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TERMINOLOGY 
 

Term Definition 

ACPI Advanced Configuration and Power Interface 

AP Application Processor. All the processor threads other than Startup-BSP 

APIC Advanced Programmable Interrupt Controller residing in the processor agents to generate 
and accept interrupt messages from other processor and I/O agents. 

Sometimes it is referred as Local APIC. 

ARS Address Range Scrubbing (ARS) allows platform to communicate persistent memory errors 
to system software. See pmem.io   

BMC IPMI compliant Board Management Controller. 

BWG BIOS Writer’s Guide 

BSP Bootstrap Processor 

CSP Cloud Service Provider 

DDDC Double Device Data Correction 

DMI Proprietary data path between IIO and South bridge.  

DPC DIMMs Per Channel 

EL Exception Level 

ESRT The EFI System Resource Table (ESRT) provides a mechanism for identifying integrated 
device and system firmware resources for the purposes of targeting firmware updates to 
those resources.  

GPIO General Purpose Input/Output 

GUID Globally Unique Identifier 

HPC High Performance Computing 

HVC Hypervisor Call, an instruction in the Arm A-profile architecure which induces an exception 
taken to EL2. 

IIO Integrated IO – PCI Host Bridge logic that has been integrated in the CPU complex. 

IPMI Intelligent Platform Management Interface 

KSR Kernel Soft Reboot 

KTI Keizer Technology Interface 

Legacy Processor The processor that is connected to PCH via DMI link and manages the boot devices  

LPC Bus “Low Pin Count” connection used to connect to the BMC, super I/O device, and TPM. 

MCA Machine Check Architecture 

Microcode CPU’s firmware coordinating CPU’s actions, sometimes abbreviated as uCode 

MMIO Memory Mapped IO 

NFV Network Function Virtualization 

NMI Non-maskable Interrupts 

OS Operating System 

OOB Out of Band (such as via a BMC) 

OSPM Operating System Directed Power Management 

PCH Platform Controller Hub. Some might call this a Peripheral Controller Hub 



 

Term Definition 

Pcode Code executing on PCU 

PCU Power Control Unit, a controller inside the processor that performs power and other power 
management functions 

PMEM Persistent Memory (Such as Intel 3D XPoint / Non-Volatile DIMMs) 

Powergood Reset A reset during which power is removed. E.g. using a power-button. RTC power and Standby 
power is not affected.  

QoS Quality of Service 

RAS Reliability-Availability-Serviceabilty 

SCI System Control Interrupt as defined in ACPI Specification 

SDDC Single Device Data Correction 

SiP Silicon Provider 

SMBIOS System Management BIOS 

SMC Secure Monitor Call, an instruction in the Arm A-profile architecure which induces an 
exception taken to EL3. 

SMI System Management Interrupt 

SMM System Management Mode 

SoC System on Chip 

SW Software 

TCB Trusted Computing Base 

UEFI Unified Extensible Firmware Interface 
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1. Introduction  

 
Computer architectures have execution contexts of different privilege. 

 
The properties of the execution context design and privilege/trust relations are architecture 
specific. 

 

 

 

 

 

 

Examples of privileged execution contexts are the System Management Mode (SMM) in the 
Intel Architecture and the Secure state in the Arm A-profile Architecture. These are placed in the 
left-most area of the diagram in Figure 1-1.  

Resorting to a privileged firmware execution context, for functionality that does not require such 
privilege, can have detrimental consequences to the system performance and security 
guarantees. 

 
This document describes the Platform Runtime Mechanism (PRM) as a means to move a 
certain classes of firmware functionality to a less privileged execution context. PRM, in 
combination with native OS drivers and offload to other hardware engines such as a Baseboard 
Management Controller (BMC), offers a path to reduce reliance on privileged firmware contexts. 

 

1.1 x86 System Mangement Mode (SMM) 
 
System Management Mode (SMM) is an operating mode in the x86 computer architecture. 
SMM code is written within the context of the system firmware and typically used for system-
wide functions which are highly platform and silicon specific. Some examples would be RAS 
(e.g. Hardware Errors such as memory ECC, or to take corrective hardware actions to extend 
system uptime), power management, execution of OEM proprietary code, platform hardware 
events and implementation of hardware workarounds. 
 
In order to enter SMM, a System Management Interrupt (SMI) must be generated by a platform 
events. SMI is a high priority, non-maskable, broadcast interrupt. On receipt of this interrupt, the 
processors in the system save their context in SMRAM and transition to SMM to execute the 
corresponding SMI Handler for the given event.  
 
The SMI handler code then sets up its own environment (page tables, IDTs etc.), identifies the 
source of SMI and handles that event accordingly. The SMI handler is placed by the platform 
BIOS during BOOT to a special area of memory called System Management RAM (SMRAM). 
 

Privileged firmware OS Hypervisor User-space 

highest privilege least privilege 

Figure 1-1: Privilege levels in computer architectures 
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SMRAM is invisible to OS/VMM. A processor executing in the 0-3 ring privilege levels will not be 
able to read from or write to SMRAM space. When the processor switches to SMM on receipt of 
an SMI, then processor executes code out of the SMRAM area. 
 
There are two different categories of SMI sources, asynchronous and synchronous. SMIs due to 
platform and hardware events are asynchronous in nature. Software SMIs are invoked by 
writing to the SMI Command Port (0xB2 in Intel® Architecture platforms) and are synchronous 
in nature.  
 

1.1.1 Issues with SMM – Problem Statement   
As described in the previous section, SMM mode of operation has the following key attributes: 

1. SMRAM (a memory space where SMI Handlers reside) is a Black Box to OS/VMM. 
2. SMI Handlers run with their own page tables and accessibility to all system resources 

(higher privileged than ring-0). 
3. SMI is non-maskable, broadcast and opaque to the OS/VMM. 
4. Once in SMM Mode, all other interrupts are pended. 

1.1.1.1 SMI and Perf/QoS degradation 
SMI is a global / broadcast event which stalls all system processors. On receipt of a SMI, all the 
CPU threads in the system enter SMM mode immediately after completing their current 
instruction. This leads to unpredictable performance jitters.  
 
Once inside the SMM environment threads are not available for OS use, and their execution is 
stalled until the SMI handler relinquishes control back to the previously executing context. The 
amount of execution time in SMM is called SMM Latency. In a typical 4-socket (4S) server class 
system, the latency can vary between ~300us to 1ms depending on core/thread count, the 
nature of the event being handled, and other factors. 
 

1.1.1.2 SMI and Firmware complexity 

SMM was never designed to handle so many asynchronous events in many-core environment. 
In reality, SMM handler has to deal with potential scenarios such as the following: 

1. Some threads in a blocked state (WFS, VMX shutdown, LTS) 

2. Some threads in the middle of executing a long flow instruction (wbinvd, ucode patch 
load) or in C6 state and will respond much later 

3. Generation of more than one SMI in close proximity whereby some threads will observe 
a merged SMI (single SMI) while other observe multiple SMIs, leading to out-of-sync 
SMI scenarios. 

4. Distribution of SMM sources that do not correspond to a single hierarchy 

5. A narrow complexity threshold – solutions to address problems are difficult to adopt due 
to complexity analysis. 

 

1.1.2 Summary 

In conclusion, SMI is a very powerful mechanism for invoking runtime platform firmware, that has 
complete access to system memory and system hardware resources. SMI enables a large 
number of technologies to be employed in scenarios when system software is unavailable. For 



 

example, during an OS has crashed (for error harvesting) or on AC power-failure (to ensure data 
persistence for Non-Volatile DIMMs). 

Although, this power comes with some notable downsides: 

• Unpredictable performance jitters, as all the threads in the system are stalled for simple 
error collection, for example.  

• Corner cases and race conditions, such as SMI Merge / out-of-sync SMI and OS kernel 
panics 

 

There is a massive industry wide push to move away or reduce SMM footprint. The goal of this 
document is to provide a mechanism to reduce and eventually eliminate SMM usages that result 
in unpredictable performance jitters in the platform in OS runtime. There could still be usage 
models based on Planned SMI events, or SMI events during End-of-life of the boot, but those 
don’t give rise to unpredictable performance impact and is out of scope of this specification. 

