
VOLUME 5: Platform Initialization
Specification

Standards

Version 1.3

3/29/2013

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other

Platform Initialization Specification VOLUME 5 Standards

ii 3/29/2013 Version 1.3

warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2013 Unified EFI, Inc. All Rights Reserved.

Version 1.3 3/29/2013 iii

Revision History

Revision Revision History Date

1.0 Initial public release. 8/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

1.1 Errata Revises typographical errors and minor omissions--see Errata for
details

04/25/08

Platform Initialization Specification VOLUME 5 Standards

iv 3/29/2013 Version 1.3

1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File
Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Version 1.3 3/29/2013 v

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp
PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Platform Initialization Specification VOLUME 5 Standards

vi 3/29/2013 Version 1.3

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

Version 1.3 3/29/2013 vii

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl
has EFI_STATUS w/o return code & errror on stage 3 recovery
description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service

clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

Platform Initialization Specification VOLUME 5 Standards

viii 3/29/2013 Version 1.3

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM
architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState()
return code

• ERROR: listed by mistake:737

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• ERROR: listed by mistake: 753

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in
EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT, Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Version 1.3 3/29/2013 ix

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP)
clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM
Migration is not required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

1.2.1 Errata
A

• 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the
GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969 Vol 1 errata: TE Header parameters

10/26/12

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

Platform Initialization Specification VOLUME 5 Standards

x 3/29/2013 Version 1.3

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

Version 1.3 3/29/2013 xi

Contents

1
Platform Initialization Standards Introduction... 1
1.1 Overview ... 1
1.2 Terms Used in this Document... 1
1.3 Conventions Used in this Document... 6

1.3.1 Data Structure Descriptions .. 6
1.3.2 Protocol Descriptions .. 6
1.3.3 Procedure Descriptions... 7
1.3.4 Pseudo-Code Conventions ... 7
1.3.5 Typographic Conventions ... 7

1.4 Requirements.. 8

2
SMBus Host Controller Design Discussion ... 11
2.1 SMBus Host Controller Overview ... 11
2.2 Related Information... 11
2.3 SMBus Host Controller Protocol Terms .. 12
2.4 SMBus Host Controller Protocol Overview ... 12

3
SMBus Host Controller Code Definitions... 13
3.1 Introduction ... 13
3.2 SMBus Host Controller Protocol ... 14

 EFI_SMBUS_HC_PROTOCOL ... 14
EFI_SMBUS_HC_PROTOCOL.Execute() .. 16
EFI_SMBUS_HC_PROTOCOL.ArpDevice()... 18
EFI_SMBUS_HC_PROTOCOL.GetArpMap()... 20
EFI_SMBUS_HC_PROTOCOL.Notify() .. 21

4
SMBus Design Discussion ... 23
4.1 Introduction ... 23
4.2 Target Audience.. 23
4.3 Related Information... 23
4.4 PEI SMBus PPI Overview... 24

5
SMBus PPI Code Definitions ... 25
5.1 Introduction ... 25
5.2 PEI SMBus PPI... 26

 EFI_PEI_SMBUS2_PPI ... 26
EFI_PEI_SMBUS2_PPI.Execute() ... 28
EFI_PEI_SMBUS2_PPI.ArpDevice() .. 31
EFI_PEI_SMBUS2_PPI.GetArpMap()... 34

Platform Initialization Specification VOLUME 5 Standards

xii 3/29/2013 Version 1.3

EFI_PEI_SMBUS2_PPI.Notify().. 36

6
SMBIOS Protocol.. 39

 EFI_SMBIOS_PROTOCOL ... 39
EFI_SMBIOS_PROTOCOL.Add()... 41
EFI_SMBIOS_PROTOCOL.UpdateString() .. 44
 EFI_SMBIOS_PROTOCOL.Remove()... 45
EFI_SMBIOS_PROTOCOL.GetNext() .. 46

7
IDE Controller ... 49
7.1 IDE Controller Overview ... 49
7.2 Design Discussion .. 49

7.2.1 IDE Controller Initialization Protocol Overview.. 49
7.2.2 IDE Controller Initialization Protocol References .. 50
7.2.3 Background ... 51
7.2.4 Simplifying the Design of IDE Drivers ... 52
7.2.5 Configuring Devices on the IDE Bus... 52
7.2.6 Sample Implementation for a Simple PCI IDE Controller.................................... 54

7.3 Code Definitions.. 55
 EFI_IDE_CONTROLLER_INIT_PROTOCOL.. 55
 EFI_IDE_CONTROLLER_INIT_PROTOCOL.. 56

EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()......................... 58
 EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() 60
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() 63
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() 70
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode().......................... 74
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming().................................. 76

7.3.1 IDE Disk Information Protocol .. 77
 EFI_DISK_INFO_PROTOCOL ... 77

EFI_DISK_INFO_PROTOCOL.Interface... 79
EFI_DISK_INFO_PROTOCOL.Inquiry() ... 80
EFI_DISK_INFO_PROTOCOL.Identify()... 81
EFI_DISK_INFO_PROTOCOL.SenseData() .. 82
EFI_DISK_INFO_PROTOCOL.WhichIde() ... 83

8
S3 Resume .. 85
8.1 S3 Overview.. 85
8.2 Goals... 85
8.3 Requirements.. 85
8.4 Assumptions ... 85

8.4.1 Multiple Phases of Platform Initialization... 85
8.4.2 Process of Platform Initialization ... 86

8.5 Restoring the Platform .. 86
8.5.1 Phases in the S3 Resume Boot Path.. 87

8.6 PEI Boot Script Executer PPI.. 90

Version 1.3 3/29/2013 xiii

EFI_PEI_S3_RESUME2_PPI ... 91
EFI_PEI_S3_RESUME_PPI. S3RestoreConfig().. 92

8.7 S3 Save State Protocol.. 93
 EFI_S3_SAVE_STATE_PROTOCOL.. 93

8.7.1 Save State Write ... 94
EFI_S3_SAVE_STATE_PROTOCOL.Write() ... 95

 EFI_BOOT_SCRIPT_IO_WRITE_OPCODE ... 97
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE .. 99
EFI_BOOT_SCRIPT_IO_POLL_OPCODE... 100
 EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE... 102
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE.................................... 104
EFI_BOOT_SCRIPT_MEM_POLL_OPCODE .. 105
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 107
 EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 109
EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE..................................... 111
EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE 113
EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE 115
EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE................................... 117
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE...................................... 119
EFI_BOOT_SCRIPT_STALL_OPCODE... 121
EFI_BOOT_SCRIPT_DISPATCH_OPCODE.. 122
EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE.. 123
EFI_BOOT_SCRIPT_INFORMATION_OPCODE... 124

8.7.2 Save State Insert... 124
EFI_S3_SAVE_STATE_PROTOCOL.Insert()... 125

8.7.3 Save State Label... 126
EFI_S3_SAVE_STATE_PROTOCOL.Label()... 127

8.7.4 Save State Compare... 128
EFI_S3_SAVE_STATE_PROTOCOL.Compare()... 129

8.8 S3 SMM Save State Protocol ... 129
 EFI_S3_SMM_SAVE_STATE_PROTOCOL ... 130

9
ACPI System Description Table Protocol ... 133
9.1 EFI_ACPI_SDT_PROTOCOL... 133

EFI_ACPI_SDT_PROTOCOL.GetAcpiTable().. 135
EFI_ACPI_SDT_PROTOCOL.RegisterNotify() ... 137
EFI_ACPI_SDT_PROTOCOL.Open()... 139
EFI_ACPI_SDT_PROTOCOL.OpenSdt() ... 140
EFI_ACPI_SDT_PROTOCOL.Close() .. 141
EFI_ACPI_SDT_PROTOCOL.GetChild().. 142
EFI_ACPI_SDT_PROTOCOL.GetOption() ... 143
EFI_ACPI_SDT_PROTOCOL.SetOption().. 149
EFI_ACPI_SDT_PROTOCOL.FindPath() ... 150

10
PCI Host Bridge .. 151
10.1 PCI Host Bridge Overview .. 151

Platform Initialization Specification VOLUME 5 Standards

xiv 3/29/2013 Version 1.3

10.2 PCI Host Bridge Design Discussion.. 151
10.3 PCI Host Bridge Resource Allocation Protocol ... 152

10.3.1 PCI Host Bridge Resource Allocation Protocol Overview 152
10.3.2 Host Bus Controllers ... 152
10.3.3 Producing the PCI Host Bridge Resource Allocation Protocol 153
10.3.4 Required PCI Protocols... 154
10.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 154

10.4 Sample PCI Architectures... 155
10.4.1 Sample PCI Architectures Overview ... 155
10.4.2 Desktop System with 1 PCI Root Bridge... 155
10.4.3 Server System with 4 PCI Root Bridges ... 156
10.4.4 Server System with 2 PCI Segments .. 157
10.4.5 Server System with 2 PCI Host Buses.. 157

10.5 ISA Aliasing Considerations.. 158
10.6 Programming of Standard PCI Configuration Registers ... 159
10.7 Sample Implementation .. 160

10.7.1 PCI enumeration process.. 163
10.7.2 Sample Enumeration Implementation ... 165

10.8 PCI HostBridge Code Definitions.. 166
10.8.1 Introduction ... 166
10.8.2 PCI Host Bridge Resource Allocation Protocol ... 166

 EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL 166
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhas
e() .. 172
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetNextRo
otBridge()... 176
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAt
tributes() .. 178
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusE
numeration() .. 180
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNu
mbers() .. 182
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitRes
ources() ... 185
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetPropos
edResources()... 188
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Preproces
sController()... 191

10.9 End of PCI Enumeration Overview ... 194
10.9.1 End of PCI Enumeration Protocol ... 194

11
PCI Platform.. 195
11.1 Introduction ... 195
11.2 PCI Platform Overview.. 195
11.3 PCI Platform Support Related Information.. 196

11.3.1 Industry Specifications .. 196

Version 1.3 3/29/2013 xv

11.3.2 PCI Specifications ... 196
11.4 PCI Platform Protocol ... 196

11.4.1 PCI Platform Protocol Overview.. 196
11.5 Incompatible PCI Device Support Protocol ... 197

11.5.1 Incompatible PCI Device Support Protocol Overview 197
11.5.2 Usage Model for the Incompatible PCI Device Support Protocol.................... 197

11.6 PCI Code Definitions... 198
11.6.1 PCI Platform Protocol.. 198

 EFI_PCI_PLATFORM_PROTOCOL.. 198
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify() 200
EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController() 202
EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()................................. 204
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() ... 206

11.6.2 PCI Override Protocol ... 207
 EFI_PCI_OVERRIDE_PROTOCOL .. 207

11.6.3 Incompatible PCI Device Support Protocol .. 208
 EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL........................ 208

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice()
210

12
Hot Plug PCI.. 213
12.1 HOT PLUG PCI Overview... 213
12.2 Hot Plug PCI Initialization Protocol Introduction ... 213
12.3 Hot Plug PCI Initialization Protocol Related Information... 213
12.4 Requirements.. 214
12.5 Sample Implementation for a Platform Containing PCI Hot Plug* Slots 215
12.6 PCI Hot Plug PCI Initialization Protocol .. 216

 EFI_PCI_HOT_PLUG_INIT_PROTOCOL ... 216
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()............................ 219
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() 221
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()................... 225

12.7 PCI Hot Plug Request Protocol... 227
EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify() 229

12.8 Sample Implementation for a Platform Containing PCI Hot Plug* Slots 231

13 ..
Super I/O Protocol .. 233
13.1 Super I/O Protocol .. 233

 EFI_SIO_PROTOCOL ... 233
EFI_SIO_PROTOCOL.RegisterAccess() .. 235
EFI_SIO_PROTOCOL.GetResources() .. 237
EFI_SIO_PROTOCOL.SetResources() .. 239
EFI_SIO_PROTOCOL.PossibleResources() .. 240
EFI_SIO_PROTOCOL.Modify() .. 241

Platform Initialization Specification VOLUME 5 Standards

xvi 3/29/2013 Version 1.3

14 ..
Super I/O and ISA Host Controller Interactions....................................... 243
14.1 Design Descriptions .. 243

14.1.1 Super I/O .. 244
14.1.2 ISA Bus ... 246
14.1.3 ISA Host Controller .. 247
14.1.4 Logical Devices .. 247

14.2 Code Definitions.. 248
14.2.1 EFI_SIO_PPI... 248
14.2.2 EFI_ISA_HC_PPI.. 254
14.2.3 EFI_ISA_HC_PROTOCOL ... 256
14.2.4 EFI_ISA_HC_SERVICE_BINDING_PROTOCOL... 259
14.2.5 EFI_SIO_CONTROL_PROTOCOL... 259

15
CPU I/O Protocol... 263
15.1 CPU I/O Protocol Terms ... 263
15.2 CPU I/O Protocol2 Description ... 263

15.2.1 EFI CPU I/O Overview .. 263
15.3 Code Definitions.. 264

15.3.1 CPU I/O Protocol... 265
 EFI_CPU_IO2_PROTOCOL.. 265

EFI_CPU_IO2_PROTOCOL.Mem.Read() and Mem.Write() 267
EFI_CPU_IO2_PROTOCOL.Io.Read() and Io.Write() 269

16 ..
Legacy Region Protocol .. 271
16.1 Legacy Region Protocol .. 271
16.2 Code Definitions.. 271

16.2.1 Legacy Region Protocol .. 271
 EFI_LEGACY_REGION2_PROTOCOL .. 271

EFI_LEGACY_REGION2_PROTOCOL.Decode() .. 273
EFI_LEGACY_REGION2_PROTOCOL.Lock()... 274
EFI_LEGACY_REGION2_PROTOCOL.BootLock() ... 275
EFI_LEGACY_REGION2_PROTOCOL.UnLock() .. 276
EFI_LEGACY_REGION2_PROTOCOL.GetInfo()... 277

17
I2C Protocol Stack.. 281
17.1 Design Discussion .. 281

17.1.1 I2C Bus Overview ... 281
17.1.2 I2C Protocol Stack Overview .. 282
17.1.3 PCI Comparison.. 291
17.1.4 Hot Plug Support... 292

17.2 DXE Code definitions.. 293
17.2.1 I2C Master Protocol .. 293

 EFI_I2C_MASTER_PROTOCOL... 293
EFI_I2C_MASTER_PROTOCOL.SetBusFrequency() 300

Version 1.3 3/29/2013 xvii

EFI_I2C_MASTER_PROTOCOL.Reset() ... 301
EFI_I2C_MASTER_PROTOCOL.StartRequest().. 302

17.2.2 I2C Host Protocol .. 303
 EFI_I2C_HOST_PROTOCOL.. 303

EFI_I2C_HOST_PROTOCOL.QueueRequest() ... 305
17.2.3 I2C I/O Protocol... 307

 EFI_I2C_IO_PROTOCOL.. 307
 EFI_I2C_IO_PROTOCOL.QueueRequest()... 310

17.2.4 I2C Bus Configuration Management Protocol... 311
 EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL 311

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.
EnableI2cBusConfiguration() .. 314

17.2.5 I2C Enumerate Protocol.. 315
 EFI_I2C_ENUMERATE_PROTOCOL ... 315

EFI_I2C_ENUMERATE_PROTOCOL.Enumerate() ... 317
EFI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency() 318

17.3 PEI Code definitions ... 318
17.3.1 I2C Master PPI.. 319

 EFI_PEI_I2C_MASTER ... 319
EFI_PEI_I2C_MASTER_PPI.SetBusFrequency()... 320
EFI_PEI_I2C_MASTER_PPI.Reset().. 321
EFI_PEI_I2C_MASTER_PPI.StartRequest() .. 322

Appendix A
Error Codes ... 325

Error Code Definitions.. 325

Platform Initialization Specification VOLUME 5 Standards

xviii 3/29/2013 Version 1.3

Figures

Figure 1. PI Architechture S3 Resume Boot Path... 87
Figure 2. PEI Phase in S3 Resume Boot Path ... 88
Figure 3. Configuration Save for PEI Phase ... 89
Figure 4. Host Bus Controllers.. 153
Figure 5. Producing the PCI Host Bridge Resource Allocation Protocol............................. 154
Figure 6. Desktop System with 1 PCI Root Bridge ... 156
Figure 7. Server System with 4 PCI Root Bridges .. 156
Figure 8. Server System with 2 PCI Segments... 157
Figure 9. Server System with 2 PCI Host Buses .. 158
Figure 10. Super I/O and ISA Host Controller Interactions ... 243
Figure 11. EFI CPU I/O2 Protocol... 264
Figure 12. Simple 12C Bus ... 281
Figure 13. Multiple I2C Bus Frequencies.. 281
Figure 14. Limited address Space .. 282
Figure 15. I2C Protocol Stack ... 284

Version 1.3 3/29/2013 xix

Tables

Table 1. Drivers Involved in Configuring IDE Devices .. 53
Table 2. Field descriptiond for EFI_IDE_CONTROLLER_ENUM_PHASE........................... 61
Table 3. EFI_ATAPI_IDENTIFY_DATA Definition 65
Table 4. EFI_ATA_EXT_TRANSFER_PROTOCOL field descriptions 73
Table 5. AML terms and supported options ... 145
Table 6. Standard PCI Devices – Header Type 0... 159
Table 7. PCI-to-PCI Bridge – Header Type 1 ... 160
Table 8. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage................................. 170
Table 9. ACPI 2.0 & 3.0 End Tag Usage .. 171
Table 10. I/O Resource Flag (Resource Type = 1) Usage.. 171
Table 11. Memory Resource Flag (Resource Type = 0) Usage ... 171
Table 12. Enumeration Descriptions... 174
Table 13. EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES field

descriptions.. 179
Table 14. ACPI 2.0 & 3.0 Resource Descriptor Field Values for StartBusEnumeration() ... 181
Table 15. ACPI 2.0 & 3.0 Resource Descriptor Field Values for SetBusNumbers() 183
Table 16. ACPI 2.0& 3.0 Resource Descriptor Field Values for SubmitResources().......... 186
Table 17. ACPI 2.0 & 3.0 GetProposedResources() Resource Descriptor Field Values ... 189
Table 18. EFI_RESOURCE_ALLOCATION_STATUS field descriptions 190
Table 19. EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE field descriptions.

193
Table 20. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage............................... 212
Table 21. ACPI 2.0 & 3.0 End Tag Usage .. 212
Table 22. Description of possible states for EFI_HPC_STATE .. 224
Table 23. EFI_HPC_PADDING_ATTRIBUTES field descriptions 227
Table 24. Functions in Legacy Region Protocol ... 271

Platform Initialization Specification VOLUME 5 Standards

xx 3/29/2013 Version 1.3

Platform Initialization Standards Introduction

Version 1.3 3/29/2013 1

1
Platform Initialization Standards Introduction

1.1 Overview
These sections define the core code and services that are required for an implementation of the
System Management Bus (SMBus) Host Controller Protocol and System Management Bus (SMBus)
PEIM-to-PEIM Interface (PPI).

The SMBus Host Controller Protocol is used by code, typically early chipset drivers, and SMBus
bus drivers that are running in the UEFI Boot Services environment to perform data transactions
over the SMBus. This specification does the following:

• Describes the basic components of the SMBus Host Controller Protocol

• Provides code definitions for the SMBus Host Controller Protocol and the SMBus-related type
definitions that are architecturally required.

The SMBus PPI is used by other Pre-EFI Initialization Modules (PEIMs) to control an SMBus host
controller.

This specification does the following:

• Describes the basic components of the PEI SMBus PPI

• Provides code definitions for the PEI SMBus PPI and SMBus-related type definitions that are
architecturally required.

1.2 Terms Used in this Document
16-bit PC Card

Legacy cards that follow the PC Card Standard and operate in 16-bit mode.

CardBay PC Card

32-bit PC Cards that follow the high-performance serial PC Card Standard. After
initialization, these devices appear as standard PCI devices.

CardBus bridge

A hardware controller that produces a CardBus bus. A CardBus bus can accept a CardBus PC
Card as well as legacy 16-bit PC Cards. CardBus PC Cards appear just like PCI devices to the
configuration software.

CardBus PC Card

32-bit PC Cards that follow the PC Card Standard.

HB

Host bridge. See PCI host bridge.

Platform Initialization Specification

2 3/29/2013 Version 1.3

HPB

Hot Plug Bus.

HPC

Hot Plug Controller. A generic term that refers to both a PHPC and a CardBus bridge.

HPRT

Hot Plug Resource Table.

incompatible PCI device

A PCI device that does not fully comply with the PCI Specification. Typically, this kind of
device has a special requirement for Base Address Register (BAR) allocation. Some devices
may want a special resource length or alignment, while others may want fixed I/O or memory
locations.

JEITA

Japan Electronics and Information Technology Association.

legacy PHPC

PCI devices that can be identified by their class code but were defined prior to the PCI
Standard Hot-Plug Controller and Subsystem Specification, revision 1.0. These devices have a
base class of 0x6, subclass of 0x4, and programming interface of 0.

MWI

Memory Write and Invalidate. See the PCI Local Bus Specification, revision 2.3, for more
information.

PC Card

Integrated circuit cards that follow the PC Card Standard. "PC Card" is a generic term that is
used to refer to 16-bit PC Cards, 32-bit CardBus PC Cards, and high-performance CardBay
PC Cards.

PC Card Standard

Refers to the set of specifications that are produced jointly by the PCMCIA and JEITA. This
standard was defined to promote interchangeability among mobile computers.

PCI bus

A generic term used to describe any PCI-like buses, including conventional PCI, PCI-X*, and
PCI Express*. From a software standpoint, a PCI bus is collection of up to 32 physical PCI
devices that share the same physical PCI bus.

PCI bus driver

Software that creates a handle for every PCI controller in the system and installs both the PCI
I/O Protocol and the Device Path Protocol onto that handle. It may optionally perform PCI
enumeration if resources have not already been allocated to all the PCI controllers. It also
loads and starts any EFI drivers that are found in any PCI option ROMs that were discovered
during PCI enumeration.

Platform Initialization Standards Introduction

Version 1.3 3/29/2013 3

PCI configuration space

The configuration channel that is defined by PCI to configure PCI devices into the resource
domain of the system. Each PCI device must produce a standard set of registers in the form of
a PCI configuration header and can optionally produce device-specific registers. The registers
are addressed via Type 0 or Type 1 PCI configuration cycles as described by the PCI
Specification. The PCI configuration space can be shared across multiple PCI buses. On
Intel® architecture-based systems, the PCI configuration space is accessed via I/O ports
0xCF8 and 0xCFC. The PCI Express configuration space is accessed via a memory-mapped
aperture.

PCI controller

A hardware components that is discovered by a PCI bus driver and is managed by a PCI
device driver. This document uses the terms "PCI function" and "PCI controller" equivalently.

PCI device

A collection of up to 8 PCI functions that share the same PCI configuration space. A PCI
device is physically connected to a PCI bus.

PCI enumeration

The process of assigning resources to all the PCI controllers on a given PCI host bridge. This
process includes the following:

• Assigning PCI bus numbers and PCI interrupts

• Allocating PCI I/O resources, PCI memory resources, and PCI prefetchable memory
resources

• Setting miscellaneous PCI DMA values

Typically, PCI enumeration is to be performed only once during the boot process.

PCI function

A controller that provides some type of I/O services. It consumes some combination of PCI I/
O, PCI memory, and PCI prefetchable memory regions and the PCI configuration space. The
PCI function is the basic unit of configuration for PCI.

PCI host bridge

The software abstraction that produces one or more PCI root bridges. All the PCI buses that
are produced by a host bus controller are part of the same coherency domain. A PCI host
bridge is an abstraction and may be made up of multiple hardware devices. Most systems can
be modeled as having one PCI host bridge. This software abstraction is necessary while
dealing with PCI resource allocation because resources that are assigned to one PCI root
bridge depend on another and all the "related" PCI root bridges must be considered together
during resource allocation.

PCI root bridge

A PCI root bridge that produces a root PCI bus. It bridges a root PCI bus and a bus that is not a
PCI bus (e.g., processor local bus, InfiniBand* fabric). A PCI host bridge may have one or
more root PCI bridges. Configurations of a root PCI bridge within a host bridge can have
dependencies upon other root PCI bridges within the same host bridge.

Platform Initialization Specification

4 3/29/2013 Version 1.3

PCI segment

A collection of up to 256 PCI buses that share the same PCI configuration space. A
PCI segment is defined in section 6.5.6 of the ACPI 2.0 Specification (also ACPI 3.0)
as the _SEG object. If a system supports only a single PCI segment, the PCI segment
number is defined to be zero.The existence of PCI segments enables the construction
of systems with greater than 256 PCI buses.

PEC

Packet Error Code. It is similar to a checksum data of the data coming across the SMBus wire.

PCI-to-CardBus bridges

A PCI device that produces a CardBus bus. The PCI-to-CardBus bridge has a PEI

Pre-EFI Initialization.

PEIM

Pre-EFI Initialization Module.

greater than 256 PCI buses.

PERR

Parity Error.

type 2 PCI configuration header and has a class code of 0x070600.

PHPC

PCI Hot Plug* Controller. A hardware component that controls the power to one or more
conventional PCI slots or PCI Express slots.

PPI

PEIM-to-PEIM Interface.

RB

Root bridge. See PCI root bridge.

resource padding

Also known as resource overallocation. System resources are said to be overallocated if more
resources are allocated to a PCI bus than are required. Resource padding allows a limited
number of add-in cards to be hot added to a PCI bus without disturbing allocation to the rest of
the buses.

root HPC

Root Hot Plug Controller. An HPC that gets reset only when the entire system is reset. Such
HPCs can depend upon the system firmware to initialize them because system firmware is
guaranteed to run after a system reset. An HPC that is embedded in the PCI root bridge is
considered a root HPC bridge. Some platform chipsets include special-purpose PCI-to-PCI
bridges. They appear like a PCI-to-PCI bridge to the configuration software, but their primary
bus interface is not a PCI bus. Such a component can be considered a root HPC if it is not
subordinate to an HPC. Legacy HPCs may be implemented as chipset devices that appear to be
behind a special-purpose PCI-to-PCI bridge, but these HPCs are not reset when the secondary

Platform Initialization Standards Introduction

Version 1.3 3/29/2013 5

bus reset bit in the parent PCI-to-PCI bridge is set. Such HPCs are considered as root HPCs as
well.

An HPC that is a child of a PCI-to-PCI bridge is not a root HPC. Such an HPC can be reset if
the secondary bus reset bit in the PCI-to-PCI bridge is set by an operating system. Because the
initialization code in the system firmware may not be executed during this case, such an HPC
must initialize itself using hardware mechanisms, without any firmware intervention. An HPC
that is a child of another HPC is not a root HPC. See section 3.5.1.3 in the PCI Standard Hot-
Plug Controller and Subsystem Specification, revision 1.0, for details regarding this term.

root PCI bus

A PCI bus that is not a child of another PCI bus. For every root PCI bus, there is an object in
the ACPI name space with a Plug and Play (PNP) ID of "PNP0A03." Typical desktop systems
include only one root PCI bus.

SERR

System error.

SHPC

Standard (PCI) Hot Plug Controller. A PCI Hot Plug controller that conforms to the PCI Standard Hot-Plug
Controller and Subsystem Specification, revision 1.0. This specification is published by the PCI Special Interest
Group (PCI-SIG). An SHPC can either be embedded in a PCI root bridge or a PCI-to-PCI bridge.coherency
domain

The address resources of a system as seen by a processor. It consists of both system memory
and I/O space.

SMBus

System Management Bus.

SMBus host controller

Provides a mechanism for the processor to initiate communications with SMBus slave devices.
This controller can be connected to a main I/O bus such as PCI.

SMBus master device

Any device that initiates SMBus transactions and drives the clock.

SMBus PPI

A software interface that provides a method to control an SMBus host controller and access
the data of the SMBus slave devices that are attached to it.

SMBus slave device

The target of an SMBus transaction, which is driven by some master.

UDID

Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

Platform Initialization Specification

6 3/29/2013 Version 1.3

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Platform Initialization Standards Introduction

Version 1.3 3/29/2013 7

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

1.3.3 Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.4 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.5 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Platform Initialization Specification

8 3/29/2013 Version 1.3

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.4 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

Platform Initialization Standards Introduction

Version 1.3 3/29/2013 9

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

Platform Initialization Specification

10 3/29/2013 Version 1.3

SMBus Host Controller Design Discussion

Version 1.3 3/29/2013 11

2
SMBus Host Controller Design Discussion

2.1 SMBus Host Controller Overview
These section describe the System Management Bus (SMBus) Host Controller Protocol. This
protocol provides an I/O abstraction for an SMBus host controller. An SMBus host controller is a
hardware component that interfaces to an SMBus. It moves data between system memory and
devices on the SMBus by processing data structures and generating transactions on the SMBus. The
following use this protocol:

• An SMBus bus driver to perform all data transactions over the SMBus

• Early chipset drivers that need to manage devices that are required early in the Driver Execution
Environment (DXE) phase, before the Boot Device Selection (BDS) phase

This protocol should be used only by drivers that require direct access to the SMBus.

Considerable discussion has been done to understand the usage model of the UEFI Driver Model in
the SMBus. Although, the UEFI Driver Model concepts can be applied to SMBus, only the SMBus
Host Controller Protocol was created for now for the following reasons:

• The UEFI Driver Model is designed primarily for boot devices. Boot devices are unlikely to be
connected to the SMBus because of SMBus-intrinsic capability. They are slow and not
enumerable.

• The current usage model of SMBus is to enable and configure devices early during the boot
phase, before BDS.

A DXE driver that publishes this protocol will either support Execute, ArpDevice, GetArpMap, and
Notify; alternatively, a driver will support only Execute and return “not supported” for the latter 3
services.

If some of these assumptions become obsolete and require being revisited in the future, this
specification is extensible to convert to the UEFI Driver Model.

2.2 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementers Forum,

August 3, 2000: http://www.smbus.org

• PCI Local Bus Specification, revision 3.0, PCI Special Interest Group.

http://www.smbus.org

Platform Initialization Specification VOLUME 5 Standards

12 3/29/2013 Version 1.3

2.3 SMBus Host Controller Protocol Terms
The following terms are used throughout this document to describe the model for constructing
SMBus Host Controller Protocol instances in the DXE environment.

PEC

Packet Error Code. It is similar to a checksum data of the data coming across the SMBus wire.

SMBus

System Management Bus.

SMBus host controller

Provides a mechanism for the processor to initiate communications with SMBus slave devices.
This controller can be connected to a main I/O bus such as PCI.

SMBus master device

Any device that initiates SMBus transactions and drives the clock.

SMBus slave device

The target of an SMBus transaction, which is driven by some master.

UDID

Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

2.4 SMBus Host Controller Protocol Overview
The interfaces that are provided in the EFI_SMBUS_HC_PROTOCOL are used to manage data
transactions on the SMBus. The EFI_SMBUS_HC_PROTOCOL is designed to support SMBus 1.0–
and 2.0–compliant host controllers.

Each instance of the EFI_SMBUS_HC_PROTOCOL corresponds to an SMBus host controller in a
platform. To provide support for early drivers that need to communicate on the SMBus, this protocol
is available before the Boot Device Selection (BDS) phase. During BDS, this protocol can be
attached to the device handle of an SMBus host controller that is created by a device driver for the
SMBus host controller's parent bus type. For example, an SMBus controller that is implemented as a
PCI device would require a PCI device driver to produce an instance of the
EFI_SMBUS_HC_PROTOCOL.

