI Device
Drivers that are used to manage the PCI Controller.

PCI Root Bridge I/O Protocol
A software abstraction that provides access to the PCI I/O, PCI Memory, and PCI
Prefetchable Memory regions in a single Coherency Domain.

PCI Root Bridge A chipset component(s) that produces a physical PCI Local Bus.

PCI Segment A collection of up to 256 PCI Buses that share the same PCI Configuration
Space. PCI Segment is defined in Section 6.5.6 of the ACPI 2.0 Specification as
the _SEG object. The SAL_PCI_CONFIG_READ and
SAL_PCI_CONFIG_WRITE procedures defined in chapter 9 of the SAL
Specification define how to access the PCI Configuration Space in a system that
supports multiple PCI Segments. If a system only supports a single PCI Segment
the PCI Segment number is defined to be zero. The existence of PCI Segments
enables the construction of systems with greater than 256 PCI buses.

Pool Memory A set of contiguous bytes. A pool begins on, but need not end on, an “8-byte”
boundary. Pool memory is allocated in pages—that is, firmware allocates
enough contiguous pages to contain the number of bytes specified in the
allocation request. Hence, a pool can be contained within a single page or extend
across multiple pages. Pool memory is allocated by AllocatePool() and
returned by FreePool().

January 31, 2006
Version 2.0 1377

Preboot Execution Environment (PXE)
A means by which agents can be loaded remotely onto systems to perform
management tasks in the absence of a running OS. To enable the interoperability
of clients and downloaded bootstrap programs, the client preboot code must
provide a set of services for use by a downloaded bootstrap. It also must ensure
certain aspects of the client state at the point in time when the bootstrap begins
executing.

The complete PXE specification covers three areas; the client, the network and
the server.
 Client
 - Makes network devices into bootable devices.
 - Provides APIs for PXE protocol modules in EFI and for universal
 drivers in the OS.
 Network
 - Uses existing technology: DHCP, TFTP, etc.
 - Adds “vendor-specific” tags to DHCP to define PXE-specific operation
 within DHCP.
 - Adds multicast TFTP for high bandwidth remote boot applications.
 - Defines Bootserver discovery based on DHCP packet format.
 Server
 Bootserver: Responds to Bootserver discovery requests and serves up
 remote boot images.
 proxyDHCP: Used to ease the transition of PXE clients and servers into
 existing network infrastructure. proxyDHCP provides the additional
 DHCP information that is needed by PXE clients and Bootservers
 without making changes to existing DHCP servers.
 MTFTP: Adds multicast support to a TFTP server.
 Plug-In Modules: Example proxyDHCP and Bootservers provided in
 the PXE SDK (software development kit) have the ability to take plug-
 in modules (PIMs). These PIMs are used to change/enhance the
 capabilities of the proxyDHCP and Bootservers.

Protocol Handler Services
The set of functions used to manipulate handles, protocols, and protocol
interfaces. Includes InstallProtocolInterface(),
UninstallProtocolInterface(),
ReinstallProtocolInterface(), HandleProtocol(),
RegisterProtocolNotify(), LocateHandle(), and
LocateDevicePath().

Protocol Handler
A function that responds to a call to a HandleProtocol request for a given
handle. A protocol handler returns a protocol interface structure.

 January 31, 2006
1378 Version 2.0

Protocol Interface Structure
The set of data definitions and functions used to access a particular type of
device. For example, BLOCK_IO is a protocol that encompasses interfaces to
read and write blocks from mass storage devices. See Protocol.

Protocol Revision Number
The revision number associated with a protocol. See Protocol.

Protocol The information that defines how to access a certain type of device during boot
services. A protocol consists of a GUID, a protocol revision number, and a
protocol interface structure. The interface structure contains data definitions and
a set of functions for accessing the device. A device can have multiple protocols.
Each protocol is accessible through the device’s handle.

PXE Base Code Protocol
A protocol that is used to control PXE-compatible devices. It may be used by the
firmware’s boot manager to support booting from remote locations. Also called
the EFI PXE Base Code Protocol.

PXE See Preboot Execution Environment.

Read-Only Memory (ROM)
When used with reference to the UNDI specification, ROM refers to a
nonvolatile memory storage device on a NIC.

ROM See Read-Only Memory.

Runtime Services Driver
A program that is loaded into runtime services memory and stays resident during
runtime.

Runtime Services Table
A table that contains the firmware entry points for accessing runtime services
functions such as Time Services and Virtual Memory Services. The table is
accessed through a pointer in the System Table.

Runtime Services
Interfaces that provide access to underlying platform specific hardware that may
be useful during OS runtime, such as timers. These services are available during
the boot process but also persist after the OS loader terminates boot services.

SAL See System Abstraction Layer.

Serial I/O Protocol
A protocol that is used during boot services to abstract byte stream devices—that
is, to communicate with character-based I/O devices.

January 31, 2006
Version 2.0 1379

Simple File System Protocol
A component of the File System Protocol. It provides a minimal interface for
file-type access to a device.

Simple Input Protocol
A protocol that is used to obtain input from the ConsoleIn device. It is one of
two protocols that make up the Console I/O Protocol.

Simple Network Protocol
A protocol that is used to provide a packet-level interface to a network adapter.
Also called the EFI Simple Network Protocol.

Simple Text Output Protocol
A protocol that is used to control text-based output devices. It is one of two
protocols that make up the Console I/O Protocol.

SMBIOS See System Management BIOS.

StandardError The device handle that corresponds to the device used to display error messages
to the user from the boot services environment.

Status Codes Success, error, and warning codes returned by boot services and runtime services
functions.

String All strings in this specification are implemented in Unicode.

System Abstraction Layer (SAL)
Firmware that abstracts platform implementation differences, and provides the
basic platform software interface to all higher level software.

System Management BIOS (SMBIOS)
A table-based interface that is required by the Wired for Management Baseline
Specification. It is used to relate platform-specific management information to
the OS or to an OS-based management agent.

System Partition A section of a block device that is treated as a logical whole. For a hard disk
with a legacy partitioning scheme, it is a contiguous grouping of sectors whose
starting sector and size are defined by the Master Boot Record. For an EFI
Hard Disk, it is a contiguous grouping of sectors whose starting sector and size
are defined by the GUID Partition Table Header and the associated GUID
Partition Entries. For “El Torito” devices, it is a logical device volume. For a
diskette (floppy) drive, it is defined to be the entire medium (the term “diskette”
includes legacy 3.5” diskette drives as well as newer media such as the Iomega
Zip drive). System Partitions can reside on any medium that is supported by EFI
boot services. System Partitions support backward compatibility with legacy
Intel architecture systems by reserving the first block (sector) of the partition for
compatibility code.

 January 31, 2006
1380 Version 2.0

System Table
Table that contains the standard input and output handles for a UEFI application,
as well as pointers to the boot services and runtime services tables. It may also
contain pointers to other standard tables such as the ACPI, SMBIOS, and SAL
System tables. A loaded image receives a pointer to its system table when it
begins execution. Also called the EFI System Table.

Task Priority Level (TPL)
The boot services environment exposes three task priority levels: “normal,”
“callback,” and “notify.”

Task Priority Services
The set of functions used to manipulate task priority levels. Includes
RaiseTPL() and RestoreTPL().

TFTP See Trivial File Transport Protocol.

Time Format The format for expressing time in an EFI-compliant platform. For more
information, see Appendix A.

Time Services The set of functions used to manage time. Includes GetTime(), SetTime(),
GetWakeupTime(), and SetWakeupTime().

Timer Services The set of functions used to manipulate timers. Contains a single function,
SetTimer().

TPL See Task Priority Level.

Trivial File Transport Protocol (TFTP)
A protocol used to download a Network Boot Program from a TFTP server.

UNDI See Universal Network Device Interface.

Unicode Collation Protocol
A protocol that is used during boot services to perform case-insensitive
comparisons of Unicode strings.

Unicode An industry standard internationalized character set used for human readable
message display.

Universal Network Device Interface (UNDI)
UNDI is an architectural interface to NICs. Traditionally NICs have had custom
interfaces and custom drivers (each NIC had a driver for each OS on each
platform architecture). Two variations of UNDI are defined in this specification:
H/W UNDI and S/W UNDI. H/W UNDI is an architectural hardware interface to
a NIC. S/W UNDI is a software implementation of the H/W UNDI.

January 31, 2006
Version 2.0 1381

Universal Serial Bus (USB)
A bi-directional, isochronous, dynamically attachable serial interface for adding
peripheral devices such as serial ports, parallel ports, and input devices on a
single bus.

USB Bus Driver Software that enumerates and creates a handle for each newly attached USB
Controller and installs both the USB I/O Protocol and the Device Path Protocol
onto that handle, starts that device driver if applicable. For each newly detached
USB Controller, the device driver is stopped, the USB I/O Protocol and the
Device Path Protocol are uninstalled from the device handle, and the device
handle is destroyed.

USB Bus A collection of up to 127 physical USB Devices that share the same physical
USB bus. All devices on a USB Bus share the bandwidth of the USB Bus.

USB Controller A hardware component that is discovered by a USB Bus Driver, and is managed
by a USB Device Driver. USB Interface and USB Controller are used
equivalently in this document.

USB Device Driver
Software that manages one or more USB Controller of a specific type. A driver
will use the USB I/O Protocol to produce a device I/O abstraction in the form of
another protocol (i.e. Block I/O, Simple Network, Simple Input, Simple Text
Output, Serial I/O, Load File).

USB Device A USB peripheral that is physically attached to the USB Bus.

USB Enumeration
A periodical process to search the USB Bus to detect if there have been any USB
Controller attached or detached. If an attach event is detected, then the USB
Controllers device address is assigned, and a child handle is created. If a detach
event is detected, then the child handle is destroyed.

 January 31, 2006
1382 Version 2.0

USB Host Controller
Moves data between system memory and devices on the USB Bus by processing
data structures and generating the USB transactions. For USB 1.1, there are
currently two types of USB Host Controllers: UHCI and OHCI.

USB Hub A special USB Device through which more USB devices can be attached to the
USB Bus.

USB I/O Protocol
A software interface that provides services to manage a USB Controller, and
services to move data between a USB Controller and system memory.

USB Interface The USB Interface is the basic unit of a physical USB Device.

USB See Universal Serial Bus.

Variable Services
The set of functions used to manage variables. Includes GetVariable(),
SetVariable(), and GetNextVariableName().

Virtual Memory Services
The set of functions used to manage virtual memory. Includes
SetVirtualAddressMap() and ConvertPointer().

VM The Virtual Machine, a pseudo processor implementation consisting of registers
which are manipulated by the interpreter when executing EBC instructions.

Watchdog Timer
An alarm timer that may be set to go off. This can be used to regain control in
cases where a code path in the boot services environment fails to or is unable to
return control by the expected path.

WfM See Wired for Management.

Wired for Management (WfM)
Refers to the Wired for Management Baseline Specification. The Specification
defines a baseline for system manageability issues; its intent is to help lower the
cost of computer ownership.

x64 Processors that are compatible with instruction sets and operation modes as
exemplified by the AMD64 or Intel® Extended Memory 64 Technology
(Intel® EM64T) architecture.

January 31, 2006
Version 2.0 1383

References

Related Information

The following publications and sources of information may be useful to you or are referred to by
this specification:

• [BASE64] RFC 1521: MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies. Section 5.2: Base64
Content-Transfer-Encoding. ftp://ftp.isi.edu/in-notes/rfc1521.txt

• [PKCS] The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA: RSA
Data Security, Inc.

• [RFC 1700] J. Reynolds, J. Postel: Assigned Numbers | ISI, October 1994
• [RFC 2460] Internet Protocol, Version 6 (IPv6) Specification,

http://www.faqs.org/rfcs/rfc2460.html
• [RFC 791] Internet Protocol DARPA Internet Program Protocol (IPv4) Specification,

September 1981, http://www.faqs.org/rfcs/rfc791.html
• [SM spec] Common Security: CDSA and CSSM, Version 2 (with corrigenda), was Signed

Manifest Specification, The Open Group, May 2000.
http://www.opengroup.org/pubs/catalog/c914.htm

• “El Torito” Bootable CD-ROM Format Specification, Version 1.0, Phoenix Technologies,
Ltd., IBM Corporation, 1994, http://www.phoenix.com/en/support/white+papers-specs/

• Advanced Configuration and Power Interface Specification, Intel, Microsoft, Toshiba,
Compaq, and Phoenix, Revision 2.0, July 27, 2000, http://acpi.info/index.html

• Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt. Refer to Appendix E,
“32/64-Bit UNDI Specification,” for more information.

• Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000,
http://www.acpi.info/spec.htm

• Assigned Numbers – Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc1700.txt. Refer to Appendix E, “32/64-Bit UNDI Specification,” for
more information.

• BIOS Boot Specification Version 1.01, Compaq Computer Corporation, Phoenix Technologies
Ltd., Intel Corporation, 1996, http://www.phoenix.com/en/support/white+papers-specs/

• Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt - This reference is included for
backward compatibility. BC protocol supports DHCP and BOOTP. Refer to Appendix E,
“32/64-Bit UNDI Specification,” for more information.

• CAE Specification [UUID], DCE 1.1:Remote Procedure Call, Document Number C706,
Universal Unique Identifier Appendix, Copyright © 1997, The Open Group,
http://www.opengroup.org/onlinepubs/9629399/toc.htm

• Clarification to Plug and Play BIOS Specification Version 1.0,
http://www.microsoft.com/hwdev/tech/pnp/

ftp://ftp.isi.edu/in-notes/rfc1521.txt
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc791.html
http://www.opengroup.org/pubs/catalog/c914.htm
http://www.phoenix.com/en/support/white+papers-specs/
http://acpi.info/index.html
http://www.ietf.org/rfc/rfc0826.txt
http://www.acpi.info/spec.htm
http://www.ietf.org/rfc/rfc1700.txt
http://www.phoenix.com/en/support/white+papers-specs/
http://www.ietf.org/rfc/rfc0951.txt
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.microsoft.com/hwdev/tech/pnp/

 January 31, 2006
1384 Version 2.0

• Dynamic Host Configuration Protocol – DHCP for Ipv4 (protocol:
http://www.ietf.org/rfc/rfc2131.txt, options: http://www.ietf.org/rfc/rfc2132.txt). Refer to
Appendix E, “32/64-Bit UNDI Specification,” for more information.

• EFI Specification Version 1.02, Intel Corporation, 2000,
http://developer.intel.com/technology/efi.

• File Verification Using CRC, Mark R. Nelson, Dr. Dobbs, May 1994
• Hardware Design Guide Version 3.0 for Microsoft Windows 2000 Server, Intel Corporation,

Microsoft Corporation, 2000, http://developer.intel.com/design/servers/desguide/hdgv3.htm
• IA-32 Intel Architecture Software Developer’s Manual, Intel Corporation, 2001,

http://www.intel.com/design/pentium4/manuals/
• Information Technology — BIOS Enhanced Disk Drive Services (EDD), working draft

T13/1386D, Revision 5a, September 28, 2000, http://t13.org/project/d1386r5a.pdf
• Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture,

Rev. 1.0, Order number 245317, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/itanium/family/

• Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev. 1.0,
Order number 245318, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/itanium/family/

• Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 1.0, Order number 245319, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/itanium/family/

• Itanium® Architecture Software Developer’s Manual, Volume 4: Itanium Processor
Programmer’s Guide, Rev. 1.0, Order number 245320, Intel Corporation, January 2000. Also
available at http://developer.intel.com/design/itanium/family/

• Itanium® Software Conventions and Runtime Architecture Guide, Order number 245358, Intel
Corporation, January, 2000. Also available at http://developer.intel.com/design/itanium/family/

• Itanium® System Abstraction Layer Specification, Available at
http://developer.intel.com/design/itanium/family/

• IEEE 1394 Specification, http://www.1394ta.org/Technology/Specifications/specifications.htm
• Internet Control Message Protocol – ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt.

ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt. Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• Internet Engineering Task Force – http://www.ietf.org/. Refer to Appendix E, “32/64-Bit
UNDI Specification,” for more information.

• Internet Group Management Protocol – http://www.ietf.org/rfc/rfc2236.txt . Refer to
Appendix E, “32/64-Bit UNDI Specification,” for more information.

• Internet Protocol - Ipv4: http://www.ietf.org/rfc/rfc0791.txt. Ipv6:
http://www.ietf.org/rfc/rfc2460.txt & http://www.ipv6.org. Refer to Appendix E, “32/64-Bit
UNDI Specification,” for more information.

http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://developer.intel.com/technology/efi
http://developer.intel.com/design/servers/desguide/hdgv3.htm
http://www.intel.com/design/pentium4/manuals/
http://t13.org/project/d1386r5a.pdf
http://developer.intel.com/design/itanium/index.htm
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://www.1394ta.org/Technology/Specifications/specifications.htm
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/
http://www.ietf.org/rfc/rfc2236.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org/

January 31, 2006
Version 2.0 1385

• ISO 639-2:1998. Codes for the Representation of Names of Languages – Part2: Alpha-3 code,
http://www.iso.ch/

• ISO/IEC 3309:1991(E), Information Technology - Telecommunications and information
exchange between systems - High-level data link control (HDLC) procedures - Frame
structure, International Organization For Standardization, Fourth edition 1991-06-01

• ITU-T Rec. V.42, Error-Correcting Procedures for DCEs using asynchronous-to-synchronous
conversion, October, 1996

• Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03,
Microsoft Corporation, December 6, 2000, http://www.microsoft.com/hwdev/specs/

• Microsoft Portable Executable and Common Object File Format Specification, Version 6.0,
http://www.microsoft.com/hwdev/specs/, Microsoft Corporation, May 25, 2000

• OSTA Universal Disk Format Specification, Revision 2.00, Optical Storage Technology
Association, 1998, http://www.osta.org/specs/

• PCI BIOS Specification, Revision 2.1, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/specifications

• PCI Hot-Plug Specification Revision 1.0, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/specifications

• PCI Local Bus Specification Revision 2.2, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/specifications

• Plug and Play BIOS Specification, Version 1.0A, Compaq Computer Corporation, Phoenix
Technologies, Ltd., Intel Corporation, 1994, http://www.microsoft.com/hwdev/tech/pnp/

• Plug and Play – http://www.phoenix.com/en/support/white+papers-specs/ Refer to Appendix
E, “32/64-Bit UNDI Specification,” for more information.

• Portable Executable and Common Object File Format Specification. See
http://www.microsoft.com/hwdev/hardware/PECOFF.asp

• POST Memory Manager Specification, Version 1.01, Phoenix Technologies Ltd., Intel
Corporation, 1997, http://www.phoenix.com/en/support/white+papers-specs/

• Preboot Execution Environment (PXE) Specification, Version 2.1. Intel Corporation, 1999.
Available at ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf.

• Request For Comments – http://www.ietf.org/rfc.html and
http://www.keywave.ad.jp/RFC/index.html. Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• SYSID BIOS Support Interface Requirements, Version 1.2, Intel Corporation, 1997,
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

• SYSID Programming Interface Version 1.2,
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

• System Management BIOS Reference Specification, Version 2.3, American Megatrends Inc.,
Award Software International Inc., Compaq Computer Corporation, Dell Computer
Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines
Corporation, Phoenix Technologies Limited, and SystemSoft Corporation, 1977, 1998,
http://www.dmtf.org/standards/bios.php or
http://www.phoenix.com/en/support/white+papers-specs/

• Transmission Control Protocol – TCPv4: http://www.ietf.org/rfc/rfc0793.txt. TCPv6:
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt. Refer to Appendix E,“32/64-Bit UNDI Specification,”
for more information.

http://www.iso.ch/
http://www.microsoft.com/hwdev/specs/
http://www.microsoft.com/HWDEV/hardware/pecoffeula.htm
http://www.osta.org/specs/
http://www.pcisig.com/specifications
http://www.pcisig.com/tech/index.html
http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
http://www.microsoft.com/hwdev/tech/pnp/
http://www.phoenix.com/en/support/white+papers-specs/
http://www.microsoft.com/hwdev/hardware/PECOFF.asp
http://www.phoenix.com/en/support/white+papers-specs/
ftp://download.intel.com/ial/wfm/pxespec.pdf
http://www.ietf.org/rfc.html
http://www.keywave.ad.jp/RFC/index.html
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://developer.intel.com/ial/WfM/design/BIBLIOG.HTM
http://www.dmtf.org/standards/bios.php
http://www.phoenix.com/en/support/white+papers-specs/
http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt

 January 31, 2006
1386 Version 2.0

• Trivial File Transfer Protocol – TFTP (protocol: http://www.ietf.org/rfc/rfc1350.txt, options:
http://www.ietf.org/rfc/rfc2347.txt, http://www.ietf.org/rfc/rfc2348.txt and
http://www.ietf.org/rfc/rfc2349.txt). Refer to Appendix E, “32/64-Bit UNDI Specification,” for
more information.