 

1.2 Arm A-profile Privileged Firmware 

 

The A-class Arm® architecture defines the Exception Level (EL) and Security State [A-profile] 
concepts. The different exception levels and security states have a trust/privilege relationship, 
as shown in Figure 1-2. 

Firmware executing in the Secure state can map and access pages that belong to the Host OS 
(Non-secure EL2 or EL1). 
 

 

 

 

 

Trusted OS OS 

Hypervisor 

Monitor 

EL1 

EL2 

EL3 

Non-secure Secure 

highest privilege 

least privilege 

highest privilege least privilege 

Figure 1-2: Arm A-profile Exception Level and Security State privilege relationships 
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The firmware that executes in the Secure state is said to run on a high privileged execution 
context compared to the Host OS. 
 
Examples of firmware that is deployed in the Secure state are: 
 

Trusted OS – used in mobile devices to handle use-cases like secure payments or media 
protection. 

Standalone MM – used in the server ecosystem to deploy Tianocore MM drivers which 
communicate via the MM communicate with firmware executing in the Non-secure state. 

 

Note: On Armv9, EL3 is in the Root security state. The Root security state is also considered 
privileged firmware. 

 

1.2.1 Privileged Firmware Execution Context Properties 
 
On the Arm A-profile architecture, each core on a multi-core processor can be in a different 
Exception Level and Security state at a given time instant. 
 
Privileged firmware execution contexts may mask interrupts and thus be un-interruptible by a 
lesser privileged execution context (e.g. the Host OS), which may excessively limit the core 
availability to the Host OS.  
 

1.3 ACPI and Privileged Firmware 

Advanced Configuration and Power Interface (ACPI) is an open standard that defines a 
mechanism for operating systems to discover and configure hardware components, and actively 
perform device and platform power management. ACPI code is written in the ACPI Source 
Language (ASL) and typically shipped as a binary component in the form of a bytecode called 
ACPI Machine Language (AML) in the platform firmware. 

 

Today’s ACPI firmware can call services implemented by privileged firmware by using a 
software defined invocation mechanism.  



 

2. Privileged Firmware Usages 

Understanding today’s privileged firmware use cases is essential for exploring potential 
alternatives. This section classifies privileged firmware applications today and 
corresponding mechanisms to eliminate privileged firmware usages for some of those 
usage models. 

2.1 Privileged Firmware Invocation 
 

Privileged firmware execution can be triggered synchronously by software, termed SW 
invocation (e.g. a software triggered SMI in the Intel Architecture), or asynchronously by 
an interrupt or hardware generated exception, termed interrupt invocation (e.g. a 
Hardware SMI in the Intel Architecture). The actual mechanisms are architecture specific. 
 

2.1.1 x86 Architecture Privileged Firmware Invocation 
SMIs can be triggered either via software means or by the platform hardware.On x86 
systems, a write to IO command port (e.g. 0xB2) will trigger a SMI. Software uses this 
path to trigger a SMI in order to invoke BIOS/Platform firmware services during system 
runtime. Hardware SMIs, on the other hand, are triggered by the platform hardware in 
response to system events such as errors, GPIO events etc. 

 

2.1.2 Arm A-profile Privileged Firmware Invocation 

 

• On the Arm A-profile architecture, privileged firmware is invoked by SW via the execution 
of a Secure Monitor Call (SMC) or a Hypervisor Call (HVC) instruction [SMCCC], or by 
HW via a secure interrupt.  

•  

•  

•  

•  
•  

•  

Trusted OS OS 

Hypervisor 

Monitor 

EL1 

EL2 

EL3 

Non-secure Secure 

Secure interrupt 

HVC/SMC 

Figure 2-1: High-level example of the invocation of privileged firmware on the Arm A-
profile architecture 
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2.2 Privileged Firmware Usage Models 
 

SW Invocation Usage Model: 

As shown in Figure 2 below, OS level entities typically use ACPI and UEFI interfaces as 
an abstraction to invoke runtime platform firmware services. These OS and BIOS 
interfaces then invoke privileged firmware internally, if native code execution is required. 
In other words, the fact that privileged firmware was invoked is kept transparent to the OS 
by these abstraction interfaces. 

 

A key to reduce the privileged execution context footprint with compatibility to existing 
software is to the retain the same software interface to OS entities but provide an alternate 
means for invoking platform code execution context from ACPI. Platform Runtime 
Mechanism (PRM), as explained in subsequent sections provides such an alternative for 
certain cases. 

 

Interrupt Usage Model: 

Interrupts are events triggered by the platform hardware in response to platform events 
such as memory and other system errors, thermal events, GPIOs etc. These are 
transparent to the OS as well. Migrating some of these usages out of privileged firmware 
could involve a combination of PRM and assistance from an Out-Of-Band agent, such as 
BMC. 

 

Figure 2-2 Privileged Firmware Triggers 

 

 

As shown in Figure 2-2, OS/VMM entities invoke platform functionalities in runtime for a 
plurality of reasons. One of the main factors is that, it is the platform firmware that has intimate 
knowledge of the silicon and platform features and configurations and carrying this knowledge 
as part of the OS entity is a logistical challenge for broader enabling of Off-the-shelf operating 

OS / Drivers 

ACPI Tables 
(e.g. PCCT) 

ACPI DSM 
Methods 
(e.g. ARS) 

Privileged Firmware 

UEFI RT 
Services 
(e.g. Set 
Variable) 

ACPI/RT 
Services Provide 
Platform 
Abstraction 

SW Triggers are Transparent to OS 

Platform Hardware 
(CPU/Mem/IIO/PCH etc.) 

Interrupt Triggers are Transparent to OS 

• OS to Platform Firmware Abstraction Interface 



 

systems. Hence OS entities rely on platform abstractions such as Advanced Configuration and 
Power Management Interface (ACPI).  
 
Though ACPI Source Language (ASL) provides runtime space for handling platform events, 
development and debug of ASL poses a special challenge due to the interpreted and highly 
restrictive nature of ASL language and runtime environment. Also, being architecture neutral, 
executing ISA specific instructions is not possible in ASL context. To overcome the restrictive 
environment of ASL, BIOS developers often resort to tricks like dropping into a privileged 
firmware handler to carry out BIOS tasks. 
 
By providing a mechanism to transition to an environment wherein ASL code can invoke 
platform runtime native code at the same privilege level, we alleviate the need to drop into 
privileged firmware handler only for the sole purpose of executing native code. 
 

Example 1: Address translation from System Physical Address (SPA) to DIMM Address (DA).  

Linux distros have an EDAC driver for error handling, and hitherto carried the knowledge of 
doing the address translation as well (e.g. translating a given Physical Address to a 
Socket/Memory Controller/Channel/Rank/Bank/Column/Row). Address translation is a feature 
that is highly silicon dependent and varies between generations of silicon. It might also depend 
on third party silicon such as xNC (Node controllers) that some OEMs use, and in the future will 
depend on the CXL devices populated in the platform. Hence an ACPI _DSM was created as 
the abstraction interface. 

 

Example 2: PSHED Plug-in 

PSHED drivers are WHEA/APEI OS drivers for error handling. Plug-in model was created to 
enable the driver to cater to platform and silicon variances. But this proved to be a challenge for 
wide deployment, and hence ACPI Tables were created (EINJ, ERST, HEST etc.) using which 
the platform firmware is invoked to handle these variances. 
 

Example 3: NVDIMMs 

NVDIMMs have introduced a new set of ACPI _DSM interfaces 
(http://pmem.io/documents/NVDIMM_DSM_Interface-V1.6.pdf) as a way to abstract the 
platform and NVDIMM technology variances from the OS/VMM. These _DSM drop into 
SMI to be able to handle the tasks.  

 

Example 4: Arm OEM/SiP Specific Runtime Functionality 

Arm vendors deploy functionality in the Secure state to configure and control IP which may 
not be part of the platform TCB. This functionality does not require a high privileged 
execution context. 

 
Examples of functionality deployed by the OEM/SiP are: 

• PCI quirks to control hardware 

• Control peripherals via their MMIO regions. 

 
 

http://pmem.io/documents/NVDIMM_DSM_Interface-V1.6.pdf


 

15 
 

There are more such examples of the OS entities using platform abstraction. The SMM 
elimination strategy should ensure compatibility with the existing abstraction interfaces.  