See “SMBus Host Controller Protocol” on page 14 for the definition of this protocol.

SMBus Host Controller Code Definitions

Version 1.3 3/29/2013 13

3
SMBus Host Controller Code Definitions

3.1 Introduction
This section contains the basic definitions of the SMBus Host Controller Protocol. The following
protocol is defined in this section:

• EFI_SMBUS_HC_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_SMBUS_NOTIFY_FUNCTION

Platform Initialization Specification VOLUME 5 Standards

14 3/29/2013 Version 1.3

3.2 SMBus Host Controller Protocol

EFI_SMBUS_HC_PROTOCOL

Summary
Provides basic SMBus host controller management and basic data transactions over the SMBus.

GUID
#define EFI_SMBUS_HC_PROTOCOL_GUID \
 {0xe49d33ed, 0x513d, 0x4634, 0xb6, 0x98, 0x6f, 0x55, \
 0xaa, 0x75, 0x1c, 0x1b}

Protocol Interface Structure
typedef struct _EFI_SMBUS_HC_PROTOCOL {
 EFI_SMBUS_HC_EXECUTE_OPERATION Execute;
 EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE ArpDevice;
 EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP GetArpMap;
 EFI_SMBUS_HC_PROTOCOL_NOTIFY Notify;
} EFI_SMBUS_HC_PROTOCOL;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a driver to retrieve the address that was allocated by the SMBus host controller
during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a driver to register for a callback to the SMBus host controller driver when the
bus issues a notification to the bus controller driver. See the Notify() function
description.

Description
The EFI_SMBUS_HC_PROTOCOL provides SMBus host controller management and basic data
transactions over SMBus. There is one EFI_SMBUS_HC_PROTOCOL instance for each SMBus
host controller.

Early chipset drivers can communicate with specific SMBus slave devices by calling this protocol
directly. Also, for drivers that are called during the Boot Device Selection (BDS) phase, the device
driver that wishes to manage an SMBus bus in a system retrieves the EFI_SMBUS_HC_PROTOCOL
instance that is associated with the SMBus bus to be managed. A device handle for an SMBus host

SMBus Host Controller Code Definitions

Version 1.3 3/29/2013 15

controller will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_SMBUS_HC_PROTOCOL instance.

Platform Initialization Specification VOLUME 5 Standards

16 3/29/2013 Version 1.3

EFI_SMBUS_HC_PROTOCOL.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_EXECUTE_OPERATION) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

SlaveAddress

The SMBus slave address of the device with which to communicate. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Command

This command is transmitted by the SMBus host controller to the SMBus slave device
and the interpretation is SMBus slave device specific. It can mean the offset to a list of
functions inside an SMBus slave device. Not all operations or slave devices support
this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
SMBus Specification and is not related to PI Architecture. Type
EFI_SMBUS_OPERATION is defined in EFI_PEI_SMBUS_PPI.Execute() in
the Platform Initialization SMBus PPI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

SMBus Host Controller Code Definitions

Version 1.3 3/29/2013 17

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This field will contain the actual
number of bytes that are executed for this operation. Not all operations require this
argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the System
Management Bus (SMBus) Specification. The resulting transaction will be either that the SMBus
slave devices accept this transaction or that this function returns with error.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll exit
criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is

determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure that was reflected in the
Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or bus
errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for

EfiSmbusQuickRead and EfiSmbusQuickWrite. Length

is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

Platform Initialization Specification VOLUME 5 Standards

18 3/29/2013 Version 1.3

EFI_SMBUS_HC_PROTOCOL.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

ArpAll

A Boolean expression that indicates if the host drivers need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll is
TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The Unique Device Identifier (UDID) that is associated with this device. Type
EFI_SMBUS_UDID is defined in EFI_PEI_SMBUS_PPI.ArpDevice() in the
Platform Initialization SMBus PPI Specification.

SlaveAddress

The SMBus slave address that is associated with an SMBus UDID. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Description
The ArpDevice() function provides a standard way for a device driver to enumerate the entire
SMBus or specific devices on the bus.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll exit
criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect).

SMBus Host Controller Code Definitions

Version 1.3 3/29/2013 19

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is

determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure was reflected in the Host
Status Register bit. Device Errors are a result of a transaction collision,
illegal command field, unclaimed cycle (host initiated), or bus errors
(collisions).

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented

by this driver.

Platform Initialization Specification VOLUME 5 Standards

20 3/29/2013 Version 1.3

EFI_SMBUS_HC_PROTOCOL.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair of
the slave devices that were enumerated by the SMBus host controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

Length

Size of the buffer that contains the SMBus device map.

SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller driver. Type
EFI_SMBUS_DEVICE_MAP is defined in
EFI_PEI_SMBUS_PPI.GetArpMap() in the Platform Initialization SMBus PPI
Specification.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that were enumerated
by the SMBus host driver.

Status Codes Returned

EFI_SUCCESS The SMBus returned the current device map.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented by

this driver.

SMBus Host Controller Code Definitions

Version 1.3 3/29/2013 21

EFI_SMBUS_HC_PROTOCOL.Notify()

Summary
Allows a device driver to register for a callback when the bus driver detects a state that it needs to
propagate to other drivers that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_NOTIFY) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_SMBUS_NOTIFY_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered function. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Data

Data that the host controller detects as sending a message and calls all the registered
function.

NotifyFunction

The function to call when the bus driver detects the SlaveAddress and Data pair.
Type EFI_SMBUS_NOTIFY_FUNCTION is defined in “Related Definitions” below.

Description
The Notify() function registers all the callback functions to allow the bus driver to call these
functions when the SlaveAddress/Data pair happens.

Platform Initialization Specification VOLUME 5 Standards

22 3/29/2013 Version 1.3

Related Definitions
//***
// EFI_SMBUS_NOTIFY_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_NOTIFY_FUNCTION) (
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification..

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned

EFI_SUCCESS NotifyFunction was registered.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented by

this driver.

 SMBus Design Discussion

Version 1.3 3/29/2013 23

4
SMBus Design Discussion

4.1 Introduction
These sections describe the System Management Bus (SMBus) PEIM-to-PEIM Interfaces (PPIs).
This document provides enough material to implement an SMBus Pre-EFI Initialization Module
(PEIM) that can control transactions between an SMBus host controller and its slave devices.

The material that is contained in this document is designed to support communication via the
SMBus. These extensions are provided in the form of SMBus-specific protocols. This document
provides the information that is required to implement an SMBus PEIM in the Pre-EFI Initialization
(PEI) portion of system firmware.

A full understanding of the Unified Extensible Firmware Interface Specification (UEFI
specification) and the System Management Bus (SMBus) Specification is assumed throughout this
document. See “Related Information,” below, for the URL for the System Management Bus (SMBus)
Specification.

4.2 Target Audience
This document is intended for the following readers:

• Original equipment manufacturers (OEMs) who will be creating platforms that are intended to
boot shrink-wrap operating systems.

• BIOS developers, either those who create general-purpose BIOS and other firmware products, or
those who modify these productss.

• Operating system developers who will be creating and/or adapting their shrink-wrap operating
system products.

4.3 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementer's Forum,

August 3, 2000:
http://www.smbus.org

• PCI Local Bus Specification, revision 3.0, PCI Special Interest Group.

http://www.smbus.org

Platform Initialization Specification VOLUME 5 Standards

24 3/29/2013 Version 1.3

4.4 PEI SMBus PPI Overview
The PEI SMBus PPI is used by code, typically other PEIMs, that is running in the PEI environment
to access data on an SMBus slave device via the SMBus host controller. In particular, functions for
managing devices on SMBus buses are defined in this specification.

The interfaces that are provided in the EFI_PEI_SMBUS2_PPI are for performing basic
operations to an SMBus slave device. The system provides abstracted access to basic system
resources to allow a PEIM to have a programmatic method to access these basic system resources.
The main goal of this PPI is to provide an abstraction that simplifies the writing of PEIMs for
SMBus slave devices. This goal is accomplished by providing a standard interface to the SMBus
slave devices that does not require detailed knowledge about the particular hardware implementation
or protocols of the SMBus.

Certain implentations of the module may omit Arp capabilities. Specifically, a module will either
support Execute, ArpDevice, GetArpMap, and Notify; alternatively, a module will support only
Execute and return “not supported” for the latter 3 services.

See “EFI_PEI_SMBUS2_PPI” on page 26 for the definition of EFI_PEI_SMBUS2_PPI. This PPI
is produced by each of the SMBus host controllers in the system.

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 25

5
SMBus PPI Code Definitions

5.1 Introduction
This section contains the basic definitions for PEIMs and SMBus devices to use during the PEI
phase. The following PPI is defined in this section:

• EFI_PEI_SMBUS2_PPI

This section also contains the definitions for additional SMBus-related data types and structures that
are subordinate to the structures in which they are called. All of the data structures below except for
EFI_PEI_SMBUS_NOTIFY_FUNCTION can be used in the DXE phase as well. The following
types or structures can be found in "Related Definitions" of the parent function definition:

• EFI_SMBUS_DEVICE_ADDRESS

• EFI_SMBUS_DEVICE_COMMAND

• EFI_SMBUS_OPERATION

• EFI_SMBUS_UDID

• EFI_SMBUS_DEVICE_MAP

• EFI_PEI_SMBUS_NOTIFY_FUNCTION

Platform Initialization Specification VOLUME 5 Standards

26 3/29/2013 Version 1.3

5.2 PEI SMBus PPI

EFI_PEI_SMBUS2_PPI

Summary
Provides the basic I/O interfaces that a PEIM uses to access its SMBus controller and the slave
devices attached to it.

GUID
#define EFI_PEI_SMBUS2_PPI_GUID \
 { 0x9ca93627, 0xb65b, 0x4324, \
 0xa2, 0x2, 0xc0, 0xb4, 0x61, 0x76, 0x45, 0x43 }

PPI Interface Structure
typedef struct _EFI_PEI_SMBUS2_PPI {
 EFI_PEI_SMBUS2_PPI_EXECUTE_OPERATION Execute;
 EFI_PEI_SMBUS2_PPI_ARP_DEVICE ArpDevice;
 EFI_PEI_SMBUS2_PPI_GET_ARP_MAP GetArpMap;
 EFI_PEI_SMBUS2_PPI_NOTIFY Notify;
 EFI_GUID Identifier
} EFI_PEI_SMBUS2_PPI;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a PEIM to retrieve the address that was allocated by the SMBus host controller
during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a PEIM to register for a callback to the SMBus host controller PEIM when the
bus issues a notification to the bus controller PEIM. See the Notify() function
description.

Identifier

Identifier which uniquely identifies this SMBus controller in a system.

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 27

Description
The EFI_PEI_SMBUS2_PPI provides the basic I/O interfaces that are used to abstract accesses to
SMBus host controllers. There is one EFI_PEI_SMBUS2_PPI instance for each SMBus host
controller in a system. A PEIM that wishes to manage an SMBus slave device in a system will have
to retrieve the EFI_PEI_SMBUS2_PPI instance that is associated with its SMBus host controller.

Platform Initialization Specification VOLUME 5 Standards

28 3/29/2013 Version 1.3

EFI_PEI_SMBUS2_PPI.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_EXECUTE_OPERATION) (
 IN CONST EFI_PEI_SMBUS2_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in "Related
Definitions" below.

Command

This command is transmitted by the SMBus host controller to the SMBus slave device
and the interpretation is SMBus slave device specific. It can mean the offset to a list of
functions inside an SMBus slave device. Not all operations or slave devices support
this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is defined in
"Related Definitions" below.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
System Management Bus (SMBus) Specification and is not related to UEFI. Type
EFI_SMBUS_OPERATION is defined in "Related Definitions" below.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This parameter will contain the

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 29

actual number of bytes that are executed for this operation. Not all operations require
this argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the System
Management Bus (SMBus) Specification. The resulting transaction will be either that the SMBus
slave devices accept this transaction or that this function returns with error.

Related Definitions
//***
// EFI_SMBUS_DEVICE_ADDRESS
//***
typedef struct _EFI_SMBUS_DEVICE_ADDRESS {
 UINTN SmbusDeviceAddress:7;
} EFI_SMBUS_DEVICE_ADDRESS;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated.

//***
// EFI_SMBUS_DEVICE_COMMAND
//***
typedef UINTN EFI_SMBUS_DEVICE_COMMAND;

//***
// EFI_SMBUS_OPERATION
//***
typedef enum _EFI_SMBUS_OPERATION {
 EfiSmbusQuickRead,
 EfiSmbusQuickWrite,
 EfiSmbusReceiveByte,
 EfiSmbusSendByte,
 EfiSmbusReadByte,
 EfiSmbusWriteByte,
 EfiSmbusReadWord,
 EfiSmbusWriteWord,
 EfiSmbusReadBlock,
 EfiSmbusWriteBlock,
 EfiSmbusProcessCall,
 EfiSmbusBWBRProcessCall

Platform Initialization Specification VOLUME 5 Standards

30 3/29/2013 Version 1.3

} EFI_SMBUS_OPERATION;

See the System Management Bus (SMBus) Specification for descriptions of the fields in the above
definition.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll
exit criteria.

EFI_CRC_ERROR The checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed.

Timeout is determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure reflected in the
Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or
bus errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for

EfiSmbusQuickRead and EfiSmbusQuickWrite.

Length is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 31

EFI_PEI_SMBUS2_PPI.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_ARP_DEVICE) (
 IN CONST EFI_PEI_SMBUS2_PPI *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

ArpAll

A Boolean expression that indicates if the host PEIMs need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll is
TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The targeted SMBus Unique Device Identifier (UDID). The UDID may not exist for
SMBus devices with fixed addresses. Type EFI_SMBUS_UDID is defined in
"Related Definitions" below.

SlaveAddress

The new SMBus address for the slave device for which the operation is targeted. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Description
The ArpDevice() function enumerates the entire bus or enumerates a specific device that is
identified by SmbusUdid.

Platform Initialization Specification VOLUME 5 Standards

32 3/29/2013 Version 1.3

Related Definitions
//***
// EFI_SMBUS_UDID
//***
typedef struct _EFI_SMBUS_UDID {
 UINT32 VendorSpecificId;
 UINT16 SubsystemDeviceId;
 UINT16 SubsystemVendorId;
 UINT16 Interface;
 UINT16 DeviceId;
 UINT16 VendorId;
 UINT8 VendorRevision;
 UINT8 DeviceCapabilities;
} EFI_SMBUS_UDID;

VendorSpecificId

A unique number per device.

SubsystemDeviceId

Identifies a specific interface, implementation, or device. The subsystem ID is defined
by the party that is identified by the SubsystemVendorId field.

SubsystemVendorId

This field may hold a value that is derived from any of several sources:

• The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

• The device OEM’s ID as assigned by the SBS Implementer's Forum or the PCI
SIG.

• A value that, in combination with the SubsystemDeviceId, can be used to
identify an organization or industry group that has defined a particular common
device interface specification.

Interface

Identifies the protocol layer interfaces that are supported over the SMBus connection
by the device. For example, Alert Standard Format (ASF) and IPMI.

DeviceId

The device ID as assigned by the device manufacturer (identified by the VendorId
field).

VendorId

The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

VendorRevision

UDID version number and a silicon revision identification.

DeviceCapabilities

Describes the device’s capabilities.

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 33

Status Codes Returned

EFI_SUCCESS The SMBus slave device address was set.

EFI_INVALID_PARAMETER SlaveAddress is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The SMBus slave device did not respond.

EFI_DEVICE_ERROR The request was not completed because the transaction failed.
Device errors are a result of a transaction collision, illegal command
field, or unclaimed cycle (host initiated).

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

Platform Initialization Specification VOLUME 5 Standards

34 3/29/2013 Version 1.3

EFI_PEI_SMBUS2_PPI.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair of
the slave devices that were enumerated by the SMBus host controller PEIM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_GET_ARP_MAP) (
 IN CONST EFI_PEI_SMBUS_PPI *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

Length

Size of the buffer that contains the SMBus device map.

SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller PEIM. Type
EFI_SMBUS_DEVICE_MAP is defined in "Related Definitions" below.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that are enumerated by
the SMBus host PEIM.

Related Definitions
//***
// EFI_SMBUS_DEVICE_MAP
//***
typedef struct _EFI_SMBUS_DEVICE_MAP {
 EFI_SMBUS_DEVICE_ADDRESS SmbusDeviceAddress;
 EFI_SMBUS_UDID SmbusDeviceUdid;
} EFI_SMBUS_DEVICE_MAP;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 35

SmbusDeviceUdid

The SMBUS Unique Device Identifier (UDID) as defined in EFI_SMBUS_UDID.
Type EFI_SMBUS_UDID is defined in
EFI_PEI_SMBUS2_PPI.ArpDevice().

Status Codes Returned

EFI_SUCCESS The device map was returned correctly in the buffer.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

Platform Initialization Specification VOLUME 5 Standards

36 3/29/2013 Version 1.3

EFI_PEI_SMBUS2_PPI.Notify()

Summary
Allows a PEIM to register for a callback when the PEIM detects a state that it needs to propagate to
other PEIMs that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_NOTIFY) (
 IN CONST EFI_PEI_SMBUS_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_PEI_SMBUS_NOTIFY2_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered functions. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Data

Data that the host controller detects as sending a message and calls all the registered
functions.

NotifyFunction

The function to call when the PEIM detects the SlaveAddress and Data pair.
Type EFI_PEI_SMBUS_NOTIFY2_FUNCTION is defined in "Related
Definitions" below.

Description
The Notify() function registers all the callback functions to allow the PEIM to call these
functions when the SlaveAddress/Data pair happens.

 SMBus PPI Code Definitions

Version 1.3 3/29/2013 37

Related Definitions
//***
// EFI_PEI_SMBUS_NOTIFY2_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_NOTIFY2_FUNCTION) (
 IN CONST EFI_PEI_SMBUS_PPI *SmbusPpi,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SmbusPpi

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned

EFI_SUCCESS NotifyFunction has been registered.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

Platform Initialization Specification VOLUME 5 Standards

38 3/29/2013 Version 1.3

SMBIOS Protocol

Version 1.3 3/29/2013 39

6
SMBIOS Protocol

EFI_SMBIOS_PROTOCOL

Summary
Allows consumers to log SMBIOS data records, and enables the producer to create the SMBIOS
tables for a platform.

GUID
#define EFI_SMBIOS_PROTOCOL_GUID \
 { 0x3583ff6, 0xcb36, 0x4940, { 0x94, 0x7e, 0xb9, 0xb3, 0x9f,\
 0x4a, 0xfa, 0xf7 } }

Protocol Interface Structure
typedef struct _EFI_SMBIOS_PROTOCOL {
 EFI_SMBIOS_ADD Add;
 EFI_SMBIOS_UPDATE_STRINGUpdateString;
 EFI_SMBIOS_REMOVE Remove;
 EFI_SMBIOS_GET_NEXT GetNext;
 UINT8 MajorVersion;
 UINT8 MinorVersion;
} EFI_SMBIOS_PROTOCOL;

Member Description
Add

Add an SMBIOS record including the formatted area and the optional strings that
follow the formatted area.

UpdateString

Update a string in the SMBIOS record.

Remove

Remove an SMBIOS record.

GetNext

Discover all SMBIOS records.

MajorVersion

The major revision of the SMBIOS specification supported.

MinorVersion

The minor revision of the SMBIOS specification supported.

Platform Initialization Specification VOLUME 5 Standards

40 3/29/2013 Version 1.3

Description
This protocol provides an interface to add, remove or discover SMBIOS records. The driver which
produces this protocol is responsible for creating the SMBIOS data tables and installing the pointer
to the tables in the EFI System Configuration Table.

The caller is responsible for only adding SMBIOS records that are valid for the SMBIOS
MajorVersion and MinorVersion. When an enumerated SMBIOS field's values are
controlled by the DMTF, new values can be used as soon as they are defined by the DMTF without
requiring an update to MajorVersion and MinorVersion.

The SMBIOS protocol can only be called a TPL < TPL_NOTIFY.

SMBIOS Protocol

Version 1.3 3/29/2013 41

EFI_SMBIOS_PROTOCOL.Add()

Summary
Add an SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_ADD) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_HANDLE ProducerHandle, OPTIONAL
 IN OUT EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN EFI_SMBIOS_TABLE_HEADER *Record
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

ProducerHandle

The handle of the controller or driver associated with the SMBIOS information. NULL
means no handle.

SmbiosHandle

On entry, the handle of the SMBIOS record to add. If FFFEh, then a unique handle
will be assigned to the SMBIOS record. If the SMBIOS handle is already in use,
EFI_ALREADY_STARTED is returned and the SMBIOS record is not updated.

Record

The data for the fixed portion of the SMBIOS record. The format of the record is
determined by EFI_SMBIOS_TABLE_HEADER.Type. The size of the formatted
area is defined by EFI_SMBIOS_TABLE_HEADER.Length and either followed
by a double-null (0x0000) or a set of null terminated strings and a null.

Description
This function allows any agent to add SMBIOS records. The caller is responsible for ensuring
Record is formatted in a way that matches the version of the SMBIOS specification as defined in
the MajorRevision and MinorRevision fields of the EFI_SMBIOS_PROTOCOL.

Record must follow the SMBIOS structure evolution and usage guidelines in the SMBIOS
specification. Record starts with the formatted area of the SMBIOS structure and the length is
defined by EFI_SMBIOS_TABLE_HEADER.Length. Each SMBIOS structure is terminated by a
double-null (0x0000), either directly following the formatted area (if no strings are present) or
directly following the last string. The number of optional strings is not defined by the formatted area,
but is fixed by the call to Add(). A string can be a place holder, but it must not be a NULL string as
two NULL strings look like the double-null that terminates the structure.

Platform Initialization Specification VOLUME 5 Standards

42 3/29/2013 Version 1.3

Related Definitions
typedef UINT8 EFI_SMBIOS_TYPE;
typedef UINT16 EFI_SMBIOS_HANDLE;

typedef struct {
 EFI_SMBIOS_TYPE Type;
 UINT8 Length;
 EFI_SMBIOS_HANDLE Handle;
} EFI_SMBIOS_TABLE_HEADER;

#define EFI_SMBIOS_TYPE_BIOS_INFORMATION 0
#define EFI_SMBIOS_TYPE_SYSTEM_INFORMATION 1
#define EFI_SMBIOS_TYPE_BASEBOARD_INFORMATION 2
#define EFI_SMBIOS_TYPE_SYSTEM_ENCLOSURE 3
#define EFI_SMBIOS_TYPE_PROCESSOR_INFORMATION 4
#define EFI_SMBIOS_TYPE_MEMORY_CONTROLLER_INFORMATION 5
#define EFI_SMBIOS_TYPE_MEMORY_MODULE_INFORMATON 6
#define EFI_SMBIOS_TYPE_CACHE_INFORMATION 7
#define EFI_SMBIOS_TYPE_PORT_CONNECTOR_INFORMATION 8
#define EFI_SMBIOS_TYPE_SYSTEM_SLOTS 9
#define EFI_SMBIOS_TYPE_ONBOARD_DEVICE_INFORMATION 10
#define EFI_SMBIOS_TYPE_OEM_STRINGS 11
#define EFI_SMBIOS_TYPE_SYSTEM_CONFIGURATION_OPTIONS 12
#define EFI_SMBIOS_TYPE_BIOS_LANGUAGE_INFORMATION 13
#define EFI_SMBIOS_TYPE_GROUP_ASSOCIATIONS 14
#define EFI_SMBIOS_TYPE_SYSTEM_EVENT_LOG 15
#define EFI_SMBIOS_TYPE_PHYSICAL_MEMORY_ARRAY 16
#define EFI_SMBIOS_TYPE_MEMORY_DEVICE 17
#define EFI_SMBIOS_TYPE_32BIT_MEMORY_ERROR_INFORMATION 18
#define EFI_SMBIOS_TYPE_MEMORY_ARRAY_MAPPED_ADDRESS 19
#define EFI_SMBIOS_TYPE_MEMORY_DEVICE_MAPPED_ADDRESS 20
#define EFI_SMBIOS_TYPE_BUILT_IN_POINTING_DEVICE 21
#define EFI_SMBIOS_TYPE_PORTABLE_BATTERY 22
#define EFI_SMBIOS_TYPE_SYSTEM_RESET 23
#define EFI_SMBIOS_TYPE_HARDWARE_SECURITY 24
#define EFI_SMBIOS_TYPE_SYSTEM_POWER_CONTROLS 25
#define EFI_SMBIOS_TYPE_VOLTAGE_PROBE 26
#define EFI_SMBIOS_TYPE_COOLING_DEVICE 27
#define EFI_SMBIOS_TYPE_TEMPERATURE_PROBE 28
#define EFI_SMBIOS_TYPE_ELECTRICAL_CURRENT_PROBE 29
#define EFI_SMBIOS_TYPE_OUT_OF_BAND_REMOTE_ACCESS 30
#define EFI_SMBIOS_TYPE_BOOT_INTEGRITY_SERVICE 31
#define EFI_SMBIOS_TYPE_SYSTEM_BOOT_INFORMATION 32
#define EFI_SMBIOS_TYPE_64BIT_MEMORY_ERROR_INFORMATION 33
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE 34
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE_COMPONENT 35
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE_THRESHOLD_DATA 36

SMBIOS Protocol

Version 1.3 3/29/2013 43

#define EFI_SMBIOS_TYPE_MEMORY_CHANNEL 37
#define EFI_SMBIOS_TYPE_IPMI_DEVICE_INFORMATION 38
#define EFI_SMBIOS_TYPE_SYSTEM_POWER_SUPPLY 39

#define EFI_SMBIOS_TYPE_ADDITIONAL_INFORMATION 40
#define EFI_SMBIOS_TYPE_ONBOARD_DEVICES_EXTENDED_INFORMATION 41
#define EFI_SMBIOS_TYPE_MANAGEMENT_CONTROLLER_HOST_INTERFACE 42

#define EFI_SMBIOS_TYPE_INACTIVE 126
#define EFI_SMBIOS_TYPE_END_OF_TABLE 127
#define EFI_SMBIOS_OEM_BEGIN 128
#define EFI_SMBIOS_OEM_END 255

typedef UINT8 EFI_SMBIOS_STRING;

Note: These types are consistent with the DMTF SMBIOS 2.7 specification.

Status Codes Returned

EFI_SUCCESS Record was added.

EFI_OUT_OF_RESOURCES Record was not added.

EFI_ALREADY_STARTED The SmbiosHandle passed in was already in use.

Platform Initialization Specification VOLUME 5 Standards

44 3/29/2013 Version 1.3

EFI_SMBIOS_PROTOCOL.UpdateString()

Summary
Update the string associated with an existing SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_UPDATE_STRING) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN UINTN *StringNumber,
 IN CHAR8 *String
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

SMBIOS Handle of structure that will have its string updated.

StringNumber

The non-zero string number of the string to update

String

Update the StringNumber string with String.

Description
This function allows the update of specific SMBIOS strings. The number of valid strings for any
SMBIOS record is defined by how many strings were present when Add() was called.

Status Codes Returned

EFI_SUCCESS SmbiosHandle had its StringNumber String updated.

EFI_INVALID_PARAMETER SmbiosHandle does not exist.

EFI_UNSUPPORTED String was not added because it is longer than the SMBIOS Table
supports.

EFI_NOT_FOUND The StringNumber.is not valid for this SMBIOS record.

SMBIOS Protocol

Version 1.3 3/29/2013 45

 EFI_SMBIOS_PROTOCOL.Remove()

Summary
Remove an SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_REMOVE) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_SMBIOS_HANDLE SmbiosHandle
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

The handle of the SMBIOS record to remove.

Description
This function removes an SMBIOS record using the handle specified by SmbiosHandle.

Status Codes Returned

EFI_SUCCESS SMBIOS record was removed.

EFI_INVALID_PARAMETER SmbiosHandle does not specify a valid SMBIOS record.

Platform Initialization Specification VOLUME 5 Standards

46 3/29/2013 Version 1.3

EFI_SMBIOS_PROTOCOL.GetNext()

Summary
Allow the caller to discover all or some of the SMBIOS records.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_GET_NEXT) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN OUT EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN EFI_SMBIOS_TYPE *Type, OPTIONAL
 OUT EFI_SMBIOS_TABLE_HEADER **Record,
 OUT EFI_HANDLE *ProducerHandle OPTIONAL
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

On entry, points to the previous handle of the SMBIOS record. On exit, points to the
next SMBIOS record handle. If it is FFFEh on entry, then the first SMBIOS record
handle will be returned. If it returns FFFEh on exit, then there are no more SMBIOS
records.

Type

On entry, it points to the type of the next SMBIOS record to return. If NULL, it
indicates that the next record of any type will be returned. Type is not modified by
the this function.

Record

On exit, points to a pointer to the the SMBIOS Record consisting of the formatted area
followed by the unformatted area. The unformatted area optionally contains text
strings.

ProducerHandle

On exit, points to the ProducerHandle registered by Add(). If no
ProducerHandle was passed into Add() NULL is returned. If a NULL pointer is
passed in no data will be returned

Description
This function allows all of the SMBIOS records to be discovered. It's possible to find
only the SMBIOS records that match the optional Type argument.

SMBIOS Protocol

Version 1.3 3/29/2013 47

Status Codes Returned.

EFI_SUCCESS .SMBIOS record information was successfully returned in Record.

SmbiosHandle is the handle of the current SMBIOS record

EFI_NOT_FOUND The SMBIOS record with SmbiosHandle was the last available

record.

Platform Initialization Specification VOLUME 5 Standards

48 3/29/2013 Version 1.3

 IDE Controller

Version 1.3 3/29/2013 49

7
IDE Controller

7.1 IDE Controller Overview
This specification defines the core code and services that are required for an implementation of the
IDE Controller Initialization Protocol of the UEFI Platform Initialization Specification. This
protocol isa driver entity such as a driver entity to program an IDE controller and to obtain IDE
device timing information. This protocol abstracts the nonstandard parts of an IDE controller. This
protocol is not tied to any specific bus.

This specification does the following:

• Describes the basic components of the IDE Controller Initialization Protocol

• Provides code definitions for the IDE Controller Initialization Protocol and other IDE-
controller-related type definitions that are architecturally required

7.2 Design Discussion

7.2.1 IDE Controller Initialization Protocol Overview
This section discusses the IDE Controller Initialization Protocol. This protocol is used by a driver
entity to program an IDE controller and to obtain IDE device timing information. This protocol
abstracts the nonstandard parts of IDE controller. This protocol is mandatory on platforms with IDE
controllers that are managed by a driver entity.

See IDE Controller Initialization Protocol in Code Definitions for the definition of
EFI_IDE_CONTROLLER_INIT_PROTOCOL.

7.2.1.1 IDE Controller Terms
The following terms are used throughout this document.

AHCI

Advanced Host Controller Interface.

ATAPI

AT Attachment Packet Interface

enumeration group

The set of IDE devices that must be enumerated as a group. In other words, if device A and
device B belong to an enumeration group and device A needs to be configured, device B must
be configured at the same time and vice versa. There are two possible enumeration groupings
for an IDE controller:

• "All the devices on a channel. In this case, the number of enumeration groups is equal to the
number of channels.

