

UEFI Shell Specification

May 22, 2012

Revision 2.0 Errata “A”

ii Version 2.0 Errata A

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or

controlled by any of the authors or developers of this material or to any contribution thereto. The material contained

herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is

provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other

warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied

warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of

responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material

and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions

marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for

future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes

to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,

CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY

CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE TO

ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE,

LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER

CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT

RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH

DAMAGES.

Copyright 2008, - 2012 Unified EFI, Inc. All Rights Reserved

Version 2.0 Errata A
 iii

 Contents

May 22, 2012 i

1 Introduction ...1

1.1 Overview ..1
1.2 Related Information ...1
1.3 Terms ..1

2 Code Definitions ...3

2.1 Introduction ..3
2.2 EFI_SHELL_PROTOCOL ...3

EFI_SHELL_PROTOCOL ...3
EFI_SHELL_PROTOCOL.BatchIsActive() ..9
EFI_SHELL_PROTOCOL.CloseFile() ... 10
EFI_SHELL_PROTOCOL.CreateFile() ... 11
EFI_SHELL_PROTOCOL.DeleteFile() ... 13
EFI_SHELL_PROTOCOL.DeleteFileByName() .. 14
EFI_SHELL_PROTOCOL.DisablePageBreak() .. 15
EFI_SHELL_PROTOCOL.EnablePageBreak() ... 16
EFI_SHELL_PROTOCOL.Execute() .. 17
EFI_SHELL_PROTOCOL.FindFiles() ... 19
EFI_SHELL_PROTOCOL.FindFilesInDir() .. 20
EFI_SHELL_PROTOCOL.FlushFile() ... 21
EFI_SHELL_PROTOCOL.FreeFileList() ... 22
EFI_SHELL_PROTOCOL.GetAlias() .. 23
EFI_SHELL_PROTOCOL.GetCurDir() ... 24
EFI_SHELL_PROTOCOL.GetDeviceName() ... 25
EFI_SHELL_PROTOCOL.GetDevicePathFromMap() 27
EFI_SHELL_PROTOCOL.GetDevicePathFromFilePath()................................. 28
EFI_SHELL_PROTOCOL.GetEnv() ... 29
EFI_SHELL_PROTOCOL.GetFileInfo() .. 30
EFI_SHELL_PROTOCOL.GetFilePathFromDevicePath()................................. 31
EFI_SHELL_PROTOCOL.GetFilePosition() .. 32
EFI_SHELL_PROTOCOL.GetFileSize() .. 33
EFI_SHELL_PROTOCOL.GetHelpText() .. 34
EFI_SHELL_PROTOCOL.GetMapFromDevicePath() 36
EFI_SHELL_PROTOCOL.GetPageBreak() ... 37
EFI_SHELL_PROTOCOL.IsRootShell() ... 38
EFI_SHELL_PROTOCOL.OpenFileByName() ... 39
EFI_SHELL_PROTOCOL.OpenFileList() .. 41
EFI_SHELL_PROTOCOL.OpenRoot() ... 43
EFI_SHELL_PROTOCOL.OpenRootByHandle() .. 44
EFI_SHELL_PROTOCOL.ReadFile() ... 45
EFI_SHELL_PROTOCOL.RemoveDupInFileList() .. 46
EFI_SHELL_PROTOCOL.SetAlias() .. 47
EFI_SHELL_PROTOCOL.SetCurDir().. 49
EFI_SHELL_PROTOCOL.SetEnv() ... 50
EFI_SHELL_PROTOCOL.SetFileInfo() .. 51

iv Version 2.0 Errata A

EFI_SHELL_PROTOCOL.SetFilePosition() ... 52
EFI_SHELL_PROTOCOL.SetMap() ... 53
EFI_SHELL_PROTOCOL.WriteFile() ... 54

2.3 EFI_SHELL_PARAMETERS_PROTOCOL .. 55
EFI_SHELL_PARAMETERS_PROTOCOL .. 55

3 UEFI Shell Features ... 57

3.1 Levels Of Support .. 57
3.2 Invocation .. 59
3.3 Initialization .. 60

3.3.1 Finding startup.nsh ... 60
3.3.2 Supported Profiles .. 61

3.4 Command-Line .. 61
3.4.1 Special Characters .. 61
3.4.2 Escape Characters .. 62
3.4.3 Quoting ... 62
3.4.4 Redirection .. 62

3.5 Current Directory ... 64
3.6 Variables .. 65

3.6.1 Environment Variables .. 65
3.6.2 Positional Parameters .. 67
3.6.3 Index Parameters ... 67
3.6.4 Aliases .. 68

3.7 File Names .. 68
3.7.1 Wildcard Expansion ... 69
3.7.2 Mappings ... 69
3.7.3 Consistent File System Mapping ... 69

3.8 Scripts .. 69
3.9 Nesting the Shell ... 70
3.10 Interactive Features ... 70

3.10.1 Key History Support .. 70
3.10.2 Execution Interrupt Support ... 70
3.10.3 Output Streaming Control .. 70
3.10.4 Scroll Back Buffer Support ... 71

3.11 Shell Applications... 71
3.11.1 Installation .. 71
3.11.2 Command-Line Help ... 72

4 Scripts .. 73

4.1 Comments .. 73
4.2 Error Handling ... 73
4.3 Script Nesting ... 74
4.4 Output and Echoing .. 74
4.5 Limitations .. 74

5 Shell Commands... 75

5.1 Overview .. 75
5.1.1 Explanation of Command Description Layout 78
5.1.2 Shell Command-Line Options ... 79

5.2 Shell Command Profiles .. 79
5.3 Shell Commands .. 80

alias...... .. 80

Version 2.0 Errata A
 v

attrib 82
bcfg 84
cd 87
cls 89
comp 90
connect . .. 92
cp 94
date 97
dblk 99
del 101
devices . .. 102
devtree . .. 104
dh 105
dir 108
disconnect .. 109
dmem 111
dmpstore .. 114
drivers 116
drvcfg 118
drvdiag . .. 121
echo 123
edit 125
eficompress .. 126
efidecompress ... 127
exit 128
for 129
getmtc 131
goto 132
help 133
hexedit.. .. 135
if 136
ifconfig 141
load 143
loadpcirom ... 144
ls 145
map 149
md 152
mem 153
memmap .. 154
mkdir 157
mm 159
mode 162
mv........ .. 164
openinfo .. 166
parse 168
pause 170
pc i ... 171
ping 175
reconnect ... 176
reset 178
rm 179
sermode .. 181
set 183
setsize 185
setva r ... 186

vi Version 2.0 Errata A

shift 188
smbiosview ... 189
stall 191
time 192
timezone .. 194
touch 196
type 197
unload 198
ver 199
vol 201

Appendix A UEFI Shell Consistent Mapping Design .. 203

A.1 Requirement: .. 203
A.2 Design .. 203

A.2.1 What does consistent mapping mean? 203
A.2.2 Hardware configuration change: ... 203
A.2.3 Mapping generated from device path .. 204
A.2.4 Consistent Mapping... 204
A.2.5 Example (USB Devices) ... 205

A.3 Implementation ... 207
A.3.1 Get the MTD .. 211
A.3.2 Get the HI ... 211
A.3.3 Get the CSD ... 211

A.4 Function & Structure .. 214

Appendix B UEFI Help Manual Page Syntax .. 218

Appendix C UEFI Shell Status Codes .. 221

Appendix D UEFI Shell Command Standard Formatted Output .. 223

Version 2.0 Errata A
 vii

 Tables
Table 1 Support Levels .. 57
Table 2 Standard Command Line Options .. 59
Table 3 UEFI Shell Invocation Options ... 59
Table 4 Special Characters in Shell ... 61
Table 5 Output Redirection Syntax .. 63
Table 6 Input Redirection Syntax .. 64
Table 7 Input Redirection Syntax .. 64
Table 8 Environment Variables with Special Meaning to the UEFI Shell 66
Table 9 Built-in Aliases for the UEFI Shell .. 68
Table 10 Wildcard Character Expansion ... 69
Table 11 Commands from Default Build Shell ... 76
Table 12 Standard Command Line Options ... 79
Table 13 Standard Profiles ... 79
Table 14 Conventions for Directory Names ... 87
Table 15 Date Command Table ... 98
Table 16 Standard-Format Output for devices .. 103
Table 17 dh Standard Formatted Output (HandlesInfo) .. 107
Table 18 Variable command line options .. 114
Table 19 Drivers command table .. 117
Table 20Comparison Operators .. 138
Table 21Functions used to convert integers into UEFI, PI or OEM error codes 138
Table 22 Boolean Functions.. 138
Table 23 ls Standard Formatted Output (VolumeInfo) ... 147
Table 24 ls Standard Formatted Output (FileInfo) ... 147
Table 25 Standard Formatted Output (Mappings) ... 150
Table 26 Standard-Format Output for memmap (MemoryMap) 155
Table 27 Standard-Format Output for memmap (Summary) 156
Table 28 Open Protocol Information Layout .. 166
Table 29 How to process each type the device path node: 208
Table 30 MTD Naming ... 211
Table 31 Subheadings and descriptions ... 218
Table 32 SHELL_STATUS return codes ... 221

viii Version 2.0 Errata A

 Revision History

Revision
Number

Description Revision
Date

2.0 Initial UEFI release 9/25/08

Version 2.0 Errata A
 ix

2.0

Errata A

Numbers indicate Mantis ticket numbers.

464: Basic typographical errata

499 Shell get-function errata

544 Fix ALIAS support

597 binary 100 != 8

607 EFI_SHELL_PROTOCOL.SetCurDir() return value

614 Misformatted table

615 MemMap command incorrectly limits itself

617 Commands missing the 'return values' table

619 DmpStore usage error

623 Dblk command parameter [blocks] has 2 default

values

624 Description update in shell initialization steps

644 Echo has no default state

647 cp command has incorrect example

648 Example under Parse command is missing data.

649 Fix shell object name

656 Pipe support corrections

657 Special Character updates

658 Remove -a/-u parameters for the TYPE command

660 Typo's in driver commands

683 Remove ipconfig command

684 Fix table 4 to have all combinations of file

redirections.

701 Stall and Vol are not listed in table 1 or 11

757 Remove : from delay parameter to the shell.

758 Remove leading zeroes from time commands

766 Remove ability of nested "for" statements with

identical variables.

798 Remove smiley face

799 Clarify "Lasterror" environment variable usage.

875 Clarify reset command description.

883 BCFG command has errors in parameter description

5/22/12

x Version 2.0 Errata A

§

1 Version 2.0 Errata A

1

Introduction

1.1 Overview

The UEFI Shell environment provides an API, a command prompt and a rich

set of commands that extend and enhance the UEFI Shell’s capability.

1.2 Related Information

The following publications and sources of information may be useful or are
referred to by this document:

Extensible Firmware Interface Specification, Version 1.10, Intel, 2001,
http://developer.intel.com/technology/efi.

Unified Extensible Firmware Interface Specification, Version 2.0, Unified EFI,
Inc, 2006, http://www.uefi.org.

Intel® Platform Innovation Framework for EFI Specifications, Intel, 2006,
http://www.intel.com/technology/framework/.

1.3 Terms

EFI

Generic term that refers to one of the versions of the EFI

specification: EFI 1.02, EFI 1.10, or UEFI 2.0.

EFI 1.10 Specification

Intel Corporation published the Extensible Firmware Interface

Specification. It has been supplanted by the Unified Extensible

Firmware Interface (UEFI), which is controlled by the UEFI Forum.

GUID

Globally Unique Identifier. A 128-bit value used to name entities

uniquely. Without the help of a centralized authority, an individual

can generate a unique GUID. This allows the generation of names

that will never conflict, even among multiple, unrelated parties.

Protocol

An API named by a GUID as defined by the UEFI Specification.

http://developer.intel.com/technology/efi
http://www.uefi.org/
http://www.intel.com/technology/framework/

2 Version 2.0 Errata A

UEFI Application

An application following the UEFI specification. The only difference

between a UEFI application and a UEFI driver is that an application

is unloaded from memory when it exits regardless of return status,

while a driver that returns a successful return status is not

unloaded when its entry point exits.

UEFI Driver

A driver following the UEFI specification driver model.

UEFI Specification Version 2.0

The first UEFI specification released by the Unified EFI Forum.

UEFI Specification Version 2.1

Current version of the UEFI specification released by the Unified

EFI Forum.

Unified EFI Forum

A non-profit collaborative trade organization formed to promote

and manage the UEFI standard. For more information, see

www.uefi.org.

§

3 Version 2.0 Errata A

2

Code Definitions

2.1 Introduction

2.2 EFI_SHELL_PROTOCOL

EFI_SHELL_PROTOCOL

Summary

Provides shell services to UEFI applications.

4 Version 2.0 Errata A

GUID
#define EFI_SHELL_PROTOCOL_GUID \

 { 0x6302d008, 0x7f9b, 0x4f30, \

 { 0x87, 0xac, 0x60, 0xc9, 0xfe, 0xf5, 0xda, 0x4e } }

Protocol Interface Structure
typedef struct _EFI_SHELL_PROTOCOL {

 EFI_SHELL_EXECUTE Execute;

 EFI_SHELL_GET_ENV GetEnv;

 EFI_SHELL_SET_ENV SetEnv;

 EFI_SHELL_GET_ALIAS GetAlias;

 EFI_SHELL_SET_ALIAS SetAlias;

 EFI_SHELL_GET_HELP_TEXT GetHelpText;

 EFI_SHELL_GET_DEVICE_PATH_FROM_MAP GetDevicePathFromMap;

 EFI_SHELL_GET_MAP_FROM_DEVICE_PATH GetMapFromDevicePath;

 EFI_SHELL_GET_DEVICE_PATH_FROM_FILE_PATH

GetDevicePathFromFilePath;

 EFI_SHELL_GET_FILE_PATH_FROM_DEVICE_PATH

GetFilePathFromDevicePath;

 EFI_SHELL_SET_MAP SetMap;

 EFI_SHELL_GET_CUR_DIR GetCurDir;

 EFI_SHELL_SET_CUR_DIR SetCurDir;

 EFI_SHELL_OPEN_FILE_LIST OpenFileList;

 EFI_SHELL_FREE_FILE_LIST FreeFileList;

 EFI_SHELL_REMOVE_DUP_IN_FILE_LIST RemoveDupInFileList;

 EFI_SHELL_BATCH_IS_ACTIVE BatchIsActive;

 EFI_SHELL_IS_ROOT_SHELL IsRootShell;

 EFI_SHELL_ENABLE_PAGE_BREAK EnablePageBreak;

 EFI_SHELL_DISABLE_PAGE_BREAK DisablePageBreak;

 EFI_SHELL_GET_PAGE_BREAK GetPageBreak;

 EFI_SHELL_GET_DEVICE_NAME GetDeviceName;

 EFI_SHELL_GET_FILE_INFO GetFileInfo;

 EFI_SHELL_SET_FILE_INFO SetFileInfo;

 EFI_SHELL_OPEN_FILE_BY_NAME OpenFileByName;

 EFI_SHELL_CLOSE_FILE CloseFile;

 EFI_SHELL_CREATE_FILE CreateFile;

 EFI_SHELL_READ_FILE ReadFile;

 EFI_SHELL_WRITE_FILE WriteFile;

 EFI_SHELL_DELETE_FILE DeleteFile;

 EFI_SHELL_DELETE_FILE_BY_NAME DeleteFileByName;

 EFI_SHELL_GET_FILE_POSITION GetFilePosition;

 EFI_SHELL_SET_FILE_POSITION SetFilePosition;

 EFI_SHELL_FLUSH_FILE FlushFile;

 EFI_SHELL_FIND_FILES FindFiles;

 EFI_SHELL_FIND_FILES_IN_DIR FindFilesInDir;

 EFI_SHELL_GET_FILE_SIZE GetFileSize;

 EFI_SHELL_OPEN_ROOT OpenRoot;

 EFI_SHELL_OPEN_ROOT_BY_HANDLE OpenRootByHandle;

 EFI_EVENT ExecutionBreak;

 UINT32 MajorVersion;

 UINT32 MinorVersion;

Version 2.0 Errata A
 5

} EFI_SHELL_PROTOCOL;

Members

Execute

Causes the shell to parse and execute the command line. See the
Execute() function description below.

GetEnv

Gets the environment variable. See the GetEnv() function description

below.

SetEnv

Changes a specific environment variable. Set the SetEnv() function

description below.

GetAlias

Retrieves the alias for a specific shell command. See the GetAlias()

function description below.

SetAlias

Adds or removes the alias for a specific shell command. See the
SetAlias() function description below.

GetDevicePathFromMap

Returns the device path that corresponds to a mapping. See the
GetDevicePathFromMap() function description below.

GetMapFromDevicePath

Returns the mapping that corresponds to a particular device path. See
the GetMapFromDevicePath() function description below.

GetDevicePathFromFilePath

Converts a file path to a device path, where all mappings have been

replaced with the corresponding device paths.

GetFilePathFromDevicePath

Converts a device path to a file path, where the portion of the device

path corresponding to one of the mappings is replaced with that

mapping.

SetMap

Creates, updates or deletes a mapping between a device and a device

path.

GetCurDir

Returns the current directory on a device. See the GetCurDir() function

description below.

SetCurDir

Changes the current directory on a device. Set the SetCurDir() function

description below.

6 Version 2.0 Errata A

OpenFileList

Opens the files that match the path pattern specified. See the
OpenFileList() function description below.

FreeFileList

Frees the file list that created by OpenFileList(). See the

FreeFileList() function description below.

RemoveDupInFileList

Deletes the duplicate files in the given file list. See the
RemoveDupInFileList() function description below.

BatchIsActive

Returns whether any script files are currently being processed. See the

BatchIsActive() function description below.

IsRootShell

Judges whether the active Shell is the root shell. See the IsRootShell()

function description below.

EnablePageBreak

Enables the page break output mode. See the EnablePageBreak()

function description below.

DisablePageBreak

Disables the page break output mode. See the DisablePageBreak()

function description below.

GetPageBreak

Gets the enable status of the page break output mode. See the

GetPageBreak() function description below.

GetDeviceName

Gets the name of the device specified by the device handle. See the
GetDeviceName() function description below.

GetFileInfo

Return information about a specific file handle. See the GetFileInfo()

function description below.

SetFileInfo

Change information about a specific file handle. See the SetFileInfo()

function description below.

OpenFileByName

Given a file name, open a file and return a file handle. See the
OpenFileByName() description below.

CloseFile

Close an open file. See the CloseFile() description below.

CreateFile

Create a new file. See the CreateFile() function description.

Version 2.0 Errata A
 7

ReadFile

Read data from a file. See the ReadFile() function description.

WriteFile

Write data to a file. See the WriteFile() function description.

DeleteFile

Delete a file. See the DeleteFile() function description.

DeleteFileByName

Delete a file by name. See the DeleteFileByName() function description.

SetFilePosition

Change the current read/write position within a file. See the

SetFilePosition() function description.

GetFilePosition

Return the current read/write position within a file. See the
GetFilePosition() function description.

FlushFile

Write all buffered data to a file. See the FlushFile() function

description.

FindFiles

Return all files that match a pattern in a file list. See the FindFiles()

function description.

FindFilesInDir

Return all files in a specified directory in a file list. See the
FindFilesInDir() function description.

GetFileSize

Return the size of a file. See the GetFileSize() function description.

OpenRoot

Return the root directory of a file system. See the OpenRoot() function

description.

OpenRootByHandle

Return the root directory of a file system on a particular handle. See the
OpenRootByHandle() function description.

ExecutionBreak

Event signaled by the UEFI Shell when the user presses CTRL-C to

indicate that the current UEFI Shell command execution should be

interrupted.

MajorVersion

The major version of the shell environment.

MinorVersion

The minor version of the shell environment.

8 Version 2.0 Errata A

Description

This protocol gives UEFI shell applications access to the low-level shell
functions, including: * Files, * Pipes, * Environment Variables, * The current
working directory, * Mappings, * Help Text, * Aliases, * Launching shell
applications and scripts.

Version 2.0 Errata A
 9

EFI_SHELL_PROTOCOL.BatchIsActive()

Summary

Returns whether any script files are currently being processed.

Prototype
typedef

BOOLEAN

(EFIAPI *EFI_SHELL_BATCH_IS_ACTIVE) (

 VOID

);

Parameters

None

Description

This function tells whether any script files are currently being processed

Status Codes Returned

TRUE
There is at least one script file active.

FALSE
No script files are active now.

10 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.CloseFile()

Summary

Closes the file handle.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_CLOSE_FILE)(

 IN SHELL_FILE_HANDLE FileHandle

);

Parameters

FileHandle

The file handle to be closed

Description

This function closes a specified file handle. All “dirty” cached file data is flushed
to the device, and the file is closed. In all cases, the handle is closed.

Status Codes Returned

EFI_SUCCESS The file is closed successfully

Version 2.0 Errata A
 11

EFI_SHELL_PROTOCOL.CreateFile()

Summary

Creates a file or directory by name.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_CREATE_FILE)(

 IN CONST CHAR16 *FileName,

 IN UINT64 FileAttribs,

 OUT SHELL_FILE_HANDLE *FileHandle

);

Parameters

FileName

Points to the null-terminated file path.

FileAttribs

The new file’s attributes. The different attributes are described in
EFI_FILE_PROTOCOL.Open().

FileHandle

On return, points to the created file or directory’s handle.

Description

This function creates an empty new file or directory with the specified
attributes and returns the new file’s handle. If the file already exists and is
read-only, then EFI_INVALID_PARAMETER will be returned.

If the file already existed, it is truncated and its attributes updated. If the file
is created successfully, the FileHandle is the file’s handle, else, the

FileHandle is NULL.

If the file name begins with >v, then the file handle which is returned refers to
the shell environment variable with the specified name. If the shell
environment variable already exists and is non-volatile then
EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The file was opened. FileHandle points to the

new file’s handle.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED Could not open the file path.

EFI_NOT_FOUND The specified file could not be found on the

device, or could not find the file system on the

12 Version 2.0 Errata A

device.

EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED The device has a different medium in it or the

medium is no longer supported.

EFI_DEVICE_ERROR The device reported an error or can’t get the file

path according the DirName.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a

file for write when the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the

file.

EFI_VOLUME_FULL The volume is full.

Version 2.0 Errata A
 13

EFI_SHELL_PROTOCOL.DeleteFile()

Summary

Deletes the file specified by the file handle.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_DELETE_FILE)(

 IN SHELL_FILE_HANDLE FileHandle

);

Parameters

FileHandle

The file handle to delete.

Description

This function closes and deletes a file. In all cases, the file handle is closed. If
the file cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is

returned, but the handle is still closed.

Status Codes Returned

EFI_SUCCESS The file was closed and deleted, and the

handle was closed.

EFI_WARN_DELETE_FAILURE The handle was closed but the file was not

deleted.

14 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.DeleteFileByName()

Summary

Deletes the file specified by the file handle.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_DELETE_FILE_BY_NAME)(

 IN CONST CHAR16 *FileName

);

Parameters

FileName

Points to the null-terminated file name.

Description

This function deletes a file.

Status Codes Returned

EFI_SUCCESS The file was closed and deleted, and the
handle was closed.

EFI_WARN_DELETE_FAILURE The handle was closed but the file was
not deleted.

Version 2.0 Errata A
 15

EFI_SHELL_PROTOCOL.DisablePageBreak()

Summary

Disables the page break output mode.

Prototype
typedef

VOID

(EFIAPI *EFI_SHELL_DISABLE_PAGE_BREAK) (

 VOID

);

Parameters

None

Description

This function disables the page break output mode.

Status Codes Returned

None

16 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.EnablePageBreak()

Summary

Enables the page break output mode.

Prototype

typedef

VOID

(EFIAPI *EFI_SHELL_ENABLE_PAGE_BREAK) (

 VOID

);

Parameters

None

Description

This function enables the page break output mode.

Status Codes Returned

None

Version 2.0 Errata A
 17

EFI_SHELL_PROTOCOL.Execute()

Summary

Execute the command line.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_EXECUTE) (

 IN EFI_HANDLE *ParentImageHandle,

 IN CHAR16 *CommandLine OPTIONAL,

 IN CHAR16 **Environment OPTIONAL,

 OUT EFI_STATUS *StatusCode OPTIONAL

);

Parameters

ParentImageHandle

A handle of the image that is executing the specified command line.

CommandLine

Points to the null-terminated UCS-2 encoded string containing the

command line. If NULL then the command-line will be empty.

Environment

Points to a null-terminated array of environment variables with the

format ‘x=y’, where x is the environment variable name and y is the

value. If this is NULL, then the current shell environment is used.

ErrorCode

Points to the status code returned by the command.

Description

This function creates a nested instance of the shell and executes the specified
command (CommandLine) with the specified environment (Environment).
Upon return, the status code returned by the specified command is placed in
StatusCode.

If Environment is NULL, then the current environment is used and all changes

made by the commands executed will be reflected in the current environment.

If the Environment is non-NULL, then the changes made will be discarded.

The CommandLine is executed from the current working directory on the

current device.

18 Version 2.0 Errata A

Status Codes Returned

EFI_SUCCESS The command executed successfully.

The status code returned by the

command is pointed to by

StatusCode.

EFI_INVALID_PARAMETER The parameters are invalid.

EFI_OUT_OF_RESOURCES Out of resources.

EFI_UNSUPPORTED Nested shell invocations are not

allowed.

EFI_UNSUPPORTED Shell scripts are not supported by this

UEFI shell (see “Levels of Support”,

section 3.1)

Version 2.0 Errata A
 19

EFI_SHELL_PROTOCOL.FindFiles()

Summary

Find files that match a specified pattern.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_FIND_FILES)(

 IN CONST CHAR16 *FilePattern,

 OUT EFI_SHELL_FILE_INFO **FileList

);

Parameters

FilePattern

Points to a null-terminated shell file path, including wildcards.

FileList

On return, points to the start of a file list containing the names of all

matching files or else points to NULL if no matching files were found.

Description

This function searches for all files and directories that match the specified
FilePattern. The FilePattern can contain wild-card characters. The

resulting file information is placed in the file list FileList.

The files in the file list are not opened. The OpenMode field is set to 0 and the
FileInfo field is set to NULL.

Status Codes Returned

EFI_SUCCESS Files found.

EFI_NOT_FOUND No files found.

EFI_NO_MEDIA The device has no media

EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED The file system structures are corrupted

20 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.FindFilesInDir()

Summary

Find all files in a specified directory.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_FIND_FILES_IN_DIR)(

 IN SHELL_FILE_HANDLE FileDirHandle,

 OUT EFI_SHELL_FILE_INFO **FileList

);

Parameters

FileDirHandle

Handle of the directory to search.

FileList

On return, points to the list of files in the directory or NULL if there are

no files in the directory.

Status Codes Returned

EFI_SUCCESS File information was returned successfully.

EFI_VOLUME_CORRUPTED The file system structures have been corrupted.

EFI_DEVICE_ERROR The device reported an error.

EFI_NO_MEDIA The device media is not present.

Version 2.0 Errata A
 21

EFI_SHELL_PROTOCOL.FlushFile()

Summary

Flushes data back to a device

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_FLUSH_FILE)(

 IN SHELL_FILE_HANDLE FileHandle

);

Parameters

FileHandle

The handle of the file to flush.

Description

This function flushes all modified data associated with a file to a device.

Status Codes Returned

EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

22 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.FreeFileList()

Summary

Frees the file list.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_FREE_FILE_LIST) (

 IN EFI_SHELL_FILE_INFO **FileList

);

Parameters

FileList

The file list to free. Type EFI_SHELL_FILE_INFO is defined in

OpenFileList()

Description

This function cleans up the file list and any related data structures. It has no
impact on the files themselves.

Status Codes Returned

EFI_SUCCESS Free the file list successfully.

Version 2.0 Errata A
 23

EFI_SHELL_PROTOCOL.GetAlias()

Summary

Retrieves a shell command alias.

Prototype
typedef

CONST CHAR 16 *

(EFIAPI *EFI_SHELL_GET_ALIAS)(

 IN CONST CHAR16 *Alias

 OUT BOOLEAN *Volatile OPTIONAL

);

Parameters

Alias

Points to the null-terminated alias. If Alias is not NULL, this function

returns the associated null-terminated command. If Alias is NULL, this

function returns a ‘;’ delimited list of all the defined aliases (e.g.

ReturnedData = “md;rd;cp;mfp”) that is null-terminated.

Volatile

If the return value is not NULL and Alias is not NULL, the Volatile

parameter being TRUE indicates that the Alias is stored in a volatile

fashion. If the return value is not NULL and Alias is not NULL, the

Volatile parameter being FALSE indicates that the Alias is stored in a

non-volatile fashion. For all other situations, this output parameter must

be ignored.

Description

This function returns the alias associated with a command. I

Status Codes Returned

NULL The command referenced doesn’t exist.

NULL The command could successfully returned.

24 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.GetCurDir()

Summary

Returns the current directory on the specified device.

Prototype
typedef

CONST CHAR16 *

(EFIAPI *EFI_SHELL_GET_CUR_DIR) (

 IN CONST CHAR16 *FileSystemMapping OPTIONAL

);

Parameters

FileSystemMapping

A pointer to the file system mapping. If NULL, then the current working

directory is returned.

Description

If FileSystemMapping is NULL, it returns the current working directory. If the

FileSystemMapping is not NULL, it returns the current directory associated

with the FileSystemMapping. In both cases, the returned name includes the

file system mapping (i.e. fs0:\current-dir).

For more information, see “Current Directory”, section3.5.

Status Codes Returned

EFI_SUCCESS The current directory.

EFI_NOT_FOUN

D

Current directory does not exist.

Version 2.0 Errata A
 25

EFI_SHELL_PROTOCOL.GetDeviceName()

Summary

Gets the name of the device specified by the device handle.

