
presented by

UEFI Support for Software Bill of
Materials (SBOM)
UEFI 2022 Virtual Summit

September 28, 2022

www.uefi.org 1

Meet the Presenters

www.uefi.org 2

Brian Mullen

Senior Manager of Software Security, AMI

Brian is AMI's Secure Development Lifecycle expert

leading in areas of security best practices for software

and firmware development.

Felix Polyudov

Director of Firmware Core Architecture, AMI

Felix leads Firmware Core Architecture Group at AMI.

Agenda

• SBOM Use Case Review
• SBOM Implementation Approaches
• UEFI SBOM Implementation
• SBOM Ecosystem Suggestions

www.uefi.org 3

SBOM Use Cases

www.uefi.org 4

INVENTORY
TRACKING

SOFTWARE
DEPENDENCIES

PROVENANCE PEDIGREE VULNERABILITY
STATUS

LICENSE
ATTRIBUTION

INTEGRITY,
AUTHENTICITY

⎻ Component Name

⎻ Vendor Name

⎻ Version

⎻ Unique Identifier

⎻ Ability to visualize

dependencies with

unidirectional

acyclic graphs

⎻ Determine

components that

are affected

⎻ Software

Origination Details

⎻ Details of changes

to software

⎻ Vulnerability

remediations

⎻ Provides the ability

to detail the state

of vulnerabilities in

the product at the

time the SBOM

was created.

⎻ Facilitates license

compliance

⎻ Mechanisms are

supported to

ensure SBOM

information is

authentic.

FW approaches to SBOM

www.uefi.org 5

Method Benefit Drawback Related

SBOM in the Binary

Not dependent on any other
systems to derive complete
SBOM therefore SBOM data
guaranteed to be available even if
author is no longer available.

-Adds size to the binary object
-Need a tool to extract the SBOM

Embedding coSWID tags in the
binary object
files https://github.com/hughsie/pyth
on-uswid

SBOM Reference in the
Binary Small size, easy to update

-Need a tool to extract the
references
-Need systems to facilitate fetching
BOM for each SWID

Embedding coSWID tags
in the binary object
https://github.com/hughsie/python-
uswid

Measured Reference Little to no size added to binary

Need a system to measure the
binary
Need a system to cross-reference
the measurement with a DB of
SWIDs.
Need a system to facilitate fetching
BOM for each SWID

Intel proposes leveraging TPM
architecture to implement SBOM:
https://uefi.org/node/4261

OCP beginning SBOM discussions
this quarter with this approach in
focus

https://uefi.org/node/4261

Tags in binaries
• FW structure dependent

– If transparency is a goal, we should strive for a structurally
independent way to extract the SBOM info, store tags in the
clear, limit use of proprietary tooling

• For UEFI, granularity with regards to the UEFI FS
structure needs to be considered.
– Per image, per FV, per FFS, per section

• What do tags contain?
– References to source
– Binary Identities (name, version, hash)

www.uefi.org 6

Binary Tagging – Methods and Tradeoffs

www.uefi.org 7

Per Image Per FFS

Embedded Identifier

Limited value:
• As rom images names and versions

already available for released binaries in
most cases. IBV’s don’t release rom
image binaries nor do silicon vendors.

Better:
• Allows for inventory enablement. Can see

who in the supply chain last modified the
ingredient.

Challenges:
• It is difficult to identify FW. Limited

universal naming convention for all
possible variants. CPE/PURL exist.

Challenges:
• providing chronological versioning scheme.
• Business sensitivities – info leakage

Embedded Reference to SBOM

Best:
• Provides way to obtain SBOM

generated from the build for the binary.

Best:
• Support edge case of upgrading binaries in

FFS without requiring complete rom_image
upgrade.

Challenges:
• Needs ecosystem so SBOM can be

fetched with the SBOM reference. ---
Needs SCA phase at build time to
assemble ingredients of build

Challenges:
• Higher level implementation effort.
• Need ecosystem capable of supporting per

binary SBOMS.
• No guarantee the SBOM will available in the

future (lives and dies with vendor)

Granularity

Type

Practical SBOM Implementation
SBOM Implementation Challenges
• Complicated ecosystem (multiple parties involved) with large

portions of content exchange in the source form

• Patches are possible at multiple levels

• Component SBOM that was accurate when it left party A may be

inaccurate when it leaves party B

• Variety of preferences for SBOM content and level of granularity

• If SBOM data is provided by humans, how to avoid errors? If it's

extracted by the tool, how to ensure it's up to date?