Platform Initialization Specification VOLUME 5 Standards

50 3/29/2013 Version 1.3

• "All the devices on all the channels behind an IDE controller. This enumeration grouping
may arise because multiple channels share some hardware registers or have some other
dependencies. In this case, the number of enumeration groups is 1.

The IDE controller indicates the type of enumeration group that is applicable. In case 2, the
driver entity must enumerate all the devices on all the channels if there is a request to
configure a single device. In case 1, the driver entity must enumerate all the devices on the
same channel if there is a request to configure a single device. Case 1 will lead to faster boot.

IDE controller

The hardware device that produces one or more IDE buses (channels). Each channel can host
one or more IDE devices.

PATA

Parallel ATA.

PATA controller

An IDE controller that supports PATA devices. Traditionally, a PATA controller supports up
to two channels: primary and secondary. Each channel traditionally supports up to two
devices: master and slave.

SATA

Serial ATA.

SATA controller

An IDE controller that supports the SATA driver. SATA controllers can emulate PATA
behavior. The behavior of command and control block registers, PIO and DMA data transfers,
resets, and interrupts are all emulated. In addition, SATA controllers can implement a more
modern register interface, namely AHCI. AHCI allows the host software to overcome the
limitations that are imposed by PATA emulation and to use advanced SATA features.

Some chipsets contain both PATA and SATA controllers and support a combined mode. In
combined mode, the two controllers are logically merged into one controller. The PATA
drives can appear behind the SATA controller to the host software. In such a mode, all the
PATA rules in terms of IDE timing configuration apply to SATA controllers.

7.2.2 IDE Controller Initialization Protocol References
The following sources of information are referenced in this specification or may be useful to you.

• "ATA Host Adapter Standards, Working Draft Version of: http://www.t13.org/*

• "Information Technology - AT Attachment with Packet Interface - 6 (ATA/ATAPI-6): http://
www.t13.org/*

• Serial ATA Advanced Host Controller Interface (AHCI) Specification, version 1.0: http://
developer.intel.com/technology/serialata/ahci.htm

• Serial ATA: High Speed Serialized AT Attachment, revision 1.0a (may also be referred to as
Serial ATA Specification 1.0a): http://www.serialata.org/*

• "Serial ATA II: Port Multiplier Specification, revision 1.1: http://www.serialata.org/*

 IDE Controller

Version 1.3 3/29/2013 51

7.2.3 Background

7.2.3.1 IDE Requirements
The IDE Controller Initialization Protocol is designed to work for both Parallel ATA (PATA) and
Serial ATA (SATA) IDE controllers.

This protocol is designed with the following requirements in mind:

1. The timing registers in a PATA IDE controller are vendor specific. (See ATA Host Adapter
Standards, Working Draft Version 0f, for more information.) The programming of these
registers needs to be abstracted from the driver entity.

2. The IDE Controller Initialization Protocol should also support a case where a specific channel is
disabled and/or it should not be scanned. This protocol also needs a mechanism to address
individual devices in various SATA and PATA configurations. This protocol needs to support
the following:

• "A variable number of channels per controller

• "A variable number of devices per channel

7.2.3.1.1 PATA Controllers

PATA controllers support up to two channels and each channel can have a maximum of two
devices.

7.2.3.1.2 SATA Contollers

SATA controllers can support standard ATA emulation. As described in the Serial ATA
Specification 1.0a, ATA emulation can either be master-only emulation or master-slave
emulation. In either case, the SATA controller appears to have one or two channels. In master-
only emulation, a maximum of one drive appears on a channel. In master-slave emulation, one
or two drives can show up behind a channel.

When an SATA controller is operating in Advanced Host Controller Interface (AHCI) mode, it
can support up to 32 ports. The SATA port that is generated by an SATA controller can host an
SATA port multiplier. There can be up to 16 SATA devices on the other side of the SATA port
multiplier.

In this geometry, each SATA port that is generated by the SATA controller is treated as a
channel, and this channel can have up to 16 devices. This is done so that PATA drives as well as
SATA drives can be represented using a (Channel, Device) address pair. Note that the
SATA channels work very differently from PATA channels in the sense that the SATA channels
do not have the concept of master/slave or daisy chaining.

See Figure 2 1 and Figure 2 2 below for explanations how the devices are addressed.

7.2.3.1.3 Bus Neutral

It should be possible to use the same abstractions to support an IDE controller on the PCI bus or
some other bus. The IDE controller driver will know which controller devices it can support.
Because the majority of IDE controllers that exist today are located on the PCI bus, all the examples
will refer to PCI IDE controllers, but the protocol is not tied to the PCI bus.

Platform Initialization Specification VOLUME 5 Standards

52 3/29/2013 Version 1.3

7.2.3.2 PCI IDE controller
PCI IDE controllers can operate in native PCI mode or compatibility mode. The IDE Controller
Initialization Protocol should permit both modes.

The design should use the EFI Driver Model to support the quick boot feature. The smallest unit of
initialization is one channel. By default, the driver entity initializes only the channel on which the
user-requested drive resides. The IDE Controller Initialization Protocol should support the case
where various channels share the same hardware bits and cannot be independently enumerated. The
controller driver can specify that all the channels should be enumerated as one unit.

The IDE Controller Initialization Protocol must support SATA controllers that may or may not
implement AHCI register interface.

7.2.4 Simplifying the Design of IDE Drivers
The IDE bus is not a general-purpose bus. The standard ATA and ATAPI command sets support
only a storage class of devices. The following design decisions can be made to simplify the IDE
Controller Initialization Protocol and the design of IDE drivers:

• "The driver entity is the only driver that will send commands to the ATA devices. No device-
specific drivers are needed for IDE devices because all the devices belong to the same class (i.e.,
storage) and the driver entity can have inherent knowledge of these commands. IDE bus
equivalents of EFI_PCI_IO_PROTOCOL and EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
for accessing IDE devices are not required. It is possible to further simplify the design of the
driver entity if it does not have to deal with the ATAPI devices. It can enumerate the ATA and
ATAPI devices and install the EFI_SCSI_PASSTHRU_PROTOCOL on ATAPI device
handles. Either way, IDE-bus-specific I/O protocols are not needed. See the UEFI Specification
for the definitions of the EFI PCI I/O Protocol, PCI Root Bridge I/O Protocol, and the SCSI Pass
Thru Protocol.

• "IDE devices are accessed and configured through a set of standard registers in the IDE
controller. The ATA committee is standardizing the layout of these registers. (See ATA Host
Adapter Standards, Working Draft Version 0f, for more information.) For Serial ATA (SATA)
controllers, the Serial ATA Advanced Host Controller Interface (AHCI) Specification defines a
standard register interface. Although the layout is dependent on the bus on which the controller
is located, the layout for a particular bus is fixed. As a result, the driver entity can be required to
know about the register layout for buses that it chooses to support. For example, for a PCI IDE
controller, the IDE driver can access the base of the command block register for channel 0 using
the following steps:

1. Check bit 0 of register 0x9 (Programming Interface Code) in the PCI configuration space of the
controller to determine whether it is operating in compatibility mode or native PCI mode. For
this example, we will assume that the controller is operating in native mode.

2. Read register 0x10 (Base Address Register [BAR] 0) of the controller. Clear bit 0 of the value
that was read to get the command block base

7.2.5 Configuring Devices on the IDE Bus
The table below lists the various drivers that may participate in configuring the devices on the IDE
bus.

 IDE Controller

Version 1.3 3/29/2013 53

Table 1. Drivers Involved in Configuring IDE Devices

See the UEFI Specification for the definitions of the Block I/O Protocol and the SCSI Pass Thru
Protocol. The IDE Controller Initialization Protocol is defined in Code Definitions of this
specification.

Driver Follows the EFI
Driver Model?

Description

IDE controller driver Yes Produces the

EFI_IDE_CONTROLLER_INIT_PROTOCOL.

Consumes the bus-specific I/O protocol.

EFI_IDE_CONTROLLER_INIT_PROTOCOL abstracts

the chipset-specific IDE controller registers and is responsible for
early initialization of the IDE controller. Note that

EFI_IDE_CONTROLLER_INIT_PROTOCOL is not

tied to a specific bus although most IDE controllers today are on the
PCI or ISA bus.

Driver entity Yes Consumes the

EFI_IDE_CONTROLLER_INIT_PROTOCOL and the

bus-specific I/O protocol. It enumerates the IDE buses. This driver
will check for the presence of the

EFI_IDE_CONTROLLER_INIT_PROTOCOL on the

controller handle before enumerating the child devices. This driver
uses the presence of the

EFI_IDE_CONTROLLER_INIT_PROTOCOL to

determine whether a controller is an IDE controller or not. This
driver will use bus-specific methods to access the standard ATA
registers (such as the control block, command block, and bus master
DMA registers) for a particular device. The driver not only knows
the address of a specific register block, but it also knows the layout
of that register block. This driver may produce the

EFI_SCSI_PASSTHRU_PROTOCOL for ATAPI devices

or it may directly manage the ATAPI devices by producing the

EFI_BLOCK_IO_PROTOCOL. This driver produces the

EFI_BLOCK_IO_PROTOCOL for ATA devices.

Generic SCSI or
ATAPI storage driver

Yes This optional driver manages the ATAPI device using the

EFI_SCSI_PASSTHRU_PROTOCOL and produces the

EFI_BLOCK_IO_PROTOCOL if requested.

Driver entity and IDE
controller driver
combined as one
driver

Yes It is also possible to combine the driver entity and the IDE
controller driver into one driver. In this case,

EFI_IDE_CONTROLLER_INIT_PROTOCOL is not

installed on the IDE controller handle. The monolithic driver is
responsible for initializing the IDE controller as well as the IDE
devices behind that controller.

EFI_IDE_CONTROLLER_INIT_PROTOCOL is

mandatory if the IDE devices behind the controller are to be
enumerated by the generic driver entity.

Platform Initialization Specification VOLUME 5 Standards

54 3/29/2013 Version 1.3

7.2.6 Sample Implementation for a Simple PCI IDE Controller
This topic provides a sample implementation only. The sequencing of various notifications cannot
be changed. The steps below apply if EFI_IDE_CONTROLLER_INIT_PROTOCOL.EnumAll =
FALSE.

See the UEFI Specification for definitions of the Driver Binding Protocol, EFI PCI I/O Protocol,
Device Path Protocol, and Block I/O Protocol. See Code Definitions in this specification for the
definition of the IDE Controller Initialization Protocol.

1. The IDE controller driver as well as the driver entity follow the EFI Driver Model. They are
loaded and both install (at least) one instance of the EFI_DRIVER_BINDING_PROTOCOL on
their image handle. An ATA hard drive behind a PCI IDE controller is one of the boot devices.

2. The PCI bus driver enumerates the PCI bus, finds the PCI IDE controller, creates a handle for it,
and installs an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on that handle.

3. The Boot Device Selection (BDS) phase searches for an appropriate driver to own the IDE
controller device and finds the IDE controller driver. It then connects the IDE controller device
and the IDE controller driver. The IDE controller driver opens the EFI_PCI_IO_PROTOCOL
BY_DRIVER. It may perform some other preprogramming at this point.

4. BDS searches for a driver to own the IDE device and finds the driver entity. The driver entity's
Supported() function checks for the presence of EFI_IDE_CONTROLLER_INIT_PROTOCOL
on the parent of the IDE device (i.e., the IDE controller).

5. The EFI Boot Services function ConnectController() calls the Start() function of
the driver entity, which starts the IDE bus enumeration. The following steps are performed by
the Start() function.

• The driver entity locates the EFI_IDE_CONTROLLER_INIT_PROTOCOL. It opens the
EFI_IDE_CONTROLLER_INIT_PROTOCOL BY_DRIVER. If it needs to open
EFI_PCI_IO_PROTOCOL, it may open it by GET_PROTOCOL. The driver entity reads
the EnumAll and ChannelCount fields in
EFI_IDE_CONTROLLER_INIT_PROTOCOL. In this case, EnumAll is FALSE. The
driver entity also obtains the channel number from Start().RemainingDevicePath.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeBeforeChannelEnumeration, Channel).

• The driver entity calls
EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo (This, Channel,
*Enabled, *MaxDevices) to find out the number of devices on this channel. If
*Enabled = FALSE, it exits with an error code. If the device number of the device to be
connected is too large, it exits with an error code.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeBeforeChannelReset, Channel).

• The driver entity resets the channel.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeAfterChannelReset, Channel).

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeBeforeDevicePresenceDetection, Channel). The IDE
controller driver may insert a predelay here or may ensure that various IDE bus signals are at
desired levels.

 IDE Controller

Version 1.3 3/29/2013 55

• The driver entity attempts to detect devices on the channel. Note than there can be no more
than MaxDevices on the channel.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeAfterDevicePresenceDetection, Channel).

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeResetMode, Channel). The IDE controller sets up the controller with
the default timings.

6. For all the devices on this channel:

• The driver entity gathers EFI_IDENTIFY_DATA for the device and submits it to the IDE
controller driver using EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData().
Submit NULL data for devices that do not exist.

• The driver entity may call
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() to disqualify
modes that it does not support.

7. For all the detected devices on this channel:

• Call EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() to get the
optimum mode settings. The IDE controller driver uses controller-specific algorithms and
platform information to calculate the best modes.

• The driver entity enables the appropriate modes by sending an ATA SET_FEATURES
command to the device. It the device returns an error, it disqualifies that mode for that
device and goes back to step 7. This time step 7 (first bullet) will not consider the failed
mode. The implementation then returns here to step 7 (second bullet) with new (less
optimum) modes.

8. For all the detected devices on this channel, call
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()to program the timings. Note
that we reset the mode settings in step 5(last bullet), so the settings for nonexistent devices will
remain at their default levels.

9. The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase
(This, EfiIdeAfterChannelEnumeration, Channel).

10. Install EFI_BLOCK_IO_PROTOCOL on that device handle.

7.3 Code Definitions
This section contains the basic definitions of the IDE Controller Initialization Protocol. The IDE
Controller Initialization Protocol

following protocol is defined in this section:

EFI_IDE_CONTROLLER_INIT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

Platform Initialization Specification VOLUME 5 Standards

56 3/29/2013 Version 1.3

EFI_IDE_CONTROLLER_ENUM_PHASE
EFI_IDENTIFY_DATA
EFI_ATA_IDENTIFY_DATA
EFI_ATAPI_IDENTIFY_DATA
EFI_ATA_COLLECTIVE_MODE
EFI_ATA_MODE
EFI_ATA_EXTENDED_MODE
EFI_ATA_EXT_TRANSFER_PROTOCOL

EFI_IDE_CONTROLLER_INIT_PROTOCOL

Summary
Provides the basic interfaces to abstract an IDE controller.

GUID
#define EFI_IDE_CONTROLLER_INIT_PROTOCOL_GUID \
 { 0xa1e37052, 0x80d9, 0x4e65, 0xa3, 0x17, 0x3e, 0x9a, \
 0x55, 0xc4, 0x3e, 0xc9 }

Protocol Interface Structure
typedef struct _EFI_IDE_CONTROLLER_INIT_PROTOCOL {
 EFI_IDE_CONTROLLER_GET_CHANNEL_INFO GetChannelInfo;
 EFI_IDE_CONTROLLER_NOTIFY_PHASE NotifyPhase;
 EFI_IDE_CONTROLLER_SUBMIT_DATA SubmitData;
 EFI_IDE_CONTROLLER_DISQUALIFY_MODE DisqualifyMode;
 EFI_IDE_CONTROLLER_CALCULATE_MODE CalculateMode;
 EFI_IDE_CONTROLLER_SET_TIMING SetTiming;
 BOOLEAN EnumAll;
 UINT8 ChannelCount;
} EFI_IDE_CONTROLLER_INIT_PROTOCOL;

Parameters
GetChannelInfo

Returns the information about a specific channel. See the GetChannelInfo() function
description.

NotifyPhase

The notification that the driver entity is about to enter the specified phase during the
enumeration process. See the NotifyPhase() function description.

SubmitData

Submits the Drive Identify data that was returned by the device. See the
SubmitData() function description.

 IDE Controller

Version 1.3 3/29/2013 57

DisqualifyMode

Submits information about modes that should be disqualified. The specified IDE
device does not support these modes and these modes should not be returned by
CalculateMode . See the DisqualifyMode() function description.

CalculateMode

Calculates and returns the optimum mode for a particular IDE device. See the
CalculateMode() function description.

SetTiming

Programs the IDE controller hardware to the default timing or per the modes that were
returned by the last call to CalculateMode(). See the SetTiming() function
description.

EnumAll

Set to TRUE if the enumeration group includes all the channels that are produced by
this controller. FALSE if an enumeration group consists of only one channel.

ChannelCount

The number of channels that are produced by this controller. Parallel ATA (PATA)
controllers can support up to two channels. Advanced Host Controller Interface
(AHCI) Serial ATA (SATA) controllers can support up to 32 channels, each of which
can have up to one device. In the presence of a multiplier, each channel can have 15
devices.

Description
The EFI_IDE_CONTROLLER_INIT_PROTOCOL provides the chipset-specific information to the
driver entity. This protocol is mandatory for IDE controllers if the IDE devices behind the controller
are to be enumerated by a driver entity.

There can only be one instance of EFI_IDE_CONTROLLER_INIT_PROTOCOL for each IDE
controller in a system. It is installed on the handle that corresponds to the IDE controller. A driver
entity that wishes to manage an IDE bus and possibly IDE devices in a system will have to retrieve
the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance that is associated with the controller to
be managed.

A device handle for an IDE controller must contain an EFI_DEVICE_PATH_PROTOCOL.

Platform Initialization Specification VOLUME 5 Standards

58 3/29/2013 Version 1.3

EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()

Summary
Returns the information about the specified IDE channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_GET_CHANNEL_INFO) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 OUT BOOLEAN *Enabled,
 OUT UINT8 *MaxDevices
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Enabled

TRUE if this channel is enabled. Disabled channels are not scanned to see if any
devices are present.

MaxDevices

The maximum number of IDE devices that the bus driver can expect on this channel.
For the ATA/ATAPI specification, version 6, this number will either be 1 or 2. For
Serial ATA (SATA) configurations with a port multiplier, this number can be as large
as 15.

Description
This function can be used to obtain information about a particular IDE channel. The driver entity
uses this information during the enumeration process.

If Enabled is set to FALSE, the driver entity will not scan the channel. Note that it will not prevent
an operating system driver from scanning the channel.

For most of today's controllers, MaxDevices will either be 1 or 2. For SATA controllers, this value
will always be 1. SATA configurations can contain SATA port multipliers. SATA port multipliers
behave like SATA bridges and can support up to 16 devices on the other side. If an SATA port out of
the IDE controller is connected to a port multiplier, MaxDevices will be set to the number of
SATA devices that the port multiplier supports. Because today's port multipliers support up to 15
SATA devices, this number can be as large as 15. The driver entity is required to scan for the
presence of port multipliers behind an SATA controller and enumerate up to MaxDevices number
of devices behind the port multiplier.

In this context, the devices behind a port multiplier constitute a channel.

 IDE Controller

Version 1.3 3/29/2013 59

Status Codes Returned

EFI_SUCCESS Information was returned without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

Platform Initialization Specification VOLUME 5 Standards

60 3/29/2013 Version 1.3

 EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase()

Summary
The notifications from the driver entity that it is about to enter a certain phase of the IDE channel
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_NOTIFY_PHASE) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN EFI_IDE_CONTROLLER_ENUM_PHASE Phase,
 IN UINT8 Channel
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Phase

The phase during enumeration. Type EFI_IDE_CONTROLLER_ENUM_PHASE is
defined in "Related Definitions" below.

Channel

Zero-based channel number.

Description
This function can be used to notify the IDE controller driver to perform specific actions, including
any chipset-specific initialization, so that the chipset is ready to enter the next phase. Seven
notification points are defined at this time. See "Related Definitions" below for the definition of
various notification points and Sample Implementation for a Simple PCI IDE Controller in the
Design Discussion chapter for usage.

More synchronization points may be added as required in the future.

 IDE Controller

Version 1.3 3/29/2013 61

Related Definitions
//***
// EFI_IDE_CONTROLLER_ENUM_PHASE
//***
typedef enum {
 EfiIdeBeforeChannelEnumeration,
 EfiIdeAfterChannelEnumeration,
 EfiIdeBeforeChannelReset,
 EfiIdeAfterChannelReset,
 EfiIdeBusBeforeDevicePresenceDetection,
 EfiIdeBusAfterDevicePresenceDetection,
 EfiIdeResetMode,
 EfiIdeBusPhaseMaximum
} EFI_IDE_CONTROLLER_ENUM_PHASE;

Table 2. Field descriptiond for EFI_IDE_CONTROLLER_ENUM_PHASE

 Status Codes Returned

EfiIdeBeforeChannelEnumeration The driver entity is about to begin enumerating the devices
behind the specified channel. This notification can be used to
perform any chipset-specific programming.

EfiIdeAfterChannelEnumeration The driver entity has completed enumerating the devices
behind the specified channel. This notification can be used to
perform any chipset-specific programming.

EfiIdeBeforeChannelReset The driver entity is about to reset the devices behind the
specified channel. This notification can be used to perform any
chipset-specific programming.

EfiIdeAfterChannelReset The driver entity has completed resetting the devices behind
the specified channel. This notification can be used to perform
any chipset-specific programming.

EfiIdeBusBeforeDevicePresenceDetection The driver entity is about to detect the presence of devices
behind the specified channel. This notification can be used to
set up the bus signals to default levels or for implementing
predelays.

EfiIdeBusAfterDevicePresenceDetection The driver entity is done with detecting the presence of
devices behind the specified channel. This notification can be
used to perform any chipset-specific programming.

EfiIdeResetMode The IDE bus is requesting the IDE controller driver to
reprogram the IDE controller hardware and thereby reset all
the mode and timing settings to default settings.

EFI_SUCCESS The notification was accepted without any errors.

EFI_UNSUPPORTED Phase is not supported.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

Platform Initialization Specification VOLUME 5 Standards

62 3/29/2013 Version 1.3

EFI_NOT_READY This phase cannot be entered at this time; for example, an attempt was

made to enter a Phase without having entered one or more previous

Phase.

 IDE Controller

Version 1.3 3/29/2013 63

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()

Summary
Submits the device information to the IDE controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_SUBMIT_DATA) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_IDENTIFY_DATA *IdentifyData
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

IdentifyData

The device's response to the ATA IDENTIFY_DEVICE command. Type
EFI_IDENTIFY_DATA is defined in "Related Definitions" below.

Related Definitions
//***
// EFI_IDENTIFY_DATA
//***
typedef union {
 EFI_ATA_IDENTIFY_DATA AtaData;
 EFI_ATAPI_IDENTIFY_DATA AtapiData;
} EFI_IDENTIFY_DATA;

#define EFI_ATAPI_DEVICE_IDENTIFY_DATA 0x8000

AtaData

The data that is returned by an ATA device upon successful completion of the ATA
IDENTIFY_DEVICE command. The IDENTIFY_DEVICE command is defined in
the ATA/ATAPI specification. Type EFI_ATA_IDENTIFY_DATA is defined
below.

Platform Initialization Specification VOLUME 5 Standards

64 3/29/2013 Version 1.3

AtapiData

The data that is returned by an ATAPI device upon successful completion of the ATA
IDENTIFY_PACKET_DEVICE command. The IDENTIFY_PACKET_DEVICE
command is defined in the ATA/ATAPI specification. Type
EFI_ATAPI_IDENTIFY_DATA is defined below.

 IDE Controller

Version 1.3 3/29/2013 65

Table 3. EFI_ATAPI_IDENTIFY_DATA Definition .

//***
// EFI_ATA_IDENTIFY_DATA
//***
//
// This structure definition is not part of the protocol
// definition because the ATA/ATAPI Specification controls
// the definition of all the fields. The ATA/ATAPI
// Specification can obsolete old fields or redefine existing
// fields. This definition is provided here for reference only.
//

#pragma pack(1)
///
/// EFI_ATA_IDENTIFY_DATA is strictly complied with ATA/ATAPI-8
Spec
///
typedef struct {
 UINT16 config; ///< General
Configuration
 UINT16 obsolete_1;
 UINT16 specific_config; ///< Specific
Configuration
 UINT16 obsolete_3;
 UINT16 retired_4_5[2];
 UINT16 obsolete_6;
 UINT16 cfa_reserved_7_8[2];
 UINT16 retired_9;
 CHAR8 SerialNo[20]; ///< word 10~19
 UINT16 retired_20_21[2];
 UINT16 obsolete_22;
 CHAR8 FirmwareVer[8]; ///< word 23~26
 CHAR8 ModelName[40]; ///< word 27~46
 UINT16 multi_sector_cmd_max_sct_cnt;
 UINT16 trusted_computing_support;
 UINT16 capabilities_49;

EFI_ATAPI_DEVICE_IDENTIFY_DATA This flag indicates whether the IDENTIFY data is a response from an

ATA device (EFI_ATA_IDENTIFY_DATA) or response from

an ATAPI device (EFI_ATAPI_IDENTIFY_DATA).

According to the ATA/ATAPI specification,

EFI_IDENTIFY_DATA is for an ATA device if bit 15 of the

Config field is zero. The Config field is common to both

EFI_ATA_IDENTIFY_DATA and

EFI_ATAPI_IDENTIFY_DATA.

Platform Initialization Specification VOLUME 5 Standards

66 3/29/2013 Version 1.3

 UINT16 capabilities_50;
 UINT16 obsolete_51_52[2];
 UINT16 field_validity;
 UINT16 obsolete_54_58[5];
 UINT16 multi_sector_setting;
 UINT16 user_addressable_sectors_lo;
 UINT16 user_addressable_sectors_hi;
 UINT16 obsolete_62;
 UINT16 multi_word_dma_mode;
 UINT16 advanced_pio_modes;
 UINT16 min_multi_word_dma_cycle_time;
 UINT16 rec_multi_word_dma_cycle_time;
 UINT16 min_pio_cycle_time_without_flow_control;
 UINT16 min_pio_cycle_time_with_flow_control;
 UINT16 reserved_69_74[6];
 UINT16 queue_depth;
 UINT16 reserved_76_79[4]; ///< reserved for
Serial ATA
 UINT16 major_version_no;
 UINT16 minor_version_no;
 UINT16 command_set_supported_82; ///< word 82
 UINT16 command_set_supported_83; ///< word 83
 UINT16 command_set_feature_extn; ///< word 84
 UINT16 command_set_feature_enb_85; ///< word 85
 UINT16 command_set_feature_enb_86; ///< word 86
 UINT16 command_set_feature_default; ///< word 87
 UINT16 ultra_dma_mode; ///< word 88
 UINT16 time_for_security_erase_unit;
 UINT16 time_for_enhanced_security_erase_unit;
 UINT16 advanced_power_management_level;
 UINT16 master_password_identifier;
 UINT16 hardware_configuration_test_result;
 UINT16 acoustic_management_value;
 UINT16 stream_minimum_request_size;
 UINT16 streaming_transfer_time_for_dma;
 UINT16 streaming_access_latency_for_dma_and_pio;
 UINT16 streaming_performance_granularity[2];///< word 98~99
 UINT16 maximum_lba_for_48bit_addressing[4]; ///< word 100~103
 UINT16 streaming_transfer_time_for_pio;
 UINT16 reserved_105;
 UINT16 phy_logic_sector_support; ///< word 106
 UINT16 interseek_delay_for_iso7779;
 UINT16 world_wide_name[4]; ///< word 108~111
 UINT16 reserved_for_128bit_wwn_112_115[4];
 UINT16 reserved_for_technical_report;
 UINT16 logic_sector_size_lo; ///< word 117
 UINT16 logic_sector_size_hi; ///< word 118

 IDE Controller

Version 1.3 3/29/2013 67

 UINT16 features_and_command_sets_supported_ext; ///< word 119
 UINT16 features_and_command_sets_enabled_ext; ///< word 120
 UINT16 reserved_121_126[8];
 UINT16 obsolete_127;
 UINT16 security_status; ///< word 128
 UINT16 vendor_specific_129_159[31];
 UINT16 cfa_power_mode; ///< word 160
 UINT16 reserved_for_compactflash_161_175[15];
 CHAR8 media_serial_number[60]; ///< word
176~205
 UINT16 sct_command_transport; ///< word 206
 UINT16 reserved_207_208[2];
 UINT16 alignment_logic_in_phy_blocks; ///< word 209
 UINT16 write_read_verify_sector_count_mode3[2]; ///< word
210~211
 UINT16 verify_sector_count_mode2[2];
 UINT16 nv_cache_capabilities;
 UINT16 nv_cache_size_in_logical_block_lsw; ///< word 215
 UINT16 nv_cache_size_in_logical_block_msw; ///< word 216
 UINT16 nv_cache_read_speed;
 UINT16 nv_cache_write_speed;
 UINT16 nv_cache_options; ///< word 219
 UINT16 write_read_verify_mode; ///< word 220
 UINT16 reserved_221;
 UINT16 transport_major_revision_number;
 UINT16 transport_minor_revision_number;
 UINT16 reserved_224_233[10];
 UINT16 min_number_per_download_microcode_mode3; ///< word 234
 UINT16 max_number_per_download_microcode_mode3; ///< word 235
 UINT16 reserved_236_254[19];
 UINT16 integrity_word;
} EFI_ATA_IDENTIFY_DATA;
#pragma pack()

//***
// EFI_ATAPI_IDENTIFY_DATA
//***
#pragma pack(1)
///
/// EFI_ATAPI_IDENTIFY_DATA is strictly complied with ATA/ATAPI-
8 Spec
///
typedef struct {
 UINT16 config; ///< General Configuration
 UINT16 reserved_1;
 UINT16 specific_config; ///< Specific Configuration
 UINT16 reserved_3_9[7];

Platform Initialization Specification VOLUME 5 Standards

68 3/29/2013 Version 1.3

 CHAR8 SerialNo[20]; ///< word 10~19
 UINT16 reserved_20_22[3];
 CHAR8 FirmwareVer[8]; ///< word 23~26
 CHAR8 ModelName[40]; ///< word 27~46
 UINT16 reserved_47_48[2];
 UINT16 capabilities_49;
 UINT16 capabilities_50;
 UINT16 obsolete_51;
 UINT16 reserved_52;
 UINT16 field_validity; ///< word 53
 UINT16 reserved_54_61[8];
 UINT16 dma_dir;
 UINT16 multi_word_dma_mode; ///< word 63
 UINT16 advanced_pio_modes; ///< word 64
 UINT16 min_multi_word_dma_cycle_time;
 UINT16 rec_multi_word_dma_cycle_time;
 UINT16 min_pio_cycle_time_without_flow_control;
 UINT16 min_pio_cycle_time_with_flow_control;
 UINT16 reserved_69_70[2];
 UINT16 obsolete_71_72[2];
 UINT16 reserved_73_74[2];
 UINT16 queue_depth;
 UINT16 reserved_76_79[4];
 UINT16 major_version_no; ///< word 80
 UINT16 minor_version_no; ///< word 81
 UINT16 cmd_set_support_82;
 UINT16 cmd_set_support_83;
 UINT16 cmd_feature_support;
 UINT16 cmd_feature_enable_85;
 UINT16 cmd_feature_enable_86;
 UINT16 cmd_feature_default;
 UINT16 ultra_dma_select;
 UINT16 time_required_for_sec_erase; ///< word 89
 UINT16 time_required_for_enhanced_sec_erase; ///< word 90
 UINT16 reserved_91;
 UINT16 master_pwd_revison_code;
 UINT16 hardware_reset_result; ///< word 93
 UINT16 current_auto_acoustic_mgmt_value;
 UINT16 reserved_95_107[13];
 UINT16 world_wide_name[4]; ///< word 108~111
 UINT16 reserved_for_128bit_wwn_112_115[4];
 UINT16 reserved_116_124[9];
 UINT16 atapi_byte_count_0_behavior; ///< word 125
 UINT16 obsolete_126;
 UINT16 removable_media_status_notification_support;
 UINT16 security_status;
 UINT16 reserved_129_160[32];

 IDE Controller

Version 1.3 3/29/2013 69

 UINT16 cfa_reserved_161_175[15];
 UINT16 reserved_176_254[79];
 UINT16 integrity_word;
} EFI_ATAPI_IDENTIFY_DATA;
#pragma pack()

Description
This function is used by the driver entity to pass detailed information about a particular device to the
IDE controller driver. The driver entity obtains this information by issuing an ATA or ATAPI
IDENTIFY_DEVICE command. IdentifyData is the pointer to the response data buffer. The
IdentifyData buffer is owned by the driver entity, and the IDE controller driver must make a
local copy of the entire buffer or parts of the buffer as needed. The original IdentifyData buffer
pointer may not be valid when
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() or
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() is called at a later point.