Prototype
typedef

EFI_STATUS

(*EFI_SHELL_GET_DEVICE_NAME) (

 IN EFI_HANDLE DeviceHandle,

 IN EFI_SHELL_DEVICE_NAME_FLAGS Flags,

 IN CHAR8 *Language,

 OUT CHAR16 **BestDeviceName

);

Parameters

DeviceHandle

The handle of the device.

Flags

Determines the possible sources of component names. See “Related

Definitions” below for more information.

Language

A pointer to the language specified for the device name, in the same

format as described in the UEFI specification, Appendix M

BestDeviceName

On return, points to the callee-allocated null-terminated name of the

device. If no device name could be found, points to NULL. The name

must be freed by the caller..

Description

This function gets the user-readable name of the device specified by the
device handle. If no user-readable name could be generated, then
*BestDeviceName will be NULL and EFI_NOT_FOUND will be returned.

The

Related Definitions
typedef UINT32 EFI_DEVICE_NAME_FLAGS;

#define EFI_DEVICE_NAME_USE_COMPONENT_NAME 0x00000001

#define EFI_DEVICE_NAME_USE_DEVICE_PATH 0x00000002

If EFI_DEVICE_NAME_USE_COMPONENT_NAME is set, then the function will return

the device’s name using the EFI_COMPONENT_NAME2_PROTOCOL, if present on

DeviceHandle.

26 Version 2.0 Errata A

If EFI_DEVICE_NAME_USE_DEVICE_PATH is set, then the function will return the

device’s name using the EFI_DEVICE_PATH_PROTOCOL, if present on

DeviceHandle.

If both EFI_DEVICE_NAME_USE_COMPONENT_NAME and

EFI_DEVICE_NAME_USE_DEVICE_PATH are set, then

EFI_DEVICE_NAME_USE_COMPONENT_NAME will have higher priority.

Status Codes Returned

EFI_SUCCESS Get the name successfully.

EFI_NOT_FOUN

D

Fail to get the device name.

Version 2.0 Errata A
 27

EFI_SHELL_PROTOCOL.GetDevicePathFromMap()

Summary

Gets the device path from the mapping.

Prototype
typedef

CONST EFI_DEVICE_PATH_PROTOCOL *

(EFIAPI *EFI_SHELL_GET_DEVICE_PATH_FROM_MAP) (

 IN CONST CHAR16 *Mapping

);

Parameters

Mapping

A pointer to the mapping.

Description

This function gets the device path associated with a mapping.

Status Codes Returned

NULL Pointer to the device path that corresponds to the device

mapping. The returned pointer does not need to be freed.

NULL There is no device path associated with the specified

mapping.

28 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.GetDevicePathFromFilePath()

Summary

Converts a file system style name to a device path.

Prototype
typedef

EFI_DEVICE_PATH_PROTOCOL *

(EFIAPI *EFI_SHELL_GET_DEVICE_PATH_FROM_FILE_PATH) (

 IN CONST CHAR16 *Path

);

Parameters

Path

The pointer to the path.

Description

This function converts a file system style name to a device path, by replacing
any mapping references to the associated device path.

Status Codes Returned

The pointer of the file path. The file path is callee allocated and should be
freed by the caller.

Version 2.0 Errata A
 29

EFI_SHELL_PROTOCOL.GetEnv()

Summary

Gets the environment variable or list of environment variables.

Prototype
typedef

CONST CHAR16 *

(EFIAPI *EFI_SHELL_GET_ENV) (

 IN CONST CHAR16 *Name

);

Parameters

Name

A pointer to the environment variable name. If Name is NULL, then the

function

will return all of the defined shell environment variables. In the case

where multiple environment variables are being returned, each variable
will be terminated by a NULL,and the list will be terminated by a double

NULL.

Description

This function returns the current value of the specified environment variable. If
no variable name was specified, then all of the known variables will be

returned.

Status Codes Returned

NULL The environment variable’s value. The returned pointer does

not need to be freed by the caller.

NULL The environment variable doesn’t exist.

30 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.GetFileInfo()

Summary

Gets the file information from an open file handle.

Prototype
typedef

EFI_FILE_INFO *

(EFIAPI *EFI_SHELL_GET_FILE_INFO)(

 IN SHELL_FILE_HANDLE FileHandle

);

Parameters

FileHandle

A file handle

Description

This function allocates a buffer to store the file’s information. It’s the caller’s
responsibility to free the buffer.

Returns

NULL

A pointer to a buffer with file information.

NULL Cannot get the file info.

Version 2.0 Errata A
 31

EFI_SHELL_PROTOCOL.GetFilePathFromDevicePath()

Summary

Converts a device path to a file system-style path.

Prototype
typedef

CHAR16 *

(EFIAPI *EFI_SHELL_GET_FILE_PATH_FROM_DEVICE_PATH) (

 IN CONST EFI_DEVICE_PATH_PROTOCOL *Path

);

Parameters

Path

The pointer to the device path.

Description

This function converts a device path to a file system path by replacing part, or
all, of the device path with the file-system mapping. If there are more than
one application file system mappings, the one that most closely matches Path
will be used.

Returned Value

The pointer of the null-terminated file path. The path is callee-allocated and should be

freed by the caller.

32 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.GetFilePosition()

Summary

Gets a file’s current position

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_GET_FILE_POSITION)(

 IN SHELL_FILE_HANDLE FileHandle,

 OUT UINT64 *Position

);

Parameters

FileHandle

The file handle on which to get the current position.

Position

Byte position from the start of the file

Description

This function returns the current file position for the file handle. For
directories, the current file position has no meaning outside of the file system
driver and as such, the operation is not supported.

Status Codes Returns

EFI_SUCCESS Data was accessed.

EFI_UNSUPPORTED The request is not valid on open directories.

Version 2.0 Errata A
 33

EFI_SHELL_PROTOCOL.GetFileSize()

Summary

Gets the size of a file.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_GET_FILE_SIZE)(

 IN SHELL_FILE_HANDLE FileHandle,

 OUT UINT64 *Size

);

Parameters

FileHandle

The handle of the file.

Size

The size of this file.

Description

This function returns the size of the file specified by FileHandle.

Status Codes Returned

EFI_SUCCESS Get the file’s size.

EFI_DEVICE_ERROR Can’t access the file.

34 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.GetHelpText()

Summary

Return help information about a specific command.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_GET_HELP_TEXT) (

 IN CONST CHAR16 *Command,

 IN CONST CHAR16 *Sections,

 OUT CHAR16 **HelpText

);

Parameters

Command

Points to the null-terminated UEFI Shell command name.

Sections

Points to the null-terminated comma-delimited section names to return.

If NULL, then all sections will be returned.

HelpText

On return, points to a callee-allocated buffer containing all specified help

text.

Description

This function returns the help information for the specified command. The help
text can be internal to the shell or can be from a UEFI Shell manual page, as
described in Appendix B

If Sections is specified, then each section name listed will be compared in a
case-sensitive manner, to the section names described in Appendix B. If the
section exists, it will be appended to the returned help text. If the section does
not exist, no information will be returned. If Sections is NULL, then all help
text information available will be returned.

Status Codes Returned

EFI_SUCCESS The help text was returned.

EFI_OUT_OF_RESOURCES The necessary buffer could not be allocated to

hold the returned help text.

EFI_INVALID_PARAMETER HelpText is NULL

EFI_NOT_FOUND There is no help text available for Command.

Version 2.0 Errata A
 35

36 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.GetMapFromDevicePath()

Summary

Gets one or more mapping entries that most closely matches the device path.

Prototype
typedef

CONST CHAR16 *

(EFIAPI *EFI_SHELL_GET_MAP_FROM_DEVICE_PATH) (

 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath

);

Parameters

DevicePath

On entry, points to a device path pointer. On exit, updates the pointer to

point to the portion of the device path after the mapping.

Description

This function gets the mapping which corresponds to the device path
*DevicePath. If there is no exact match, then the mapping which most

closely matches *DevicePath is returned, and *DevicePath is updated to

point to the remaining portion of the device path. If there is an exact match,
the mapping is returned and *DevicePath points to the end-of-device-path

node.

Upon discovery of a match, the consistent mapping name will be returned as
the first element in the return string. If there are additional mapping names
associated with the *DevicePath the return string will have added to it a “;”

delimeter followed by each mapping name. For example, a three name
mapping return string might look like this “hd5a1b1e;C:;Fred” without the
quotes. This includes the consistent name of “hd5a1b1e” and the two alternate
names of “C:” and “Fred”. The return string will be NULL terminated.

Returned Value

!NULL Pointer to null-terminated mapping. The buffer is callee-
allocated and should be freed by the caller.

NULL No mapping was found.

Version 2.0 Errata A
 37

EFI_SHELL_PROTOCOL.GetPageBreak()

Summary

Gets the enable status of the page break output mode.

Prototype
typedef

BOOLEAN

(EFIAPI *EFI_SHELL_GET_PAGE_BREAK) (

 VOID

);

Parameters

None

Description

User can use this function to determine current page break mode.

Status Codes Returned

TRUE The page break output mode is enabled

FALSE The page break output mode is disabled

38 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.IsRootShell()

Summary

Judges whether the active shell is the root shell.

Prototype
typedef

BOOLEAN

(EFIAPI *EFI_SHELL_IS_ROOT_SHELL) (

 VOID

);

Parameters

None

Description

This function makes the user to know that whether the active Shell is the root
shell.

Status Codes Returned

TRUE The active Shell is the root Shell.

FALSE The active Shell is NOT the root Shell.

Version 2.0 Errata A
 39

EFI_SHELL_PROTOCOL.OpenFileByName()

Summary

Opens a file or a directory by file name.

Prototype
typdef

EFI_STATUS

(EFIAPI *EFI_SHELL_OPEN_FILE_BY_NAME) (

 IN CONST CHAR16 *FileName,

 OUT SHELL_FILE_HANDLE *FileHandle,

 IN UINT64 OpenMode

);

Parameters

FileName

Points to the null-terminated UCS-2 encoded file name.

FileHandle

On return, points to the file handle.

OpenMode

File open mode. Either EFI_FILE_MODE_READ or EFI_FILE_MODE_WRITE

from section 12.4 of the UEFI Specification.

Related Definitions
typedef VOID *SHELL_FILE_HANDLE;

Description

This function opens the specified file in the specified OpenMode and returns a

file handle.

If the file name begins with >v, then the file handle which is returned refers to
the shell environment variable with the specified name. If the shell
environment variable exists, is non-volatile and the OpenMode indicates

EFI_FILE_MODE_WRITE, then EFI_INVALID_PARAMETER is returned.

If the file name is >i, then the file handle which is returned refers to the
standard input. If the OpenMode indicates EFI_FILE_MODE_WRITE, then

EFI_INVALID_PARAMETER is returned.

If the file name is >o, then the file handle which is returned refers to the
standard output. If the OpenMode indicates EFI_FILE_MODE_READ, then

EFI_INVALID_PARAMETER is returned.

If the file name is >e, then the file handle which is returned refers to the
standard error. If the OpenMode indicates EFI_FILE_MODE_READ, then

EFI_INVALID_PARAMETER is returned.

40 Version 2.0 Errata A

If the file name is NUL, then the file handle that is returned refers to the
standard NUL file. If the OpenMode indicates EFI_FILE_MODE_READ, then

EFI_INVALID_PARAMETER is returned.

If return EFI_SUCCESS, the FileHandle is the opened file’s handle, else, the

FileHandle is NULL.

Status Codes Returned

EFI_SUCCESS The file was opened. FileHandle has the opened

file’s handle.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

FileHandle is NULL.

EFI_UNSUPPORTED Could not open the file path. FileHandle is NULL.

EFI_NOT_FOUND The specified file could not be found on the

device or the file system could not be found on

the device. FileHandle is NULL.

EFI_NO_MEDIA The device has no medium. FileHandle is NULL.

EFI_MEDIA_CHANGED The device has a different medium in it or the

medium is no longer supported. FileHandle is

NULL.

EFI_DEVICE_ERROR The device reported an error or can’t get the file

path according the FileName. FileHandle is

NULL.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

FileHandle is NULL.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a

file for write when the media is write-protected.

FileHandle is NULL.

EFI_ACCESS_DENIED The service denied access to the file. FileHandle

is NULL.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the

file. FileHandle is NULL.

EFI_VOLUME_FULL The volume is full. FileHandle is NULL.

Version 2.0 Errata A
 41

EFI_SHELL_PROTOCOL.OpenFileList()

Summary

Opens the files that match the path specified.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_OPEN_FILE_LIST) (

 IN CHAR16 *Path,

 IN UINT64 OpenMode,

 OUT EFI_SHELL_FILE_INFO **FileList

);

Parameters

Path

A pointer to the path string.

OpenMode

Specifies the mode used to open each file, EFI_FILE_MODE_READ or

EFI_FILE_MODE_WRITE.

FileList

Points to the start of a list of files opened.

Description

This function opens all of the files specified by Path. Wildcards are processed

according to the rules specified in 3.7.1. Each matching file has an
EFI_SHELL_FILE_INFO structure created in a linked list.

Related Definitions
typedef struct _EFI_LIST_ENTRY {

 struct _EFI_LIST_ENTRY *Flink;

 struct _EFI_LIST_ENTRY *Blink;

} EFI_LIST_ENTRY;

typedef struct {

 EFI_LIST_ENTRY Link;

 EFI_STATUS Status;

 CONST CHAR16 *FullName;

 CONST CHAR16 *FileName

 SHELL_FILE_HANDLE Handle;

 EFI_FILE_INFO *Info;

} EFI_SHELL_FILE_INFO;

Link

Points to the next and previous entries in the file list. If NULL, then no

more files.

42 Version 2.0 Errata A

Status

The status returned when calling OpenFile() for the entry in the file list.

FullName

Specifies the full name of the file, including the path.

Handle

The file handle of the file after it was opened.

Info

The file information for the opened file.

Status Codes Returned

EFI_SUCCESS
Create the file list successfully.

Others Can’t create the file list.

Version 2.0 Errata A
 43

EFI_SHELL_PROTOCOL.OpenRoot()

Summary

Opens the root directory of a device.

Prototype
typedef

EFI_STATUS

(EFIAPI EFI_SHELL_OPEN_ROOT)(

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath

 OUT SHELL_FILE_HANDLE *FileHandle

);

Parameters

DevicePath

Points to the device path corresponding to the device where the

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is installed.

FileHandle

On exit, points to the file handle corresponding to the root directory on

the device.

Description

This function opens the root directory of a device and returns a file handle to it.

Status Codes Returned

EFI_SUCCESS Root opened successfully.

EFI_NOT_FOUND EFI_SIMPLE_FILE_SYSTEM could not be found or

the root directory could not be opened.

EFI_VOLUME_CORRUPTED The data structures in the volume were corrupted.

EFI_DEVICE_ERROR The device had an error

44 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.OpenRootByHandle()

Summary

Opens the root directory of a device on a handle

Prototype
typedef

EFI_STATUS

(EFIAPI EFI_SHELL_OPEN_ROOT_BY_HANDLE)(

 IN EFI_HANDLE DeviceHandle,

 OUT SHELL_FILE_HANDLE *FileHandle

);

Parameters

DeviceHandle

The handle of the device that contains the volume.

FileHandle

On exit, points to the file handle corresponding to the root directory on

the device.

Description

This function opens the root directory of a device and returns a file handle to it.

Status Codes Returned

EFI_SUCCESS Root opened successfully.

EFI_NOT_FOUND EFI_SIMPLE_FILE_SYSTEM could not be found or

the root directory could not be opened.

EFI_VOLUME_CORRUPTED The data structures in the volume were corrupted.

EFI_DEVICE_ERROR The device had an error

Version 2.0 Errata A
 45

EFI_SHELL_PROTOCOL.ReadFile()

Summary

Reads data from the file.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_READ_FILE) (

 IN SHELL_FILE_HANDLE FileHandle,

 IN OUT UINTN *ReadSize,

 OUT VOID *Buffer

);

Parameters

FileHandle

The opened file handle for read

ReadSize

On input, the size of Buffer, in bytes. On output, the amount of data

read.

Buffer

The buffer in which data is read.

Description

If FileHandle is not a directory, the function reads the requested number of

bytes from the file at the file’s current position and returns them in Buffer. If

the read goes beyond the end of the file, the read length is truncated to the
end of the file. The file’s current position is increased by the number of bytes
returned.

If FileHandle is a directory, then an error is returned.

Status Codes Returned

EFI_SUCCESS Data was read.

EFI_NO_MEDIA The device has no media

EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED The file system structures are corrupted

EFI_BUFFER_TO_SMALL Buffer is too small. ReadSize contains required

size

46 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.RemoveDupInFileList()

Summary

Deletes the duplicate file names files in the given file list.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_REMOVE_DUP_IN_FILE_LIST) (

 IN EFI_SHELL_FILE_INFO **FileList

);

Parameters

FileList

A pointer to the first entry in the file list.

Description

This function deletes the reduplicate files in the given file list.

Status Codes Returned

EFI_SUCCESS Always success.

Version 2.0 Errata A
 47

EFI_SHELL_PROTOCOL.SetAlias()

Summary

Changes a shell command alias.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_SET_ALIAS)(

 IN CONST CHAR16 *Command,

 IN CONST CHAR16 *Alias,

 IN BOOLEAN Replace

 IN BOOLEAN Volatile

);

Parameters

Command

Points to the null-terminated shell command or existing alias.

Alias

Points to the null-terminated alias for the shell command. If this is NULL,

and Command refers to an alias, that alias will be deleted.

Replace

If TRUE and the alias already exists, then the existing alias will be

replaced. If FALSE and the alias already exists, then the existing alias is

unchanged and EFI_ACCESS_DENIED is returned.

Volatile

If TRUE, the Alias being set will be stored in a volatile fashion. If

FALSE, the Alias will be stored in a nonvolatile fashion.

Description

This function creates an alias for a shell command.

This function creates an additional name for an internal UEFI Shell command
or a UEFI Shell application. Aliases can be used to provide alternative
commonly used names for existing shell commands or even create shortcuts.
An alias is a C-style identifier and may refer to an internal command or else
the directory and file name of a UEFI shell application.

Some aliases are built-in (such as ls) and may not be modified. If a built-in
alias is specified by Alias, then there are no changes and EFI_ACCESS_DENIED
is returned.

If there is already an existing alias with the name Alias and Replace is TRUE,
then the existing alias is updated to refer to the new Command. If there is an
existing alias with the name Alias and Replace is FALSE, then there are no
changes and EFI_ACCESS_DENIED is returned.

48 Version 2.0 Errata A

If Command specifies an existing built-in alias and Alias is NULL, then
EFI_ACCESS_DENIED is returned. If Command specifies an existing alias and
Alias is NULL and Replace is TRUE, then the alias is deleted. If Command
specifies an existing alias and Alias is not NULL, then EFI_ACCESS_IS_DENIED
is returned.

Return Value

EFI_SUCCESS Alias created or deleted successfully.

EFI_ACCESS_DENIED The alias is a built-in alias or the alias already existed

and Replace had been set to FALSE.

Version 2.0 Errata A
 49

EFI_SHELL_PROTOCOL.SetCurDir()

Summary

Changes the current directory on the specified device.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_SET_CUR_DIR) (

 IN CONST CHAR16 *FileSystem OPTIONAL,

 IN CONST CHAR16 *Dir

);

Parameters

FileSystem

A pointer to the file system’s mapped name. If NULL, then the current

working directory is changed.

Dir

Points to the null-terminated directory on the device specified by
FileSystem.

Description

If the FileSystem is NULL, and the directory Dir does not contain a file

system’s mapped name, this function changes the current working directory. If
FileSystem is NULL and the directory Dir contains a mapped name, then the

current file system and the current directory on that file system are changed.

If FileSystem is not NULL, and Dir is NULL, then this changes the current

working file system.

If FileSystem is not NULL and Dir is not NULL, then this function changes the

current directory on the specified file system.

If the current working directory or the current working file system is changed
then the %cwd% environment variable will be updated. For more information,

see “Current Directory” , section3.5.

Status Codes Returned

EFI_SUCCESS The command completed successfully.

EFI_NOT_FOUN

D

The directory does not exist.

50 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.SetEnv()

Summary

Sets the environment variable.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_SET_ENV) (

 IN CONST CHAR16 *Name,

 IN CONST CHAR16 *Value,

 IN BOOLEAN Volatile

);

Parameters

Name

Points to the null-terminated environment variable name.

Value

Points to the null-terminated environment variable value. If the value is

an empty string then the environment variable is deleted.

Volatile

Indicates whether the variable is non-volatile (FALSE) or volatile (TRUE).

Description

This function changes the current value of the specified environment variable.
If the environment variable exists and the Value is an empty string, then the
environment variable is deleted. If the environment variable exists and the
Value is not an empty string, then the value of the environment variable is
changed. If the environment variable does not exist and the Value is an empty
string, there is no action. If the environment variable does not exist and the
Value is a non-empty string, then the environment variable is created and
assigned the specified value.

For a description of volatile and non-volatile environment variables, see3.6.1.

Status Codes Returned

EFI_SUCCESS The environment variable was successfully updated.

Version 2.0 Errata A
 51

EFI_SHELL_PROTOCOL.SetFileInfo()

Summary

 Sets the file information to an opened file handle.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_SET_FILE_INFO)(

 IN SHELL_FILE_HANDLE FileHandle,

 IN CONST EFI_FILE_INFO *FileInfo

);

Parameters

FileHandle

A file handle

FileInfo

Points to new file information.

Description

This function changes file information.

Status Codes Returned

EFI_SUCCESS The information was set.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

52 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.SetFilePosition()

Summary

Sets a file’s current position

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_SET_FILE_POSITION)(

 IN SHELL_FILE_HANDLE FileHandle,

 IN UINT64 Position

);

Parameters

FileHandle

The file handle on which requested position will be set.

Position

Byte position from the start of the file

Description

This function sets the current file position for the handle to the position
supplied. With the exception of seeking to position 0xFFFFFFFFFFFFFFFF, only

absolute positioning is supported, and seeking past the end of the file is

allowed (a subsequent write would grow the file). Seeking to position
0xFFFFFFFFFFFFFFFF causes the current position to be set to the end of the

file.

Status Codes Returned

EFI_SUCCESS Data was written.

EFI_UNSUPPORTED The seek request for nonzero is not

valid on open directories.

Version 2.0 Errata A
 53

EFI_SHELL_PROTOCOL.SetMap()

Summary

Changes a shell device mapping.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SHELL_SET_MAP)(

 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 IN CONST CHAR16 *Mapping

);

Parameters

DevicePath

Points to the device path. If this is NULL and Mapping points to a valid

mapping, then the mapping will be deleted.

Mapping

Points to the null-terminated mapping for the device path.

Description

This function creates a mapping for a device path.

Return Value

EFI_SUCCESS Mapping created or deleted successfully.

EFI_NO_MAPPING There is no handle that corresponds exactly to

DevicePath. See the boot service function

LocateDevicePath().

EFI_ACCESS_DENIED The mapping is a built-in alias.

54 Version 2.0 Errata A

EFI_SHELL_PROTOCOL.WriteFile()

Summary

Writes data to the file.

Prototype
typedef

EFI_STATUS

(EFIAPI EFI_SHELL_WRITE_FILE)(

 IN SHELL_FILE_HANDLE FileHandle,

 IN OUT UINTN *BufferSize,

 OUT VOID *Buffer

);

Parameters

FileHandle

The opened file handle for writing.

BufferSize

On input, size of Buffer.

Buffer

The buffer in which data to write.

Description

This function writes the specified number of bytes to the file at the current file
position. The current file position is advanced the actual number of bytes
written, which is returned in BufferSize. Partial writes only occur when there
has been a data error during the write attempt (such as “volume space full”).
The file automatically grows to hold the data, if required.

Direct writes to opened directories are not supported.

Status Codes Returned

EFI_SUCCESS Data was written.

EFI_UNSUPPORTED Writes to open directory are not supported

EFI_NO_MEDIA The device has no media

EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED The file system structures are corrupted

EFI_WRITE_PROTECTED The device is write-protected

EFI_ACCESS_DENIED The file was open for read only

EFI_VOLUME_FULL The volume is full

Version 2.0 Errata A
 55

2.3 EFI_SHELL_PARAMETERS_PROTOCOL

EFI_SHELL_PARAMETERS_PROTOCOL

Summary

Shell application’s arguments.

GUID
#define EFI_SHELL_PARAMETERS_PROTOCOL_GUID \

 { 0x752f3136, 0x4e16, 0x4fdc, \

 { 0xa2, 0x2a, 0xe5, 0xf4, 0x68, 0x12, 0xf4, 0xca } };

Prototype
typedef struct _EFI_SHELL_PARAMETERS_PROTOCOL {

 CHAR16 **Argv;

 UINTN Argc;

 SHELL_FILE_HANDLE StdIn;

 SHELL_FILE_HANDLE StdOut;

 SHELL_FILE_HANDLE StdErr;

} EFI_SHELL_PARAMETERS_PROTOCOL;

Parameters

Argv

Points to an Argc-element array of points to null-terminated strings

containing the command-line parameters. The first entry in the array is

always the full file path of the executable. Any quotation marks that were

used to preserve whitespace have been removed.

Argc

The number of elements in the Argv array.

StdIn

The file handle for the standard input for this executable. This may be
different from the ConInHandle in the EFI_SYSTEM_TABLE.

StdOut

The file handle for the standard output for this executable. This may be
different from the ConOutHandle in the EFI_SYSTEM_TABLE.

StdErr

The file handle for the standard error output for this executable. This may
be different from the StdErrHandle in the EFI_SYSTEM_TABLE.

Description

An instance of this protocol is installed on each shell application’s image
handle prior to calling StartImage(). It describes all of the command-line
parameters passed on the command line, as well as the standard file handles
for standard input, output and error output.

56 Version 2.0 Errata A

Version 2.0 Errata A 57

3

UEFI Shell Features

The UEFI Shell supports an interactive command-line interface, scripting, and a standard set of
commands.

All the commands can be invoked by entering the name of the command at the command prompt. For
external commands, they must reside in a file system. So, to run them users need to have at least one
mapped file system and put those external commands under this file system.

The active drive may be changed by entering the mapped name followed by a ‘:’ at the command

prompt.

3.1 Levels Of Support

This section describes the different standard levels of shell support. The different standard levels are
designed to provide different feature/size tradeoffs for different uses. The levels mentioned here are
referenced throughout this specification

Table 1 Support Levels

L
e
v
e
l

Na
m
e

Exec
ute()

/
Scrip
ting/
start
up.ns

h

P
A
T
H
?

A
L
I
A
S
?

Inte
racti
ve?

Co
mm
and

s

0 Min

im

al

No N

o

N

o

No Non

e

1 Scr

ipti

ng

Yes Y

e

s

N

o

No for,

endf

or,

goto

, if,

else,

endi

f,

shift

,

exit,

stall

58 Version 2.0 Errata A

2 Bas

ic

Yes Y

e

s

Y

e

s

No attri

b,

cd,

cp,

date

*,

time

*,

del,

load

, ls,

map

,

mkd

ir,

mv,

rm,

rese

t,

set,

time

zone

*,

touc

h,

vol

3 Int

era

ctiv

e

Yes Y

e

s

Y

e

s

Yes alias

,

date

,

echo

,

help

,

paus

e,

time

,

type

,

ver,

cls,

time

zone

*Non-interactive forms only

Execute()/Scripting/startup.nsh support indicates whether the Execute() function is supported by

the EFI_SHELL_PROTOCOL, whether or not scripts are supported and whether the default startup script
startup.nsh is supported.

PATH support determines whether the PATH environment variable will be used to determine the location

of executables.

ALIAS support determines whether the ALIAS feature will be used to determine alternate names for

shell commands.

Interactive determines whether or not an interactive session can be started.

For more information on scripting, see UEFI Shell Script (Chapter 4).

Version 2.0 Errata A 59

For more information on processing of the startup.nsh file, please see UEFI Shell Initialization (section

0).

The shell must remain compliant with its advertised uefishellsupport command profile. There can be
cases where a shell implementation may not want to expose certain commands to all users. If a shell
implementation wants to make a particular command inaccessible to a particular user, they must
properly interpret the command request and return an appropriate return code, such as
SHELL_SECURITY_VIOLATION.

3.2 Invocation

The UEFI Shell is a UEFI application. The UEFI Shell takes command-line options that are null-
terminated UCS-2 encoded strings. The syntax is:
shell.efi [ShellOpt-options] [options] [file-name [file-name-options]]

The command-line options are separated by the space or tab character. The options are processed left-

to-right retrieved from the LoadOptions field of the EFI_LOADED_IMAGE_PROTOCOL.

The following table describes the standard command-line options.

Table 2 Standard Command Line Options

Option Description

file-name The name of a UEFI shell application or script to be executed after initialization is

complete. By default, if file-name is specified, then -nostartup is implied. Scripts are not

supported by level 0.

file-name-

options

The command-line options that are passed to file-name when it is invoked.

options Options (from table X below) which control the initialization behavior of the shell.

ShellOpt-

options

Options (from table X below) which control the initialization behavior of the shell. These

options are read from the EFI global variable “ShellOpt” and are processed before options

or file-name.

Table 3 UEFI Shell Invocation Options

-nostartup The default startup script startup.nsh will not be executed.

-

noconsoleout

Console output from the shell applications will not be displayed.

This has no effect for UEFI Shells that do not support an

interactive mode.

-noconsolein Console input will not be accepted from the user. This has no

effect for UEFI Shells that do not support an interactive mode.

-delay [n] Specifies the integer number of seconds the shell will delay prior

to the execution of startup.nsh. Ignored for shell level 0 or if –

nostartup is specified. If n is not specified, the default is 5

seconds. If 0 is specified, then there will be no delay. If –

nointerrupt is specified, then there will be no delay.

