
July 2022

Authors:

Richard Wilkins, Ph.D.
Principal Technology Liaison
Phoenix Technologies, Ltd.
Dick_Wilkins@phoenix.com

Samer El-Haj-Mahmoud
Senior Principal Architect
Arm Limited
Samer.El-Haj-Mahmoud@arm.com

UEFI
Conformance Profiles

Allowing “Reduced Model”
Implementations

2

Understanding UEFI “Conformance Profiles” and Their Uses

This document explains a new “Conformance Profiles” capability, provided by the UEFI Specification,
that will allow the creation subsets of UEFI required interfaces, along with specifics of how to
communicate descriptions of those subsets to loaded software, in a standard way.

Introduction

When the Extensible Firmware Interface (EFI) was originally developed, it targeted traditional computing
platforms (servers, desktops, and laptops) using general purpose operating systems. It provided a
standard, and easily extensible, interface between platform firmware and systems software. This
standard provided for common interactions and interoperability between various platforms, their
firmware implementations, and the various available systems software implementations.

In 2005, the Unified EFI Forum, a nonprofit industry standards body, was formed to maintain the Unified
Extensible Firmware Interface (UEFI) Specification.

The interoperability provided by the UEFI standard has encouraged its use in an ever-growing series of
platform and software types. Some industry groups have required that standard UEFI interfaces be
provided for a platform to be certified by their organization. These market-driven requirements have
resulted in the UEFI standard interfaces being implemented on many types of systems, well beyond the
originally targeted computing platforms.

As this migration to new platform types has been happening, developers of firmware for platform types
not originally contemplated by the developers of EFI, have pointed out that some UEFI standard
required interfaces may not be needed by some platform types. Implementing these unused interfaces
and their supporting code is an unnecessary burden to smaller and constrained devices such as those for
the IoT, embedded, automotive, and other markets.

The new capability described here, to provide “Conformance Profiles”, will allow subsets of the UEFI
required interfaces to be created and the specifics of how a subset’s description is communicated to
loaded software in a standard way.

What is normally required?

While the UEFI Specification is well over 2400 pages in length, with hundreds of interfaces defined, only
a small subset are “required” to be implemented. These required elements are documented in Chapter
2 of the specification. But even that subset may be an unnecessary burden to some constrained devices.

If a firmware implementation lacks some required elements, then it is not fully compliant with the UEFI
Specification and software may not have access to all expected facilities. On the other hand, it may be
desirable for a constrained platform to provide only those elements that will actually be used by their
target software and remove those that are not going to be needed.

UEFI Forum contributing members have agreed that implementing requirements subsets for specific
platforms is desirable. They also saw the need to communicate the details of the subset being provided

3

by a platform to loaded software so that software is aware of the limitations to the interfaces provided
by that platform. Software could then decide if this was a viable environment for it to run.

The EFI_CONFORMANCE_PROFILE_TABLE

Section 4.6 of the latest UEFI Specification will define a new conformance profile UEFI configuration
table. This table will list identifiers (GUIDs) of the specific profiles of required elements supported by a
platform firmware implementation.

The definition of these “profiles” of required elements are defined and agreed to by the platform
firmware developers and the software intended to run on that platform. They will typically NOT be
recorded in the UEFI Specification. Instead, they may be defined in other industry standard
specifications, or platform-specific specifications.

Software running on a platform can check for the presence of the EFI_CONFORMANCE_PROFILE_TABLE
and assume:

1. If the table is not present, the firmware complies with the UEFI Specification version identified in
the EFI_SYSTEM_TABLE. This is needed for backward compatibility. If the table is not present, it
is assumed that the firmware implementation was done prior to the table’s definition being
included in the specification, and the firmware is fully compliant with the UEFI “required
elements”.

2. If the table is present and contains the EFI_CONFORMANCE_PROFILES_UEFI_SPEC_GUID defined
below, the firmware complies with the UEFI Specification version identified in the
EFI_SYSTEM_TABLE.

3. If the table exists and contains one or more other GUIDs, it is based on the UEFI version in the
EFI_SYSTEM_TABLE but supports only those elements agreed to by the specification that
assigned the GUID.

The following GUID is defined in the UEFI Specification and indicates full conformance to the UEFI
specification required elements.

#define EFI_CONFORMANCE_PROFILES_UEFI_SPEC_GUID \
{ 0x523c91af, 0xa195, 0x4382, \
{ 0x81, 0x8d, 0x29, 0x5f, 0xe4, 0x00, 0x64, 0x65}}

After the definition of the EFI_CONFORMANCE_PROFILE_TABLE becomes part of the published UEFI
Specification, it is recommended that this table be included in all future UEFI based firmware
implementations with the correct GUID(s) included in that table.