The IDE controller driver may consult various fields of EFI_IDENTIFY_DATA to compute the
optimum mode for the device. These fields are not limited to the timing information. For example,
an implementation of the IDE controller driver may examine the vendor and type/mode field to
match known bad drives.

The driver entity may submit drive information in any order, as long as it submits information for all
the devices belonging to the enumeration group before CalculateMode() is called for any
device in that enumeration group. If a device is absent, SubmitData() should be called with
IdentifyData set to NULL. The IDE controller driver may not have any other mechanism to
know whether a device is present or not. Therefore, setting IdentifyData to NULL does not
constitute an error condition. SubmitData() can be called only once for a given (Channel,
Device) pair.

Status Codes Returned

EFI_SUCCESS The information was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

Platform Initialization Specification VOLUME 5 Standards

70 3/29/2013 Version 1.3

EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()

Summary
Disqualifies specific modes for an IDE device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_DISQUALIFY_MODE) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_ATA_COLLECTIVE_MODE *BadModes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

BadModes

The modes that the device does not support and that should be disqualified. Type
EFI_ATA_COLLECTIVE_MODE is defined in "Related Definitions" below.

Description
This function allows the driver entity or other drivers (such as platform drivers) to reject certain
timing modes and request the IDE controller driver to recalculate modes. This function allows the
driver entity and the IDE controller driver to negotiate the timings on a per-device basis. This
function is useful in the case of drives that lie about their capabilities. An example is when the IDE
device fails to accept the timing modes that are calculated by the IDE controller driver based on the
response to the Identify Drive command.

If the driver entity does not want to limit the ATA timing modes and leave that decision to the IDE
controller driver, it can either not call this function for the given device or call this function and set
the Valid flag to FALSE for all modes that are listed in EFI_ATA_COLLECTIVE_MODE.

The driver entity may disqualify modes for a device in any order and any number of times.

This function can be called multiple times to invalidate multiple modes of the same type (e.g.,
Programmed Input/Output [PIO] modes 3 and 4). See the ATA/ATAPI specification for more
information on PIO modes.

 IDE Controller

Version 1.3 3/29/2013 71

For Serial ATA (SATA) controllers, this member function can be used to disqualify a higher transfer
rate mode on a given channel. For example, a platform driver may inform the IDE controller driver
to not use second-generation (Gen2) speeds for a certain SATA drive.

Related Definitions
//**
// EFI_ATA_COLLECTIVE_MODE
//**
typedef struct {
 EFI_ATA_MODE PioMode;
 EFI_ATA_MODE SingleWordDmaMode;
 EFI_ATA_MODE MultiWordDmaMode;
 EFI_ATA_MODE UdmaMode;
 UINT32 ExtModeCount;
 EFI_ATA_EXTENDED_MODE ExtMode[1];
} EFI_ATA_COLLECTIVE_MODE;

PioMode

This field specifies the PIO mode. PIO modes are defined in the ATA/ATAPI
specification. The ATA/ATAPI specification defines the enumeration. In other words,
a value of 1 in this field means PIO mode 1. The actual meaning of PIO mode 1 is
governed by the ATA/ATAPI specification. Type EFI_ATA_MODE is defined
below.

SingleWordDmaMode

This field specifies the single word DMA mode. Single word DMA modes are defined
in the ATA/ATAPI specification, versions 1 and 2. Single word DMA support was
obsoleted in the ATA/ATAPI specification, version 3; therefore, most devices and
controllers will not support this transfer mode. The ATA/ATAPI specification defines
the enumeration. In other words, a value of 1 in this field means single word DMA
mode 1. The actual meaning of single word DMA mode 1 is governed by the ATA/
ATAPI specification.

MultiWordDmaMode

This field specifies the multiword DMA mode. Various multiword DMA modes are
defined in the ATA/ATAPI specification. A value of 1 in this field means multiword
DMA mode 1. The actual meaning of multiword DMA mode 1 is governed by the
ATA/ATAPI specification.

UdmaMode

This field specifies the ultra DMA (UDMA) mode. UDMA modes are defined in the
ATA/ATAPI specification. A value of 1 in this field means UDMA mode 1. The
actual meaning of UDMA mode 1 is governed by the ATA/ATAPI specification.

Platform Initialization Specification VOLUME 5 Standards

72 3/29/2013 Version 1.3

ExtModeCount

The number of extended-mode bitmap entries. Extended modes describe transfer
protocols beyond PIO, single word DMA, multiword DMA, and UDMA. This field
can be zero and provides extensibility.

ExtMode

ExtModeCount number of entries. Each entry represents a transfer protocol other
than the ones defined above (i.e., PIO, single word DMA, multiword DMA, and
UDMA). This field is defined for extensibility. At this time, only one extended
transfer protocol is defined to cover SATA transfers. Type
EFI_ATA_EXTENDED_MODE is defined below.

//**
// EFI_ATA_MODE
//**
typedef struct {
 BOOLEAN Valid;
 UINT32 Mode;
} EFI_ATA_MODE;

Valid

TRUE if Mode is valid.

Mode

The actual ATA mode. This field is not a bit map.

//**
// EFI_ATA_EXTENDED_MODE
//**
typedef struct {
 EFI_ATA_EXT_TRANSFER_PROTOCOL TransferProtocol;
 UINT32 Mode;
} EFI_ATA_EXTENDED_MODE;

TransferProtocol

An enumeration defining various transfer protocols other than the protocols that exist
at the time this specification was developed (i.e., PIO, single word DMA, multiword
DMA, and UDMA). Each transfer protocol is associated with a mode. The various
transfer protocols are defined by the ATA/ATAPI specification. This enumeration
makes the interface extensible because we can support new transport protocols
beyond UDMA. Type EFI_ATA_EXT_TRANSFER_PROTOCOL is defined below.

 IDE Controller

Version 1.3 3/29/2013 73

Mode

The mode for operating the transfer protocol that is identified by
TransferProtocol.

//**
// EFI_ATA_EXT_TRANSFER_PROTOCOL
//**
//
// This extended mode describes the SATA physical protocol.
// SATA physical layers can operate at different speeds.
// These speeds are defined below. Various PATA protocols
// and associated modes are not applicable to SATA devices.
//
typedef enum {
 EfiAtaSataTransferProtocol
} EFI_ATA_EXT_TRANSFER_PROTOCOL;

#define EFI_SATA_AUTO_SPEED 0
#define EFI_SATA_GEN1_SPEED 1
#define EFI_SATA_GEN2_SPEED 2

Table 4. EFI_ATA_EXT_TRANSFER_PROTOCOL field descriptions

Status Codes Returned

EFI_SATA_AUTO_SPEED Automatically detects the optimum SATA speed.

EFI_SATA_GEN1_SPEED Indicates a first-generation (Gen1) SATA speed.

EFI_SATA_GEN2_SPEED Indicates a second-generation (Gen2) SATA speed.

EFI_SUCCESS The modes were accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_INVALID_PARAMETER IdentifyData is NULL.

Platform Initialization Specification VOLUME 5 Standards

74 3/29/2013 Version 1.3

EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()

Summary
Returns the information about the optimum modes for the specified IDE device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_CALCULATE_MODES) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 OUT EFI_ATA_COLLECTIVE_MODE **SupportedModes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

SupportedModes

The optimum modes for the device. Type EFI_ATA_COLLECTIVE_MODE is
defined in EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().

Description
This function is used by the driver entity to obtain the optimum ATA modes for a specific device.
The IDE controller driver takes into account the following while calculating the mode:

• "The IdentifyData inputs to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()

• "The BadModes inputs to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()

The driver entity is required to call SubmitData() for all the devices that belong to an
enumeration group before calling CalculateMode() for any device in the same group.

The IDE controller driver will use controller- and possibly platform-specific algorithms to arrive at
SupportedModes. The IDE controller may base its decision on user preferences and other
considerations as well. This function may be called multiple times because the driver entity may
renegotiate the mode with the IDE controller driver using DisqualifyMode().

The driver entity may collect timing information for various devices in any order. The driver entity
is responsible for making sure that all the dependencies are satisfied; for example, the

 IDE Controller

Version 1.3 3/29/2013 75

SupportedModes information for device A that was previously returned may become stale after a
call to DisqualifyMode() for device B.

The buffer SupportedModes is allocated by the callee because the caller does not necessarily
know the size of the buffer. The type EFI_ATA_COLLECTIVE_MODE is defined in a way that
allows for future extensibility and can be of variable length. This memory pool should be
deallocated by the caller when it is no longer necessary.

The IDE controller driver for a Serial ATA (SATA) controller can use this member function to force
a lower speed (first-generation [Gen1] speeds on a second-generation [Gen2]-capable hardware).
The IDE controller driver can also allow the driver entity to stay with the speed that has been
negotiated by the physical layer.

Status Codes Returned

EFI_SUCCESS SupportedModes was returned.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_INVALID_PARAMETER SupportedModes is NULL.

EFI_NOT_READY Modes cannot be calculated due to a lack of data. This error may happen

if SubmitData() and DisqualifyData() were not

called for at least one drive in the same enumeration group.

Platform Initialization Specification VOLUME 5 Standards

76 3/29/2013 Version 1.3

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()

Summary
Commands the IDE controller driver to program the IDE controller hardware so that the specified
device can operate at the specified mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_SET_TIMING) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_ATA_COLLECTIVE_MODE *Modes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

Modes

The modes to set. Type EFI_ATA_COLLECTIVE_MODE is defined in
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().

Description
This function is used by the driver entity to instruct the IDE controller driver to program the IDE
controller hardware to the specified modes. This function can be called only once for a particular
device. For a Serial ATA (SATA) Advanced Host Controller Interface (AHCI) controller, no
controller-specific programming may be required.

 IDE Controller

Version 1.3 3/29/2013 77

Status Codes Returned

7.3.1 IDE Disk Information Protocol
This section contains the basic definitions of the IDE Disk Information Protocol.

 EFI_DISK_INFO_PROTOCOL

Summary
Provides the basic interfaces to abstract platform information regarding an IDE controller.

GUID
#define EFI_DISK_INFO_PROTOCOL_GUID \
 { 0xd432a67f, 0x14dc, 0x484b, 0xb3, 0xbb, 0x3f, 0x02, 0x91,\
 0x84, 0x93, 0x27 }

Protocol Interface Structure
typedef struct _EFI_DISK_INFO_PROTOCOL {
 EFI_GUID Interface;
 EFI_DISK_INFO_INQUIRY Inquiry;
 EFI_DISK_INFO_IDENTIFY Identify;
 EFI_DISK_INFO_SENSE_DATA SenseData;
 EFI_DISK_INFO_WHICH_IDE WhichIde;
} EFI_DISK_INFO_PROTOCOL;

Parameters
Interface

A GUID that defines the format of buffers for the other member functions of this
protocol.

Inquiry

Return the results of the Inquiry command to a drive in InquiryData. Data
format of Inquiry data is defined by the Interface GUID.

Identify

Return the results of the Identify command to a drive in IdentifyData. Data
format of Identify data is defined by the Interface GUID.

EFI_SUCCESS The command was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_NOT_READY Modes cannot be set at this time due to lack of data.

EFI_DEVICE_ERROR Modes cannot be set due to hardware failure. The driver entity should

not use this device.

Platform Initialization Specification VOLUME 5 Standards

78 3/29/2013 Version 1.3

SenseData

Return the results of the Request Sense command to a drive in SenseData. Data
format of Sense data is defined by the Interface GUID.

WhichIde

Specific controller.

Description
The EFI_DISK_INFO_PROTOCOL provides controller specific information.

There can only various instances of EFI_DISK_INFO_PROTOCOL for different interface types.

 IDE Controller

Version 1.3 3/29/2013 79

EFI_DISK_INFO_PROTOCOL.Interface

Summary
GUID of the type of interfaces

Related Definitions
#define EFI_DISK_INFO_IDE_INTERFACE_GUID \
 { \
 0x5e948fe3, 0x26d3, 0x42b5, 0xaf, 0x17, 0x61, 0x2, \
 0x87, 0x18, 0x8d, 0xec \
 }

#define EFI_DISK_INFO_SCSI_INTERFACE_GUID \
 { \
 0x8f74baa, 0xea36, 0x41d9, 0x95, 0x21, 0x21, 0xa7, \
 0xf, 0x87, 0x80, 0xbc \
 }

#define EFI_DISK_INFO_USB_INTERFACE_GUID \
 { \
 0xcb871572, 0xc11a, 0x47b5, 0xb4, 0x92, 0x67, 0x5e, \
 0xaf, 0xa7, 0x77, 0x27 \
 }

#define EFI_DISK_INFO_AHCI_INTERFACE_GUID \
 { \
 0x9e498932, 0x4abc, 0x45af, 0xa3, 0x4d, 0x2, 0x47, \
 0x78, 0x7b, 0xe7, 0xc6 \
 }

#define EFI_DISK_INFO_NVME_INTERFACE_GUID \
{ \
 0x3ab14680, 0x5d3f, 0x4a4d, 0xbc, 0xdc, 0xcc, 0x38, \
 0x0, 0x18, 0xc7, 0xf7 \
}

Description
The type of interface being described.

Platform Initialization Specification VOLUME 5 Standards

80 3/29/2013 Version 1.3

EFI_DISK_INFO_PROTOCOL.Inquiry()

Summary
Provides inquiry information for the controller type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_INFO_INQUIRY) (
 IN EFI_DISK_INFO_PROTOCOL *This,
 IN OUT VOID *InquiryData,
 IN OUT UINT32 *InquiryDataSize
);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

InquiryData

Pointer to a buffer for the inquiry data.

InquiryDataSize

Pointer to the value for the inquiry data size.

Description
This function is used by the driver entity to get inquiry data. Data format of Identify data is
defined by the Interface GUID.

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_NOT_FOUND Device does not support this data class

EFI_DEVICE_ERROR Error reading InquiryData from device

EFI_BUFFER_TOO_SMALL InquiryDataSize not big enough

 IDE Controller

Version 1.3 3/29/2013 81

EFI_DISK_INFO_PROTOCOL.Identify()

Summary
Provides identify information for the controller type.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_DISK_INFO_IDENTIFY) (

 IN EFI_DISK_INFO_PROTOCOL *This,

 IN OUT VOID *IdentifyData,

 IN OUT UINT32 *IdentifyDataSize

);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

IdentifyData

Pointer to a buffer for the identify data.

IdentifyDataSize

Pointer to the value for the identify data size.

Description
This function is used by the driver entity to get identify data. Data format of Identify data is defined
by the Interface GUID.

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_NOT_FOUND Device does not support this data class

EFI_DEVICE_ERROR Error reading IdentifyData from device

EFI_BUFFER_TOO_SMALL IdentifyDataSize not big enough

Platform Initialization Specification VOLUME 5 Standards

82 3/29/2013 Version 1.3

EFI_DISK_INFO_PROTOCOL.SenseData()

Summary
Provides sense data information for the controller type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_INFO_SENSE_DATA) (
 IN EFI_DISK_INFO_PROTOCOL *This,
 IN OUT VOID *SenseData,
 IN OUT UINT32 *SenseDataSize
 OUT UINT8 *SenseDataNumber
);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

SenseData

Pointer to the SenseData.

SenseDataSize

Size of SenseData in bytes.

SenseDataNumber

Pointer to the value for the sense data size.

Description
This function is used by the driver entity to get sense data. Data format of Identify data is
defined by the Interface GUID.

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_NOT_FOUND Device does not support this data class

EFI_DEVICE_ERROR Error reading SenseData from device

EFI_BUFFER_TOO_SMALL SenseDataSize not big enough

 IDE Controller

Version 1.3 3/29/2013 83

EFI_DISK_INFO_PROTOCOL.WhichIde()

Summary
Provides IDE channel and device information for the interface

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_INFO_WHICH_IDE) (
 IN EFI_DISK_INFO_PROTOCOL *This,
 OUT UINT32 *IdeChannel,
 OUT UINT32 *IdeDevice
);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

IdeChannel

Pointer to the Ide Channel number. Primary or secondary.This should also return the
port.

IdeDevice

Pointer to the Ide Device number. Master or slave.This should also return the port-
multiplier port for AHCI. The format will be the same as for port above.

Description
This function is used by the driver entity to get controller information.

Status Codes Returned

EFI_SUCCESS IdeChannel and IdeDevice are valid

EFI_UNSUPPORTED This is not an IDE Device

Platform Initialization Specification VOLUME 5 Standards

84 3/29/2013 Version 1.3

S3 Resume

Version 1.3 3/29/2013 85

8
S3 Resume

8.1 S3 Overview
This specification defines the core code and services that are required for an implementation of the
S3 resume boot path in the PI. The S3 resume boot path is a special boot path that causes the system
to take actions different from those in the normal boot path. In this special path, the system derives
pre-saved data about the platform's configuration from persistent storage and configures the platform
before jumping to the operating system's waking vector.

This specification does the following:

• "Describes the basic components of the S3 resume boot path, how it relates to a normal boot
path, and how it interacts with other PI phases and code

• "Provides code definitions for the S3-related protocols and PPIs that are architecturally required
by the PI Specification.

8.2 Goals
This PI S3 resume boot path design has the following goals:

Extensibility:

The PI S3 resume boot path should easily adapt to different platforms, such as Itanium®-based
platforms those based on 32-bit Intel® architecture (IA-32), and x64 platforms by replacing
only a few platform-specific modules.

High performance:

The performance of the PI S3 resume boot path is highly visible to end users and must be optimized.

8.3 Requirements
All aspects of this PI S3 resume boot path design must comply with the Advanced Configuration and
Power Interface Specification (hereafter referred to as the "ACPI specification").

The design should emphasize size efficiency, code reuse and maintainability.

8.4 Assumptions

8.4.1 Multiple Phases of Platform Initialization
The PI Architecture consists of multiple phases. For example:

• Pre-EFI Initialization (PEI)

• Driver Execution Environment (DXE)

Platform Initialization Specification VOLUME 5 Standards

86 3/29/2013 Version 1.3

• SMM (System Management Mode)

The PEI phase is responsible for initializing enough of the platform's resources to enable the
execution of the DXE phase, which is where the majority of platform configuration is performed by
different DXE drivers.

Initialization that is done in PEI is not necessarily preserved in DXE. In other words, a DXE driver
can override the configuration settings that were derived from PEI. In light of this fact, the preboot
platform state that the S3 resume boot path needs to restore is the DXE snapshot of the platform
state, rather than the PEI snapshot of the platform state.

8.4.2 Process of Platform Initialization
Platform initialization can be viewed as a flow of the following:

• I/O operations

• Memory operations

• Accessing the PCI configuration space

• A collection of platform-specific actions that can be abstracted by Pre-EFI Initialization Module
(PEIM) PEIM-to-PEIM Interfaces (PPIs)

The process of restoring hardware settings in different platforms involves different actions or even
different instruction sets. These differences, however, can be abstracted behind PEIM PPIs.

8.5 Restoring the Platform
The goal of the S3 resume process is to restore the platform to its preboot configuration. However, it
is impossible to restore the platform in only one step, without going through all the PI initialization
phases, because the PI Architechture cannot have a priori knowledge of the following:

• Preboot configuration that is introduced by various PEIMs

• Drivers provided by different vendors

As a result, the PI Architechture still needs to restore the platform in a phased fashion as it does in a
normal boot path. The figure below shows the phases in an S3 resume boot path. See the following
subsections for details of each phase.

S3 Resume

Version 1.3 3/29/2013 87

Figure 1. PI Architechture S3 Resume Boot Path

8.5.1 Phases in the S3 Resume Boot Path

8.5.1.1 SEC and the S3 Resume Boot Path
The Security (SEC) phase is the first architectural phase in the PI Architecture. It builds the root of
trust for the entire system. As such, the SEC phase remains intact in the S3 resume boot path.

8.5.1.2 PEI

8.5.1.2.1 PEI and the S3 Resume Boot Path

The PEI phase initializes the platform with the minimum configuration needed to enable the
execution of the DXE phase. During the S3 resume boot path, the PI Architechture still needs to
restore the PEI portion of configuration.

Each PEIM is "boot path aware" in that the PEIM can call the appropriate PEI service to find out
what the current boot path is. This awareness enables the platform to restore more efficiently
because the same PEIM can save the configuration during a normal boot path and take advantage of
that configuration in the S3 resume boot path. The figure below shows how the PEI phase works in a
normal boot path and in an S3 resume boot path.

SEC PEI DXE BDS

SEC

PEI
(S3-aware

PEIMs to restore
PEI phase

configuration)

Boot Script
Executor PEIM to
restore DXE phase

configuration

OS loadNormal Boot

S3 Resume

Boot Script
Table in NVS

Save

Execute

OS waking vector

Platform Initialization Specification VOLUME 5 Standards

88 3/29/2013 Version 1.3

Figure 2. PEI Phase in S3 Resume Boot Path

8.5.1.2.2 Saving Configuration Data in PEI

There are different ways to save configuration data, such as the firmware volume variable, for the
PEI phase in nonvolatile storage (NVS). One way is to save the data directly in the PEI phase.
However, if the PEI phase does not implement the capability to write to a firmware volume, a PEIM
can choose to pass the configuration data to the DXE phase using a Hand-Off Block (HOB). The
PEIM's DXE counterpart or another appropriate DXE component can then save the configuration
data. The figure below illustrates this mechanism to save the configuration data. See the PI
Specification for more details on HOBs.

To achieve higher performance, it is recommended to implement the latter mechanism because code
running in the PEI phase is more time consuming than code running in the DXE phase. Note that the
way to save the configuration data during the PEI phase is outside the scope of this document.

PEIM initializes
the platform

without known
configuration

Normal Boot Path

Nonvolatile
storage

Save Configuration

PEIM initializes
the platform
with known

configuration

Retrieve Configuration

S3 Resume Boot Path

S3 Resume

Version 1.3 3/29/2013 89

Figure 3. Configuration Save for PEI Phase

8.5.1.3 DXE

8.5.1.3.1 DXE and the S3 Resume Boot Path

In the DXE phase during a normal boot path, various DXE drivers collectively bring the platform to
the preboot state. However, bringing DXE into the S3 resume boot path and making a DXE driver
boot-path aware is very risky for the following reasons:

• The DXE phase hosts numerous services, which makes it rather large.

• Loading DXE from flash is very time consuming.

Even if DXE could be relocated into NVS during a normal boot, the large amount of memory that
DXE consumes and the complexity of executing the DXE phase do not justify doing so.

Instead, the PI Architechture provides a boot script that lets the S3 resume boot path avoid the DXE
phase altogether, which helps to maximize optimum performance. During a normal boot, DXE
drivers record the platform's configuration in the boot script, which is saved in NVS. During the S3
resume boot path, a boot script engine executes the script, thereby restoring the configuration.

P E IM in itia lize s

th e p la tfo rm

w ith ou t kn ow n

co n figu ra tio n

N o n vo la tile

s to ra ge

N o rm a l

B o o t P a th

P E IM in itia lize s

th e p la tfo rm

w ith kno w n

co n figu ra tio n

S 3 R e su m e

 B o o t P a th

D isp a tch D X E

com po ne n ts

R e trie ve

con figu ra tio n

S ave

con figu ra tion

P a ss H O B from P E I

ph ase to D X E p ha se

H O B

B u ild co n fig u ra tio n

in to H O B

Platform Initialization Specification VOLUME 5 Standards

90 3/29/2013 Version 1.3

The ACPI specification only requires the BIOS to restore chipset and processor configuration. The
chipset configuration can be viewed as a series of memory, I/O, and PCI configuration operations,
which DXE drivers record in the PI Architechture boot script. During an S3 resume, a boot script
engine executes the boot script to restore the chipset settings. Processor configuration involves the
following:

• "Basic setup for System Management Mode (SMM)

• "Microcode updates

• "Processor-specific initialization

• "Processor cache setting

DXE drivers register a pointer to a function in the boot script to restore processor configuration.
During the S3 resume boot path, the boot script engine can jump to execute the registered code to
restore all processor-related configurations.

8.5.1.3.2 S3 Resume PPI and DXE IPL PPI

The DXE Initial Program Load (IPL) PPI is architecturally the last PPI that is executed in the PEI
phase. It is also made aware of the exact boot path that the PI Architechture is currently using. It
discovers the boot mode and initiates the process of restoring the pre-boot platform state and
jumping to the operating system (OS) waking vector. The DXE phase is not entered, as it would be
during a normal boot.

When resuming from S3, the DXE IPL PEIM will transfer control to the S3 Resume PPI, which is
responsible for restoring the platform configuration and jumping to the waking vector.

8.5.1.4 SMM
The EFI_S3_SMM_SAVE_STATE_PROTOCOL publishes the PI SMM boot script abstractions

In the S3 boot mode the data stored via this protocol is replayed in the order it was stored.

The order of replay is the order either of the S3 Save State Protocol or S3 SMM Save State Protocol
Write() functions were called during the boot process. Insert(), Label(), and
Compare() operations are ordered relative other S3 SMM Save State Protocol Write()
operations and the order relative to S3 State Save Write() operations is not defined. Due to these
ordering restrictions it is recommended that the S3 State Save Protocol be used during the DXE
phase when every possible.

The EFI_S3_SMM_SAVE_STATE_PROTOCOL can be called at runtime and
EFI_OUT_OF_RESOURCES may be returned from a runtime call. It is the responsibility of the
platform to ensure enough memory resource exists to save the system state. It is recommended that
runtime calls be minimized by the caller.3

8.6 PEI Boot Script Executer PPI

S3 Resume

Version 1.3 3/29/2013 91

EFI_PEI_S3_RESUME2_PPI

Summary
This PPI produces functions to interpret and execute the PI boot script table.

GUID
#define EFI_PEI_S3_RESUME2_PPI_GUID \
 {0x6d582dbc, 0xdb85, 0x4514, \
 0x8f, 0xcc, 0x5a, 0xdf, 0x62, 0x27, 0xb1,0x47}

PPI Interface Structure
typedef struct _EFI_PEI_S3_RESUME2_PPI {
 EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG2 S3RestoreConfig2;
} EFI_PEI_S3_RESUME2_PPI;

Parameters
S3RestoreConfig2

Perform S3 resume operation.

Description
This PPI is published by a PEIM and provides for the restoration of the platform's configuration
when resuming from the ACPI S3 power state. The ability to execute the boot script may depend on
the availability of other PPIs. For example, if the boot script includes an SMBus command, this
PEIM looks for the relevant PPI that is able to execute that command.

Platform Initialization Specification VOLUME 5 Standards

92 3/29/2013 Version 1.3

EFI_PEI_S3_RESUME_PPI. S3RestoreConfig()

Summary
Restores the platform to its pre-boot configuration for an S3 resume and jumps to the OS waking
vector.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG) (
 IN EFI_PEI_S3_RESUME_PPI *This
);

Parameters
This

A pointer to this instance of the PEI_S3_RESUME_PPI.

Description
This function will restore the platform to its pre-boot configuration that was pre-stored in the boot
script table and transfer control to OS waking vector.

Upon invocation, this function is responsible for locating the following information before jumping
to OS waking vector:

• ACPI tables

• boot script table

• any other information that it needs

The S3RestoreConfig() function then executes the pre-stored boot script table and transitions
the platform to the pre-boot state. The boot script is recorded during regular boot using the
EFI_S3_SAVE_STATE_PROTOCOL.Write() and
EFI_S3_SMM_SAVE_STATE_PROTOCOL.Write() functions. Finally, this function transfers
control to the OS waking vector. If the OS supports only a real-mode waking vector, this function
will switch from flat mode to real mode before jumping to the waking vector.

If all platform pre-boot configurations are successfully restored and all other necessary information
is ready, this function will never return and instead will directly jump to the OS waking vector. If
this function returns, it indicates that the attempt to resume from the ACPI S3 sleep state failed.

S3 Resume

Version 1.3 3/29/2013 93

Status Codes Returned

8.7 S3 Save State Protocol
This section defines how a DXE PI module can record IO operations to be performed as part of the
S3 resume. This is done via the EFI_S3_SAVE_STATE_PROTOCOL and this allows the
implementation of the S3 resume boot path to be abstracted from DXE drivers.

EFI_S3_SAVE_STATE_PROTOCOL

Summary
Used to store or record various IO operations to be replayed during an S3 resume.

GUID
#define EFI_S3_SAVE_STATE_PROTOCOL_GUID \
 { 0xe857caf6, 0xc046, 0x45dc, { 0xbe, 0x3f, 0xee, 0x7, \
 0x65, 0xfb, 0xa8, 0x87 } }

Protocol Interface Structure
 typedef struct _EFI_S3_SAVE_STATE_PROTOCOL {
 EFI_S3_SAVE_STATE_WRITE Write;
 EFI_S3_SAVE_STATE_INSERT Insert;
 EFI_S3_SAVE_STATE_LABEL Label;
 EFI_S3_SAVE_STATE_COMPARE Compare;
} EFI_S3_SAVE_STATE_PROTOCOL;

Parameters
Write

Write an opcode at the end of the boot script table. See the Write() function
description.

Insert

Write an opcode at the specified position in the boot script table. See the Insert()
function description.

Label

Find an existing label in the boot script table or, if not present, create it. See the
Label() function description.

Compare

Compare two positions in the boot script table to determine their relative location. See
the Compare() function description.

EFI_ABORTED Execution of the S3 resume boot script table failed.

EFI_NOT_FOUND Some necessary information that is used for the S3 resume boot path could
not be located.

Platform Initialization Specification VOLUME 5 Standards

94 3/29/2013 Version 1.3

Description
The EFI_S3_SAVE_STATE_PROTOCOL publishes the PI boot script abstractions. This protocol is
not required for all platforms.

On an S3 resume boot path the data stored via this protocol is replayed in the order it appears in the
boot script table.

8.7.1 Save State Write

S3 Resume

Version 1.3 3/29/2013 95

EFI_S3_SAVE_STATE_PROTOCOL.Write()

Summary
Record operations that need to be replayed during an S3 resume .

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

The operation code (opcode) number. See "Related Definitions" below for the
defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections for the
definition of each opcode.

Description
This function is used to store an OpCode to be replayed as part of the S3 resume boot path. It is
assumed this protocol has platform specific mechanism to store the OpCode set and replay them
during the S3 resume.