• User Datagram Protocol – UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt. UDP over
IPv6: http://www.ietf.org/rfc/rfc2454.txt. Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• The Unicode Standard, Version 2.1, Unicode Consortium, http://www.unicode.org/
• More information on EFI 1.10 UGA ROM usage under an OS can be found at

www.microsoft.com/hwdev/uga.
• Universal Serial Bus PC Legacy Compatibility Specification, Version 0.9,

http://www.usb.org/developers/docs.html
• Wired for Management Baseline, Version 2.0 Release Candidate. Intel Corporation, 1998,

http://www.intel.com/labs/manage/wfm/wfmspecs.htm

http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
http://www.unicode.org/
http://www.microsoft.com/hwdev/uga
http://www.usb.org/developers/docs.html
http://www.intel.com/labs/manage/wfm/wfmspecs.htm

January 31, 2006
Version 2.0 1387

Prerequisite Specifications

In general, this specification requires that functionality defined in a number of other existing
specifications be present on a system that implements this specification. This specification
requires that those specifications be implemented at least to the extent that all the required
elements are present.

This specification prescribes the use and extension of previously established industry specification
tables whenever possible. The trend to remove runtime call-based interfaces is well documented.
The ACPI (Advanced Configuration and Power Interface) specification and the SAL (System
Access Layer) specification are two examples of new and innovative firmware technologies that
were designed on the premise that OS developers prefer to minimize runtime calls into firmware.
ACPI focuses on no runtime calls to the BIOS, and the SAL specification only supports runtime
services that make the OS more portable.

ACPI Specification
The interface defined by the Advanced Configuration and Power Interface (ACPI) Specification is
the current state-of-the-art in the platform-to-OS interface. ACPI fully defines the methodology
that allows the OS to discover and configure all platform resources. ACPI allows the description of
non-Plug and Play motherboard devices in a plug and play manner. ACPI also is capable of
describing power management and hot plug events to the OS. (For more information on ACPI,
refer to the ACPI web site at http://www.acpi.info/spec.htm).

WfM Specification
The Wired for Management (WfM) Specification defines a baseline for manageability that can be
used to lower the total cost of ownership of a computer system. WfM includes the System
Management BIOS (SMBIOS) table-based interface that is used by the platform to relate platform-
specific management information to the OS or an OS-based management agent. The format of the
data is defined in the System Management BIOS Reference Specification, and it is up to higher level
software to map the information provided by the platform into the appropriate schema. Examples
of schema would include CIM (Common Information Model) and DMI (Desktop Management
Interface). For more information on WfM or to obtain a copy of the WfM Specification, visit
http://www.intel.com/labs/manage/wfm/wfmspecs.htm. To obtain the System Management BIOS
Reference Specification, visit http://www.phoenix.com/en/support/white+papers-specs/.

http://www.teleport.com/~acpi
http://www.teleport.com/~acpi
http://developer.intel.com/ial/WfM
http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.phoenix.com/en/support/white+papers-specs/

 January 31, 2006
1388 Version 2.0

Additional Considerations for Itanium-Based Platforms
Any information or service that is available in Itanium architecture firmware specifications
supercedes any requirement in the common supported 32-bit and Itanium architecture specifications
listed above. The Itanium architecture firmware specifications (currently the Itanium® System
Abstraction Layer Specification and portions of the Intel® Itanium® Architecture Software
Developer’s Manual, volumes 1–4) define the baseline functionality required for all Itanium
architecture platforms. The major addition that UEFI makes to these Itanium architecture firmware
specifications is that it defines a boot infrastructure and a set of services that constitute a common
platform definition for high-volume Itanium architecture–based systems to implement based on the
more generalized Itanium architecture firmware specifications.

The following specifications are the required Intel Itanium architecture specifications for all
Itanium architecture–based platforms:

• Itanium® Processor Family System Abstraction Layer Specification
• Intel® Itanium® Architecture Software Developer’s Manual, volumes 1–4

Both documents are available at http://developer.intel.com/design/itanium/family/.

http://developer.intel.com/design/itanium

January 31, 2006
Version 2.0 1389

Index

!PXE structure field definitions, 1192
!PXE structures, 1191
_CID, 247
_HID, 247
_UID, 247
32/64-bit UNDI interface, 1191
ACPI, 1387
ACPI _ADR, 270
ACPI _ADR Device Path, 249
ACPI Device Path, definition of, 1365
ACPI name space, 1173, 1178
ACPI Source Language, 241
ACPI Terms, 1178
ACPI, definition of, 1365
ADD, 781
Advanced Configuration and Power Interface

specification, 1387. See also related
information

AllocateBuffer(), 532, 582
AllocatePages(), 123
AllocatePool(), 131
alphabetic function lists, 1329
AND, 782
ANSI 3.64 terminals, and

SIMPLE_TEXT_OUTPUT, 1170
Application, EFI, 19, 20
ARP cache entries, 885
ARP Protocol

Functions
Add(), 990
Configure(), 988
Delete(), 994
Find(), 992
Flush(), 995
Request(), 996, 998

GUID, 986
Interface Structure, 986

ARP Service Binding Protocol
GUID, 985

Arp(), 910
Arrow shapes, 380
ASHR, 783
ASL. See ACPI Source Language

AsyncInterruptTransfer(), 671
AsyncIsochronousTransfer(), 679
Attribute bits, EFI PCI I/O Protocol, 560
Attribute bits, PCI Root Bridge I/O, 511
attributes

architecturally defined, 59
Attributes(), 587
Attributes, SIMPLE_TEXT_OUTPUT, 385
Base Code (BC), definition of, 1365
bibliography, 1383
Big Endian, definition of, 1365
BIOS code, 7
BIOS Parameter Block, 437
BIOS Parameter Block (BPB), definition of, 1366
BIOS, definition of, 1366
BIS_ALG_ID, 937
BIS_APPLICATION_HANDLE, 925
BIS_CERT_ID, 936
Block Elements Code Chart, 379
Block I/O Protocol, 483

Functions
FlushBlocks(), 491
Readblocks(), 487
WriteBlocks(), 489

GUID, 483
Interface Structure, 483
Revision Number, 483

Block Size, definition of, 1366
Blt buffer, 411
Blt Operation Table, 423, 427
Blt(), 421
Boot Device, definition of, 1366
Boot Integrity Services Protocol, 921

Functions
Free(), 930
GetBootObjectAuthorizationCertificate(),

931
GetBootObjectAuthorizationCheckFlag(),

932
GetBootObjectAuthorizationUpdateToken(

), 933
GetSignatureInfo(), 934
Initialize(), 924

1/31/2006 Index
Version 2.0 1390

Shutdown(), 928
UpdateBootObjectAuthorization(), 939
VerifyBootObject(), 948
VerifyObjectWithCredential(), 955

GUID, 921
Interface Structure, 921

boot manager, 55
default media boot, 57

Boot Manager, definition of, 1366
boot mechanisms, 62
boot order list, 55
boot process

illustration of, 17
overview, 17

boot sequence, 55
boot services, 9
Boot Services, 97, 205

global functions, 97, 205
handle-based functions, 97, 205

Boot Services Driver, definition of, 1366
Boot Services Table, definition of, 1366
Boot Services Table, EFI, 66
Boot Services Time, definition of, 1366
Boot Services, definition of, 1366
booting

future boot media, 64
via a network device, 64
via Load File Protocol, 63
via Simple File Protocol, 62

booting from
CD-ROM and DVD-ROM, 441
diskettes, 440
hard drives, 441
network devices, 441
removable media, 440

BPB. See BIOS Parameter Block
BREAK, 784
BulkTransfer(), 668
bus-specific driver override protocol, 337
CalculateCrc32(), 203
CALL, 786
Callback(), 919
calling conventions, 27

general, 23
IA-32, 25

CDB, 1196
CheckEvent(), 114

ClearRootHubPortFeature (), 688
ClearScreen(), 387
Close(), 450
CloseEvent(), 110
CloseProtocol(), 160
Cluster, definition of, 1367
CMP, 789
CMPI, 791
COFF, definition of, 1367
Coherency Domain, definition of, 1367
Common Information Model (CIM), definition

of, 1367
component name protocol, 353
compressed data

bit order, 753
block body, 757
block header, 754
format, 753, 754
overall structure, 753

Compression Algorithm Specification, 751
compression source code, 1283
compressor design, 758
Configuration(), 540
ConnectController(), 165
Console, 1169
Console I/O protocol, 367
ConsoleIn, 368
ConsoleIn, definition of, 1367
ConsoleOut, 374
ConsoleOut, definition of, 1367
ControlTransfer(), 665
conventions

data structure descriptions, 12
function descriptions, 14
instruction descriptions, 14
procedure descriptions, 14
protocol descriptions, 13
pseudo-code conventions, 15
typographic conventions, 15

conventions, 12
ConvertPointer(), 224
Coordinated Universal Time, 1167
CopyMem(), 197, 527, 576
CreateEvent(), 103
CreateEventEx, 98, 107, 111
CreateThunk(), 834
data types, EFI, 24

1/31/2006 Index
Version 2.0 1391

Debug Image Info Table, 748
Debug Support Protocol, 725

Functions
GetMaximumProcessorIndex(), 727
InvalidateInstructionCache(), 737
RegisterExceptionCallback(), 733
RegisterPeriodicCallback(), 728

GUID, 725
Interface Structure, 725

Debugport device path, 744
Debugport Protocol, 739

Functions
Poll(), 743
Read(), 742
Reset(), 740
Write(), 741

GUID, 739
Interface Structure, 739

Decompress Protocol, 766
Functions

Decompress(), 769
GetInfo(), 767

GUID, 766
Interface Structure, 766

Decompress(), 769
decompression source code, 1311
decompressor design, 765
Defined GUID Partition Entry

Attributes, 96
Partition Type GUIDs, 96

Delete(), 451
design overview, 9
Desktop Management Interface (DMI), definition

of, 1367
Desktop Management Task Force (DMTF),

definition of, 1367
Device Handle, definition of, 1367
Device Path

for IDE disk, 1175
for legacy floppy, 1174
for secondary root PCI bus with PCI to PCI

bridge, 1177
Device Path Generation, Rules, 269

Hardware vs. Messaging Device Paths, 271
Housekeeping, 269
Media Device Path, 271
Other, 271

with ACPI _ADR, 270
with ACPI _HID and _UID, 269

Device Path Instance, definition of, 1368
Device Path Node, definition of, 1368
device path protocol, 242
Device Path Protocol, 241

GUID, 242
Interface Structure, 242

Device Path, ACPI, 247
Device Path, BIOS Boot Specification, 271
Device Path, definition of, 1368
Device Path, hardware

memory-mapped, 246
PCCARD, 245
PCI, 245
vendor, 246

Device Path, media, 264
Boot Specification, 268
CD-ROM Media, 266
File Path Media, 267
hard drive, 265
Media Protocol, 267
Vendor-Defined Media, 266

Device Path, messaging, 250
1394, 251
ATAPI, 250
FibreChannel, 250
I2O, 255
InfiniBand, 257
IPv4, 256
IPv6, 256
MAC Address, 255
SCSI, 250
UART, 258
UART flow control, 259
USB, 251
USB class, 255
Vendor-Defined, 258

Device Path, nodes
ACPI Device Path, 243
BIOS Boot Specification Device Path, 243
End of Hardware Device Path, 243
End This Instance of a Device Path, 244
generic, 243
Hardware Device Path, 243
Media Device Path, 243
Messaging Device Path, 243

1/31/2006 Index
Version 2.0 1392

Device Path,overview, 241
device paths

EFI simple pointer, 395
PS/2 mouse, 395
serial mouse, 396
USB mouse, 398

DHCP packet, 883
Dhcp(), 892
DHCP4 Option Data

Interface Structure, 1014
DHCP4 Packet Data

Interface Structure, 1005
DisconnectController(), 170
Discover(), 894
Disk I/O Protocol, 478

Functions
ReadDisk(), 293, 294, 295, 296, 297, 300,

302, 305, 306, 468, 470, 472, 473, 475,
476, 481, 651, 652, 1161, 1162

WriteDisk(), 482
GUID, 289, 299, 304, 467, 479, 650, 1147,

1160
Interface Structure, 289, 299, 304, 467, 479,

650, 1147, 1160
Revision Number, 479

DIV, 793
DIVU, 794
document

attributes, 6
audience, 8
contents, 3
goals, 6
organization, 3
purpose, 1

driver binding protocol, 307
driver diagnostics protocol, 349
Driver Model Boot Services, 135
Driver Signing, 1152
DriverLoaded(), 335
Dynamic Host Configuration Protocol (DHCP),

definition of, 1368
EBC Image, definition of, 1368
EBC Instruction

ADD, 781
AND, 782
ASHR, 783
BREAK, 784

CALL, 786
CMP, 789
CMPI, 791
DIV, 793
DIVU, 794
EXTNDB, 795
EXTNDD, 796
EXTNDW, 797
JMP, 798
JMP8, 800
LOADSP, 801
MOD, 802
MODU, 803
MOV, 804
MOVI, 806
MOVIn, 808
MOVn, 810
MOVREL, 812
MOVsn, 813
MUL, 815
MULU, 816
NEG, 817
NOT, 818
OR, 819
POP, 820
POPn, 821
PUSH, 822
PUSHn, 823
RET, 824
SHL, 825
SHR, 826
STORESP, 827
SUB, 828
XOR, 829

EBC instruction descriptions, 14
EBC instruction encoding, 779
EBC instruction operands, 777

direct operands, 777
immediate operands, 778
indirect operands, 777
indirect with index operands, 778

EBC instruction set, 780
EBC Instruction Set, 780
EBC instruction syntax, 778
EBC Interpreter Protocol, 833

Functions
CreateThunk(), 834

1/31/2006 Index
Version 2.0 1393

GetVersion(), 838
RegisterICacheFlush(), 836
UnloadImage(), 835

GUID, 833
Interface Structure, 833

EBC tools
C coding convention, 839
debug support, 843
EBC C compiler, 839
EBC interface assembly instructions, 839
EBC linker, 843
EBC to EBC arguments calling convention,

840
EBC to native arguments calling convention,

840
function return values, 840
function returns, 840
image loader, 843
native to EBC arguments calling convention,

840
stack maintenance and argument passing, 839
thunking, 841

EBC Tools, 839
EBC virtual machine, 771

architectural requirements, 830
runtime and software conventions, 830

EFI Application, 19, 20, 436
EFI Application, definition of, 1369
EFI Boot Manager, 437
EFI Boot Services Table, 66
EFI Bus-Specific Driver Override Protocol

functions
GetDriver(), 338

EFI Byte Code (EBC), 771
EFI Byte Code (EBC), definition of, 1369
EFI Byte Code Virtual Machine, 2
EFI Component Name Protocol, 548

functions
GetControllerName(), 356
GetDriverName(), 354

EFI Debug Support Protocol, 724
EFI debug support table, 746
EFI Debugport Protocol, 738
EFI debugport variable, 745
EFI DHCPv4 Protocol

Functions
Build(), 1022

GetModeData(), 1002
Parse(), 1027
Release(), 1020
RenewRebind(), 1018
Start(), 1006, 1016
Stop(), 1021
TransmitReceive(), 1024

GUID, 1000
Interface Structure, 1000

EFI DHCPv4 Service Binding Protocol
GUID, 999

EFI Directory Structure, 437
EFI Driver, 436
EFI Driver Binding Protocol

functions
Start(), 316
Stop(), 324
Supported(), 310

EFI Driver Configuration Protocol, 548
functions

ForceDefaults(), 346
OptionsValid(), 344
SetOptions(), 341

EFI driver configuration type, 347
EFI Driver Diagnostics Protocol, 548
EFI Driver Diagnstics Protocol

functions
RunDiagnostics(), 350

EFI driver model, 10
EFI Driver Model, 2
EFI Driver, definition of, 1369
EFI File, definition of, 1369
EFI Hard Disk, definition of, 1369
EFI Image, 18, 436
EFI Image handoff state, 29

IA-32, 27
EFI Image Header, 18

PE32+ image format, 18
EFI Image, definition of, 1371
EFI IPv4 Configuration Protocol

Functions
GetData(), 1090
Start(), 1087
Stop(), 1089

GUID, 1086
Interface Structure, 1086

EFI IPv4 Protocol

1/31/2006 Index
Version 2.0 1394

Functions
Cancel(), 1084
GetModeData(), 1064
Groups(), 1071
Open(), 1069
Receive(), 1082
Route(), 1073
Transmit(), 1075

GUID, 1062
Interface Structure, 1062

EFI IPv4 Service Binding Protocol
GUID, 1060

EFI MTFTP4 Protocol
Functions

WriteFile(), 1142
EFI MTFTPv4 Protocol

Functions
Configure(), 1123
GetInfo(), 1125
GetModeData (), 1120
ParseOptions(), 1134
ReadDirectory(), 1144
ReadFile(), 1136

Interface Structure, 1118
EFI MTFTPv4 Service Binding Protocol

GUID, 1117
EFI OS Loader, 20, 436
EFI OS loader, definition of, 1369
EFI partitioning scheme, 90
EFI Platform Driver Override Protocol

functions
DriverLoaded(), 335
GetDriver(), 331
GetDriverPath(), 333

EFI Runtime Services Table, 66
EFI Scan Codes for SIMPLE_INPUT, 1169
EFI Scan Codes,

SIMPLE_INPUT_INTERFACE, 369
EFI Service Binding Protocol

Functions
CreateChild(), 359
DestroyChild(), 363

GUID, 358
Interface Structure, 358

EFI Specification, 1
Design Overview, 9
Goals, 6

Overview, 3
Target Audience, 8

EFI System Table, 65
EFI system table location, 747
EFI tables

EFI_IMAGE_ENTRY_POINT, 65
EFI Tables

EFI_BOOT_SERVICES, 71
EFI_CONFIGURATION_TABLE, 79
EFI_RUNTIME_SERVICES, 76
EFI_SYSTEM_TABLE, 69
EFI_TABLE_HEADER, 67

EFI time, 1167
EFI UDPv4 Protocol

Functions
Cancel(), 1058, 1115
GetModeData(), 1034, 1040, 1098, 1101
Groups(), 1103
Poll(), 1059, 1116, 1146
Receive(), 1054, 1113
Route(), 1042, 1105
Transmit(), 1047, 1049, 1107

GUID, 1032, 1096
Interface Structure, 1032, 1096

EFI USB Host Controller Protocol
functions

AsyncInterruptTransfer(), 671
AsyncIsochronousTransfer (), 679
BulkTransfer(), 668
ClearRootHubPortFeature (), 688
ControlTransfer(), 665
GetRootHubPortNumber (), 656
GetRootHubPortStatus (), 682
GetState(), 661
IsochronousTransfer(), 676
Reset(), 658
SetRootHubPortFeature (), 686
SetState(), 663
SyncInterruptTransfer(), 674

EFI, definition of, 1368
EFI_ALLOCATE_TYPE, 124
EFI_ARP_CONFIG_DATA, 988
EFI_ARP_FIND_DATA, 993
EFI_ARP_PROTOCOL, 986
EFI_ARP_SERVICE_BINDING_PROTOCOL,

985

1/31/2006 Index
Version 2.0 1395

EFI_AUTHENTICATION_INFO_PROTOCOL,
1147

EFI_BIS_PROTOCOL, 921
EFI_BIS_SIGNATURE_INFO, 934
EFI_BIS_VERSION, 925
EFI_BLOCK_IO_MEDIA, 484
EFI_BOOT_SERVICES table, 71
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_P

ROTOCOL, 337
EFI_COMPONENT_NAME_PROTOCOL, 353
EFI_CONFIGURATION_TABLE, 79
EFI_DECOMPRESS_PROTOCOL, 766
EFI_DEVICE_PATH, 242
EFI_DEVICE_PATH protocol, 242
EFI_DEVICE_PATH_UTILITIES_PROTOCOL

, 288, 289, 290, 291, 292, 293, 294, 295, 296,
297, 298, 299, 300, 302, 304, 305, 306

EFI_DHCP4_CALLBACK, 1008
EFI_DHCP4_CONFIG_DATA, 1007
EFI_DHCP4_EVENT, 1010
EFI_DHCP4_HEADER, 1012
EFI_DHCP4_LISTEN_POINT, 1025
EFI_DHCP4_MODE_DATA, 1002
EFI_DHCP4_PACKET, 1005
EFI_DHCP4_PACKET_OPTION, 1014
EFI_DHCP4_PROTOCOL, 999, 1000, 1001,