-nointerrupt Execution interruption (as described in Execution Interrupt

Support) is not allowed. This has no effect for UEFI Shells that do

not support an interactive mode.

-nomap The default mappings will not be displayed.

-noversion The version information will not be displayed.

60 Version 2.0 Errata A

-startup The default startup script startup.nsh will be executed.

Requires shell support level 1 or higher. This overrides the default

behavior when file-name is specified.

If the UEFI Shell does not support scripting and file-name specifies a UEFI shell script file, then the UEFI
Shell will exit with a status code of STATUS_UNSUPPORTED.

3.3 Initialization

This section describes the steps taken during shell initialization. The following steps are not exhaustive,
but they are executed in order:

1. The command-line options of the shell itself are processed.

2. Default file system and block identifier (FSx:/BLKx:) mapped names are created. Consistent

mapping names are created, and the current directory for each mapped name is set to

the root.

3. The default alias settings are read from non-volatile storage. This is only supported in shell level

2.

4. The default environment variable settings are read from non-volatile storage.

5. The profiles are read into the ‘profiles’ environment variable.

6. If the shell supports interactive mode and console output support is enabled, then the console is

cleared.

7. The platform watchdog will be cleared through the UEFI SetWatchdogTimer() API to avoid

inadvertent platform resets during long operations within the UEFI Shell environment.

8. If the shell supports interactive mode and console output support is enabled and version support

(see –noversion) is enabled, then the equivalent of ver will be executed.

9. If the shell supports interactive mode and console output support is enabled and map support is

enabled (see –nomap), then the equivalent of map –terse will be executed.

10. If interactive mode is supported and execution interrupt is supported (see –nointerrupt) then

the shell will wait for the number of seconds specified by the –delay option.

11. If startup.nsh is supported and enabled (see –startup and –nostartup), the script will be

launched.

12. If a file name was specified among the command-line options, then the image or script (if

supported) is launched.

3.3.1 Finding startup.nsh

When executing startup.nsh, the shell will search for it first in the directory where the shell itself was

launched. If it cannot find the startup.nsh file in that directory or it was not launched from a file

system, it will search the execution path defined by the environment variable PATH.

Version 2.0 Errata A 61

3.3.2 Supported Profiles

The UEFI Shell may have support for zero or more profiles, such as those described in chapter 5 built in
to its executable. Additional profiles are described in the file ‘profiles.txt’, located in the same directory
as the UEFI Shell executable. The contents of the file are carriage-return delimited (one profile name
per line) and are read into the UEFI shell environment variable ‘profiles’, where they are semicolon (‘;’)
delimited. Profiles names that begin with ‘UEFI’ are reserved for use in this specification.

3.4 Command-Line

The UEFI Shell implements a programming language that provides control over the execution of
individual commands. Command names and keywords in certain commands are all case insensitive.

The UEFI Shell processes the command-line by

1. Substituting aliases. The UEFI Shell supports specifying aliases for UEFI Shell commands (both

internal and external). The substitution is performed automatically on the first

command-line parameter.

2. Substituting variables. The UEFI Shell finds the % character and substitutes the value of an

Environment Variable, Positional Parameter or Index Parameter based on the characters

found after the % character. See Variables (section, 3.6) for more information.

3. Setting up input and output redirection. Using special characters on the command-line, the UEFI

Shell can get input from a file and send output to a file. See Redirection (section 3.4.4)

for more information.

4. Breaking up the command-line into arguments. The arguments are delimited by non-quoted

whitespace characters.

5. Launching the shell command or UEFI Shell script.

3.4.1 Special Characters

When the shell scans its input, it always treats certain characters (#, >, <, |, %, *, ?, ^, “, space, [,]

and newline) specially. The usage of these characters is briefly listed here:

Table 4 Special Characters in Shell

Characte
r

Description

newline Ends a command line.

space Ends an argument, if it is not in a quotation.

Starts a comment in a script file.

: Starts a label in a script file.

> Used for output redirection.

< Used for input redirection

| Used for pipe command support.

% Used to delimit a variable or an argument.

” Used to delimit a quotation.

62 Version 2.0 Errata A

^ Prevents the next character from being interpreted as having special

meaning. Can be used inside quoted strings.

*, ?, [,] Wildcards to specify multiple similar file names.

3.4.2 Escape Characters

The escaping character ^ is used to prevent interpreting the character that immediately follows it as a

special character.

3.4.3 Quoting

The UEFI Shell uses quotation marks for argument grouping. Normally, the UEFI Shell will interpret a
one or more whitespace character as an argument delimiter. However, if the whitespace character

appears between double quotation marks, it will be ignored for the purposes of argument delimiting.
Empty strings are treated as valid command line arguments. Substitution of environment variables and
positional parameters still occurs within quotation marks.

Double-quotation marks that surround arguments are stripped before they are passed to the entry point
of a shell application. For more information, see the Argv member of the

EFI_SHELL_PARAMETERS_PROTOCOL.

Double-quotation marks that surround arguments are not stripped in positional parameters (see
Positional Parameters, section 3.6.2) or on the copy of the command line passed in the LoadOptions

member of the EFI_LOADED_IMAGE_PROTOCOL passed to shell applications.

To include a double-quotation mark inside of a quoted string, use ^”. To include a ^ character inside of
a quoted string, use ^^.

For information about how the quotes are treated in each of the options, see “Shell Commands”, chapter

5).

3.4.4 Redirection

3.4.4.1 Output Redirection

Output of EFI Shell commands can be redirected to files. For example:
Command > ucs2_output_file_pathname

Command >a ascii_output_file_pathname

Command 1> ucs-2_output_file_pathname

Command 1>a ascii_output_file_pathname

Command 2> ucs-2_output_file_pathname

Command 2>a ascii_output_file_pathname

Command >> ucs-2_output_file_pathname

Command >>a ascii_output_file_pathname

Command 1>> ucs-2_output_file_pathname

Command 1>>a ascii_output_file_pathname

Table 5 shows the special character combinations that are used to denote output redirection operations:

Version 2.0 Errata A 63

Table 5 Output Redirection Syntax

Character
Sequence

Description

> Redirect standard output to a UCS-2 encode file.

>a Redirect standard output to an ASCII file.

1> Redirect standard output to a UCS-2 encoded file.

1>a Redirect standard output to an ASCII file.

2> Redirect standard error to a UCS-2 encoded file.

2>a Redirect standard error to an ASCII file.

>v Redirect standard output to an environment variable, encoded as UCS-

2.

1>v Redirect standard output to an environment variable, encoded as UCS-

2.

2>v Redirect standard error to an environment variable, encoded as UCS-2.

>> Redirect standard output appended to a UCS-2 encoded file.

>>a Redirect standard output appended to an ASCII file.

1>> Redirect standard output appended to a UCS-2 encoded file.

1>>a Redirect standard output appended to an ASCII file.

>>v Append standard output to an environment variable, encoded as UCS2.

1>>v Append standard output to an environment variable, encoded as UCS2.

2>>v Append standard error to an environment variable, encoded as UCS2.

2>> Append standard error to a UCS2 file.

The UEFI Shell will redirect standard output to a single file or variable and standard error to a single file
or variable. Redirecting both standard output and standard error to different files or variables is allowed,
but not to the same file or variable. Redirecting standard output to more than one file or variable on the
same command is not supported. Similarly, redirecting to multiple files or variables is not supported for
standard error either.

When redirecting output to an environment variable, if a new environment variable will be created, then
it will be volatile. If the environment variable already exists and is non-volatile, an error will be
generated.

All output to UCS-2 encoded files will be prefixed with the Unicode Byte Ordering Character (0xFFFE) if
(a) there is at least one other character output and (b) that character is not the Unicode Byte Ordering
Character.

“NUL” is used as a special output file name. When “NUL” is used, the output will not be written into a file.

Instead, they are discarded silently.

3.4.4.2 Input Redirection

Contents from an existing file or variable can be used as standard input to a UEFI shell command. Any
commands coming from an ASCII file will be automatically be converted to the equivalent UCS-2
encoding and passed to the UEFI shell command.

When redirecting input from an environment variable, the environment variable must already exist. If it
does not, an error will be generated. The shell will ensure that the first character read from an input

64 Version 2.0 Errata A

redirected environment variable will contain the Unicode Byte Ordering Character (0xFFFE). If the first

character in the input source is not the Unicode Byte Ordering Character, the shell will insert this
character in the output from the input redirected variable. This is done to ensure that an input
redirected variable will be look like a UCS-2 encoded file.

Redirecting input from a non-volatile variable is permitted.

Table 6 Input Redirection Syntax

Character
Sequence

Description

< Redirect standard input from a Unicode file.

<a Redirect standard input from an ASCII file.

<v Redirect standard input from an environment variable.

3.4.4.3 Pipe Support

By using the | character, a data channel is formed that takes the standard Unicode output of a file and
feeds the data as standard input to another program.

The format for this support is as follows:

UEFI_Shell_Command [options] [| UEFI_Shell_Command [options]]*

Table 7 Input Redirection Syntax

Character
Sequence

Description

| Pipe output of a command to another program in UCS-2

format.

|a Pipe output of a command to another program in ASCII

format.

All output to UCS-2 encoded files will be prefixed with the Unicode Byte Ordering Character (0xFFFE) if
(a) there is at least one other character output and (b) that character is not the Unicode Byte Ordering
Character.

3.5 Current Directory

For each file system, the UEFI Shell maintains a current directory, which is the default directory used if a
directory is not specified in a file path. The UEFI Shell maintains a current working file system, which is
the default file system used if one is not supplied in a file path. The current directory in the current
working file system is the current working directory.

The current directory for any file system and current working file system can be retrieved using the
GetCurDir() function (see page 34). The current directory for any file system and the current working
file system can be changed using the SetCurDir() function (see page 57).

The current directory for any file system and current working directory can retrieved and changed using
the cd shell command (see page 95).

The current working directory can be found in the standard %cwd% environment variable.

Version 2.0 Errata A 65

3.6 Variables

This section describes the different types of variable substitution that happens on the command-line for
environment variables, positional parameters, index parameters and aliases.

Figure 1 Variable substitution flow chart

3.6.1 Environment Variables

Environment variables are variables that can hold the user specified contents and can be used on the
command line or in scripts. Each environment variable has a case- sensitive name (a C-style identifier)
and a string value. Environment variables can be either volatile (they will lose their value on reset or
power-off) or non-volatile (they will maintain their value across reset or power-off).

Environment variables can be used on the command-line by using %variable-name% where variable-

name is the environment variable’s name. Variable substitution is not recursive. Environment variables

can also be retrieved by a UEFI Shell command by using the GetEnv() (see page 39) function.

Environment variables can be displayed or changed using the set shell command. They can also be
changed by a UEFI Shell command using the SetEnv() function.

The following table lists the environment variables that have special meaning to the UEFI Shell:

66 Version 2.0 Errata A

Table 8 Environment Variables with Special Meaning to the UEFI Shell

Variable V
/
N
V

R
O
/
R
W

Description

cwd V

/

R

O

The current working directory, including the

current working file system. See “Current

Directory” (page 64) for more information.

lasterror V

/

R

O

Last returned error from a UEFI Shell command,
UEFI Application, or batch script.

path

V

/

R

W

The UEFI Shell has a default volatile environment

variable path, which contains the default path that

UEFI Shell will search if necessary. When user

wants to launch an UEFI application, UEFI Shell

will first try to search the current directory if it

exists, and then search the path list sequentially.

If the application is found in one of the paths, it

will stop searching and execute that application. If

the application is not found in all the paths, UEFI

Shell will report the application is not found.

If the path variable is empty or it doesn’t exist,

UEFI Shell will treat current directory as the

working directory. In general, paths stored in path

variable looks like:

 path:

.;fs0:\efi\tools;fs0:\efi\boot;fs0:\;fs1:\efi\tools;fs1

:\efi\boot;fs1:\

The UEFI Shell supports both absolute paths and

relative paths when launching commands. Users

can set path to any specified value, but this

variable will be refreshed immediately after the

execution of command ‘map –r’ and it’s volatile so

that the contents will be lost after reset or power

off. Typically users can append the paths to this

variable in this way:

set –v path %path%;fs0:\test

profiles N

V

/

R

O

The list of UEFI shell command profiles supported

by the shell. Each profile name may only contain

alphanumeric characters or the ‘_’ character.

Profile names are semicolon (‘;’) delimited.

Version 2.0 Errata A 67

uefishell

support

V

/

R

O

Reflects the current support level enabled by the

currently running shell environment (see UEFI

Shell Levels of Support, section 3.1. The contents

of the variable will reflect the text-based numeric

version in the form that looks like:

3

This variable is produced by the shell itself and is

intended as read-only, any attempt to modify the

contents will be ignored.

uefishell

version

V

/

R

O

Reflects the revision of the UEFI Shell specification

that the shell supports. The contents are formatted

as text:

2.00

uefiversi

on

V

/

R

O

Reflects the revision of the UEFI specification that

the underlying firmware supports. The contents

will look like this:

2.10

3.6.2 Positional Parameters

Positional parameters are the first ten arguments (%0-%9) passed from the command line into a UEFI

shell script. The first parameter after the UEFI Shell script name becomes %1, the second %2, the third

%3 , and so on. %0 is the full path name of the script itself.

The shift command (see page 162) can be used delete the contents of %1 and shift all of the other

positional parameters down one place (%2 -> %1, %3 -> %2, %4 -> %3, etc.) There is no way for a
UEFI Shell script to access the 10th or greater argument without using shift.

When executing the UEFI Shell script, the %n is replaced by the corresponding argument on the
command-line that invoked the script. If a positional parameter is referenced in the UEFI Shell script but
that parameter was not present, then an empty string is substituted.

Positional parameters do not have quotation marks removed from them. For more information on how
quotation marks are handled, see “Quoting”

3.6.3 Index Parameters

Index parameters are the variables created by the for command (see page 139) when executing inside

of a UEFI Shell script. Each index parameter is in the form of %x, where x is a letter from ‘A’ to ‘Z’ or ‘a’
to ‘z’. Index parameters are case-insensitive.

When executing the UEFI Shell script, the %x is replaced by the value specified by the for command. If

the specified index parameter has not been defined in the current UEFI Shell script, the script execution
will halt with an error.

68 Version 2.0 Errata A

3.6.4 Aliases

An alias creates an additional name for an internal UEFI Shell command or a UEFI Shell application.
Aliases can be used to provide alternative commonly used names for existing shell commands or even
create shortcuts. An alias is a C-style identifier and may refer to an internal command or else the
directory and file name of a UEFI shell application.

During command-line processing, if the 1st argument of a command is a defined alias, the shell replaces
the alias with its defined value. The alias substitution occurs after the variable substitution. So if
%myvariable% is set to dir and dir is aliased to ls, entering %myvariable% in command line will cause

the ls command to be executed. Alias substitution is not recursive.

There are several built-in aliases (sometimes referred to as synonyms) provided by the UEFI Shell for
the following commands:

Table 9 Built-in Aliases for the UEFI Shell

Original
Comman

d

Built
-In

Alias

Description

ls dir List directory contents

rm del Delete a file

cp copy Copy a file.

mkdir md Create a directory

dmem mem Display memory

3.7 File Names

The UEFI Shell supports file names and paths with the following format:

fs-path := [fs-map-name] [fs-divider][fs-dirs][fs-name]

fs-map-name := identifier :

fs-divider := \ | /

fs-dirs := fs-dir |

 fs-dirs fs-dir

fs-dir := fs-name fs-divider

fs-name := fs-file-name .fs-file-ext

fs-file-name := one or more ASCII characters, excluding * ? < > \ / ” :)

Both short and long names are supported. The maximum valid length for a file path is 255 characters.

Version 2.0 Errata A 69

3.7.1 Wildcard Expansion

The *, ? and [] characters can be used as wildcard characters in file name command-line options

certain UEFI shell commands that use the OpenFileList() function. In addition, the UEFI Shell for and

if script commands also expand arguments containing wildcard characters to existing file names that

matches the pattern. A ^ before the wildcard cannot prevent the wildcard from being expanded.

[] can be either wildcard characters or literal file name characters, the UEFI Shell will try to take them
as wildcard characters first to match files, if there are files matched, no further interpretation.
Otherwise, they will be considered as literal characters in file names.

Table 10 Wildcard Character Expansion

Character
Sequence

Description

* Matches zero or more characters in a file name.

? Matches exactly one character in a file name.

[] Matches one character in a file name with one of the characters in

[]

3.7.2 Mappings

Mappings are C-style identifiers that act as an alias for a device path. These mappings can be used
interchangeably with the device path in the EFI_SHELL_PROTOCOL and on the interactive shell’s

command line. Default mappings (such as fsx) are created by the UEFI Shell during initialization (see
Initializaiton, section 0. Other mappings can be created using the map shell command or the SetMap()

function.

A mapping which translates to a device path of a device that has a file system protocol installed on its

handle is called a file system mapping.

3.7.3 Consistent File System Mapping

The UEFI Shell provides consistent mapping for file system mappings. The consistent mappings will not
change after reboot or after ‘map –r’ if the hardware configuration hasn’t changed. If two or more
computers have the same hardware configurations, the consistent mapping results on these computers
should be exactly the same. Hardware configuration changes are defined as the changes of controllers
or physical interfaces to which the devices are connected. If you are used to the fsx notation style for

mapping file systems, then the new consistent mapping convention might look a little different. For
example, the GUIDed file system may have a consistent mapping , such as
f0agonennapphibbndlnmeaakamjeafdnb. The fsx style mappings facilitates the use of mappings on the

command line, but they don’t have the consistent mapping characteristics.

Consistent mapping only applies to file system mappings, not other device mappings.

3.8 Scripts

The UEFI Shell has the capability of executing commands from a file (script). UEFI Shell script files are
named using the ".nsh" extension. Script files can be either UCS-2 or ASCII format files. UEFI Shell

script files are invoked by entering the filename at the command prompt, with or without the filename
extension. See “Scripts” (section 4) for more information.

70 Version 2.0 Errata A

3.9 Nesting the Shell

The UEFI Shell supports nested shell execution. The UEFI Shell can run the shell from within itself. The
maximum nesting level is determined by how much memory the system has. The command exit can be

used to exit the current shell instance. If the current shell is a child shell, it will return to the parent
shell. Newly launched shell will have a brand new execution environment except for environment
variables and aliases.

3.10 Interactive Features

Even though the shell design specification primarily discusses aspects of the shell that can run without
user interaction, there are some features described which can augment the experience of users that are
actively interacting with the console.

3.10.1 Key History Support

The UEFI Shell will save commands history that executed from the shell prompt. User can press up-
arrow key and down-arrow key to browse the previous commands. Commands that were executed in
script will not be saved in the key history.

3.10.2 Execution Interrupt Support

The UEFI Shell supports the capability of interrupting the execution of the shell commands and scripts.

There are two kinds of the execution interrupt: script execution interrupt and internal command
execution interrupt.

Script Execution Interrupt.

The user can press CTRL-C to interrupt the execution of the script. The interrupt can only

happen between commands in a script. The script supports the nesting of scripts. Once a

script is interrupted, all its predecessor scripts are also interrupted.

Shell Command Execution Interrupt.

The user can press the CTRL-C key sequence to interrupt the execution of some time-

consuming UEFI Shell commands (i.e. ls –r). The UEFI Shell detects this key sequence and

signals the ExecutionBreak member of the EFI_SHELL_PROTOCOL. Individual UEFI Shell

commands check the state of ExecutionBreak as often as practical and return the

SHELL_ABORTED error code.

The UEFI Shell may not support asynchronous execution interrupt for commands or applications.

3.10.3 Output Streaming Control

The UEFI Shell supports the ability to pause and resume the streaming of characters to the output
device. The user can press the CTRL-S key sequence to pause and any key to resume the output results
produced by the current running commands or applications. It is especially useful for the commands and
applications that may produce a great deal of the output results.

Version 2.0 Errata A 71

3.10.4 Scroll Back Buffer Support

The UEFI Shell supports the ability to scroll back and forward the output so that consoles can have
screen history. The user can press Page Up and Page Down to scroll back and forward the screen history,
and press any other key to quit scrolling. However, the user cannot do this while the command,
application or script is being executed. The text output history will be at least 3 screens.

3.11 Shell Applications

UEFI Shell applications have the extension .efi and have the same entry point

(EFI_IMAGE_ENTRY_POINT) defined in section 4.1 of the UEFI specification. When the entry point to a

shell command is called, the image handle (ImageHandle) has both the EFI_LOADED_IMAGE_PROTOCOL

and the EFI_SHELL_PARAMETERS_PROTOCOL installed on it.

In the EFI_LOADED_IMAGE_PROTOCOL, the LoadOptions member points to the NULL-terminated,

expanded command line. The first part (which corresponds to Argv[0] in the

EFI_SHELL_PARAMETERS_PROTOCOL) is the file path of the executable after alias substitution.

After this, delimited by a whitespace character, are listed each of the arguments, with all environment
variables expanded, and with quotation marks still present. This is different from what appears in Argv[]

in the EFI_SHELL_PARAMETERS_PROTOCOL.

The EFI_SHELL_PARAMETERS_PROTOOCOL has two members: Argv, which points to each of the command-

line arguments and Argc, which is the number of command-line arguments. There is always at least one

command-line argument: the path and file name of the shell command. Any arguments are enumerated
in Argv[1-n], with all environment variables expanded and all quotation marks removed.

If ExecutionBreak was signaled during the execution of a UEFI Shell application, then it will be cleared

upon return to the shell.

3.11.1 Installation

During installation, UEFI Shell applications may choose to update certain global files or settings, which
are used for detecting installed UEFI Shell profiles or providing help text for UEFI shell applications.

During installation, UEFI Shell applications may update the profiles environment variable, which lists

all of the command profiles supported by the current implementation of the shell. Some of these
command profiles are standard (see “Shell Command Profiles”, section 5.2) and others can be defined
by implementers.

During installation, UEFI Shell applications may provide a help file (as described in “Command-Line
Help”, section 3.11.2) to support the standard help command.

During installation, UEFI Shell applications may update a help file for the help category/categories to
which the application belongs. This consists of creating a NAME section for the <category>.man file and

then copying the NAME section from the command’s help file to the end of the DESCRIPTION section of

the <command>.man file, if not already present.

The shell application’s category (or categories) is listed in the CATEGORY section of the shell
application’s help (.man) file. Help categories are not described as part of this specification.

72 Version 2.0 Errata A

3.11.2 Command-Line Help

The user can get UEFI Shell application command-line either using the help command or else by typing

in <command-name> -?. Both of these use the GetHelpText() (page 34) function to retrieve the help

text.

The UEFI Shell gets help text for UEFI Shell applications by search the directory where startup.nsh was

located (highest priority) (if –nostartup was not specified) and then the directories specified by the

path environment variable for a file with the same name as the UEFI Shell application, but with the .man

extension. The format of these files is described in Appendix B.

The UEFI Shell supports help categories, which have .man pages similar to those for UEFI shell

applications, except using the category name instead of the application name.

Version 2.0 Errata A 73

4

Scripts

UEFI Shell scripts allow user to simplify routine or repetitive tasks. A shell script program is a UCS-2 or
ASCII text file that contains one or more commands and has a .nsh file name extension. When the file

name is typed at the command prompt, commands in the file are executed sequentially.

All shell commands can be executed in scripts. In addition, some script-only commands are also
provided to do basic flow control. Script-only means those commands can be only executed in UEFI
Shell Script files, and cannot be executed from the shell prompt.

Up to ten positional arguments are supported for scripts. Positional argument substitution is performed
before the execution of each line in the script file. Positional arguments are denoted by %n, where n is a

digit between 0 and 9. By convention, %0 is the name of the script file currently being executed.

Script file execution can be nested; that is, script files may be executed from within other script files.
Recursion is allowed. Shell scripts run in their parent’s environment.

Output and input redirection are fully supported in scripts. Output redirection on a command in a script
file causes the output for that command to be redirected. Output redirection on the invocation of a
script causes the output for all commands executed from that script to be redirected to the file, with the
output of each command appended to the end of the file.

By default, both the input and output for all commands executed from a script are echoed to the
console. Display of commands read from a script file can be suppressed via the echo -off command

(see echo). Also, additional ‘@’ before a command in a script file can prevent the current command from

being echoed.

If output for a command is redirected to a file, then that output is not displayed on the console.
Commands executed from a script will not be saved by the shell for key history and these commands
cannot be recalled by pressing Up-Arrow key.

4.1 Comments

Comments can be embedded in scripts. The # character on a line is used to denote that all characters on

the same line and to the right of the # are to be ignored by the shell. Whether the echo state is on or

off, comments are not echoed to the console.

4.2 Error Handling

By default, if an error is encountered during the execution of a command in a script, the script will
continue to execute. But if an error is encountered when executing the script-only commands which
affects the logic of the script, such as for, endfor, if, else, endif, and goto, the script will exit. If the

error arousing script is a called by another script, the caller script will continue to execute.

The lasterror shell variable allows scripts to test the results of the most recently executed command

or application using the if command. This variable is maintained by the shell, is read-only, and cannot

be modified by command set.

74 Version 2.0 Errata A

Script-only commands, as well as echo, which are used to control the logic of the script, do not affect

the value of variable lasterror. The lasterror environment variable is not changed by comments.

4.3 Script Nesting

Scripts can be nested. A script can call one or more scripts. The embedded script will be executed as a
command. After the whole embedded script is executed completely, the next command will be executed.

The UEFI Shell will automatically save and restore the running mode before and after the execution of
nested scripts so that the changes of running modes in nested scripts will not affect the running mode of
a parent script.

4.4 Output and Echoing

Output redirection is supported for scripts. Output redirection on a command in a script file causes the
output for that command to be redirected. Output redirection on the invocation of a script causes the
output for all commands executed from that script to be redirected to the file, with the output of each
command appended to the end of the file. The default echo state will be "on" until changed. If a
command in a script redirects its output to file1, while the output is redirected to file2 on invocation of a
whole script, the output of that command will be redirected to file1, but the echo of the command itself
(if echo state is on) will appear in file2, as well as output of all other commands

When a script is launched from the interactive shell, it inherits its echo state from interactive shell or
parent script. Changing echo state in the script does not affect the echo state of the interactive shell.
When a script calls another script, the called script inherits the caller script’s current echo state. But if
the called script changes the echo state, after returning, the caller’s echo script changes, too.

4.5 Limitations

Following are some examples of known limitations with the UEFI scripts:

1. Cannot read and write the same file within a single command, for example,

fs0:>type test.nsh > test.nsh

2. goto cannot be used to jump into another loop.

3. Don’t use the same index variable in nested for statements.

4. Index values cannot be referred outside of the for statement that defines it.

Version 2.0 Errata A 75

5

 Shell Commands

5.1 Overview

This section describes the standard UEFI Shell commands.

The table below lists all standard UEFI Shell commands.

76 Version 2.0 Errata A

Table 11 Commands from Default Build Shell

Command Description Required at
Shell Level or

Profile

alias Displays, creates, or deletes aliases in the UEFI Shell

environment

3

attrib Displays or changes the attributes of files or directories. 2

bcfg Manipulate boot order and driver order Debug1, Install1

cd Displays or changes the current directory 2

cls Clears the standard output and optionally changes the

background color

3

comp Compares the contents of two files on a byte for byte

basis

Debug1

connect Binds a driver to a specific device and starts the driver. Driver1

cp Copies one or more source files or directories to a

destination.

2

date Displays and sets the current date for the system. 2/3

dblk Displays the contents of one or more blocks from a block

device.

Debug1

del Deletes one or more files or directories. 2

devices Displays the list of devices managed by UEFI drivers. Driver1

devtree Displays the tree of devices compliant with the UEFI

Driver Model.

Driver1

dh Displays the device handles in the UEFI environment. Driver1

dir Lists directory contents or file information. 2

disconnect Disconnects one or more drivers from the specified

devices.

Driver1

dmem Displays the contents of system or device memory. Debug1

dmpstore Manages all UEFI NVRAM variables. Debug1

drivers Displays a list of information for drivers that follow the

EFI Driver Model in the EFI environment.

Driver1

drvcfg Configures the driver using the UEFI Configuration

Access Protocol.
Driver1

drvdiag Invokes the Driver Diagnostics Protocol. Driver1

echo Controls whether or not script commands are displayed

as they are read from the script file and prints the given

message to the display.

3

edit Full screen editor for ASCII or UCS-2 files. Debug1

eficompress Compress a file using EFI Compression Algorithm. Debug1

Version 2.0 Errata A 77

Command Description Required at
Shell Level or

Profile

efidecompress Decompress a file using EFI Decompression Algorithm. Debug1

else Conditionally execute commands if a previous if

condition was false.

1

endfor End a loop stated with for in a script. 1

endif End a conditional block started with if. 1

exit Exits the UEFI Shell environment and returns control to

the parent that launched the UEFI Shell.

1

for Start a loop in a script 1

getmtc Return current monotonic count. 3

goto Go to a label in a script 1

help Displays the list of commands that are built into the

UEFI Shell.

3

hexedit Full screen hex editor for files, block devices, or

memory.

Debug1

if Conditionally execute script statements. 1

ifconfig Displays or modifies the current IP configuration. Network1

load Loads a UEFI driver into memory. 2

loadpcirom Loads a PCI Option ROM from the specified file. Debug1

ls Lists a directory's contents or file information. 2

map Defines a mapping between a user-defined name and a

device handle.

2

mem Displays the contents of system or device memory. Debug1

memmap Displays the memory map maintained by the EFI

environment.

Debug1

mkdir Creates one or more new directories. 2

mm Displays or modifies MEM/MMIO/IO/PCI/PCIE address

space.

Debug1

mode Displays or changes the console output device mode. Debug1

mv Moves one or more files to a destination within a file

system.

2

openinfo Displays the protocols and agents associated with a

handle.