Note: The opcode is inserted at the end of the boot script table.

This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.

If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

OpCode values of 0x80 - 0xFE are reserved for implementation-specific functions.

Platform Initialization Specification VOLUME 5 Standards

96 3/29/2013 Version 1.3

Related Definitions
//***
// EFI Boot Script Opcode definitions
//***

#define EFI_BOOT_SCRIPT_IO_WRITE_OPCODE 0x00
#define EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE 0x01
#define EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE 0x02
#define EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE 0x03
#define EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 0x04
#define EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 0x05
#define EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE 0x06
#define EFI_BOOT_SCRIPT_STALL_OPCODE 0x07
#define EFI_BOOT_SCRIPT_DISPATCH_OPCODE 0x08
#define EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE 0x09
#define EFI_BOOT_SCRIPT_INFORMATION_OPCODE 0x0A
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE 0x0B
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE 0x0C
#define EFI_BOOT_SCRIPT_IO_POLL_OPCODE 0x0D
#define EFI_BOOT_SCRIPT_MEM_POLL_OPCODE 0x0E
#define EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE 0x0F
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE 0x10

S3 Resume

Version 1.3 3/29/2013 97

//***
// EFI_BOOT_SCRIPT_WIDTH
//***

typedef enum {
 EfiBootScriptWidthUint8,
 EfiBootScriptWidthUint16,
 EfiBootScriptWidthUint32,
 EfiBootScriptWidthUint64,
 EfiBootScriptWidthFifoUint8,
 EfiBootScriptWidthFifoUint16,
 EfiBootScriptWidthFifoUint32,
 EfiBootScriptWidthFifoUint64,
 EfiBootScriptWidthFillUint8,
 EfiBootScriptWidthFillUint16,
 EfiBootScriptWidthFillUint32,
 EfiBootScriptWidthFillUint64,
 EfiBootScriptWidthMaximum
} EFI_BOOT_SCRIPT_WIDTH;

Status Codes Returned

8.7.1.1 Opcodes for Write()
This section contains the prototypes for variations of the Write() function, based on the Opcode
parameter.

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE

Summary
Adds a record for an I/O write operation into a specified boot script table.

EFI_SUCCESS The operation succeeded. A record was added into the specified
script table.

EFI_INVALID_PARAMETER The parameter is illegal or the given boot script is not supported.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

Platform Initialization Specification VOLUME 5 Standards

98 3/29/2013 Version 1.3

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_WRITE_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Count

The number of I/O operations to perform. The number of bytes moved is Width size
* Count, starting at Address.

Buffer

The source buffer from which to write data. The buffer size is Width size * Count.

Description
This function adds an I/O write record into a specified boot script table. On script execution, this
operation writes the presaved value into the specified I/O ports.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 99

EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE

Summary
Adds a record for an I/O modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Data

A pointer to the data to be OR-ed.

DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

Description
This function adds an I/O read and write record into the specified boot script table. When the script
is executed, the register at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

100 3/29/2013 Version 1.3

EFI_BOOT_SCRIPT_IO_POLL_OPCODE

Summary
Adds a record for I/O reads the I/O location and continues when the exit criteria is satisfied or after a
defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero
in Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

S3 Resume

Version 1.3 3/29/2013 101

Description
This function adds a delay to the boot script table. The I/O read operation is repeated until either a
Delay of at least 100 ns units has expired, or (Data & DataMask) is equal to Data. At least one
I/O access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

102 3/29/2013 Version 1.3

 EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE

Summary
Adds a record for a memory write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Count

The number of memory operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Description
This function adds a memory write record into a specified boot script table. When the script is
executed, this operation writes the presaved value into the specified memory location.

S3 Resume

Version 1.3 3/29/2013 103

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

104 3/29/2013 Version 1.3

EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE

Summary
Adds a record for a memory modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Data

A pointer to the data to be OR-ed.

DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

Description
This function adds a memory read and write record into a specified boot script table. When the script
is executed, the memory at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 105

EFI_BOOT_SCRIPT_MEM_POLL_OPCODE

Summary
Adds a record for memory reads of the memory location and continues when the exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero in
Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Platform Initialization Specification VOLUME 5 Standards

106 3/29/2013 Version 1.3

Description
This function adds a delay to the boot script table. The memory read operation is repeated until
either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to Data.
At least one I/O access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 107

EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12-1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Count

The number of PCI operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Platform Initialization Specification VOLUME 5 Standards

108 3/29/2013 Version 1.3

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 109

 EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

A pointer to the data to be OR-ed. The size depends on Width.

DataMask

A pointer to the data mask to be AND-ed.

Description
This function adds a PCI configuration read and write record into a specified boot script table. When
the script is executed, the PCI configuration space location at Address is read, AND-ed with
DataMask, and OR-ed with, and finally the result is written back.

Platform Initialization Specification VOLUME 5 Standards

110 3/29/2013 Version 1.3

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 111

EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE

Summary
Adds a record for PCI configuration space reads and continues when the exit criteria is satisfied or
after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero
in Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Platform Initialization Specification VOLUME 5 Standards

112 3/29/2013 Version 1.3

Description
This function adds a delay to the boot script table. The PCI configuration read operation is repeated
until either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to
Data. At least one PCI configuration access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 113

EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. See Table 12-1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Count

The number of PCI operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Platform Initialization Specification VOLUME 5 Standards

114 3/29/2013 Version 1.3

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 115

EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

A pointer to the data to be OR-ed. The size depends on Width.

DataMask

A pointer to the data mask to be AND-ed.

Platform Initialization Specification VOLUME 5 Standards

116 3/29/2013 Version 1.3

Description
This function adds a PCI configuration read and write record into a specified boot script table. When
the script is executed, the PCI configuration space location at Address is read, AND-ed with
DataMask, and OR-ed with, and finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 117

EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE

Summary
Adds a record for PCI configuration space reads and continues when the exit criteria is satisfied or
after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero in
Data are ignored when polling the memory address.

Platform Initialization Specification VOLUME 5 Standards

118 3/29/2013 Version 1.3

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Description
This function adds a delay to the boot script table. The PCI configuration read operation is repeated
until either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to
Data. At least one PCI configuration access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 119

EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE

Summary
Adds a record for an SMBus command execution into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST _EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN UINTN *Length,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE. Type
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

SlaveAddress

The SMBus address for the slave device that the operation is targeting. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

Command

The command that is transmitted by the SMBus host controller to the SMBus slave
device. The interpretation is SMBus slave device specific. It can mean the offset to a
list of functions inside an SMBus slave device. Type
EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

Operation

Indicates which particular SMBus protocol it will use to execute the SMBus
transactions. Type EFI_SMBUS_OPERATION is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Platform Initialization Specification VOLUME 5 Standards

120 3/29/2013 Version 1.3

Length

A pointer to signify the number of bytes that this operation will do.

Buffer

Contains the value of data to execute to the SMBUS slave device.

Description
This function adds an SMBus command execution record into a specified boot script table. When the
script is executed, this operation executes a specified SMBus command.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 121

EFI_BOOT_SCRIPT_STALL_OPCODE

Summary
Adds a record for an execution stall on the processor into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN UINTN Duration
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_STALL_OPCODE. Type
EFI_BOOT_SCRIPT_STALL_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Duration

Duration in microseconds of the stall.

Description
This function adds a stall record into a specified boot script table. When the script is executed, this
operation will stall the system for Duration number of microseconds.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

122 3/29/2013 Version 1.3

EFI_BOOT_SCRIPT_DISPATCH_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Type
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI 2.0 Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table.

The EntryPoint must point to memory of type of EfiRuntimeServicesCode,
EfiRuntimeServicesData, or EfiACPIMemoryNVS. The EntryPoint must have the same
calling convention as the PI DXE Phase.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.3 3/29/2013 123

EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint,
 IN EFI_PHYSICAL_ADDRESS Context
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Type
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI Specification.

Context

Argument to be passed into the EntryPoint of the code to be dispatched. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI
Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table.

The EntryPoint and Context must point to memory of type of
EfiRuntimeServicesCode, EfiRuntimeServicesData, or EfiACPIMemoryNVS. The
EntryPoint must have the same calling convention as the PI DXE Phase.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

124 3/29/2013 Version 1.3

EFI_BOOT_SCRIPT_INFORMATION_OPCODE

Summary
Store the pointer to the arbitrary information in the boot script table. This opcode is a no-op on
dispatch and is only used for debugging script issues.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN UINT32 InformationLength,
 IN EFI_PHYSICAL_ADDRESS Information
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_INFORMATION_OPCODE. Type
EFI_BOOT_SCRIPT_INFORMATION_OPCODE is defined in "Related Definitions"
in EFI_S3_SAVE_STATE_PROTOCOL.Write().

InformationLenght

Length of the data in bytes.

Information

Pointer to the information to be logged in the boot script.

Description
This function adds a record that has no impact on the S3 replay. This function is used to store debug
information in the S3 data stream.

The Information must point to memory of type of EfiRuntimeServicesCode,
EfiRuntimeServicesData, or EfiACPIMemoryNVS.

Status Codes Returned
See "Status Codes Returned" in Write().

8.7.2 Save State Insert

S3 Resume

Version 1.3 3/29/2013 125

EFI_S3_SAVE_STATE_PROTOCOL.Insert()

Summary
Record operations that need to be replayed during an S3 resume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_INSERT) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN BOOLEAN BeforeOrAfter,
 IN OUT EFI_S3_BOOT_SCRIPT_POSITION *Position OPTIONAL,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

BeforeOrAfter

Specifies whether the opcode is stored before (TRUE) or after (FALSE) the position
in the boot script table specified by Position. If Position is NULL or points to
NULL then the new opcode is inserted at the beginning of the table (if TRUE) or end
of the table (if FALSE).

Position

On entry, specifies the position in the boot script table where the opcode will be
inserted, either before or after, depending on BeforeOrAfter. On exit, if not
NULL, specifies the position of the inserted opcode in the boot script table.

OpCode

The operation code (opcode) number. See "Related Definitions" in Write() for the
defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections for the
definition of each opcode.

Description
This function is used to store an OpCode to be replayed as part of the S3 resume boot path. It is
assumed this protocol has platform specific mechanism to store the OpCode set and replay them
during the S3 resume.

The opcode is stored before (TRUE) or after (FALSE) the position in the boot script table specified
by Position. If Position is NULL or points to NULL then the new opcode is inserted at the
beginning of the table (if TRUE) or end of the table (if FALSE).

Platform Initialization Specification VOLUME 5 Standards

126 3/29/2013 Version 1.3

The position which is pointed to by Position upon return can be used for subsequent insertions.

This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.

If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

OpCode values of 0x80 - 0xFE are reserved for implementation specific functions.

Related Definitions
typedef VOID *EFI_S3_BOOT_SCRIPT_POSITION;

Status Codes Returned

8.7.3 Save State Label

EFI_SUCCESS The operation succeeded. An opcode was added into the script
table.

EFI_INVALID_PARAMETER The Opcode is an invalid opcode value.

EFI_INVALID_PARAMETER The Position is not a valid position in the boot script table.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

S3 Resume

Version 1.3 3/29/2013 127

EFI_S3_SAVE_STATE_PROTOCOL.Label()

Summary
Find a label within the boot script table and, if not present, optionally create it.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_LABEL) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN BOOLEAN BeforeOrAfter,
 IN BOOLEAN CreateIfNotFound,
 IN OUT EFI_S3_BOOT_SCRIPT_POSITION *Position OPTIONAL,
 IN CONST CHAR8 *Label
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

BeforeOrAfter

Specifies whether the label is stored before (TRUE) or after (FALSE) the position in
the boot script table specified by Position. If Position is NULL or points to
NULL then the new label is inserted at the beginning of the table (if TRUE) or end of
the table (if FALSE).

CreateIfNotFound

Specifies whether the label will be created if the label does not exists (TRUE) or not
(FALSE).

Position

On entry, specifies the position in the boot script table where the label will be inserted,
either before or after, depending on BeforeOrAfter. On exit, if not NULL,
specifies the position of the inserted label in the boot script table.

Label

Points to the NULL terminated label which will be inserted in the boot script table.

Description
If the label Label already exists in the boot script table, then no new label is created, the position
of the Label is returned in *Position (if Position is not NULL) and EFI_SUCCESS is
returned. If the label already exists, the input value of the Position is ignored.

If the label Label does not already exist and CreateIfNotFound is TRUE, then it will be
created before or after the specified position and EFI_SUCCESS is returned.

If the label Label does not already exist and CreateIfNotFound is FALSE, then
EFI_NOT_FOUND is returned.

Platform Initialization Specification VOLUME 5 Standards

128 3/29/2013 Version 1.3

Status Codes Returned

8.7.4 Save State Compare

EFI_SUCCESS The label already exists or was inserted.

EFI_NOT_FOUND The label did not already exist and CreateifNotFound was
FALSE.

EFI_INVALID_PARAMETER The Label is NULL or points to an empty string.

EFI_INVALID_PARAMETER The Position is not a valid position in the boot script table.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

S3 Resume

Version 1.3 3/29/2013 129

EFI_S3_SAVE_STATE_PROTOCOL.Compare()

Summary
Compare two positions in the boot script table and return their relative position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_COMPARE) (
IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN EFI_S3_BOOT_SCRIPT_POSITION Position1,
 IN EFI_S3_BOOT_SCRIPT_POSITION Position2,
 OUT UINTN *RelativePosition
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

Position1, Position2

The positions in the boot script table to compare.

RelativePosition

On return, points to the result of the comparison.

Description
This function compares two positions in the boot script table and returns their relative positions. If
Position1 is before Position2, then -1 is returned. If Position1 is equal to Position2,
then 0 is returned. If Position1 is after Position2, then 1 is returned.

Status Codes Returned

8.8 S3 SMM Save State Protocol
This section defines how a SMM PI module can record IO operations to be performed as part of the
S3 resume. This is done via the EFI_S3_SMM_SAVE_STATE_PROTOCOL and this allows the
implementation of the S3 resume boot path to be abstracted from SMM drivers.

The S3 SMM Save State Protocol shares the interface definition with the S3 Save State Protocol but
it has a different GUID. It is an SMM protocol. Having separate protocols for SMM and DXE
makes it easier to accommodate the differences in the operating environment between SMM and
DXE.

EFI_SUCCESS The operation succeeded.

EFI_INVALID_PARAMETER The Position1 or Position2 is not a valid position in
the boot script table.

EFI_INVALID_PARAMETER The RelativePosition is NULL.

Platform Initialization Specification VOLUME 5 Standards

130 3/29/2013 Version 1.3

EFI_S3_SMM_SAVE_STATE_PROTOCOL

Summary
Used to store or record various IO operations to be replayed during an S3 resume.

GUID
#define EFI_S3_SMM_SAVE_STATE_PROTOCOL_GUID \
 { 0x320afe62, 0xe593, 0x49cb, { 0xa9, 0xf1, 0xd4, 0xc2, \
 0xf4, 0xaf, 0x1, 0x4c } }

Protocol Interface Structure
typedef struct _EFI_S3_SMM_SAVE_STATE_PROTOCOL {
 EFI_S3_SAVE_STATE_WRITE Write;
 EFI_S3_SAVE_STATE_INSERT Insert;
 EFI_S3_SAVE_STATE_LABEL Label;
 EFI_S3_SAVE_STATE_COMPARE Compare;
} EFI_S3_SMM_SAVE_STATE_PROTOCOL;

Parameters
Write

Write an opcode at the end of the boot script table. See the Write() function
description under the EFI_S3_SAVE_STATE_PROTOCOL definition.

Insert

Write an opcode at the specified position in the boot script table. See the Insert()
function description under the EFI_S3_SAVE_STATE_PROTOCOL definition.

Label

Find an existing label in the boot script table or, if not present, create it. See the
Label()function description under the EFI_S3_SAVE_STATE_PROTOCOL
definition.

Compare

Compare two positions in the boot script table to determine their relative location. See
the Compare() function description under the
EFI_S3_SAVE_STATE_PROTOCOL definition.

Description
The EFI_S3_SMM_SAVE_STATE_PROTOCOL provides the PI SMMboot script abstraction.

On an S3 resume boot path the data stored via this protocol is replayed in the order it was stored.

The order of replay is the order either of the S3 Save State Protocol or S3 SMM Save State Protocol
Write() functions were called during the boot process.

The EFI_S3_SMM_SAVE_STATE_PROTOCOL can be called at runtime and
EFI_OUT_OF_RESOURCES may be returned from a runtime call. It is the responsibility of the

S3 Resume

Version 1.3 3/29/2013 131

platform to ensure enough memory resource exists to save the system state. It is recommended that
runtime calls be minimized by the caller.

Platform Initialization Specification VOLUME 5 Standards

132 3/29/2013 Version 1.3

ACPI System Description Table Protocol

Version 1.3 3/29/2013 133

9
ACPI System Description Table Protocol

9.1 EFI_ACPI_SDT_PROTOCOL

Summary
Provides services for creating ACPI system description tables.

GUID
#define EFI_ACPI_SDT_PROTOCOL_GUID \
 { 0xeb97088e, 0xcfdf, 0x49c6, \
 { 0xbe, 0x4b, 0xd9, 0x6, 0xa5, 0xb2, 0xe, 0x86 } }

Protocol Interface Structure
typedef struct _EFI_ACPI_SDT_PROTOCOL {
 EFI_ACPI_TABLE_VERSION AcpiVersion;
 EFI_ACPI_GET_TABLE2 GetAcpiTable;
 EFI_ACPI_REGISTER_NOTIFY RegisterNotify;
 EFI_ACPI_OPEN Open;
 EFI_ACPI_OPEN_SDT OpenSdt;
 EFI_ACPI_CLOSE Close;
 EFI_ACPI_GET_CHILD GetChild;
 EFI_ACPI_GET_OPTION GetOption;
 EFI_ACPI_SET_OPTION SetOption;
 EFI_ACPI_FIND_PATH FindPath;
} EFI_ACPI_SDT_PROTOCOL;

Related Definitions
#define UINT32 EFI_ACPI_TABLE_VERSION;

#define EFI_ACPI_TABLE_VERSION_NONE (1 << 0)
#define EFI_ACPI_TABLE_VERSION_1_0B (1 << 1)
#define EFI_ACPI_TABLE_VERSION_2_0 (1 << 2)
#define EFI_ACPI_TABLE_VERSION_3_0 (1 << 3)
#define EFI_ACPI_TABLE_VERSION_4_0 (1 << 4)

Members
AcpiVersion

Specifies the ACPI version supported by this protocol.

GetTable

Enumerate the ACPI tables.

Platform Initialization Specification VOLUME 5 Standards

134 3/29/2013 Version 1.3

RegisterNotify

Register a notification when a table is installed.

Open

Create a handle from an ACPI opcode.

OpenSdt

Create a handle from an ACPI table.

Close

Close an ACPI handle.

GetChild

Cycle through the child objects of an ACPI handle.

GetOption

Return one of the optional pieces of the opcode.

SetOption

Change one of the optional pieces of the opcode.

FindPath

Given an ACPI path, return an ACPI handle.

ACPI System Description Table Protocol

Version 1.3 3/29/2013 135

EFI_ACPI_SDT_PROTOCOL.GetAcpiTable()

Summary
Returns a requested ACPI table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_GET_ACPI_TABLE) (
 IN UINTN Index,
 OUT EFI_ACPI_SDT_HEADER **Table,
 OUT EFI_ACPI_TABLE_VERSION *Version,
 OUT UINTN *TableKey
);

Parameters
Index

The zero-based index of the table to retrieve.

Table

Pointer for returning the table buffer. Type EFI_ACPI_SDT_HEADER is defined in
“Related Definitions” below.

Version

On return, updated with the ACPI versions to which this table belongs. Type
EFI_ACPI_TABLE_VERSION is defined in "Related Definitions” in the
EFI_ACPI_SDT_PROTOCOL.

TableKey

On return, points to the table key for the specified ACPI system definition table. This
is identical to the table key used in the EFI_ACPI_TABLE_PROTOCOL.

Description
The GetAcpiTable() function returns a pointer to a buffer containing the ACPI table associated
with the Index that was input. The following structures are not considered elements in the list of
ACPI tables:

• Root System Description Pointer (RSD_PTR)

• Root System Description Table (RSDT)

• Extended System Description Table (XSDT)

Version is updated with a bit map containing all the versions of ACPI of which the table is a
member.

Platform Initialization Specification VOLUME 5 Standards

136 3/29/2013 Version 1.3

Related Definitions
typedef struct {
 UINT32 Signature;
 UINT32 Length;
 UINT8 Revision;
 UINT8 Checksum;
 CHAR8 OemId[6];
 CHAR8 OemTableId[8];
 UINT32 OemRevision;
 UINT32 CreatorId;
 UINT32 CreatorRevision;
} EFI_ACPI_SDT_HEADER;

This structure is based on the DESCRIPTION_HEADER structure, defined in section 5.2.6 of the
ACPI 3.0 specification.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The requested index is too large and a table was not found.

ACPI System Description Table Protocol

Version 1.3 3/29/2013 137

EFI_ACPI_SDT_PROTOCOL.RegisterNotify()

Summary
Register or unregister a callback when an ACPI table is installed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_REGISTER_NOTIFY) (
 IN BOOLEAN Register,
 IN EFI_ACPI_NOTIFICATION_FN Notification
);

Parameters
Register

If TRUE, then the specified function will be registered. If FALSE, then the specified
function will be unregistered.

Notification

Points to the callback function to be registered or unregistered. Type
EFI_ACPI_NOTIFICATION_FN is defined in “Related Definitions” below.

Description
This function registers or unregisters a function which will be called whenever a new ACPI table is
installed.

Status Codes Returned

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_NOTIFICATION_FN)(
 IN EFI_ACPI_SDT_HEADER *Table,
 IN EFI_ACPI_TABLE_VERSION Version,
 IN UINTN TableKey
);

Table

A pointer to the ACPI table header.

EFI_SUCCESS Callback successfully registered or unregistered.

EFI_INVALID_PARAMETER Notification is NULL

EFI_INVALID_PARAMETER Register is FALSE and Notification does not match a known registration function.

Platform Initialization Specification VOLUME 5 Standards

138 3/29/2013 Version 1.3

Version

The ACPI table’s version. Type EFI_ACPI_TABLE_VERSION is defined in
"Related Definitions” in the EFI_ACPI_SDT_PROTOCOL.

TableKey

The table key for this ACPI table. This is identical to the table key used in the
EFI_ACPI_TABLE_PROTOCOL.

This function is called each time a new ACPI table is added using
EFI_ACPI_TABLE_PROTOCOl.InstallAcpiTable().

ACPI System Description Table Protocol

Version 1.3 3/29/2013 139

EFI_ACPI_SDT_PROTOCOL.Open()

Summary
Create a handle from an ACPI opcode

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_OPEN) (
 IN VOID *Buffer,
 OUT EFI_ACPI_HANDLE *Handle
);

Parameters
Buffer

Points to the ACPI opcode.

Handle

Upon return, holds the handle.

Related Definitions
typedef VOID *EFI_ACPI_HANDLE;

Description
Creates a handle from a single ACPI opcode.

Status Code Values

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Buffer is NULL or Handle is NULL or Buffer points to an

invalid opcode.

Platform Initialization Specification VOLUME 5 Standards

140 3/29/2013 Version 1.3

EFI_ACPI_SDT_PROTOCOL.OpenSdt()

Summary
Create a handle for the first ACPI opcode in an ACPI system description table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_OPEN_SDT) (
 IN UINTN TableKey,
 OUT EFI_ACPI_HANDLE *Handle
);

Parameters
TableKey

The table key for the ACPI table, as returned by GetTable().

Handle

On return, points to the newly created ACPI handle. Type EFI_ACPI_HANDLE is
defined in “Related Definitions” below.

Description
Creates an ACPI handle for the top-level opcodes in the ACPI system description table specified by
TableKey.

 Related Definitions
typedef VOID *EFI_ACPI_HANDLE;

Status Codes Returned

EFI_SUCCESS Handle created successfully.

EFI_NOT_FOUND TableKey does not refer to a valid ACPI table.

ACPI System Description Table Protocol

Version 1.3 3/29/2013 141

EFI_ACPI_SDT_PROTOCOL.Close()

Summary
Close an ACPI handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_CLOSE) (
 IN EFI_ACPI_HANDLE Handle
);

Parameters
Handle

Returns the handle. Type EFI_ACPI_HANDLE is defined in Open().

Description
Closes the ACPI handle and, if any changes were made, updates the table checksum.

Status Code Values

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Handle is NULL or does not refer to a valid ACPI object.

Platform Initialization Specification VOLUME 5 Standards

142 3/29/2013 Version 1.3

EFI_ACPI_SDT_PROTOCOL.GetChild()

Summary
Return the child ACPI objects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_ENUM) (
 IN EFI_ACPI_HANDLE ParentHandle,
 IN OUT EFI_ACPI_HANDLE *Handle
);

Parameters
ParentHandle

Parent handle.

Handle

On entry, points to the previously returned handle or NULL to start with the first
handle. On return, points to the next returned ACPI handle or NULL if there are no
child objects.

Description
Iterates through all children ACPI objects of the ACPI object specified by the handle
ParentHandle.

Status Code Values

EFI_SUCCESS Success

EFI_INVALID_PARAMETER ParentHandle is NULL or does not refer to a valid ACPI object.

ACPI System Description Table Protocol

Version 1.3 3/29/2013 143

EFI_ACPI_SDT_PROTOCOL.GetOption()

Summary
Retrieve information about an ACPI object.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_GET_OPTION) (
 IN EFI_ACPI_HANDLE Handle,
 IN UINTN Index,
 OUT EFI_ACPI_DATA_TYPE *DataType,
 OUT CONST VOID **Data,
 OUT UINTN *DataSize
);

Parameters
Handle

ACPI object handle.

Index

Index of the data to retrieve from the object. In general, indexes read from left-to-right
in the ACPI encoding, with index 0 always being the ACPI opcode.

DataType

Points to the returned data type or EFI_ACPI_DATA_TYPE_NONE if no data exists
for the specified index. See EFI_ACPI_DATA_TYPE in Related Definitions.

Data

Upon return, points to the pointer to the data.

DataSize

Upon return, points to the size of Data.

Related Definitions
typedef UINT32 EFI_ACPI_DATA_TYPE;

#define EFI_ACPI_DATA_TYPE_NONE 0
#define EFI_ACPI_DATA_TYPE_OPCODE 1
#define EFI_ACPI_DATA_TYPE_NAME_STRING 2
#define EFI_ACPI_DATA_TYPE_OP 3
#define EFI_ACPI_DATA_TYPE_UINT 4
#define EFI_ACPI_DATA_TYPE_STRING 5
#define EFI_ACPI_DATA_TYPE_CHILD 6

Description
Retrieves various fields encoded within the ACPI object. All ACPI objects support at least index 0.

Platform Initialization Specification VOLUME 5 Standards

144 3/29/2013 Version 1.3

The EFI_ACPI_DATA_TYPE_NONE indicates that the specified ACPI object does not support the
specified option. The EFI_ACPI_DATA_TYPE_OPCODE indicates that the option is an ACPI
opcode. The EFI_ACPI_DATA_TYPE_NAME_STRING indicates that the option is an ACPI name
string. The EFI_ACPI_DATA_TYPE_OP indicates that the option is an ACPI opcode. The
Open() function can be used to manipulate the contents of this ACPI opcode. The
EFI_ACPI_DATA_TYPE_UINT indicates that the option is an unsigned integer. The size of the
integer is indicated by DataSize. The EFI_ACPI_DATA_TYPE_STRING indicates that the
option is a string whose length is indicated by DataSize. The EFI_ACPI_DATA_TYPE_CHILD
indicates that the opcode has child data, pointed to by Data, with the size DataSize.

ACPI System Description Table Protocol

Version 1.3 3/29/2013 145

Table 5. AML terms and supported options

Term 0 1 2 3 4 5 6

ACPI_OP_ZERO 0000

ACPI_OP_ONE 0001

ACPI_OP_ALIAS 0006 N N

ACPI_OP_NAME 0008 N O

ACPI_OP_BYTE 000A U8

ACPI_OP_WORD 000B U16

ACPI_OP_DWORD 000C U32

ACPI_OP_STRING 000D S

ACPI_OP_QWORD 000E U64

ACPI_OP_SCOPE 0010 N

ACPI_OP_BUFFER 0011 O

ACPI_OP_PACKAGE 0012 U8

ACPI_OP_PACKAGE1 0013 O

ACPI_OP_METHOD 0014 N U8

ACPI_OP_LOCAL0 0060

ACPI_OP_LOCAL1 0061

ACPI_OP_LOCAL2 0062

ACPI_OP_LOCAL3 0063

ACPI_OP_LOCAL4 0064

ACPI_OP_LOCAL5 0065

ACPI_OP_LOCAL6 0066

ACPI_OP_LOCAL7 0067

ACPI_OP_ARG0 0068

ACPI_OP_ARG1 0069

ACPI_OP_ARG2 006A

ACPI_OP_ARG3 006B

ACPI_OP_ARG4 006C

ACPI_OP_ARG5 006D

ACPI_OP_ARG6 006E

ACPI_OP_STORE 0070 O O

ACPI_OP_REFOF 0071 O

ACPI_OP_ADD 0072 O O O

ACPI_OP_CONCAT 0073 O O O

ACPI_OP_SUBTRACT 0074 O O O

ACPI_OP_INCREMENT 0075 O

ACPI_OP_DECREMENT 0076 O

ACPI_OP_MULTIPLY 0077 O O O

ACPI_OP_DIVIDE 0078 O O O O

Platform Initialization Specification VOLUME 5 Standards

146 3/29/2013 Version 1.3

ACPI_OP_SHIFTLEFT 0079 O O O

ACPI_OP_SHIFTRIGHT 007A O O O

ACPI_OP_AND 007B O O O

ACPI_OP_NAND 007C O O O

ACPI_OP_OR 007D O O O

ACPI_OP_NOR 007E O O O

ACPI_OP_XOR 007F O O O

ACPI_OP_NOT 0080 O O

ACPI_OP_FINDSETLEFTBIT 0081 O O

ACPI_OP_FINDSETRIGHTBIT 0082 O O

ACPI_OP_DEREFOF 0083 O

ACPI_OP_CONCATENATE 0084 O O O

ACPI_OP_MODULO 0085 O O O

ACPI_OP_NOTIFY 0086 O O

ACPI_OP_SIZEOF 0087 O

ACPI_OP_INDEX 0088 O O O

ACPI_OP_MATCH 0089 O U8 O U8 O O

ACPI_OP_OBJECTTYPE 008E O

ACPI_OP_LAND 0090 O O

ACPI_OP_LOR 0091 O O

ACPI_OP_LNOT 0092 O

ACPI_OP_LEQUAL 0093 O O

ACPI_OP_LGREATER 0094 O O

ACPI_OP_LLESS 0095 O O

ACPI_OP_TOBUFFER 0096 O O

ACPI_OP_TODECIMALSTRING 0097 O O

ACPI_OP_TOHEXSTRING 0098 O O

ACPI_OP_TOINTEGER 0099 O O

ACPI_OP_TOSTRING 009C O O O

ACPI_OP_COPYOBJECT 009D O O

ACPI_OP_MID 009E O O O

ACPI_OP_CONTINUE 009F

ACPI_OP_IF 00A0 O

ACPI_OP_ELSE 00A1

ACPI_OP_WHILE 00A2 O

ACPI_OP_NOP 00A3

ACPI_OP_RETURN 00A4 O

ACPI_OP_BREAK 00A5

ACPI_OP_BREAKPOINT 00CC

Term 0 1 2 3 4 5 6

ACPI System Description Table Protocol

Version 1.3 3/29/2013 147

ACPI_OP_ONES 00FF

ACPI_OP_MUTEX 5B01 N U8

ACPI_OP_EVENT 5B02 N

ACPI_OP_CONDREFOF 5B12 O O

ACPI_OP_CREATEFIELD 5B13 O O O N

ACPI_OP_LOADTABLE 5B1F O O O O O O

ACPI_OP_LOAD 5B20 N O

ACPI_OP_STALL 5B21 O

ACPI_OP_SLEEP 5B22 O

ACPI_OP_ACQUIRE 5B23 O U16

ACPI_OP_SIGNAL 5B24 O

ACPI_OP_WAIT 5B25 O O

ACPI_OP_RESET 5B26 O

ACPI_OP_RELEASE 5B27 O

ACPI_OP_FROMBCD 5B28 O O

ACPI_OP_TOBCD 5B29 O O

ACPI_OP_UNLOAD 5B2A O

ACPI_OP_REVISION 5B30

ACPI_OP_DEBUG 5B31

ACPI_OP_FATAL 5B32 U8 U32 O

ACPI_OP_TIMER 5B33

ACPI_OP_OPERATIONREGIO
N

5B80 N U8 O O

ACPI_OP_FIELD 5B81 N U8

ACPI_OP_DEVICE 5B82 N

ACPI_OP_PROCESSOR 5B83 N U8 U32 U8

ACPI_OP_POWERRESOURCE 5B84 N U8 U16

ACPI_OP_THERMALZONE 5B85 N

ACPI_OP_INDEXFIELD 5B86 N N U8

ACPI_OP_BANKFIELD 5B87 N N O U8

ACPI_OP_DATAREGION 5B88 N O O O

ACPI_OP_CREATEDWORDFIE
LD

5B8A O O N

ACPI_OP_CREATEWORDFIEL
D

5B8B O O N

ACPI_OP_CREATEBYTEFIELD 5B8C O O N

ACPI_OP_CREATEBITFIELD 5B8D O O N

ACPI_OP_CREATEQWORDFIE
LD

5B8F O O N

Term 0 1 2 3 4 5 6

Platform Initialization Specification VOLUME 5 Standards

148 3/29/2013 Version 1.3

Status Code Returns

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Handle is NULL or does not refer to a valid ACPI object.