1002, 1003, 1004, 1006, 1008, 1009, 1016,
1017, 1018, 1019, 1020, 1021, 1022, 1024,
1025, 1027

EFI_DHCP4_SERVICE_BINDING_PROTOCO
L, 358, 999

EFI_DHCP4_STATE, 1003
EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN,

1024
EFI_DRIVER_BINDING_PROTOCOL, 307
EFI_DRIVER_CONFIGURATION_ACTION_R

EQUIRED, 342
EFI_DRIVER_DIAGNOSTIC_TYPE, 351
EFI_DRIVER_DIAGNOSTICS_PROTOCOL,

349
EFI_EBC_PROTOCOL, 833
EFI_EDID_ACTIVE_PROTOCOL, 425
EFI_EDID_DISCOVERED_PROTOCOL, 424
EFI_EVENT, 104
EFI_FILE_INFO, 462

GUID, 462
EFI_FILE_SYSTEM_INFO, 464

GUID, 464
EFI_FILE_SYSTEM_VOLUME_LABEL, 465

GUID, 465
EFI_GRAPHICS_OUTPUT_PROTOCOL_SET

_MODE, 419
EFI_GUID, 139
EFI_HANDLE, 139
EFI_HASH_PROTOCOL, 1160, 1161, 1162,

1164
EFI_IMAGE_ENTRY_POINT, 65, 189
EFI_INPUT_KEY, 372
EFI_INTERFACE_TYPE, 139
EFI_IP4_ADDRESS_PAIR, 1062
EFI_IP4_COMPLETION_TOKEN, 1075
EFI_IP4_CONFIG_DATA, 1066
EFI_IP4_CONFIG_PROTOCOL, 1035, 1043,

1067, 1069, 1074, 1086, 1087, 1089, 1090,
1100, 1106

EFI_IP4_DATA_REGISTRY_ENTRY, 1061
EFI_IP4_FRAGMENT_DATA, 1078
EFI_IP4_HEADER, 1078
EFI_IP4_ICMP_TYPE, 1068
EFI_IP4_IPCONFIG_DATA, 1090
EFI_IP4_MODE_DATA, 1065
EFI_IP4_OVERRIDE_DATA, 1080
EFI_IP4_PROTOCOL, 1034, 1062, 1063, 1064,

1069, 1071, 1073, 1075, 1082, 1084, 1085,
1091, 1098

EFI_IP4_RECEIVE_DATA, 1076
EFI_IP4_ROUTE_TABLE, 1068
EFI_IP4_SERVICE_BINDING_PROTOCOL,

358, 1060
EFI_IP4_TRANSMIT_DATA, 1079
EFI_ISCSI_INITIATOR_NAME_PROTOCOL,

650
EFI_LBA, 484
EFI_LOADED_IMAGE Protocol, 237
EFI_LOCATE_SEARCH_TYPE, 148
EFI_MANAGED_NETWORK_COMPLETION

_TOKEN, 976
EFI_MANAGED_NETWORK_CONFIG_DAT

A, 967
EFI_MANAGED_NETWORK_FRAGMENT_D

ATA, 979
EFI_MANAGED_NETWORK_PROTOCOL,

964

1/31/2006 Index
Version 2.0 1396

EFI_MANAGED_NETWORK_RECEIVE_DAT
A, 977

EFI_MANAGED_NETWORK_SERVICE_BIN
DING_PROTOCOL, 963

EFI_MANAGED_NETWORK_TRANSMIT_D
ATA, 978

EFI_MEMORY_DESCRIPTOR, 128
EFI_MEMORY_TYPE, 124
EFI_MTFTP4_ACK_HEADER, 1128
EFI_MTFTP4_ACK8_HEADER, 1128
EFI_MTFTP4_DATA_HEADER, 1128
EFI_MTFTP4_DATA8_HEADER, 1128
EFI_MTFTP4_ERROR_HEADER, 1129
EFI_MTFTP4_OACK_HEADER, 1128
EFI_MTFTP4_PACKET, 1127
EFI_MTFTP4_PROTOCOL, 1118, 1119, 1120,

1123, 1125, 1126, 1127, 1129, 1134, 1136,
1137, 1139, 1140, 1142, 1144, 1146

EFI_MTFTP4_REQ_HEADER, 1127
EFI_NETWORK_INTERFACE_TYPE, 875
EFI_NETWORK_STATISTICS, 861
EFI_OPEN_PROTOCOL_BY_CHILD_CONTR

OLLER, 156
EFI_OPEN_PROTOCOL_BY_DRIVER, 156,

159
EFI_OPEN_PROTOCOL_BY_HANDLE_PRO

TOCOL, 155, 158
EFI_OPEN_PROTOCOL_EXCLUSIVE, 156,

159
EFI_OPEN_PROTOCOL_GET_PROTOCOL,

156, 158
EFI_OPEN_PROTOCOL_TEST_PROTOCOL,

156, 158
EFI_OPTIONAL_PTR, 224
EFI_PARITY_TYPE, 401
EFI_PCI_IO_PROTOCOL_ACCESS, 559
EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPE

RATION, 588
EFI_PCI_IO_PROTOCOL_CONFIG, 559
EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS,

559
EFI_PCI_IO_PROTOCOL_IO_MEM, 559
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM,

558
EFI_PCI_IO_PROTOCOL_WIDTH, 558
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_A

CCESS, 511

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO
_MEM, 510

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_P
OLL_IO_MEM, 510

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_W
IDTH, 510

EFI_PHYSICAL_ADDRESS, 124
EFI_PLATFORM_DRIVER_OVERRIDE_PRO

TOCOL, 329
EFI_PXE_BASE_CODE_CALLBACK_PROTO

COL, 918
EFI_PXE_BASE_CODE_CALLBACK_STATU

S, 919
EFI_PXE_BASE_CODE_FUNCTION, 920
EFI_PXE_BASE_CODE_MODE, 878
EFI_PXE_BASE_CODE_MTFTP_INFO, 899
EFI_PXE_BASE_CODE_PROTOCOL, 876
EFI_PXE_BASE_CODE_TFTP_OPCODE, 899
EFI_RESET_TYPE, 227
EFI_RUNTIME_SERVICES table, 76
EFI_SERVICE_BINDING_PROTOCOL, 358
EFI_SIMPLE_NETWORK_MODE, 849
EFI_SIMPLE_NETWORK_PROTOCOL, 847
EFI_SIMPLE_NETWORK_STATE, 850
EFI_SIMPLE_POINTER_MODE, 391
EFI_SIMPLE_POINTER_STATE, 393
EFI_STATUS Error Codes, 1181
EFI_STATUS Success Codes, 1181
EFI_STATUS warning codes, 1183
EFI_STOP_BITS_TYPE, 401
EFI_SYSTEM_TABLE, 69
EFI_TABLE_HEADER, 67
EFI_TAPE_IO_PROTOCOL, 467
EFI_TCP4_PROTOCOL, 1032, 1033, 1034,

1040, 1042, 1044, 1047, 1049, 1054, 1056,
1058, 1059

EFI_TCP4_SERVICE_BINDING_PROTOCOL,
358, 1029

EFI_TIME, 215
EFI_TIME_CAPABILITIES, 217
EFI_UDP4_COMPLETION_TOKEN, 1044,

1045, 1047, 1056, 1107
EFI_UDP4_CONFIG_DATA, 1038, 1099
EFI_UDP4_DATA_REGISTRY_ENTRY, 1030,

1094
EFI_UDP4_FRAGMENT_DATA, 1051, 1110

1/31/2006 Index
Version 2.0 1397

EFI_UDP4_PROTOCOL, 1096, 1097, 1098,
1101, 1103, 1105, 1107, 1110, 1113, 1115,
1116

EFI_UDP4_RECEIVE_DATA, 1051, 1109
EFI_UDP4_SERVICE_BINDING_PROTOCOL,

358, 1093
EFI_UDP4_SERVICE_POINT, 1031, 1095
EFI_UDP4_SESSION_DATA, 1110
EFI_UDP4_TRANSMIT_DATA, 1052, 1111
EFI_UNICODE_COLLATION_PROTOCOL,

492
EFI_USB_HC_PROTOCOL, 654
EFI_USB_IO Protocol, 694
EFI_VIRTUAL_ADDRESS, 129
EFI-compliant, definition of, 1369
El Torito, 436, 439, 440
EnableCursor(), 389
End of Hardware Device Path, definition of, 1369
Enhanced Mode (EM), definition of, 1369
error codes, 1181
Event Services, 98

function list, 98
functions

CheckEvent(), 114
CloseEvent(), 110
CreateEvent(), 103
SignalEvent (), 111
WaitForEvent(), 112

overview, 98
event, definition of, 1369
Exit(), 190
ExitBootServices(), 192
Extensible Firmware Interface Specification, 1
EXTNDB, 795
EXTNDD, 796
EXTNDW, 797
FAT file system, 436
FAT File System, definition of, 1370
FAT variants, 437
FatToStr(), 499
File Allocation Table (FAT), definition of, 1370
file attribute bits, EFI_FILE_INFO, 462
File Attributes, EFI_FILE_PROTOCOL, 448
File Handle Protocol, 445

Functions
Close(), 450
Delete(), 451

EFI_FILE_SYSTEM_INFO, 464, 465
EFI_GENERIC_FILE_INFO, 462
Flush(), 461
GetInfo(), 457
GetPosition(), 456
Open(), 447
Read(), 452
SetInfo(), 459
SetPosition(), 455
Write(), 454

Interface Structure, 445
Revision Number, 445

file names, 437
file system format, 436, 437
File System Protocol, 442
Fill Header, 1266
Firmware Interrupts level, 99
firmware menu, 17
Firmware, definition of, 1370
Flush(), 461, 535, 585
FlushBlocks(), 491
ForceDefaults(), 346
Free(), 930
FreeBuffer(), 534, 584
FreePages(), 126
FreePool(), 132
Functions

in alphabetic order, 1329
in alphabetic order within service or protocol,

1346
Geometric Shapes Code Chart, 380
Get Config Info, 1238
Get Init Info, 1235
Get State, 1225
Get Status, 1263
GetAttributes(), 536
GetBarAttributes(), 590
GetBootObjectAuthorizationCertificate(), 931
GetBootObjectAuthorizationCheckFlag(), 932
GetBootObjectAuthorizationUpdateToken(), 933
GetControl(), 407

control bits, 407
GetControllerName(), 356
GetDriver(), 331, 338
GetDriverName(), 354
GetDriverPath(), 333
GetInfo(), 457, 767

1/31/2006 Index
Version 2.0 1398

GetLocation(), 586
GetMaximumProcessorIndex(), 727
GetMemoryMap(), 127
GetNextHighMonotonicCount(), 228
GetNextMonotonicCount(), 200
GetNextVariableName(), 209
GetPosition(), 456
GetRootHubPortNumber(), 656
GetRootHubPortStatus()

PortChangeStatus bit definition, 683
PortStatus bit definition, 682

GetRootHubPortStatus(), 682
GetSignatureInfo(), 934
GetState(), 393, 661
GetStatus(), 867
GetTime(), 215
GetVariable(), 207
GetVersion(), 838
GetWakeupTime(), 219
globally unique identifier, definition of, 1370
Globally Unique Identifiers, format, 1167
glossary, 1365
GPT. See GUID Partition Table
GUID Partition Entry, 95
GUID Partition Entry, definition of, 1370
GUID Partition Table, 87, 439

GPT, 90, 91, 92, 93, 94, 95, 436, 439. See
GPT

GUID Partition Table Header, 93, 439
backup, 91
primary, 90

GUID Partition Table Header, definition of, 1370
GUID Partition Table, definition of, 1370
GUID Partition, definition of, 1370
GUID, definition of, 1370
GUID, format, 1167
Handle, definition of, 1371
HandleProtocol(), 149
Hardware Device Path, definition of, 1371
Hash

Hash, 1158
Headless system, 241
Huffman code generation, 763
Huffman coding, 1283
IA-32

EFI Image handoff state, 27
ICMP error packet, 883

ICMP Message Types and Codes
Data Structure, 1068

IDE disk device path, 1176
Image Handle, definition of, 1371
Image Handoff State, definition of, 1371
Image Header, definition of, 1371
Image Services

function list, 183
functions

EFI_IMAGE_ENTRY_POINT, 189
Exit(), 190
ExitBootServices(), 192
LoadImage(), 184
StartImage(), 186
UnloadImage(), 188

overview, 182
Image, definition of, 1371
images

loading, 17
implementation requirements

general, 50
required elements, 50

information, resources, 1383
Initialize, 1241
Initialize(), 854, 924
InstallConfigurationTable(), 201
InstallMultipleProtocolInterfaces(), 179
InstallProtocolInterface(), 138
instruction summary

EFI byte code virtual machine, 1327
Intel Architecture-32 (IA-32), definition of, 1371
Intel® Itanium™ Architecture, definition of,

1371
interfaces

general categories, 21
purpose, 21

Interpreter, definition of, 1371
Interrupt Enables, 1249
InterruptStatus interrupt bit mask settings, 867
InvalidateInstructionCache(), 737
Io.Read(), 523, 572
Io.Write(), 523, 572
IP filter operation, 906
IP4 Default Data

GUID, 1030
IP4 Protocol

Functions

1/31/2006 Index
Version 2.0 1399

Poll(), 1085
IPv4 Default Data

GUID, 1061, 1094
IPv4 Fragment Data

Data Structure, 1078
IPv4 Header

Data Structure, 1078
IPv4 IOCTL Data

Data Structure, 1066
IPv4 Mode Data

Data Structure, 1065
IPv4 Override Data

Data Structure, 1080
IPv4 Receive Data

Data Structure, 1076
IPv4 Route Table

Data Structure, 1068
IPv4 Transmit Data

Data Structure, 1079
ISO-9660, 440
IsochronousTransfer(), 676
Itanium architecture

EFI Image handoff state, 29
firmware specifications, 1388
platforms, 1388
requirements, related to this specification,

1388
Itanium™

firmware specifications. See also related
information

JMP, 798
JMP8, 800
LAN On Motherboard (LOM), definition of,

1371
LBA. See Logical Block Address
legacy floppy device path, 1175
legacy interfaces, 6
legacy Master Boot Record, 87

and GPT Partitions, 90
Partition Record, 88

legacy MBR, 436, 439
legacy OS, 7
Legacy Platform, definition of, 1371
legacy systems, support of, 12
Little Endian, definition of, 1372
Load File Protocol, 887

Functions

LoadFile(), 434
GUID, 433
Interface Structure, 433

Loaded Image Protocol, 237
functions

Unload(), 240
GUID, 237
Interface Stucture, 237
Revision Number, 237

Loaded Image, definition of, 1372
LoadFile(), 434
LoadImage(), 184
LOADSP, 801
LocateDevicePath(), 151
LocateHandle(), 147
LocateHandleBuffer(), 175
LocateProtocol(), 178
logical block address, 439
long file names, 437
Long File Names (LFN), definition of, 1372
LZ77 coding, 1283
Machine Check Abort (MCA), definition of, 1372
Managed Network Protocol

Functions
Cancel(), 982
Configure(), 969
GetModeData(), 966
Groups(), 973
McastIpToMac(), 971
Poll(), 983
Receive(), 981
Transmit(), 975

GUID, 964
Interface Structure, 964

Managed Network Service Binding Protocol
GUID, 963

Map(), 529, 579
Master Boot Record, 436
Master Boot Record (MBR), definition of, 1372
MAX_MCAST_FILTER_CNT, 851
MBR, 87. See Master Boot Record
MCast IP To MAC, 1259
MCastIPtoMAC(), 864
Media Device Path, definition of, 1372
media formats, 440
Mem.Read(), 521, 570
Mem.Write(), 521, 570

1/31/2006 Index
Version 2.0 1400

Memory Allocation Services
function list, 120
functions

AllocatePages(), 123
AllocatePool(), 131
FreePages(), 126
FreePool(), 132
GetMemoryMap(), 127

overview, 120
Memory Attribute Definitions, 128
memory map, 120
Memory Map, definition of, 1373
Memory Type, definition of, 1373
memory type, usage

after ExitBootServices(), 120
before ExitBootServices(), 120

Messaging Device Path, definition of, 1373
MetaiMatch(), 495
migration requirements, 11

EFI support on a legacy platform, 12
legacy OS support, 12

migration, from legacy systems, 11
Miscellaneous Boot Services

overview, 193
Miscellaneous Runtime Services

overview, 225
Miscellaneous Services

function list, 193, 225
functions

CalculateCrc32(), 203
CopyMem(), 197
GetNextHighMonotonicCount(), 228
GetNextMonotonicCount(), 200
InstallConfigurationTable(), 201
ResetSystem(), 213, 226, 230, 235
SetMem(), 199
SetWatchdogTimer(), 194

MOD, 802
MODU, 803
MOV, 804
MOVI, 806
MOVIn, 808
MOVn, 810
MOVREL, 812
MOVsn, 813
Mtftp(), 898

MTFTP4 Packet Definitions, 1127
MUL, 815
Multicast Trivial File Transfer Protocol

(MTFTP), definition of, 1373
MULU, 816
Name space, 241
Name Space

EFI device path, 1179
Name Space, definition of, 1373
Native Code, definition of, 1373
natural indexing, 775
NEG, 817
Network Boot Program, definition of, 1373
Network Bootstrap Program (NBP), definition of,

1374
Network Interface Card (NIC), definition of,

1374
Network Interface Identifier Protocol, 873

GUID, 873
Interface Structure, 873
Revision Number, 873

nonvolatile storage, 603
NOT, 818
NvData, 1261
NvData(), 865
NVRAM variables, 55
opcode summary

EFI byte code virtual machine, 1327
Open Modes, EFI_FILE_PROTOCOL, 448
Open(), 447
OpenProtocol(), 153
OpenProtocolInformation(), 163
OpenVolume(), 444
operating system loader, definition of, 1369
option ROM, 11, 771

EBC, 772
legacy, 772
relocatable image, 772

Option ROM, 6
option ROM formats, 845
OptionsValid(), 344
OR, 819
OS loader, definition of, 1369
OS Loader, EFI, 20
OS network stacks, 1189
OutputString(), 378
overview of design, 9

1/31/2006 Index
Version 2.0 1401

Page Memory, definition of, 1374
partition discovery, 439
Partition Discovery, definition of, 1374
partitioning scheme, EFI, 90
PCANSI terminals, and

SIMPLE_TEXT_OUTPUT, 1170
PCI bus driver responsibilities, 600
PCI Bus Driver, definition of, 1374
PCI bus drivers, 549
PCI Bus, definition of, 1374
PCI Configuration Space, definition of, 1375
PCI Controller, definition of, 1375
PCI device driver responsibilities, 600
PCI Device Driver, definition of, 1375
PCI device drivers, 553
PCI device paths, 595
PCI Device, definition of, 1375
PCI driver initialization, 546
PCI driver model, 546
PCI Enumeration, definition of, 1375
PCI Function, definition of, 1375
PCI Host Bus Controller, definition of, 1375
PCI hot-plug events, 604
PCI I/O Protocol, 556

Functions
AllocateBuffer(), 582
Attributes(), 587
CopyMem(), 576
Flush(), 585
FreeBuffer(), 584
GetBarAttributes(), 590
GetLocation(), 586
Io.Read(), 572
Io.Write(), 572
Map(), 579
Mem.Read(), 570
Mem.Write(), 570
Pci.Read(), 574
Pci.Write(), 574
PollIo(), 568
PollMem(), 566
SetBarAttributes(), 593
Unmap(), 581

GUID, 556
Interface Structure, 556

PCI Option ROM, definition of, 1376
PCI option ROMs, 597

PCI root bridge device paths, 542
PCI Root Bridge I/O Protocol, 508

Functions
AllocateBuffer(), 532
Configuration(), 540
CopyMem(), 527
Flush(), 535
FreeBuffer(), 534
GetAttributes(), 536
Io.Read(), 523
Io.Write(), 523
Map(), 529
Mem.Read(), 521
Mem.Write(), 521
Pci.Read(), 525
Pci.Write(), 525
PollIo(), 519
PollMem(), 517
SetAttributes(), 538
Unmap(), 531

GUID, 508
Interface Structure, 508

PCI root bridge I/O support, 501
PCI Root Bridge, definition of, 1376
PCI Segment, definition of, 1376
Pci.Read(), 525, 574
Pci.Write(), 525, 574
PE32+ image format, 18
platform driver override protocol, 329
plug and play option ROMs

and boot services, 21
PMBR. See Protective MBR
Poll(), 743
PollIo(), 519, 568
PollMem(), 517, 566
Pool Memory, definition of, 1376
POP, 820
POPn, 821
Preboot Execution Environment (PXE),

definition of, 1377
prerequisite specifications, 1387
Protective MBR, 90
Protocol

