
presented by

Strategies for Stronger Software SMI
Security in UEFI Firmware

Fall 2017 UEFI Seminar and Plugfest
October 30 – November 3, 2017

Presented by Tim Lewis (Insyde Software)

UEFI Plugfest – October 2017 www.uefi.org 1

Agenda

• Management Mode Overview

• Implementing Software MMI
Handlers Securely

• Call To Action & Resources

UEFI Plugfest – October 2017 www.uefi.org 2

Management Mode* (MM) Overview

• UEFI PI-standard for creating a protected execution
environment using hardware resources
– Dedicated, protected memory space, entry point and

hardware resources, such as timers and interrupt
controllers

– Implemented using SMM (on x86) or TrustZone (Arm)

– Highest-privilege operating mode with greatest access
to system memory and hardware resources

UEFI Plugfest – October 2017 www.uefi.org 3

*Formerly known as SMM in the PI specification.

Software Management Mode Interrupts*
(Software MMIs)
• Management Mode Interrupts generated by software

synchronously are called Software MMIs
– Generated using I/O resources or CPU instructions

• Used to provide firmware services to the
– OS (ACPI, TPM)
– OS drivers (device handoff, CPU management)
– UEFI runtime support (variables, capsule, etc.)
– BIOS vendor applications (flash utilities, setup access)
– OEM/ODM applications

UEFI Plugfest – October 2017 www.uefi.org 4

*Formerly known as SMIs in the PI specification.

Why Are Software MMI Vulnerabilities
Dangerous?
• Software MMIs can be asked to perform privileged operations

– Flash BIOS, flash EC, write to MMIO, write to MMRAM, etc.

• Software MMIs can be asked to overwrite OS code/data

• Software MMIs can be asked to copy protected OS data to another
unprotected location

• Software MMIs can be asked to copy protected firmware data to
another unprotected location

• Software MMIs can be asked to overwrite BIOS code/data

UEFI Plugfest – October 2017 www.uefi.org 5

Assumptions For This Presentation…

• Memory protected by the OS cannot be snooped while in use by the OS
application or OS driver
– No protection from MM, VMs or hardware snooping

• Flash protected by hardware cannot be modified outside of MM after the
end of DXE
– Not worried about snooping since no secrets are stored in BIOS
– Not worried about flash-altering hardware attacks

• Software MMIs cause CPUs to enter SMM in SMRAM at a fixed location

• MMRAM cannot be altered from outside SMM

UEFI Plugfest – October 2017 www.uefi.org 6

7

Implementing Software MMI Handlers
Securely

Implementing Software MMI Handlers
Securely Overview
• #1: Allocate The Buffer In PEI/DXE

• #2: Never Trust That Pointers Point To The Buffer

• #3: Prohibit Input/Output Buffer Overlap

• #4: Don’t Trust Structure Sizes

• #5: Verify Variable-Length Data

UEFI Plugfest – March 2017 www.uefi.org 8

#1: Allocate The Buffer In PEI/DXE

• Don’t use a buffer provided by the OS application or OS
driver
– Might point to SMRAM, MMIO, OS data, firmware data or

generate an exception

• Allocate the buffer during DXE and pass the pointer to the
buffer by a table (ACPI, System Configuration) or some
other tamper resistant method

• Provide a library function that verifies if a range of bytes
exists within the command buffer. Example:
– BOOLEAN BufferInCmdBuffer(VOID *Ptr,
UINTN Size);

UEFI Plugfest – March 2017 www.uefi.org 9

#2: Never Trust Pointers Point To The
Buffer
• Provide a library function that verifies if a range

of bytes exists within the buffer
• Must also test pointers to pointers
• Example:

BOOLEAN

BufferInCmdBuffer(

IN CONST VOID *Ptr,

IN UINTN Size

);

UEFI Plugfest – March 2017 www.uefi.org 10

Confidential | © 2017 Insyde Software

#3: Prohibit Input/Output Buffer Overlap
• If the pointers of input and output buffers overlap, then

output data may overwrite input data after it has been
validated, but before it has been used.