Driver1

parse Parse data returned from standard formatted output 2

pause Pause script execution and wait for a keypress 3

pci Displays PCI device list or PCI function configuration

space.

Debug1

78 Version 2.0 Errata A

Command Description Required at
Shell Level or

Profile

ping Check response of an ip address. Network1

reconnect Reconnects drivers to the specific device. Driver1

reset Resets the system. 2

rm Deletes one or more files or directories. 2

sermode Sets serial port attributes. Debug1

set Used to maintain the environment variables that are

available from the EFI environment.

2

setsize Set the size of a file Debug1

setvar Change value of UEFI variable Debug1

shift Shift to the 2nd set of positional parameters 1

smbiosview Displays SMBIOS information. Debug1

stall Stalls the operation for a specified time 1

time Displays or sets the current time for the system. 2/3

timezone Displays or sets time zone information. 2/3

touch Updates the time and date on a file to the current time

and date.

2

type Sends the contents of a file to the standard output

device.

2

unload Unloads a driver image that was already loaded. Driver1

ver Displays the version information for this EFI firmware. 3

vol Displays volume information 2

5.1.1 Explanation of Command Description Layout

The description of each command is composed of four sections: Summary, Usage, Options,

Description, Notes, Status Codes Returned and Examples.

Summary is a brief explanation of the function of the command. Usage describes how the command is

used. Options gives a complete description of each of the command-lie options. Description describes

the details of the command.

Examples give sample usage of the command. The output may differ from the output listed in this
section.

Version 2.0 Errata A 79

5.1.2 Shell Command-Line Options

The following table describes the standard command-line options. No command supports all options, but
when needed, the following option parameters are used:

Table 12 Standard Command Line Options

Option Description

-b, -

break

Pause after each page.

-q, -

quiet

The command will suppress all output.

-sfo Standard Format Output. Instead of normal output, the shell

command will output using the standard format described Appendix

D.

-t, -

terse

Terse Output. The shell command will restrict additional informative

content.

-v, -

verbose

Verbose Output. The shell command will output additional

informative content.

-? Help. For more information on how command-line help is supported,

see section 3.11.2.

Command-line options that begin with the ‘_’ character are implementation-specific.

5.2 Shell Command Profiles

Shell command profiles are groups of shell commands that are identified by a profile name. Profile
names that begin with the ‘_’ character are reserved for individual implementations. For information on

how profiles are identified, see section 3.3.2 (Supported Profiles).

For more information on how profiles are updated when new commands are installed, see section 3.11

There are four standard profiles:

Table 13 Standard Profiles

Profile
Name

Description

Driver1 Standard set of driver-related commands.

Debug1 Standard set of debug commands.

Network1 Standard set of networking-related commands.

Install1 Standard set of commands to aid installation.

80 Version 2.0 Errata A

5.3 Shell Commands

alias

Summary

Displays, creates, or deletes aliases in the UEFI Shell environment.

Usage
alias [-d|-v] [alias-name] [command-name]

Options

alias-name

Alias name

command-name

Original command’s name or original command’s file name/directory.

-d

Delete an alias. command-name should not be present.

-v

Make the alias volatile.

Description

This command displays, creates, or deletes aliases in the UEFI Shell environment. An alias provides a
new name for an existing UEFI Shell command or UEFI application. Once the alias is created, it can be

used to run the command or launch the UEFI application.

There are some aliases that are predefined in the UEFI Shell environment. These aliases provide the MS-
DOS and UNIX equivalent names for the file manipulation commands. See Built-In Aliases (section
3.6.4) for more details.

Aliases will be retained even after exiting the shell unless the –v option is specified. If -v is specified

then the alias will not be valid after leaving the shell.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its value

was out of bounds.

SHELL_OUT_OF_RESOURCES A request to set a variable in a non-volatile fashion could not be

completed. The resulting non-volatile request has been converted into a

volatile request.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

Examples

To display all aliases in the UEFI Shell environment:

Version 2.0 Errata A 81

Shell> alias

md : mkdir

rd : rm

To create an alias in the UEFI Shell environment:
Shell> alias myguid guid

 Shell> alias

 md : mkdir

 rd : rm

 myguid : guid

To delete an alias in the UEFI Shell environment:
 Shell> alias -d myguid

 Shell> alias

 md : mkdir

 rd : rm

To add a volatile alias in the current EFI environment, which has a star * at the line head. This volatile
alias will disappear at next boot.
Shell> alias -v fs0 floppy

Shell> alias

 md : mkdir

 rd : rm

* fs0 : floppy

82 Version 2.0 Errata A

attrib

Summary

Displays or changes the attributes of files or directories.

Usage
attrib [+a|-a] [+s|-s] [+h|-h] [+r|-r] [file...] [directory...]

Options

+a|-a

Set or clear the ‘archive’ attribute

+s|-s

Set or clear the ‘system’ attribute

+h|-h

Set or clear the ‘hidden’ attribute

+r|-r

Set or clear the ‘read-only’ attribute

file

File name (wild cards are permitted)

directory

Directory name (wildcards are permitted)

Description

This command displays and sets the attributes of files or directories. The following four attribute types
are supported in the UEFI file system:

 Archive [A]

 System [S]

 Hidden [H]

 Read only [R]

If a file (in general meaning) is a directory, then it is also shown to have the attribute [D].

If any file in the file list that is specified in the command line does not exist, attrib will continue

processing the remaining files while reporting the error.

If no file or directory is specified, then all of the files in the current directory are displayed.

If no attribute is specified, then the attributes of the files will be displayed.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The requested file was not found.

SHELL_INVALID_PARA One of the passed in parameters was incorrectly formatted

Version 2.0 Errata A 83

METER or its value was out of bounds.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_WRITE_PROTEC

TED

The media that the action was to take place on is write-

protected.

Examples

 To display the attributes of a directory:
 fs0:\> attrib fs0:\

 attrib:D fs0:\

 To display the attributes of all files and sub-directories in the current directory:
 fs0:\> attrib *

 attrib: AS fs0:\serial.efi

 attrib:DA fs0:\test1

 attrib: A HR fs0:\bios.inf

 attrib: A fs0:\VerboseHelp.txt

 attrib: AS fs0:\IsaBus.efi

 To add the system attribute to all files with extension '.efi':
 fs0:\> attrib +s *.efi

 To remove the read only attribute from all files with extension '.inf':
 fs0:\> attrib -r *.inf

attrib: A H fs0:\bios.inf

84 Version 2.0 Errata A

bcfg

Summary

Manages the boot and driver options that are stored in NVRAM.

Usage
bcfg driver|boot [dump [-v]] [add # file "desc"] [addp # file “desc”] [addh # handle

“desc”] [rm #] [mv # #] [-opt # [[filename]|[”data”]] | [KeyData <ScanCode

UnicodeChar>*]]

Options

driver

Display/modify the driver option list

boot

Display/modify the boot option list

dump

Display the option list

-v

Display the option list with extra info including the optional data.

add

Add an option. The # is the number of options to add in hexadecimal. The file name of the UEFI

application/driver for the option. The quoted parameter is the description of the option being

added.

addh

Add an option that refers to the driver specified by handle. The # is the number of options to add,

in hexadecimal. The handle is the driver handle, in hexadecimal. The device path for the option is

retrieved from the handle. The quoted parameter is the description of the option being added.

addp

Add an option that refers to a specific file. Only the portion of the device path starting with the

hard drive partition is placed in the option. The # is the number of options to add, in hexadecimal.

The quoted parameter is the description of the option being added.

rm

Remove an option. The parameter lists the number of the options to remove in hexadecimal.

mv

Move an option. The first numeric parameter is the number of the option to move in hexadecimal.

The second numeric parameter is the new number of the option being moved.

-opt

Modify the optional data associated with a driver or boot option. Followed either by the file name of

thefile which contains the binary data to be associated with the driver or boot option optional data

or else the quote-delimited data which will be associated with the driver or boot option optional

data.

Version 2.0 Errata A 85

KeyData

The packed value associated with a hot-key. This is the EFI_BOOT_KEY_DATA.PackedValue in the

UEFI Specification.

ScanCode

This is the UEFI-defined Scan code portion of the EFI_INPUT_KEY struction. This value is directly

associated with the preceding KeyData value and there may be 1 to 4 entries per the UEFI

specification. When one instance of this parameter has a non-zero value, the paired UnicodeChar

value will have a zero-based value.

UnicodeChar

This is the Unicode value for the character associated with the preceding KeyData value. There

may be 1 to 4 entries per the UEFI specification. When one instance of this parameter has a non-

zero value, the paired ScanCode value will have a zero-based value.

Description

Manages the boot and driver options stored in NVRAM. This command can display the Boot#### or

Driver#### environment variables by using the dump option. The add option can be used to add a new

Boot#### or Driver#### environment variable. The rm option can be used to delete a Boot#### or

Driver#### environment variable, and finally, then mv option can be used to reorder the Boot#### and

Driver#### environment variables. The add, rm, and mv options also update the BootOrder or

DriverOrder environment variables as appropriate.

The opt option can update Driver#### or Boot#### options when using a file or quote delimited data.

When adding hotkeys they will be created as Key#### and only support Boot (not Driver)

Examples

To display driver options:
Shell> bcfg driver dump

To display boot options:
Shell> bcfg boot dump

To display verbosely of boot options:
Shell> bcfg boot dump -v

To add a driver option #5
Shell> bcfg driver add 5 mydriver.efi "My Driver"

To add a boot option #3
Shell> bcfg boot add 3 osloader.efi "My OS"

To remove boot option #3
Shell> bcfg boot rm 3

To move boot option #3 to boot option #7
Shell> bcfg boot mv 3 7

To assign a CTRL-B hot-key to boot option #3.
Shell> bcfg boot –opt 3 0x40000200 0 0x42

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The requested option was not found.

86 Version 2.0 Errata A

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_UNSUPPORTED The action as requested was unsupported.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_OUT_OF_RESOU

RCES

There was insufficient free space for the request to be

completed.

Version 2.0 Errata A 87

cd

Summary

Displays or changes the current directory.

Usage
cd [path]

Options

path

The relative or absolute directory path.

Description

This command changes the current working directory that is used by the UEFI Shell environment. If a
file system mapping is specified, then the current working directory is changed for that device.
Otherwise, the current working directory is changed for the current device.

If path is not present, then the current working directory (including file system mapping) is displayed to

standard out.

The table below describes the conventions that are used to refer to the directory, its parent, and the
root directory in the UEFI Shell environment.

Table 14 Conventions for Directory Names

Convention Description

. Refers to the current directory.

.. Refers to the directory's parent.

\ Refers to the root of the current file system.

The current working directory is maintained in the environment variable %cwd%. See “Current Directory”

(section 3.5) for more information.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security

violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

Examples

To change the current filesystem to the mapped fs0 filesystem:

88 Version 2.0 Errata A

 Shell> fs0:

To change the current directory to subdirectory 'efi':
 fs0:\> cd efi

To change the current directory to the parent directory (fs0:\):
 fs0:\efi\> cd ..

To change the current directory to 'fs0:\efi\tools':
 fs0:\> cd efi\tools

To change the current directory to the root of the current fs (fs0):
 fs0:\efi\tools\> cd \

 fs0:\>

To change volumes with cd will not work! For example:
 fs0:\efi\tools\> cd fs1:\ !!!! will not work !!!!

 must first type fs1: then cd to desired directory

To move between volumes and maintain the current path.
 fs0:\> cd \efi\tools

 fs0:\efi\tools\> fs1:

 fs1:\> cd tmp

 fs1:\tmp> cp fs0:*.* .

copies all of files in fs0:\efi\tools into fs1:\tmp directory

Version 2.0 Errata A 89

cls

Summary

Clears the standard output and optionally changes the background color.

Usage
cls [color]

Options

 color

 - New background color

 0 - Black

 1 - Blue

 2 - Green

 3 - Cyan

 4 - Red

 5 - Magenta

 6 - Yellow

 7 - Light gray

Description

This command clears the standard output device with an optional background color attribute. If color is

not specified, then the background color does not change.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_NOT_FOUND The requested file was not found.

Examples

To clear standard output without changing the background color:
 fs0:\> cls

To clear standard output and change the background color to cyan:
 fs0:\> cls 3

To clear standard output and change the background to the default color:
fs0:\> cls 0

90 Version 2.0 Errata A

comp

Summary

Compares the contents of two files on a byte for byte basis.

Usage
comp [-b] file1 file2

Options

-b

- Display one screen at a time

file1

- First file name (directory name or wildcards not permitted)

file2

- Second file name (directory name or wildcards not permitted)

Description

This command compares the contents of two files in binary mode. It displays up to 10 differences
between the two files. For each difference, up to 32 bytes from the location where the difference starts
is dumped. It will exit immediately if the lengths of the compared files are different.

Status Codes Returned

SHELL_SUCCESS The function operated as expected.

SHELL_NOT_EQUAL The files were not identical.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_NOT_FOUND The requested file was not found.

Examples

To compare two files with different lengths:
 fs0:\> comp bios.inf legacy.inf

 Compare fs0:\bios.inf to fs0:\legacy.inf

 Difference #1: File sizes mismatch

 [difference(s) encountered]

To compare two files with the same contents:
 fs0:\> comp bios.inf rafter.inf

 Compare fs0:\bios.inf to fs0:\rafter.inf

 [no difference encountered]

To compare two files with the same length but different contents:

Version 2.0 Errata A 91

 fs0:\> comp bios.inf bios2.inf

 Compare fs0:\bios.inf to fs0:\bios2.inf

 Difference #1:

 File1: fs0:\bios.inf

 00000000: 5F *_*

 File2: fs0:\bios2.inf

 00000000: 33 *3*

 Difference #2:

 File1: fs0:\bios.inf

 0000000C: 00 00 00 00 *....*

 File2: fs0:\bios2.inf

 0000000C: 25 32 03 03 *%2..*

 [difference(s) encountered]

92 Version 2.0 Errata A

connect

Summary

Binds a driver to a specific device and starts the driver.

Usage
connect [[DeviceHandle] [DriverHandle] | [-c] | [-r]]

Options

-r

Recursively scan all handles and check to see if any loaded or embedded driver can match the

specified device. If so, the driver will be bound to the device. Additionally, if more device handles

are created during the binding, these handles will also be checked to see if a matching driver can

bind to these devices as well. The process is repeated until no more drivers are able to connect to

any devices. However, without the option, the newly created device handles will not be further

bound to any drivers.

-c

Connect console devices found in the EFI global variables (see UEFI specification, chapter 3)

DeviceHandle

Device handle (a hexadecimal number). If not specified, then all device handles will be connected.

DriverHandle

Driver handle (a hexadecimal number). If not specified, then all matching drivers will be bound to

the specified device. If specified, then this driver will have the highest priority.

Description

This command binds a driver to a specific device and starts the driver. If the -r flag is used, then the
connection is done recursively until no further connections between devices and drivers are made. If the
-c flag is used, then the connect command will bind the proper drivers to the console devices that are
described in the EFI environment variables. The example below shows the typical output from the
verbose help for this command.

If only a single handle is specified and the handle has an EFI_DRIVER_BINDING_PROTOCOL on it, then the

handle is assumed to be a driver handle. Otherwise, it is assumed to be a device handle.

If no parameters are specified, then the command will attempt to bind all proper drivers to all devices
without recursion. Each connection status will be displayed.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Version 2.0 Errata A 93

Examples

 To connect all drivers to all devices recursively:
 Shell> connect -r

 To display all connections:
 Shell> connect

 ConnectController(1) : Status = Success

 ConnectController(2) : Status = Success

 ConnectController(3) : Status = Success

 ...

 ConnectController(3D) : Status = Success

 To connect drivers with 0x17 as highest priority to all the devices they can manage:
 Shell> connect 17

 To connect all possible drivers to device 0x19:
 Shell> connect 19

 To connect drivers with 0x17 as highest priority to device 0x19 they can manage:
 Shell> connect 19 17

 To connect console devices described in the UEFI Shell environment variables:
 Shell> connect -c

94 Version 2.0 Errata A

cp

Summary

Copies one or more source files or directories to a destination.

Usage
cp [-r] [-q] src [src...] [dst]

Options

src

Source file/directory name (wildcards are permitted)

dst

Destination file/directory name (wildcards are not permitted). If not specified, then the current

working directory is assumed to be the destination. If there are more than one directory specified,

then the last is always assumed to be the destination.

-r

Recursive copy.

-q

Quiet copy (no prompt)

Description

This command copies one or more source files or directories to a destination. If the source is a
directory, the -r flag must be specified. If -r is specified, then the source directory will be recursively

copied to the destination (which means that all subdirectories will be copied). If a destination is not
specified, then the current working directory is assumed to be the destination.

If any target file (not directory) already exists, there will be a prompt asking the user to confirm
replacing the file. The following four choices are available:

 Yes: Replace the file.

 No: Do not replace the file.

 All: Replace the existing files in all subsequent cases.

 Cancel: Do not replace any existing files in all subsequent cases.

If there are multiple source files/directories, the destination must be a directory.

If an error occurs, then the copying process will stop immediately.

When executing in a script, the default is –q.

When copying to another directory, the directory must already exist.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

Version 2.0 Errata A 95

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_OUT_OF_RESOUR

CES

There was insufficient space to save the requested file at

the destination.

SHELL_SECURITY_VIOL

ATION

This function was not performed due to a security violation

SHELL_WRITE_PROTECT

ED

An attempt was made to create a file on media that was

write-protected.

Examples

 To display the contents of current directory first of all:
 fs0:\> ls

 Directory of: fs0:\

 06/18/01 01:02p <DIR> 512 efi

 06/18/01 01:02p <DIR> 512 test1

 06/18/01 01:02p <DIR> 512 test2

 06/13/01 10:00a 28,739 IsaBus.efi

 06/13/01 10:00a 32,838 IsaSerial.efi

 06/18/01 08:04p 29 temp.txt

 06/18/01 08:05p <DIR> 512 test

 3 File(s) 61,606 bytes

 4 Dir(s)

 To copy a file in the same directory, but change the file name:
 fs0:\> cp temp.txt readme.txt

 copying fs0:\temp.txt -> fs0:\readme.txt

 - [ok]

 To copy multiple files to another directory:
 fs0:\> cp temp.txt isaBus.efi \test

 copying fs0:\temp.txt -> fs0:\test\temp.txt

 - [ok]

 copying fs0:\isaBus.efi -> fs0:\test\IsaBus.efi

 - [ok]

 To copy multiple directories recursively to another directory:
 fs0:\> cp -r test1 test2 boot \test

 copying fs0:\test1 -> fs0:\test\test1

 copying fs0:\test1\test1.txt -> fs0:\test\test1\test1.txt

 - [ok]

 copying fs0:\test2 -> fs0:\test\test2

 copying fs0:\test2\test2.txt -> fs0:\test\test2\test2.txt

 - [ok]

 copying fs0:\boot -> fs0:\test\boot

 copying fs0:\boot\shell.efi -> fs0:\test\boot\shell.efi

 - [ok]

 To see the results of the above operations:

96 Version 2.0 Errata A

 fs0:\> ls \test

 Directory of: fs0:\test

 06/18/01 01:01p <DIR> 512 .

 06/18/01 01:01p <DIR> 0 ..

 01/28/01 08:21p <DIR> 512 test1

 01/28/01 08:21p <DIR> 512 test2

 01/28/01 08:21p <DIR> 512 boot

 01/28/01 08:23p 29 temp.txt

 01/28/01 08:23p 28,739 IsaBus.efi

 2 File(s) 28,828 bytes

 5 Dir(s)

Shell>

Version 2.0 Errata A 97

date

Summary

Displays and sets the current date for the system.

Usage
date [mm/dd/[yy]yy][-sfo]

Options

mm

Month of the date to be set (1-12)

dd

Day of the date to be set (1-31)

yy/yyyy

Year of the date to be set. If only two digits, then 9x = 199x, otherwise 20xx.

-sfo

Standard-format output. See "Related Definitions" below.

Description

This command displays and/or sets the current date for the system. If no parameters are used, it shows
the current date. If a valid month, day, and year are provided, then the system's date will be updated.
Detailed rules are listed below:

Except for numeric characters and /, all other characters in the argument are invalid. The Shell will
report an error if the number is in the wrong month/date/year range.

Space before or after the numeric character is not allowed. Inserting a space into the number is invalid.

The year range is greater than or equal to 1998. Two numeric characters indicate the year. Numbers
below 98 are regarded as 20xx, and numbers equal to or above 98 are regarded as 19xx. 00 means
2000. For example:
Shell > date 8/4/97

Shell > date

08/04/2097

Shell >

Shell > date 8/4/98

Shell > date

08/04/1998

Shell >

The range of valid years is from 1998–2099.

Standard-Format Output

The standard-format from the date command has a single table: Date, with the following columns:

98 Version 2.0 Errata A

Table 15 Date Command Table

Colum
n

Description

1 The name of the table. The name is Date.

2 Day (from 1-31)

3 Month (from 1-12)

4 Year (from 1998-2099)

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERROR There was a hardware error preventing the completion of

this command

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Examples

 To display the current date in the system:
 fs0:\> date

 06/18/2001

 To set the date with long year format:
 fs0:\> date 01/01/2050

 fs0:\> date

 01/01/2050

 To set the date with short year format:
 fs0:\> date 06/18/01

 fs0:\> date

 06/18/2001

Version 2.0 Errata A 99

dblk

Summary

Displays the contents of one or more blocks from a block device.

Usage
dblk device [lba] [blocks] [-b]

Options

device

Block device name

lba

Index of the first block to be displayed (a hexadecimal number). The default is 0.

blocks

Number of blocks to be displayed (a hexadecimal number). The default is 1. If

larger than 0x10, then only 0x10 are displayed.

-b

Display one screen at a time.

Description

This command displays the contents of one or more blocks from a block device. lba and blocks should

be typed in hex value. If lba is not specified, block #0 is assumed. If blocks is not specified, then on1y

1 block will be displayed. The maximum number of blocks that can be displayed at one time is 0x10.

If an MBR is found on the block, the partition information will be printed after all the block contents have
been displayed.

If the block is a FAT partition, some FAT parameters will be displayed (label, systemid, oemid,
sectorsize, clustersize, media etc) after all the blocks have been displayed.

Examples

 To display one block of blk0, beginning from block 0:
 Shell>dblk blk0

 To display one block of fs0, beginning from block 0x2:
 Shell>dblk fs0 2

 To display 0x5 blocks of fs0, beginning from block 0x12:
 Shell>dblk fs0 12 5

 To display 0x10 blocks of fs0, beginning from block 0x12:
 Shell>dblk fs0 12 10

 The attempt to display more than 0x10 blocks will display only 0x10 blocks:

100 Version 2.0 Errata A

 Shell>dblk fs0 12 20

 To display one block of blk2, beginning from the first block (blk0):
 fs1:\tmps1> dblk blk2 0 1

 LBA 0000000000000000 Size 00000200 bytes BlkIo 3F0CEE78

 00000000: EB 3C 90 4D 53 44 4F 53-35 2E 30 00 02 04 08 00 *.<.MSDOS5.0.....*

 00000010: 02 00 02 00 00 F8 CC 00-3F 00 FF 00 3F 00 00 00 *........?...?...*

 00000020: 8E 2F 03 00 80 01 29 2C-09 1B D0 4E 4F 20 4E 41 *./....),...NO NA*

 00000030: 4D 45 20 20 20 20 46 41-54 31 36 20 20 20 33 C9 *ME FAT16 3.*

 00000040: 8E D1 BC F0 7B 8E D9 B8-00 20 8E C0 FC BD 00 7C *.........*

 00000050: 38 4E 24 7D 24 8B C1 99-E8 3C 01 72 1C 83 EB 3A *8N$.$....<.r...:*

 00000060: 66 A1 1C 7C 26 66 3B 07-26 8A 57 FC 75 06 80 CA *f...&f;.&.W.u...*

 00000070: 02 88 56 02 80 C3 10 73-EB 33 C9 8A 46 10 98 F7 *..V....s.3..F...*

 00000080: 66 16 03 46 1C 13 56 1E-03 46 0E 13 D1 8B 76 11 *f..F..V..F....v.*

 00000090: 60 89 46 FC 89 56 FE B8-20 00 F7 E6 8B 5E 0B 03 *`.F..V..^..*

 000000A0: C3 48 F7 F3 01 46 FC 11-4E FE 61 BF 00 00 E8 E6 *.H...F..N.a.....*

 000000B0: 00 72 39 26 38 2D 74 17-60 B1 0B BE A1 7D F3 A6 *.r9&8-t.`.......*

 000000C0: 61 74 32 4E 74 09 83 C7-20 3B FB 72 E6 EB DC A0 *at2Nt... ;.r....*

 000000D0: FB 7D B4 7D 8B F0 AC 98-40 74 0C 48 74 13 B4 0E *........@t.Ht...*

 000000E0: BB 07 00 CD 10 EB EF A0-FD 7D EB E6 A0 FC 7D EB *................*

 000000F0: E1 CD 16 CD 19 26 8B 55-1A 52 B0 01 BB 00 00 E8 *.....&.U.R......*

 00000100: 3B 00 72 E8 5B 8A 56 24-BE 0B 7C 8B FC C7 46 F0 *;.r.[.V$......F.*

 00000110: 3D 7D C7 46 F4 29 7D 8C-D9 89 4E F2 89 4E F6 C6 *=..F.)....N..N..*

 00000120: 06 96 7D CB EA 03 00 00-20 0F B6 C8 66 8B 46 F8 *........ ...f.F.*

 00000130: 66 03 46 1C 66 8B D0 66-C1 EA 10 EB 5E 0F B6 C8 *f.F.f..f....^...*

 00000140: 4A 4A 8A 46 0D 32 E4 F7-E2 03 46 FC 13 56 FE EB *JJ.F.2....F..V..*

 00000150: 4A 52 50 06 53 6A 01 6A-10 91 8B 46 18 96 92 33 *JRP.Sj.j...F...3*

 00000160: D2 F7 F6 91 F7 F6 42 87-CA F7 76 1A 8A F2 8A E8 *......B...v.....*

 00000170: C0 CC 02 0A CC B8 01 02-80 7E 02 0E 75 04 B4 42 *............u..B*

 00000180: 8B F4 8A 56 24 CD 13 61-61 72 0B 40 75 01 42 03 *...V$..aar.@u.B.*

 00000190: 5E 0B 49 75 06 F8 C3 41-BB 00 00 60 66 6A 00 EB *^.Iu...A...`fj..*

 000001A0: B0 4E 54 4C 44 52 20 20-20 20 20 20 0D 0A 52 65 *.NTLDR ..Re*

 000001B0: 6D 6F 76 65 20 64 69 73-6B 73 20 6F 72 20 6F 74 *move disks or ot*

 000001C0: 68 65 72 20 6D 65 64 69-61 2E FF 0D 0A 44 69 73 *her media....Dis*

 000001D0: 6B 20 65 72 72 6F 72 FF-0D 0A 50 72 65 73 73 20 *k error...Press *

 000001E0: 61 6E 79 20 6B 65 79 20-74 6F 20 72 65 73 74 61 *any key to resta*

 000001F0: 72 74 0D 0A 00 00 00 00-00 00 00 AC CB D8 55 AA *rt............U.*

Fat 16 BPB FatLabel: 'NO NAME ' SystemId: 'FAT16 ' OemId: 'MSDOS5.0'

 SectorSize 200 SectorsPerCluster 4 ReservedSectors 8 # Fats 2

 Root Entries 200 Media F8 Sectors 32F8E SectorsPerFat CC

 SectorsPerTrack 3F Heads 255

Version 2.0 Errata A 101

del

Summary

Internal alias for the rm command.

102 Version 2.0 Errata A

devices

Summary

Displays the list of devices managed by UEFI drivers.

Usage
devices [-b] [-l XXX] [-sfo]

Options

-b

- Display one screen at a time

-l XXX

- Display drivers using the language code XXX, which has the format specified by Appendix M of

the UEFI Specification.

-sfo

- Display information as described in “Standard-Format Output” below.

Description

The command prints a list of devices that are being managed by drivers that follow the UEFI Driver
Model.

Examples

 To display all devices compliant with the EFI Driver Model

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Version 2.0 Errata A 103

 Shell> devices

 C T D

 T Y C I

 R P F A

 L E G G #P #D #C Device Name

 == = = = == == == ===

 20 R - - - 1 13 VenHw(58C518B1-76F3-11D4-BCEA-0080C73C8881)

 3D D - - 3 - - Primary Console Input Device

 3E D - - 3 - - Primary Console Output Device

 64 B - - 1 6 2 "UGA Window 1

 65 B - - 1 6 2 UGA Window 2"

 66 B - - 1 1 1 EFI_WIN_NT_SERIAL_PORT=COM1

 67 B - - 1 1 1 COM1

 68 B - - 1 4 2 PC-ANSI Serial Console

 69 D - - 1 - - EFI_WIN_NT_SERIAL_PORT=COM2

 6E D - - 1 - - EFI_WIN_NT_PHYSICAL_DISKS=e:RW;262144;512

 6F D - - 1 - - EFI_WIN_NT_CPU_MODEL=Intel(R) Processor Model

 70 D - - 1 - - EFI_WIN_NT_CPU_SPEED=3000

 71 D - - 1 - - EFI_MEMORY_SIZE=64

 72 D - - 1 - - EFI_MEMORY_SIZE=64

Standard-Format Output

Table 16 Standard-Format Output for devices

Column
Numbe

r

Description

2 The handle number of the EFI device

3 The device type:

R – Root Controller

B – Bus Controller

D – Device Controller

4 A managing driver supports the Driver Configuration

Protocol: Yes (Y) or No (N)

5 A managing driver supports the Driver Diagnostics Protocol:

Yes (Y) or No (N)

6 The number of parent controllers for this device

7 The number of this type of devices.

8 The number of child controllers produced by this device

9 The name of the device from the Component Name Protocol

104 Version 2.0 Errata A

devtree

Summary

Displays the tree of devices compliant with the UEFI Driver Model.