11.7 Graphics Output Protocol, 249
23.4 PXE Base Code Callback, 880, 889, 918
ARP, 4, 358, 360, 361, 364, 365, 876, 877,

878, 879, 882, 885, 910, 911, 912, 913,

1/31/2006 Index
Version 2.0 1402

920, 985, 986, 987, 988, 989, 990, 991,
992, 993, 994, 995, 996, 997, 998, 1042,
1073, 1105

ARP Service Binding, 985
Block I/O, 483
Boot Integrity Services, 921
Boot Integrity Services (BIS), 879, 921
Console I/O, 3, 141, 367
Debug Support, 725
Debugport, 739
Decompress, 766
Device Path, 241
Disk I/O, 478
EBC Interpreter, 833
EFI DHCPv4 Service Binding, 999, 1004,

1006
EFI IPv4, 5, 999, 1000, 1001, 1035, 1060,

1061, 1062, 1063, 1064, 1065, 1067, 1068,
1069, 1070, 1072, 1074, 1075, 1076, 1077,
1082, 1083, 1085, 1086, 1087, 1088, 1089,
1090, 1091, 1093, 1098, 1100, 1119

EFI MTFTPv4, 5, 1117, 1118, 1119, 1120,
1121, 1123, 1124, 1129, 1133, 1136, 1138,
1139, 1140, 1141, 1142, 1143, 1145, 1146

EFI MTFTPv4 Service Binding, 1117
EFI Service Binding, 357, 963, 985
EFI TCPv4, 5, 1029, 1032, 1033, 1035, 1036,

1040, 1043, 1045, 1046, 1048, 1052, 1054,
1055, 1057

EFI TCPv4 Service Binding, 1029
EFI UDPv4, 5, 1093, 1095, 1096, 1097, 1098,

1099, 1100, 1101, 1102, 1104, 1106, 1107,
1108, 1109, 1110, 1111, 1112, 1113, 1114,
1117, 1119

File Handle, 445
File System, 442
Load File, 887
Loaded Image, 237
Managed Network, 4, 963, 987
Managed Network Service Binding, 4, 963
Network Interface Identifier, 873
Network Interface Identifier, 873, 875, 886,

887
PCI I/O, 556
PCI Root Bridge I/O, 508
Preboot Execution Environment (PXE) Base

Code. See . See

PXE Base Code, 876
PXE Base Code Callback, 918
Serial I/O, 399
Simple File System, 442
Simple Input, 368, 370
Simple Network, 847
Simple Network, 847, 860, 863, 864, 873,

876, 879, 887, 964
Simple Pointer, 390
Unicode Collation, 492

Protocol Handler Services
function list, 133
functions, 133

CloseProtocol(), 160
ConnectController(), 165
DisconnectController(), 170
HandleProtocol(), 149
InstallMultipleProtocolInterfaces(), 179
InstallProtocolInterface(), 138
LocateDevicePath (), 151
LocateHandle(), 147
LocateHandleBuffer(), 175
LocateProtocol(), 178
OpenProtocol(), 153
OpenProtocolInformation(), 163
ProtocolsPerHandle(), 173
RegisterProtocolNotify(), 145
ReinstallProtocolInterface(), 143
UninstallMutipleProtocolInterfaces(), 181
UninstallProtocolInterface(), 141

overview, 133
Protocol Handler, definition of, 1377
Protocol Interface, definition of, 1378
Protocol Revision Number, definition of, 1378
Protocol, definition of, 1378
protocols, 32

code illustrating, 33
construction of, 33
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE

_PROTOCOL, 337
EFI_COMPONENT_NAME_PROTOCOL,

353
EFI_DEVICE_PATH, 242
EFI_DRIVER_BINDING_PROTOCOL, 307
EFI_DRIVER_DIAGNOSTICS_PROTOCO

L, 349

1/31/2006 Index
Version 2.0 1403

EFI_PLATFORM_DRIVER_OVERRIDE_P
ROTOCOL, 329

EFI_USB_HC_PROTOCOL, 654
EFI_USB_IO Protocol, 694
list of, 34

ProtocolsPerHandle(), 173
PUSH, 822
PUSHn, 823
PXE Base Code Callback Protocol, 918

Functions
Callback(), 919

GUID, 918
Interface Structure, 918
Revision Number, 918

PXE Base Code Protocol, 876
Functions

Arp(), 910
Dhcp(), 892
Discover(), 894
Mtftp(), 898
SetIpFilter(), 908
SetPackets(), 916
SetParameters(), 912
SetStationIp(), 914
Start(), 888
Stop(), 891
UdpRead(), 905
UdpWrite(), 902

GUID, 876
Interface Structure, 876
Revision Number, 876

PXE boot server bootstrap types, 894
PXE tag definitions for EFI, 886
QueryCapsuleCapsule(), 235
QueryMode(), 383
RaiseTPL(), 117
Read(), 452, 742
ReadBlocks(), 487
ReadDisk(), 481
ReadKeyStroke(), 372
Read-Only Memory (ROM), definition of, 1378
Receive, 1273
Receive Filters, 1251
Receive(), 871
ReceiveFilters(), 857
ReceiveFilterSetting bit mask values, 851
references, 1383

RegisterExceptionCallback(), 733
RegisterICacheFlush(), 836
RegisterPeriodicCallback(), 728
RegisterProtocolNotify(), 145
ReinstallProtocolInterface(), 143
related information, 1383
Reset(), EFI_SIMPLE_POINTER, 392
Reset(), SIMPLE_TEXT_OUTPUT, 377
Reset(), USB Host Controller, 658
ResetSystem(), 213, 226, 230, 235
RestoreTPL(), 119
RET, 824
RunDiagnostics(), 350
runtime services, 9, 22
Runtime Services, 97, 205

Miscellaneous Runtime Services, 225
Time Services, 214
Variable Services, 206
Virtual Memory Services, 221

Runtime Services Driver, definition of, 1378
Runtime Services Table, definition of, 1378
Runtime Services Table, EFI, 66
Runtime Services, definition of, 1378
SAL, definition of, 1378
SAS Boot, 260
SCSI Pass Thru device paths, 625
Secondary Root PCI Bus with PCI to PCI Bridge

Device Path, 1177
Security

Driver Signing, 1152
Hash, 1158, 1160, 1161, 1162, 1163, 1164

Serial I/O Protocol, 399
Functions

GetControl(), 407
SetAttributes(), 403
SetControl(), 405

GUID, 399
Interface Structure, 399
Revision Number, 399

SERIAL_IO_MODE, 400
services, 21
SetAttribute(), 385
SetAttributes(), 403, 538
SetBarAttributes(), 593
SetControl(), 405

control bits, 405
SetCursorPosition(), 388

1/31/2006 Index
Version 2.0 1404

SetInfo(), 459
SetIpFilter(), 908
SetMem(), 199
SetMode(), 384, 419, 427
SetOptions(), 341
SetPackets(), 916
SetParameters(), 912
SetPosition(), 455
SetRootHubPortFeature (), 686
SetState(), 663
SetStationIp(), 914
SetTime(), 218
SetTimer(), 115
SetVariable(), 211
SetVirtualAddressMap(), 222
SetWakeupTime(), 220
SetWatchdogTimer(), 194
SHL, 825
SHR, 826
Shutdown, 1247
Shutdown(), 856, 928
SignalEvent(), 111
Simple File System Protocol, 442

functions
OpenVolume(), 444

GUID, 442
Interface Structure, 442
Revision Number, 442

Simple Input Protocol, 368, 370
Functions

ReadKeyStroke(), 372
Reset(), 371

GUID, 370
Interface Structure, 370
Scan Codes for, 369

Simple Network Protocol, 847, 876, 887
Functions

GetStatus(), 867
Initialize(), 854
MCastIPtoMAC(), 864
NVData(), 865
Receive(), 871
ReceiveFilters(), 857
Reset(), 855
Shutdown(), 856
Start(), 852
StationAddress(), 860

Statistics(), 861
Stop(), 853
Transmit(), 869

GUID, 847
Interface Structure, 847
Revision Number, 847

Simple Pointer Protocol, 390
Functions

GetState(), 393
Reset(), 392

GUID, 390
Protocol Interface Structure, 390

Simple Text Output Protocol
Functions

ClearScreen(), 387
EnableCursor(), 389
OutputString(), 378
Querymode(), 383
Reset(), 377
SetAttribute(), 385
SetCursorPosition(), 388
Setmode(), 384
TestString(), 382

GUID, 374
Interface Structure, 374

SIMPLE_INPUT protocol, implementation, 1169
SIMPLE_TEXT_OUTPUT implementation

control sequences, 1170
SIMPLE_TEXT_OUTPUT protocol,

implementation, 1169
SIMPLE_TEXT_OUTPUT_MODE, 375
SMBIOS, definition of, 1379
specifications, other, 1387
specifications, prerequisite, 1387
Stall(), 196
StandardError, 374
StandardError, definition of, 1379
Start, 1227
Start(), 316, 852
Start(), PXE Base Code Protocol, 888
StartImage(), 186
Station Address, 1254
StationAddress(), 860
Statistics, 1256
Statistics(), 861
status codes, 1181
Status Codes, definition of, 1379

1/31/2006 Index
Version 2.0 1405

Stop, 1234
Stop(), 324, 853
Stop(), PXE Base Code Protocol, 891
STORESP, 827
StriColl(), 494
String, definition of, 1379
StrLwr(), 497
StrToFat(), 500
StrUpr(), 498
SUB, 828
success codes, 1181
Supported(), 310
SyncInterruptTransfer(), 674
System Abstraction Layer (SAL), definition of,

1379
System Management BIOS (SMBIOS), definition

of, 1379
system partition, 9
System Partition, 436, 437
System Partition, definition of, 1379
System Table, definition of, 1380
System Table, EFI, 65
table-based interfaces, 9
Task Priority Level (TPL) , definition of, 1380
task priority levels

general, 98
restrictions, 100
usage, 99

Task Priority Services, 98
function list, 98
functions

RaiseTPL(), 117
RestoreTPL(), 119

overview, 98
terminology, definitions, 1365
TestString(), 382
TFTP error packet, 883
Time Format, definition of, 1380
Time Services

function list, 214
functions

GetTime(), 215
GetWakeupTime(), 219
SetTime(), 218
SetWakeupTime(), 220

overview, 214
time, format, 1167

Timer Services, 98
function list, 98
functions

SetTimer(), 115
overview, 98

TPL. See task priority levels
TPL restrictions, 101
TPL_APPLICATION level, 99
TPL_HIGH_LEVEL, 99
TPL_NOTIFY level, 99
Transmit, 1269
Transmit(), 869
Trivial File Transport Protocol (TFTP), definition

of, 1380
UDP port filter operation, 906
UDP4 Service Binding Protocol

GUID, 1029, 1093
UdpRead(), 905
UdpWrite(), 902
UNDI as an EFI Runtime Driver, 1276
UNDI C definitions, 1198
UNDI CDB, 1196
UNDI CDB field definitions, 1196
UNDI command descriptor block, 1196
UNDI command format, 1196
UNDI commands, 1221

Fill Header, 1266
Get Config Info, 1238
Get Init Info, 1235
Get State, 1225
Get Status, 1263
Initialize, 1241
Interrupt Enables, 1249
issuing, 1195
linking & queuing, 1222
MCast IP To MAC, 1259
NvData, 1261
Receive, 1273
Receive Filters, 1251
Shutdown, 1247
Start, 1227
Station Address, 1254
Statistics, 1256
Stop, 1234
Transmit, 1269

UNDI Specification
Definitions, 1185

1/31/2006 Index
Version 2.0 1406

driver types, 1190
UNDI Specification, 32/64-Bit, 1185
Unicode Collation Protocol, 492

Functions
FatToStr(), 499
MetaiMatch(), 495
StriColl(), 494
StrLwr(), 497
StrToFat(), 500
StrUpr(), 498

GUID, 492
Interface Structure, 492

Unicode control characters, supported, 368
UNICODE DRAWING CHARACTERS, 378
Unicode, definition of, 1380
UninstallMultipleProtocolInterfaces(), 181
UninstallProtocolInterface(), 141
Universal Graphics Adapter protocols, 411
Universal Network Device Interface (UNDI),

definition of, 1380
Universal Serial Bus (USB), definition of, 1381
Unload(), 240
UnloadImage(), 188, 835
Unmap(), 531, 581
Update Capsule, 229
UpdateBootObjectAuthorization(), 939
UpdateCapsule(), 230
USB Bus Driver, 691

Bus Enumeration, 692
Driver Binding Protocol, 691
Entry Point, 691
Hot-Plug Event, 692

USB Bus Driver, definition of, 1381
USB Bus, definition of, 1381
USB Controller, definition of, 1381
USB Device Driver, 693

Driver Binding Protocol, 693
Entry Point, 693

USB Device Driver, definition of, 1381
USB Device, definition of, 1381
USB Driver Model, 690
USB Enumeration, definition of, 1381
USB host controller protocol, 654
USB Host Controller Protocol, 653

GUID, 654
Interface Structure, 654

USB Host Controller, definition of, 1382

USB hub port change status bitmap, 685
USB hub port status bitmap, 683
USB Hub, definition of, 1382
USB I/O protocol, 694

GUID, 694
Interface Structure, 694

USB I/O Protocol
functions

UsbAsyncInterruptTransfer (), 701
UsbAsyncIsochronousTransfer (), 709
UsbBulkTransfer (), 699
UsbControlTransfer(), 696
UsbGetConfigDescriptor (), 713
UsbGetDeviceDescriptor (), 711
UsbGetEndpointDescriptor(), 717
UsbGetInterfaceDescriptor (), 715
UsbGetStringDescriptor(), 719
UsbGetSupportedLanguages(), 720
UsbIsochronousTransfer (), 707
UsbPortReset(), 721
UsbSyncInterruptTransfer (), 705

USB Interface, definition of, 1382
USB port feature, 687
USB transfer result error codes, 697
UsbAsyncInterruptTransfer(), 701
UsbAsyncIsochronousTransfer (), 709
UsbBulkTransfer(), 699
UsbControlTransfer(), 696
UsbGetConfigDescriptor(), 713
UsbGetDeviceDescriptor (), 711
UsbGetEndpointDescriptor(), 717
UsbGetInterfaceDescriptor(), 715
UsbGetStringDescriptor(), 719
UsbGetSupportedLanguages(), 720
UsbIsochronousTransfer(), 707
UsbPortReset(), 721
UsbSyncInterruptTransfer(), 705
UTC, 1167
Variable Attributes, 207
Variable Services

function list, 206
functions

GetNextVariableName(), 209
GetVariable(), 207
SetVariable(), 211

overview, 206
variables

1/31/2006 Index
Version 2.0 1407

global, 59
non-volatile, 59

VerifyBootObject(), 948
Manifest Syntax, 949

VerifyObjectWithCredential(), 955
virtual machine, 771
Virtual Memory Services

function list, 221
functions

ConvertPointer(), 224
SetVirtualAddressMap (), 222

overview, 221
VM, definition of, 1382
WaitForEvent(), 112

warning codes, 1183
Watchdog timer, definition of, 1382
web sites, 1383
WfM. See Wired for Management specification
WIN_CERTIFICATE, 1156, 1157, 1158
Wired for Management (WfM), definition of,

1382
Wired for Management specification, 1387. See

also related information
Write(), 454, 741
WriteBlocks(), 489
WriteDisk(), 482
x64, 29
XOR, 829

UEFI Specification 2.0 Errata

UEFI Specification 2.0, Errata

1) Throughout:

Add clarification to the spec so that we avoid references to GUIDs that do not comply to the
<32bit><16bit><16bit><byte><byte><byte><byte><byte><byte><byte><byte> format.

EFI_GLOBAL_VARIABLE

GUID
#define EFI_GLOBAL_VARIABLE \

{0x8BE4DF61,0x93CA,0x11d2,0xAA,0x0D,0x00,0xE0,0x98,0x03,0x2
B,0x8C}

EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID

GUID
#define EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID \

{0x387477c1,0x69c7,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x7
2,0x3b}

EFI_LOAD_FILE_PROTOCOL_GUID

GUID
#define EFI_LOAD_FILE_PROTOCOL_GUID \

{0x56EC3091,0x954C,0x11d2,0x8E,0x3F,0x00,0xA0,0xC9,0x69,0x7
2,0x3B}

EFI_SIMPLE_NETWORK_PROTOCOL_GUID

GUID
#define EFI_SIMPLE_NETWORK_PROTOCOL_GUID \

{0xA19832B9,0xAC25,0x11D3,0x9A,0x2D,0x00,0x90,0x27,0x3f,0xc
1,0x4d}

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID

1408
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

GUID
#define EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID \

 {0xf36ff770,0xa7e1,0x42cf,0x9e,0xd2,0x56,0xf0,0xf2,0x71,0xf4, 0x4c}

EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID

GUID
#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \
{0xf44c00ee,0x1f2c,0x4a00,0xaa,0x09,0x1c,0x9f,0x3e,0x08,0x00,
0xa3}

EFI_ARP_PROTOCOL_GUID

GUID
#define EFI_ARP_PROTOCOL_GUID \
{0xf4b427bb,0xba21,0x4f16,0xbc,0x4e,0x43,0xe4,0x16,0xab,0x61,
0x9c}

EFI_SERIAL_IO_PROTOCOL_GUID

GUID
#define EFI_SERIAL_IO_PROTOCOL_GUID \

{0xBB25CF6F,0xF1D4,0x11D2,0x9A,0x0C,0x00,0x90,0x27,0x3F,0xC1,
0xFD}

EFI_DEVICE_PATH_PROTOCOL_GUID

GUID
#define EFI_DEVICE_PATH_PROTOCOL_GUID \

{0x09576e91,0x6d3f,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID

GUID
#define EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID \

{0x387477c2,0x69c7,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

1409
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID

GUID
#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID \

{0x0964e5b22,0x6459,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

EFI_DISK_IO_PROTOCOL_GUID

GUID
#define EFI_DISK_IO_PROTOCOL_GUID \

{0xCE345171,0xBA0B,0x11d2,0x8e,0x4F,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

EFI_BLOCK_IO_PROTOCOL_GUID

GUID
#define EFI_BLOCK_IO_PROTOCOL_GUID \

{0x964e5b21,0x6459,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

EFI_UNICODE_COLLATION_PROTOCOL_GUID

GUID
#define EFI_UNICODE_COLLATION_PROTOCOL_GUID \

{0x1d85cd7f,0xf43d,0x11d2,0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,
0x4d}

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID

GUID
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID \

{0xE18541CD,0xF755,0x4f73,0x92,0x8D,0x64,0x3C,0x8A,0x79,0xB2,
0x29}

EFI_PXE_BASE_CODE_PROTOCOL_GUID

1410
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

GUID
#define EFI_PXE_BASE_CODE_PROTOCOL_GUID \

{0x03C4E603,0xAC28,0x11d3,0x9A,0x2D,0x00,0x90,0x27,0x3F,0xC1,
0x4D}

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID

GUID
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID \

{0x245DCA21,0xFB7B,0x11d3,0x8F,0x01,0x00,0xA0,0xC9,0x69,0x72,
0x3B}

EFI_MANAGED_NETWORK_PROTOCOL_GUID

GUID
#define EFI_MANAGED_NETWORK_PROTOCOL_GUID \

{0x3b95aa31,0x3793,0x434b,0x86,0x67,0xc8,0x07,0x08,0x92,0xe0,
0x5e}

EFI_DHCP4_PROTOCOL_GUID

GUID
#define EFI_DHCP4_PROTOCOL_GUID \

 {0x8a219718,0x4ef5,0x4761,0x91,0xc8,0xc0,0xf0,0x4b,0xda,0x9e,
0x56}

EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID

GUID
#define EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x9d9a39d8,0xbd42,0x4a73,0xa4,0xd5,0x8e,0xe9,0x4b,0xe1,0x13,
0x80}

EFI_TCP4_PROTOCOL_GUID

1411
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

GUID
#define EFI_TCP4_PROTOCOL_GUID \

{0x65530BC7,0xA359,0x410f,0xB0,0x10,0x5A,0xAD,0xC7,0xEC,0x2B,
0x62}

EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID

GUID
#define EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID \

 {0x00720665,0x67EB,0x4a99,0xBA,0xF7,0xD3,0xC3,0x3A,0x1C,0x7C,
0xC9}

EFI_IP4_PROTOCOL_GUID

GUID
#define EFI_IP4_PROTOCOL_GUID \

{0x41d94cd2,0x35b6,0x455a,0x82,0x58,0xd4,0xe5,0x13,0x34,0xaa,
0xdd}

EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID

GUID
#define EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID \

{0xc51711e7,0xb4bf,0x404a,0xbf,0xb8,0x0a,0x04,0x8e,0xf1,0xff,
0xe4}

EFI_IP4_CONFIG_PROTOCOL_GUID

GUID
#define EFI_IP4_CONFIG_PROTOCOL_GUID \

{0x3b95aa31,0x3793,0x434b,0x86,0x67,0xc8,0x07,0x08,0x92,0xe0,
0x5e}

EFI_UDP4_PROTOCOL_GUID

1412
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

GUID
#define EFI_UDP4_PROTOCOL_GUID \

{0x3ad9df29,0x4501,0x478d,0xb1,0xf8,0x7f,0x7f,0xe7,0x0e,0x50,
0xf3}

EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID

GUID
#define EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x83f01464,0x99bd,0x45e5,0xb3,0x83,0xaf,0x63,0x05,0xd8,0xe9,
0xe6}

EFI_MTFTP4_PROTOCOL_GUID

GUID
#define EFI_MTFTP4_PROTOCOL_GUID \

{0x78247c57,0x63db,0x4708,0x99,0xc2,0xa8,0xb4,0xa9,0xa6,0x1f,0x6b}

EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID

GUID
#define EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID \

{0x2FE800BE,0x8F01,0x4aa6,0x94,0x6B,0xD7,0x13,0x88,0xE1,0x83,
0x3F}

EFI_AUTHENTICATION_CHAP_RADIUS_GUID

GUID
#define EFI_AUTHENTICATION_CHAP_RADIUS_GUID \

{0xd6062b50,0x15ca,0x11da,0x92,0x19,0x00,0x10,0x83,0xff,0xca,
0x4d}

EFI_AUTHENTICATION_CHAP_LOCAL_GUID

1413
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

GUID
#define EFI_AUTHENTICATION_CHAP_LOCAL_GUID \

{0xc280c73e,0x15ca,0x11da,0xb0,0xca,0x00,0x10,0x83,0xff,0xca,
0x4d}

2) Page 26, Section 2.3.2, IA-32 Platforms.Replace the NOTE with the following:

Note: Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used for the storage of any EFI
Configuration Tables. UEFI 2.0 intends to clarify the situation moving forward. Also, only
OSes conforming to UEFI 2.0 are guaranteed to handle SMBIOS tables in memory of type
EfiBootServicesData.

