Implementing Secure Boot:
A Refresher on Key & Database Configuration

UEFI PlugFest– March 18-22, 2013
Presented by Tim Lewis, CTO, Insyde Software
Agenda

- Securing the boot process
- Why we need Secure Boot
- The engineering of the secure boot feature
- Is my platform ready?
Much Progress in 2012

Window 8 and Windows Server 2012 Launched

“I would add that security improvements alone may justify the purchase for many enterprises. [...] Like Windows 8, Windows Server 2012 has replaced the traditional ROM-BIOS with the new and improved industry boot standard known as UEFI using the security-hardened 2.3.1 version.”

Roger Grimes, infoworld.com

UEFI Versions of Fedora and Ubuntu Launched

“UEFI would provide a foundation for a chain of trust that would connect all the way up to the software layer, which could thwart attempts to install illicit, and harmful, software on [Linux] computers.”

Joab Jackson, pcworld.com
Ecosystem Ready for Secure Boot

FIRMWARE
System Firmware
OpRom Firmware

HARDWARE
System Boards
Add-in Cards

SOFTWARE
Recovery Software
Operating Systems
Benefits of Secure Boot

• UEFI Boot inherently has lots of value
 – Support for large disk drives
 – Support for complex partition structures
 – Rich Network support including IPv6
 – Better PXE provisioning and boot from iSCSI
 – Better Error Reporting and Management Tools

• But UEFI Boot needs Secure Boot to lock down access to the critical boot files
Project Planning is Critical

– Benefits of a hardened system boot are clear, but...

– Secure products require selecting partners that prioritize security, starting in the firmware, and continuing throughout the boot process.

Partners can help you reach your security goals!
Quick Review – What is Secure Boot?

• UEFI Secure Boot is a technology to eliminate a major security hole during handoff from UEFI firmware to UEFI OS

• Option ROMs and OS boot loaders need to be signed by private key corresponding to a certificate in the system Security Database

• Database is always provisioned at factory and maintained by OS if required for revocation.
Secure Boot – Step by Step

1. UEFI Driver Signing:

 PE Image
 - PE Header
 - Certificate Directory
 - Section 1
 - Section N

 PKCS #7 + Authenticode Ext
 - ContentInfo
 - Certificate
 - PE File Hash
 - X.509 Cert.
 - Sign Info
 - Signed Hash of ContentInfo

2. UEFI Secure Boot Database:

 PK
 - Update Enable
 - KEK
 - Update Enable
 - db
 - Update Enable
 - dbx
 - Update Enable

 If Signed by key in db, driver or loader can Run!
 If Signed by key in dbx, driver/loader forbidden!
3. **Platform does UEFI Driver Checking:**

Factory

System

Cert

UEFI Firmware

Cert. Authority

UEFI Driver

Sig

Firmware compares signature to database and if it matches, drivers are approved.
Microsoft CA

• UEFI Option ROMs need to be signed by a widely trusted Certificate Authority
• Microsoft has CA experience and volunteered to host the first all-industry UEFI CA
• Manufacturers are encouraged to put MS CA certificate into “Allowed” database
• Microsoft policies are non-discriminatory, for example Microsoft CA signed the Linux ‘Shim’ boot driver
• Could there emerge another trusted CA?
 - Possible, plenty of room in the database
 - Need to convince OEMs to include
Secure Boot, Linux, & Chain of Trust

UEFI Firmware
- Root of Trust
 - Cert

Boot Shim
- Signed

Linux Boot Loader

Microsoft UEFI CA

OS Security Infrastructure

Linux
Secure Boot, Windows, & Chain of Trust

- UEFI Firmware
 - Root of Trust
 - Cert
- Windows Boot Loader
 - Signed
- Microsoft UEFI CA
- OS Security Infrastructure
 - Windows
DEM0 #1 – Is my System Ready?

1. Secure Boot Enabled
2. MS CA Cert Present

Sign up for beta copy at: appsupport@insyde.com
Goals for UEFI Forum in 2013 and Beyond

• Progress toward wide adoption is an important goal!
• Also launching UEFI-style Secure Firmware Update for smoother user experience

• To achieve this UEFI community promises:
 – Attention to all elements of the ecosystem
 • Systems, expansion cards, firmware and OS
 – Education on the benefits
 – Responsive to the needs of each segment
Thanks for attending the UEFI Spring PlugFest 2013

For more information on the Unified EFI Forum and UEFI Specifications, visit http://www.uefi.org
Welcome to apps.insyde.com

Your Resource for Insyde Apps

Apps.Insyde exists as a destination for resources and support for current and future Insyde Software UEFI & Windows 8 apps. Please check back for notices of app updates as well as brand new releases.

If you are looking for Insyde's UEFI Secure Boot Checkup Tool, please click on the first link above.
UEFI Secure Boot Checkup™

### Current Variable	Type	Contents
Boot0003 | MEDIA/HD | Windows Boot Manager
✓ Boot0002 | MEDIA/HD | Android
Boot2001 | NULL | EFI USB Device
Boot2002 | NULL | EFI DVD/CDROM
Boot2003 | NULL | EFI Network

### Field	Value
Name | Boot2002
Attributes | 000000001
FilePathListLength| 0004
Description | EFI DVD/CDROM
DevicePathType | End-Of-DP
OptionalData | 5243

- **Set First Boot Choice**
- **Set Boot Next**

UEFI Spring Summit – March 2013
www.uefi.org
Secure Boot Report:

Warnings:
- NoWarnings

Secure Boot Status on this system:
- System Status: Secure Boot Enabled
- MS Required KEK: Present
- MS Required OS Cert: Present
- 3rd Party (MS CA): Present

UEFI Variables:
- SetupMode: 0
- SecureBoot: 1
- OsIndicationsSupported: 0000000000000001
- BootCurrent: 0002
- Boot0003: Windows Boot Manager
- Boot0002: Android
- Boot0001: EFI USB Device