
presented by

Increasing risks to UEFI firmware due to 
growing attack surfaces

Fall 2018 UEFI Plugfest
October 15 – 19, 2018

Presented by Glenn Plant (Phoenix Technologies Ltd.)

www.uefi.org 1



Legal Stuff
Copyright © 2018 Phoenix Technologies Ltd. All rights reserved.

PHOENIX TECHNOLOGIES LTD. MAKES NO REPRESENTATIONS OR 
WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION 
HEREIN DESCRIBED AND SPECIFICALLY DISCLAIMS ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR 
PURPOSE OR NON-INFRINGEMENT. FURTHER, PHOENIX 
TECHNOLOGIES LTD. RESERVES THE RIGHT TO REVISE THIS 
DOCUMENTATION AND TO MAKE CHANGES FROM TIME TO TIME IN 
THE CONTENT WITHOUT OBLIGATION OF PHOENIX TECHNOLOGIES 
LTD. TO NOTIFY ANY PERSON OF SUCH REVISIONS OR CHANGES.

www.uefi.org 2



Agenda

• Firmware as a target

• Spec extensions provide new attack 
surfaces

• OEM features add even more

• Examples of risky implementations

• Mitigation recommendations

• Suggestions for working groups

• Questions?
www.uefi.org 3



Firmware as a target

• As OSes and apps are hardened, the bad 
actors move to platform firmware

• If firmware is compromised, nothing that 
runs later is safe
– Malware can spoof an OS, Virtual Machines, 

Anti-virus, etc. Any code that runs later
– It can be persistent, runs boot after boot
– Wiping the system and reinstalling software 

may not clear it
www.uefi.org 4



UEFI features add attack surfaces
• In the past several years, UEFI Forum has 

added network support to the spec
– SNP, PXE, BIS, HTTP(S) Boot, TCP/IP, UDP, 

IPSec, FTP, TLS, ARP, DHCP, MTFTP
– Users have also added SNMP and others
– Network connectivity allows for exploits that 

don’t require physical access to a system

• Some have added NTFS filesystem support 
to firmware

www.uefi.org 5



An example

www.uefi.org 6



More examples

www.uefi.org 7



Why are these features necessary?

• While not fundamentally needed to 
“boot the box”, they enable: 

–Remote management

–Network boot

– Failure recovery

–Other value-add features

www.uefi.org 8



So, what are the risks?

• Eclypsium Inc. (https://www.eclypsium.com/) 
has delivered Blackhat/Defcon presentations on 
the dangers of these attack surfaces

• These examples have been presented in public 
so the “bad actors” out there are aware of them
– Many implementations have lots of ports open

• Are they really needed?

– Some are known to be vulnerable to attack

www.uefi.org 9

https://www.eclypsium.com/


Remote management
• Many server type systems allow for a remote management 

interface in the pre-boot environment
• This may be via a BMC and private network or other mechanism
• This management interface is particularly dangerous as it allows 

low-level control of:
– Loading firmware, UEFI drivers, OSes, device drivers, etc.
– Software/firmware (mis)configuration for evil or denial of service

• Remote management may not be visible to end users and may 
happen when the system appears to be off

• Many ports are open for remote management
– Are they really needed?

www.uefi.org 10



BMCs are particularly vulnerable
• Some BMCs have been shown to be very insecure

– Vulnerabilities may allow unauthorized and persistent remote 
access

• The IPMI protocol specification has known vulnerabilities
• They depend on a private, air-gapped, network for access 

security
• It is common for them to use older processor designs and 

ancient software
• They do not securely boot themselves
• Their firmware is rarely updated
• They can be used by a malevolent host OS/app to compromise 

the private management network
– Ref: Blackhat presentation: The Incredible Lightness of BMCs
– https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/

www.uefi.org 11

https://www.blackhat.com/us-18/briefings.html#the-unbearable-lightness-of-bmcs
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/


SMTP & NTFS at boot time

• The Eclypsium folks displayed a motherboard 
with a UI to send email in the pre-boot 
environment and support for NTFS

• This was in support of the OEM’s customer 
services

• With this capability built in, malicious pre-boot 
software could attach any file to an email and 
send it during pre-boot without the OS knowing

www.uefi.org 12



Another customer service example
• Another OEM provided an interface to 

download an EFI app over a network for 
“hardware diagnostics”

• That app could be run without signature checks, 
bypassing the secure-boot Chain of Trust

• The EFI app can upload results to a customer 
provided URL

• It can be set to run once or periodically
• Either the download or upload URL could be 

“spoofed” to transfer anything
www.uefi.org 13



Firmware update

• We, in the UEFI forum, have been discussing the 
need to update platform firmware regularly

• It is important that OEMs have a path to get 
security fixes into platforms ASAP

• We cannot depend on end users to download 
updates

• So let’s do it automatically over a network. 
What could go wrong?

www.uefi.org 14



Pull updates
• Multiple vendors have added pre-boot code 

to get updates
• They can go to default OEM URLs for 

updates or can be customized
• Many can be customized for check 

frequency
• They typically exchange XML (or similar) 

messages containing update availability 
data

www.uefi.org 15



What’s wrong with that?

• URLs can be spoofed or replaced
• Any issues with update signature checking can be 

exploited
• Insecure messages can be altered or replaced 

directing downloads from anywhere
• Actual testing has shown malformed messages 

cause firmware hangs (denial of service)
• OEMs have been forced to disable this functionality 

in hundreds of SKUs (thousands of systems)

www.uefi.org 16



Debugging interfaces

• Traditionally, firmware debugging was done over 
proprietary hardware interfaces (JTAG, ITP, etc.) 
which could be fused or depopulated in production 
systems

• The cost of populating the ITP header is restrictive, 
and blowing JTAG fuses at EOM is standard

• Newer designs allow debugging over USB, which is 
convenient but USB ports are, by design, enabled 
and readily accessible, leaving the firmware 
configuration as the only gate

www.uefi.org 17



Mitigations

• Make sure your company is following best 
practices in code development

– Do targeted code reviews

– Don’t “roll your own” when there is a quality 
and tested implementation available 

– See earlier Phoenix plugfest presentations
for more examples of best practices

www.uefi.org 18

http://www.uefi.org/sites/default/files/resources/Dick_Wilkins_Security_Final.pdf


Hardware/compiler assisted

• Enable
– NX data execution protection
– Stack cookies (stack overrun detection)
– Heap corruption detection
– Address space layout randomization

• Disable
– USB debugging interfaces in production 

systems

www.uefi.org 19



Solutions for firmware update
• The UEFI Forum needs to have some serious discussions around 

how firmware update gets done
• Leaving OEMs on their own with no direction has resulted in 

some poor and insecure implementations
• Insecure implementations are damaging to the community and 

UEFI reputation
• What do we do?

– Does the forum specify (direct) an approach?
– Do we provide example implementation(s) via Tianocore?
– Do we provide whitepapers that provide clear guidance for secure 

implementations?

• Phoenix believes the forum should take the lead in helping the 
membership get this right

www.uefi.org 20



Questions?

• Any questions?

www.uefi.org 21



Thanks for attending the Fall 2018 
UEFI Plugfest

For more information on the Unified 
EFI Forum and UEFI Specifications, 
visit http://www.uefi.org

presented by

www.uefi.org 22

http://www.uefi.org/