ACPI System Description Table Protocol

Version 1.3 3/29/2013 149

EFI_ACPI_SDT_PROTOCOL.SetOption()

Summary
Change information about an ACPI object.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_SET_OPTION) (
 IN EFI_ACPI_HANDLE Handle,
 IN UINTN Index,
 IN CONST VOID *Data,
 IN UINTN DataSize
);

Parameters
Handle

ACPI object handle.

Index

Index of the data to retrieve from the object. In general, indexes read from left-to-right
in the ACPI encoding, with index 0 always being the ACPI opcode.

Data

Points to the data.

DataSize

The size of the Data.

Description
Changes fields within the ACPI object. If the new size will not fit in the space
occupied by the previous option, then his function will return
EFI_BAD_BUFFER_SIZE. The list of opcodes and their related options can be
found in GetOption().

Status Code Returns

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Handle is NULL or does not refer to a valid ACPI object.

EFI_BAD_BUFFER_SIZE Data cannot be accommodated in the space occupied by
the option.

Platform Initialization Specification VOLUME 5 Standards

150 3/29/2013 Version 1.3

EFI_ACPI_SDT_PROTOCOL.FindPath()

Summary
Returns the handle of the ACPI object representing the specified ACPI path.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_FIND_PATH) (
 IN EFI_ACPI_HANDLE HandleIn,
 IN VOID *AcpiPath,
 OUT EFI_ACPI_HANDLE *HandleOut
);

Parameters
HandleIn

Points to the handle of the object representing the starting point for the path search.

AcpiPath

Points to the ACPI path, which conforms to the ACPI encoded path format.

HandleOut

On return, points to the ACPI object which represents AcpiPath, relative to
HandleIn.

Description
Starting with the ACPI object represented by HandleIn, walk the specified ACPI path AcpiPath
and return the handle of the ACPI object it refers to. This function supports absolute paths, relative
paths and the special rules applied to single name segments.

Status Code Returns

EFI_SUCCESS Success

EFI_INVALID_PARAMETER HandleIn is NULL or does not refer to a valid ACPI object.

PCI Host Bridge

Version 1.3 3/29/2013 151

10
PCI Host Bridge

10.1 PCI Host Bridge Overview
This specification defines the core code and services that are required for an implementation of the
PCI Host Bridge Resource Allocation Protocol. This protocol is used by a PCI bus driver to program
the PCI host bridge and configure the root PCI buses. The registers inside the PCI host bridge that
control root PCI bus configuration are not governed by the PCI specification and vary from chipset
to chipset. The PCI Host Bridge Resource Allocation Protocol is therefore specific to a particular
chipset.

This specification does the following:

• Describes the basic components of the PCI Host Bridge Resource Allocation Protocol

• Describes several sample PCI architectures and a sample implementation of the PCI Host Bridge
Resource Allocation Protocol

• Provides code definitions for the PCI Host Bridge Resource Allocation Protocol and the PCI-
host-bridge-related type definitions that are architecturally required by this specification.

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe
platform policies. The platform policies are described by the
EFI_PCI_PLATFORM_PROTOCOL, which is desribed in section 11.6.1. Silicon-related
policies are described by the EFI_PCI_OVERRIDE_PROTOCOL, which is described in
section 11.6.2.

10.2 PCI Host Bridge Design Discussion
This section provides background and design information for the PCI Host Bridge Resource
Allocation Protocol. A PCI bus driver, running in the EFI Boot Services environment, uses this
protocol to program PCI host bridge hardware. This protocol abstracts a PCI host bridge. In
particular, functions for programming a PCI host bridge are defined here although other bus types
may be supported in a similar fashion as extensions to this specification.

This chapter discusses the following:

• PCI terms that are used in this document

• An overview of the PCI Host Bridge Resource Allocation Protocol

• Sample PCI architectures

• ISA aliasing considerations

• Programming of standard PCI configuration registers

• Sample implementation

Platform Initialization Specification VOLUME 5 Standards

152 3/29/2013 Version 1.3

10.3 PCI Host Bridge Resource Allocation Protocol

10.3.1 PCI Host Bridge Resource Allocation Protocol Overview
The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus driver to program a PCI
host bridge. The registers inside a PCI host bridge that control configuration of PCI root buses are
not governed by the PCI specification and vary from chipset to chipset. The PCI Host Bridge
Resource Allocation Protocol implementation is therefore specific to a particular chipset.

Each PCI host bridge is comprised of one or more PCI root bridges, and there are hardware registers
associated with each PCI root bridge. These registers control the bus, I/O, and memory resources
that are decoded by the PCI root bus that the PCI root bridge produces and all the PCI buses that are
children of that PCI root bus.

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL allows for future
innovation of the chipsets. It abstracts the PCI bus driver from the chipset details. This design allows
system designers to make changes to the host bridge hardware without impacting a platform-
independent PCI bus driver.

See PCI Host Bridge Resource Allocation Protocol in Code Definitions for the definition of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

10.3.2 Host Bus Controllers
A platform can be viewed as the following:

• A set of processors

• A set of core chipset components that may produce one or more host buses

The figure below shows a platform with n processors (CPUs) and a set of core chipset components
that produce m host bridges (HBs).

Most systems with one PCI host bus controller will contain a single instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. More complex systems
may contain multiple instances of this protocol.

Note: There is no relationship between the number of chipset components in a platform and the number of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances. This protocol is
an abstraction from a software point of view. This protocol is attached to the device handle of a PCI host
bus controller, which itself is composed of one or more PCI root bridges. A PCI root bridge is a chipset
component(s) that produces a physical PCI bus whose parent is not another physical PCI bus.

PCI Host Bridge

Version 1.3 3/29/2013 153

Figure 4. Host Bus Controllers

10.3.3 Producing the PCI Host Bridge Resource Allocation Protocol
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances are produced by
DXE drivers—most often by early DXE drivers.

The figure below shows how the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is used to identify the
associated PCI root bridges. After the steps in the figure are completed, the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL can then be queried to
identify the device handles of the associated PCI root bridges. See the UEFI 2.1 Specification for
details of the PCI Root Bridge I/O Protocol.

CPU 1 CPU 2 CPU n

Front Side Bus

Core Chipset Components

HB 1 HB 2 HB m

Platform Initialization Specification VOLUME 5 Standards

154 3/29/2013 Version 1.3

Figure 5. Producing the PCI Host Bridge Resource Allocation Protocol

10.3.4 Required PCI Protocols
The following protocols are mandatory if the system supports PCI devices or slots:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

See the UEFI 2.1 Specification for more information on the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

10.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
It is expected, although not necessary, that a chipset-aware driver will produce the following
protocol instances:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Care has been taken to avoid overlap between the member functions of the two protocols. For
example, EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe
the SegmentNumber or the final resource assignment for a root bridge, because these attributes
are available using the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Both protocols contain links
to the associated instances of the other protocols, as follows:

DXE driver produces
PCI Host Bridge

Resource Allocation
Protocol.

Protocol is placed on
the device handle

corresponding to the
PCI host bridge.

Same driver creates
device handles for all
associated PCI root

bridges.

Same driver installs an
instance of the

PCI Root Bridge
I/O Protocol on each

handle.

PCI Host Bridge

Version 1.3 3/29/2013 155

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL: Includes the handle of the PCI host bridge that is
associated with the root bridge.

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL: Provides a member
function to retrieve the handles of the associated root bridges.

The definition of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL attempts
to maintain compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.

See the UEFI 2.1 Specification for more information on the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

10.4 Sample PCI Architectures

10.4.1 Sample PCI Architectures Overview
The PCI Host Bridge Resource Allocation Protocol is a protocol that is designed to provide a
software abstraction for a wide variety of PCI architectures. This section provides examples of the
following PCI architectures:

• Desktop system with 1 PCI root bridge

• Server system with 4 PCI root bridges

• Server system with 2 PCI segments

• Server system with 2 PCI host buses

This section is not intended to be an exhaustive list of the PCI architectures that the PCI Host Bridge
Resource Allocation Protocol can support. Instead, it is intended to show the flexibility of this
protocol to adapt to current and future platform designs.

10.4.2 Desktop System with 1 PCI Root Bridge
The figure below shows an example of a PCI host bus with one PCI root bridge. This PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard and/or PCI slots. This
setup would be typical of a desktop system. In this system, the PCI root bridge needs minimal setup.
Typically, the PCI root bridge will decode the following:

• The entire bus range on Segment 0

• The entire I/O space of the processor

• All the memory above the top of system memory

The firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• One instance of PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Platform Initialization Specification VOLUME 5 Standards

156 3/29/2013 Version 1.3

Figure 6. Desktop System with 1 PCI Root Bridge

10.4.3 Server System with 4 PCI Root Bridges
The figure below shows an example of a larger server with one PCI host Bus with four PCI root
bridges (RBs). The PCI devices that are attached to the PCI root bridges are all part of the same
coherency domain, which means they share the following:

• A common PCI I/O space

• A common PCI memory space

• A common PCI prefetchable memory space

As a result, each PCI root bridge must get resources out of a common pool. Each PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard or PCI slots. The
firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• Four instances of the PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Figure 7. Server System with 4 PCI Root Bridges

Core Chipset Components

PCI Host Bridge

PCI Root Bridge

Core Chipset Components

PCI Host Bridge

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

PCI Host Bridge

Version 1.3 3/29/2013 157

10.4.4 Server System with 2 PCI Segments
The figure below shows an example of a server with one PCI host bus and two PCI root bridges
(RBs). Each of these PCI root bridges is on a different PCI segment, which allows the system to have
up to 512 PCI buses. A single PCI segment is limited to 256 PCI buses. These two segments do not
share the same PCI configuration space, but they do share the following, which is why they can be
described with a single PCI host bus:

• A common PCI I/O space

• A common PCI memory space

• A common PCI prefetchable memory space

The firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• Two instances of the PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Figure 8. Server System with 2 PCI Segments

10.4.5 Server System with 2 PCI Host Buses
The figure below shows a server system with two PCI host buses and one PCI root bridge (RB) per
PCI host bus. As in Figure 8, this system supports up to 512 PCI buses, but the following resources
are not shared between the two PCI root bridges:

• PCI I/O space

• PCI memory space

• PCI prefetchable memory space

The firmware for this platform would produce the following:

• Two instances of the PCI Host Bridge Resource Allocation Protocol

• Two instances of the PCI Root Bridge I/O Protocol

Core Chipset Components

PCI Host Bridge

PCI RB

PCI Segment 0

PCI RB

PCI Segment 1

Platform Initialization Specification VOLUME 5 Standards

158 3/29/2013 Version 1.3

See the UEFI 2.1 Specification, Chapter 13, for details of t the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Figure 9. Server System with 2 PCI Host Buses

10.5 ISA Aliasing Considerations
The PCI host bridge driver will handle the ISA alias addresses based on the platform policy. The
platform communicates the policy to the PCI host bridge driver using the
EFI_PCI_PLATFORM_PROTOCOL. If the PCI host bridge driver cannot locate an instance of
EFI_PCI_PLATFORM_PROTOCOL, it will not reserve the ISA alias addresses. The PCI bus driver
is not aware of this policy and probes devices to gather resource requirements regardless of this
policy. The EFI_PCI_PLATFORM_PROTOCOL is defined in section 11.6.1.

Note: When it is started, a PCI device may request that the ISA alias ranges be forwarded to it through the
EFI_PCI_IO_PROTOCOL.Attributes() member function by setting the input parameter
Attributes to EFI_PCI_IO_ATTRIBUTE_ISA_IO. If the ISA alias I/O addresses are not reserved
during enumeration, such a request may fail because one or more PCI devices may be occupying aliased
addresses.

If the ISA alias I/O addresses are to be reserved during enumeration, the PCI host bridge driver is
responsible for allocating four times the amount of the requested I/O. The PCI bus driver obtains the
resources by calling one of the following member functions:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
GetProposedResources()

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

The PCI host bridge driver sets the _RNG bit to communicate the availability of the ISA alias range
to the PCI bus driver. If the _RNG flag is set, the PCI bus enumerator is not allowed to allocate the
ISA alias addresses to any PCI device. See Table 10 in the "Description" section of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL for the definition of the
_RNG flag. In this case, a PCI device’s request to turn on aliasing will succeed because one or more
PCI devices may be occupying aliased addresses. The _RNG flag is the only aspect of the protocol
interface structure that is affected by ISA aliasing.

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 0

PCI Host Bus 1

PCI RB

PCI Segment 1

PCI Host Bridge

Version 1.3 3/29/2013 159

10.6 Programming of Standard PCI Configuration Registers
This topic defines design guidelines for programming PCI configuration registers in the standard
PCI header. It defines roles and responsibilities of various drivers.

Table 6. Standard PCI Devices – Header Type 0

PCI Configuration Register Bits Programmed By

PCI command register – I/O, Memory, and
Bus Master enable

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

PCI command register – SERR, PERR, MWI,
Special Cycle Enable, Fast Back to Back
Enable

Chipset/platform-specific code

PCI command register – VGA palette snoop PCI device driver.

Cache line size Chipset/platform code to match the processor’s cache line size
or some other value.

Latency timer PCI bus driver. This driver programs this register to default
values before it sends the

EfiPciBeforeResourceCollection notification.

For PCI devices, this value is 0x20. PCI-X* devices come out of
reset with this register set to 0x40. The PCI bus driver does not
change the setting. The PCI bus driver will also make sure that
the default value for PCI devices is consistent with the MIN_LAT
and MAX_LAT register values in the device’s PCI configuration
space.
Chipset/platform code can overwrite this register during the
EfiPciBeforeResourceCollection notification call. The
new value may come from the end user using configuration options.
The device driver may overwrite this value during its own Start()
function.

BIST PCI bus driver.

Base address registers PCI bus driver.

Interrupt line Not touched.

Subsystem vendor ID and Device ID Chipset/platform code. Per the PCI Specification, these
registers must get programmed before system software
accesses the device. Some noncompliant or chipset devices
may require that these registers be programmed during the
preboot phase.

Platform Initialization Specification VOLUME 5 Standards

160 3/29/2013 Version 1.3

Table 7. PCI-to-PCI Bridge – Header Type 1

10.7 Sample Implementation
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual
implementations may vary. Calls to
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
PreprocessController() are not included for the sake of clarity.

Unless noted otherwise, all functions that are listed below are member functions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

PCI Configuration Register Bits Programmed By

PCI command register – I/O, Memory, Bus
Master enable, VGA palette snoop

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

PCI command register – SERR, PERR, MWI,
Fast Back to Back Enable, Special Cycle
Enable

Chipset/platform-specific code.

Cache line size Chipset/platform code to match the processor’s cache line size
or some other value.

Latency timer PCI bus driver. This driver programs to default values before it

sends the EfiPciBeforeResourceCollection
notification. For PCI devices, this value is 0x20. PCI-X devices
come out of reset with this register set to 0x40.The PCI bus
driver does not change the setting. The PCI bus driver will also
make sure that the default value for PCI devices is consistent
with the MIN_LAT and MAX_LAT register values in the device’s
PCI configuration space.
Chipset/platform code can overwrite this register during the
EfiPciBeforeResourceCollection notification call. The
new value may come from the end user using configuration options.

Base addresses registers, bus, I/O, and
memory aperture registers

PCI bus driver.

Interrupt line Not touched.

Bridge control register – ISA Enable, VGA
Enable

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

Bridge control register – PERR Enable, SERR
Enable, Fast Back to Back, Discard Timers

Chipset/platform-specific code.

Bridge control register – Secondary Bus
Reset

PCI bus driver is permitted to reset the secondary bus during
enumeration. The chipset/platform code may also reset the
secondary bus during the

EfiPciBeforeChildBusEnumeration notification.

PCI Host Bridge

Version 1.3 3/29/2013 161

1. If the hardware supports dynamically changing the number of PCI root buses or changing the
segment number that is associated with a PCI root bus, such changes must be completed before
the next steps.

2. The chipset/platform driver(s) creates a device handle for the PCI host bridges in the system(s)
and installs an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle.

3. The chipset/platform driver(s) creates a device handle for every PCI root bridge and installs the
following on that handle:

• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• An instance of EFI_DEVICE_PATH_PROTOCOL

It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must
be initialized with the handle for the PCI host bridge that contains an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

...Other initialization activities take place.
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is called

and is passed the device handle of a PCI root bridge. The
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is
associated with the PCI root bridge can be found by using the ParentHandle field of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present in PI
Architecture systems.

5. Begin the PCI enumeration process. The order in which the various member functions are called
cannot be changed. Between any two steps, there can be any amount of implementation-specific
code as long as it does not call any member functions of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus
enumerator in sync.

6. Notify the host bridge driver that PCI enumeration is about to begin by calling
NotifyPhase(EfiPciHostBridgeBeginEnumeration). This member function
must be the first one that gets called. PCI enumeration has two steps: bus enumeration and
resource enumeration.

7. Notify the host bridge driver that bus enumeration is about to begin by calling NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

8. Do the following for every PCI root bridge handle:

• Call StartBusEnumeration(This,RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

• Allocate memory to hold resource requirements. These resources can be two resource trees:
one to hold bus requirements and another to hold the I/O and memory requirements.

• Call GetAllocAttributes() to get the attributes of this PCI root bridge. This
information is used to combine different types of memory resources in the next step.

• Scan all the devices in the specified bus range and on the specified segment. If it is a PCI-to-
PCI bridge, update the bus numbers and program the bus number registers in the PCI-to-PCI
bridge hardware. If it is an ordinary device, collect the resource request and add up all of

Platform Initialization Specification VOLUME 5 Standards

162 3/29/2013 Version 1.3

these requests in multiple pools (e.g., I/O, 32-bit prefetchable memory). Combine different
types of memory requests at an appropriate level based on the PCI root bridge attributes.
Update the resource requirement information accordingly. On every PCI root bridge, reserve
space to cover the largest expansion ROMs on that bus, which will allow the PCI bus driver
to retrieve expansion ROMs from the PCI card or device without having to reprogram the
PCI host bridge. Because the memory and I/O resource collection step does not call any
member function of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be
performed at a later time.

• Once the number of PCI buses under this PCI root bridge is known, call
SetBusNumbers() with this information.

9. Notify the host bridge driver that the bus allocation phase is over by calling NotifyPhase
(EfiPciHostBridgeEndBusAllocation).

10. Notify the host bridge driver that resource allocation is about to begin by calling
NotifyPhase(EfiPciHostBridgeBeginResourceAllocation).

11. For every PCI root bridge handle, call SubmitResources(). The Configuration
information is derived from the resource requirements that were computed in step 8 above.

12. Call NotifyPhase(EfiPciHostBridgeAllocateResources) to allocate the
necessary resources. This call should not be made unless resource requirements for all the PCI
root bridges have been submitted. If the call succeeds, go to next step. Otherwise, there are two
options:

• Make do with the smaller ranges.

• Call GetProposedResources() to retrieve the proposed settings and examine the
differences. Prioritize various requests and drop lower-priority requests. Call
NotifyPhase(EfiPciHostBridgeFreeResources) to undo the previous
allocation. Go back to step 11 with reduced requirements, which includes resubmitting
requests for all the root bridges.

13. Call NotifyPhase(EfiPciHostBridgeSetResources) to program the hardware. At
this point, the decode logic in this host bridge is fully set up.

14. Do the following for every root bridge handle:

• Obtain the resource range that is assigned to a PCI root bridge by calling the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on
that handle.

• From the resource range that is assigned to the PCI root bridge, assign resources to all the
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents to
a buffer in memory. It is possible to defer the BAR programming for a PCI controller until a
connect request for the device is received.

• Create a device handle for each PCI device as required.

• Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on each of these handles.

15. Notify the host bridge driver that resource allocation is complete by calling
NotifyPhase(EfiPciHostBridgeEndResourceAllocation).

16. Deallocate any temporary buffers.

Looping on PCI root bridges is accomplished with the following algorithm:

PCI Host Bridge

Version 1.3 3/29/2013 163

RootBridgeHandle = NULL;
while (GetNextRootBridge(RootBridgeHandle) == EFI_SUCCESS) {
 . . .

10.7.1 PCI enumeration process
1. If the hardware supports dynamically changing the number of PCI root buses or changing the

segment number that is associated with a PCI root bus, such changes must be completed before
the next steps.

2. The PCI host bridge driver (s) creates a device handle for the PCI host bridges in the system(s)
and installs an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle.

3. The PCI root bridge driver(s) creates a device handle for every PCI root bridge and installs the
following on that handle:

• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• An instance of EFI_DEVICE_PATH_PROTOCOL

It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must
be initialized with the handle for the PCI host bridge that contains an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

10.7.1.1 Other initialization activities take place.
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is called

and is passed the device handle of a PCI root bridge. The
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is
associated with the PCI root bridge can be found by using the ParentHandle field of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present.

5. Begin the PCI enumeration process. The order in which the various member functions are called
cannot be changed. Between any two steps, there can be any amount of implementation-specific
code as long as it does not call any member functions of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus
enumerator in sync.

6. Notify drivers that PCI enumeration is about to begin using
EfiPciHostBridgeBeginenumeration.

10.7.1.2 PCI enumeration has two steps: bus enumeration and resource
enumeration.

7. Notify drivers that PCI bus enumeration is about to begin using
EfiPciHostBridgeBeginBusAllocation.

8. Do the following for every PCI root bridge handle:

• Call StartBusEnumeration (This, RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

• Allocate memory to hold resource requirements.

Platform Initialization Specification VOLUME 5 Standards

164 3/29/2013 Version 1.3

• Call GetAllocAttributes() to get the attributes of this PCI root bridge. This
information is used to combine different types of memory resources in the next step.

• Scan all the devices in the specified bus range and on the specified segment.

If it is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in the
PCI-to-PCI bridge hardware. Call the drivers for preprocess notifications using
EfiPciBeforeChildBusEnumeration.

If it is an ordinary device, collect the resource request and add up all of these requests in multiple
pools (e.g., I/O, 32-bit prefetchable memory). Combine different types of memory requests at an
appropriate level based on the PCI root bridge attributes. Update the resource requirement
information accordingly.

On every PCI root bridge, reserve space to cover the largest expansion ROMs on that bus, which
will allow the PCI bus driver to retrieve expansion ROMs from the PCI card or device without
having to reprogram the PCI host bridge. Because the memory and I/O resource collection step
does not call any member function of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be performed at
a later time.

• Once the number of PCI buses under this PCI root bridge is known, call
SetBusNumbers() with this information.

9. Notify drivers that the bus allocation phase is over using
EfiPciHostBridgeEndBusAllocation.

10. Notify drivers that resource allocation is about to begin using
EfiPciHostBridgeBeginResourceAllocation.

11. For every PCI root bridge handle, call SubmitResources(). The Configuration
information is derived from the resource requirements that were computed in step 8 above.

12. Notify the drivers to allocate the necessary resources using
EfiPciHostBridgeAllocateResources. This call should not be made unless resource
requirements for all the PCI root bridges have been submitted. If the call succeeds, go to next
step. Otherwise, there are two options:

• Make do with the smaller ranges.

• Call GetProposedResources() to retrieve the proposed settings and examine the
differences. Prioritize various requests and drop lower-priority requests. Notify the drivers
using EfiPciHostBridgeFreeResources to undo the previous allocation. Go back
to step 11 with reduced requirements, which includes resubmitting requests for all the root
bridges.

13. Notify the drivers using EfiPciHostBridgeSetResources to program the hardware. At
this point, the decode logic in this host bridge is fully set up.

14. Do the following for every root bridge handle:

• Obtain the resource range that is assigned to a PCI root bridge by calling the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on
that handle.

• From the resource range that is assigned to the PCI root bridge, assign resources to all the
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents to
a buffer in memory. It is possible to defer the BAR programming for a PCI controller until a
connect request for the device is received.

PCI Host Bridge

Version 1.3 3/29/2013 165

• Create a device handle for each PCI device as required.

• Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on each of these handles.

15. Notify the drivers that resource allocation is complete by using
EfiPciHostBridgeEndResourceAllocation.

16. Notify the drivers that bus enumeration is complete by calling
EfiPciHostBridgeEndEnumeration.

17. Deallocate any temporary buffers.

18. Install the EFI_PCI_ENUMERATION_COMPLETE_GUID protocol.

10.7.1.3 Sample PCI Device Set Up Implementation
This section describes further the outlines of the process in step 14, second bullet (above).

1. Call the PCI enumeration preprocess functions using
EfiPciBeforeResourceCollection.

2. Gather PCI device resource requirements.

3. If present, call EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL to see if there
is an alternate set of resources for this device.

4. Call the EFI_PCI_PLATFORM_PROTOCOL function GetPciRom(). If it returns
EFI_SUCCESS, go to step 7.

5. Call the EFI_PCI_OVERRIDE_PROTOCOL function GetPciRom(). If it returns
EFI_SUCCESS, go to step 7.

6. Find the PCI device's option ROM and copy its contents into memory. If there is no option
ROM, go to step 8.

7. Find and decompress the UEFI image within the option ROM image.

8. Exit

10.7.2 Sample Enumeration Implementation
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual
implementations may vary.

10.7.2.1 PCI Enumeration Phases
There are several phases of the PCI enumeration process. For each phase, the PCI platform drivers
and the PCI host bridge drivers are notified as follows:

1. The PlatformNotify() function of the EFI_PCI_PLATFORM_PROTOCOL is called with
the enumeration phase and the execution phase BeforePciHostBridge.

2. The PlatformNotify() function of the EFI_PCI_OVERRIDE_PROTOCOL is called with
the enumeration phase and the execution phase BeforePciHostBridge.

3. The NotifyPhase function of each instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is called with the
enumeration phase.

Platform Initialization Specification VOLUME 5 Standards

166 3/29/2013 Version 1.3

4. The PlatformNotify() function of the EFI_PCI_PLATFORM_PROTOCOL is called
with the enumeration phase and the execution phase AfterPciHostBridge.

5. The PlatformNotify () function of the EFI_PCI_OVERRIDE_PROTOCOL is called
with the execution phase AfterPciHostBridge.

10.7.2.2 Additional locations to preprocess PCI devices
There are a few additional places during the PCI enumeration process where the platform or PCI
host bridge drivers are given the opportunity to preprocess individual PCI devices.

1. The PlatformPrepController function of the EFI_PCI_PLATFORM_PROTOCOL is
called with the preprocess phase and the execution phase of BeforePciHostBridge.

2. The PlatformPrepController function of each instance of the
EFI_PCI_OVERRIDE_PROTOCOL is called with the preprocess phase and the execution
phase of BeforePciHostBridge.

3. The PreprocessController function of each instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is called with the
preprocess phase.

4. The PlatformPrepController function of each instance of the
EFI_PCI_PLATFORM_PROTOCOL is called with the preprocess phase and the execution
phase of AfterPciHostBridge.

5. The PlatformPrepController function of the EFI_PCI_OVERRIDE_PROTOCOL is
called with the preprocess phase and the execution phase of AfterPciHostBridge.

10.8 PCI HostBridge Code Definitions

10.8.1 Introduction
This section contains the basic definitions of the PCI Host Bridge Resource Allocation Protocol.
This section defines the protocol
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES

• EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE

10.8.2 PCI Host Bridge Resource Allocation Protocol

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

Summary
Provides the basic interfaces to abstract a PCI host bridge resource allocation.

PCI Host Bridge

Version 1.3 3/29/2013 167

Note: This protocol is mandatory if the system includes PCI devices.

GUID
#define EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GUID \
 {
0xCF8034BE,0x6768,0x4d8b,0xB7,0x39,0x7C,0xCE,0x68,0x3A,0x9F,0xBE
}

Protocol Interface Structure
typedef struct _EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
{
 EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE
 NotifyPhase;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_B
RIDGE
 GetNextRootBridge;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_ATTRIBUTES
 GetAllocAttributes;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUME
RATION
 StartBusEnumeration;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS
 SetBusNumbers;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCE
S
 SubmitResources;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RE
SOURCES
 GetProposedResources;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONT
ROLLER
 PreprocessController;
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL;

Parameters
NotifyPhase

The notification from the PCI bus enumerator that it is about to enter a certain phase
during the enumeration process. See the NotifyPhase() function description.

Platform Initialization Specification VOLUME 5 Standards

168 3/29/2013 Version 1.3

GetNextRootBridge

Retrieves the device handle for the next PCI root bridge that is produced by the host
bridge to which this instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is attached.
See the GetNextRootBridge() function description. See section 1.2 for a
definition of a PCI root bridge.

GetAllocAttributes

Retrieves the allocation-related attributes of a PCI root bridge. See the
GetAllocAttributes() function description.

StartBusEnumeration

Sets up a PCI root bridge for bus enumeration. See the
StartBusEnumeration() function description.

SetBusNumbers

Sets up the PCI root bridge so that it decodes a specific range of bus numbers. See the
SetBusNumbers() function description.

SubmitResources

Submits the resource requirements for the specified PCI root bridge. See the
SubmitResources() function description.