Usage
devtree [-b] [-d] [-l XXX] [DeviceHandle]

Options

DeviceHandle

Display device tree below a certain handle

-b

Display one screen at a time

-d

Display device tree using device paths

-l

Display device tree using the specified language

Description

This command prints a tree of devices that are being managed by drivers that follow the UEFI Driver
Model. By default, the devices are printed in device names that are retrieved from the Component Name

Protocol. If the option –d is specified, the device paths will be printed instead.

Examples

 To display the tree of all devices compliant with the UEFI Driver Model:
 Shell> devtree

 To display the tree of all devices below device 28 compliant with the UEFI Driver Model:
 Shell> devtree 28

 To display the tree of all devices compliant with the UEFI Driver Model one screen at a time:
 Shell> devtree -b

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Version 2.0 Errata A 105

dh

Summary

Displays the device handles in the UEFI environment.

Usage
dh [-l <lang>] [handle | -p <prot_id>] [-d] [-v]

Options

handle

Specific handle to dump information about (a hexadecimal number). If not present, then all

information will be dumped.

-p

Dumps all handles of a protocol specified by the GUID.

-d

Dumps UEFI Driver Model-related information.

-l

Dumps information using the language codes, as described in Appendix M of the UEFI specification.

-sfo

Displays information as described in “Standard-Format Output” below.

-v, -verbose

Dumps verbose information about a specific handle.

Description

This command displays the device handles in the EFI environment. If this command is used with a
specific handle number, the details of all the protocols that are associated with that device handle are
displayed. Otherwise, the -p option can be used to list the device handles that contain a specific

protocol.

If neither –p or handle is specified, then all handles will be displayed.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOL

ATION

This function was not performed due to a security violation

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Examples

To display all handles and display one screen at a time:

106 Version 2.0 Errata A

 Shell> dh -b

 Handle dump

 1: Image(DXE Core)

 2: FwVol FwFileSys FwVolBlk DevPath(MemMap(11:1B50000-

 1D4FFC8))

 3: Image(Ebc)

 4: DevPath(MemMap(11:1CA0000-1CB0000))

 5: Image(WinNtThunk)

 6: WinNtThunk DevPath(..76F3-11D4-BCEA-0080C73C8881))

 7: Image(WinNtBusDriver) DriverBinding

 ...

To display the detailed information on handle 0x30:
 Shell> dh 30

 Handle 30 (01AF5308)

 IsaIo

 ROM Size......: 00000000

 ROM Location..: 00000000

 ISA Resource List :

 IO : 000003F8-000003FF Attr : 00000000

 INT : 00000004-00000000 Attr : 00000000

 dpath

 PNP Device Path for PnP

 HID A0341D0, UID 0x0

 Hardware Device Path for PCI

 PNP Device Path for PnP

 HID 50141D0, UID 0

 AsStr: 'Acpi(PNP0A03,0)/Pci(1F|0)/Acpi(PNP0501,0)'

To display all handles with 'diskio' protocol:
 Shell> dh -p diskio

 Handle dump by protocol 'Diskio'

 15: DiskIo BlkIo DevPath(..i(3|1)/Ata(Secondary,Master))

 16: DiskIo BlkIo DevPath(..,1)/PCI(0|0)/Scsi(Pun0,Lun0))

 44: DiskIo BlkIo Fs DevPath(..ABD0-01C0-507B-9E5F8078F531))

 ESP

 45: DiskIo BlkIo Fs DevPath(..i(Pun0,Lun0)/HD(Part4,SigG0))

 ESP

 17: DiskIo BlkIo DevPath(..PCI(3|1)/Ata(Primary,Master))

To display all handles with 'Image' protocol and break when the screen is full:
 Shell> dh -p Image -b

 Handle dump by protocol 'image'

 1: Image(DXE Core)

 5: Image(WinNtThunk)

 7: Image(WinNtBusDriver) DriverBinding

 8: Image(Metronome)

 A: Image(IsaBus) DriverBinding

 B: Image(WinNtConsole) DriverBinding

...

Standard-Format Output

When using the –sfo command-line option, the dh shell command will produce one of two tables:

HandlesInfo or HandleInfo. The table columns are described in the following table:

Version 2.0 Errata A 107

Table 17 dh Standard Formatted Output (HandlesInfo)

Column
Number

Description

1 The name of the table. The name is HandlesInfo.

2 Driver Name. Name of driver producing the handle.

3 Controller Name. Name of controller producing the handle.

4 Handle Number. Integer handle number.

5 Device Path.Device path associated with the handle.

6 Protocol Identifiers. Semicolon-delimited list of protocol identifiers or

GUIDs.

108 Version 2.0 Errata A

dir

Summary

An internal alias for the ls command.

Version 2.0 Errata A 109

disconnect

Summary

Disconnects one or more drivers from the specified devices.

Usage
disconnect DeviceHandle [DriverHandle [ChildHandle]]

disconnect -r

Options

DeviceHandle

Device handle (a hexadecimal number). If not specified, then disconnect DriverHandle.

DriverHandle

Driver handle (a hexadecimal number)

ChildHandle

Child handle of a device (a hexadecimal number). If not specified, then all child handles of
DeviceHandle will be disconnected.

-r

Disconnect all drivers from all devices.

Description

This command disconnects one or more drivers from the specified devices. If the -r option is used, all

drivers are disconnected from all devices in the system. The following example is the typical output from
the help for this command.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLA

TION

This function was not performed due to a security violation

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Examples

 To disconnect all drivers from all devices:

 Shell> disconnect -r

 To disconnect all drivers from device 0x28:

 fs0:\> disconnect 28

 To disconnect driver 0x17 from device 0x28:

110 Version 2.0 Errata A

 fs0:\> disconnect 28 17

 To disconnect driver 0x17 from controlling the child 0x32 of device 0x28

 fs0:\> disconnect 28 17 32

Version 2.0 Errata A 111

dmem

Summary

Displays the contents of system or device memory.

Usage
dmem [-b] [address] [size] [-MMIO]

Options

address

Starting address in hexadecimal format

size

Number of bytes to display in hexadecimal format

-b

Display one screen at a time

-MMIO

Forces address cycles to the PCI bus

Description

This command displays the contents of system memory or device memory. address and size should

be typed in hex value. If Address is not specified, then the contents of the EFI System Table are
displayed. Otherwise, memory starting at Address is displayed. Size specifies the number of bytes to

display. If Size is not specified, then it defaults to 512 bytes. If MMIO is not specified, then main

system memory is displayed. Otherwise, device memory is displayed through the use of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

112 Version 2.0 Errata A

Examples

* To display the EFI system table pointer entries:

 fs0:\> dmem

 Memory Address 000000003FF7D808 200 Bytes

 3FF7D808: 49 42 49 20 53 59 53 54-02 00 01 00 78 00 00 00 *IBI SYST....x...*

 3FF7D818: 5C 3E 6A FE 00 00 00 00-88 2E 1B 3F 00 00 00 00 *\>j........?....*

 3FF7D828: 26 00 0C 00 00 00 00 00-88 D3 1A 3F 00 00 00 00 *&..........?....*

 3FF7D838: A8 CE 1A 3F 00 00 00 00-88 F2 1A 3F 00 00 00 00 *...?.......?....*

 3FF7D848: 28 EE 1A 3F 00 00 00 00-08 DD 1A 3F 00 00 00 00 *(..?.......?....*

 3FF7D858: A8 EB 1A 3F 00 00 00 00-18 C3 3F 3F 00 00 00 00 *...?..........*

 3FF7D868: 00 4B 3F 3F 00 00 00 00-06 00 00 00 00 00 00 00 *.K............*

 3FF7D878: 08 DA F7 3F 00 00 00 00-70 74 61 6C 88 00 00 00 *...?....ptal....*

 3FF7D888: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D898: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D8A8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D8B8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D8C8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D8D8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D8E8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D8F8: 00 00 00 00 00 00 00 00-70 68 06 30 88 00 00 00 *........ph.0....*

 3FF7D908: 65 76 6E 74 00 00 00 00-02 02 00 60 00 00 00 00 *evnt.......`....*

 3FF7D918: 18 6F 1A 3F 00 00 00 00-10 E0 3F 3F 00 00 00 00 *.o.?..........*

 3FF7D928: 10 00 00 00 00 00 00 00-40 C0 12 3F 00 00 00 00 *........@..?....*

 3FF7D938: 10 80 13 3F 00 00 00 00-00 00 00 00 00 00 00 00 *...?............*

 3FF7D948: 00 00 00 00 00 00 00 00-40 7D 3F 3F 00 00 00 00 *........@.....*

 3FF7D958: 50 6F 1A 3F 00 00 00 00-00 00 00 00 00 00 00 00 *Po.?............*

 3FF7D968: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D978: 00 00 00 00 00 00 00 00-70 74 61 6C 88 00 00 00 *........ptal....*

 3FF7D988: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D998: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D9A8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D9B8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D9C8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D9D8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D9E8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 3FF7D9F8: 00 00 00 00 00 00 00 00-70 68 06 30 A0 00 00 00 *........ph.0....*

 Valid EFI Header at Address 000000003FF7D808

 --

 System: Table Structure size 00000078 revision 00010002

 ConIn (3F1AD388) ConOut (3F1AF288) StdErr (3F1ADD08)

 Runtime Services 000000003F3FC318

 Boot Services 000000003F3F4B00

 SAL System Table 000000003FF22760

 ACPI Table 000000003FFD9FC0

 ACPI 2.0 Table 00000000000E2000

 MPS Table 000000003FFD0000

 SMBIOS Table 00000000000F0020

* To display memory contents from 1af3088 with size of 16 bytes:
 Shell> dmem 1af3088 16

 Memory Address 0000000001AF3088 16 Bytes

 01AF3088: 49 42 49 20 53 59 53 54-00 00 02 00 18 00 00 00 *IBI SYST........*

 01AF3098: FF 9E D7 9B 00 00 *......*

* To display memory mapped IO contents from 1af3088 with size of 16 bytes:

Version 2.0 Errata A 113

 Shell> dmem 1af3088 16 -MMIO

114 Version 2.0 Errata A

dmpstore

Summary

Manages all UEFI NVRAM variables.

Usage
dmpstore [-b] [-d] [-all | ([variable] [–guid guid])]

dmpstore [-all | ([variable] [–guid guid])] [-s file]

dmpstore [-all | ([variable] [–guid guid])] [-l file]

Options

-b

Display one screen at a time

variable

Specifies the name of the variable name. May be a literal name or a pattern as specified in the
MetaiMatch() function of the EFI_UNICODE_COLLATION2_PROCOOL.

-guid

Specifies the GUID of the variables to be displayed. The GUID has the standard text format. If guid

is not specified and –all is not specified, then the EFI_GLOBAL_VARIABLE GUID is assumed.

-all

Indicates that all variables should be dumped, including those with a different GUID that
EFI_GLOBAL_VARIABLE.

-d

Delete variables

-s

Save variables to file

-l

Load and set variables from file

Description

This command is used to manage the UEFI NVRAM variables. The variables to display or delete depend
on the command line options, as specified in the following table:

Table 18 Variable command line options

V
a
ri
a
b
l
e

G
U
I
D

-
a
l
l

Description

--

-

-

-

-

-

-

-

All variables with the GUID EFI_GLOBAL_VARIABLE

will be operated on.

Version 2.0 Errata A 115

--

-

-

-

-

-

-

-

All variables (regardless of GUID or name) will be

operated on.

--

-

X -

-

-

All variables with the specified GUID will be operated

on.

X -

-

-

-

-

-

The variable with the GUID EFI_GLOBAL_VARIABLE

and the name(s) Variable will be operated on.

X X -

-

-

The variable with the specified GUID and name

Variable will be operated on.

The variable value is printed as hexadecimal dump.

Option –d is used to delete variables. Option –s and –l are used to save and load variables to and from

file. The variable name can be specified when using these variables so that the operation only takes
effect on that variable.

116 Version 2.0 Errata A

drivers

Summary

Displays a list of information for drivers that follow the UEFI Driver Model in the UEFI environment.

Usage
drivers [-l XXX] [-sfo]

Options

-l

Displays drivers using the language code XXX, which has the format specified by Appendix M of the

UEFI specification.

-sfo

Displays information as described in “Standard-Format Output” below.

Description

This command displays a list of information for drivers that follow the UEFI Driver Model in the UEFI
environment. The list includes:

 The handle number of the EFI driver.

 The version number of the EFI driver.

 The driver type. A B in this column indicates a bus driver, and D indicates a device driver.

 Indicates that the driver supports the Driver Configuration Protocol.

 Indicates that the driver supports the Driver Diagnostics Protocol.

 The number of devices that this driver is managing.

 The number of child devices that this driver has produced.

 The name of the driver from the Component Name Protocol.

 The file path from which the driver was loaded.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Examples

 To display the list:

Version 2.0 Errata A 117

Shell> drivers

 T D

D Y C I

R P F A

V VERSION E G G #D #C DRIVER NAME IMAGE NAME

=== ======= = = = == == ===================================== ==========

39 00000010 D - - 1 - Platform Console Management Driver ConPlatform

3A 00000010 D - - 1 - Platform Console Management Driver ConPlatform

3B 00000010 B - - 1 1 Console Splitter Driver ConSplitter

3C 00000010 ? - - - - Console Splitter Driver ConSplitter

3D 00000010 B - - 1 1 Console Splitter Driver ConSplitter

3E 00000010 ? - - - - Console Splitter Driver ConSplitter

42 00000010 D - - 1 - UGA Console Driver GraphicsConsole

43 00000010 ? - - - - Serial Terminal Driver Terminal

44 00000010 D - - 1 - Generic Disk I/O Driver DiskIo

45 00000010 D - - 1 - FAT File System Driver Fat

48 00000010 ? - - - - ISA Bus Driver IsaBus

49 00000010 ? - - - - ISA Serial Driver IsaSerial

4C 00000010 B - - 1 1 PCI Bus Driver PciBus

55 00000010 D X X 1 - Windows Block I/O Driver WinNtBlockIo

56 00000010 ? - - - - Windows Text Console Driver WinNtConsole

57 00000010 ? - - - - Windows Serial I/O Driver WinNtSerialIo

58 00000010 D - - 1 - Windows Simple File System Driver WinNtSimpleFileSystem

59 00000010 B - - 1 3 Windows Bus Driver WinNtBusDriver

5F 00000010 D - - 1 - Windows Universal Graphics Adapter WinNtUga

Standard-Format Output

The standard-format output for the drivers command produces a single table: Drivers. The following
columns are described:

Table 19 Drivers command table

Column
Number

Description

1 The name of the table. The name is DriversInfo.

2 Handle Number. The handlenumber of the UEFI driver.

3 Version Number. The version number of the UEFI Driver

4 Driver Type. Either ‘B’ for bus driver or ‘D’ for device driver.

5 Configuration Protocol Support. Either “Y” (Yes) or “N” (No)

6 Driver Protocol Support. Either ‘Y’ (Yes) or ‘N’ (No)

7 Devices Managed. The number of devices that this driver is managing.

8 Child Devices. The number of child devices that this driver has produced.

9 Driver Name. The name of the driver from the Component Name

Protocol.

10 Driver Image Path. The device path from which the driver was loaded.

118 Version 2.0 Errata A

drvcfg

Summary

Configures the driver using the platform’s underlying configuration infrastructure.

Usage
drvcfg [-l XXX] [-c] [-f <Type>|-v|-s] [DriverHandle [DeviceHandle [ChildHandle]]] [-i

filename] [-o filename]

Options

Type

The type of default configuration options to force on the controller.

0 - Standard Defaults.

1 - Manufacturing Defaults.

2 - Safe Defaults.

4000-FFFF - Custom Defaults.

DriverHandle

The handle of the driver to configure

DeviceHandle

The handle of a device that DriverHandle is managing

ChildHandle

The handle of a device that is a child of DeviceHandle

-c

Configure all child devices

-l

Configure using the ISO 3066 language specified by XXX

-f

Force defaults

-v

Validate options

-s

Set options

-i

Receive configuration updates from an input file
-o

Export the settings of the specified driver instance to a file

Description

This command invokes the platform’s Configuration infrastructure. The table below describes the values
for the Type parameter. Other values depend on the driver’s implementation.

Version 2.0 Errata A 119

Table Default Values for the “Type” Parameter

Value Type of
Default

Description

0x0000 Standard

Defaults

Places a controller in a state that is

prepared for normal operation in a

platform.

0x0001 Manufacturing

Defaults

Optional type that places the controller in

a configuration that is suitable for a

manufacturing and test environment.

0x0002 Safe Defaults Optional type that places a controller in a

safe configuration that has the greatest

probability of functioning correctly in a

platform.

0x0003

–

0x3FFF

Reserved Specification reserved range of default

values

0x4000

–

0xFFFF

Custom

Defaults

Optional type that places the controller in

a configuration that has custom

characteristics.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security

violation

SHELL_UNSUPPORTED The action as requested was unsupported.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

Examples

To display the list of devices that are available for configuration:
 Shell> drvcfg

To display the list of devices and child devices that are available for configuration:
 Shell> drvcfg –c

To force defaults on all devices:
 Shell> drvcfg –f 0

To force defaults on all devices that are managed by driver 0x17:
 Shell> drvcfg –f 0 17

To force defaults on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –f 0 17 28

To force defaults on all child devices of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –f 0 17 28 –c

120 Version 2.0 Errata A

To force defaults on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –f 0 17 28 30

To validate options on all devices:
 Shell> drvcfg –v

To validate options on all devices that are managed by driver 0x17:
 Shell> drvcfg –v 17

To validate options on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –v 17 28

To validate options on all child devices of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –v 17 28 –c

To validate options on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –v 17 28 30

To set options on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –s 17 28

To set options on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –s 17 28 30

To set options on device 0x28 that is managed by driver 0x17 in English:
 Shell> drvcfg –s 17 28 –l eng

To set options on device 0x28 that is managed by driver 0x17 in Spanish:
 Shell> drvcfg –s 17 28 –l spa

Version 2.0 Errata A 121

drvdiag

Summary

Invokes the Driver Diagnostics Protocol.

Usage
drvdiag [-c] [-l XXX] [-s|-e|-m] [DriverHandle [DeviceHandle [ChildHandle]]]

Options

DriverHandle

The handle of the driver to diagnose

DeviceHandle

The handle of a device that DriverHandle is managing

ChildHandle

The handle of a device that is a child of DeviceHandle

-c

Diagnose all child devices

-l

Diagnose drivers using the language code XXX, which has the format specified by Appendix M of

the UEFI Specification.

-s

Run diagnostics in standard mode

-e

Run diagnostics in extended mode

-m

Run diagnostics in manufacturing mode

Description

This command invokes the Driver Diagnostics Protocol.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

122 Version 2.0 Errata A

Examples

To display the list of devices that are available for diagnostics:
 Shell> drvdiag

To display the list of devices and child devices that are available for diagnostics:
 Shell> drvdiag –c

To run diagnostics in standard mode on all devices:
 Shell> drvdiag –s

To run diagnostics in standard mode on all devices in English:
 Shell> drvdiag –s –l eng

To run diagnostics in standard mode on all devices in Spanish:
 Shell> drvdiag –s –l spa

To run diagnostics in standard mode on all devices and child devices:
 Shell> drvdiag –s –c

To run diagnostics in extended mode on all devices:
 Shell> drvdiag –e

To run diagnostics in manufacturing mode on all devices:
 Shell> drvdiag –m

To run diagnostics in standard mode on all devices managed by driver 0x17:
 Shell> drvdiag –s 17

To run diagnostics in standard mode on device 0x28 managed by driver 0x17:
 Shell> drvdiag –s 17 28

To run diagnostics in standard mode on all child devices of device 0x28 managed by driver 0x17:
 Shell> drvdiag –s 17 28 –c

To run diagnostics in standard mode on child device 0x30 of device 0x28 managed by driver 0x17:
 Shell> drvdiag –s 17 28 30

Version 2.0 Errata A 123

echo

Summary

Controls whether or not script commands are displayed as they are read from the script file and prints
the given message to the display.

Usage
echo [-on|-off]

echo [message]

Options

message

Message to display

-on

Enables display when reading commands from script files.

-off

Disables display when reading commands from script files.

Description

The first form of this command controls whether or not script commands are displayed as they are read
from the script file. If no argument is given, the current "on" or "off" status is displayed. The second
form prints the given message to the display.

Note

This command does not change the value of the environment variable lasterror.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOL

ATION

This function was not performed due to a security violation

Examples

 To display a message string of 'Hello World':
 fs0:\> echo Hello World

 Hello World

 To turn command echoing on:
 fs0:\> echo -on

 To execute HelloWorld.nsh, and display when reading lines from the script file:

124 Version 2.0 Errata A

 fs0:\> HelloWorld.nsh

 +HelloWorld.nsh> echo Hello World

 Hello World

 To turn command echoing off:
 fs0:\> echo -off

 To display the current echo setting:
 fs0:\> echo

 Echo is off

Version 2.0 Errata A 125

edit

Summary

Full screen editor for ASCII or UCS-2 files.

Usage
edit [file]

Options

file

Name of file to be edited. If none is specified, then an empty file will be created with a default file

name.

Description

This command allows a file to be edited using a full screen editor. The editor supports both UCS-2 and
ASCII file types. The following example shows typical output for help on this command.

Examples

 To edit the 'shell.log' file:
 fs0:\> edit shell.log

126 Version 2.0 Errata A

eficompress

Summary

Compress a file using EFI Compression Algorithm.

Usage
eficompress infile outfile

Options

 infile

- Filename for uncompressed input file

 outfile

- Filename for compressed output file

Description

This command is used to compress a file using EFI Compression Algorithm and write the compressed
form out to a new file.

Examples

 To compress a file named ‘uncompressed’ to file ‘compressed’:
 fs0:\> eficompress uncompressed compressed

Version 2.0 Errata A 127

efidecompress

Summary

Decompress a file using EFI Decompression Algorithm.

Usage
efidecompress infile outfile

Options

infile

Filename of compressed input file

outfile

 Filename of decompressed output file

Description

This command is used to decompress a file using EFI Decompression Algorithm and write the
decompressed form out to a new file.

Examples

 To decompress a file named ‘compressed’ to file ‘uncompressed’:
 fs0:\> efidecompress compressed uncompressed

128 Version 2.0 Errata A

exit

Summary

Exits the UEFI Shell or the current script.

Usage
exit [/b] [exit-code]

Options

/b

Indicates that only the current UEFI shell script should be terminated. Ignored if not used within a

script.

exit-code

If exiting a UEFI shell script, the value that will be placed into the environment variable lasterror.

If exiting an instance of the UEFI shell, the value that will be returned to the caller. If not specified,

then 0 will be returned.

Description

This command exits the UEFI Shell or, if /b is specified, the current script.

Status Codes Returned

0 Exited normally

exit-code The value specified as an option.

Version 2.0 Errata A 129

for

Usage
for %indexvar in set [;]

 command [arguments]

 [command [arguments]]

 …

endfor

for %indexvar run (start end [step])

 command [arguments]

 [command [arguments]]

 …

endfor

Description

The for command executes one or more commands for each item in a set of items. The set may be text

strings or filenames or a mixture of both, separated by spaces (if not in a quotation). If the length of an
element in the set is between 0 and 256, and if the string contains wildcards, the string will be treated
as a file name containing wildcards, and be expanded before command is executed.

If after expansion no such files are found, the literal string itself is kept. Indexvar is any alphabet
character from ‘a’ to ‘z’ or ‘A’ to ‘Z’, and they are case sensitive. It should not be a digit (0-9) because
%digit will be interpreted as a positional argument on the command line that launches the script. The
namespace for index variables is separate from that for environment variables, so if indexvar has the
same name as an existing environment variable, the environment variable will remain unchanged by the
for loop.

Each command is executed once for each item in the set, with any occurrence of %indexvar in the

command replacing with the current item. In the second format of for … endfor statement, indexvar will
be assigned a value from start to end with an interval of step. start and end can be any integer whose
length is less than 7 digits excluding sign, and it can also applied to step with one exception of zero.
step is optional, if step is not specified it will be automatically determined by following rule, if start <=
end then step = 1, otherwise step = -1. start, end and step are divided by space. Use of the same index
variable in nested for statements results in undefined behavior.

Note

This command may only be used in scripts.

This command does not change the value of the environment variable lasterror.

130 Version 2.0 Errata A

Examples

Sample for loop – listing all .txt files

echo -off

for %a in *.txt

 echo %a exists

endfor

If in current directory, there are 2 files named file1.txt and file2.txt, the output of the sample script will
be:
Sample1> echo –off

file1.txt exists

file2.txt exists

Version 2.0 Errata A 131

getmtc

Usage
getmtc

Description

This command displays the current monotonic counter value. The lower 32 bits increment every time
this command is executed. Every time the system is reset, the upper 32 bits will be incremented, and
the lower 32 bits will be reset to 0. The following example is typical output from help for this command.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERROR The underlying device was not working correctly.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

Examples
fs0:\> getmtc

100000000

fs0:\> getmtc

100000001

132 Version 2.0 Errata A

goto

Usage
goto label

Description

The goto command directs script file execution to the line in the script file after the given label. The

command is not supported from the interactive shell. A label is a line beginning with a colon (:). It can
appear either after the goto command, or before the goto command. The search for label is done

forward in the script file, from the current file position. If the end of the file is reached, the search
resumes at the top of the file and continues until label is found or the starting point is reached. If label
is not found, the script process terminates and an error message is displayed. If a label is encountered
but there is no goto command executed, the label lines are ignored. Using goto command to jump into

another for loop is not allowed, but jumping into an if statement is legal.

Note

The goto command is only valid in script files.

Examples
This is a script

goto Done

…

:Done

cleanup.nsh

Version 2.0 Errata A 133

help

Summary

Displays the list of commands that are built into the UEFI Shell.

Usage
help [cmd | pattern | special] [-usage] [-verbose] [-section sectionname][-b]

Options

cmd

Command to display help about.

pattern

Pattern which describes the commands to be displayed.

special

Displays a list of the special characters used in the shell command line.

-usage

Display the usage information for the command. The same as specifying –section:NAME and –

section:SYNOPSIS

-section sectionname

Display the specified section of the help information. Standard section names can be found in

Appendix B.

Description

The help command displays information about one or more shell commands.

If no other options are specified, each command will be displayed along with a brief description of its
function. If –verbose is specified, then all help information for the specified commands. If –section is

specified, only the help section specified will be displayed (see below). If –usage is specified, then the

command, a brief description and the usage will be displayed.

The help text is gathered from UCS-2 text files found in the directory where the shell or shell command
executable was located. The files have the name command-name.man, where command-name is the
name of the shell command. The files follow a sub-set of the MAN page format, as described below.

If no option is specified, then only the NAME section of the page is reproduced.

Status Codes Returned

0 The help was displayed

1 No command help was displayed

Examples

To display the list of commands in the UEFI Shell and break after one screen:

134 Version 2.0 Errata A

 Shell> help –b

 ? - Displays commands list or verbose help of a

 command

 alias - Displays, creates, or deletes aliases in the

 UEFI Shell

 attrib - Displays or changes the attributes of files

 or directories

 cd - Displays or changes the current directory

 cls - Clears the standard output with an optional

 background color

 connect - Binds an EFI driver to a device and starts

 the driver

 copy - Copies one or more files/directories to

 another location

 ...

To display help information of a Shell command - ls:
 Shell> help ls

 Shell> ? ls

 Shell> ls -?

To display the list of commands that start with character ‘p’:
 Shell> help p*

 pause – Prints a message and suspends for keyboard input

Version 2.0 Errata A 135

hexedit

Summary

Full screen hex editor for files, block devices, or memory.

Usage
hexedit [[-f] filename| [-d diskname offset size] | [-m address size]]

Options

-f

Name of file to edit

-d

Disk block to edit:

 DiskName - Name of disk to edit (for example fs0)

 Offset - Starting block number (beginning from 0)

 Size - Number of blocks to be edited

-m

Memory region to edit:

 Address - Starting 32-bit memory address (beginning

 from 0)

 Size - Size of memory region to be edited in bytes

Description

This command allows a file, block device, or memory region to be edited. The region being edited is
displayed as hexadecimal bytes, and the contents can be modified and saved. The following example
shows typical output for help on this command.

Examples

 To edit a file in hex mode:
 fs0:\> hexedit test.bin

 To edit block device fs0 starting at block 0 with size of 2 blocks:
 fs0:\> hexedit -d fs0 0 2

 To edit memory region starting at address 0x00000000 with size of 2 bytes:
 fs0:\> hexedit -m 0 2

136 Version 2.0 Errata A

if

Controls which script commands will be executed based on provided conditional expressions.

Usage
if [not] exist filename then

 command [arguments]

 [command [arguments]]

 …

 [else

 command [arguments]

 [command [arguments]]

 …

]

 endif

if [/i] [not] string1 == string2 then

 command [arguments]

 [command [arguments]]

 …

 [else

 command [arguments]

 [command [arguments]]

 …

]

endif

if [/i][/s] ConditionalExpression then

 command [arguments]

 [command [arguments]]

 …

 [else

 command [arguments]

 [command [arguments]]

 …

]

 Endif

Options

ConditionalExpression

Conditional expression, as described in “Expressions”, below.

Description

The if command executes one or more commands before the else or endif commands, if the specified

condition is true; otherwise commands between else (if present) and endif are executed.

In the first usage of if, the exist condition is true when the file specified by filename exists. The

filename argument may include device and path information. Also wildcard expansion is supported by
this form. If more than one file matches the wildcard pattern, the condition evaluates to TRUE.

In the second usage, the string1 == string2 condition is true if the two strings are identical. Here the
comparison can be case sensitive or insensitive, it depends on the optional switch /i. If /i is specified,

it will compare strings in the case insensitive manner; otherwise, it compares strings in the case
sensitive manner.