3) PAGE 35, Table 6. Delete DEVICE_IO as an UEFI protocol.

4) Page 69, Section 4.3, EFI_System _Table, Related Definitions.

Add “#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION” and change
“#define EFI_SYSTEM_TABLE_REVISION ((2<<16) | (10))” to “#define
EFI_SYSTEM_TABLE_REVISION EFI_2_10_SYSTEM_TABLE_REVISION”

#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_2_10_SYSTEM_TABLE_REVISION ((2<<16) | (10))
#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))
#define EFI_SYSTEM_TABLE_REVISION EFI_2_10_SYSTEM_TABLE_REVISION
#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION

5) Page 71, Section 4.4, , Related Definitions.

Replace “#define EFI_BOOT_SERVICES_REVISION ((2<<16) | (00))”
with “#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION” to read as
follows:

#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42

#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION

6) Page 71, Section 4.5, Related Definitions.

Replace “#define EFI_RUNTIME_SERVICES_REVISION ((2<<16) | (00))”
with “#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION” to read as
follows:

#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION

1414
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

7) Page 72, Section 4.4.

Member “VOID *Reserved” of EFI_BOOT_SERVICES structure is defined by EFI 1.10 but
removed by UEFI 2.0. This is a place holder to keep the boot services table aligned properly. It
should be defined in UEFI 2.0 specification. The Protocol Handler Services area of Related
Definitions in Section 4.4, EFI Boot Service Table should read as follows:

// Protocol Handler Services

//

EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; // EFI 1.0+

EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; // EFI 1.0+

EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; // EFI 1.0+

EFI_HANDLE_PROTOCOL HandleProtocol; // EFI 1.0+

VOID* Reserved; // EFI 1.0+

EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; // EFI 1.0+

EFI_LOCATE_HANDLE LocateHandle; // EFI 1.0+

EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+

EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; // EFI 1.0+

8) Page 123. Add the following NOTE to AllocatePages():

Note: Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate
memory of type EfiReservedMemoryType.

9) Page 131, add the following NOTE to AllocatePool():

Note: Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate
memory of type EfiReservedMemoryType.

10) Page 191, Section 6.4, third paragraph.

Change the description into the following, substituting UnloadImage()for Unload():

It is valid to call Exit() or UnloadImage() for an image that was loaded by LoadImage() before calling
StartImage(). This will free the image from memory without having started it.

1415
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

11) Page 212, Section 7.1, SetVariable() Description and Status Code Returned.

Add a new return status code EFI_NOT_FOUND to SetVariable service to read as follows:

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited

storage capacity; sometimes a severely limited capacity. Software should only use a nonvolatile

variable when absolutely necessary. In addition, if software uses a nonvolatile variable it should

use a variable that is only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Using SetVariable() with a DataSize of zero causes the
entire variable to be deleted. The space consumed by the deleted variable may not be available until the next power
cycle.

The Attributes have the following usage rules:

• Storage attributes are only applied to a variable when creating the variable. If a preexisting variable is rewritten
with different attributes, the result is indeterminate and may vary between implementations. The correct method of
changing the attributes of a variable is to delete the variable and recreate it with different attributes. There is one
exception to this rule. If a preexisting variable is rewritten with no access attributes specified, the variable will be
deleted.

• Setting a data variable with no access attributes, or zero DataSize specified, causes it to be deleted.

• Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have EFI_VARIABLE_BOOTSERVICE_ACCESS set.
The caller is responsible for following this rule.

• Once ExitBootServices() is performed, data variables that did not have EFI_VARIABLE_RUNTIME_ACCESS
set are no longer visible to GetVariable().

• Once ExitBootServices() is performed, only variables that have EFI_VARIABLE_RUNTIME_ACCESS
and EFI_VARIABLE_NON_VOLATILE set can be set with SetVariable(). Variables that have runtime access but
that are not nonvolatile are read-only data variables once ExitBootServices() is performed.

The only rules the firmware must implement when saving a nonvolatile variable is that it has actually been saved to
nonvolatile storage before returning EFI_SUCCESS, and that a partial save is not performed. If power fails during a
call to SetVariable() the variable may contain its previous value, or its new value. In addition there is no read,
write, or delete security protection.

Status Codes Returned
EFI_SUCCESS

The firmware has successfully stored the variable and its data as
defined by the Attributes.

EFI_INVALID_PARAMETER
An invalid combination of attribute bits was supplied, or the
DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty Unicode string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

EFI_WRITE_PROTECTED The variable in question is read-only.

EFI_NOT_FOUND The variable trying to be updated or deleted was not found.

1416
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

12) Page 213, Section 7.1.

Changes to clarify the expected results from the QueryVariable output fields. Prototype and
Description should read as follows:

Prototype

typedef

EFI_STATUS

QueryVariableInfo (

 IN UINT32 Attributes,

 OUT UINT64 *MaximumVariableStorageSize,

 OUT UINT64 *RemainingVariableStorageSize,

 OUT UINT64 *MaximumVariableSize

);

Attributes Attributes bitmask to specify the type of variables on
which to return information. Refer to the
GetVariable() function description.

MaximumVariableStorageSize On output the maximum size of the storage space
available for the EFI variables associated with the
attributes specified.

RemainingVariableStorageSize Returns the remaining size of the storage space
available for EFI variables associated with the
attributes specified.

MaximumVariableSize Returns the maximum size of an individual EFI
variable associated with the attributes specified.

Description
The QueryVariableInfo() function allows a caller to obtain the information about the maximum size
of the storage space available for the EFI variables, the remaining size of the storage space available for the
EFI variables and the maximum size of each individual EFI variable, associated with the attributes specified.

The MaximumVariableSize value will reflect the overhead associated with the saving of a single EFI
variable with the exception of the overhead associated with the length of the string name of the EFI variable.

The returned MaximumVariableStorageSize, RemainingVariableStorageSize,
MaximumVariableSize information may change immediately after the call based on other runtime
activities including asynchronous error events. Also, these values associated with different attributes are not
additive in nature.

13) Page 213, Section 7.2.

Correct errors for the PCI device node text representations and clarify the AppendDeviceNode
and AppendDevicePath functions regarding what should happen when the device path & device
nodes are NULL. The Description should read as follows:

1417
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

Description
The QueryVariableInfo() function allows a caller to obtain the information about the maximum size of the
storage space available for the EFI variables, the remaining size of the storage space available for the EFI variables and
the maximum size of each individual EFI variable, associated with the attributes specified.

The RemainingVariableStorageSize value will reflect the overhead associated with the saving of a single EFI
variable with the exception of the overhead associated with the length of the string name of the EFI variable.

The returned MaximumVariableStorageSize, RemainingVariableStorageSize,
MaximumVariableSize information may change immediately after the call based on other runtime activities
including asynchronous error events. Also, these values associated with different attributes are not additive in nature.

After the system has transitioned into runtime (after ExitBootServices() is called), an implementation may not
be able to accurately return information about the Boot Services variable store. In such cases,
EFI_INVALID_PARAMETER should be returned.

14) Page 227, Section 7.4.1, ResetSystem(), Description. Delete last sentence from the fourth
paragraph of the Description, to read as follows:

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a power state equivalent to the
ACPI G2/S5 or G3 states. If the system does not support this reset type, then when the system is rebooted, it should
exhibit the EfiResetCold attributes.

15) Page 230, Section 7.4.3.

The UpdateCapsule API description should read as follows.

typedef

EFI_STATUS

UpdateCapsule (

 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,

 IN UINTN CapsuleCount,

 IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL

);

16) Page 231, UpdateCapsule(), Related Definitions. This should have Union added to the next
to last line and formatting corrected, to read as follows:

typedef struct (
UINT64 Length;
union {
 EFI_PHYSICAL_ADDRESS DataBlock;
 EFI_PHYSICAL_ADDRESS ContinuationPointer;
 } Union;
) UEFI_CAPSULE_BLOCK_DESCRIPTOR;

1418
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

17) Page 232, Section 7.4.3, UpdateCapsule(), Description. Replace the next to the last (third)
paragraph of section 7.4.3 Description to read as follows:

A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag must have
CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that processes a capsule that
has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag set in its header will coalesce the contents of the
capsule from the ScatterGatherList into a contiguous buffer and must then place a pointer to this coalesced
capsule in the EFI System Table after the system has been reset. Agents searching for this capsule will look in the
EFI_CONFIGURATION_TABLE and search for the capsule’s GUID and associated pointer to retrieve the data after
the reset.

Table (#) Flag Firmware Behavior

Flags Firmware Behavior

No Specification defined flags Firmware attempts to immediately processes or
launch the capsule. If capsule is not
recognized, can expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET Firmware will attempt to process or launch the
capsule across a reset. If capsule is not
recognized, can expect an error. If the
processing requires a reset which is
unsupported by the platform, expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +

CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

Firmware will coalesce the capsule from the
ScatterGatherList into a contiguous buffer and
place a pointer to the coalesced capsule in the
EFI System Table. Platform recognition of the
capsule type is not required. If the action
requires a reset which is unsupported by the
platform, expect an error.

The EFI System Table entry must use the GUID from the CapsuleGuid field of the
EFI_CAPSULE_HEADER. The EFI System Table entry must point to an array of capsules that
contain the same CapsuleGuid value. The array must be prefixed by a UINT32 that represents
the size of the array of capsules.

18) Page 234, Section 7.4.3.

In the UpdateCapsule API Description, the last paragraph before Status Codes Returned
should read as follows:

The set of capsules is pointed to by ScatterGatherList and CapsuleHeaderArray so the firmware will know both the
physical and virtual addresses of the operating system allocated buffers. The scatter-gather list supports the situation
where the virtual address range of a capsules is contiguous, but the physical address are not. See 6.1.1 for more
complete definition of capsule construction.

If any of the capsules that are passed into this function encounter an error, the entire set of capsules will not be
processed and the error encountered will be returned to the caller.

1419
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

19) Page 234, Section 7.4.3.

In the UpdateCapsule Description, the Status Codes Returned table should read as follows.

Status Codes Returned
EFI_SUCCESS Valid capsule was passed. I Valid capsule was passed. If

CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set, the
capsule has been successfully processed by the firmware.

EFI_INVALID_PARAMETER CapsuleImageSize or HeaderSize is NULL.

EFI_INVALID_PARAMETER CapsuleCount is 0.

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device
error.

EFI_UNSUPPORTED The capsule type is not supported on this platform.

EFI_OUT_OF_RESOURCES There were insufficient resources to process the capsule.

20) Page 235, Section 7.4.3.

Delete the QueryCapsuleCapabilities Description third paragraph (shown here with
strikethrough text to emphasize deletion):

The firmware must support any capsule that has the CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set in
EFI_CAPSULE_HEADER. The firmware sets the policy for what capsules are supported that do not have the

CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set.

21) Page 235, Section 7.4.3.1.

In QueryCapsuleCapabilities the Prototype description for MaxiumCapsuleSize should read as
follows:

MaximumCapsuleSize On output the maximum size in bytes that UpdateCapsule() can
support as an argument to UpdateCapsule() via
CapsuleHeaderArray and ScatterGatherList. Undefined on
input.

22) Page 238, Section 7.4.3.

In the QueryCapsuleCapabilities Description, the Status Codes Returned table should read as
follows.

Status Codes Returned

EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL.

EFI_UNSUPPORTED The capsule type is not supported on this platform, and
MaximumCapsuleSize and ResetType are undefined.

EFI_OUT_OF_RESOURCES There were insufficient resources to process the query request.

1420
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

23) Page 261, Section 9.3.5.17.2. The first sentence of this section should read as follows:

Second Byte (At offset 41 into the structure). Valid only if bits 0-3 of More Information in Byte 40 have a
value of 2:

24) Page 263, Section 9.3.5.18.

Change Table 60 to read as follows:

Table 60. iSCSI Device Path Node (Base Information)

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path
Sub-Type 1 1 Sub-Type 19 – iSCSI
Length 2 2 Length of this structure in bytes. Length is (18 + n)

Bytes
Protocol 4 2 Network Protocol (0 = TCP, 1+ = reserved)
Options 6 2 iSCSI Login Options
Logical Unit Number 8 8 SCSI Logical Unit Number

Target Portal group tag 16 2 iSCSI Target Portal group tag the initiator intends
to establish a session with.

iSCSI Target Name 18 n iSCSI NodeTarget Name. The length of the name
is determined by subtracting the offset of this field
from Length.

25) Page 277, Section 9.5.1.6.

In Table 70, the Type 1, SubType 3 row for MemoryMapped and the Type 1, SubType 4 row for
VenH should read as follows:

Type: 1 (Hardware Device Path)

SubType: 3 (Memory Mapped)

MemoryMapped(EfiMemoryType,StartingAddress,
EndingAddress)

The EfiMemoryType is a 32-bit integer and is required.

The StartingAddress and EndingAddress are both 64-bit
integers and are both required.

Type: 1 (Hardware Device Path)

SubType: 4 (Vendor)

VenHw(Guid, Data)

The Guid is a GUID and is required.

The Data is a Hex Dump and is optional. The default value is
zero bytes.

1421
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

26) Page 279, Section 9.5.1.6.

In Table 70, the Type 2, SubType2 row for AcpiEx should read as follows:

Type: 2 (ACPI Device Path)

SubType: 2 (ACPI Expanded
Device Path)

AcpiEx(HID,CID,UID,HIDSTR,CIDSTR,UIDSTR)

AcpiEx(HID|HIDSTR,UID|UIDSTR,CID|CIDSTR)

(Display Only)

The HID parameter is an EISAID. The default value is 0.
Either HID or HIDSTR must be present.

The CID parameter is an EISAID. The default value is 0.
Either CID must be 0 or CIDSTR must be empty.

The UID parameter is an integer. The default value is 0.
Either UID must be 0 or UIDSTR must be empty.

The HIDSTR is a string. The default value is the empty
string. Either HID or HIDSTR must be present.

The CIDSTR is a string. The default value is an empty
string. Either CID must be 0 or CIDSTR must be empty.

The UIDSTR is a string. The default value is an empty
string. Either UID must be 0 or UIDSTR must be empty.

27) Page 280, Section 9.5.1.6.

In Table 70, the Type 3, SubType 9 row for Infiniband should read as follows:

Type: 3 (Messaging Device Path)

SubType: 9 (Infiniband)

Infiniband (Flags, Guid, ServiceId, TargetId, DeviceId)

Flags is an integer.

Guid is a guid.

ServiceId, TargetId and DeviceId are 64-bit unsigned integers.

All fields are required.

28) Page 277, Table 70.

Text for PCI, second column should be:

Pci (Device, Function)

The Device is an integer from 0-31 and is required.

The Function is an integer from 0-7 and is required.

1422
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

29) Page 283, Section 9.5.1.6.

In Table 70, the Type 3, SubType11 row for MAC should read as follows:

Type: 3 (Messaging Device Path)

SubType: 11 (MAC Address)

MAC(MacAddr, IfType)

The MacAddr is a Hex Dump and is required. If IfType is 0 or 1,
then the MacAddr must be exactly six bytes.

The IfType is an integer from 0-255 and is optional. The default is
zero.

30) Page 283, Section 9.5.1.6.

In Table 70, the Type 3, SubType15, Class 1 row for UsbAudio should read as follows:

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 1

UsbAudio(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional.
The default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

31) Page 286, Section 9.5.1.6.

In Table 70, the Type 3, SubType15, Class 7 row for UsbPrinter should read as follows:

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 7

UsbPrinter(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional.
The default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

1423
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

32) Page 287, Section 9.5.1.6,.

In Table 70, the Type 3, SubType15, Class 11 row for UsbSmartCard should read as
follows:

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 11

UsbSmartCard(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional.
The default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional.
The default value is 0xFFFF.

The SubClass is an integer between 0 and 255 and is optional.
The default value is 0xFF.

The Protocol is an integer between 0 and 255 and is optional.
The default value is 0xFF.

33) Page 288, Section 9.5.1.6,.

In Table 70, the Type 3, SubType15, Class 254, SubClass 1 row for
UsbDeviceFirmwareUpdate should read as follows:

Type: 3 (Messaging Device Path)

SubType: 15 (USB Class)

Class 254

SubClass: 1

UsbDeviceFirmwareUpdate(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.

The Protocol is an integer between 0 and 255 and is optional.
The default value is 0xFF.

34) Page 289, Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL GUID and Protocol Interface Structure should read
as follows:

1424
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

GUID
#define EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID \
 {0x0379be4e, 0xd706, 0x437d, \
 0xb0, 0x37, 0xed, 0xb8, 0x2f, 0xb7, 0x72, 0xa4 }

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_UTILITIES_PROTOCOL {
 EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE GetDevicePathSize;
 EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH DuplicateDevicePath;
 EFI_DEVICE_PATH_UTILS_APPEND_PATH AppendDevicePath;
 EFI_DEVICE_PATH_UTILS_APPEND_NODE AppendDeviceNode;
 EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE AppendDevicePathInstance;
 EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE GetNextDevicePathInstance;
 EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE IsDevicePathMultiInstance;
 EFI_DEVICE_PATH_UTILS_CREATE_NODE CreateDeviceNode;
} EFI_DEVICE_PATH_UTILITIES_PROTOCOL;

35) Page 290, Section 9.5.1.6.

In Table 70, the Type 4 row for MediaPath and Type 4 , SubType1 row for HD should read
as follows:

Type: 4

MediaPath(subtype, data)

The subtype is an integer from 0-255 and is
required.

The data is a hex dump.

Type: 4 (Media Device Path)

SubType: 1 (Hard Drive)

HD(Partition,Type,Signature,Start, Size)

HD(Partition,Type,Signature) (Display
Only)

The Partition is an integer representing the
partition number. It is optional and the default is
0. If Partition is 0, then Start and Size are
prohibited.

The Type is an integer between 0-255 or else
the keyword MBR (1) or GPT (2). The type is
optional and the default is 2.

The Signature is an integer if Type is 1 or else
GUID if Type is 2. The signature is required.