 

2.3 Categories of  firmware handlers 

 
Privileged firmware handlers can be broadly classified as: 

• Category 1: SW triggered firmware handlers that don’t require high privileges 

• Category 2: SW triggered firmware handlers that require high privileges 

• Category 3: Interrupt firmware handlers that don’t require high privileges 

• Category 4: Interrupt firmware handler the require high privileges 

 

Note: high privileges means that there are certain hardware resources (e.g. registers) that 
can be written to only in a high privilege execution context.  

 

SW triggered firmware handlers (Category 1 and 2) are invoked by software. Interrupt 
triggered handlers (Category 3 and 4) are invoked by platform hardware events such as 
system Errors.  

 

Platform Runtime Mechanism (PRM) provides a means to eliminate Category 1 SMM 
handlers and in some cases can be used to reduce Category 3 handlers as well.  

 

Figure 2-3 Categories of Privileged Firmware Handlers 



 

 

 
Category 1 handlers will be migrated to use PRM.  
 
Category 2 handlers are mainly related to UEFI authenticated variable services. Not in scope for 
this Specification 
 
Certain Category 3 handlers can be handled by PRM as explained in later sections. 

 
Category 4 handlers are mainly related to Uncorrectable Hardware Errors and advanced RAS 
features. Not in scope for this Specification 
 

2.4 Category 1 Usages 

These are SW triggered from an abstraction interface such as ACPI _DSM methods. There is a 
plethora of such _DSM methods that today invoke a SW trigger so that complex algorithms and 
tasks can be handled in a native code execution context. Providing an alternate means of 
executing native code using PRM alleviates the need to invoke high privileged firmware for this 
category of handlers. Examples include DSMs for RAS (such as address translation) and DSMs 
for supporting Non-Volatile DIMMs.  
 

2.5 Category 3 Usages 
Interrupts can be generated for asynchronous platform events such as memory and IO 
errors. In response, the handlers in high privileged firmware collect more information about 
the errors and surface them to the OS or log them to a BMC. In addition to the above, the 

CATEGORY 3: 
Interrupt and RAS Handlers that 
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CATEGORY 2: 
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handlers in high privileged firmware can trigger RAS events to remediate or mitigate the 
errors that caused the initial interrupt.  

 

Though PRM is mainly designed with Category 1 SW triggered functionality in mind, Category 3 
Interrupt handlers can be migrated to PRM, if so desired by the platform vendor / OEM. 
 

Category 3 handlers are commonly used for correctable error harvesting and reporting. By 
generating an interrupt delivered to the Host OS instead of privileged interrupt for these 
error conditions, ASL code can be invoked which can utilize PRM for error harvesting and 
reporting.  

  

 



 

3. Platform Runtime Mechanism Overview 

Platform Runtime Mechanism (PRM) introduces the capability of transitioning certain usages 
that were hitherto executed out of privileged firmware, to a code that executes with the OS/VMM 
context. Such usages are those that don’t require higher privileges (Category 1) and a sub-
set of interrupt handlers that don’t require higher privileges (Category 3) . This eliminates 
many of the cons present when executing the same code within a privileged firmware execution 
environment. The code can also be updated within the Host OS context through targeted online 
servicing of specific sets of functionalities 

 

As shown in the figure below (Figure 3-1), Platform Runtime Mechanism provides an ACPI 
Interpreter based infrastructure to invoke runtime platform firmware handlers. These runtime 
handlers are called PRM Handlers and are placed by the BIOS during boot (and updatable in 
OS runtime) in a runtime area reserved for firmware usage (such as UEFI Runtime area).  

 

NOTE: The ACPI Interpreter based PRM infrastructure is the PRM OpRegion Handler in 
ACPICA/ACPI subsystem and can also logically be implemented as an independent driver 
(Bridge Driver) in certain implementations. This Specification interchangeably uses the terms 
‘Bridge Driver’, ‘PRM OpRegion Handler’, ‘ACPI Driver’, ACPI Interpreter or ‘ACPICA’ to mean 
the same thing.   

 

PRM handlers can be invoked by two means (detailed in Section 5) 

1. Directly from an OS driver - if the OS driver and the OS ACPI subsystem is PRM aware. 
2. From ASL context – if the OS driver is not PRM aware and uses _DSM instead, or platform 

events that trigger an interrupt to the Host OS. 
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3.1 PRM Requirements 

1. PRM handlers must be code capable of executing within the context of a runtime OS. 

2. PRM handlers loaded at boot time should be part of the firmware boot chain of trust. 

3. PRM handler’s internal pointers should be fixed-up, if needed, during boot based on the 
OS virtual address. 

4. PRM handlers should be OS agnostic and not dependent on any OS provided support 
APIs. 

5. PRM handler should be securely replaceable/over rideable in runtime without resetting 
the system. 

6. PRM handlers should be executable by the OS, interruptible and single threaded. 

7. PRM handlers shall only access MMIO registers that are listed in the handler’s 
parent module’s RuntimeMmioPages field in the PRMT.  

8. PRM handlers must not contain any privileged instructions. 

 

PRMT 

Addresses Legacy 
Usage Models 

based on _DSM 
invocation 

New usages for 
PRM aware OS and 

Drivers 

PRM Infrastructure PRM Handlers in 
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Figure 3-1      PRM Overview 



 

3.2 Architecture-specific PRM requirements 

 

3.2.1 Arm A-profile architecture (AArch64) 
 

9. PRM handlers must respect the detailed calling convention specified for AArch64 
platforms in the UEFI specification. 

 

Any platform firmware / BIOS environment that satisfies the above requirement can make 
use of PRM. The UEFI environment is able to support PRM with minimal overhead. 

 

3.3 PRM and UEFI 

PRM is not confined to UEFI boot, however, the above requirements are largely supported with 
functionality in place for UEFI Runtime Services. 

1. UEFI Runtime Services are an industry standard way of publishing code from firmware 
that is executable in OS runtime. The Runtime Services definition provides an 
Application Binary Interface (ABI) for PRM handlers and pre-existing requirements for 
executing conditions such as available stack size for PRM handler invocation. 

2. The UEFI Secure Boot chain-of-trust already provides a mechanism to authenticate 
PRM modules that are included as components in the firmware boot image. 

3. Runtime virtual address fixups are commonly performed in runtime driver code so they 
can access resources at OS runtime. Firmware support is already available to map a 
given physical address to its virtual address. 

 

PRM Requirement UEFI Based Boot  Non-UEFI Boot 

PRM handlers execute at OS 
runtime and are published by 
firmware in pre-OS boot 

UEFI Runtime Services are 
an industry standard way for 
firmware to publish OS 
runtime code 

Need to build support to 
publish runtime code by the 
BIOS, that is OS visible 

Chain of Trust  UEFI Secure Boot No standard mechanism 

Pointer Fix-ups Built in support  No standard mechanism 

OS-Independent Yes Implementation specific 

 

 

3.4 PRM Loading and Invocation 

1. During boot, the firmware discovers PRM modules included in the platform firmware 
flash image. 

2. During boot, the firmware publishes the PRM ACPI table (PRMT) to describe the PRM 
modules, handlers, and related structures such as context buffers for the given boot. 

3. During boot, firmware allocates any required buffers and, in some cases, populates the 
buffer contents as is the case with the static data buffer. 
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4. During OS runtime, OS code invokes PRM handlers via the direct call mechanism or 
with a _DSM. 

 

3.5 PRMT Table Overview 

The PRMT table is an ACPI table published by the BIOS during boot, which advertises the 
pointers to the PRM handlers. This information is then used by the ACPI Interpreter to invoke 
the PRM handler(s). The PRMT table exposes a hierarchical structure.  

A PRM module consists of a set of PRM handlers. A PRM module is based on a feature that it 
supports. For example, there could be a RAS module, or a NVDIMM Module etc., with each 
module containing multiple handlers.  

As shown in Figure 3-2 below, the PRMT table consists of an array of PRM Module Structures.  

- Each PRM Module Structure will have a pointer to MMIO Ranges that the PRM handlers 
use in runtime. 

- Each PRM Module Structure will have an array of PRM Handler Info Structures 

o Each Handler Info Structure will have a GUID Identifying the handler, and the 
corresponding pointer to the handler.  

o Each Handler Info Structure may optionally have a pointer to an ACPI Parameter 
Buffer. The ACPI Parameter Buffer is a BIOS reserved range of memory during 
boot, which is used by the invoker (e.g. ASL Code) and the PRM Handler for 
parameter passing. The format of the data is a contract between the invoker and 
the handler. 