Version 2.0 Errata A 137

In the third usage, general purpose comparison is supported using expressions optionally separated by

and or or. Since < and > are used for redirection, the expressions use common two character

(FORTRAN) abbreviations for the operators (augmented with unsigned equivalents):

Expressions

Conditional expressions are evaluated strictly from left to right. Complex conditionals requiring
precedence may be implemented as nested ifs.

The expressions used in the third usage have the following syntax:

conditional-expression := expression |

 expression and expression

 expression or expression

expression := expr |

 not expr

expr := item binop item |

 boolfunc(string)

item := mapfunc(string) |

 string

mapfunc := efierror | pierror | oemerror

boolfunc := isint | exists | available | profile

binop := gt | lt | eq | ne | ge | le | == | ugt | ult | uge | ule

Comparisons

By default, comparisons are done numerically if the strings on both sides of the operator are numbers
(as defined below) and in case sensitive character sort order otherwise. Spaces separate the operators
from operands.

The /s option forces string comparisons and the /i option forces case-insensitive string comparisons. If

either of these is used, the signed or unsigned versions of the operators have the same results. The /s

and /i apply to the entire line and must appear at the start of the line (just after the if itself). The two

may appear in either order.

When performing comparisons, the Unicode Byte Ordering Character is ignored at the beginning of any
argument.

138 Version 2.0 Errata A

Table 20Comparison Operators

Operato
r

Definition

gt Greater than

ugt Unsigned Greater than

lt Less than

ult Unsigned Less than

ge Greater than or equal

uge Unsigned greater than or equal

le Less than or equal

ule Unsigned less than or equal

ne Not equal

eq Equals (semantically equivalent to ==)

== Equals (semantically equivalent to eq)

Error Mapping Functions

These functions are used to convert integers into UEFI, PI or OEM error codes, as defined by Appendix D
of the UEFI specification.

Table 21Functions used to convert integers into UEFI, PI or OEM error codes

Function Definition

UefiError Sets top nibble of parameter to 1000 binary (0x8)

PiError Sets top nibble of parameter to 1010 binary (0xA)

OemError Sets top nibble of parameter to 1100 binary (0xC)

Each function maps the small positive parameter into its equivalent error classification as described in
Appendix D of the UEFI Specification. For example,
...

if %lasterror% == EfiError(8) then # Check for write protect.

...

These functions may only be used to modify operators in comparisons.

Boolean Functions

The following built-in Boolean functions are also available:

Table 22 Boolean Functions

Function Definition

IsInt Evaluates to true if the parameter string that follows is a number (as defined below) and

false otherwise.

Exists Evaluates to true if the file specified by string exists is in the current working directory or

false if not.

Version 2.0 Errata A 139

Available Evaluates to true if the file specified by string is in the current working directory or

current path.

Profile Determines whether the parameter string matches one of the profile names in the

profiles environment variable.

No spaces are allowed between function names and the open parenthesis, between the open
parenthesis and the string or between the string and the closed parenthesis. Constant strings containing
spaces must be quoted.

Note: To avoid ambiguity and current or future incompatibility, users are strongly encouraged to

surround constant strings that contain parenthesis with quotes in if statements.

Conditional Expressions

Not inverts the sense of only the following expression.

Numbers

Allowable number formats are decimal numbers and C-style case insensitive hexadecimal numbers.
Numbers may be preceded by a “-“ indicating a negative number. Examples:

 13

 46

 -0x3FFF

 0x3fff

 0x1234

Unsigned values must be less than 264. Signed integer values are bounded by ±263. Numbers are
internally represented in two’s compliment form. The representation of the number in the string has no

bearing on the way that number is treated in an numeric expression – type is assigned by the operator.
So, for example, -1 lt 2 is true but -1 ult 2 is false.

Examples

Example script for “if” command usages 1 and 2

if exist fs0:\myscript.nsh then

 myscript myarg1 myarg2

endif

if %myvar% == runboth then

 myscript1

 myscript2

else

 echo ^%myvar^% != runboth

endif

In this example, if the script file myscript.nsh exists in fs0:\, this script will be launched with 2

arguments, myarg1 and myarg2. After that, environment variable %myvar% is checked to see if its value

is runboth, if so, script myscript1 and myscript2 will be executed one after the other, otherwise a

message %myvar% != runboth is printed.

140 Version 2.0 Errata A

Example script for “if” command usage 3

:Redo

echo Enter 0-6 or q to quit

assumes “input y” stores a character of user input into variable y

InputCh MyVar

if x%MyVar% eq x then

 echo Empty line. Try again

 goto Redo

endif

if IsInt(%MyVar%) and %MyVar% le 6 then

 myscript1 %MyVar%

 goto Redo

endif

if /i %MyVar% ne q then

 echo Invalid input

 goto Redo

endif

In this example, the script requests user input and uses the if command for input validation. It checks

for empty line first and then range checks the input. Note also the use of the /i in the last comparison

so “Q” and “q” are both supported.

Note: This command does not change the value of the environment variable lasterror.

Note: The if command is only available in scripts.

Note: The else command is optional in an if/else statement.

Version 2.0 Errata A 141

ifconfig

Summary

Modify the default IP address of the UEFI IP4 Network Stack.

Usage

ifConfig [-?] [-c [Name]] [-l [Name]] [-s <Name> dhcp | <static <IP> <Mask> <Gateway>>
[permanent]]

Options

Name

Adapter name, i.e., eth0

-c [Name]

Clear the configuration for all or specified interface, and the network stack for related interface will

fall back to the DHCP as default.

-l [Name]

List the configuration for all or the specified interface.

-s < Name> static <IP> <SubnetMask> <GatewayMask> [permanent]

Use static IP4 address configuration for all or specified interface. If permanent is not present, the

configuration is one-time only, otherwise this configuration request will survive a network stack

reload.

-s <Name> dhcp [permanent]

Use DHCP4 to request the IP4 address configuration dynamically for all interface or specified

interface. If permanent is not present, the configuration is one-time only, otherwise this

configuration request will survive a network stack reload.

IP

IP4 address in four integer values (each between 0-255). i.e., 192.168.0.10

SubnetMask

Subnet mask in four integer values (each between 0-255), i.e., 255.255.255.0

GatewayMask

Default gateway in four integer values (each between 0-255), i.e., 192.168.0.1

-?

Display the help message

Description

This command is used to modify the default IP address for the UEFI IP4 Network Stack.

Examples

To list the configuration for the interface eth0:

142 Version 2.0 Errata A

 Shell:\> IfConfig -l eth0

To use DHCP4 to request the IP4 address configuration dynamically for the interface eth0:
 Shell:\> IfConfig –s eth0 dhcp

 To use the static IP4 address configuration for the interface eth0, and this configuration survives the
network reload:
 Shell:\> IfConfig –s eth0 static 192.168.0.5 255.255.255.0 192.168.0.1 permanent

Version 2.0 Errata A 143

load

Summary

Loads a UEFI driver into memory.

Usage
load [-nc] file [file...]

Options

-nc

Load the driver, but do not connect the driver.

File

File that contains the image of the UEFI driver (wildcards are permitted)

Description

This command loads an driver into memory. It can load multiple files at one time, and the file name
supports wildcards.

If the -nc flag is not specified, this command will try to connect the driver to a proper device; it may

also cause already loaded drivers be connected to their corresponding devices.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security

violation

SHELL_NOT_FOUND The requested file was not found

Examples

 fs0:\> load Isabus.efi

 load: Image 'fs0:\Isabus.efi' loaded at 18FE000 - Success

 fs0:\> load Isabus.efi IsaSerial.efi

 load: Image 'fs0:\Isabus.efi' loaded at 18E5000 - Success

 load: Image 'fs0:\IsaSerial.efi' loaded at 18DC000 - Success

 fs0:\> load Isa*.efi

 load: Image 'fs0:\IsaBus.efi' loaded at 18D4000 - Success

 load: Image 'fs0:\IsaSerial.efi' loaded at 18CB000 – Success

 fs0:\> load –nc IsaBus.efi

 load: Image ‘fs0:\Isabus.efi’ loaded at 18FE000 - Success

144 Version 2.0 Errata A

loadpcirom

Summary

Loads a UEFI driver from a file in the format of a PCI Option ROM.

Usage
loadpcirom [-nc] romfile [romfile...]

Options

 -nc

- Load the ROM image but do not connect the driver

 romfile

- PCI option ROM image file (wildcards are permitted)

Description

This command is used to load PCI option ROM images into memory for execution. The file can contain
legacy images and multiple PE32 images, in which case all PE32 images will be loaded. The example
below shows typical output from help for this command.

Examples
To load a rom file ‘rom.bin’:

 fs0:\> LoadPciRom rom.bin

To load ‘*.bin’ files but do not connect the driver

 fs0:\> LoadPciRom –nc *.bin

Version 2.0 Errata A 145

ls

Summary

Lists a directory's contents or file information.

Usage
ls [-r] [-a[attrib]][-sfo][file]

Options

-r

Displays recursively (including subdirectories)

-a

Display only those files with the attributes which follow. If no attributes are listed, then all files will

be listed. If –a is not specified, then all non-system and non-hidden files will be listed. The
attributes (attrib) may be one or more of the following:

1. a - Archive

2. s - System

3. h - Hidden

4. r - Read-only

5. d - Directory
-sfo

Display information as described in “Standard-Format Output” below.

file

Name of file/directory (wildcards are permitted)

Description

This command lists directory contents or file information. If no file name or directory name is specified,
then the current working directory is assumed. The contents of a directory are listed if all of the
following are true:

 If option -r is not specified

 If no wildcard characters are specified in the file parameter

 If file represents an existing directory

In all other cases, the command functions as follows:

 All files/directories that match the specified name are displayed.

 The -r flag determines whether a recursive search is performed.

 The option flag -a[attrib] tells the command to display only those files with the attributes that

are specified by [attrib]. If more than one attribute is specified, only the files that have all those

attributes will be listed. If -a is followed by nothing, then all files/directories are displayed,

regardless of their attributes. If -a itself is not specified, then all files except system and hidden files

are displayed.

146 Version 2.0 Errata A

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

SHELL_SECURITY_VIOL

ATION

This function was not performed due to a security

violation

SHELL_NOT_FOUND The requested file or directory was not found.

Examples

To hide files by adding the hidden or system attribute to them:
 fs0:\> attrib +s +h *.efi

 ASH fs0:\IsaBus.efi

 ASH fs0:\IsaSerial.efi

To display all, except the files/directories with 'h' or 's' attribute:
 fs0:\> ls

 Directory of: fs0:\

 06/18/01 09:32p 153 for.nsh

 06/18/01 01:02p <DIR> 512 efi

 06/18/01 01:02p <DIR> 512 test1

 06/18/01 01:02p <DIR> 512 test2

 06/18/01 08:04p 29 temp.txt

 06/18/01 08:05p <DIR> 512 test

 01/28/01 08:24p r 29 readme.txt

 3 File(s) 211 bytes

 4 Dir(s)

To display files with all attributes in the current directory:
 fs0:\> ls -a

 Directory of: fs0:\

 06/18/01 09:32p 153 for.nsh

 06/18/01 01:02p <DIR> 512 efi

 06/18/01 01:02p <DIR> 512 test1

 06/18/01 01:02p <DIR> 512 test2

 06/18/01 10:59p 28,739 IsaBus.efi

 06/18/01 10:59p 32,838 IsaSerial.efi

 06/18/01 08:04p 29 temp.txt

 06/18/01 08:05p <DIR> 512 test

 01/28/01 08:24p r 29 readme.txt

 5 File(s) 61,788 bytes

 4 Dir(s)

To display files with read-only attributes in the current directory:
 fs0:\> ls -ar

 Directory of: fs0:\

 06/18/01 11:14p r 29 readme.txt

 1 File(s) 29 bytes

 0 Dir(s)

To display the files with attribute of 's':

Version 2.0 Errata A 147

 fs0:\> ls -as isabus.efi

 Directory of: fs0:\

 06/18/01 10:59p 28,739 IsaBus.efi

 1 File(s) 28,739 bytes

 0 Dir(s)

To display all in fs0:\efi directory recursively:
 fs0:\> ls -r -a efi

To search for files with the specified type in the current directory recursively:
 fs0:\> ls -r -a *.efi –b

Standard-Format Output

The ls command will produce at least two tables: VolumeInfo and FileInfo. The VolumeInfo table reports
one row for each file system volume reported. The FileInfo table reports one row for each file, including
directories. The following tables describe the standard table column headings and their description. For
more information on “Standard-Format Output”, see Appendix D.

Table 23 ls Standard Formatted Output (VolumeInfo)

Column
Number

Description

1 The name of the table. The name is VolumeInfo.

2 Name. Standard volume label

3 Total Size. Total number of bytes in the volume.

4 Read Only. “True” if the volume is read-only, otherwise “False”.

5 Free Space. Total number of free bytes in the volume.

6 Block Size. Nominal block size by which files are typically grown, in bytes.

Table 24 ls Standard Formatted Output (FileInfo)

Column
Number

Description

1 The name of the table. The name is FileInfo.

2 Name. Complete file name & directory, including the file system’s mapped name.

3 Logical Size. Size of the file, in bytes.

4 Physical Size. Size of the file in the volume, including any padding, in bytes.

5 Attributes. List of file attributes. The string can contain zero or more of the following (but no

repeats):

a – Archive

d – Directory

h – Hidden

r – Read-Only

s – System

148 Version 2.0 Errata A

6 File Creation Time. Time when the file was created, in the format: hh:mm:ss.

7 File Creation Date. Date when the file was created, in the format: dd.mm.yyyy.

8 File Access Time. Time when the file was accessed, in the format: hh:mm:ss

9 File Access Date. Date when the file was accessed, in the format: dd.mm.yyyy

10 File Modification Time. Time when the file was modified, in the format: hh:mm:ss

11 File Modification Date. Date when the file was modified, in the format: dd.mm.yyyy.

Version 2.0 Errata A 149

map

Summary

Defines a mapping between a user-defined name and a device handle.

Usage
map [-d <sname>]

map [[-r][-v][-c][-f][-u][-t <type[,type…]>][sname]]

map [sname handle | mapping]

Options

sname

MappingMapped name

handle

The number of handle, which is same as dumped from 'dh'

mapping

The device’s mapped name. Use this parameter to assign a new mapping to a device. The mapping

must end with a ‘:’.

-sfo

Output will be formatted according to “Standard-Format Output” below.

-t

Shows the device mappings, filtered according to the device type. The supported types are fp

(floppy), hd (hard disk) and cd (CD-ROM). Types can be combined by putting a comma between

two types. Spaces are not allowed between types.

-d

Deletes a mapping

-r

Resets to default mappings

-v

Lists verbose information about all mappings.

-c

Shows the consistent mapping.

-f

Shows the normal mapping (not the consistent mapping).

-u

This option will add mappings for newly installed devices and remove mappings for uninstalled

devices but will not change the mappings of existing devices. The user-defined mappings are also

preserved.

150 Version 2.0 Errata A

Description

This command creates a mapping between a user-defined name and a device. The most common use of
this command is to create a the mapped name for devices that support a file system protocol. Once
these mappings are created, the names can be used with all the file manipulation commands.

The UEFI Shell environment creates default mappings for all of the devices that support a recognized file
system.

This command can be used to create additional mappings, or it can be used to delete an existing
mapping with the -d option. If the map command is used without any parameters, all of the current

mappings will be listed. If the -v option is used, the mappings will be shown with additional information

about each device.

The -r option is used to reset all the default mappings in a system; this option is useful if the system

configuration has changed since the last boot.

The –u option will add mappings for newly installed devices and remove mappings for uninstalled

devices but will not change the mappings of existing devices. The user-defined mappings are also
preserved. A mapping history will be saved so that the original mapping name is used for a device with
a specific device path if that mapping name was used for that device path last time. The current
directory is also preserved if the current device is not changed.

Each device in the system has a consistent mapping. If the hardware configuration has not changed, the
device’s consistent mappings do not change. If two or more machines have the same hardware
configurations, the device’s consistent mapping will be the same. Use the -c option to list all the

consistent mappings in the system.

The mapping consist of digits and characters. Other characters are illegal.

This command support wildcards. You can use the wildcards to delete or show the mapping . However,
when you assign the mapping, wildcards are forbidden.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security

violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

Standard-Format Output

If –sfo is specified, then the map command will output a single table: Mappings. The following table

describes the table columns for this table:

Table 25 Standard Formatted Output (Mappings)

Column
Number

Description

1 The name of the table. The name is Mappings.

2 Mapped Name. The mapped device name.

3 Device Path. The device path which corresponds to the mapped device name.

Version 2.0 Errata A 151

4 Consistent Name. The consistent mapped name (if any) which is equivalent to

MappedName. If MappedName is already a consistent mapped name, then this column is

empty.

152 Version 2.0 Errata A

md

Summary

An internal alias for the mkdir command.
 '

Version 2.0 Errata A 153

mem

Summary

This is a built-in alias for dmem.

154 Version 2.0 Errata A

memmap

Summary

Displays the memory map maintained by the EFI environment.

Usage
memmap [-b] [-sfo]

Options

-b

Display one screen at a time

-sfo

Standard-format output. See "Related Definitions" below.

Description

This command displays the memory map that is maintained by the EFI environment. The EFI
environment keeps track all the physical memory in the system and how it is currently being used. The
EFI Specification defines a set of Memory Type Descriptors. Please see the EFI Specification for a
description of how each of these memory types is used. The following example shows typical output for
help on this command.

Examples

To display the system memory map:

Version 2.0 Errata A 155

 fs0:\> memmap

Type Start End # Pages Attributes

available 0000000000750000-0000000001841FFF 00000000000010F2 0000000000000009

LoaderCode 0000000001842000-00000000018A3FFF 0000000000000062 0000000000000009

available 00000000018A4000-00000000018C1FFF 000000000000001E 0000000000000009

LoaderData 00000000018C2000-00000000018CAFFF 0000000000000009 0000000000000009

BS_code 00000000018CB000-0000000001905FFF 000000000000003B 0000000000000009

BS_data 0000000001906000-00000000019C9FFF 00000000000000C4 0000000000000009

...

RT_data 0000000001B2B000-0000000001B2BFFF 0000000000000001 8000000000000009

BS_data 0000000001B2C000-0000000001B4FFFF 0000000000000024 0000000000000009

reserved 0000000001B50000-0000000001D4FFFF 0000000000000200 0000000000000009

 reserved : 512 Pages (2,097,152)

 LoaderCode: 98 Pages (401,408)

 LoaderData: 32 Pages (131,072)

 BS_code : 335 Pages (1,372,160)

 BS_data : 267 Pages (1,093,632)

 RT_data : 19 Pages (77,824)

 available : 4,369 Pages (17,895,424)

Total Memory: 20 MB (20,971,520) Bytes

Standard-Format Output

The standard-format output produced with the –sfo option produces two tables: MemoryMap and
Summary.

Table 26 Standard-Format Output for memmap (MemoryMap)

Column Number Description

1 The name of the table. The name is MemoryMap.

2 Type.

Available

LoaderCode

LoaderData

BootServiceCode

BootServiceData

RuntimeCode

RuntimeData

Reserved

MemoryMappedIO

MemoryMappedIOPortSpace

UnusableMemory

ACPIReclaimMemory

ACPIMemoryNVS

PalCode

3 Starting Address

156 Version 2.0 Errata A

4 Ending Address

5 Number Of 4KB Pages

6 Attributes

Table 27 Standard-Format Output for memmap (Summary)

Column Number Description

1 The name of the table. The name is MemoryMapSummary.

2 Total Memory Size (bytes)

3 Reserved Memory Total Size (bytes)

4 Boot Service Code Total Size (bytes)

5 Boot Service Data Total Size (bytes)

6 Runtime Code Total Size (bytes)

7 Runtime Data Total Size (bytes)

8 Loader Code Total Size (bytes)

9 Loader Data Total Size (bytes)

10 Available Total Size (bytes)

Version 2.0 Errata A 157

mkdir

Summary

Creates one or more new directories.

Usage
mkdir dir [dir...]

Options

dir

Name of directory or directories to be created. Wildcards are not allowed.

Description

This command creates one or more new directories. If dir includes nested directories, then parent
directories will be created before child directories. If the directory already exists, then the command will
exit with an error.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

SHELL_OUT_OF_RESOU

RCES

There was insufficient space on the destination to

create the requested directory.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security

violation

SHELL_WRITE_PROTEC

TED

An attempt was made to create a directory when the

target media was write-protected.

Examples

To create a new directory:
 fs0:\> mkdir rafter

 fs0:\> ls

 Directory of: fs0:\

 06/18/01 08:05p <DIR> 512 test

 06/18/01 11:14p r 29 readme.txt

 06/18/01 11:50p <DIR> 512 rafter

 1 File(s) 211 bytes

 2 Dir(s)

 To create multiple directories:

158 Version 2.0 Errata A

 fs0:\> mkdir temp1 temp2

 fs0:\> ls

 Directory of: fs0:\

 06/18/01 08:05p <DIR> 512 test

 06/18/01 11:14p r 29 readme.txt

 06/18/01 11:50p <DIR> 512 rafter

 06/18/01 11:52p <DIR> 512 temp1

 06/18/01 11:52p <DIR> 512 temp2

 1 File(s) 211 bytes

 4 Dir(s)

Version 2.0 Errata A 159

mm

Summary

Displays or modifies MEM/MMIO/IO/PCI/PCIE address space.

Usage
mm address [value] [-w 1|2|4|8] [-MEM | -MMIO | -IO | -PCI | -PCIE] [-n]

Options

address

Starting address

value

The value to write. If not specified, then the current value will be displayed.

-MEM

Memory Address type.

-IO

IO Address type

-PCI

PCI Configuration Space. The address will have the format 0x000000ssbbddffrr, where ss =

Segment, bb = Bus, dd = Device, ff = Function and rr = Register. This is the same format used in
the PCI command.

-PCIE

PCI Express Configuration Space. The address will have the format 0x0000000ssbbddffrrr, where

ss = Segment, bb = Bus, dd = Device, ff = Function and rrr = Register.

-w

Access Width, in bytes. 1 = byte, 2 = 2 bytes, 4 = 4 bytes, 8 = 8 bytes. If not specified, then 1 is

assumed.

-n

Non-interactive mode.

Description

This command allows the user to display or modify I/O register, memory contents, or PCI configuration
space. The user can specify the start address and the access size they wish to perform using the
Address parameter and –w option. Address should be typed in hex value. -MEM accesses system

memory, -MMIO accesses device memory, -IO accesses device I/O ports, -PCI accesses PCI

Configuration Space, and –PCIE accesses PCIE Configuration Space. If –MEM, -MMIO, -IO, -PCI and –

PCIE are not specified, then –MEM is assumed.

If Value is specified which should be typed in hex value, this command will write this value to specified

address. Otherwise when this command is executed, the current contents of Address are displayed. If

Value is specified, then –n is assumed.

160 Version 2.0 Errata A

If -n is not specified, the command will run in interactive mode and the user has the option of modifying

the contents by typing in a hex value. When the user pressed ‘ENTER’, then next address is displayed.
This is continued until the user enters ‘q’.

Examples

To display or modify memory:
 Address 0x1b07288, default width=1 byte:

 fs0:\> mm 1b07288

 MEM 0x0000000001B07288 : 0x6D >

 MEM 0x0000000001B07289 : 0x6D >

 MEM 0x0000000001B0728A : 0x61 > 80

 MEM 0x0000000001B0728B : 0x70 > q

 fs0:\> mm 1b07288

 MEM 0x0000000001B07288 : 0x6D >

 MEM 0x0000000001B07289 : 0x6D >

 MEM 0x0000000001B0728A : 0x80 > *Modified

 MEM 0x0000000001B0728B : 0x70 > q

To modify memory: Address 0x1b07288, width = 2 bytes:
 Shell> mm 1b07288 -w 2

 MEM 0x0000000001B07288 : 0x6D6D >

 MEM 0x0000000001B0728A : 0x7061 > 55aa

 MEM 0x0000000001B0728C : 0x358C > q

 Shell> mm 1b07288 -w 2

 MEM 0x0000000001B07288 : 0x6D6D >

 MEM 0x0000000001B0728A : 0x55AA > *Modified

 MEM 0x0000000001B0728C : 0x358C > q

To display IO space: Address 80h, width = 4 bytes:
 Shell> mm 80 -w 4 -IO

 IO 0x0000000000000080 : 0x000000FE >

 IO 0x0000000000000084 : 0x00FF5E6D > q

To modify IO space using non-interactive mode:
 Shell> mm 80 52 -w 1 -IO

 Shell> mm 80 -w 1 -IO

 IO 0x0000000000000080 : 0x52 > FE *Modified

 IO 0x0000000000000081 : 0xFF >

 IO 0x0000000000000082 : 0x00 >

 IO 0x0000000000000083 : 0x00 >

 IO 0x0000000000000084 : 0x6D >

 IO 0x0000000000000085 : 0x5E >

 IO 0x0000000000000086 : 0xFF >

 IO 0x0000000000000087 : 0x00 > q

 To display PCI configuration space, ss=00, bb=00, dd=00, ff=00, rr=00:

Version 2.0 Errata A 161

 Shell> mm 0000000000 -PCI

 PCI 0x0000000000000000 : 0x86 >

 PCI 0x0000000000000001 : 0x80 >

 PCI 0x0000000000000002 : 0x30 >

 PCI 0x0000000000000003 : 0x11 >

 PCI 0x0000000000000004 : 0x06 >

 PCI 0x0000000000000005 : 0x00 > q

These contents can also be displayed by 'PCI 00 00 00'.

To display PCIE configuration space, ss=00, bb=06, dd=00, ff=00, rrr=000:
 Shell> mm 00060000000 -PCIE

 PCIE 0x0000000060000000 : 0xAB >

 PCIE 0x0000000060000001 : 0x11 >

 PCIE 0x0000000060000002 : 0x61 >

 PCIE 0x0000000060000003 : 0x43 >

 PCIE 0x0000000060000004 : 0x00 > q

162 Version 2.0 Errata A

mode

Summary

Displays or changes the console output device mode.

Usage
mode [col row]

Options

row

Number of rows

col

Number of columns

Description

This command is used to change the display mode for the console output device. When this command
is used without any parameters, it shows the list of modes that the standard output device currently
supports. The mode command can then be used with the row and col parameter to change the number

of rows and columns on the standard output device. The following examples show how the mode
command can be used. The first example lists all modes that are currently available, and the current
selected mode is indicated by an '*'. The second example changes the mode to an 80 X 50 text mode
display. The display is cleared every time the mode command is used to change the currently selected
display mode.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Examples

To display all available modes on standard output:
 Shell> mode

 Available modes on standard output

 col 80 row 25 *

 col 80 row 50

 col 80 row 43

 col 100 row 100

To change the current mode setting:

Version 2.0 Errata A 163

 Shell> mode 80 50

 Available modes on standard output

 col 80 row 25

 col 80 row 50 *

 col 80 row 43

 col 100 row 100

164 Version 2.0 Errata A

mv

Summary

Moves one or more files to a destination within a file system.

Usage
mv src [src...] [dst]

Options

src

Source file/directory name (wildcards are permitted)

dst

Destination file/directory name (wildcards are permitted). If not specified, then the current working

directory is assumed to be the destination. If there is more than one argument on the command

line, the last one will always be considered the destination.

Description

This command moves one or more files to a destination within a file system. Moving between filesystem
volumes is not supported. If the destination is an existing directory, then the sources are moved into
that directory. Otherwise, the sources are moved to the destination, as if the directory has been
renamed. If a destination is not specified, the current directory is assumed to be the destination.

Attempting to move a read-only file/directory will result in an error. Moving a directory that contains
read-only files is allowed. You cannot move a directory into itself or its subdirectories. You cannot move

a directory if the current working directory is itself or its subdirectories.

If an error occurs, the remaining files or directories will still be moved.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_NOT_FOUND The source file was not able to be found

SHELL_OUT_OF_RESOU

RCES

There was insufficient free space to move the requested file

to its destination.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_WRITE_PROTEC

TED

An attempt was made to create a file on media that was

write-protected.

Version 2.0 Errata A 165

Examples

To rename a file:
 fs0:\> mv IsaBus.efi Bus.efi

 moving fs0:\IsaBus.efi -> \Bus.efi

 - [ok]

166 Version 2.0 Errata A

openinfo

Summary

Displays the protocols and agents associated with a handle.

Usage
openinfo Handle [-b]

Options

Handle

Display open protocol information for specified handle

-b

Display one screen at a time

Description

This command is used to display the open protocols on a given handle. The example below is typical
output from help for this command.

Table 28 Open Protocol Information Layout

Colum
n

Index

Description

1 Agent handle that opens the protocol

2 Controller handle that requires the protocol interface

3 Open count

4 Open type: HandProt, GetProt, TestProt, Child, Driver,

Exclusive, DriverEx or Unknown

5 Name of image of the agent if available

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_NOT_FOUND The passed-in handle was not found.

Examples

To show open protocols on handle 0x23:

Version 2.0 Errata A 167

 Shell> openinfo 23

 Handle 23 (07DEE108)

 PciRootBridgeIo

 Drv[1D] Ctrl[23] Cnt(01) Driver Image(PciBus)

 Drv[1D] Ctrl[28] Cnt(01) Child Image(PciBus)

 Drv[1D] Ctrl[29] Cnt(01) Child Image(PciBus)

 Drv[1D] Ctrl[2A] Cnt(01) Child Image(PciBus)

 Drv[1D] Ctrl[2B] Cnt(01) Child Image(PciBus)

 Drv[1D] Ctrl[2C] Cnt(01) Child Image(PciBus)

 Drv[1D] Ctrl[2D] Cnt(01) Child Image(PciBus)

 Drv[1D] Ctrl[2E] Cnt(01) Child Image(PciBus)

 Drv[00] Ctrl[] Cnt(01) HandProt

 dpath

 Drv[1D] Ctrl[23] Cnt(01) Driver Image(PciBus)

 Drv[00] Ctrl[] Cnt(0D) HandProt

168 Version 2.0 Errata A

parse

Summary

Command used to retrieve a value from a particular record which was output in a standard formatted
output.