If the table is present and defines a GUID for a subset of required elements, the loaded operating system
or software can assume that predefined subset is present without the need of detailed probing of the
implementation to confirm the presence of any particular interface.

Any firmware developer creating an implementation for a product that desires to use a subset of the
UEFI required elements may define a GUID identifying their specific subset implementation. These
GUIDs need not be recorded in the UEFI Specification and are only of interest to software confirming
that the firmware they are communicating with meets their needs. Note: If a developer of a subset

4

profile would like to have their GUID documented in the UEFI Specification, they should have the GUID
and a pointer to where it is publicly documented brought to the UEFI Specification working group for
consideration of publication in a future UEFI Specification.

Software that requires a fully conformant UEFI firmware implementation should check for the presence
of the conformance profiles table and if found, should check for GUID(s) not matching the
EFI_CONFORMANCE_PROFILES_UEFI_SPEC_GUID. If they are found, then that software knows that it is
running on a non-conformant firmware subset and will likely need to report an appropriate error and
fail to run.

How “Non-Conformant” Implementations Use the Table

If a platform/firmware developer and a software provider choose a set of UEFI interfaces needed by
their platform solution, they can match their software to a specific firmware solution using the
EFI_CONFORMANCE_PROFILE_TABLE. Together, firmware and software developers agree to a subset of
‘required elements’, a set of ‘optional interface protocols’ and possibly one or more proprietary
‘interface protocols’ required for their product. They assign a GUID for that pattern of interface support
and may publish it for others to use or may choose to keep it to themselves. The firmware publishes
their GUID in the EFI_CONFORMANCE_PROFILE_TABLE and the software checks it at “boot” time. In this
way, the software can confirm it is running on the correct platform early in its startup process.

A Usage Example

This is an example of one way in which this capability may be used.

At the time this document was created, Arm Holdings, Ltd., along with their developer community, have
published a firmware specification for embedded devices called the Embedded Base Boot Requirements
(EBBR) specification version 2.0. This specification describes an interface between platform firmware
and operating systems appropriate for their target embedded market. This EBBR Specification describes
a specific subset of the UEFI required elements.

Platforms that implement the EBBR Specification should implement the
EFI_CONFORMANCE_PROFILE_TABLE, with a specific GUID to indicate EBBR 2.0 compliance and
deviations from the UEFI Specification of required elements. This GUID would be defined and published
in the EBBR Specification or other documents. This publication of a conformance profile GUID is not
required by the UEFI Forum but is encouraged. It is NOT required that the GUID or any other details
contained in the specification be added to the UEFI Specification unless the developer or group chooses.

Value of this feature

This new capability enables the usage of standard UEFI interfaces on a much wider range of platforms.
While most existing implementations of the standard currently supply fully conformant firmware based
on the Tianocore/EDK2 open-source or UEFI compliant proprietary codebases, this ability to define
subset profiles allows new platform types an easier implementation of the interface standard on other
codebases such as U-Boot, coreboot, and Linux Boot, for example.

This also opens the door to wider acceptance of the UEFI standard across the industry and allows it to
help in the interoperability of devices from the largest computing servers to the smallest IoT and sensor
devices. As the standard includes many security features, this broad acceptance enables more secure

5

implementations of all these devices, a real benefit to all users.

Feature Status

At the time of this writing, this feature has been approved by the UEFI Specification
working group for inclusion in the next published version of the specification (expected to
be 2.10). Developers may implement this feature at a time of their choosing.

This feature was developed using the “Code First” process of the UEFI Forum. This
process acknowledges the valuable insights and contributions of the open-source
communities to the development of the UEFI Specifications. Developers who cannot be
contributing members of the UEFI Forum can still contribute to the specs. Open-source
venues (for example, the Tianocore open-source firmware project), that have compatible
intellectual property rules, can provide a place to discuss, design, and demonstrate
implementations of new spec features. When ready, a UEFI Contributor member may
bring that completed work, that was created in public view, to a UEFI working group for
acceptance or rejection as a package.

About UEFI Forum

The UEFI Forum, a nonprofit industry standards body, champions firmware innovation through industry
collaboration and the advocacy of a standardized interface that simplifies and secures platform
initialization and firmware bootstrap operations. Both developed and supported by representatives
from more than 350 industry-leading technology companies, UEFI Forum specifications promote
business and technological efficiency, improve performance and security, facilitate interoperability
between devices, platforms, and systems, and comply with next-generation technologies.

The Forum’s spheres of input and influence are large: Membership represents major voices from all
players in the industry—open source to proprietary technology, hardware to software, mobile to
stationary devices. The Forum collaborates with other standards groups that are essential to computing.

For More Information

Please visit www.uefi.org for more information about UEFI, including current specifications and
membership options.