• Example:
– Verify Input Parameter 1
– Verify Input Parameter 2
– Read Input Parameter 1
– Write Output Parameter 1

• Oops! Changes Input Parameter 2!
– Read Input Parameter 2
– Write Output Parameter 2

11

Input Parameter
1

Input Parameter
2

Output
Parameter 1

Output
Parameter 2

0 4 8 1
6

Confidential | © 2017 Insyde Software

#3: Prohibit Input/Output Buffer Overlap
Example

• Check for buffer-overlap when two buffers are passed in

// StructurePtr = pointer to 1st buffer.
// Structure2Ptr = pointer to 2nd buffer.
// StructureSize = size of 1st buffer.
// Structure2Size = size of 2nd buffer.

UINT8 *StructurePtrOffset = (UINT8 *) StructurePtr;
UINT8 *StructurePtr2Offset = (UINT8 *) StructurePtr2;

if (StructurePtrOffset+StructureSize >= StructurePtr2Offset &&
StructurePtrOffset < StructurePtr2Offset+Structure2Size) {

return SECUTIRY_ERROR;
}

12

Confidential | © 2017 Insyde Software

#4: Don’t Trust Structure Sizes
• Verify that StructureSize member is actually in the Buffer!

– Even if the start of the structure is in the Command Buffer, the
Structure Size member might not be in the Buffer

StructurePtr = (STRUCTURE_NAME *)Register;
StructureSizeOffset = OFFSET_OF(STRUCTURE_NAME, StructureSize);
StructureSizeSize = sizeof(StructurePtr->StructureSize);
if (!BufferInCmdBuffer(

(VOID *)StructurePtr,
StructureSizeOffset + StructureSizeSize – 1)){

return SECURITY_ERROR;
}

13

Confidential | © 2017 Insyde Software

#4: Don’t Trust Structure Sizes
• Verify that StructureSize is at least the minimum size of the

structure that contains it
– Later code may assume that they are working on a specific

structure, but need to verify the buffer can actually hold that
structure

StructureSize = StructurePtr->StructureSize;

if (StructureSize < sizeof(STRUCTURE_NAME)) {

return SECURITY_ERROR;

}

14

Confidential | © 2017 Insyde Software

#5: Verify Variable-Length Data
• While parsing variable length data, the software MMI

handler must not go past the end of the input buffer or
output buffer
– When parsing variable-length structures

– When handling null-terminated strings

– When handling arrays with fixed or variable-sized entries

15

Confidential | © 2017 Insyde Software

#5: Verify Null-Terminated Strings
• Missing null-terminators on strings can cause many functions

(StrLen, StrCpy, StrCmp,AsciiStrToUnicodeS, etc.) to access data
outside of the command buffer. Example:

CHAR16 Password[32];

StrCpy(Password, ptr);

If ptr points to a 40 byte string, then bytes 37-40 will be copied
over the return address on the stack, causing the SMM
function to return somewhere unplanned

• For strings, use StrnLenS() or AsciiStrnLenS() in
MdePkg\Include\BaseLib.h to verify that the string
does not extend past the end of the command buffer

str = pointer to string
Length= StrnLenS (ptr,(UINT8*)end-of-buffer–(UINT8*) str);

16

Return Address

Stack Frame Pointer

Password

Offset 40

Offset 36

Offset 32

Offset 0

Confidential | © 2017 Insyde Software

#5: Verify Variable-Length Arrays
• With variable length arrays, it is easy to accidentally read/write

bytes outside of the buffer
– Especially if each entry is also variable-length

• Verify that each entry does not extend past the end of the buffer
• Verify each entry header is in buffer before reading entry size

end-of-buffer = start-of-buffer + size-of-buffer.
do {
if (!BufferInCmdBuffer(ptr, sizeof(header-struct) ||

!BufferInCmdBuffer(ptr, ptr->StructureSize) {
return SECURITY_ERROR;

}
switch(ptr->Type) {

..process structure..
}
ptr = (header-struct*)((UINT8*)ptr + ptr->StructureSize)

} while ((UINT8 *)ptr < end-of-buffer && ptr->Type!=0x00);

17

18

Call To Action

Call To Action

• Revise APIs to remove trust of the
calling application

• Handle multi-stage operations with
good security

• Revise handler buffer code to safely
process variable-length data

UEFI Plugfest – March 2017 www.uefi.org 19

Thanks for attending the Fall 2017
UEFI Plugfest

For more information on the UEFI
Forum and UEFI Specifications, visit
http://www.uefi.org

presented by

UEFI Plugfest – October 2017 www.uefi.org 20

http://www.uefi.org/