Open Source 1

ISV

IBV

IHV 1

Open Source 2ODM

OEM
IFV

IHV 2

Open Source 3

Acronyms used in the diagram are defined at
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/glossary

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/glossary

Practical SBOM Implementation

Proposed Solution
• Single responsible party

‒ Entity that constructs final ROM image (leaf node in the dependency graph) produces SBOM using

tooling/infrastructure from the implementation provider

• Upstream partners provide SBOM for their components

• Mechanism to describe patches on top of the upstream components

• Extensibility/Flexibility (ability to put more data into SBOM; ability to adjust the granularity)

• Combine data extracted from the code base with the manually entered data; support overrides

of the code base data

SBOM Construction

www.uefi.org 10

Package 1
Package1.dec

Package1.sbom.yaml

Build system specific
component description

file

Component SBOM file

Package 2
Package2.dec

Package2.sbom.yaml

Package N
PackageN.dec

PackageN.sbom.yaml

…

Project Package
Project.dsc

Project.sbom.yaml

SBOM Builder

Command
Line

Arguments

SBOM
Reference Data

Structure

CycloneDX
SBOM

SBOM Reference is
embedded into system

firmware

Sources of SBOM Data

www.uefi.org 11

Department of Commerce
Minimum Elements of an

SBOM

Source of Information
(Manual)

Source of Information
(Automated)

Supplier SBOM Builder command line

Component Name Component sbom.yml: name • .dec file: PACKAGE_NAME
• .inf file: BASE_NAME

Version of the Component Component sbom.yml: version
• .dec file: PACKAGE_VERSION
• .inf file: VERSION_STRING
• Commit ID

Unique ID for look-ups Component sbom.yml: id • .dec file: PACKAGE_GUID
• .inf file: FILE_GUID

Dependency Relationship Component sbom.yml: contains

Author of SBOM Data Component sbom.yml: owner

Timestamp SBOM Builder

Beyond Required Elements
• Sbom.yaml file may contain additional relevant

data:
– Component license
– List of patches applied to upstream components
– Subset of upstream component used by the FW

• New elements can be added as necessary
– Extensible format: YAML

www.uefi.org 12

Sample SBOM YAML files

www.uefi.org 13

Imported open-source code
name: edk2
id: 6C5BD3EB-AA1F-4DD1-8EE4-963BF4A68079
version: edk2_23
owner: ami
contains:

edk2:
url: https://www.tianocore.org
license: BSD-2-Clause-Patent
version: edk2-stable202205
scope:

- MdePkg/*
- MdeModulePkg/*

patches:
DriverXOverrun:

id: CVE-2022-12345, bz1234
scope:

- MdeModulePkg/Universal/DriverX/DriverX.c
comments: Fixed using bz1234 patch

Native feature package
name: FeatureComponent1
The rest of the data is extracted from the
component description file

Silicon vendor reference code
name: Isv1RcPkg
id: DB3383F3-D696-459D-B60B-8D0754A4B61C
version: Isv1RcPkg_12
owner: ami
contains:

IsvRc:
license: Isv1
scope:

- *
version: 2.22.47.31

Fsp:
license: Isv1
scope:

- *
version: 1.23

Aptio V SBOM
Report

www.uefi.org 14

SBOM Reference Data Structure

www.uefi.org 15

Type Name Description

UINT64 Signature SIGNATURE_64(‘F’, ‘W’, ‘_’, ‘S’, ‘B’, ‘O’, ‘M’, ‘R’)

UINT16 Size Total size of the SBOM Reference Structure in bytes

UINT16 Version Version of the SBOM Reference Structure

UEFI_GUID SbomId
16-byte SBOM identifier of a given firmware’s static configuration of
code

UINT8 SupplierNameSize Size in bytes of the SupplierName field.

CHAR8[VendorNameSize] SupplierName
FW. Supplier. NULL-terminated string.
*See iana.org link in the Resources slide

UINT8 ProjectNameSize Size in bytes of the ProjectName field.