The Start is a 64-bit unsigned integer. It is
prohibited if Partition is 0. Otherwise it is
required.

The Size is a 64-bit unsigned integer. It is
prohibited if Partition is 0. Otherwise it is
required.

1425
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

36) Page 291, Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES.GetDevicePathSize Prototype, Parameters and Description
should read as follows:

Prototype
typedef
UINTN
(EFIAPI *EFI_DEVICE_PATH_GET_DEVICE_PATH_SIZE) (
 IN CONST EFI_DEVICE_PATH* DevicePath
);

Parameters
DevicePath

Points to the start of the EFI device path (or NULL).

Description
This function returns the size of the specified device path, in bytes, including the end-of-path tag. If DevicePath is
NULL then zero is returned.

37) Page 292Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath Prototype, Parameters and
Description should read as follows:

Parameters
DevicePath

Points to the source device path or NULL.

Description
This function creates a duplicate of the specified device path. The memory is allocated from EFI boot services memory.
It is the responsibility of the caller to free the memory allocated. If DevicePath is NULL then NULL will be
returned and no memory will be allocated.

38)

Page 292, Section 9.5.2 (EFI_DEVICE_PATH_UTILITIES_PROTOCOL)

The function prototypes for all functions need to be changed to include _UTILS per the
following table:

EFI_DEVICE_PATH_GET_DEVICE_PATH_SIZE EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE

EFI_DEVICE_PATH_DUP_DEVICE_PATH EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH

EFI_DEVICE_PATH_APPEND_DEVICE_PATH EFI_DEVICE_PATH_UTILS_APPEND_DEVICE_PATH

EFI_DEVICE_PATH_APPEND_DEVICE_NODE EFI_DEVICE_PATH_UTILS_APPEND_DEVICE_NODE

EFI_DEVICE_PATH_APPEND_DEVICE_PATH_INSTANCE EFI_DEVICE_PATH_UTILS_APPEND_DEVICE_PATH_INST

EFI_DEVICE_PATH_GET_NEXT_INSTANCE EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE

EFI_DEVICE_PATH_CREATE_NODE EFI_DEVICE_PATH_UTILS_CREATE_NODE

1426
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

EFI_DEVICE_PATH_IS_MULTI_INSTANCE EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE

39) Page 292, Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath Prototype should read as
follows :

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_DUP_DEVICE_PATH) (
 IN CONST EFI_DEVICE_PATH* DevicePath
);

40) Page 293Section 9.5.2.

AppendDevicePath paramenters, etc., should read as follows:

Parameters
Src1 Points to the first device path.

Src2 Points to the second device path.

Description
This function creates a new device path by appending a copy of the second device path to a copy of the first device path
in a newly allocated buffer. Only the end-of-device-path device node from the second device path is retained. If Src1
is NULL and Src2 is non-NULL, then a duplicate of Src2 is returned. If Src1 is non-NULL and Src2 is NULL,
then a duplicate of Src1 is returned. If Src1 and Src2 are both NULL, then a copy of an end-of-device-path is
returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free the memory
allocated.

Returns
This function returns a pointer to the newly created device path or NULL if memory could not be allocated.

1427
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

41) Page 293, Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath Prototype should read as
follows :

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_APPEND_DEVICE_PATH)
 IN CONST EFI_DEVICE_PATH* Src1,
 IN CONST EFI_DEVICE_PATH* Src2
);

42) Page 29, 4Section 9.5.2.

AppendDeviceNode paramenters, etc., should read as follows:

Parameters
DevicePath Points to the device path.

DeviceNode Points to the device node.

Description
This function creates a new device path by appending a copy of the specified device node to a copy of the specified
device path in an allocated buffer. The end-of-device-path device node is moved after the end of the appended device
node. If DeviceNode is NULL then a copy of DevicePath is returned. If DevicePath is NULL then a copy of
DeviceNode, followed by an end-of-device path device node is returned. If both DeviceNode and DevicePath
are NULL then a copy of an end-of-device-path device node is returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to
free the memory allocated.

Returns
This function returns a pointer to the allocated device path or NULL if there was insufficient memory.

43) Page 297, Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode Prototype should read as
follows :

Prototype
typedef
EFI_DEVICE_PATH*
(EFIAPI *EFI_DEVICE_PATH_CREATE_NODE) (
 IN UINT8 NodeType,
 IN UINT8 NodeSubType,
 IN UINT16 NodeLength
);

1428
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

44) Page 296, Section 9.5.2.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance Prototype and
Paramenters should read as follows :

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_GET_NEXT_INSTANCE) (
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePathInstance,
 OUT UINTN *DevicePathInstanceSize OPTIONAL
);

Parameters
DevicePathInstance

On input, this holds the pointer to the current device path instance. On output, this holds the
pointer to the next device path instance or NULL if there are no more device path instances in
the device path.

DevicePathInstanceSize

On output, this holds the size of the device path instance, in bytes or zero, if
DevicePathInstance is NULL. If NULL, then the instance size is not output.

45) Page 339, Section 10.4, EFI Driver Configuration Protocol
EFI_DRIVER_CONFIGURATION_PROTOCOL. Replace the Protocol Interface structure
with the following:

typedef struct _EFI_DRIVER_CONFIGURATION2_PROTOCOL {

EFI_DRIVER_CONFIGURATION_SET_OPTIONS SetOptions;
EFI_DRIVER_CONFIGURATION_OPTIONS_VALID OptionsValid;
EFI_DRIVER_CONFIGURATION_FORCE_DEFAULTS ForceDefaults;
CHAR8 *SupportedLanguages;

} EFI_DRIVER_CONFIGURATION2_PROTOCOL;

46) Page 339and following, Section 10.4:.
Change all references to EFI_DRIVER_CONFIGURATION_PRTOCOL to
EFI_DRIVER_CONFIGURATION2_PROTOCOL, including all
EFI_DRIVER_CONFIGURATION_PROTOCOL function names.

47) Page 349; Section 10.5 EFI Driver Diagnostoics
Protocol,EFI_DRIVER_DIAGNOSTICS_PROTOCOL. Replaces the Protocol Interface
Structure with the following:

typedef struct _EFI_DRIVER_DIAGNOSTICS2_PROTOCOL {

EFI_DRIVER_DIAGNOSTICS_RUN_DIAGNOSTICS RunDiagnostics;
 CHAR8 *SupportedLanguages;

 } EFI_DRIVER_DIAGNOSTICS2_PROTOCOL;

1429
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

48)) Page 349, ;Section 10.5,and following. UEFI_CAPSULE_BLOCK_DESCRIPTOR
Change all references to EFI_DRIVER_DIAGNOSTICS_PROTOCOL to
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL, including all
EFI_DRIVER_DIAGNOSTICS_PROTOCOL function names.

49) Page 352, Section 10.5.
To the Status Codes Returned, add a return code to the
EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics() function. Add The following return
code between the first return code (EFI_SUCCESS) and second return code EFI_VALID
_PARAMETER):

EFI_ACCESS_DENIED The request for initiating diagnostics was unable to be completed due to
some underlying hardware or software state.

50) Pages 353 and following, Section 10.6. Replace all of the section 10.6 content with the
following content:

EFI Component Name Protocol

This section provides a detailed description of the EFI_COMPONENT_NAME2_PROTOCOL. This is a
protocol that allows an driver to provide a user readable name of a UEFI Driver, and a user
readable name for each of the controllers that the driver is managing. This protocol is used by
platform management utilities that wish to display names of components. These names may
include the names of expansion slots, external connectors, embedded devices, and add-in
devices.

EFI_COMPONENT_NAME2_PROTOCOL

Summary

Used to retrieve user readable names of drivers and controllers managed by UEFI Drivers.

GUID
#define EFI_COMPONENT_NAME2_PROTOCOL_GUID \
 {0x6a7a5cff, 0xe8d9, 0x4f70, 0xba, 0xda, 0x75, 0xab, 0x30,
 0x25, 0xce, 0x14}

Protocol Interface Structure
typedef struct _EFI_COMPONENT_NAME2_PROTOCOL {
 EFI_COMPONENT_NAME_GET_DRIVER_NAME GetDriverName;
 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME GetControllerName;
 CHAR8 *SupportedLanguages;
} EFI_COMPONENT_NAME2_PROTOCOL;

Parameters
GetDriverName Retrieves a Unicode string that is the user readable name of the
driver. See the GetDriverName() function description.

GetControllerName Retrieves a Unicode string that is the user readable name of a
controller that is being managed by a driver. See the GetControllerName() function
description.

SupportedLanguages A Null-terminated ASCII string array that contains one or more
supported language codes. This is the list of language codes that this protocol supports.
The number of languages supported by a driver is up to the driver writer.

1430
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

SupportedLanguages is specified in RFC 4646 format. See Appendix M for the format of
language codes and language code arrays.

Description

The EFI_COMPONENT_NAME2_PROTOCOL is used retrieve a driver's user readable name and the
names of all the controllers that a driver is managing from the driver's point of view. Each of
these names is returned as a Null-terminated Unicode string. The caller is required to specify
the language in which the Unicode string is returned, and this language must be present in the
list of languages that this protocol supports specified by SupportedLanguages.

EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()

Summary

Retrieves a Unicode string that is the user readable name of the driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_DRIVER_NAME) (
 IN EFI_COMPONENT_NAME2_PROTOCOL *This,
 IN CHAR8 *Language,
 OUT CHAR16 **DriverName
);

Parameters
This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL instance.

Language A pointer to a Null-terminated ASCII string array indicating the language. This
is the language of the driver name that the caller is requesting, and it must match one of
the languages specified in SupportedLanguages. The number of languages supported by
a driver is up to the driver writer. Language is specified in RFC 4646 language code
format. See Appendix M for the format of language codes.

DriverName A pointer to the Unicode string to return. This Unicode string is the
name of the driver specified by This in the language specified by Language.

Description

This function retrieves the user readable name of a driver in the form of a Unicode string. If
the driver specified by This has a user readable name in the language specified by Language,
then a pointer to the driver name is returned in DriverName, and EFI_SUCCESS is returned. If
the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

Status Codes Returned

EFI_SUCCESS The Unicode string for the user readable name in the language
specified by Language for the driver specified by This was
returned in DriverName.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER DriverName is NULL.

EFI_UNSUPPORTED The driver specified by This does not support the language
specified by Language.

1431
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()

Summary

Retrieves a Unicode string that is the user readable name of the controller that is being
managed by a driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_CONTROLLER_NAME) (
 IN EFI_COMPONENT_NAME2_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN CHAR8 *Language,
 OUT CHAR16 **ControllerName
);

Parameters
This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL instance.

ControllerHandle The handle of a controller that the driver specified by This is
managing. This handle specifies the controller whose name is to be returned.

ChildHandle The handle of the child controller to retrieve the name of. This is an
optional parameter that may be NULL. It will be NULL for device drivers. It will also be
NULL for bus drivers that attempt to retrieve the name of the bus controller. It will not
be NULL for a bus driver that attempts to retrieve the name of a child controller.

Language A pointer to a Null- terminated ASCII string array indicating the language.
This is the language of the controller name that the caller is requesting, and it must
match one of the languages specified in SupportedLanguages. The number of languages
supported by a driver is up to the driver writer. Language is specified in RFC 4646
language code format. See Appendix M for the format of language codes.

ControllerName A pointer to the Unicode string to return. This Unicode string is the
name of the controller specified by ControllerHandle and ChildHandle in the language
specified by Language from the point of view of the driver specified by This.

Description

This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the driver specified by
This has a user readable name in the language specified by Language, then a pointer to the
controller name is returned in ControllerName, and EFI_SUCCESS is returned.

If the driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned.

If the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

Status Codes Returned

EFI_SUCCESS The Unicode string for the user readable name specified by This,
ControllerHandle, ChildHandle, and Language was
returned in ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.

1432
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and
ChildHandle is not NULL, and ChildHandle is not a valid
EFI_HANDLE.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ControllerName is NULL.

EFI_UNSUPPORTED The driver specified by This is a device driver and ChildHandle
is not NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the
controller specified by ControllerHandle and ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language
specified by Language.

51) Page 358, Section 10.7.

Change the Description to read as follows:

The EFI_SERVICE_BINDING_PROTOCOL provides member functions to create and destroy
child handles. A driver is responsible for adding protocols to the child handle in CreateChild()
and removing protocols in DestroyChild(). It is also required that the CreateChild ()
function opens the parent protocol BY_CHILD_CONTROLLER to establish parent-child
relationship, and closes the protocol in DestoryChild (). The pseudo code for
CreateChild()and DestoryChild () is provided to specify the required behavior, not the
required implementation. Each consumer of a software protocol is responsible for calling
CreateChild()when it requires the protocol and calling DestroyChild() when it is
finished with that protocol.

52) Page 415, Section 11.7.1.

The EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE_INFORMATION structure has a member
which has one too many “*”’s in it. This is an unnecessary level of indirection for the member.
The structure code of EFI_GRAPHICS_OUTPUT_PROTOCOL, Related Definitions on page 415
should read as follows:

typedef struct {

 UINT32 MaxMode;

 UINT32 Mode;

 EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *Info;

 UINTN SizeOfInfo;

 EFI_PHYSICAL_ADDRESS FrameBufferBase;

 UINTN FrameBufferSize;

1433
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

} EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE;

53) Page 417, Section 11.7.1.

The EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE function has a function parameters
which has too few “*”’s in it. This makes the function unimplementable as currently defined
since it is intended as a callee allocated field. The
EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode() Prototype on page 417 should read as
follows:

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE) (

 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,

 IN UINT32 ModeNumber,

 OUT UINTN *SizeOfInfo

 OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info

);

54) Page 424, Section 11.7.1.

The EFI_EDID_DISCOVERED_PROTOCOL has a field which needs to be constructed with a
pointer since it is intended to be a “pointer to an array of bytes that contains the EDID
information”. The EFI_EDID_DISCOVERED_PROTOCOL, Protocol Interface Structure should
read as follows:

Protocol Interface Structure
typedef struct {

 UINT32 SizeOfEdid;

 UINT8 *Edid;

} EFI_EDID_DISCOVERED_PROTOCOL;

55) Page 424, and page 425;EFI_EDID_DISCOVERED_PROTOCOL,
EFI_EDID_ACTIVE_PROTOCOL, repectively,. The last sentence of the Edid parameter
should read as follows:

,

 EDID information is defined in the E-EDID EEPROM specification published by VESA (www.vesa.org).

56) Page 430, Section 11.8. One statement is a vestige from its previous UGA inheritance and
should not necessarily be a requirement today. Strike the following statement from the
specification.:

A plug in graphics device that contains a ROM must have an EBC version of the EFI driver that
produces the EFI_GRAPHICS_OUTPUT_PROTOCOL.

1434
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

57) Page 434,EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.OpenVolume(), Prototype. Replace
the first parameter line (fourth line) with the following:

IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *This

58) Page 492, Section 12.8, EFI_UNICODE_COLLATION_PROTOCOL. Update the
EFI_UNICODE_COLLATION_PROTOCOL_GUID with the following:

#define EFI_UNICODE_COLLATION_PROTOCOL2_GUID \
{ 0xa4c751fc, 0x23ae, 0x4c3e, 0x92, 0xe9, 0x49, 0x64, 0xcf, 0x63, 0xf3, 0x49

59) Page 619, Section 14.5.5, Description.

Remove a reference to a return code that isn’t valid for this particular function. The second to
the last paragraph on the page should read as follows:

 If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or

EFI_TIMEOUT is returned, then the caller must examine the status fields in Packet in the

following precedence order: HostAdapterStatus followed by TargetStatus followed by

SenseDataLength, followed by SenseData.

60) Page 619, Section 14.5.5.

Fix references to status codes that were inconsistent within the SCSI I/O
ExecuteScsiCommand API. EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand() paragraphs
second and fourth from the bottom should be changed to read as follows:

If the data buffer described by DataBuffer and TransferLength is too big to be transferred in a single
command, then EFI_BAD_BUFFER_SIZE is returned. The number of bytes actually transferred is returned in
TransferLength.

...

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT is returned, then the
caller must examine the status fields in Packet in the following precedence order: HostAdapterStatus
followed by TargetStatus followed by SenseDataLength, followed by SenseData. If non-blocking I/O is
being used, then the status fields in Packet will not be valid until the Event associated with Packet is signaled.

61) Page 620, Section 14.5.5. Further correction to inconsistent status codes. Append to the
end of Status Codes Returned, EFI_BAD_BUFFER_SIZE fields as follows:

1435
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. For read and bi-
directional commands, the number of bytes that could be
transferred is returned in InTransferLength. For write and bi-
directional commands, the number of bytes that could be
transferred is returned in OutTransferLength.See
HostAdapterStatus and TargetStatus in that order for
additional status information.

62) Page 628, Section 14.8, EFI_EXT_SCSI_PASS_THRU_PROTOCOL. Update the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID with the following:

#define EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID \
{0x143b7632, 0xb81b, 0x4cb7, 0xab, 0xd3, 0xb6, 0x25, 0xa5, 0xb9, 0xbf, 0xfe}

63) Pages 633 and 636 Section 14.8.

In function EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru(), in the Related Definitions for
EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET, the definitions for parameters
InDataBuffer, OutDataBuffer, and SenseBuffer should change to read as follows:

InDataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device for read and bidirectional
commands. For all write and non data commands where
InTransferLength is 0, this field is optional and may be
NULL. If this field is not NULL, then it must be aligned on the
boundary specified by the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device for write or bidirectional
commands. For all read and non data commands where
OutTransferLength is 0, this field is optional and may be
NULL. If this field is not NULL, then it must be aligned on the
boundary specified by the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

SenseData A pointer to the sense data that was generated by the execution
of the SCSI Request Packet. If SenseDataLength is 0, then
this field is optional and may be NULL. It is strongly
recommended that a sense data buffer of at least 252 bytes be
provided to guarantee the entire sense data buffer generated
from the execution of the SCSI Request Packet can be returned.
If this field is not NULL, then it must be aligned to the
boundary specified in the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

Also, the following notes are added at the end of the description for
EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET:

Note: : Some examples of SCSI read commands are READ, INQUIRY, and MODE_SENSE.

1436
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

Note: Some examples of SCSI write commands are WRITE and MODE_SELECT.

Note: An example of a SCSI non data command is TEST_UNIT_READY.

64) Pages 638, 639, Section 14.8,

Change EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() section to read as
follows:

Summary
Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These

can either be the list SCSI devices that are actually present on the SCSI channel, or the list of legal

Target Ids and LUNs for the SCSI channel. Regardless, the caller of this function must probe the

Target ID and LUN returned to see if a SCSI device is actually present at that location on the SCSI

channel.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN) (

IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,

IN OUT UINT8 **Target,

IN OUT UINT64 *Lun

);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance. Type

EFI_EXT_SCSI_PASS_THRU_PROTOCOL is defined in Section 14.7.
Target On input, a pointer to a legal Target ID (an array of size

TARGET_MAX_BYTES) for a SCSI device on the SCSI channel.
On output, a pointer to the next legal Target ID (an array of
TARGET_MAX_BYTES) of a SCSI device on a SCSI channel.
An input value of 0xFF’s (all bytes in the array are 0xFF)
in the Target array retrieves the first legal Target ID for a SCSI device ID on a SCSI channel.

Lun On input, a pointer to the LUN of a SCSI device present on the SCSI channel. On output, a pointer
to the LUN of the next SCSI device present on a SCSI channel.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() function retrieves
A list of legal Target ID and LUN for a SCSI channel. If on input a Target is

1437
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

specified by all 0xFF in the Target array, then the first legal Target ID and LUN for a SCSI device on a SCSI channel
is returned in Target and Lun and EFI_SUCCESS is returned.

If Target and Lun is a Target ID and LUN value that was returned on a previous call to
GetNextTargetLun(), then the next legal Target ID and LUN for a SCSI device on the SCSI
channel is returned in Target and Lun, and EFI_SUCCESS is returned.

If Target array is not all 0xF’s and Target and Lun were not returned on a previous call to
GetNextTargetLun(), then EFI_INVALID_PARAMETER is returned.

If Target and Lun are the Target ID and LUN of the last SCSI device on the SCSI channel, then EFI_NOT_FOUND is
returned.

Status Codes Returned
EFI_SUCCESS The Target ID and LUN of the next SCSI device on the SCSI

channel was returned in Target and Lun.
EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.
EFI_INVALID_PARAMETER Target array is not all 0xFF’s, and Target and Lun were

not returned on a previous call to GetNextTargetLun().

65) Page 650, Section 15.2,.