Usage
parse filename tablename column [-i <Instance>] [-s <Instance>] < filename

command-name | parse tablename column [-i <Instance>] [-s <Instance>]

Options

filename

Source file name

tablename

The name of the table being parsed.

column

The one-based column index to use to determine which value from a particular record to parse.

-i <Instance>

Start parsing with the nth instance of specified tablename, after the specified instance of

ShellCommand. If not present, then all instances will be returned.

-s <Instance>

Start parsing with the nth instance of the ShellCommand table. If not present, then 1 is assumed.

Description

This command will enable the parsing of data from a file which contains data which has been output
from a command having used the –sfo parameter. Since the standard formatted output has a well
known means of parsing, this command is intended to be used as a simplified means of having scripts
consume such constructed output files and use this retrieved data in logic of the scripts being written for
the UEFI shell.

Examples

The following data is contained in a temporary file (temp.txt):

ShellCommand, "LS"
VolumeInfo, "MikesVolume","400000000","32000000","16000000"

FileInfo, "fs0:/efi/boot/winloader.efi","45670","arsh"

FileInfo, "fs0:/efi/boot/mikesfile.txt","1250","a"

FileInfo, "fs0:/efi/boot/readme.txt","795","a"

The following shows the parse command being used:
 fs0:\> parse temp.txt VolumeInfo 2

 MikesVolume

Below is an example using the Index parameter:

Version 2.0 Errata A 169

 fs0:\> parse temp.txt FileInfo 3 –i 3

 795

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its value

was out of bounds.

SHELL_NOT_FOUND The source file was not able to be found

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

170 Version 2.0 Errata A

pause

Usage
pause [-q]

Description

The pause command prints a message to the display and then suspends script file execution and waits

for keyboard input. Pressing any key resumes execution, except for q or Q. If q or Q is pressed, script

processing terminates; otherwise execution continues with the next line after the pause command.

The pause command is available only in scripts. Switch –q can hide the message and it’s optional.

Examples

Following script is a sample of 'pause' command:
 fs0:\> type pause.nsh

 #

 # Example script for 'pause' command

 #

 echo pause.nsh begin..

 date

 time

 pause

 echo pause.nsh done.

To execute the script with echo on:
 fs0:\> pause.nsh

 +pause.nsh> echo pause.nsh begin..

 pause.nsh begin..

 +pause.nsh> date

 06/19/2001

 +pause.nsh> time

 00:51:45

 +pause.nsh> pause

 Enter 'q' to quit, any other key to continue:

 +pause.nsh> echo pause.nsh done.

 pause.nsh done.

To execute the script with echo off:
 fs0:\> echo -off

 fs0:\> pause.nsh

 pause.nsh begin..

 06/19/2001

 00:52:50

 Enter 'q' to quit, any other key to continue: q

 fs0:\>

Version 2.0 Errata A 171

pci

Summary

Displays PCI device list or PCI function configuration space.

Usage
pci [Bus Dev [Func] [-s Seg] [-i]]

Options

Bus

Bus number

Dev

Device number

Func

Function number

-s

Optional segment number Seg specified

-i

Information interpreted

Description

This command will display all the PCI devices found in the system. And it can also display the

configuration space of a PCI device according to the specified bus (Bus), device (Dev),and function

(Func) addresses. If the function address is not specified, it will default to 0. The –i option is used to

display verbose information for the specified PCI device. The PCI configuration space for the device will
be dumped with a detailed interpretation.

If no parameters are specified all PCI devices will be listed. If the Bus and Device number parameters
are specified while the Func or Seg parameters are not, Function or Seg will be set as default value 0.

The '-i' option can be used to display verbose information for the specified PCI device. The PCI
configuration space for the specified device will be dumped wit h a detailed interpretation.

Examples

To display all PCI devices in the system:

172 Version 2.0 Errata A

Shell> PCI

 Seg Bus Dev Func

 --- --- --- ----

 00 00 00 00 ==> Bridge Device - Host/PCI bridge

 Vendor 8086 Device 1130 Prog Interface 0

 00 00 01 00 ==> Bridge Device - PCI/PCI bridge

 Vendor 8086 Device 1131 Prog Interface 0

 00 00 1E 00 ==> Bridge Device - PCI/PCI bridge

 Vendor 8086 Device 244E Prog Interface 0

 00 00 1F 00 ==> Bridge Device - PCI/ISA bridge

 Vendor 8086 Device 2440 Prog Interface 0

 00 00 1F 01 ==> Mass Storage Controller - IDE controller

 Vendor 8086 Device 244B Prog Interface 80

 00 00 1F 02 ==> Serial Bus Controllers - USB

 Vendor 8086 Device 2442 Prog Interface 0

 00 00 1F 03 ==> Serial Bus Controllers - System Management Bus

 Vendor 8086 Device 2443 Prog Interface 0

 00 00 1F 04 ==> Serial Bus Controllers - USB

 Vendor 8086 Device 2444 Prog Interface 0

 00 00 1F 05 ==> Multimedia Device - Audio device

 Vendor 8086 Device 2445 Prog Interface 0

 00 00 1F 06 ==> Simple Communications Controllers - Modem

 Vendor 8086 Device 2446 Prog Interface 0

 00 01 00 00 ==> Display Controller - VGA/8514 controller

 Vendor 1002 Device 5246 Prog Interface 0

 00 02 07 00 ==> Multimedia Device - Audio device

 Vendor 1274 Device 1371 Prog Interface 0

 00 02 0A 00 ==> Bridge Device - CardBus bridge

 Vendor 1180 Device 0476 Prog Interface 0

 00 02 0A 01 ==> Bridge Device - CardBus bridge

 Vendor 1180 Device 0476 Prog Interface 0

To display the configuration space of Bus 0, Device 0, Function 0:

Version 2.0 Errata A 173

Shell> PCI 00 00 00 -i

 PCI Segment 00 Bus 00 Device 00 Func 00

 00000000: 86 80 30 11 06 00 90 20-02 00 00 06 00 00 00 00 *..0....*

 00000010: 08 00 00 20 00 00 00 00-00 00 00 00 00 00 00 00 *...*

 00000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000030: 00 00 00 00 88 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000040: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000050: 50 00 09 38 00 00 00 00-00 00 00 00 00 00 00 00 *P..8............*

 00000060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000070: 00 00 18 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000080: DE 2C CF 00 00 00 00 00-09 A0 04 F1 00 00 00 00 *.,..............*

 00000090: 00 00 D6 FF FE FF 00 00-33 80 33 80 85 84 C4 00 *........3.3.....*

 000000A0: 02 00 20 00 07 02 00 1F-00 00 00 00 00 00 00 00 *..*

 000000B0: 00 00 00 00 30 00 00 00-00 00 00 00 00 00 08 00 *....0...........*

 000000C0: 00 00 00 00 00 00 00 00-00 08 00 00 00 00 00 00 *................*

 000000D0: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 000000E0: 00 00 00 00 00 00 00 00-00 00 90 14 00 00 00 00 *................*

 000000F0: 00 00 00 00 74 F8 00 00-00 00 00 00 08 00 00 00 *....t...........*

Vendor ID(0): 8086 Device ID(2): 1130

Command(4): 0006

 (00)I/O space access enabled: 0 (01)Memory space access enabled: 1

 (02)Behave as bus master: 1 (03)Monitor special cycle enabled: 0

 (04)Mem Write & Invalidate enabled: 0 (05)Palette snooping is enabled: 0

 (06)Assert PERR# when parity error: 0 (07)Do address/data stepping: 0

 (08)SERR# driver enabled: 0 (09)Fast back-to-back transact...: 0

Status(6): 2090

 (04)New Capabilities linked list: 1 (05)66MHz Capable: 0

 (07)Fast Back-to-Back Capable: 1 (08)Master Data Parity Error: 0

 (09)DEVSEL timing: Fast (11)Signaled Target Abort: 0

 (12)Received Target Abort: 0 (13)Received Master Abort: 1

 (14)Signaled System Error: 0 (15)Detected Parity Error: 0

Revision ID(8): 02 BIST(0F): Incapable

Cache Line Size(C): 00 Latency Timer(D): 00

Header Type(0E): 0, Single function, PCI device

Class: Bridge Device - Host/PCI bridge -

Base Address Registers(10):

 Start Type Space Prefetchable? Size Limit

 --

 20000000 Mem 32 bits YES 04000000 24000000

 --

No Expansion ROM(30)

Cardbus CIS ptr(28): 00000000

Sub VendorID(2C): 0000 Subsystem ID(2E): 0000

Capabilities Ptr(34): 88

Interrupt Line(3C): 00 Interrupt Pin(3D): 00

Min_Gnt(3E): 00 Max_Lat(3F): 00

To display configuration space of Segment 0, Bus 0, Device 0, Function 0:

174 Version 2.0 Errata A

Shell> PCI 00 00 00 -s 0

 PCI Segment 00 Bus 00 Device 00 Func 00

 00000000: 86 80 30 11 06 00 90 20-02 00 00 06 00 00 00 00 *..0....*

 00000010: 08 00 00 20 00 00 00 00-00 00 00 00 00 00 00 00 *...*

 00000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000030: 00 00 00 00 88 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000040: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000050: 50 00 09 38 00 00 00 00-00 00 00 00 00 00 00 00 *P..8............*

 00000060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000070: 00 00 18 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 00000080: DE A8 CE 00 00 00 00 00-09 A0 04 F1 00 00 00 00 *................*

 00000090: 00 00 D6 FF FE FF 00 00-33 80 33 80 85 84 C4 00 *........3.3.....*

 000000A0: 02 00 20 00 07 02 00 1F-00 00 00 00 00 00 00 00 *..*

 000000B0: 00 00 00 00 30 00 00 00-00 00 00 00 00 00 08 00 *....0...........*

 000000C0: 00 00 00 00 00 00 00 00-00 08 00 00 00 00 00 00 *................*

 000000D0: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*

 000000E0: 00 00 00 00 00 00 00 00-00 00 A0 18 00 00 00 00 *................*

 000000F0: 00 00 00 00 74 F8 00 00-00 00 00 00 08 00 00 00 *....t...........*

Status Codes Returned

SHELL_SUCCESS Data was displayed as requested.

SHELL_DEVICE_ERRO

R

The specified device parameters did not match a

physical device in the system.

Version 2.0 Errata A 175

ping

Summary

Ping the target host with IPv4 stack.

Usage
Ping [-n count] [-l size] TargetIp

Options

-n

Number of echo request datagram to be sent.

-l

Size of data buffer in echo request datagram.

TargetIp

IPv4 address of the target machine.

Description

This command uses the ICMPv4 ECHO_REQUEST datagram to elicit ECHO_REPLY from a host.

Examples

To ping the target host with 64 bytes data:

Shell:\> ping -l 64 192.168.0.1

To ping the target host by sending 20 echo request datagram:

Shell:\> ping -n 20 202.120.100.1

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PAR

AMETER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

176 Version 2.0 Errata A

reconnect

Summary

Reconnects drivers to the specific device.

Usage
reconnect DeviceHandle [DriverHandle [ChildHandle]]

reconnect -r

Options

DeviceHandle

Device handle (a hexadecimal number)

DriverHandle

Driver handle (a hexadecimal number). If not specified, all drivers on the specified device will be

reconnected.

ChildHandle

Child handle of device (a hexadecimal number). If not specified, then all child handles of the

specified device will be reconnected.

-r

Reconnect drivers to all devices.

Description

This command reconnects drivers to the specific device. It will first disconnect the specified driver from

the specified device and then connect the driver to the device recursively.

If the -r option is used, then all drivers will be reconnected to all devices. Any drivers that are bound to

any devices will be disconnected first and then connected recursively. See the connect and disconnect

commands for more details.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Examples

To reconnect all drivers to all devices:
 Shell> reconnect -r

To reconnect all drivers to device 0x28:

Version 2.0 Errata A 177

 fs0:\> reconnect 28

To disconnect 0x17 from 0x28 then reconnect drivers with 0x17 as highest priority to device 0x28:
 fs0:\> reconnect 28 17

To disconnect 0x17 from 0x28 destroying child 0x32 then reconnect drivers with 0x17 as highest
priority to device 0x28
 fs0:\> reconnect 28 17 32

178 Version 2.0 Errata A

reset

Summary

Resets the system.

Usage
reset [-w [string]]

reset [-s [string]]

reset [-c [string]]

Options

-s

- Performs a shutdown

-w

- Performs a warm boot

-c

- Performs a cold boot
string

- String to be passed to reset service

Description

This command resets the system. The default is to perform a cold reset. If string is specified, then it is

passed into the SystemTable ResetSystem() function, informing the system of the reason for the

system reset.

Status Codes Returned

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its value was

out of bounds.

Version 2.0 Errata A 179

rm

Summary

Deletes one or more files or directories.

Usage
rm [-q] file/directory [file/directory ...]

Options

-q

Quiet mode; does not prompt user for a confirmation

file

File name (wildcards are permitted)

directory

Directory name (wildcards are permitted)

Description

This command deletes one or more files or directories. If the target is a directory, it will delete the
directory, including all its subdirectories. It is not allowed to redirect a file whose parent directory (or
the file itself) is being deleted.

Removing a read-only file/directory will result in a failure. Removing a directory containing read-only
file(s) will result in a failure. If an error occurs, rm will exit immediately and later files/directories will
not be removed.

You cannot remove a directory when the current directory is itself or its subdirectory. If file contains
wildcards, it will not ask user for confirmation.

You cannot remove the root directory. You cannot remove the current directory or its ancestor.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The target file or directory was not able to be found

SHELL_SECURITY_VIOL

ATION

This function was not performed due to a security violation

SHELL_WRITE_PROTECT

ED

The target media was write-protected.

Examples

To remove multiple directories at a time:

180 Version 2.0 Errata A

 fs0:\> ls test

 Directory of: fs0:\test

 06/18/01 01:01p <DIR> 512 .

 06/18/01 01:01p <DIR> 0 ..

 06/19/01 12:59a <DIR> 512 temp1

 06/19/01 12:59a <DIR> 512 temp2

 0 File(s) 0 bytes

 4 Dir(s)

Error occurs and RM will exit:
 fs0:\> rm test\temp11 temp2

 rm/del: Cannot find 'fs0:\test\temp11' - Not Found

To remove multiple directories with wildcards:
 fs0:\> rm test\temp*

 rm/del: Remove subtree 'fs0:\test\temp1' [y/n]? y

 removing fs0:\test\temp1\temp1.txt

 - [ok]

 removing fs0:\test\temp1\boot\nshell.efi

 - [ok]

 removing fs0:\test\temp1\boot

 - [ok]

 removing fs0:\test\temp1

 - [ok]

 rm/del: Remove subtree 'fs0:\test\temp2' [y/n]? y

 removing fs0:\test\temp2\temp2.txt

 - [ok]

 removing fs0:\test\temp2

 - [ok]

Removing a directory that contains a read-only file will fail:
 fs0:\> attrib +r test\temp1\readme.txt

 A R fs0:\test\temp1\readme.txt

 fs0:\> rm test\temp1

 rm/del: Cannot open 'readme.txt' under 'fs0:\test\temp1' in

 writable mode

 - [error] - Access Denied

 Exit status code: Access Denied

Version 2.0 Errata A 181

sermode

Summary

Sets serial port attributes.

Usage
sermode [handle [baudrate parity databits stopbits]]

Options

handle

Device handle for a serial port in hexadecimal. The dh command can be used to retrieve the right

handle.

baudrate

Baud rate for specified serial port. The following values are supported: 50, 75, 110, 150, 300, 600,

1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600(default), 19200, 38400, 57600, 115200,

230400, and 460800. All other values will be converted to the next highest setting.

parity

Parity bit settings for specified serial port. Any one of the following:

d - Default parity

n - No parity

e - Even parity

o - Odd parity

m - Mark parity

s - Space parity

databits

Data bits for the specified serial port. The following settings are supported: 4, 7, 8 (default). All

other settings are invalid.

stopbits

Stop bits for the specified serial port. The following settings are supported:

0 (0 stop bits - default setting)

1 (1 stop bit)

2 (2 stop bits)

15 (1.5 stop bits)

Note: All other settings are invalid.

Description

This command displays or sets baud rate, parity attribute, data bits and stop bits of serial ports. If no
attributes are specified, then the current settings are displayed. If no handle is specified, then all serial
ports are displayed.

182 Version 2.0 Errata A

Examples

To display the settings for all serial port devices:
 Shell> sermode

 4F06B08 - (115200, N, 8, 1)

 4F05F88 - (115200, N, 8, 1)

To display the settings for the serial port device whose handle is 0x6B:
 Shell> sermode 6B

 4F06B08 - (115200, N, 8, 1)

To configure the serial port settings for handle 0x6B to 9600bps, even parity, 8 data bits, and 1 stop
bit:
 Shell> sermode 6B 9600 e 8 1

 sermode: Mode set on handle 04F06B08

Status Codes Returned

SHELL_SUCCESS The new attributes were set on the serial device.

SHELL_INVALID_PAR

AMETER

One or more of the attributes has an unsupported

value.

SHELL_DEVICE_ERRO

R

The serial device is not functioning correctly..

Version 2.0 Errata A 183

set

Summary

Displays, changes or deletes a UEFI Shell environment variables.

Usage
set [-v] [sname [value]]

set [-d <sname>]

Options

-d

Deletes the environment variable

-v

Volatile variable

sname

 Environment variable name

value

Environment variable value

Description

This command is used to maintain the UEFI Shell environment variables. This command can do the
following:

 Display the environment variables.

 Create new environment variables.

 Change the value of existing environment variables.

 Delete environment variables.

The set command will set the environment variable that is specified by sname to value. This command

can be used to create a new environment variable or to modify an existing environment variable.

If the set command is used without any parameters, then all the environment variables are displayed. If

the set command is used with the -d option, then the environment variable that is specified by sname

will be deleted.

Note: This command does not change the value of the environment variable lasterror.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATIO

N

This function was not performed due to a security violation

SHELL_OUT_OF_RESOURCES A request to set a variable in a non-volatile fashion could not be completed.

The resulting non-volatile request has been converted into a volatile

request.

184 Version 2.0 Errata A

Examples

To add an environment variable:
 Shell> set DiagnosticPath fs0:\efi\diag;fs1:\efi\diag

To display environment variables:
 Shell> set

 * path : .

 diagnosticPath : fs0:\efi1.1\diag;fs1:\efi1.1\diag

To delete an environment variable:
 Shell> set -d diagnosticpath

 Shell> set

 * path : .

To change an environment variable:
 fs0:\> set src efi

 fs0:\> set

 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\

 src : efi

 fs0:\> set src efi1.1

 fs0:\> set

 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\

 src : efi1.1

To append an environment variable:
 Shell> set

 * path : .

 Shell> set path %path%;fs0:\efi\tools;fs0:\efi\boot;fs0:\

 Shell> set

 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\

To set a volatile variable that will disappear at the next
 boot:

 Shell> set -v EFI_SOURCE c:\project\EFI1.1

 Shell> set

 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\

 * EFI_SOURCE : c:\project\EFI1.1

Version 2.0 Errata A 185

setsize

Summary

Adjusts the size of a file.

Usage

setsize size file [file...]

Options

file

The file or files which will have its size adjusted.

size

The desired size of the file once it is adjusted. Setting the size smaller than the actual data

contained in this file will truncate this data.

Description

This command adjusts the size of a particular target file. When adjusting the size of a file, it should be
noted that it will automatically truncate or extend the size of a file based on the passed in parameters.
If the file does not exist, it will be created.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_VOLUME_FULL The media has insufficient space to complete the

request.

SHELL_INVALID_PAR

AMETER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

186 Version 2.0 Errata A

setvar

Summary

Changes the value of a UEFI variable.

Usage
setvar variable-name [–guid guid][-bs][-rs][-nv] [=data]

Options

variable-name

The name of the UEFI variable to modify or display.

-guid

Specifies the GUID of the UEFI variable to modify or display. If not present, then the GUID
EFI_GLOBAL_VARIABLE, as defined in chapter 3.2 of the UEFI specification.

-bs

Indicates that the variable is a boot variable. Should only be present for new variables, otherwise it

is ignored.

-rt

Indicates that the variable is a runtime variable. Should only be present for new variables,

otherwise it is ignored.

-nv

Indicates that the variable is non-volatile. If not present, then the variable is assumed to be

volatile. Should only be present for new variables, otherwise it is ignored.

=data

New data for the variable. If there is nothing after the ‘=’ then the variable is deleted. If = is not
present, then the current value of the variable is dumped as hex bytes. The data may consist of

zero or more of the following:

xx[xx]:

Hexadecimal bytes

“ascii-string”:

ASCII-string with no null-terminator

L”UCS2-string”:

UCS-2 encoded string with no null-terminator

--device

Device path text format, as specified by the EFI Device Path Display Format Overview

section of the UEFI Specification.

Description

This command changes the UEFI variable specified by name and guid. If = is specified, but data is not,
the variable is deleted, if it exists. If = is not specified, then the current variable contents are displayed.
If =data is specified, then the variable’s value is changed to the value specified by data.

Version 2.0 Errata A 187

-bs, -rt and –nv are only useful if the variable already exists. If the variable already exists and the

attributes cannot be changed, then -1 is returned.

Status Codes Returned

SHELL_SUCCESS The shell has stored the variable and its data with

the defined attributes.

SHELL_INVALID_PAR

AMETER

Incorrect attributes were used.

SHELL_OUT_OF_RESO

URCES

Insufficient resources were available for storing the

variable and its data.

SHELL_DEVICE_ERRO

R

The variable could not be saved due to a hardware

error.

SHELL_WRITE_PROTE

CTED

The variable in question is read-only.

SHELL_WRITE_PROTE

CTED

The variable in question cannot be deleted.

SHELL_NOT_FOUND The variable could not be found

188 Version 2.0 Errata A

shift

Usage

shift

Description

The shift command shifts the contents of a UEFI Shell script’s positional parameters so that %1 is

discarded, %2 is copied to %1, %3 is copied to %2, %4 is copied to %3 and so on. This allows UEFI Shell

scripts to process script parameters from left to right.

Note: This command does not change the UEFI shell environment variable lasterror.

Note: The shift command is available only in UEFI Shell scripts.

Examples

Following script is a sample of 'shift' command:
fs0:\> type shift.nsh

Example script for 'shift' command

echo %1 %2 %3

shift

echo %1 %2

To execute the script with echo on:
fs0:\> shift.nsh welcome EFI world

shift.nsh> echo welcome EFI world

 welcome EFI world

 shift

 echo EFI world

 EFI world

To execute the script with echo off:
fs0:\> echo -off

fs0:\> shift.nsh welcome EFI world

 welcome EFI world

 EFI world

Version 2.0 Errata A 189

smbiosview

Summary

Displays SMBIOS information.

Usage
smbiosview [-t SmbiosType]|[-h SmbiosHandle]|[-s]|[-a]

Options

-t

Display all structures of SmbiosType. The following values are supported:

0 - BIOS Information

1 - System Information

3 - System Enclosure

4 - Processor Information

5 - Memory Controller Information

6 - Memory Module Information

7 - Cache Information

8 - Port Connector Information

9 - System Slots

10 - On Board Devices Information

15 - System Event Log

16 - Physical Memory Array

17 - Memory Device

18 - 32-bit Memory Error Information

19 - Memory Array Mapped Address

20 - Memory Device Mapped Address

21 - Built-in Pointing Device

22 - Portable Battery

34 - Management Device

37 - Memory Channel

38 - IPMI Device Information

39 - System Power Supply

-h

Display the structure of SmbiosHandle, the unique 16-bit value assigned to each SMBIOS

structure. SmbiosHandle can be specified in either decimal or hexadecimal format. Use the 0x

prefix for hexadecimal values.

-s

Display statistics table.

-a

Display all information.

190 Version 2.0 Errata A

Description

This command displays the SMBIOS information. Users can display the information of SMBIOS
structures specified by type or handle.

Status Codes Returned

SHELL_SUCCESS Data was displayed as requested.

SHELL_DEVICE_ERRO

R

The requested structure was not found.

Version 2.0 Errata A 191

stall

Summary

Stalls the operation for a specified number of microseconds.

Usage
stall time

Options

time

The number of microseconds for the processor to stall.

Description

This command would be used to establish a timed stall of operations during a script.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERRO

R

There was a hardware error associated with this

request.

SHELL_INVALID_PAR

AMETER

One of the passed in parameters was incorrectly

formatted or its value was out of bounds.

192 Version 2.0 Errata A

time

Summary

Displays or sets the current time for the system.

Usage
time [hh:mm[:ss]] [-tz tz] [-d dl]

Options

hh

New hour (0-23) (required)

mm

New minute (0-59) (required)

ss

New second (0-59) If not specified, then zero will be used.

-tz

Timezone adjustment, measured in minutes offset from GMT. Valid values can be between -1440

and 1440 or 2047. If not present or set to 2047, time is interpreted as local time.

-d

Indicates that time is not affected by daylight savings time (0), time is affected by daylight savings

time but time has not been adjusted (1), or time is affected by daylight savings time and has been

adjusted (3).. All other values are invalid. If no value follows –d, then the current daylight savings

time will be displayed.

Description

This command displays or sets the current time for the system. If no parameters are used, it shows the
current time. If valid hours, minutes, and seconds are provided, then the system's time will be updated.

Note the following rules:

Except for numeric characters and the : character, all other characters in the argument are invalid. The
Shell will report an error if the number is in the wrong hour/minute/second range.

Spaces before or after the numeric character are not allowed. Spaces inserted into the number are not
allowed either.

The seconds parameter is optional. If there is no seconds number, it will set to zero by default.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERROR There was a hardware error preventing the completion of this command

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its value

was out of bounds.

Version 2.0 Errata A 193

Examples
Shell > time 17:23

Shell > time

17:23:00 (GMT+08:00)

Shell > time 17:23:

Shell > time

17:23:00 (GMT+08:00)

To display current time:
 fs0:\> time

 16:51:03 (GMT+08:00)

To set the system time:
 fs0:\> time 9:51:30

 fs0:\> time

 09:51:31 (GMT+08:00)

To get the time, including daylight savings time:
fs0:\> time 9:51:30

fs0:\> time –d

09:51:31 (GMT+08:00) DST: Not Affected

194 Version 2.0 Errata A

timezone

Summary

Displays or sets time zone information.

Usage
timezone [-s hh:mm | -l] [-b] [-f]

Options

-s

Set time zone associated with hh:mm offset from GMT

-l

Display list of all time zones

-b

Display one screen at a time

-f

Display full information for specified timezone

Description

This command displays and sets the current time zone for the system. If no parameters are used, it
shows the current time zone. If a valid hh:mm parameter is provided, then the system's time zone

information will be updated.

Examples

To display all available time zones:
 Shell> timezone -l

 GMT-12:00, International Date Line West

 GMT-11:00, Midway Island, Samoa

 GMT-10:00, Hawaii

 GMT-09:00, Alaska

 GMT-08:00, Pacific Time(US & Canada); Tijuana

 GMT-07:00, Arizona, Chihuahua, La Paz, Mazatlan

 GMT-06:00, Central America, Central Time(US & Canada)

 GMT-05:00, Bogota, Lima, Quito, Eastern Time(US & Canada)

 GMT-04:00, Atlantic Time(Canada), Caracas, Santiago

 GMT-03:30, Newfoundland

 GMT-03:00, Brasilia, Buenos Aires, Georgetown, Greenland

 GMT-02:00, Mid-Atlantic

 GMT-01:00, Azores, Cape Verde Is.

 GMT, Greenwich Mean Time, Casablanca, Monrovia, Dublin, London

 GMT+01:00, Amsterdam, Berlin, Bern, Rome, Paris, West Central Africa

 GMT+02:00, Athens, Istanbul, Bucharest, Cairo, Jerusalem

 GMT+03:00, Baghdad, Kuwait, Riyadh, Moscow, Nairobi

Version 2.0 Errata A 195

 GMT+03:30, Tehran

 GMT+04:00, Abu Dhabi, Muscat, Baku, Tbilisi, Yerevan

 GMT+04:30, Kabul

 GMT+05:00, Ekaterinburg, Islamabad, Karachi, Tashkent

 GMT+05:30, Chennai, Kolkata, Mumbai, New Delhi

 GMT+05:45, Kathmandu

 GMT+06:00, Almaty, Novosibirsk, Astana, Dhaka, Sri Jayawardenepura

 GMT+06:30, Rangoon

 GMT+07:00, Bangkok, Hanio, Jakarta, Krasnoyarsk

 GMT+08:00, Beijing, Chongqing, Hong Kong, Urumqi, Taipei, Perth

 GMT+09:00, Osaka, Sapporo, Tokyo, Seoul, Yakutsk

 GMT+09:30, Adelaide, Darwin

 GMT+10:00, Canberra, Melbourne, Sydney, Guam, Hobart, Vladivostok

 GMT+11:00, Magadan, Solomon Is., New Caledonia

 GMT+12:00, Auckland, Wellington, Fiji, Kamchatka, Marshall Is.

 GMT+13:00, Nuku'alofa

To set the time zone:
 Shell> timezone -s -7:00

 Shell> timezone

 GMT-07:00

 Shell> timezone -s 5:00

 Shell> timezone

 GMT+05:00

To display detailed information for the current time zone:
 Shell> timezone -f

 GMT+05:00, Ekaterinburg, Islamabad, Karachi, Tashkent

 Shell> timezone

 GMT+05:00

Status Codes Returned

SHELL_SUCCESS The operation completed successfully.