GetProposedResources

Returns the proposed resource assignment for the specified PCI root bridges. See the
GetProposedResources() function description.

PreprocessController

Provides hooks from the PCI bus driver to every PCI controller (device/function) at
various stages of the PCI enumeration process that allow the host bridge driver to
preinitialize individual PCI controllers before enumeration. See the
PreprocessController() function description.

Description
The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL provides the basic
resource allocation services to the PCI bus driver. There is one
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance for each PCI host
bridge in a system. The following will typically have only one PCI host bridge:

• Embedded systems

• Desktops

• Workstations

• Most servers

High-end servers may have multiple PCI host bridges. A PCI bus driver that wishes to manage a PCI
bus in a system will have to retrieve the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is associated
with the PCI bus to be managed. A device handle for a PCI host bridge will not contain an

PCI Host Bridge

Version 1.3 3/29/2013 169

EFI_DEVICE_PATH_PROTOCOL instance because the PCI host bridge is a software abstraction
and has no equivalent in the ACPI name space.

All applicable member functions use ACPI 2.0 or ACPI 3.0 resource descriptors to describe
resources. Using ACPI resource descriptors does the following:

• Allows other types of resources to be described in the future because they are very generic in
nature.

• Avoids multiple structure definitions for describing resources.

• Maintains compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.

Only the following two resource descriptor types from the ACPI Specification may be used to
describe the current resources that are allocated to a PCI root bridge:

• QWORD Address Space Descriptor (ACPI 3.0)

• End Tag (ACPI 3.0)

The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 8 and Table 9 below contain
these two descriptor types. Table 10 and Table 11 define how resource-specific flags are used. See
the ACPI Specification for details on the field values.

Platform Initialization Specification VOLUME 5 Standards

170 3/29/2013 Version 1.3

Table 8. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:
 0: Memory range
 1: I/O range
 2: Bus number range

0x04 0x01 General flags.
Flags that are common to all resource types:
Bits[7:4]: Reserved (must be 0)
Bit[3] _MAF: Always returned as 1 while returning allocated requests to
indicate that the specified max address is fixed.
Bit[2] _MIF: Always returned as 1 while returning allocated requests to
indicate that the specified min address is fixed.
Bit[1] _DEC: Ignored.
Bit[0]: Ignored.

0x05 0x01 Type-specific flags. Ignored except as defined in Table 3-3 and Table 3-4
below.

0x06 0x08 Address Space Granularity. Used to differentiate between a 32-bit memory
request and a 64-bit memory request. For a 32-bit memory request, this field
should be set to 32. For a 64-bit memory request, this field should be set to
64. Ignored for I/O and bus resource requests. Ignored during

GetProposedResources().

0x0E 0x08 Address Range Minimum. Set to the base of the allocated address range
(bus, I/O, memory) during GetProposedResources(). Ignored during

SubmitResources().

0x16 0x08 Address Range Maximum. Used to indicate alignment requirement during
SubmitResources() and ignored during GetProposedResources().

This value must be 2n-1. The address base must be a multiple of the
granularity field. That is, if this field is 4KiB-1, the allocated address must be a
multiple of 4 KiB.
Note: The interpretation of this field is different from the ACPI Specification
and PCI Root Bridge I/O Protocol.

0x1E 0x08 Address Translation Offset. Used to indicate the allocation status during
GetProposedResources() and ignored during SubmitResources().
Allocation status is defined in "Related Definitions" in
GetProposedResources().
Note: The interpretation of this field is different from the ACPI Specification
and PCI Root Bridge I/O Protocol.

0x26 0x08 Address Range Length. This field specifies the amount of resources that are
requested or allocated in number of bytes.

PCI Host Bridge

Version 1.3 3/29/2013 171

Table 9. ACPI 2.0 & 3.0 End Tag Usage

Table 10. I/O Resource Flag (Resource Type = 1) Usage

Table 11. Memory Resource Flag (Resource Type = 0) Usage

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

Bits Meaning

Bits[7:1] Ignored.

Bit[0] _RNG. Ignored during an allocation request. Setting this bit while returning allocated
resources means that the I/O allocation must be limited to the ISA I/O ranges. In that case,
the PCI bus driver must allocate I/O addresses out of the ISA I/O ranges. The following are
the SA I/O ranges:
n100–n3FF
n500–n7FF
n900–nBFF
nD00–nFFF
See ISA Aliasing Considerations for more details.

Bits Meaning

Bits[7:3] Ignored.

Bit[2:1] _MEM. Memory attributes.
Value and Meaning:

 0 The memory is nonprefetchable.
 1 Invalid.
 2 Invalid.
 3 The memory is prefetchable.

Note: The interpretation of these bits is somewhat different from the ACPI Specification.
According to the ACPI Specification, a value of 0 implies noncacheable memory and the
value of 3 indicates prefetchable and cacheable memory.

Bit[0] Ignored.

Platform Initialization Specification VOLUME 5 Standards

172 3/29/2013 Version 1.3

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Noti
fyPhase()

Summary
These are the notifications from the PCI bus driver that it is about to enter a certain phase of the PCI
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE)
(
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

Phase

The phase during enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
"Related Definitions" below.

Description
This member function can be used to notify the host bridge driver to perform specific actions,
including any chipset-specific initialization, so that the chipset is ready to enter the next phase. Nine
notification points are defined at this time. See "Related Definitions" below for definitions of various
notification points and section 10.7 for usage.

More synchronization points may be added as required in the future.

PCI Host Bridge

Version 1.3 3/29/2013 173

Related Definitions

Related Definitions
//***
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE
//***
typedef enum {
 EfiPciHostBridgeBeginEnumeration,
 EfiPciHostBridgeBeginBusAllocation,
 EfiPciHostBridgeEndBusAllocation,
 EfiPciHostBridgeBeginResourceAllocation,
 EfiPciHostBridgeAllocateResources,
 EfiPciHostBridgeSetResources,
 EfiPciHostBridgeFreeResources,
 EfiPciHostBridgeEndResourceAllocation,
 EfiPciHostBridgeEndEnumeration,
 EfiMaxPciHostBridgeEnumeratonPhase
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE;

Table 12 provides a description of the fields in the above enumeration:

Platform Initialization Specification VOLUME 5 Standards

174 3/29/2013 Version 1.3

Table 12. Enumeration Descriptions

Enumeration Description

EfiPciHostBridgeBeginEnum
eration

Resets the host bridge PCI apertures and internal data structures.
The PCI enumerator should issue this notification before starting a
fresh enumeration process. Enumeration cannot be restarted after
sending any other notification such as

EfiPciHostBridgeBeginBusAllocation.

EfiPciHostBridgeBeginBusA
llocation

The bus allocation phase is about to begin. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EfiPciHostBridgeEndBusAll
ocation

The bus allocation and bus programming phase is complete. No
specific action is required here. This notification can be used to
perform any chipset-specific programming.

EfiPciHostBridgeBeginReso
urceAllocation

The resource allocation phase is about to begin. No specific
action is required here. This notification can be used to perform
any chipset-specific programming.

EfiPciHostBridgeAllocateR
esources

Allocates resources per previously submitted requests for all the
PCI root bridges. These resource settings are returned on the

next call to GetProposedResources(). Before calling

NotifyPhase() with a Phase of

EfiPciHostBridgeAllocateResource, the PCI

bus enumerator is responsible for gathering I/O and memory
requests for all the PCI root bridges and submitting these requests

using SubmitResources(). This function pads the

resource amount to suit the root bridge hardware, takes care of
dependencies between the PCI root bridges, and calls the Global
Coherency Domain (GCD) with the allocation request. In the case
of padding, the allocated range could be bigger than what was
requested.
Note that the size of the allocated range could be smaller than
what was requested. This scenario could happen due to an
allocation failure, a host bridge hardware limitation, or any other
reason. In that case, the call will return an

EFI_OUT_OF_RESOURCES error. If the allocated windows

are smaller than what was requested, the PCI bus enumerator
may not be able to fit all the devices within the range. The PCI bus

driver can call GetProposedResouces() to find out

which of the resource types were partially allocated and the
difference between the amount that was requested and the
amount that was allocated. The PCI bus enumerator should
readjust the requested sizes (by dropping certain PCI devices or
PCI buses) to obtain a best fit. The PCI bus driver can call

NotifyPhase (EfiPciHostBridgeFreeResour
ces) to free up the original assignments and resubmit the

adjusted resource requests with SubmitResources().

PCI Host Bridge

Version 1.3 3/29/2013 175

Status Codes Returned

EfiPciHostBridgeSetResour
ces

Programs the host bridge hardware to decode previously
allocated resources (proposed resources) for all the PCI root
bridges. After the hardware is programmed, reassigning
resources will not be supported. The bus settings are not affected.

EfiPciHostBridgeFreeResou
rces

Deallocates resources that were previously allocated for all the
PCI root bridges and resets the I/O and memory apertures to their
initial state. The bus settings are not affected. If the request to
allocate resources fails, the PCI enumerator can use this
notification to deallocate previous resources, adjust the requests,
and retry allocation.

EfiPciHostBridgeEndResour
ceAllocation

The resource allocation phase is completed. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EfiPciHostBridgeEndBusEnu
meration

The bus enumeration phase is completed. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EFI_SUCCESS The notification was accepted without any errors.

EFI_INVALID_PARAMETER The Phase is invalid.

EFI_NOT_READY This phase cannot be entered at this time. For example, this error

is valid for a Phase of

EfiPciHostBridgeAllocateResources if

SubmitResources() has not been called for one or more

PCI root bridges before this call.

EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid for

a Phase of EfiPciHostBridgeSetResources.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
This error is valid for a Phase of
EfiPciHostBridgeAllocateResources if the previously
submitted resource requests cannot be fulfilled or were only
partially fulfilled.

Enumeration Description

Platform Initialization Specification VOLUME 5 Standards

176 3/29/2013 Version 1.3

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
NextRootBridge()

Summary
Returns the device handle of the next PCI root bridge that is associated with this host bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_
BRIDGE) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN OUT EFI_HANDLE *RootBridgeHandle
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

Returns the device handle of the next PCI root bridge. On input, it holds the
RootBridgeHandle that was returned by the most recent call to
GetNextRootBridge(). If RootBridgeHandle is NULL on input, the handle
for the first PCI root bridge is returned. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This function is called multiple times to retrieve the device handles of all the PCI root bridges that
are associated with this PCI host bridge. Each PCI host bridge is associated with one or more PCI
root bridges. On each call, the handle that was returned by the previous call is passed into the
interface, and on output the interface returns the device handle of the next PCI root bridge. The caller
can use the handle to obtain the instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL for
that root bridge. When there are no more PCI root bridges to report, the interface returns
EFI_NOT_FOUND. A PCI enumerator must enumerate the PCI root bridges in the order that they
are returned by this function.

The search is initiated by passing in a NULL device handle as input. Some of the member functions
of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL operate on a PCI root
bridge and expect the RootBridgeHandle as an input.

There is no requirement that this function return the root bridges in any specific relation with the EFI
device paths of the root bridges.

This function can also be used to determine the number of PCI root bridges that were produced by
this PCI host bridge. The host bridge hardware may provide mechanisms to change the number of

PCI Host Bridge

Version 1.3 3/29/2013 177

root bridges that it produces, but such changes must be completed before the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed.

Status Codes Returned

EFI_SUCCESS The requested attribute information was returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not an EFI_HANDLE that was returned
on a previous call to GetNextRootBridge().

EFI_NOT_FOUND There are no more PCI root bridge device handles.

Platform Initialization Specification VOLUME 5 Standards

178 3/29/2013 Version 1.3

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
AllocAttributes()

Summary
Returns the allocation attributes of a PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_GET_ATTRIBUTES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT UINT64 *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The device handle of the PCI root bridge in which the caller is interested. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Attributes

The pointer to attributes of the PCI root bridge. The permitted attribute values are
defined in "Related Definitions" below.

Description
The function returns the allocation attributes of a specific PCI root bridge. The attributes can vary
from one PCI root bridge to another. These attributes are different from the decode-related attributes
that are returned by the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
member function. The RootBridgeHandle parameter is used to specify the instance of the PCI
root bridge. The device handles of all the root bridges that are associated with this host bridge must
be obtained by calling GetNextRootBridge(). The attributes are static in the sense that they do
not change during or after the enumeration process. The hardware may provide mechanisms to
change the attributes on the fly, but such changes must be completed before
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed. The permitted
values of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES are defined in
"Related Definitions" below. The caller uses these attributes to combine multiple resource requests.
For example, if the flag EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM is set, the PCI bus
enumerator needs to include requests for the prefetchable memory in the nonprefetchable memory
pool and not request any prefetchable memory.

PCI Host Bridge

Version 1.3 3/29/2013 179

Related Definitions
//***
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES
//***

#define EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM 1
#define EFI_PCI_HOST_BRIDGE_MEM64_DECODE 2

Following is a description of the fields in the above definition:

Table 13. EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES field
descriptions

Status Codes Returned

EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM If this bit is set, then the PCI root bridge does not
support separate windows for nonprefetchable and
prefetchable memory. A PCI bus driver needs to
include requests for prefetchable memory in the
nonprefetchable memory pool.

EFI_PCI_HOST_BRIDGE_MEM64_DECODE If this bit is set, then the PCI root bridge supports 64-
bit memory windows. If this bit is not set, the PCI bus
driver needs to include requests for a 64-bit memory
address in the corresponding 32-bit memory pool.

EFI_SUCCESS The requested attribute information was returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Attributes is NULL.

Platform Initialization Specification VOLUME 5 Standards

180 3/29/2013 Version 1.3

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Star
tBusEnumeration()

Summary
Sets up the specified PCI root bridge for the bus enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERAT
ION) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge to be set up. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

Pointer to the pointer to the PCI bus resource descriptor.

Description
This member function sets up the root bridge for bus enumeration and returns the PCI bus range over
which the search should be performed in ACPI (2.0 & 3.0) resource descriptor format. The
following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
StartBusEnumeration().

PCI Host Bridge

Version 1.3 3/29/2013 181

Table 14. ACPI 2.0 & 3.0 Resource Descriptor Field Values for StartBusEnumeration()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

This function cannot return resource descriptors for anything other than bus resources. This function
can be used to prevent a PCI bus driver from scanning certain PCI buses to work around a chipset
limitation. Because the size of ACPI resource descriptors is not fixed,
StartBusEnumeration() is responsible for allocating memory for the buffer
Configuration.

The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle
RootBridgeHandle.

Status Codes Returned

Field Setting

Address Range Minimum Set to the lowest bus number to be scanned.

Address Range Length Set to the number of PCI buses that may be scanned. The highest bus number is
computed by adding the length to the lowest bus number and subtracting 1.

Address Range Maximum Ignored.

All other fields Ignored.

EFI_SUCCESS The PCI root bridge was set up and the bus range was returned in
Configuration.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Platform Initialization Specification VOLUME 5 Standards

182 3/29/2013 Version 1.3

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Set
BusNumbers()

Summary
Programs the PCI root bridge hardware so that it decodes the specified PCI bus range.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN VOID *Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge whose bus range is to be programmed. Type EFI_HANDLE is
defined in InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

The pointer to the PCI bus resource descriptor.

Description
This member function programs the specified PCI root bridge to decode the bus range that is
specified by the input parameter Configuration.

The bus range information is specified in terms of the ACPI (2.0 & 3.0) resource descriptor format.
The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
SetBusNumbers().

PCI Host Bridge

Version 1.3 3/29/2013 183

Table 15. ACPI 2.0 & 3.0 Resource Descriptor Field Values for SetBusNumbers()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

This call will return EFI_INVALID_PARAMETER without programming the hardware if either of
the following are specified:

• Any descriptors other than bus type descriptors

• Any invalid descriptors

The bus range is typically a subset of what was returned during StartBusEnumeration(). If
SetBusNumbers() is called with incorrect (but valid) parameters, it may cause system failure.

The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle
RootBridgeHandle. This call cannot alter the following:

• The SegmentNumber field in the corresponding instances of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• The segment number settings in the hardware

The caller is responsible for allocating and deallocating a buffer to hold Configuration. If the
call returns EFI_DEVICE_ERROR, the PCI bus enumerator can optionally attempt another bus
setting.

Field Setting

Address Range Minimum Set to the lowest bus number to be decoded.

Address Range Length Set to the number of PCI buses that should be decoded. The highest bus number is
computed by adding the length to the lowest bus number and subtracting 1.

Address Range Maximum Ignored.

All other fields Ignored.

Platform Initialization Specification VOLUME 5 Standards

184 3/29/2013 Version 1.3

Status Codes Returned

EFI_SUCCESS The bus range for the PCI root bridge was programmed.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Configuration is NULL.

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)
resource descriptor.

EFI_INVALID_PARAMETER Configuration does not include a valid ACPI 2.0 bus resource
descriptor.

EFI_INVALID_PARAMETER Configuration includes valid ACPI (2.0 & 3.0) resource
descriptors other than bus descriptors.

EFI_INVALID_PARAMETER Configuration contains one or more invalid ACPI resource
descriptors.

EFI_INVALID_PARAMETER "Address Range Minimum" is invalid for this root bridge.

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this root bridge.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

PCI Host Bridge

Version 1.3 3/29/2013 185

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Sub
mitResources()

Summary
Submits the I/O and memory resource requirements for the specified PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN VOID *Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge whose I/O and memory resource requirements are being
submitted. Type EFI_HANDLE is defined in InstallProtocolInterface()
in the UEFI 2.1 Specification.

Configuration

The pointer to the PCI I/O and PCI memory resource descriptor.

Description
This function is used to submit all the I/O and memory resources that are required by the specified
PCI root bridge. The input parameter Configuration is used to specify the following:

• The various types of resources that are required

• The associated lengths in terms of ACPI (2.0 & 3.0) resource descriptor format

The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
SubmitResources().

Platform Initialization Specification VOLUME 5 Standards

186 3/29/2013 Version 1.3

Table 16. ACPI 2.0& 3.0 Resource Descriptor Field Values for SubmitResources()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

The caller must ask for appropriate alignment using the "Address Range Maximum" field. The caller
is responsible for allocating and deallocating a buffer to hold Configuration.

It is considered an error if no resource requests are submitted for a PCI root bridge. If a PCI root
bridge does not require any resources, a zero-length resource request must explicitly be submitted.

If the Configuration includes one or more invalid resource descriptors, all the resource
descriptors are ignored and the function returns EFI_INVALID_PARAMETER.

Field Setting

Address Range Length Set to the size of the aperture that is requested.

Address Space Granularity Used to differentiate between a 32-bit memory request and a 64-bit memory
request. For a 32-bit memory request, this field should be set to 32. For a 64-bit
memory request, this field should be set to 64. All other values result in this
function returning the error code of EFI_INVALID_PARAMETER.

Address Range Maximum Used to specify the alignment requirement. If "Address Range Maximum" is of the

form 2n-1, this member function returns the error code
EFI_INVALID_PARAMETER. The address base must be a multiple of the
granularity field. That is, if this field is 4 KiB-1, the allocated address must be a
multiple of 4 KiB.

Address Range Minimum Ignored.

Address Translation Offset Ignored.

All other fields Ignored.

PCI Host Bridge

Version 1.3 3/29/2013 187

Status Codes Returned

EFI_SUCCESS The I/O and memory resource requests for a PCI root bridge were
accepted.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Configuration is NULL.

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)

resource descriptor.

EFI_INVALID_PARAMETER Configuration includes requests for one or more resource
types that are not supported by this PCI root bridge. This error will
happen if the caller did not combine resources according to
Attributes that were returned by

GetAllocAttributes().

EFI_INVALID_PARAMETER "Address Range Maximum" is invalid.

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER "Address Space Granularity" is invalid for this PCI root bridge.

Platform Initialization Specification VOLUME 5 Standards

188 3/29/2013 Version 1.3

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
ProposedResources()

Summary
Returns the proposed resource settings for the specified PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOUR
CES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

The pointer to the pointer to the PCI I/O and memory resource descriptor.

Description
This member function returns the proposed resource settings for the specified PCI root bridge. The
proposed resource settings are prepared when NotifyPhase() is called with a Phase of
EfiPciHostBridgeAllocateResources. The output parameter Configuration
specifies the following:

• The various types of resources, excluding bus resources, that are allocated

• The associated lengths in terms of ACPI (2.0 & 3.0) resource descriptor format

The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
GetProposedResources().

PCI Host Bridge

Version 1.3 3/29/2013 189

Table 17. ACPI 2.0 & 3.0 GetProposedResources() Resource Descriptor Field Values

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

The callee is responsible for allocating a buffer to hold Configuration because the caller does
not know the number of descriptors that are required. The caller is also responsible for deallocating
the buffer.

If NotifyPhase() is called with a Phase of EfiPciHostBridgeAllocateResources
and returns EFI_OUT_OF_RESOURCES, the PCI bus enumerator may use
GetProposedResources() to retrieve the proposed settings. The
EFI_OUT_OF_RESOURCES error status indicates that one or more requests could not be fulfilled
or were partially fulfilled. Additional details of the allocation status for each type of resource can be
retrieved from the "Address Translation Offset" field in the resource descriptor that was returned by
this function; also see "Related Definitions" below for defined allocation status values. This error
could happen for the following reasons:

• Allocation failure

• A limitation in the host bridge hardware

• Any other reason

If the allocated windows are smaller than what was requested, the PCI bus enumerator may not be
able to fit all the devices within the range. In that case, the PCI bus enumerator may choose to
readjust the requested sizes (by dropping certain devices or PCI buses) to obtain a best fit. The PCI
bus driver calls NotifyPhase() with a Phase of EfiPciHostBridgeFreeResources to
free the original assignments.

If this member function is able to only partially fulfill the requests for one or more resource types,
the root bridges that are first in the list will get resources first. The ordering of the root bridges is
determined by the output of GetNextRootBridge(). The handle to the first root bridge is
obtained by calling GetNextRootBridge() with an input handle of NULL.

In the case of I/O resources, the PCI bus enumerator must check the _RNG flag. If this flag is set, the
I/O ranges that are allocated to the devices must come from the non-ISA I/O subset.

For example, if this flag is set, the "Address Range Minimum" is 0x1000, and the "Address Range
Length" is 0x1000, then the following I/O ranges can be allocated to PCI devices:

• 0x1000–0x10FF

• 0x1400–0x14FF

Field Setting

Address Range Length Set to the size of the aperture that is requested.

Address Space Granularity Ignored.

Address Range Minimum Indicates the starting address of the allocated ranges.

Address Translation Offset Indicates the allocation status. Allocation status is defined in "Related Definitions"
below.

Address Range Maximum Ignored.

All other fields Ignored.

Platform Initialization Specification VOLUME 5 Standards

190 3/29/2013 Version 1.3

• 0x1800–0x18FF

• 0x1C00–0x1CFF

This call is made before NotifyPhase() is called with a Phase of
EfiPciHostBridgeSetResources. After that time, the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function should be
used to obtain the resources that were consumed by a particular PCI root bridge.

Related Definitions
//

// EFI_RESOURCE_ALLOCATION_STATUS
//

typedef UINT64 EFI_RESOURCE_ALLOCATION_STATUS;

#define EFI_RESOURCE_SATISFIED 0
#define EFI_RESOURCE_NOT_SATISFIED (UINT64) -1

Following is a description of the fields in the above definition. All other values indicate that the
request of this resource type could be partially fulfilled. The exact value indicates how much more
space is still required to fulfill the requirement.

Table 18. EFI_RESOURCE_ALLOCATION_STATUS field descriptions

Status Codes Returned

EFI_RESOURCE_SATISFIED The request of this resource type could be fulfilled.

EFI_RESOURCE_NOT_SATISFIED The request of this resource type could not be fulfilled for its absence
in the host bridge resource pool.

EFI_SUCCESS The requested parameters were returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

PCI Host Bridge

Version 1.3 3/29/2013 191

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Pre
processController()

Summary
Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various
stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual
PCI controllers before enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONT
ROLLER)(
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
);

Parameters
This

Pointer to the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.

RootBridgeHandle

The associated PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL member functions to access the PCI
configuration space of the device. See UEFI 2.1 Specification for the definition of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI device enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
"Related Definitions" below.

Description
This function is called during the PCI enumeration process. No specific action is expected from this
member function. It allows the host bridge driver to preinitialize individual PCI controllers before
enumeration.

The parameter RootBridgeHandle can be used to locate the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the root bridge that is the parent of

Platform Initialization Specification VOLUME 5 Standards

192 3/29/2013 Version 1.3

the specific PCI function. The parameter PciAddress can be passed to the Pci.Read() and
Pci.Write() functions of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to access
the PCI configuration space of the specific PCI function.

This member function is invoked during PCI enumeration and before the PCI enumerator has
created a handle for the PCI function. As a result, the EFI_PCI_IO_PROTOCOL cannot be used at
this point.

Two notification points are defined at this time. See type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE in "Related Definitions" below
for definitions of these notification points and ISA Aliasing Considerations for usage. More
synchronization points may be added as required in the future.

Related Definitions
//***
// EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE
//***
typedef enum {
 EfiPciBeforeChildBusEnumeration,
 EfiPciBeforeResourceCollection
} EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE;

Following is a description of the fields in the above enumeration:

PCI Host Bridge

Version 1.3 3/29/2013 193

Table 19. EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE field descriptions

Status Codes Returned

EfiPciBeforeChildBusEnumeration This notification is applicable only to PCI-to-PCI bridges and
indicates that the PCI enumerator is about to begin enumerating the
bus behind the PCI-to-PCI bridge. This notification is sent after the
primary bus number, the secondary bus number, and the
subordinate bus number registers in the PCI-to-PCI bridge are
programmed to valid (but not necessary final) values. Programming
of the bus number register allows the chipset code to scan devices
on the bus that are immediately behind the PCI-to-PCI bridge. This
notification can be used to reset the secondary PCI bus. Some PCI-
to-PCI bridges can drive their secondary bus at various clock speeds
(33 MHz or 66 MHz, for example) and support PCI-X* or
conventional PCI mode. These bridges must be set up to operate at
the correct speed and correct mode before the downstream devices
and buses are enumerated. This notification can be used to perform
that activity. The host bridge code cannot reprogram the bus
numbers in the PCI-to-PCI bridge or reprogram any upstream
devices during this notification. It can touch the downstream devices
because the PCI enumerator has not found these devices. If there
are multiple PCI-to-PCI bridges on the same PCI bus, the order in
which the notification is sent to these bridges is implementation
specific. On the other hand, it is guaranteed that a PCI-to-PCI bridge
will see this notification before the downstream bridge receives this
notification or its child devices receive the
EfiPciBeforeResourceCollection notification.

EfiPciBeforeResourceCollection This notification is sent before the PCI enumerator probes the Base
Address Register (BAR) registers for every valid PCI function. This
notification can be used to program the backside registers that
determine the BAR size or any other programming such as the
master latency timer, cache line size, and PERR and SERR control.
This notification is sent regardless of whether the function
implements BAR or not. In the case of a multifunction device, this
notification is sent for every function of the device. The order within
the functions is not specified. The order in which this notification is
sent to various devices/functions on the same bus is implementation
specific.

EFI_SUCCESS The requested parameters were returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in

EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_
PHASE.

EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator
should not enumerate this device, including its child devices if it is
a PCI-to-PCI bridge.

Platform Initialization Specification VOLUME 5 Standards

194 3/29/2013 Version 1.3

10.9 End of PCI Enumeration Overview
This specification defines the indicia to inform the platform when the PCI enumeration process has
completed. This allows for some post enumeration finalization actions to occur, if necessary.

10.9.1 End of PCI Enumeration Protocol
The indicia for this finalization action is a protocol. The obligation of the platform that supports this
capability is as follows. Once PCI enumeration is complete, the
EFI_PCI_ENUMERATION_PROTOCOL shall be installed on the same handle as the host bridge
protocol.

This protocol is always installed with a NULL pointer.

GUID
#define EFI_PCI_ENUMERATION_COMPLETE_GUID \
 { \
 0x30cfe3e7, 0x3de1, 0x4586,
 { 0xbe, 0x20, 0xde, 0xab, 0xa1, 0xb3, 0xb7, 0x93 } \
 }

The protocol can be used as an indicia by other DXE agents that the process of PCI device
enumeration has been completed.

PCI Platform

Version 1.3 3/29/2013 195

11
PCI Platform

11.1 Introduction
This section contains the basic definitions of protocols that provide PCI platform support. The
following protocols are defined in this section:

EFI_PCI_PLATFORM_PROTOCOL
EFI_PCI_OVERRIDE_PROTOCOL
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

EFI_PCI EXECUTION_PHASE
EFI_PCI_PLATFORM_POLICY

11.2 PCI Platform Overview
This section defines the core code and services that are required for an implementation of the
following protocols in this specification:

• PCI Platform Protocol

• PCI Override Protocol

• Incompatible PCI Device Support Protocol

The PCI Platform Protocol allows a PCI bus driver to obtain the platform policy and call a platform
driver at various points in the enumeration phase. The Incompatible PCI Device Support Protocol
allows a PCI bus driver to handle resource allocation for some PCI devices that do not comply with
the PCI Specification.

This specification does the following:

• Describes the basic components of the PCI Platform Protocol

• Describes the basic components of the Incompatible PCI Device Support Protocol and how
firmware configures incompatible PCI devices

• Provides code definitions for the PCI Platform Protocol, the Incompatible PCI Device Support
Protocol, and their related type definitions that are architecturally required by this specification.

This document is intended for the following readers:

• BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in IntelÆ architecture-based products.

• Operating system developers who will be adapting their shrink-wrapped operating system
products to run on Intel architecture-based platforms.

Readers of this specification are assumed to have solid knowledge of the UEFI 2.1 Specification.

Platform Initialization Specification VOLUME 5 Standards

196 3/29/2013 Version 1.3

11.3 PCI Platform Support Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

11.3.1 Industry Specifications
• Advanced Configuration and Power Interface Specification (hereafter referred to as the ACPI

Specification), version 3.0.

11.3.2 PCI Specifications
• Conventional PCI Specification, version 3.0: http://www.pcisig.com*

• PCI-to-PCI Bridge Architecture Specification, revision 1.2: http://www.pcisig.com*

• PCI-to-PCI Bridges and CardBus Controllers on Windows 2000, Windows XP, and Windows
Server 2003:
http://www.microsoft.com/whdc/system/bus/PCI/pcibridge-cardbus.mspx*

11.4 PCI Platform Protocol

11.4.1 PCI Platform Protocol Overview
“PCI Host Bridge Resource Allocation Protocol”, Section 10.8.2 defines and describes the PCI Host
Bridge Resource Allocation Protocol. The PCI Host Bridge Resource Allocation Protocol driver
provides chipset-specific functionality that works across processor architectures and unique platform
features. It does not address issues where an implementation varies across platforms.

In contrast, the PCI Override Protocol and PCI Platform Protocol provide interfaces allow a platform
driver or codebase driver to perform platform-specific actions. For example:

• Allow a PCI bus driver to obtain platform policy. The platform can use this protocol to control
whether the PCI bus driver reserves I/O ranges for ISA aliases and VGA aliases. The default
policy for the PCI bus driver is to reserve I/O ranges for both ISA aliases and VGA aliases,
which may result in a large amount of I/O space being unavailable for PCI devices. This
protocol allows the platform driver to change this policy.