 

▪ For Direct Invocation, the invoker will allocate the parameter buffer 
(explained in section 5) 

 

Figure 3-2  PRMT Topology 

Platform GUID 

Standard ACPI 
Header 

# of PRM 
Modules (N) 

PRM Module 
Structure 

PRM Module 
Structure 

 

PRM Module 
Structure 

 

N 

Structure Rev, Len 

PRM Module GUID, Rev 

PRM Handler Count (M) 

PRM Handler Info 
Structure 

PRM Handler Info 
Structure 

M 

Structure Rev, Len 

PRM Handler GUID 

Pointer to PRM Handler 

Pointer to Runtime 
MMIO Ranges 

Pointer to Param Buffer 

PRMT 

PRM Module Structure 

PRM Handler Info Structure 



 

23 
 

4. ACPI Tables 

PRM ACPI tables are used to communicate PRM information between the firmware and 
operating system. The ACPI table format is standardized as described in this section. The 
system BIOS (e.g. UEFI firmware) is expected to construct the ACPI tables during the boot 
services portion of the boot flow and then populate the tables before loading the OS boot loader. 
 

4.1 Platform Runtime Mechanism Table (PRMT) 

Table 4-1 PRMT Top-Level Table 

Field Byte 
length 

Byte 
offset 

Description 

Header       

Signature 4 0 ‘PRMT’. Signature of the PRM ACPI table. 

Length 4 4 Length, in bytes, of the entire PRM ACPI table. 

Revision 1 8 For this version, the value is 0. 

Checksum 1 9 The checksum is computed when the table is 
installed in the firmware boot environment. 

OEM ID 6 10 Original equipment manufacturer (OEM) ID. 

OEM Table ID 8 16 The system firmware OEM Table ID. 

OEM Revision 4 24 OEM revision of PRMT for the supplied OEM 
Table ID. 

Creator ID 4 28 Vendor ID of the utility that created the table. 

Creator Revision 4 32 Revision of the entity that created the table. 

PrmPlatformGuid 16 36 A GUID that uniquely identifies the current 
platform, to assist OSPM in platform targeting 
for runtime PRM Module updates. NOTE: Some 
OSPMs might use proprietary mechanisms for 
targeting instead of this field.  

PrmModuleInfoOffset 4 52 Offset, in bytes, from the beginning of this table 
to the first PRM Module Information entry. 

PrmModuleInfoCount 4 56 The number of PRM Module Information entries. 

PrmModuleInfoStructure 
[PrmModuleInfoCount] 

Variable Prm 
Module 
Info 
Offset 

An array of PRM Module Information entries for 
this platform. 

 

4.1.1 PRM Module Information Structure 
 

Table 4-2 PRM Module Information Structure (PrmModuleInfoStructure) 

Field Byte 
length 

Byte 
offset 

Description 

StructureRevision 2 0 Revision of this PRM Module Information 
Structure. 

StructureLength 2 2 Length, in bytes, of this structure, including the 
variable length PRM Handler Information 
Structure array. 

Identifier 16 4 The GUID for the PRM module represented by 
this PRM Module Information Structure. 



 

MajorRevision 2 20 The major revision of the PRM module 
represented by this PRM Module Information 
Structure. 

MinorRevision 2 22 The minor revision of the PRM module 
represented by this PRM Module Information 
Structure. 

HandlerCount 2 24 Indicates the number of PRM Handler 
Information Structure entries that are present in 
the PrmHandlerInformationStructure[] field of 
this structure. 

HandlerInfoOffset 4 26 Offset, in bytes, from the beginning of this 
structure to the first PRM Handler Information 
Structure. 

RuntimeMmioPages 
(PRM_RUNTIME_MMIO 
 _RANGES *) 
(physical address) 

8 30 A pointer to a 
PRM_RUNTIME_MMIO_RANGES structure. 
 
The structure is used to describe MMIO ranges 
that need to be mapped to virtual memory 
addresses for access at OS runtime. 
 
This pointer may be NULL if runtime memory 
ranges are not needed. 

HandlerInfoStructure 
[HandlerCount] 

(Prm 
Handler 
Count) * 
sizeof (Prm 
Handler 
Info 
Structure) 

38 An array of PRM Handler Info Structures. 
 
Each structure represents a PRM Handler 
present in the PRM Module represented by this 
structure. 

 

4.1.2 PRM Handler Information Structure 
 

Table 4-3 PRM Handler Information Structure (HandlerInfoStructure) 

Field Byte 
length 

Byte 
offset 

Description 

StructureRevision 2 0 Revision of this PRM Handler Information 
Structure. 

StructureLength 2 2 Length, in bytes, of this structure. 

Identifier 16 4 The GUID for the PRM Handler represented by 
this PRM Handler Information Structure. 

PhysicalAddress 8 20 The address of the PRM Handler represented by 
this PRM Handler Information Structure.  

StaticDataBuffer 
(PRM_DATA_BUFFER *) 
(physical address) 

8 28 A physical address pointer to the static data 
buffer allocated for this PRM handler. 
 
The static buffer is intended to be populated in 
the firmware boot environment. 
 
This pointer may be NULL if a static data buffer 
is not needed. 
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AcpiParameterBuffer 
(PRM_DATA_BUFFER *) 
(physical address) 

8 36 A physical address of a parameter buffer for this 
PRM handler that is only used in case of ASL 
invocation of the handler. 
 
The buffer is allocated in the firmware boot 
environment and typically updated at runtime by 
ASL. 
 
The pointer may be if a parameter buffer is not 
required in case of ASL invocation, or if ASL 
invocation is not used.   

 

4.2 Explanation of Buffers Used 

This section explains the usages of various buffers and data structures mentioned in PRMT 

4.2.1 Static Data Buffer 

The static data buffer is a data buffer allocated in the BIOS boot phase whose contents (and 
size) are implementation specific. The Boot BIOS is also responsible for populating this static 
data buffer, from various implementation-specific data sources. For example, BIOS setup menu 
options, board straps, SOC fuse values, etc.  

While this is a per PRM specific data buffer as defined, some implementations might choose to 
optimize by placing one instance of the structure in memory and have all the PRM entries in the 
module point to this same structure.  

While the contents are arbitrary, the buffer header is standardized below. 

 
A pointer to this StaticDataBuffer is passed to the PRM Handler during invocation.  

Table 4-4 PRM Static Data Buffer Structure (StaticDataBuffer) 

Field Byte length Byte offset Description 

Header    

Signature 4 0 ‘PRMS’. Signature of a PRM Static 
Data Buffer Header structure. 

Length 4 4 The total length in bytes of this PRM 
data buffer including the size of the 
PRM_DATA_BUFFER_HEADER. 

Data Varies 8 The variable length data specific to a 
PRM module the constitutes the data 
in the buffer. 

  

4.2.2 ACPI Parameter Buffer 

The AcpiParameterBuffer is a data buffer allocated in the BIOS boot phase that is only used in 
the ASL invocation path. 
 
The buffer is used for passing parameters between the ASL based caller and the PRM handler. 
The internal data format of the ParameterBuffer is a contract between the caller and the PRM 



 

handler and outside the scope of this document. If the ParameterBuffer is not provided, NULL 
will be passed as this argument. 

While the contents are arbitrary, the buffer header is standardized below. 
 
A pointer to this AcpiParameterBuffer is passed to the PRM Handler during invocation.  
 
 

Table 4-5 PRM ACPI Data Buffer Structure (AcpiParameterBuffer) 

Field Byte length Byte offset Description 

Header    

Signature 4 0 ‘PRMP’. Signature of a PRM ACPI 
Parameter Data Buffer Header 
structure. 

Length 4 4 The total length in bytes of this PRM 
data buffer including the size of the 
PRM_DATA_BUFFER_HEADER. 

Data Varies 8 The variable length data specific to a 
PRM module the constitutes the data 
in the buffer. 

  

4.2.3 Module Runtime MMIO Ranges 

A PRM module is responsible for creating an array of MMIO range descriptors using the 
structures below to describe ranges that may be accessed by a PRM handler in the module. 
The OS is responsible for populating the VirtualBaseAddress and ensuring that memory is 
marked as a memory space type that allows firmware to retrieve the virtual memory mapping for 
the address range. 