CHAR8[ProjectNameSize] ProjectName The Project name as a NUL-terminated ASCII string.

UINT8 FirmwareVersionSize Size in bytes of the FirmwareVersion field.

CHAR8[FirmwareVersionSize] FirmwareVersion The Firmware Version Number as a NUL-terminated ASCII string.

Embedding the SBOM Ref Data

www.uefi.org 16

UEFI FIRMWARE

FV_00

FV_01

FV_02

FV_03

FV_04

FV_05

FV_06

FV_07

FV_08

FV_09

FV_10

FV_11

FV_12

FV_13

FV_13

FFS_00

FFS_01

FFS_02

…

…

FFS_15

…

FFS_56

FFS_57

FFS_58

FFS_15

SBoM Section

SBOM Advertisement and Discovery
• If you have the FW binary, you need to devise a way to

get the SBOM given only the binary
• If you are relying on SBOM references, the solution

should stand the test of time
– Avoid references that could become stale or obsolete due

organizational vacillations
• Links to vendor SBOM servers – Bad
• Generic reference to vendor with generic service that maps to

vendors to SBOM servers
• Open, centralized SBOM repo (think NVD or ICAN)
• Decentralized solution?

www.uefi.org 17

Example SBOM Ecosystem

www.uefi.org 18

SupplierName =‘Vendor Name’
SbomGuid = <SBOM_GUID>
FirmwareVersion =
<FW_VERSION>

http://www.vendor.com/sbom/
<SBOM_GUID>/FW_VERSION

Platform
Vendor

SBOMs FW
Images

FW BuildSBOM Build

SC
Repo

Source codeSBOM YAML

UEFI Build flow

FW Image Release
Public

Domain

SBOM Ref Data Extraction flow

UEFI

Image

SBOM Tag
Extractor Tool

SBOM Tag

SBOM Retrieval

Platform
Vendor

SBOMs

SBOM Download Flow

SBOM

Requestor

Implement SBOM Use Cases

SBOM
Locator
Service

SBOM server addr

http://www.vendor.com/sbom/

http://www.vendor.com/sbom/

One-time registration

mailto:='git@git.ami.com:bootfirmware/aptiov/bkc/cfl.git

Next Steps

SBOM Integration:

Downstream partners (OEM/ODM/CSPs)

Upstream partners (Silicon Vendors)

www.uefi.org 19

Call-to-Action

Contact-Us:
 Demos and Product Updates

Upcoming:
 SBOM Demo: OCP Global Summit 2022 (October)

 Production-ready SBOM: Q1 2023

www.uefi.org 20

https://www.ami.com/contact-us/

Resources
Good intro to SBOM use cases:
• https://www.youtube.com/watch?v=PNYyMpUey7Y (OWASP SBOM use cases)

Executive Order Related: Why we have to do it:
• https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
• https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

Advertisement and discover:
• Standard Vendor Names: https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers

Methods/Tools for associating SBOMs with binaries:
• https://github.com/hughsie/python-uswid (LVFS/ Redhat/Richard Hughes' embedded coSWID

tags solution)
• https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-21.txt
• https://uefi.org/node/4261 (Intel's approach with TPM/RIM)

www.uefi.org 21

http://ohttps/www.youtube.com/watch?v=PNYyMpUey7Y
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://github.com/hughsie/python-uswid
https://www.ietf.org/archive/id/draft-ietf-sacm-coswid-21.txt
https://uefi.org/node/4261

Questions?

www.uefi.org 22

Thanks for attending the UEFI 2022 Virtual Summit

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 23

http://www.uefi.org/

	UEFI Support for Software Bill of Materials (SBOM)
	Meet the Presenters
	Agenda
	SBOM Use Cases
	FW approaches to SBOM
	Tags in binaries
	Binary Tagging – Methods and Tradeoffs
	Practical SBOM Implementation
	Practical SBOM Implementation
	SBOM Construction
	Sources of SBOM Data
	Beyond Required Elements
	Sample SBOM YAML files
	Aptio V SBOM Report
	SBOM Reference Data Structure
	Embedding the SBOM Ref Data
	SBOM Advertisement and Discovery
	Example SBOM Ecosystem
	Next Steps
	Call-to-Action
	Resources
	Questions?
	Slide Number 23