The protocol GUID value should be 16 bytes long instead of 15 bytes long for ISCSI Initiator
Name Protocol. The correct ISCSI Initiator Name Protocol GUID should read as follows:

#define EFI_ISCSI_INITIATOR_NAME_PROTOCOL_GUID

{ \

 0x59324945, 0xec44, 0x4c0d, 0xb1, 0xcd, 0x9d, 0xb1, 0x39, 0xdf,

0x7, 0xc \

}

66) Pages 678 and 681 Section 16.1, and.

Add the status code (given below the functions) to the Status Codes Returned tables for the
following functions in section 16.1:

 EFI_USB2_HC_PROTOCOL.IsochronousTransfer()
 EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()

EFI_UNSUPPORTED The implementation doesn’t support Isochronous transfer function

67) Page 685, EFI_USB2_HC_PROTOCOL..GetRootHubPortStatus(), Description, second
paragraph should read as follows:

EFI_USB_PORT_STATUS describes the port status of a specified USB port based on the reporting capabilities of that
particular port’s host controller. This data structure is designed to be common to both a USB root hub port and a USB
hub port.

1438
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

68) Page 684, EFI_USB2_HC.GetRootHubPortStatus(),Table 106. Replace the last row with
two rows reading as follows:

11

Release port ownership to companion host controller
(USB_PORT_STAT_OWNER)
 0 = Port ownership has not been transferred
 1 = Port ownership has been transferred.

12-15

Reserved
 These bits return 0 when read.

69) Pages 686, Section 16.1,

In the function EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature(), in the Related Definitions,
add the following value to enumerated type EFI_USB_PORT_FEATURE:

 EfiUsbPortOwner = 13,

70) Page 687, Section 16.1,Table 108. Following the definition of EFI_USB_PORT_FEATURE,
insert the table row (given below) following the row for EfiUsbPortPower:

EfiUsbPortOwner N/A Releases the port ownership of this port

to companion host controller.

71) Page 687, EFI_USB2_HC_ PROTOCOL.SetRootHubPortFeature(), Description, second
paragraph should read as follows:

The number of root hub ports attached to the USB host controller can be determined with the function
GetRootHubPortStatus(). If PortNumber is greater than or equal to the number of ports returned by
GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is returned. If PortFeature is not
EfiUsbPortOwner, EfiUsbPortEnable, EfiUsbPortSuspend, EfiUsbPortPower, EfiUsbPortConnectChange,
EfiUsbPortResetChange, EfiUsbPortEnableChange, EfiUsbPortSuspendChange, or
EfiUsbPortOverCurrentChange, then EFI_INVALID_PARAMETER is returned.

72) Page 687, EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature().Add the following row to
Status Codes Returned:

EFI_UNSUPPORTED
PortFeature is invalid for the given host controller.

73) Section 16.2.4, pages 708 and 710.

 Add the following status code (given below the functions) to the Status Codes Returned tables
for the following functions:

 EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()

 EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()

EFI_UNSUPPORTED The implementation doesn’t support Isochronous transfer
function

1439
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

74) Page 873, Section 20.2, EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL. Update
the EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID with the following:

#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID_31 \
 { \
 0x1ACED566, 0x76ED, 0x4218, 0xBC, 0x81, 0x76, 0x7F, 0x1F, 0x97, 0x7A, 0x89
\
 }

75) Page 1030, Chapter 23.1.

Add an instance handle to the EFI_TCP4_SERVICE_POINT of EFI_TCP4_VARIABLE_DATA.

//**

// EFI_TCP4_VARIABLE_DATA

//**

typedef struct {

 EFI_HANDLE DriverHandle;

 UINTN ServiceCount;

 EFI_TCP4_SERVICE_POINT Services[1];

} EFI_TCP4_VARIABLE_DATA;

DriverHandle The handle of the driver that creates this entry.

ServiceCount The number of address/port pairs following this data structure.

Services List of address/port pairs that are currently in use. Type
EFI_TCP4_SERVICE_POINT is defined below.

//**

// EFI_TCP4_SERVICE_POINT

//**

typedef struct{

 EFI_HANDLE InstanceHandle;

 EFI_IPv4_ADDRESS LocalAddress;

 UINT16 LocalPort;

 EFI_IPv4_ADDRESS RemoteAddress;

 UINT16 RemotePort;

} EFI_TCP4_SERVICE_POINT;

1440
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

InstanceHandle The EFI TCPv4 Protocol instance handle that is using this service
port.

LocalAddress The local IPv4 address to which this TCPv4 protocol instance is
bound.

LocalPort The local port number in host byte order.

RemoteAddress The remote IPv4 address. It may be 0.0.0.0 if it isn’t connected to any
remote host.

RemotePort The remote port number in host byte order. It may be zero if it isn’t
connected to any remote host

76) Page 1030 and following (listed below)Section 23.1,.

Some data structure members in EFI_TCP4_PROTOCOL are defined as UINTN such as the
FragmentLength in the EFI_TCP4_FRAGMENT_DATA.. Change all these types to
UINT32.

On Page 1030:

//**

// EFI_TCP4_VARIABLE_DATA

//**

typedef struct {

 EFI_HANDLE DriverHandle;

 UINT32 ServiceCount;

 EFI_TCP4_ SERVICE_POINT Services[1];

} EFI_TCP4_VARIABLE_DATA;

On Page 1036:

typedef struct {

 UINT32 ReceiveBufferSize;

 UINT32 SendBufferSize;

 UINT32 MaxSynBackLog;

 UINT32 ConnectionTimeout;

 UINT32 DataRetries;

UINT32 FinTimeout;

UINT32 TimeWaitTimeout;

UINT32 KeepAliveProbes;

UINT32 KeepAliveTime;

1441
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

UINT32 KeepAliveInterval;

BOOLEAN EnableNagle;

BOOLEAN EnableTimeStamp;

BOOLEAN EnableWindowScaling;

BOOLEAN EnableSelectiveAck;

BOOLEAN EnablePathMtuDiscovery;

} EFI_TCP4_OPTION;

On Page 1051 Note: The problematic IN OUT modifier for the DataLength is also removed
here:

//***

// EFI_TCP4_RECEIVE_DATA

//***

typedef struct {

BOOLEAN UrgentFlag;

UINT32 DataLength;

UINT32 FragmentCount;

EFI_TCP4_FRAGMENT_DATA FragmentTable[1];

} EFI_TCP4_RECEIVE_DATA;

.

//***

// EFI_TCP4_FRAGMENT_DATA

//***

typedef struct {

 UINT32 FragmentLength;

 VOID *FragmentBuffer;

} EFI_TCP4_FRAGMENT_DATA;

On Page 1052:

//**

// EFI_TCP4_TRANSMIT_DATA

1442
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

//**

typedef struct {

 BOOLEAN Push;

 BOOLEAN Urgent;

 UINT32 DataLength;

 UINT32 FragmentCount;

 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];

} EFI_TCP4_TRANSMIT_DATA;

77) Page 1156, Section 25.2.4,.

Make the bCertificate […] a comment because in the GUID’d WIN_CERT; the latter
structure has an additional ANYSIZE_ARRAY. Changes to WIN_CERTIFICATE as follows:

typedef struct _WIN_CERTIFICATE {

 UINT32 dwLength;

 UINT16 wRevision;

 UINT16 wCertificateType;

 // UINT8 bCertificate[ANYSIZE_ARRAY];

} WIN_CERTIFICATE;

78) Page 1157, Section 25.2.4.

The HashType enumeration in the certificate structure was never set. This changes it to an
EFI_GUID to match the rest of Chapter 25 content.

Change To Section 25.2.3 (Replace in WIN_CERTIFICATE_EFI_PKCS1_15, starting with
Prototype)

Prototype
typedef struct _WIN_CERTIFICATE_EFI_PKCS1_15 {
 WIN_CERTIFICATE Hdr;
 EFI_GUID HashAlgorithm;
// UINT8 Signature[ANYSIZE_ARRAY];
} WIN_CERTIFICATE_EFI_PKCS1_15;

Hdr

This is the standard WIN_CERTIFICATE header, where wCertificateType is set to
WIN_CERT_TYPE_UEFI_PKCS1_15.

HashAlgorithm

This is the hashing algorithm which was performed on the UEFI executable when creating the
digital signature. It is one of the enumerated pre-defined GUID values defined in section
25.4.1 (see EFI_HASH_ALGORITHM_x).

1443
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

Signature

This is the actual digital signature. The size of the signature is the same size
as the key (1024-bit key is 128 bytes) and can be determined by subtracting
the length of the other parts of this header from the total length of the
certificate as found in Hdr.dwLength.

Information
The WIN_CERTIFICATE_UEFI_PKCS1_15 structure is derived from WIN_CERTIFICATE and encapsulate the
information needed to implement the RSASSA-PKCS1-v1_5 digital signature algorithm as specified in RFC2437,
sections 8-9.

79) Page 1061, Section 23.2

Removed from the EFI_IP4_VARIABLE_DATA: ProtocolGuid.

Page 1062: Added an instance handle to the EFI_IP4_ADDRESS_PAIR.

//**

// EFI_IP4_VARIABLE_DATA

//**

typedef struct {

 EFI_HANDLE DriverHandle;

 UINT32 AddressCount;

 EFI_IP4_ADDRESS_PAIR AddressPairs[1];

} EFI_IP4_VARIABLE_DATA;

DriverHandle The handle of the driver that creates this entry.

AddressCount The number of IPv4 address and subnet mask pairs that follow this
data structure.

AddressPairs List of IPv4 address and subnet mask pairs that are currently in
use. Type EFI_IP4_ADDRESS_PAIR is defined below.

//**

// EFI_IP4_ADDRESS_PAIR

//**

typedef struct{

 EFI_HANDLE InstanceHandle;

 EFI_IPv4_ADDRESS Ip4Address;

 EFI_IPv4_ADDRESS SubnetMask;

1444
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

} EFI_IP4_ADDRESS_PAIR;

InstanceHandle The EFI IPv4 Protocol instance handle that is using this
 address/subnetmask pair.

Ip4Address IPv4 address in network byte order.

80) Page 1167, Appendix A.

Remove ambiguity about GUIDs so that Appendix A reads as follows:

All EFI GUIDs (Globally Unique Identifiers) have the format described in RFC 4122 and comply with the referenced
algorithms for generating GUIDs. It should also be noted that TimeLow, TimeMid, TimeHighAndVersion fields in the
EFI are encoded as little endian. The following table defines the format of an EFI GUID (128 bits).

 Table 168. EFI GUID Format

Mnemonic

Byte
Offset

Byte
Length

Description

TimeLow 0 4 The low field of the timestamp.

TimeMid 4 2 The middle field of the timestamp.

TimeHighAndVersion 6 2 The high field of the timestamp multiplexed with the
version number.

ClockSeqHighAndReserved 8 1 The high field of the clock sequence multiplexed with
the variant.

ClockSeqLow 9 1 The low field of the clock sequence.

Node 10 6 The spatially unique node identifier. This can be
based on any IEEE 802 address obtained from a
network card. If no network card exists in the system,
a cryptographic-quality random number can be used.

This appendix for GUID defines a 60-bit timestamp format that is used to generate the GUID. All EFI time
information is stored in 64-bit structures that contain the following format: The timestamp is a 60-bit value that is
represented by Coordinated Universal Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00,
15 October 1582 (the date of Gregorian reform to the Christian calendar). This time value will not roll over until the
year 3400 AD. It is assumed that a future version of the EFI specification can deal with the year-3400 issue by
extending this format if necessary.

81) Appendix D, page 1181, Table 174.

Supported 32-bit Range, 64-bit Architecture Range and Description values changed for all four
rows as follows:

Supported
32-bit Range

Supported 64-bit
Architecture Ranges

Description

0x00000000-
0x1fffffff

0x0000000000000000-
0x1fffffffffffffff

Success and warning codes reserved for use by UEFI
main specification.

0x20000000-
0x3fffffff

0x2000000000000000-
0x3fffffffffffffff

Success and warning codes reserved for use by UEFI
main specification.

1445
 UEFI Specification 2.0 Errata

UEFI Specification 2.0 Errata

1446
 UEFI Specification 2.0 Errata

0x80000000-
0x9fffffff

0x8000000000000000-
0x9fffffffffffffff

Error codes reserved for use by UEFI main spec.

0xa0000000-
0xbfffffff

0xa000000000000000-
0xbfffffffffffffff

Error codes reserved for use by Platform Initialization
Specification.

82) Page 1215Section E.3.4.12.

Add a type definition “PXE_MEDIA_PROTOCOL” to support PXE in UEFI specification to become
Section E.3.4.13, containing the following text:

E.3.4.13 PXE_MEDIA_PROTOCOL

Protocol type. This will be copied into the media header without doing byte swapping. Protocol type numbers
can be obtained from the assigned numbers in RFC 1700.

typedef UINT16 PXE_MEDIA_PROTOCOL;

83) PAGE 1359, Table 184. correct the typo "EFI 11.0" to read "EFI 1.10".

	Unified Extensible Firmware Interface Specification
	Acknowledgements
	History
	Table of Contents
	1 Introduction
	UEFI Driver Model Extensions
	Overview
	Goals
	Target Audience
	UEFI Design Overview
	UEFI Driver Model
	UEFI Driver Model Goals
	Legacy Option ROM Issues

	Migration Requirements
	Legacy Operating System Support
	Supporting the UEFI Specification on a Legacy Platform

	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Instruction Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Overview
	Boot Manager
	UEFI Images
	Applications
	UEFI OS Loaders
	UEFI Drivers

	Firmware Core
	UEFI Services
	Runtime Services

	Calling Conventions
	Data Types
	IA-32 Platforms
	Itanium®-based Platforms
	x64 Platforms

	Protocols
	UEFI Driver Model
	Legacy Option ROM Issues
	Driver Initialization
	Host Bus Controllers
	Device Drivers
	Bus Drivers
	Platform Components
	Hot-Plug Events
	EFI Services Binding

	Requirements
	Required Elements
	Platform-Specific Elements
	Driver-Specific Elements

	3 Boot Manager
	Firmware Boot Manager
	Globally Defined Variables
	Boot Option Variables Default Behavior
	Boot Mechanisms
	Boot via the Simple File Protocol
	Boot via LOAD_FILE PROTOCOL

	4 EFI System Table
	UEFI Image Entry Point
	EFI_IMAGE_ENTRY_POINT

	EFI Table Header
	EFI_TABLE_HEADER

	EFI System Table
	EFI_SYSTEM_TABLE

	EFI Boot Services Table
	EFI_BOOT_SERVICES

	EFI Runtime Services Table
	EFI_RUNTIME_SERVICES

	EFI Configuration Table
	EFI_CONFIGURATION_TABLE

	Image Entry Point Examples
	Image Entry Point Examples
	UEFI Driver Model Example
	UEFI Driver Model Example (Unloadable)
	EFI Driver Model Example (Multiple Instances)

	5 GUID Partition Table (GPT) Format
	EFI Partition Formats
	LBA 0 Format
	Legacy Master Boot Record (MBR)
	Protective Master Boot Record

	GUID Partition Table (GPT) Format
	GUID Format overview
	GPT Partition Table Header
	GUID Partition Entry Array

	6 Services — Boot Services
	Event, Timer, and Task Priority Services
	CreateEvent()
	CreateEventEx()
	CloseEvent()
	SignalEvent()
	WaitForEvent()
	CheckEvent()
	SetTimer()
	RaiseTPL()
	RestoreTPL()

	Memory Allocation Services
	AllocatePages()
	FreePages()
	GetMemoryMap()
	AllocatePool()
	FreePool()

	Protocol Handler Services
	Driver Model Boot Services
	InstallProtocolInterface()
	UninstallProtocolInterface()
	ReinstallProtocolInterface()
	RegisterProtocolNotify()
	LocateHandle()
	HandleProtocol()
	LocateDevicePath()
	OpenProtocol()
	CloseProtocol()
	OpenProtocolInformation()
	ConnectController()
	DisconnectController()
	ProtocolsPerHandle()
	LocateHandleBuffer()
	LocateProtocol()
	InstallMultipleProtocolInterfaces()
	UninstallMultipleProtocolInterfaces()

	Image Services
	LoadImage()
	StartImage()
	UnloadImage()
	EFI_IMAGE_ENTRY_POINT
	Exit()
	ExitBootServices()

	Miscellaneous Boot Services
	SetWatchdogTimer()
	Stall()
	CopyMem()
	SetMem()
	GetNextMonotonicCount()
	InstallConfigurationTable()
	CalculateCrc32()

	7 Services — Runtime Services
	Variable Services
	GetVariable()
	GetNextVariableName()
	SetVariable()
	QueryVariableInfo()

	Time Services
	GetTime()
	SetTime()
	GetWakeupTime()
	SetWakeupTime()

	Virtual Memory Services
	SetVirtualAddressMap()
	ConvertPointer()

	Miscellaneous Runtime Services
	Reset System
	ResetSystem()
	GetNextHighMotonic Count
	GetNextHighMonotonicCount()
	Update Capsule
	UpdateCapsule()
	QueryCapsuleCapabilities()

	8 Protocols — EFI Loaded Image
	
	EFI_LOADED_IMAGE_PROTOCOL
	EFI_LOADED_IMAGE.Unload()

	9 Protocols — Device Path Protocol
	Device Path Overview
	EFI Device Path Protocol
	EFI_DEVICE_PATH_PROTOCOL

	Device Path Nodes
	Generic Device Path Structures
	Hardware Device Path
	ACPI Device Path
	ACPI _ADR Device Path
	Messaging Device Path
	Media Device Path
	BIOS Boot Specification Device Path

	Device Path Generation Rules
	Housekeeping Rules
	Rules with ACPI _HID and _UID
	Rules with ACPI _ADR
	Hardware vs. Messaging Device Path Rules
	Media Device Path Rules
	Other Rules

	EFI Device Path Display Format Overview
	Design Discussion
	Code Definitions
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstance()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstance()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstance()
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText()
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode()
	EFI_DEVICE_PATH_FROM_PATH_PROTOCOL.ConvertTextToDevicePath()

	10 Protocols — UEFI Driver Model
	EFI Driver Binding Protocol
	EFI_DRIVER_BINDING_PROTOCOL
	EFI_DRIVER_BINDING_PROTOCOL.Supported()
	EFI_DRIVER_BINDING_PROTOCOL.Start()
	EFI_DRIVER_BINDING_PROTOCOL.Stop()

	EFI Platform Driver Override Protocol
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

	EFI Bus Specific Driver Override Protocol
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

	EFI Driver Configuration Protocol
	EFI_DRIVER_CONFIGURATION_PROTOCOL
	EFI_DRIVER_CONFIGURATION_PROTOCOL.SetOptions()
	EFI_DRIVER_CONFIGURATION_PROTOCOL.OptionsValid()
	EFI_DRIVER_CONFIGURATION_PROTOCOL.ForceDefaults()

	EFI Driver Diagnostics Protocol
	EFI_DRIVER_DIAGNOSTICS_PROTOCOL
	EFI_DRIVER_DIAGNOSTICS_PROTOCOL.RunDiagnostics()

	EFI Component Name Protocol
	EFI_COMPONENT_NAME_PROTOCOL
	EFI_COMPONENT_NAME_PROTOCOL.GetDriverName()
	EFI_COMPONENT_NAME_PROTOCOL.GetControllerName()

	EFI Service Binding Protocol
	EFI_SERVICE_BINDING_PROTOCOL
	EFI_SERVICE_BINDING_PROTOCOL.CreateChild()
	EFI_SERVICE_BINDING_PROTOCOL.DestroyChild()

	11 Protocols — Console Support
	Console I/O Protocol
	Overview
	ConsoleIn Definition

	Simple Text Input Protocol
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_INPUT.ReadKeyStroke()
	ConsoleOut or StandardError

	Simple Text Output Protocol
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()

	Simple Pointer Protocol
	EFI_SIMPLE_POINTER_PROTOCOL
	EFI_SIMPLE_POINTER_PROTOCOL.Reset()
	EFI_SIMPLE_POINTER_PROTOCOL.GetState()

	EFI Simple Pointer Device Paths
	Serial I/O Protocol
	EFI_SERIAL_IO_PROTOCOL
	EFI_SERIAL_IO_PROTOCOL.Reset()
	EFI_SERIAL_IO_PROTOCOL.SetAttributes()
	EFI_SERIAL_IO_PROTOCOL.SetControl()
	EFI_SERIAL_IO_PROTOCOL.GetControl()
	EFI_SERIAL_IO_PROTOCOL.Write()
	EFI_SERIAL_IO_PROTOCOL.Read()