 
A pointer to this RuntimeMmioPages is passed to the PRM Handler during invocation.  

 

4.2.3.1 PRM_MODULE_RUNTIME_MMIO_RANGE 

This structure describes a single runtime MMIO range that a PRM module declares may be 
used by a PRM handler in the module. 

 

Table 4-6 PRM_MODULE_RUNTIME_MMIO_RANGE Structure 

Field Byte 

length 
Byte 

offset 
Description 

PhysicalBaseAddress 8 0 Physical base address of the MMIO range. 
VirtualBaseAddress 8 8 Virtual address of the MMIO range. 
Length 4 16 Length of the MMIO range in bytes. 
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4.2.3.2 PRM_MODULE_RUNTIME_MMIO_RANGES 

This structure describes an array of PRM_MODULE_RUNTIME_MMIO_RANGE structures 
declared by a PRM module that may be used by a PRM handler in the module. 

 

Table 4-7 PRM_MODULE_RUNTIME_MMIO_RANGES Structure 

Field Byte 
length 

Byte 
offset 

Description 

Count 8 0 The number of 
PRM_MODULE_RUNTIME_MMIO_RANGE elements 
that follow. 

RuntimeMmioRange 

[Count] 

8 8 Array of PRM ModuleRuntime MMIO Range Structures. 
Each structure represents a MMIO range used by the 
PRM Module represented by this structure. 

 

 



 

5. Invocation of PRM Handlers 

As described earlier, PRM handlers can be invoked by two means 

1. Directly from an OS driver - if the OS driver and the OS ACPI subsystem is PRM aware. 
2. From ASL context – if the OS driver is not PRM aware and uses _DSM instead, or platform 

events that trigger an interrupt to the Host OS invoking _Lxx methods. 
 

5.1 Direct Call vs ASL Based Invocation 

For PRM aware OS and OS drivers, a direct call is recommended and preferred for at least the 
following reasons: 

1. _DSM implementation brings an programming dependency for PRM into the system 
ACPI FW (as opposed to only a declarative table). This code is required to act in lieu of 
the OS device driver to update the AcpiParameterBuffer for the active PRM handler. 
This requires an AML debugger to debug and if a bug is present, a full system reboot is 
needed to update the ASL code logic loaded by system firmware. 

2. _DSM constrains the OS driver’s ability to interact with PRM. For example, in the case of 
direct call, the OS device driver can directly call into PRM module update lock and 
unlock APIs around the PRM calls that need to be protected (see section 7). In _DSM 
invocation, this is outside the control of the device driver and must be handled internally 
within the corresponding _DSM. 

As another example, in the case of direct call, the OS device driver can directly allocate 
and populate a buffer of information shared with a PRM handler. In _DSM invocation, 
data can only be shared using a fixed buffer allocated by firmware that is populated at 
runtime by AML code loaded during boot. If during a runtime PRM update, a PRM 
handler depends upon a parameter buffer that did not previously or the layout of the 
buffer changes, the corresponding ASL must be modified which requires a system 
reboot. In direct call, ASL does not need to be modified. 

3. _DSM invocation requires more overhead to execute AML bytecode in the ACPI 
interpreter. 

 

On the other hand, there is a significant install base in the industry that relies on _DSM 
mechanisms as an abstraction to invoke platform firmware services from OS drivers. To 
maintain compatibility with the installed base until they are deprecated, the _DSM invocation 
path provides a mechanism to invoke PRM handlers from ASL context. In addition, certain 
hardware events can generate an interrupt to the Host OS which will enter ACPI context via a 
_Lxx method, from which PRM handlers can be invoked.   

 

5.2 Invocation Mechanism - Overview 

The caller (either from ASL for Direct Call from OS Driver) passes the following information to 
the ACPI Bridge Driver 

1. GUID of the PRM handler to be invoked 

2. In the case of Direct call, the pointer to a ParameterBuffer (allocated by the caller) 

The ACPI Bridge Driver then 
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1. Identifies the PRM Handler pointer corresponding to the GUID that was passed 

a. Convert the PRM Handler Pointer from a Physical Address to a Virtual Address. 

2. Extracts the Static Data Buffer Pointer and the Runtime MMIO Ranges Pointer and create a 
ContextBuffer (see  

3. Table 5-1), which is passed to the PRM Handler.  

4. In the case of ASL call, extracts the AcpiParameterBuffer pointer from PRMT. In the case of 
direct call, the ParameterBuffer pointer is passed by the caller and AcpiParameterBuffer is 
ignored.  

5. Invokes the PRM handler with the following calling convention 
EFI_STATUS 

PRM_EXPORT_API 

(EFIAPI *PRM_HANDLER) ( 

    IN  VOID                       *ParameterBuffer OPTIONAL, 

    IN  PRM_MODULE_CONTEXT_BUFFER  *ContextBuffer   OPTIONAL 

    ); 

 

 

5.3 Direct Invocation 

ACPI Bridge Driver exposes an IOCTL that can be invoked by a PRM aware OS driver. In the 
case of Direct Invocation, the PRM aware OS driver calls into this IOCTL, by passing the GUID 
of the PRM handler to be invoked, and a pointer to the ParameterBuffer.  

NOTE: Direct Invocation is a mechanism that is intended for future use, in an environment 
where the OS ACPI subsystem, OS Drivers and BIOS are PRM compatible.   

 

5.4 ASL (_DSM) Based Invocation 

To be able to invoke runtime code from ASL, a bridging mechanism needs to be in place. ASL 
provides for an OpRegion handler that is synchronous in nature. The PRM extends this by 
introducing a new ‘PRM’ OpRegion Type. Further details regarding ACPI-specific structures 
introduced for PRM support are described in the _DSM invocation section in the appendix. 

 

5.5 Context Buffer 

The Context Buffer is a well-defined buffer per PRM handler that describes resources available 
to the handler during its execution. This buffer is allocated within the OS and the OS is 
responsible for converting physical addresses to virtual addresses if applicable. 

 

Table 5-1 Context Buffer Structure (ContextBuffer) 

Field Byte 
length 

Byte 
offset 

Description 

Signature 4 0 ‘PRMC’. Signature of the PRM Module Context Buffer 
structure. 



 

Revision 2 4 Revision of this PRM Module Context Buffer structure. 

Reserved 2 6 Reserved 

Identifier 16 8 The GUID of the PRM handler represented by this 
structure. 

StaticDataBuffer 

(PRM_DATA_ 

BUFFER) 

(virtual address) 

8 24 A virtual address pointer to the static data buffer 
allocated for the PRM handler represented by this 
context instance. 

The static buffer is intended to be populated in the 
firmware boot environment. 

This pointer may be NULL if a static data buffer is not 
needed. 

RuntimeMmio 

Ranges 

(PRM_MODULE_ 

CONFIG_RUNTIM_ 

MMIO_RANGES) 

(virtual address) 

8 32 A virtual address pointer to an array of 
PRM_RUNTIME_MMIO_RANGE structures that 
describe MMIO physical address ranges mapped to 
virtual memory addresses for access at OS runtime. 

The MMIO ranges are intended to be populated in the 
firmware boot environment. The virtual address pointer 
should also be set in the firmware boot environment. 

This pointer may be NULL if runtime memory ranges are 
not needed. 

 
The Context Buffer is allocated by the OS Bridge Driver. This is constructed using data 
discovered in the PRMT ACPI table (StaticDataBuffer and RuntimeMmioPages) and passed as 
an argument to PRM handlers. For any pointer that is NULL in the ACPI table, a NULL pointer 
may be passed to PRM handlers. PRM handler code should expect and handle this case. 

 

 

 

Figure 5-1 Invocation Summary 
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6. PRM Software Organization 

At a high-level, PRM collateral can be viewed as three levels of increasing granularity: 

1. PRM interface – A software interface that encompasses the entirety of firmware 
functionalities available to OS runtime 

2. PRM module – An independently updatable package of PRM handlers. The PRM 
interface can be composed of one or more updatable PRM modules. This requirement 
allows for independent authoring and packaging of OEM and IHV PRM code. 

