UEFI ARM Update

UEFI Summerfest – July 15-19, 2013
Presented by Dan Handley (ARM)
Agenda

• ARM Economics
• ARM UEFI Strategy
• Current Status
• Future Work
• Questions
Economics

• What are the ARM numbers?
 – Processors shipped in 2012: $\sim 8.7 \text{ B} \ (\sim 7.9 \text{ B in '11})$
 – Processors shipped in total: $>30 \text{ B}$
 – Processor licenses: $\sim 960 \ (850 \text{ in '12})$
 – Semiconductor partners: 310 (290 in '12)
 – Process technology: 14 – 250 nm
 – Connected community members: 1000+ (950 in '12)
Economics (1000+)
ARM UEFI Strategy
Why UEFI on ARM?

• Driving forces for UEFI on ARM
 – Processor and system complexity increasing
 – Support existing partners' ARM processor-based UEFI solutions
 – Help standardize boot process for ARM processor-based platforms
 – Improve hw-sw interface for OS that target the ARM architecture

• Advantages to ARM partners and OEMs
 – Write once per platform, saving costs in bootloader development
 – UEFI specification written down and peer reviewed
 – Tested UEFI drivers available from 3rd party peripherals providers
 – Provides an environment for manufacturing tests
ARM UEFI Vision

• Provide standard ARM architectural support
 – Correctness in implementation within ARMv7-A and ARMv8-A architectures
 – Future-proof through standardized (rather than proprietary) reference software
 – Focus on reducing fragmentation and overall partner support costs

• Provide reference ports of UEFI for ARM development platforms

• Support BIOS (and other) partners' UEFI development
 – Directly and through Linaro
ARM Engineering Strategy

• UEFI support for the ARM Architecture
 – Maintain ARM packages and docs in Tianocore EDK2 repository
 – Implement support for new ARM architectures, CPUs and system IP
 – Implement common UEFI features or applications for ARM
 – Maintain SCT for ARM and validate on standard platforms
 – Align with relevant ARM Platform Design Documents (PDDs)

• UEFI support for ARM platforms
 – Porting for new ARM development platforms
 – Maintained within EDK2 (for standard platforms) or other neutral repository

• Help partners with UEFI platform code management and development
New Technologies

• **big.LITTLE**
 – Heterogeneous computing technology providing both high performance and extreme power efficiency, serving dynamic computing demands (32-bit & 64-bit)

• **Virtualization**
 – Includes Large Physical Address Extensions (LPAE), second level of MMU page table translations and support for hypervisors (32-bit & 64-bit)

• **ARMv8-A / AArch64**
 – Brings 64-bit support to the ARM Architecture increasing the register file, media instructions, addressing range and cryptography instructions (64-bit)
Example ARMv8-A Stack

Normal World

- EL0
 - Guest App 1
 - Guest App 2
 - Primary App 1
 - Primary App 2

- EL1
 - Guest OS Kernel
 - Primary OS Kernel or Hypervisor

- EL2
 - UEFI

- EL3
 - Trusted Firmware (Secure Monitor)

Secure World (TrustZone)

- Trusted App 1
- Trusted App 2

Key
- EL3 Execution
- S-EL1 / S-EL0
- EL2
- NS-EL1 / NS-EL0

AArch32 to AArch64 transition

AArch64 to AArch32 transition

UEFI Summerfest – July 2013

www.uefi.org
Specification

• ARM Binding Sub-Team (ABST) activities:
 – Created AArch64 UEFI Bindings
 • Support now available in UEFI 2.4
 – Virtualization Protocol Proposal
 • Standardize the way to start a hypervisor from AArch32 UEFI
 – Boot Architecture
 • Discussions around the standardization of the ARM Boot Architecture
Existing EDK2 Features

• ARMv7-A architectural support
 – Maintained by ARM since February 2011
 – With help from Apple, HP, Linaro, ...
• Standard implementations for ARM hardware IP
 – All Cortex-A class processors, caches, interconnects, memory controllers, ...
• ARM development platform support
 – Models, Versatile Express based systems (A9x4, A15x2 + A7x3)
• TrustZone initialization, big.LITTLE
• Booting ATAG and FDT Linux kernels
• Toolchain support (ARM, GNU, XCode)
• Debug (GDB, DS-5 integration)
• SCT port to ARM (integrated with main SCT package)
• Using any CPU as the primary
Current ARM EDK2 Focus

• Adding support for AArch64 in EDK2 and SCT
• Implementation of the ARM Virtualization Protocol proposal
• Aligning EDK2 with latest UEFI Specification
• Improving protocol support/compliance
• Enabling the ARM Ecosystem through Open Source contributions
AArch64 EDK2 support

• ARM recommends UEFI for all AArch64 systems
• Available to licensees for last few months
• Publication of UEFI 2.4 spec unblocks public release
 – Upstreaming to EDK2 imminent
• Focus is on ARM Fast Models for now
 – Fixed Virtual Platforms (FVPs)
 – AArch64 hardware not widely available yet
 – Platform support will be available from neutral repository
Fast Model Example
Fixed Virtual Platforms

• **Current: Two main flavours of FVP**
 – “AEMv8-RTSM-VE”: primary development platform
 – The key development platforms for key software activity
 • AArch64 tools (GNU and ARM), UEFI and Linux kernel
 • Linux filesystem and related packages

• **2013 H2: Address broader needs for software eco-system**
 – System Architecture (Platform Design Documents)
 – Dual cluster capability, power management emulation
 – Low-level software frameworks:
 • Support for all exception levels (secure world, virtualization support)
 • Power State Coordination Interface (PSCI)
 – "VE" => "Base" platform (generic AEMv8 and Cortex-A53/57 variants)
ARM Virtualization Protocol

• Problem: Need to make Virtualization Extensions available to OS
• For AArch64, can just run UEFI and OS in "Hyp Mode" (EL2)
• For AArch32, existing systems run UEFI in "SVC Mode" (EL1)
• Protocol allows new OS loaders to escalate UEFI into "Hyp Mode"
 – While providing compatibility with existing OS
• Can already start Linux KVM from AArch32 UEFI
 – Solution not yet complete
Future Work

• Create and manage regular stable branches
• Support latest ARM System IP
 – GICv3, interconnect, memory controllers, ...
• Improved virtualization support
 – Virtio drivers (block device, network)
 – VM booting via UEFI
• Maintenance, Consolidation, Housekeeping, Integration, Upstreaming, ...
Summary

• UEFI is a compelling solution for ARM and its partners
 – Recommended bootloader for AArch64
• ARM is investing in both specification and implementation
 – Keeping up to date with new technologies (big.LITTLE, Virtualization, AArch64, ...)
• AArch64 implementation available publically imminently
• ARM models used to drive standardization
• Supporting BIOS (and other) partners, directly and through Linaro
Questions?
Thanks for attending the UEFI Summerfest 2013

For more information on the Unified EFI Forum and UEFI Specifications, visit http://www.uefi.org

presented by