	Graphics Output Protocol
	Blt Buffer
	EFI_GRAPHICS_OUTPUT_PROTOCOL
	EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode()
	EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()
	EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt()
	EFI_EDID_DISCOVERED_PROTOCOL
	EFI_EDID_ACTIVE_PROTOCOL
	EFI_EDID_OVERRIDE_PROTOCOL
	EFI_EDID_OVERRIDE_PROTOCOL.GetEdid()

	Rules for PCI/AGP Devices

	12 Protocols — Media Access
	Load File Protocol
	EFI_LOAD_FILE_PROTOCOL
	EFI_LOAD_FILE_PROTOCOL.LoadFile()

	File System Format
	System Partition
	Partition Discovery
	Media Formats

	Simple File System Protocol
	EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
	EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume()

	EFI File Protocol
	EFI_FILE_PROTOCOL
	EFI_FILE_PROTOCOL.Open()
	EFI_FILE_PROTOCOL.Close()
	EFI_FILE_PROTOCOL.Delete()
	EFI_FILE_PROTOCOL.Read()
	EFI_FILE_PROTOCOL.Write()
	EFI_FILE_PROTOCOL.SetPosition()
	EFI_FILE_PROTOCOL.GetPosition()
	EFI_FILE_PROTOCOL.GetInfo()
	EFI_FILE_PROTOCOL.SetInfo()
	EFI_FILE_PROTOCOL.Flush()
	EFI_FILE_INFO
	EFI_FILE_SYSTEM_INFO
	EFI_FILE_SYSTEM_VOLUME_LABEL

	Tape Boot Support
	Tape I/O Support
	Tape I/O Protocol
	EFI_TAPE_IO_PROTOCOL
	EFI_TAPE_IO_PROTOCOL.TapeRead()
	EFI_TAPE_IO_PROTOCOL.TapeWrite()
	EFI_TAPE_IO_PROTOCOL.TapeRewind()
	EFI_TAPE_IO_PROTOCOL.TapeSpace()
	EFI_TAPE_IO_PROTOCOL.TapeWriteFM()
	EFI_TAPE_IO_PROTOCOL.TapeReset()
	Tape Header Format

	Disk I/O Protocol
	EFI_DISK_IO_PROTOCOL
	EFI_DISK_IO_PROTOCOL.ReadDisk()
	EFI_DISK_IO_PROTOCOL.WriteDisk()

	Block I/O Protocol
	EFI_BLOCK_IO_PROTOCOL
	EFI_BLOCK_IO_PROTOCOL.Reset()
	EFI_BLOCK_IO_PROTOCOL.ReadBlocks()
	EFI_BLOCK_IO_PROTOCOL.WriteBlocks()
	EFI_BLOCK_IO_PROTOCOL.FlushBlocks()

	Unicode Collation Protocol
	EFI_UNICODE_COLLATION_ PROTOCOL
	EFI_UNICODE_COLLATION_PROTOCOL.StriColl()
	EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()
	EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()
	EFI_UNICODE_COLLATION_PROTOCOL.StrUpr()
	EFI_UNICODE_COLLATION_PROTOCOL.FatToStr()
	EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()

	13 Protocols — PCI Bus Support
	PCI Root Bridge I/O Support
	PCI Root Bridge I/O Overview

	PCI Root Bridge I/O Protocol
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()�EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()�EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()�EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()
	PCI Root Bridge Device Paths

	PCI Driver Model
	PCI Driver Initialization
	PCI Bus Drivers
	PCI Device Drivers

	EFI PCI I/O Protocol
	EFI_PCI_IO_PROTOCOL
	EFI_PCI_IO_PROTOCOL.PollMem()
	EFI_PCI_IO_PROTOCOL.PollIo()
	EFI_PCI_IO_PROTOCOL.Mem.Read() �EFI_PCI_IO_PROTOCOL.Mem.Write()
	EFI_PCI_IO_PROTOCOL.Io.Read() �EFI_PCI_IO_PROTOCOL.Io.Write()
	EFI_PCI_IO_PROTOCOL.Pci.Read()�EFI_PCI_IO_PROTOCOL.Pci.Write()
	EFI_PCI_IO_PROTOCOL.CopyMem()
	EFI_PCI_IO_PROTOCOL.Map()
	EFI_PCI_IO_PROTOCOL.Unmap()
	EFI_PCI_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_IO_PROTOCOL.Flush()
	EFI_PCI_IO_PROTOCOL.GetLocation()
	EFI_PCI_IO_PROTOCOL.Attributes()
	EFI_PCI_IO_PROTOCOL.GetBarAttributes()
	EFI_PCI_IO_PROTOCOL.SetBarAttributes()
	PCI Device Paths
	PCI Option ROMs
	Nonvolatile Storage
	PCI Hot-Plug Events

	14 Protocols — SCSI Driver Models and Bus Support
	SCSI Driver Model Overview
	SCSI Bus Drivers
	Driver Binding Protocol for SCSI Bus Drivers
	SCSI Enumeration

	SCSI Device Drivers
	Driver Binding Protocol for SCSI Device Drivers

	EFI SCSI I/O Protocol Overview
	EFI_SCSI_IO_PROTOCOL
	EFI_SCSI_IO_PROTOCOL.GetDeviceType()
	EFI_SCSI_IO_PROTOCOL. GetDeviceLocation()
	EFI_SCSI_IO_PROTOCOL. ResetBus()
	EFI_SCSI_IO_PROTOCOL.ResetDevice()
	EFI_SCSI_IO_PROTOCOL. ExecuteScsiCommand()

	SCSI Device Paths
	SCSI Device Path Example
	ATAPI Device Path Example
	Fibre Channel Device Path Example
	InfiniBand Device Path Example

	SCSI Pass Thru Device Paths
	Extended SCSI Pass Thru Protocol
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

	15 Protocols — iSCSI Boot
	Overview
	iSCSI UEFI Driver Layering

	EFI iSCSI Initiator Name Protocol
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

	16 Protocols — USB Support
	USB2 Host Controller Protocol
	USB Host Controller Protocol Overview
	EFI_USB2_HC_PROTOCOL
	EFI_USB2_HC_PROTOCOL.GetCapability()
	EFI_USB2_HC_PROTOCOL.Reset()
	EFI_USB2_HC_PROTOCOL.GetState()
	EFI_USB2_HC_PROTOCOL.SetState()
	EFI_USB2_HC_PROTOCOL.ControlTransfer()
	EFI_USB2_HC_PROTOCOL.BulkTransfer()
	EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()
	EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer()
	EFI_USB2_HC_PROTOCOL.IsochronousTransfer()
	EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()
	EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()
	EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()
	EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()

	USB Driver Model
	Scope
	USB Bus Driver
	USB Device Driver
	EFI USB I/O Protocol Overview
	EFI_USB_IO Protocol
	EFI_USB_IO_PROTOCOL.UsbControlTransfer()
	EFI_USB_IO_PROTOCOL.UsbBulkTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()
	EFI_USB_IO_PROTOCOL.UsbPortReset()

	17 Protocols — Debugger Support
	Overview
	EFI Debug Support Protocol
	EFI Debug Support Protocol Overview
	EFI_DEBUG_SUPPORT_PROTOCOL
	EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

	EFI Debugport Protocol
	EFI Debugport Overview
	EFI_DEBUGPORT_PROTOCOL
	EFI_DEBUGPORT_PROTOCOL.Reset()
	EFI_DEBUGPORT_PROTOCOL.Write()
	EFI_DEBUGPORT_PROTOCOL.Read()
	EFI_DEBUGPORT_PROTOCOL.Poll()
	Debugport Device Path
	EFI Debugport Variable

	EFI Debug Support Table
	Overview
	EFI System Table Location
	EFI Image Info

	18 Protocols — Compression Algorithm Specification
	Algorithm Overview
	Data Format
	Bit Order
	Overall Structure
	Block Structure

	Compressor Design
	Overall Process
	String Info Log
	Huffman Code Generation

	Decompressor Design
	Decompress Protocol
	EFI_DECOMPRESS_PROTOCOL
	EFI_DECOMPRESS_PROTOCOL.GetInfo()
	EFI_DECOMPRESS_PROTOCOL.Decompress()

	19 EFI Byte Code Virtual Machine
	Overview
	Processor Architecture Independence
	OS Independent
	EFI Compliant
	Coexistence of Legacy Option ROMs
	Relocatable Image
	Size Restrictions Based on Memory Available

	Memory Ordering
	Virtual Machine Registers
	Natural Indexing
	Sign Bit
	Bits Assigned to Natural Units
	Constant
	Natural Units

	EBC Instruction Operands
	Direct Operands
	Indirect Operands
	Indirect with Index Operands
	Immediate Operands

	EBC Instruction Syntax
	Instruction Encoding
	Instruction Opcode Byte Encoding
	Instruction Operands Byte Encoding
	Index/Immediate Data Encoding

	EBC Instruction Set
	ADD
	AND
	ASHR
	BREAK
	CALL
	CMP
	CMPI
	DIV
	DIVU
	EXTNDB
	EXTNDD
	EXTNDW
	JMP
	JMP8
	LOADSP
	MOD
	MODU
	MOV
	MOVI
	MOVIn
	MOVn
	MOVREL
	MOVsn
	MUL
	MULU
	NEG
	NOT
	OR
	POP
	POPn
	PUSH
	PUSHn
	RET
	SHL
	SHR
	STORESP
	SUB
	XOR

	Runtime and Software Conventions
	Calling Outside VM
	Calling Inside VM
	Parameter Passing
	Return Values
	Binary Format

	Architectural Requirements
	EBC Image Requirements
	EBC Execution Interfacing Requirements
	Interfacing Function Parameters Requirements
	Function Return Requirements
	Function Return Values Requirements

	EBC Interpreter Protocol
	EFI_EBC_PROTOCOL
	EFI_EBC_PROTOCOL.CreateThunk()
	EFI_EBC_PROTOCOL.UnloadImage()
	EFI_EBC_PROTOCOL.RegisterICacheFlush()
	EFI_EBC_PROTOCOL.GetVersion()

	EBC Tools
	EBC C Compiler
	C Coding Convention
	EBC Interface Assembly Instructions
	Stack Maintenance and Argument Passing
	Native to EBC Arguments Calling Convention
	EBC to Native Arguments Calling Convention
	EBC to EBC Arguments Calling Convention
	Function Returns
	Function Return Values
	Thunking
	EBC Linker
	Image Loader
	Debug Support

	VM Exception Handling
	Divide By 0 Exception
	Debug Break Exception
	Invalid Opcode Exception
	Stack Fault Exception
	Alignment Exception
	Instruction Encoding Exception
	Bad Break Exception
	Undefined Exception

	Option ROM Formats
	EFI Drivers for PCI Add-in Cards
	Non-PCI Bus Support

	20 Network Protocols — SNP, PXE and BIS
	EFI_SIMPLE_NETWORK_PROTOCOL
	EFI_SIMPLE_NETWORK_PROTOCOL
	EFI_SIMPLE_NETWORK.Start()
	EFI_SIMPLE_NETWORK.Stop()
	EFI_SIMPLE_NETWORK.Initialize()
	EFI_SIMPLE_NETWORK.Reset()
	EFI_SIMPLE_NETWORK.Shutdown()
	EFI_SIMPLE_NETWORK.ReceiveFilters()
	EFI_SIMPLE_NETWORK.StationAddress()
	EFI_SIMPLE_NETWORK.Statistics()
	EFI_SIMPLE_NETWORK.MCastIPtoMAC()
	EFI_SIMPLE_NETWORK.NvData()
	EFI_SIMPLE_NETWORK.GetStatus()
	EFI_SIMPLE_NETWORK.Transmit()
	EFI_SIMPLE_NETWORK.Receive()

	Network Interface Identifier Protocol
	EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

	PXE Base Code Protocol
	EFI_PXE_BASE_CODE_PROTOCOL
	EFI_PXE_BASE_CODE_PROTOCOL.Start()
	EFI_PXE_BASE_CODE_PROTOCOL.Stop()
	EFI_PXE_BASE_CODE_PROTOCOL.Dhcp()
	EFI_PXE_BASE_CODE_PROTOCOL.Discover()
	EFI_PXE_BASE_CODE_PROTOCOL.Mtftp()
	EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()
	EFI_PXE_BASE_CODE_PROTOCOL.UdpRead()
	EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()
	EFI_PXE_BASE_CODE_PROTOCOL.Arp()
	EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()
	EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()
	EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()

	PXE Base Code Callback Protocol
	EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL
	EFI_PXE_BASE_CODE_CALLBACK.Callback()

	Boot Integrity Services Protocol
	EFI_BIS_PROTOCOL
	EFI_BIS_PROTOCOL.Initialize()
	EFI_BIS_PROTOCOL.Shutdown()
	EFI_BIS_PROTOCOL.Free()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()
	EFI_BIS_PROTOCOL.GetSignatureInfo()
	EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()
	EFI_BIS_PROTOCOL.VerifyBootObject()
	EFI_BIS_PROTOCOL.VerifyObjectWithCredential()

	21 Network Protocols — Managed Network
	EFI Managed Network Protocol
	EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL
	EFI_MANAGED_NETWORK_PROTOCOL
	EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()
	EFI_MANAGED_NETWORK_PROTOCOL.Configure()
	EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()
	EFI_MANAGED_NETWORK_PROTOCOL.Groups()
	EFI_MANAGED_NETWORK_PROTOCOL.Transmit()
	EFI_MANAGED_NETWORK_PROTOCOL.Receive()
	EFI_MANAGED_NETWORK_PROTOCOL.Cancel()
	EFI_MANAGED_NETWORK_PROTOCOL.Poll()

	22 Network Protocols — ARP and DHCPv4
	ARP Protocol
	EFI_ARP_SERVICE_BINDING_PROTOCOL
	EFI_ARP_PROTOCOL
	Description
	EFI_ARP_PROTOCOL.Configure()
	EFI_ARP_PROTOCOL.Add()
	EFI_ARP_PROTOCOL.Find()
	Related Definitions
	EFI_ARP_PROTOCOL.Delete()
	EFI_ARP_PROTOCOL.Flush()
	EFI_ARP_PROTOCOL.Request()
	EFI_ARP_PROTOCOL.Cancel()

	EFI DHCPv4 Protocol
	EFI_DHCP4_SERVICE_BINDING_PROTOCOL
	EFI_DHCP4_PROTOCOL
	EFI_DHCP4_PROTOCOL.GetModeData()
	EFI_DHCP4_PROTOCOL.Configure()
	EFI_DHCP4_PROTOCOL.Start()
	EFI_DHCP4_PROTOCOL.RenewRebind()
	EFI_DHCP4_PROTOCOL.Release()
	EFI_DHCP4_PROTOCOL.Stop()
	EFI_DHCP4_PROTOCOL.Build()
	EFI_DHCP4_PROTOCOL.TransmitReceive()
	EFI_DHCP4_PROTOCOL.Parse()

	23 Network Protocols —TCPv4, IPv4 and Configuration
	EFI TCPv4 Protocol
	EFI_TCP4_SERVICE_BINDING_PROTOCOL
	EFI TCP4 Variable
	EFI_TCP4_PROTOCOL
	EFI_TCP4_PROTOCOL.GetModeData()
	EFI_TCP4_PROTOCOL.Configure()
	EFI_TCP4_PROTOCOL.Routes()
	EFI_TCP4_PROTOCOL.Connect()
	EFI_TCP4_PROTOCOL.Accept()
	EFI_TCP4_PROTOCOL.Transmit()
	EFI_TCP4_PROTOCOL.Receive()
	EFI_TCP4_PROTOCOL.Close()
	EFI_TCP4_PROTOCOL.Cancel()
	EFI_TCP4_PROTOCOL.Poll()

	EFI IPv4 Protocol
	EFI_IP4_SERVICE_BINDING_PROTOCOL
	EFI IPv4 Variable
	EFI_IP4_PROTOCOL
	EFI_IP4_PROTOCOL.GetModeData()
	EFI_IP4_PROTOCOL.Configure()
	EFI_IP4_PROTOCOL.Groups()
	EFI_IP4_PROTOCOL.Routes()
	EFI_IP4_PROTOCOL.Transmit()
	EFI_IP4_PROTOCOL.Receive()
	EFI_IP4_PROTOCOL.Cancel()
	EFI_IP4_PROTOCOL.Poll()

	EFI IPv4 Configuration Protocol
	EFI_IP4_CONFIG_PROTOCOL
	EFI_IP4_CONFIG_PROTOCOL.Start()
	EFI_IP4_CONFIG_PROTOCOL.Stop()
	EFI_IP4_CONFIG_PROTOCOL.GetData()
	Related Definitions

	24 Network Protocols — UDPv4 and MTFTPv4
	EFI UDPv4 Protocol
	EFI_UDP4_SERVICE_BINDING_PROTOCOL
	EFI UDP4 Variable
	EFI_UDP4_PROTOCOL
	EFI_UDP4_PROTOCOL.GetModeData()
	EFI_UDP4_PROTOCOL.Configure()
	EFI_UDP4_PROTOCOL.Groups()
	EFI_UDP4_PROTOCOL.Routes()
	EFI_UDP4_PROTOCOL.Transmit()
	EFI_UDP4_PROTOCOL.Receive()
	EFI_UDP4_PROTOCOL.Cancel()
	EFI_UDP4_PROTOCOL.Poll()

	EFI MTFTPv4 Protocol
	EFI_MTFTP4_SERVICE_BINDING_PROTOCOL
	EFI_MTFTP4_PROTOCOL
	EFI_MTFTP4_PROTOCOL.GetModeData()
	EFI_MTFTP4_PROTOCOL.Configure()
	EFI_MTFTP4_PROTOCOL.GetInfo()
	EFI_MTFTP4_PROTOCOL.ParseOptions()
	EFI_MTFTP4_PROTOCOL.ReadFile()
	EFI_MTFTP4_PROTOCOL.WriteFile()
	EFI_MTFTP4_PROTOCOL.ReadDirectory()
	EFI_MTFTP4_PROTOCOL.Poll()

	25 Security — Secure Boot, Driver Signing and Hash
	Secure Boot
	EFI_AUTHENTICATION_INFO_PROTOCOL
	EFI_AUTHENTICATION_INFO_PROTOCOL.Get()
	EFI_AUTHENTICATION_INFO_PROTOCOL.Set()

	UEFI Driver Signing Overview
	Digital Signatures
	Embedded Signatures
	Creating Message from Executables
	Code Definitions
	WIN_CERTIFICATE
	WIN_CERTIFICATE_EFI_PKCS1_15
	WIN_CERTIFICATE_UEFI_GUID

	Hash Overview
	Hash References

	EFI Hash Protocols
	EFI_HASH_SERVICE_BINDING_PROTOCOL
	EFI_HASH_PROTOCOL
	EFI_HASH_PROTOCOL.GetHashSize()
	EFI_HASH_PROTOCOL.Hash()
	Other Code Definitions
	EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH, EFI_SHA384_HASH, EFI_SHA512HASH, EFI_MD5_HASH

	A GUID and Time Formats
	B Console
	Simple _Input Protocol
	SIMPLE_TEXT_OUTPUT

	C Device Path Examples
	Example Computer System
	Legacy Floppy
	IDE Disk
	Secondary Root PCI Bus with PCI to PCI Bridge
	ACPI Terms
	EFI Device Path as a Name Space

	D Status Codes
	E Universal Network Driver Interfaces
	Introduction
	Definitions
	Referenced Specifications
	OS Network Stacks

	Overview
	32/64-bit UNDI Interface
	UNDI Command Format

	UNDI C Definitions
	Portability Macros
	Miscellaneous Macros
	Portability Types
	Simple Types
	Compound Types

	UNDI Commands
	Command Linking and Queuing
	Get State
	Start
	Stop
	Get Init Info
	Get Config Info
	Initialize
	Reset
	Shutdown
	Interrupt Enables
	Receive Filters
	Station Address
	Statistics
	MCast IP To MAC
	NvData
	Get Status
	Fill Header
	Transmit
	Receive

	UNDI as an EFI Runtime Driver

	F Using the Simple Pointer Protocol
	G Using the EFI SCSI Pass Thru Protocol
	H Compression Source Code
	I Decompression Source Code
	J EFI Byte Code Virtual Machine Opcode List
	K Alphabetic Function Lists
	L EFI 1.10 Protocol Changes and Deprecation List
	Protocol and GUID Name Changes from EFI 1.10
	Deprecated Protocols

	M Formats--Language Codes and Language Code Arrays
	Glossary
	References
	Related Information
	Prerequisite Specifications
	ACPI Specification
	WfM Specification
	Additional Considerations for Itanium-Based Platforms

	Index
	ERRATA