3. PRM handler – The implementation of a single piece of PRM functionality as identified 
by a GUID. 

 

6.1 PRM Module Image Format 

The PRM module format is designed to be loaded during boot by the BIOS (Baseline PRM), and  

to be replaced in OS runtime without needing a reboot, if so desired.  

 
A PRM module is composed of a PE/COFF binary image with certain characteristics that 
uniquely identify the image as a PRM module. These characteristics are described in 
this section.  
 
A PRM-compliant PE/COFF image contains the following notable sections: 

• An Optional header with the MajorImageVersion and MinorImageVersion fields 
set to appropriate value for the PRM module. 

o In most environments, this allows the image version to be obtained using 
filesystem APIs. For example, an OS loader could determine whether a 
given binary version is greater than the current version without needing to 
load the binary into memory and computing an address to an object using 
a relative virtual address. 

• An .edata section that contains references to the following elements: 
o PRM Module Export Descriptor - A structure that describes the PRM 

Module and contains an array of PRM Handler Export Descriptors to 
identify the PRM Handlers present in the PRM Module. The PRM Module 
identifier (a 128-bit GUID) is included in the metadata to uniquely identify 
the module. 

▪ PRM Handler Export Descriptor - A structure that describes a 
given PRM Handler. Each entry in the structure associates a PRM 
Handler with a GUID. 

o An Export Address Table, Name Pointer Table, and Ordinal Table that 
contain an entry to the PRM Module Export Descriptor and each PRM 
Handler. 

• A .text section that contains executable PRM Handler code. The RVAs to each 
PRM Handler are computed at compile-time and placed into image export table. 

The PRM module PE/COFF image is required to have a valid relocation table so the PRM 
loader software can load the image at a dynamic base address. 

 



 

6.1.1 Export Descriptor Structures 

The export data section is defined in the PE/COFF format as a section that contains information 
about symbols in the code image that other images can access through dynamic linking. PRM 
makes use of the export section to pass PRM module metadata known at build-time to the PRM 
loader. 

The export descriptor structures are architecturally defined in in this section to contain metadata 
describing the host PRM module and by extension its PRM Handlers. A single PRM Module 
Export Descriptor Structure is required to be present in each PRM Module export table. If the 
PRM Module Export Descriptor is not present, the PE/COFF image is not considered a PRM 
module. The Signature field in the PRM Export Descriptor Structure must also be valid for the 
PRM module to be recognized appropriately. 

6.1.1.1 PRM Module Export Descriptor Structure 

Field Byte 
length 

Byte 
offset 

Description 

Signature 8 0 ‘PRM_MEDT’. Signature of the PRM 
Module Export Descriptor Table. 

Revision 2 8 Revision of this PRM Module Export 
Descriptor Table structure. 

HandlerCount 2 10 Indicates the number of PRM Handler 
Information Structure entries that are 
present in the 
HandlerExportDescriptorStructure[] field 
of this structure. 

PlatformGuid 16 12 The GUID that uniquely identifies the 
platform targeted by this PRM module 
instance. This GUID is used to determine 
if a given PRM module is valid for a 
platform during PRM module update. 

Identifier 16 28 The GUID of this PRM module. 

HandlerExportDescriptor 

Structure 

[HandlerCount] 

Varies 44 An array of PrmHandlerExportDescriptors 
that describes the PRM handler GUID to 
PRM handler ordinal mapping for this 
PRM module. 

Table 6-1 PRM Module Export Descriptor Structure 

The PRM Export Descriptor Structure is required: 

• To be present in a PRM module export table 

• To have only a single instance per PRM module 

• To be named “PrmModuleExportDescriptor” 

 

6.1.1.2 PRM Handler Export Descriptor Structure 

Field Byte 
length 

Byte 
offset 

Description 
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HandlerGuid 16 0 A PRM handler GUID that maps to the 
PRM handler name specified in this 
descriptor. 

HandlerName 128 16 A PRM handler name that maps to the 
PRM handler GUID specified in this 
descriptor. 

Table 6-2 PRM Handler Export Descriptor Structure 

 

6.2 PRM Module Loader 

The PRM loader is a software component that is responsible for the following actions: 

1. Authenticating PRM module binary images 

2. Validating compliance of the image to the requirements in this document 

3. Loading the PRM module into a valid memory address range that is executable by the 
host OS 

4. Performing any updates to system data structures necessary to make the PRM module 
available for use 

 

6.2.1 Firmware PRM Loader 

The baseline PRM module is distributed within the platform firmware image and the PRM loader 
for that image will be a BIOS boot time component (such as an UEFI DXE driver). In this case, 
the image will typically be loaded from the non-volatile storage device that stores the system 
boot firmware. Though it is certainly possible and valid to load the image from other storage 
media. A firmware loader also has the special responsibility to produce and publish the PRMT 
ACPI tables based on the PRM modules it discovers.  

 

6.2.2 OS PRM Loader 

PRM updates at OS runtime allows for modification of PRM functionality without rebooting the 
platform. In the case of OS runtime  PRM updates, an OS software component acts as the PRM 
loader. The OS PRM loader is required to ensure: 

1. PRM updates are always applied in monotonically increasing fashion. For instance, a 
PRM update with version number smaller than the current PRM module should never be 
applied. 

2. PRM update sequencing minimizes the downtime of PRM functionalities available to OS 
components. 

A OS PRM Loader can only replace existing PRM module that is already published as part of 
the BIOS boot process and part of the PRMT table. Such newly loaded PRM Module can only 
replace the functionalities of existing PRM handlers, but will not be able to add a new PRM 
handler.  

 

 



 

 

 

6.3 PRM Handler 

A PRM handler is a function in a PRM module.  
 

6.3.1 Overview 
Each PRM handler must be assigned a GUID by the PRM module author and each 
PRM handler GUID and corresponding function name must be described as a pair in 
the PRM Module Export Descriptor. 
 
The PRM module loader resolves the PRM handler GUID to PRM handler physical 
address mapping. 

6.3.2 Function Signature 
All PRM handlers are required to follow the architecture-specific calling convention 
defined for UEFI Runtime services in the UEFI specification. The standard PRM handler 
function signature is defined below. 
 
EFI_STATUS 

PRM_EXPORT_API 

(EFIAPI *PRM_HANDLER) ( 

    IN  VOID                       *ParameterBuffer OPTIONAL, 

    IN  PRM_MODULE_CONTEXT_BUFFER  *ContextBuffer   OPTIONAL 

    ); 

 
Parameters 

ParameterBuffer A virtual address pointer to a caller allocated buffer that may be 
consumed by the PRM handler. The internal data format of the 
ParameterBuffer is a contract between the caller and the PRM 
handler and outside the scope of this document. If the 
ParameterBuffer is not provided, NULL will be passed as this 
argument. 

ContextBuffer A virtual address pointer to a 
PRM_MODULE_CONTEXT_BUFFER. All addresses 
referenced in the buffer must be virtual addresses. The 
ContextBuffer may be NULL if no context information is 
available and the handler must check for this condition. 

 
The EFI_STATUS and EFI ABI (designated with the EFIAPI modifier in the signature) 
defined in the UEFI specification are adopted for PRM handlers. The 
PRM_EXPORT_API includes the appropriate keyword to add the data or function to the 
export directive in the PRM module object file. 
 
The following requirements are applied to PRM handlers: 

• The PRM handler function must use PRM_EXPORT_API to be placed into the 
image’s export table. 

• The maximum name length of a PRM handler function is 128 bytes.  
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• All PRM handlers must have an entry in the PRM Export Descriptor Table to be 
recognized as a valid PRM handler. 

• Functions in the PRM module binary image that are not exposed as PRM handlers 
are considered private to the PRM module. Private functions should not have entries 
in the PRM module’s export table. 



 

7. Servicable PRM 

Over time, a PRM handler might need to be updated for a variety of reasons such as bug fixes, 
workarounds or to enhance the runtime capability or the feature set. PRM updates occur at the 
module level. It is not possible to update a handler without updating the whole PRM module. For 
this reason, PRM versioning is applied at the module level. Conventionally, such a PRM module 
update would require a system reboot that updates the firmware code allowing the new code to 
be loaded in a future boot. 

In a cloud services environment, rebooting the system is not a viable solution and is reserved as 
a last resort. Hence we need an alternate means to update PRM modules at OS runtime and 
activate them without a system reboot. 