SHELL_INVALID_PAR

AMETER

A time field is out of range

SHELL_DEVICE_ERRO

R

The timezone could not be saved due to a hardware

error.

196 Version 2.0 Errata A

touch

Summary

Updates the time and date on a file to the current time and date.

Usage
touch [-r] file [file …]

Options

file

The name or pattern of the file or directory. There can be multiple files on the command-line.

-r

Recurse into subdirectories

Description

This command updates the time and date on the file that is specified by the file parameter to the

current time and date.

If multiple files are specified on the command line, it will continue processing. It will touch the files one
by one and errors will be ignored.

Touch cannot change the time and date of read-only files and directories.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The target file or set of files were not found.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_WRITE_PROTEC

TED

The media was write-protected or the file had a read-only

attribute associated with it.

Version 2.0 Errata A 197

type

Summary

Sends the contents of a file to the standard output device.

Usage
type file [file...]

Options

file

Name of the file to display.

Description

This command sends the contents of a file to the standard output device. If no options are used, then
the command attempts to detect the file type. If it fails, then UCS-2 is presumed.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_NOT_FOUND The target file or set of files were not found.

Examples

To display a file in format:
fs0:\> type pause.nsh

Example script for 'pause' command

echo pause.nsh begin..

date

time

pause

echo pause.nsh done.

To display multiple files:
fs0:\> type test.*

How to Install?

time

stall 3000000

time

198 Version 2.0 Errata A

unload

Summary

Unloads a driver image that was already loaded.

Usage
unload [-n] [-v|-verbose] Handle

Options

-n

Skips all prompts during unloading, so that it can be used in a script file.

-v, -verbose

Dump verbose status information before the image is unloaded.

Handle

Handle of driver to unload, always taken as hexadecimal number

Description

This command unloads a driver image that was already loaded and which supports the unloading option
(see EFI_LOADED_IMAGE_PROTOCOL’s Unload() member.)

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIO

LATION

This function was not performed due to a security violation

SHELL_INVALID_PARA

METER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

Version 2.0 Errata A 199

ver

Summary

Displays the version information for the UEFI Shell and the underlying UEFI firmware.

Usage

ver [-s|-terse]

Options

-s

Displays only the UEFI Shell version

-terse

The shell command will restrict additional informative content.

Description

This command displays the version information for this EFI Firmware or the version information for the
UEFI Shell itself. The information is retrieved through the EFI System Table or the Shell image.
UEFI <support-level> Shell v<uefi-shell-version>

shell-supplier-specific-data

UEFI v<uefi-firmware-version> (<firmware vendor name>, 0x<firmware vendor version as 32-

bit hex value> <optional additional vendor version>)

UEFI Basic Shell v2.0

Build 8192. Copyright 2008 by Intel(R) Corporation.

UEFI v2.10 Firmware (Phoenix Technologies Ltd., 0x01014318)

<support-level>

0 = Minimal, 1 = Scripting, 2 = Basic, 3 = Interactive

<uefi-shell-version>

comes from the shell spec upon which the shell implementation is based.

<shell-supplier-specific-data>

Build, copyright, etc.

<uefi-firmware-version>

From the EFI System Table's Hdr.Revision field, formatted as two period delimited fields. The first

field is the upper 16-bits of this field, represented as a decimal unsigned integer. The second field

is the lower 16-bites of this field, represented as a two-digit, zero-filled decimal unsigned integer.

<firmware vendor name>

From the EFI System Table's FirmwareVendor field

<firmware vendor version>

From the EFI System Table's FIrmwareRevision field

200 Version 2.0 Errata A

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

Version 2.0 Errata A 201

vol

Summary

Displays the volume information for the file system that is specified by fs.

Usage
vol [fs] [-n <VolumeLabel>]

vol [fs] [-d]

Options

fs

The name of the file system.

VolumeLabel

The name of the file system. The following characters cannot be used: % ^ * + = [] | : ; “ < > ?

/ . No spaces are allowed in the volume label.

-d

Empty volume label.

Description

This command displays the volume information for the file system that is specified by fs. If fs is not

specified, the current file system will be used. If -n is specified, then the volume label for fs will be set

to VolumeLabel. The maximum length for VolumeLabel is 11 characters.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAM

ETER

One of the passed in parameters was incorrectly formatted

or its value was out of bounds.

SHELL_SECURITY_VIOL

ATION

This function was not performed due to a security violation

SHELL_NOT_FOUND The target file-system was not found

Examples

To display the volume of the current fs:
fs0:\> vol

Volume has no label (rw)

1,457,664 bytes total disk space

1,149,440 bytes available on disk

512 bytes in each allocation unit

To change the label of fs0:

202 Version 2.0 Errata A

shell> vol fs0 –n help_test

Volume HELP_TEST (rw)

1,457,664 bytes total disk space

1,149,440 bytes available on disk

512 bytes in each allocation unit

To get rid of the label of fs0:
fs0:\> vol fs0 -d

Volume has no label (rw)

1,457,664 bytes total disk space

220,160 bytes available on disk

512 bytes in each allocation unit

Version 2.0 Errata A 203

Appendix A

 UEFI Shell Consistent Mapping

Design

This appendix describes how device assignments are created.

A.1 Requirement:

1. The shell shall support consistent device assignments across (through) reboots.

e.g. same concept as how you assign the letter D: to a partition under DOS/Windows.

2. The shell commands shall support defining mappings.

For identical machines with the same hardware configurations the mapping result should always

be the same.

3. Not use the NV storage.

In the OS, it is easy to implement the consistent mapping, because it can store the mapping info

on the hard disk or other storage. The firmware has no large storage to store all of this system

info. To save space, it is strongly desired that such mapping data does not use NV storage to

maintain this data.

A.2 Design

A.2.1 What does consistent mapping mean?

If hardware configuration is not changed, the mappings should not change. EXAMPLE: map –r, reboot,
map -r will not change the mappings.

If two or more machines have the same hardware configurations, mapping result should be the same.

A.2.2 Hardware configuration change:

Generally, buses, controllers, hubs or bridges changing mean hardware configuration change.

The change of the number or physical connection of hardware which can have child hardware devices
will be considered as hardware configuration change.

204 Version 2.0 Errata A

Example:

A.2.2.1 Hardware configuration change example

1. Change IDE disk from IDE primary master to slave

2. Change USB device from port0 to port1

3. Add or remove a SCSI controller adapt card

A.2.2.2 Hardware configuration not change example

1. Remove floppy/cdrom disk in drive will not affect mapped names of other existing names

2. Remove floppy/cdrom, then insert back, the newly mapped name will be the same as the last

time it was mapped.

3. Unplugging a usb device will not affect mapped names of other existing names

4. Unplug usb device, then plug back to the same port, the newly mapped will be the same as the

last time it was mapped.

A.2.3 Mapping generated from device path

The device path is used to generate the mapping, because in a platform, the device path is unique and if
the hardware configuration doesn’t change, the device’s device path doesn’t change.

A.2.4 Consistent Mapping

A consistent mapping consists of 3 parts:

 <MTD><HI><CSD>

MTD(Media Type Descriptor): A string carries device’s media info (harddisk, CD-ROM, …etc.)

1. Auxiliary name of media type, determined by device path

2. Matches with EFI device path specification

3. Proposed name (hd for harddisk, cd for CD-ROM, fp for floppy, etc.)

HI(Hardware Index): The index of the hardware device path node described in current device path.
The index is determined by the position of the whole sorted hardware device path node in system.

1. Extract the hardware device path node and ACPI device path node from each device path in

system, make a condensed device path.

2. Use certain algorithm to sort all the condensed device paths

3. Adding/Removing controller(s) would change the index (hardware configuration change)

CSD(Connection Specific Descriptor): A string of numbers and characters, which identifies how the
device connects to parent controller.

1. Specify the connection of device

Version 2.0 Errata A 205

2. use one or several numbers or characters to describe each media and messaging device path

node in device path to specify the connection

A.2.5 Example (USB Devices)

Hardware Configuration (USB part)

4 UHC

7 USB devices: 4 Hard disks, 3 hub

Other hardware are ignored when mapping usb subsystem

Device Path (controllers are underlined)

acpi(pnp0a03,0)/pci(1d,0)/usb(0,1)/usb(1,1)/HD(Part4, sigxxx)

acpi(pnp0a03,0)/pci(1d,3)/usb(0,1)/usb(5,1)/HD(Part2, sigxxx)

acpi(pnp0a03,0)/pci(1d,1)/usb(1,0)/HD(Part3, sigxxx)

acpi(pnp0a03,0)/pci(1d,2)/usb(1,0)/ usb(2,0)/HD(Part1, sigxxx)

Steps to determine the consistent mapping for devices:

1. Determine the MTD

2. Determine the HI

3. Determine the CSD

4. Make the final mapping

A.2.5.1 Step 1: Determine MTD

MTD for all devices:

 hd is defined for harddisk.

 cd is defined for CD-ROM.

 fp is defined for floppy.

 f is defined for unknown device.

…

More names will be added according to the evolution of UEFI specification

The 4 USB devices are the hard disks, so their MTDs are “hd”.

A.2.5.2 Step 2: Determine HI

HI is determined by ACPI device path node and hardware device path node

1. Algorithm to calculate the HI

2. Enumerate all device path exist in system, whether there is a file system on it or not.

206 Version 2.0 Errata A

3. Split the device path: the hardware and ACPI device path node part consists of the HI device

path that generates the HI and the remain device path consist the CSD device path

which generate the CSD.

Each kind of device path node has its own compare algorithm.

For acpi device path node, the compare algorithm is:
 acpi(h1, u1) > acpi(h2, u2) only if h1 > h2 or (h1 = h2 and u1 > u2)

For pci device path node, the compare algorithm is:
pci(d1, f1) > pci (d2, f2) only if d1 > d2 or (d1 = d2 and f1>f2)

For example:

acpi(pnp0a03,0)/pci(1d|0) <….< acpi(pnp0a03,0)/pci(1d|1)<….< acpi(pnp0a03,0)/pci(1d|2)

<….< apci(pnp0a03,0)/pci(1d|3)

Use decimal number for HI (0, 1, 2, 3, …)

After sorting we can assign HI for each hardware device path node part:

UHC1 acpi(pnp0a03,0)/pci(1d|0) - 5

UHC2 acpi(pnp0a03,0)/pci(1d|1) - 8

UHC3 acpi(pnp0a03,0)/pci(1d|2) - 12

UHC4 acpi(pnp0a03,0)/pci(1d|3) - 20

A.2.5.3 Step 3: Determine CSD

For each kind device path node, there are rules to translate the device path node to the CSD.

A.2.5.3.1 Rules for USB device path node

Use interface number and port number for usb node

Numbers in device path will be mapped at intervals to characters or numbers

When mapping from numbers to characters: use a – 0 , b – 1, …, z – 25

Sample:

acpi(pnp0a03,0)/pci(1d|0)/usb(0,1)/usb(1,1)/HD(Part4, sigxxx)

acpi(pnp0a03,0)/pci(1d|0)

usb(0,1)/usb(1,1)/HD(Part4, sigxxx)

HI device path, for

generate HI.

CSD device path, for generate CSD.

Version 2.0 Errata A 207

usb(0,1) a1 or 0b.

A.2.5.3.2 Rules for hard drive device path node

Use partition number for hard drive device node

Sample:
 HD(Part4, sigxxx) e or 4.

The CSD device paths of the 4 harddisk in our sample are:
usb(0,1)/usb(1,1)/HD(Part4, sigxxx)

usb(0,1)/usb(5,1)/HD(Part2, sigxxx)

usb(1,0)/HD(Part3, sigxxx)

usb(1,0)/usb(2,0)/HD(Part1, sigxxx)

A.2.5.3.3 Corresponding CSDs

usb(0,1)/usb(1,1)/HD(Part4, sigxxx) a1b1e

usb(0,1)/usb(5,1)/HD(Part2, sigxxx) a1e1c

usb(1,0)/HD(Part3, sigxxx) b0d

usb(1,0)/ usb(2,0) /HD(Part1, sigxxx) b0c0b

A.2.5.3.4 Step 4: Make the whole mapping

Whole mapping rule:
<USB mapping >::=[<MTD>]<HI><CSD>

<MTD> ::= {hd, fp, cd…}

<HI>::={0, 1, 2, …}

<CSD> ::=<node sequence>

Put the three parts (MTD, HI and CSD) together to get final mapping for the four hard disks
acpi(pnp0a03,0)/pci(1d,0)/usb(0,1)/usb(1,1)/HD(Part4, sigxxx) hd5a1b1e

acpi(pnp0a03,0)/pci(1d,3)/usb(0,1)/usb(5,1)/HD(Part2, sigxxx) hd8a1d1c

acpi(pnp0a03,0)/pci(1d,1)/usb(1,0)/HD(Part3, sigxxx) hd12b0d

acpi(pnp0a03,0)/pci(1d,2)/usb(1,0)/ usb(2,0)/HD(Part1, sigxxx) hd20b0c0b

A.3 Implementation

Consistent Mapping = <MTD><HI><CSD>

MTD

fp floppy

hd hard disk

cd cd rom

f unknown media

HI

1. Extract the hardware device path node and ACPI device path node from each device path in

system,

2. Extract the condensed HI device path

208 Version 2.0 Errata A

3. Sort the extracted HI device paths.

HI is index of the sorted HI device paths.

CSD

Use one or several numbers or characters to describe each media and messaging device path node

in device path to specify the connection.

All of the reference values in the table below are references to the device path type and sub-type values
in the UEFI specification. For actual values of each of the corresponding Type and Sub-type values,
please refer to the UEFI spec.

Table 29 How to process each type the device path node:

Type Sub
Type

Node
Type

Note

HARDWARE_DE

VICE
HW_PCI HI

Node

Used to get HI

HARDWARE_DE

VICE
HW_PCCA

RD
HI

Node

Used to get HI

HARDWARE_DE

VICE
HW_MEM

MAP
HI

Node

Used to get HI

HARDWARE_DE

VICE
HW_VEND

OR
HI

Node

Used to get HI

HARDWARE_DE

VICE
HW_CONT

ROLLER
HI

Node

Used to get HI

ACPI_DEVICE ACPI HI/CSD

Node

Used ACPI(0604)

to get HI and other

to get CSD.

MESSAGING_D

EVICE
MSG_ATA

PI
CSD

Node

IDE channel index

(0 for primary,

master, 3 for

secondary slave)

MESSAGING_D

EVICE
MSG_SCS

I
CSD

Node

Use LUN number

and PUN number

for SCSI node

Version 2.0 Errata A 209

MESSAGING_D

EVICE
MSG_FIB

RECHANN

EL

CSD

Node

Use WWW number

and LUN number

for fibre channel

device node

MESSAGING_D

EVICE
MSG_139

4
CSD

Node

Use GUID as CSD

for 1394 device

path node

MESSAGING_D

EVICE
MSG_USB CSD

Node

Use interface

number and port

number for USB

node

MESSAGING_D

EVICE
MSG_USB

_CLASS
NONE Not process.

MESSAGING_D

EVICE
MSG_I2O CSD

Node

Use Target ID as

I2o Device Path

MESSAGING_D

EVICE
MSG_MAC

_ADDR
CSD

Node

Use MAC address

as CSD for MAC

node

MESSAGING_D

EVICE
MSG_IPv4 CSD

Node

Use local IP

address, local port,

Remote IP

address, remote

port for IPv4 node

MESSAGING_D

EVICE
MSG_IPv6 CSD

Node

Use local IP

address, local port,

Remote IP

address, remote

port for IPv6 node

MESSAGING_D

EVICE
MSG_INFI

NIBAND
CSD

Node

Use PORT GID,

IOC GUID, Target

Port ID, Device ID

MESSAGING_D

EVICE
MSG_UAR

T
CSD

Node

Use Baud Rate,

Data Bits, Parity,

Stop Bits as CSD

MESSAGING_D

EVICE
MSG_VEN

DOR
CSD

Node

Use GUID as CSD

210 Version 2.0 Errata A

MESSAGING_D

EVICE

MSG_LUN CSD

Node

Use the Logical

Unit Number

MESSAGING_D

EVICE

MSG_SAT

A

CSD

Node

Use the HBA Port

Number, Port

Multiplier, and LUN

value.

MESSAGING_D

EVICE

MSG_SAS CSD

Node

Use the SAS

Address, LUN,

Device Topology,

and Relative

Target Port

MEDIA_DEVICE MEDIA_H

ARDDRIV

E

CSD

Node

Partition Number

MEDIA_DEVICE MEDIA_C

DROM
CSD

Node

Boot Entry

MEDIA_DEVICE MEDIA_V

ENDOR
CSD

Node

Use Vendor_GUID

as CSD

MEDIA_DEVICE MEDIA_FI

LEPATH
NONE Don’t process.

MEDIA_DEVICE MEDIA_P

ROTOCOL
NONE Don’t process.

MEDIA_DEVICE MEDIA_F

V_FILEPA

TH

NONE Don’t process.

BBS_DEVICE BBS_BBS NONE Don’t process.

Version 2.0 Errata A 211

A.3.1 Get the MTD

The MTD is a string that carries device’s media info. Such as floppy, hard disk or others. The MTD is a
string that makes the mapping more readable.

Now, the MTD has four types: fp(floppy), hd(hard disk), cd(CD Rom) and f(unknown type).

The MTD’s info come from the device path. the algorithm go through each node of the device path to
find the special node that can specify this device’s MTD.

Table 30 MTD Naming

TYPE SUBTYPE MTD

EDIA_DEVICE_PATH MEDIA_HARDDRIVE hd

EDIA_DEVICE_PATH MEDIA_CDROM cd

ACPI_DEVICE_PATH ACPI &HID=0x0604 fp

Note: If a device has the MEDIA_HARDDRIVE and MEDIA_CDROM device path node, then its MTD is

cd.

If a device path has no any node list on the table, then, its MTD is f(unknown).

A.3.2 Get the HI

Each device can be separated into two part: the HI part and CSD part.

The HI part is used to get the HI section in the consistent mapping.

The CSD part is used to get the CSD section in the consistent mapping.

The algorithm of get HI goes through each device path in the system and extracts each HI node in the
device path according Table 29 to create a HI device path.

A.3.3 Get the CSD

A device path remove the HI device path part, the remain part is the CSD part.

The algorithm is go through the CSD device part, to each node, according Table 29 get the data that will
be add to the CSD, translate the data to a string of digital or character(according the position in the
CSD).

A.3.3.1 USB Devices

CSD of hard drive device path node

Use partition number and interface for CSD

212 Version 2.0 Errata A

A.3.3.1.1 Example

usb(0,1) a1

usb(1,0) b0

A.3.3.2 Floppy Devices

General consistent mapping rule

Use _UID for CSD

A.3.3.2.1 Examples:

1. acpi(pnp0604,0) a

2. acpi(pnp0604,1) b

3. IDE Devices

A.3.3.3 CSD of ATAPI device path node

ATAPI node ide channel index

0 for primary, master, 3 for secondary slave

A.3.3.4 CSD of LUN Device path node

Use the LUN number

A.3.3.4.1 Examples:

USB(0x2,0x1)/Unit(0x0) c10

USB(0x2,0x1)/Unit(0x2) c12

A.3.3.5 CSD of SAS Device path node

Use the SAS Address, followed by the LUN number, Device Topology Value, and Relative Target Port

A.3.3.6 CSD of SATA Device path node

Use the HBA Port Number, followed by the Port Multiplier Number, and the LUN value.

A.3.3.7 CSD of hard drive device path node

Hard disk node - > partition number

Version 2.0 Errata A 213

A.3.3.7.1 Examples

Ata(Primary,Master) a

Ata(Primary, Slave) b

Ata(Secondary,Master) c

Ata(Secondary, Slave) d

HD(p2, sig*) c

CD(Entry0) a

SCSI device

A.3.3.8 CSD of SCSI device path node

Use LUN number and PUN number for scsi node

A.3.3.8.1 Examples:

scsi(1,0) b0

 scsi(2,0) c0

 scsi(2,0)/scsi(1,0) c0b0

A.3.3.9 Fibre Channel Device Path

Use WWW number and LUN number for fibre channel device node:
Acpi(0a03)/pci(0,0)/FC(0x1b833212, 0x34a65)/HD(Part4, sig**4)

hd45bmwccxe4654145e

(bmwccxe)26 = (1b833212)16, (4654145)10 = (34a65)16

A.3.3.10 1394 Device Path

Use GUID as CSD for 1394 device path node

Treat the guid as a string, for CSD, translate character by character
0001,db08,5001,0a5f aaabnlaifaabakfp

A.3.3.11 I2o Device Path

Use Target ID as I2o Device Path

A.3.3.12 MAC Address Device Path

Use MAC address as CSD for MAC node

IPv4 Device Path & IPv6 Device Path

Use local Ip address, local port, Remote Ip address, remote port for IPv4 node

A.3.3.13 InfiniBand Device Path

Use PORT GID, IOC GUID, Target Port ID, Device ID

214 Version 2.0 Errata A

A.3.3.14 UART Device Path

Use Baud Rate, Data Bits, Parity, Stop Bits as CSD

A.3.3.15 Vendor-Defined Device Path

Use guid as CSD
{18ABEA39-F472-4278-BD55-E8C81C7030E1}

biklokdjpehcechilnffoimibmhadaob

A.3.3.16 Vendor-defined Media Device Path

Use Vendor_GUID as CSD

A.3.3.17 File Path Media Device Path

Put file path in MTD

A.4 Function & Structure
EFI_STATUS

ConsistMappingCreateHIDevicePathTable (

 OUT EFI_DEVICE_PATH_PROTOCOL ***HIDevicePathTable

) ;

Parameters

HIDevicePathTable

 A pointer to the Table of HI Device Path.

Description

This function will go through all the device paths in the system, extract the HI device path from each
device path and add the HI device path to the HI device path table then sort the HI device path table.

In this function, only use the device path’s first instance, if the device path has more than one instance,
the other instances are ignored.

Extract the HI device path.

To each device path, go through each node from the first device path node. According to Table 33, if the
node is the HI Device path node, add it to the HI Device, path, until meet the first NuHI Device path
node.

Sort the HI device path table.

According the compare rules above, sort the HI device path table.

Version 2.0 Errata A 215

Pseudo Code
foreach handle in System

{

 Get DevicePath form handle;

 If DevicePath is null {

 Continue;

 }

 HIDevicePath = ExtractHI(DevicePath);

 Add the HIDevicePath to the HDPT

}

Sort the HDPT

Status Codes Returned

SHELL_SUCCESS Success to get the HI device path table.

SHELL_OUT_OF_RESOURC

E

Can not create the HI device path table.

CHAR16*

ConsistMappingGenMappingName(

 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,

 IN EFI_DEVICE_PATH_PROTOCOL **HIDevicePathTable

) ;

Parameters

DevicePath

A pointer to a device path that will be translated to the consist name.

HIDevicePathTable

A pointer to the Table of HI Device Path.

Description

This function go through each node of the DevicePath, extract the info about the MTD, HI, and CSD, and
then according to the extracted info, create a consistent mapping.

Pseudo Code
Foreach handle in System

{

 Get DevicePath form handle;

 If DevicePath is null {

 Continue;

 }

 HIDevicePath = ExtractHI(DevicePath);

 Add the HIDevicePath to the HDPT

}

Sort the HDPT

Status Codes Returned

NULL Can’t create the consistent mapping.

NULL The consistent mapping.

216 Version 2.0 Errata A

Sort the HI device path table.

Consist mapping device path compare:

Compare(Node1, Node2)

{

 If (DeviceType(Node1) != DeviceType(Node2)) {

 Return DeviceType(Node1) – DeviceType(Node2);

 }

 If (DeviceSubType(Node1)!= DeviceSubType(Node2)) {

 Return DeviceSubType(Node1) – DeviceSubType(Node2);

 }

 If (DeviceSubType(Node) == PCI) {

pci(d1, f1) > pci (d2, f2) only if d1 > d2 or (d1 = d2 and f1>f2)

 }

 If (DeviceSubType(Node) == ACPI) {

pci(d1, f1) > pci (d2, f2) only if d1 > d2 or (d1 = d2 and f1>f2)

 }

 If(Length(Node) != Length(Node2)) {

 Return (Length(Node1) – Length(Node2);

 }

 Return memcmp(Node1, Node2, Length(Node1));

}

217 Version 2.0 Errata A

218 Version 2.0 Errata A

Appendix B

 UEFI Help Manual

Page Syntax

The manual page files are standard text files with title and section heading
information embedded using commands which begin with a ‘.’. The following

two macros are supported:

.TH command-name 0 “short-description”

Title header. When printing multi-page help, this will appear at the top of

each page.

.SH section-name

Sub-header. Specifies one of several standard sub-headings.

Table 31 Subheadings and descriptions

Sub-Heading
Name

Description

NAME The name of the function or command, along with a one-

line summary.

SYNOPSIS Usage of the command

DESCRIPTION General description

OPTIONS Description of all options and parameters.

RETURN

VALUES

Values returned.

ENVIRONMENT

VARIABLES

Environment variables used

FILES Files associated with the subject.

EXAMPLES Examples and suggestions.

ERRORS Errors reported by the command.

STANDARDS Conformance to applicable standards.

BUGS Errors and caveats.

CATEGORY The comma-delimited list of categories to which this

command belongs. Category names must follow normal

file naming conventions. Category names which begin with

‘_’ will not be used in the specification. See section TBD

(“Command-Line Help”) for more information on how this

category is used when installing new commands.

Version 2.0 Errata A
 219

other Other sections added by the help author.

220 Version 2.0 Errata A

Version 2.0 Errata A
 221

Appendix C

 UEFI Shell Status

Codes

Most UEFI Shell commands return SHELL_STATUS code values. These UEFI
Shell status codes are enumerated below.

Table 32 SHELL_STATUS return codes

Mnemonic V
a
l
u
e

Description

SHELL_SUCCESS 0 The operation completed successfully

SHELL_LOAD_ERROR 1 The image failed to load.

SHELL_INVALID_PARAM

ETER

2 There was an error in the command-line options.

SHELL_UNSUPPORTED 3 The operation is not supported.

SHELL_BAD_BUFFER_SI

ZE

4 The buffer was not the proper size for the

request.

SHELL_BUFFER_TOO_SM

ALL

5 The buffer is not large enough to hold the

requested data. The required buffer size is

returned in the appropriate parameter when this

error occurs.

SHELL_NOT_READY 6 There is no data pending upon return.

SHELL_DEVICE_ERROR 7 The physical device reported an error while

attempting the operation.

SHELL_WRITE_PROTECT

ED

8 The device cannot be written to.

SHELL_OUT_OF_RESOUR

CES

9 A resource has run out.

SHELL_VOLUME_CORRUP

TED

1

0

An inconstancy was detected on the file system

causing the operating to fail.

SHELL_VOLUME_FULL 1

1

There is no more space on the file system.

SHELL_NO_MEDIA 1

2

The device does not contain any medium to

perform the operation.

SHELL_MEDIA_CHANGED 1

3

The medium in the device has changed since the

last access.

222 Version 2.0 Errata A

SHELL_NOT_FOUND 1

4

The item was not found.

SHELL_ACCESS_DENIED 1

5

Access was denied.

SHELL_TIMEOUT 1

8

The timeout time expired.

SHELL_NOT_STARTED 1

9

The specified operation could not be started.

SHELL_ALREADY_START

ED

2

0

The specified operation had already started.

SHELL_ABORTED 2

1

The operation was aborted by the user

SHELL_INCOMPATIBLE_

VERSION

2

5

The function encountered an internal version that

was incompatible with a version requested by the

caller.

SHELL_SECURITY_VIOL

ATION

2

6

The function was not performed due to a security

violation.

SHELL_NOT_EQUAL 2

7

The function was performed and resulted in an

unequal comparison..

Version 2.0 Errata A
 223

Appendix D

 UEFI Shell Command

Standard Formatted

Output

This section describes the general, table-based standard output format for
UEFI shell commands. The format is designed so that tools can easily process
output produced by shell commands.

UEFI shell commands using standard formatted output display the same
information they would normally display, except using rows and columns of
comma-delimited data. The first column always contains a C-style identifier
which describes the type of data on the row. This identifier is known as the
table name. Table names which begin with the ‘_’ character are
implementation-specific.

The second and subsequent columns are quoted C-style strings containing the
actual UEFI shell command data. For each UEFI shell command, the format
and meaning of each column depends on the column number and the table
name.

Shell commands which support the –sfo option will always produce the table
name ShellCommand. The second column contains the name of the shell
command without any extension. For example:

ShellCommand,”ls”

For example:

FileInfo,"fs0:/efi/boot/winloader.efi","45670","arsh"

FileInfo,"fs0:/efi/boot/timsfile.txt","1250","a"

FileInfo,"fs0:/efi/boot/readme.txt","795","a"

In the syntax below, an identifier is a C-style identifier, which starts with an
alphabetic character or underscore. A quoted string starts with a double-
quotation mark (“) character, followed by zero or more characters and

concluding with a double-quotation mark (“) character. Quotation marks in the
string must be escaped by using a ^ character (i.e. ^”). The ^ character may
be inserted using ^^.

Extended Syntax

sfo-format := sfo-row

 sfo-row <EOL> <sfo-row>

224 Version 2.0 Errata A

sfo-row := sfo-table-name, sfo-columns

sfo-table-name := identifier

sfo-columns := sfo-column |

 sfo-columns, | sfo-column

sfo-column := quoted-string |

 <empty>

Example
VolumeInfo, "TimsVolume","400000000","32000000","16000000"

FileInfo, "fs0:/efi/boot/winloader.efi","45670","arsh"

FileInfo, "fs0:/efi/boot/timsfile.txt","1250","a"

FileInfo, "fs0:/efi/boot/readme.txt","795","a"