This document describes a generic framework for such an update, by enlightening the ACPI 
Bridge driver for a mechanism to switch to a new PRM Module image. 

7.1 High-Level Flows 

If a new PRM Module update is desired, the system BIOS build process generates a new PRM 
Module image as described in Section 6, or in an OS Specific format from a repository. The 
generation and delivery of this image is implementation specific and beyond the scope of this 
specification.  

Generically, during OS Runtime, an OS updater consumes a newly delivered PRM Module 

1. Parses the PE/COFF Export Descriptor structure  

a.  to identify it as a PRM Module 

b. Ensure that the right platform is targeted by matching the PlatformGuid to the 
PrmPlatformGuid in the PRMT Table (NOTE: Some implementations might choose the 
ESRT mechanism for platform targeting, or any other proprietary mechanism)  

2. The updater loads the PRM module into memory and performs the fix-ups 

3. Sends request to ACPI to update its PRM handler pointers. 

 

The ACPI Subsystem, on receipt of the request does the following: 

1. Checks if the updates are locked or allowed (See section 7.1.1) 

2. If locked, then stages the new PRM image until updates are unlocked 

3. If unlocked, then switches the pointers to the new PRM Module.   

 

7.1.1 Update Lock/Unlock 

Most PRM Handler invocations are considered stateless and hence a PRM Module update can 
be applied in-between PRM invocations. But this specification allows for a mechanism to lock an 
update of a PRM Module under certain circumstances, as described below.  

If an operation requires a sequence of PRM invocations (via _DSM or via Direct call), then an 
runtime update of the PRM handler should be blocked until this sequence is complete.  

An example of such operation is Address Range Scrub (ARS) for persistent memory 
(https://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf) which requires a sequence 

https://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
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of _DSM calls (which in-turn invoke the corresponding PRM Handlers), then a PRM Module 
update request need to be pended until this sequence is complete.  

Expanding on the ARS example above, this operation contains invocation of ARS _DSM 
Method with the following functions.  

1. Query ARS Capabilities (Function Index 1) 

2. Start ARS (Function Index 2) 

3. Get ARS Status (Function Index 3) 

The PMEM Driver will start the sequence by querying the ARS capabilities and invoking the 
Start ARS function. Since the ARS is a long latency operation, the Start ARS function will start 
the ARS process and return back. The PMEM driver can then poll for the ARS status by 
invoking the GetARSStatus function.  

Each of these _DSM functions will in turn invoke the corresponding PRM Handler to accomplish 
the task.  

During an update flow, care must be taken to ensure that a PRM Module that is in a middle of 
such sequence is not updated, until the sequence is complete.  

To enable this, a Lock/Unlock semantics is provided (see section 8.1.2 and Table 8-1) as part of 
ACPI sub-system.  

A _DSM Method which is start of a such a sequence should invoke a Lock request (see Section 
8.2.1) first before starting the sequence of operations, and should invoke an Unlock request 
(see Section 8.2.2) at the end of the sequence.  

Going back to the ARS example above,  

1. once Query ARS Capabilities is invoked, the ASL code should first invoke a ‘Lock’ by 
passing the PRM Handler GUID corresponding to this _DSM (which is the _DSM UUID). 
The ACPI Interpreter will then find the module that this GUID is part of, and will ‘lock’ this 
Module from updates. The PRM Handler will NOT be invoked as part of the ‘Lock’ 
invocation.  

2. After this point, any update request received by ACPI will be staged but will not be activated 
until the update is Unlocked.  

3. Once the GetARSStatus PRM calls returns as ARS Complete, the ASL code then calls the 
Unlock Method by passing the PRM Hander GUID to the ACPI Interpreter, which will then 
‘unlock’ this Module to allow for updates.  

a. If a previous update is staged (step 2 above), then the ACPI might choose to switch the 
pointers to the staged PRM Module at the Unlock call.  

The onus of taking the Lock and Unlock is left to the invoker (_DSM, in the case of ASL based 
invocation, or an OS driver in the case of direct invocation), as the invoker will have the visibility 
as to if this is start of a sequence or an one-off stateless invocation.  

An OS may choose to not support runtime update at all leveraging only a firmware update path 
or provide a robust framework around updates to minimize system downtime. Since this is OS 
dependent, this section cannot provide many generic details to describe how PRM serviceability 
should be implemented in a given OS. However, it does describe the runtime update process 
used in Microsoft Windows to serve as an example of how such a process can be performed. 

 



 

7.2 Installation in Windows 

1. During OS runtime, an OS-owned updater validates and writes the PRM module update 
to disk in a well- known location (e.g. in Windows: \System32\Prm\Modules\{Guid}). 

2. The updater will parse information from the update and persist the following metadata to 
registry (to be used across reboots): 

1. Full file path of the PRM module. 

2. The PRM module version number. 

3. The list of PRM handler GUIDs included in the PRM module. 

3. The updater loads the PRM module into memory and sends request to ACPI to update 
its PRM handler pointers. 

 

7.2.1 Persisting PRM Module Updates Across Reboot/KSR 

After reboot, winload will read the system hive to see if any PRM module updates have been 
updated from the firmware’s base image. For each PRM module, winload will load the latest 
version (as indicated by the system hive) from the on-disk location to memory and describe the 
instance in the boot start driver list. This is the scheme used for boot start drivers, for which 
existing MM support (relocation of the drivers) exists. 

As ACPI.sys reinitializes post boot, it will consume the information from the loader block and 
reconstruct an up-to-date view of PRM handlers. For both KSR and cold boot scenarios, the 
ACPI interpreter will be paused up until all PRM updates have been processed. 

7.3 Rollback 

It is imperative that the platforms implementing PRM functionalities support the rolling back of 
updates in the event of problematic updates. This is a similar requirement to that now being 
mandated for microcode updates. To simply the update process, rollbacks will be modeled as 
an update (increment the module version number) that reverts the behavior to a previous 
version. 

 

 

Figure 7-1 PRM Module Versioning Update Example 

Note: This assumes stateless behavior in hardware. Specifically, if a PRM update causes 
reserved bits to be set in HW, downgrading PRM behavior (moving to V3 in the diagram above) 
needs to ensure the corresponding bits reverted to a known good state or that the presence of 
the set bits do not adversely affect the behavior of the down-level PRM module. 
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8. Appendix A: PRM Handler _DSM Invocation 

There is a significant install base in the industry that relies on _DSM mechanisms as an 
abstraction to invoke platform firmware services. In addition to device hardware interrupts, 
category 3  can generate a SCI event which will enter ACPI context via a _Lxx method. Hence, 
it is essential to provide a mechanism to bridge the ASL code to the PRM handler to address 
these cases. 

In essence: 

• PRM provides a mechanism to invoke native code from ACPI context 

• ASL can be the landing point for SW or HW based runtime events 

• ASL will invoke PRM if required (ASL serves as a PRM invocation proxy) 
 

8.1 PRM OpRegion Definition 

The syntax for the OperationRegion term is described below:  

OperationRegion (   

RegionName, // NameString   

RegionSpace, // RegionSpaceKeyword   

Offset, // TermArg=>Integer   

Length // TermArg=>Integer  

) 

 

Thus, the PRM Operation Region term in ACPI namespace will be defined as follows:  

OperationRegion ([subspace-name], PlatformRtMechanism, 0, 1)  

 

Where:  

• RegionName is set to [subspace-name], which is a unique name for this PRM 

subspace.  

• RegionSpace must be set to PlatformRtMechanism, operation region type 0x0B  

• Offset must be set to 0.  

• Length must be set to 1.  

 

The PlatformRtMechanism operation region has a single access type allowed. 

Address Space Permitted Access Type(s)  Description 

PlatformRtMechanism  BufferAcc  Reads and writes to this operation 
region involve the use of a region 
specific data buffer. 

  



 

 

8.1.1 Declaring Fields in the PRM Operation Region 

For all PlatformRtMechanism OperationRegion definitions, the field definition format must 

comply with the syntax for the Field as follows:   

Field (   

RegionName,   

AccessType,   

LockRule,   

UpdateRule  

) {FieldUnitList}  

 

For PRM Operation Regions:  

• RegionName specifies the name of the operation region, declared above the field term.  

• AccessType must be set to BufferAcc.  

• LockRule indicates if access to this operation region requires acquisition of the Global 
Lock for synchronization. This field must be set to NoLock.  

• UpdateRule is not applicable to PRM operation region accesses since each access is 
performed in its entirety.  

 

The FieldUnitList specifies a single field unit of 8 bits. The PRM handler is invoked by 

writing data to this field unit. The following is an example of an OperationRegion and a Field 
declaration using the PlatformRtMechanism subtype. 

OperationRegion (PRMR, PlatformRtMechanism, 0x0, 0x1) 

Field (PRMR, BufferAcc, NoLock, Preserve) 

{ 

PRMF, 8 

} 

In order to invoke the PRM OperationRegion handler, a buffer object of 26 bytes must be written 
to the field unit. Similar to SMBus, IPMI, and Generic Serial bus, this input buffer will also serve 
as the output buffer. The buffer format and its use will be described in the following sections. 

 

8.1.2 Declaring and Using a PRM Data Buffer 

A PRM data buffer is an ASL buffer object that is used as a request and a response buffer for 
the PRM handler. Writing the PRM data buffer to the PRM field unit will result in the invocation 
of the PRM OperationRegion where the result of the handler is stored to the PRM field unit. This 
bidirectionality allows ASL to capture the status of the transaction so that it may perform error 
handling if necessary. 

The format of the PRM data buffer are defined as follows: 
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Table 8-1 PRM Data Buffer (ASL Buffer Object) 

Byte offset Byte length Description 

0 1 Data buffer status value. This value is 
populated by the PRM OperationRegion 
handler. The following are valid status values: 

0x0 – success 

0x1 – The PRM handler returned an error 
(only valid for command value 0) 

0x2 – Invalid command value 

0x3 - Invalid GUID 

0x4 – back to back lock command 

0x5 – unlock command called without calling 
lock 

0x6 – back to back call to unlock command 

0x7-0xff - reserved 

1 8 PRM handler status value. This value is 
populated by the PRM OperationRegion 
handler only when command value 0. 
Otherwise, this field is invalid. 

9 1 Command value. This value is populated by 
the caller. The supported command values 
are as follows: 

0x0 – run the PRM service associated with 
the GUID parameter. 

0x1 – start a sequence of PRM calls. When 
the sequence has been started for a GUID, 
the PRM module containing the GUID must 
not be updated until the terminate command 
for this GUID has been called. This command 
does not run the actual PRM service. It is a 
way to communicate the start of a sequence 
of PRM calls to the OperationRegion handler. 

0x2 – terminate a sequence of PRM calls. 
This command should be called after the start 
sequence has been called. This tells the 
PRM OperationRegion that the sequence of 
PRM calls has ended and that it is safe to 
update the PRM handlers. This command 
does not run the actual PRM service. It is a 
way to communicate the end of a sequence 
to the PRM OperationRegion handler. 

0x3-0xff - reserved 



 

10 16 _DSM GUID. This value is populated by the 
caller. This GUID must be present in the list 
of available handlers published by the PRMT 
table. 

The above byte fields can be manipulated using CreateByteField, CreateQWordField, and CreateField 
operators. By doing so, ASL can read and write values from this buffer using a single store operator.  

 

8.2 PRM Invocation Example 

The following is an example of how data is written to the PRM data buffer: 

    /* 

     * Control method to Run PRM service 

     * Arg0 contains a buffer of a _DSM GUID 

     */ 

    Method (RUNS, 1) 

    { 

        /* Local0 is the PRM data buffer */ 

        Local0 = buffer (26){} 

 

        /* Create byte fields */ 

        CreateByteField (Local0, 0x0, PSTA) 

        CreateQWordField (Local0, 0x1, USTA) 

        CreateByteField (Local0, 0x9, CMD) 

        CreateField (Local0, 0x50, 0x80, DATA) 

 

        /* Fill in the command and data fields of the data buffer */ 

        CMD = 0 

        DATA = Arg0 

        ... 

    } 

In order to invoke the PRM OperationRegion Handler, the contents of Local0 need to be written to a 
PRM OperationRegion FieldUnit. The result of the handler can be acquired by storing the contents of the 
field unit back to Local0. The following example defines a PRM OperationRegion and FieldUnit and a 
function that will tell the PRM OperationRegion Handler to run the PRM service described by Arg0.  

    OperationRegion (PRMR, PlatformRtMechanism, 0x0, 0x1) 

    Field (PRMR, BufferAcc, NoLock, Preserve) 

    { 

        PRMF, 8 
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    } 

    /* 

     * Control method to invoke PRM OperationRegion handler 

     * Arg0 contains a buffer representing a _DSM GUID 

     */ 

    Method (RUNS, 1) 

    { 

        /* Local0 is the PRM data buffer */ 

        Local0 = buffer (26){} 

 

        /* Create byte fields over the buffer */ 

        CreateByteField (Local0, 0x0, PSTA) 

        CreateQWordField (Local0, 0x1, USTA) 

        CreateByteField (Local0, 0x9, CMD) 

        CreateField (Local0, 0x50, 0x80, GUID) 

 

        /* Fill in the command and data fields of the data buffer */ 

        CMD = 0 // run command 

        GUID = Arg0 

         

        /* Invoke PRM OperationRegion Handler and store the result into Local0 */ 

        Local0 = (PRMF = Local0) 

 

        /* PSTA and USTA now contains the status returned by running the handler */ 

        If (!PSTA) 

        { 

            /* do error handling here */ 

            ... 

            If (!USTA) 

            { 

                /* Optionally handle status returned by the PRM service */ 

                ... 

            } 

        } 

 

        /* Return status */ 



 

        Return (PSTA) 

    } 

 

8.2.1 Example ASL Code for Locking Updates 

The following is an example that will lock the PRM transaction using the OperationRegion and Field 
defined in the previous example: 

    /* 

     * Control method to lock a PRM transaction 

     * Arg0 contains a buffer representing a _DSM GUID 

     */ 

    Method (LOCK, 1) 

    { 

        /* Local0 is the PRM data buffer */ 

        Local0 = buffer (26){} 

 

        /* Create byte fields over the buffer */ 

        CreateByteField (Local0, 0x0, STAT) 

        CreateByteField (Local0, 0x9, CMD) 

        CreateField (Local0, 0x50, 0x80, GUID) 

        CMD = 1 // Lock command 

        GUID = Arg0 

        Local0 = (PRMF = Local0) 

 

        /* Note STAT contains the return status */ 

        Return (STAT) 

    } 

 

8.2.2 Example ASL Code for Unlocking Updates 

The following is an example that will unlock the PRM transaction using the same OperationRegion and 
Field definitions: 

    /* 

     * Control method to unlock a PRM transaction 

     * Arg0 contains a buffer representing a _DSM GUID 

     */ 

    Method (ULCK, 1) 

    { 
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        /* Local0 is the PRM data buffer */ 

        Local0 = buffer (26){} 

 

        /* Create byte fields over the buffer */ 

        CreateByteField (Local0, 0x0, STAT) 

        CreateByteField (Local0, 0x9, CMD) 

        CreateField (Local0, 0x50, 0x80, GUID) 

        CMD = 2 // Unlock command 

        GUID = Arg0 

        Local0 = (PRMF = Local0) 

 

        /* Note STAT contains the return status */ 

        Return (STAT) 

    } 
 

 



 

9. Appendix B: _OSC and OpRegion  

9.1 Platform-Wide OSPM Capabilities 
 
A new _OSC capabilities bit (BIT 21) will be used to indicate OS support of Platform Runtime 
Mechanism.  
 
Based on this indication, BIOS can choose switch from legacy handling (such as SMI) to using 
PRM 
 
The ACPI ECR for this bit is shown here for completeness.  
 
Add a new bit at the end of the table as follows: 
Platform-Wide _OSC Capabilities DWORD 2 

Capabilities 
DWORD 

Interpretation 

21 Reserved for future use - The OS sets this bit to indicate support for Platform 
Runtime Mechanism (PRM). 

31:22 Reserved (must be 0) 

 

9.2 PRM Operation Region 
 
A new Operation Region Address space identifier is defined for PlatformRtMechanism 
and the ACPI ECR is shown here for completeness.  
 
Operation Region Address Space Identifiers Value 

Value Name (RegionSpace Keyword) 

0x0B PlatformRtMechanism (Reserved for future use by a mechanism developed in 
the code-first approach) 
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