• Call a platform driver at various points in the enumeration phase. The platform driver can use
these hooks to perform various platform-specific activities. Examples of such activities include
but are not limited to the following:

• PlatformPrepController() can be used to program the PCI subsystem vendor ID and
device ID into onboard and chipset devices.

• PlatformPrepController() and PlatformNotify() can be used for implementing
hardware workarounds.

• PlatformPrepController() can be used for preprogramming any backside registers that
control the Base Address Register (BAR) window sizes.

• PlatformPrepController() can be used to set PCI or PCI-X* bus speeds for PCI
bridges that support multiple bus speeds.

PCI Platform

Version 1.3 3/29/2013 197

• Allow PCI option ROMs to be stored in local storage. The platform can store PCI option ROMs
in local storage (e.g., a firmware volume) and report their existence to the PCI bus driver using
the GetPciRom() member function. Option ROMs for embedded PCI controllers are often
stored in a platform-specific location. The same member function can be used to override the
default PCI ROM on an add-in card with one from platform-specific storage.

A platform should implement this protocol if any of the functionality that is listed above is required.

See Code Definitions for the definition of EFI_PCI_PLATFORM_PROTOCOL and the member
functions listed above. See Section 10.8.2 for additional PCI-related design discussion.

11.5 Incompatible PCI Device Support Protocol

11.5.1 Incompatible PCI Device Support Protocol Overview
Some PCI devices do not fully comply with the PCI Specification. For example, a PCI device may
request that its I/O Base Address Register (BAR) be placed on a 0x200 boundary even though it is
requesting an I/O with a length of 0x100. The Incompatible PCI Device Support Protocol allows a
PCI bus driver to handle resource allocation for some PCI devices that do not comply with the PCI
Specification.

In the PI Architecture, the platform-specific PCI host bridge driver works with the generic, standard
PCI bus driver to configure the entire PCI subsystem. Even though the exact configuration is up to
individual incompatible devices, it is a platform choice to support those incompatible PCI devices.
For example, one platform may not want to support those incompatible devices while another
platform appears more tolerant of those devices.

See Code Definitions for the definition of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.

11.5.2 Usage Model for the Incompatible PCI Device Support Protocol
The following describes the usage model for the Incompatible PCI Device Support Protocol:

1. The PCI bus driver locates EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. If
the PCI bus driver cannot find this protocol, simply follow the regular PCI enumeration path.
Otherwise, go to step 2.

2. For each PCI device that was detected, the PCI bus driver begins collecting the required PCI
resources by probing the Base Address Register (BAR) for each device.

3. For each device, call
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice() to check
whether this PCI device is an incompatible device. If this device in not an incompatible device,
go to step 5.

4. Use the Configuration that is returned by CheckDevice() to override or modify the
original PCI resource requirements.

5. Follow the normal PCI enumeration process.

Platform Initialization Specification VOLUME 5 Standards

198 3/29/2013 Version 1.3

11.6 PCI Code Definitions
This section contains the basic definitions of protocols that provide PCI platform support. The
following protocols are defined in this section:

• EFI_PCI_PLATFORM_PROTOCOL

• EFI_PCI_OVERRIDE_PROTOCOL

• EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_PCI_CHIPSET_EXECUTION_PHASE

• EFI_PCI_PLATFORM_POLICY

11.6.1 PCI Platform Protocol

EFI_PCI_PLATFORM_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and a platform-specific driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_PLATFORM_PROTOCOL_GUID \
 { 0x7d75280, 0x27d4, 0x4d69, 0x90, 0xd0, 0x56, 0x43, 0xe2, \
 0x38, 0xb3, 0x41)

Protocol Interface Structure
typedef struct _EFI_PCI_PLATFORM_PROTOCOL {
 EFI_PCI_PLATFORM_PHASE_NOTIFY PlatformNotify;
 EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER PlatformPrepController;
 EFI_PCI_PLATFORM_GET_PLATFORM_POLICY GetPlatformPolicy;
 EFI_PCI_PLATFORM_GET_PCI_ROM GetPciRom;
} EFI_PCI_PLATFORM_PROTOCOL;

Parameters
PlatformNotify

The notification from the PCI bus enumerator to the platform that it is about to enter a
certain phase during the enumeration process. See the PlatformNotify()
function description.

PCI Platform

Version 1.3 3/29/2013 199

PlatformPrepController

The notification from the PCI bus enumerator to the platform for each PCI controller
at several predefined points during PCI controller initialization. See the
PlatformPrepController() function description.

GetPlatformPolicy

Retrieves the platform policy regarding enumeration. See the
GetPlatformPolicy() function description.

GetPciRom

Gets the PCI device’s option ROM from a platform-specific location. See the
GetPciRom() function description.

Description
The EFI_PCI_PLATFORM_PROTOCOL is published by a platform-aware driver. This protocol is
optional; see PCI Platform Protocol Overview in Design Discussion for scenarios in which this

protocol is required. There cannot be more than one instance of this protocol in the system.

If the PCI bus driver detects the presence of this protocol before enumeration, it will use the PCI
Platform Protocol to obtain information about the platform policy. The PCI bus driver will use this
protocol to get the PCI device's option ROM from a platform-specific location in storage. It will also
call the various member functions of this protocol at predefined points during PCI bus enumeration.
The member functions can be used for performing any platform-specific initialization that is
appropriate during the particular phase.

Platform Initialization Specification VOLUME 5 Standards

200 3/29/2013 Version 1.3

EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PHASE_NOTIFY) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_EXECUTION_PHASE ExecPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

HostBridge

The handle of the host bridge controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Phase

The phase of the PCI bus enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPh
ase().

ExecPhase

Defines the execution phase of the PCI chipset driver. Type EFI_PCI_
EXECUTION_PHASE is defined in "Related Definitions" below.

Description
The PlatformNotify() function can be used to notify the platform driver so that it can
perform platform-specific actions. No specific actions are required.

Several notification points are defined at this time. More notification points may be added as
required in the future. The function should return EFI_UNSUPPORTED for any value of Phase that
that the function does not support.

The PCI bus driver calls this function twice for every Phase-once before the PCI Host Bridge
Resource Allocation Protocol driver is notified, and once after the PCI Host Bridge Resource
Allocation Protocol driver has been notified.

This member function may not perform any error checking on the input parameters. If this member
function detects any error condition, it needs to handle those errors on its own because there is no
way to surface any errors to the caller.

PCI Platform

Version 1.3 3/29/2013 201

Related Definitions
//**
// EFI_PCI_EXECUTION_PHASE
//**
typedef enum {
 BeforePciHostBridge = 0,
 ChipsetEntry = 0,
 AfterPciHostBridge = 1,
 ChipsetExit = 1,
 MaximumExecutionPhase
} EFI_PCI_EXECUTION_PHASE;

typedef EFI_PCI_EXECUTION_PHASE EFI_PCI_CHIPSET_EXECUTION_PHASE;

Note: EFI_PCI_EXECUTION_PHASE is used to call a platform protocol and execute platform-specific
code. Following is a description of the fields in the above enumeration.

BeforePciHostBridge

The phase that indicates the entry point to the PCI Bus Notify phase. This platform
hook is called before the PCI bus driver calls the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL driver.

AfterPciHostBridge

The phase that indicates the exit point to the PCI Bus Notify phase before returning to
the PCI Bus Driver Notify phase. This platform hook is called after the PCI bus driver
calls the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
driver.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_UNSUPPORTED The function does not support the phase specified by Phase.

Platform Initialization Specification VOLUME 5 Standards

202 3/29/2013 Version 1.3

EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()

Summary
The platform driver receives notifications from the PCI bus enumerator at various phases during PCI
controller initialization, just like the PCI host bridge driver.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_HANDLE RootBridge,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_EXECUTION_PHASE ExecPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

HostBridge

The associated PCI host bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

RootBridge

The associated PCI root bridge handle.

PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL functions to access the PCI
configuration space of the device. See the UEFI 2.1 Specification for the definition of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI controller enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Preproce
ssController().

ExecPhase

Defines the execution phase of the PCI chipset driver. Type
EFI_PCI_CHIPSET_EXECUTION_PHASE is defined in
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify().

PCI Platform

Version 1.3 3/29/2013 203

Description
The PlatformPrepController() function can be used to notify the platform driver so that it
can perform platform-specific actions. No specific actions are required.

Several notification points are defined at this time. More synchronization points may be added as
required in the future. The function should return EFI_UNSUPPORTED for any value of Phase that
that the function does not support.

The PCI bus driver calls the platform driver twice for every PCI controller—once before the PCI
Host Bridge Resource Allocation Protocol driver is notified, and once after the PCI Host Bridge
Resource Allocation Protocol driver has been notified.

This member function may not perform any error checking on the input parameters. It also does not
return any error codes. If this member function detects any error condition, it needs to handle those
errors on its own because there is no way to surface any errors to the caller.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

Platform Initialization Specification VOLUME 5 Standards

204 3/29/2013 Version 1.3

EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()

Summary
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve platform policies regarding PCI enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PLATFORM_POLICY) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 OUT EFI_PCI_PLATFORM_POLICY *PciPolicy,
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

PciPolicy

The platform policy with respect to VGA and ISA aliasing. Type
EFI_PCI_PLATFORM_POLICY is defined in "Related Definitions" below.

Description
The GetPlatformPolicy() function retrieves the platform policy regarding PCI enumeration.
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve the policy.

The EFI_PCI_IO_PROTOCOL.Attributes() function allows a PCI device driver to ask for
various legacy ranges. Because PCI device drivers run after PCI enumeration, a request for legacy
allocation comes in after PCI enumeration. The only practical way to guarantee that such a request
from a PCI device driver will be fulfilled is to preallocate these ranges during enumeration. The PCI
bus enumerator does not know which legacy ranges may be requested and therefore must rely on
GetPlatformPolicy(). The data that is returned by GetPlatformPolicy() determines
the supported attributes that are returned by the EFI_PCI_IO_PROTOCOL.Attributes()
function.

See "Related Definitions" below for a description of the output parameter PciPolicy. For
example, the platform can decide if it wishes to support devices that require ISA aliases using this
parameter. Note that the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
function returns the attributes that the root bridge hardware supports and does not depend upon
preallocations.

Related Definitions
typedef UINT32 EFI_PCI_PLATFORM_POLICY;

EFI_PCI_PLATYFORM_POLICY is a bitmask with the following legal combinations.

PCI Platform

Version 1.3 3/29/2013 205

#define EFI_RESERVE_NONE_IO_ALIAS 0x0000
#define EFI_RESERVE_ISA_IO_ALIAS 0x0001
#define EFI_RESERVE_ISA_IO_NO_ALIAS 0x0002
#define EFI_RESERVE_VGA_IO_ALIAS 0x0004
#define EFI_RESERVE_VGA_IO_NO_ALIAS 0x0008

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_UNSUPPORTED The function is not supported.

EFI_INVALID_PARAMETER PciPolicy is NULL.

Platform Initialization Specification VOLUME 5 Standards

206 3/29/2013 Version 1.3

EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

Summary
Gets the PCI device's option ROM from a platform-specific location.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PCI_ROM) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE PciHandle,
 OUT VOID **RomImage,
 OUT UINTN *RomSize
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

PciHandle

The handle of the PCI device. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

RomImage

If the call succeeds, the pointer to the pointer to the option ROM image. Otherwise,
this field is undefined. The memory for RomImage is allocated by
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() using the UEFI Boot Service
AllocatePool(). It is the caller's responsibility to free the memory using the
UEFI Boot Service FreePool(), when the caller is done with the option ROM.

RomSize

If the call succeeds, a pointer to the size of the option ROM size. Otherwise, this field
is undefined.

Description
The GetPciRom() function gets the PCI device's option ROM from a platform-specific location.
The option ROM will be loaded into memory. This member function is used to return an image that
is packaged as a PCI 2.2 option ROM. The image may contain both legacy and UEFI option ROMs.
See the UEFI 2.1 Specification for details. This member function can be used to return option ROM
images for embedded controllers. Option ROMs for embedded controllers are typically stored in
platform-specific storage, and this member function can retrieve it from that storage and return it to
the PCI bus driver. The PCI bus driver will call this member function before scanning the ROM that
is attached to any controller, which allows a platform to specify a ROM image that is different from
the ROM image on a PCI card.

PCI Platform

Version 1.3 3/29/2013 207

Status Codes Returned

11.6.2 PCI Override Protocol

EFI_PCI_OVERRIDE_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and an implementation's driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_OVERRIDE_GUID \
 { 0xb5b35764, 0x460c, 0x4a06, { 0x99, 0xfc, 0x77, 0xa1, \
 0x7c, 0x1b, 0x5c, 0xeb } }

Protocol Interface Structure
typedef EFI_PCI_PLATFORM_PROTOCOL EFI_PCI_OVERRIDE_PROTOCOL;

Description
The PCI Override Protocol is published by an implementation aware driver. This protocol is
optional. But it must be called, if present, during PCI enumeration. There cannot be more than one
instance of this protocol in the system.

If the PCI bus driver detects the presence of this protocol before bus enumeration, it will use the PCI
Override Protocol to obtain information about the platform policy. If the PCI Platform Protocol does
not exist or returns an error, then this protocol is called.

The PCI bus driver will use this protocol to get the PCI device's option ROM from an
implementation-specific location in storage. If the PCI Platform Protocol does not exist or returns an
error, then this function is called.

It will also call the various member functions of this protocol at predefined points during PCI bus
enumeration. The member functions can be used for performing any implementation-specific
initialization that is appropriate during the particular phase.

EFI_SUCCESS The option ROM was available for this device and loaded into
memory.

EFI_NOT_FOUND No option ROM was available for this device.

EFI_OUT_OF_RESOURCES No memory was available to load the option ROM.

EFI_DEVICE_ERROR An error occurred in getting the option ROM.

Platform Initialization Specification VOLUME 5 Standards

208 3/29/2013 Version 1.3

11.6.3 Incompatible PCI Device Support Protocol

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

Summary
Allows the PCI bus driver to support resource allocation for some PCI devices that do not comply
with the PCI Specification.

Note: This protocol is optional. Only those platforms that implement this protocol will have the capability
to support incompatible PCI devices. The absence of this protocol can cause the PCI bus driver to
configure these incompatible PCI devices incorrectly. As a result, these devices may not work
properly.

GUID
#define EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL_GUID \
 {0xeb23f55a, 0x7863, 0x4ac2, 0x8d, 0x3d, 0x95, 0x65, 0x35, \
 0xde, 0x3, 0x75}

Protocol Interface Structure
typedef struct _EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL {
 EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE CheckDevice;
} EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL;

Parameters
CheckDevice

Returns a list of ACPI resource descriptors that detail any special resource
configuration requirements if the specified device is a recognized incompatible PCI
device. See the CheckDevice() function description.

Description
The EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL is used by the PCI bus driver
to support resource allocation for some PCI devices that do not comply with the PCI Specification.
This protocol can find some incompatible PCI devices and report their special resource requirements
to the PCI bus driver. The generic PCI bus driver does not have prior knowledge of any incompatible
PCI devices. It interfaces with the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
to find out if a device is incompatible and to obtain the special configuration requirements for a
specific incompatible PCI device.

This protocol is optional, and only one instance of this protocol can be present in the system. If a
platform supports this protocol, this protocol is produced by a Driver Execution Environment (DXE)
driver and must be made available before the Boot Device Selection (BDS) phase. The PCI bus
driver will look for the presence of this protocol before it begins PCI enumeration.

If this protocol exists in a platform, it indicates that the platform has the capability to support those
incompatible PCI devices. However, final support for incompatible PCI devices still depends on the
implementation of the PCI bus driver. The PCI bus driver may fully, partially, or not even support
these incompatible devices.

PCI Platform

Version 1.3 3/29/2013 209

During PCI bus enumeration, the PCI bus driver will probe the PCI Base Address Registers (BARs)
for each PCI device—regardless of whether the PCI device is incompatible or not—to determine the
resource requirements so that the PCI bus driver can invoke the proper PCI resources for them.
Generally, this resource information includes the following:

• Resource type

• Resource length

• Alignment

However, some incompatible PCI devices may have special requirements. As a result, the length or
the alignment that is derived through BAR probing may not be exactly the same as the actual
resource requirement of the device. For example, there are some devices that request I/O resources at
a length of 0x100 from their I/O BAR, but these incompatible devices will never work correctly if an
odd I/O base address, such as 0x100, 0x300, or 0x500, is assigned to the BAR. Instead, these devices
request an even base address, such as 0x200 or 0x400. The Incompatible PCI Device Support
Protocol can then be used to obtain these special resource requirements for these incompatible PCI
devices. In this way, the PCI bus driver will take special consideration for these devices during PCI
resource allocation to ensure that they can work correctly.

This protocol may support the following incompatible PCI BAR types:

• I/O or memory length that is different from what the BAR reports

• I/O or memory alignment that is different from what the BAR reports

• Fixed I/O or memory base address

See the Conventional PCI Specification 3.0 for the details of how a PCI BAR reports the resource
length and the alignment that it requires.

Platform Initialization Specification VOLUME 5 Standards

210 3/29/2013 Version 1.3

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevi
ce()

Summary
Returns a list of ACPI resource descriptors that detail the special resource configuration
requirements for an incompatible PCI device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE) (
 IN EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL *This,
 IN UINTN VendorId,
 IN UINTN DeviceId,
 IN UINTN RevisionId,
 IN UINTN SubsystemVendorId,
 IN UINTN SubsystemDeviceId,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
instance.

VendorID

A unique ID to identify the manufacturer of the PCI device. See the Conventional PCI
Specification 3.0 for details.

DeviceID

A unique ID to identify the particular PCI device. See the Conventional PCI
Specification 3.0 for details.

RevisionID

A PCI device-specific revision identifier. See the Conventional PCI Specification 3.0
for details.

SubsystemVendorId

Specifies the subsystem vendor ID. See the Conventional PCI Specification 3.0 for
details.

SubsystemDeviceId

Specifies the subsystem device ID. See the Conventional PCI Specification 3.0 for
details.

Configuration

A list of ACPI resource descriptors that detail the configuration requirement. See
Table 20 in the "Description" subsection below for the definition.

PCI Platform

Version 1.3 3/29/2013 211

Description
The CheckDevice() function returns a list of ACPI resource descriptors that detail the special
resource configuration requirements for an incompatible PCI device.

Prior to bus enumeration, the PCI bus driver will look for the presence of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. Only one instance of this
protocol can be present in the system. For each PCI device that the PCI bus driver discovers, the PCI
bus driver calls this function with the device’s vendor ID, device ID, revision ID, subsystem vendor
ID, and subsystem device ID. If the VendorId, DeviceId, RevisionId,
SubsystemVendorId, or SubsystemDeviceId value is set to (UINTN)-1, that field will
be ignored. The ID values that are not (UINTN)-1 will be used to identify the current device.

This function will only return EFI_SUCCESS. However, if the device is an incompatible PCI
device, a list of ACPI resource descriptors will be returned in Configuration. Otherwise, NULL
will be returned in Configuration instead. The PCI bus driver does not need to allocate memory
for Configuration. However, it is the PCI bus driver’s responsibility to free it. The PCI bus
driver then can configure this device with the information that is derived from this list of resource
nodes, rather than the result of BAR probing.

Only the following two resource descriptor types from the ACPI Specification may be used to
describe the incompatible PCI device resource requirements:

• QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1; also ACPI 3.0)

• End Tag (ACPI 2.0, section 6.4.2.8; also ACPI 3.0)

The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 20 and Table 21 below contain
these two descriptor types. See the ACPI Specification for details on the field values.

Platform Initialization Specification VOLUME 5 Standards

212 3/29/2013 Version 1.3

Table 20. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage

Table 21. ACPI 2.0 & 3.0 End Tag Usage

Status Codes Returned

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:
 0: Memory range
 1: I/O range

Other values will be ignored.

0x04 0x01 General flags. Ignored.

0x05 0x01 Type-specific flags. Ignored.

0x06 0x08 Address Space Granularity. Ignored.

0x16 0x08 Address Range Maximum. Used to convey the alignment information. This

value must be 2n-1. If no special alignment is required for the BAR, it must be
0. Then the alignment will set to (length-1), where the length is derived
through the BAR probing.

0x1E 0x08 Address Translation Offset. Used to indicate the BAR Index from 0 to 5.
Specially, (UINT64)-1 in this field means all the PCI BARs on the device.

0x26 0x08 Address Range Length. Length of the requested resource. If the device has
no special length request, it must be 0. Then the length that was obtained
from BAR probing will be applied.

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

EFI_SUCCESS The function always returns EFI_SUCCESS.

Hot Plug PCI

Version 1.3 3/29/2013 213

12
Hot Plug PCI

12.1 HOT PLUG PCI Overview
This specification defines the core code and services that are required for an implementation of the
Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the EFI Boot Services
environment, uses this protocol to initialize the hot-plug subsystem. The same protocol may be used
by other buses such as CardBus that support hot plugging. This specification does the following:

• Describes the basic components of the hot-plug PCI subsystem and the Hot-Plug PCI
Initialization Protocol

• Provides code definitions for the Hot-Plug PCI Initialization Protocol and the hot-plug-PCI–
related type definitions that are architecturally required.

12.2 Hot Plug PCI Initialization Protocol Introduction
This chapter describes the Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the EFI
Boot Services environment, uses this protocol to initialize the hot-plug subsystem. This protocol is
generic enough to include PCI-to-CardBus bridges and PCI Express* systems. This protocol
abstracts the hot-plug controller initialization and resource padding. This protocol is required on
platforms that support PCI Hot Plug* or PCI Express slots. For the purposes of initialization, a
CardBus PC Card bus is treated in the same way. This protocol is not required on all other platforms.

This protocol is not intended to support hot plugging of PCI cards during the preboot stage. Separate
components can be developed if such support is desired.

See Hot-Plug PCI Initialization Protocol in Code Definitions for the definition of
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.

12.3 Hot Plug PCI Initialization Protocol Related Information
The following resources are referenced throughout this specification or may be useful to you:

• Conventional PCI Specification, revision 3.0: http://www.pcisig.com/*

• PC Card Standard, volumes 1, 7, and 8: http://www.pcmcia.org/*

• PCI Express Base Specification, revision 1.0a: http://www.pcisig.com/*

• PCI Hot-Plug Specification, revision 1.1: http://www.pcisig.com/*

• PCI Standard Hot-Plug Controller and Subsystem Specification, revision 1.0:
http://www.pcisig.com/*

Platform Initialization Specification VOLUME 5 Standards

214 3/29/2013 Version 1.3

12.4 Requirements
PI Architecture firmware must support platforms with PCI Hot Plug* slots and PCI Express* Hot
Plug slots, as well as CardBus PC Card sockets. In both cases, the user is allowed to plug in new
devices or remove existing devices during runtime. PCI Hot Plug slots are controlled by a PCI Hot
Plug controller whereas CardBus sockets are controlled by a PCI-to-CardBus bridge. PCI Express
Hot Plug slots are controlled by a PCI Express root port or a downstream port in a switch. The term
"Hot Plug Controller" (HPC) in this document refers to all of these types of controllers. From the
standpoint of initialization, all three are identical and have the same general requirements, as
follows:

• The root HPCs may come up uninitialized after system reset. These HPCs must be initialized by
the system firmware.

• Every HPC may require resource padding. The padding must be taken into account during PCI
enumeration. This scenario is true for conventional PCI, PCI Express, and CardBus PC Cards
because they all consume shared system resources (I/O, memory, and bus). These resources are
produced by the root PCI bridge.

These general requirements place the following specific requirements on an implementation of the
PI Architechture PCI hot plug support:

• PI Architecture firmware must handle root HPCs differently than other regular PCI devices.
When a root HPC is initialized, the hot-plug slots or CardBus sockets are enabled and this
process may uncover more PCI buses and devices. In that respect, root HPCs are somewhat like
PCI bridges. The root HPC initialization process may involve detecting bus type and optimum
bus speed. The initialization process may also detect faults and voltage mismatches. The
initialization process may be specific to the controller and the platform. At the time of the root
HPC initialization, the PCI bus may not be fully initialized and the standard PCI bus-specific
protocols are not available. PI Architecture firmware must provide an alternate infrastructure for
the initialization code. In other words, the HPC initialization code should not be required to
understand the bus numbering scheme and other chipset details.

• PI Architecture firmware must support an unlimited number of HPCs in the system. PI
Architecture firmware must support various types of HPCs as long as they follow industry
standards or conventions. A mix of various types of HPCs is allowed.

• PI Architecture firmware must support legacy PCI Hot Plug Controllers (PHPCs; class code
0x6, subclass code 0x4) as well as Standard (PCI) Hot Plug Controllers (SHPCs). Other
conventional PCI Hot Plug controllers are not supported.

• PI Architecture firmware must be capable of supporting a PHPC that is a child of another PHPC.
In that case, the PCI Standard Hot-Plug Controller and Subsystem Specification requires that
the child PHPC must be initialized without firmware assistance because it is not a root PHPC.

• PI Architecture firmware must be capable of supporting SHPCs on an add-in card. In that case,
the PCI Standard Hot-Plug Controller and Subsystem Specification requires that such an SHPC
must be initialized without firmware assistance because it is not a root PHPC. PI Architecture
firmware must also support plug-in CardBus bridges that follow the CardBus Specification,
which is part of the PC Card Standard.

Hot Plug PCI

Version 1.3 3/29/2013 215

• As stated above, root HPCs may require firmware initialization. PI Architecture firmware must
be capable of supporting root HPCs that are initialized by hardware and do not require any
firmware initialization.

• A PI Architecture PCI bus enumerator must overallocate resources for PCI Hot Plug buses and
CardBus sockets. The amount of overallocation may be platform specific.

• The root HPC initialization process may be time consuming. An SHPC can take as long as 15
seconds to enable power to a hot-plug bus without violating the PCI Special Interest Group
(PCI-SIG*) requirements. PI Architecture firmware should be able to initialize multiple HPCs in
parallel to reduce boot time. In contrast, CardBus initialization is quick.

• PI Architecture firmware should be able to handle when an HPC fails. PI Architecture firmware
should be able to handle an HPC that has been disabled.

• The PCI bus driver in PI Architecture firmware is not required to assume anything that is not in
one of the PCI-SIG specifications.

• It must be possible to produce legacy Hot Plug Resource Tables (HPRTs) if necessary. HPRTs
are described in the PCI Standard Hot-Plug Controller and Subsystem Specification.

12.5 Sample Implementation for a Platform Containing PCI
Hot Plug* Slots

Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that multiple passes of bus enumeration are required in a system containing
PCI Hot Plug slots.

See section 10.3 for definitions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL and its member functions.

If the platform supports PCI Hot Plug, an instance of the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.

The PCI enumeration process begins.

Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the hot-
plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot Plug
Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

Notify the host bridge driver that bus enumeration is about to begin by calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

For every PCI root bridge handle, do the following:

1. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnumera
tion (This,RootBridgeHandle).

Platform Initialization Specification VOLUME 5 Standards

216 3/29/2013 Version 1.3

2. Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the UEFI 2.1 Specification for the definition
of the PCI Root Bridge I/O Protocol.

3. Allocate memory to hold resource requirements. These can be two resource descriptors, one to
hold bus requirements and another to hold the I/O and memory requirements.

4. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttribu
tes() to get the attributes of this PCI root bridge. This information is used to combine different
types of memory resources in the next step.

Scan all the devices in the specified bus range and the specified segment, one bus at a time. If the
device is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in
the PCI-to-PCI bridge hardware. If the device path of a device matches that of a root HPC and it
is not a PCI-to-CardBus bridge, it must be initialized by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() before the bus it
controls can be fully enumerated. The PCI bus enumerator determines the PCI address of the
PCI Hot Plug Controller (PHPC) and passes it as an input to InitializeRootHpc().

5. Continue to scan devices on that root bridge and start the initialization of all root HPCs.

6. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
so that the HPCs under initialization are still accessible. SetBusNumbers() cannot affect the PCI
addresses of the HPCs.

Wait until all the HPCs that were found on various root bridges in step 5 to complete initialization.

Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the nonroot
HPCs, call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding() to obtain
the amount of overallocation and add that amount to the requests from the physical devices.
Reprogram the bus numbers by taking into account the bus resource padding information. This
action will require calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers().
The rescan is not required if there is only one root bridge in the system.

Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it will
be initialized.

12.6 PCI Hot Plug PCI Initialization Protocol

EFI_PCI_HOT_PLUG_INIT_PROTOCOL

Summary
This protocol provides the necessary functionality to initialize the Hot Plug Controllers (HPCs) and
the buses that they control. This protocol also provides information regarding resource padding.

Hot Plug PCI

Version 1.3 3/29/2013 217

Note: This protocol is required only on platforms that support one or more PCI Hot Plug* slots or CardBus
sockets.

GUID
#define EFI_PCI_HOT_PLUG_INIT_PROTOCOL_GUID \
 { 0xaa0e8bc1, 0xdabc, 0x46b0, 0xa8, 0x44, 0x37, 0xb8, 0x16,\
 0x9b, 0x2b, 0xea }

Protocol Interface Structure
typedef struct _EFI_PCI_HOT_PLUG_INIT_PROTOCOL {
 EFI_GET_ROOT_HPC_LIST GetRootHpcList;
 EFI_INITIALIZE_ROOT_HPC InitializeRootHpc;
 EFI_GET_HOT_PLUG_PADDING GetResourcePadding;
} EFI_PCI_HOT_PLUG_INIT_PROTOCOL;

Parameters
GetRootHpcList

Returns a list of root HPCs and the buses that they control. See the
GetRootHpcList() function description.

InitializeRootHpc

Initializes the specified root HPC. See the InitializeRootHpc() function
description.

GetResourcePadding

Returns the resource padding that is required by the HPC. See the
GetResourcePadding() function description.

Description
The EFI_PCI_HOT_PLUG_INIT_PROTOCOL provides a mechanism for the PCI bus enumerator
to properly initialize the HPCs and CardBus sockets that require initialization. The HPC
initialization takes place before the PCI enumeration process is complete. There cannot be more than
one instance of this protocol in a system. This protocol is installed on its own separate handle.

Because the system may include multiple HPCs, one instance of this protocol should represent all of
them. The protocol functions use the device path of the HPC to identify the HPC. When the PCI bus
enumerator finds a root HPC, it will call
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). If InitializeRootHpc() is
unable to initialize a root HPC, the PCI enumerator will ignore that root HPC and continue the
enumeration process. If the HPC is not initialized, the devices that it controls may not be initialized,
and no resource padding will be provided.

From the standpoint of the PCI bus enumerator, HPCs are divided into the following two classes:

Root HPC

These HPCs must be initialized by calling InitializeRootHpc() during the enumeration
process. These HPCs will also require resource padding. The platform code must have a priori
knowledge of these devices and must know how to initialize them. There may not be any way

Platform Initialization Specification VOLUME 5 Standards

218 3/29/2013 Version 1.3

to access their PCI configuration space before the PCI enumerator programs all the upstream
bridges and thus enables the path to these devices. The PCI bus enumerator is responsible for
determining the PCI bus address of the HPC before it calls InitializeRootHpc().

Nonroot HPC

 These HPCs will not need explicit initialization during enumeration process. These HPCs will
require resource padding. The platform code does not have to have a priori knowledge of
these devices.

Hot Plug PCI

Version 1.3 3/29/2013 219

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()

Summary
Returns a list of root Hot Plug Controllers (HPCs) that require initialization during the boot process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_ROOT_HPC_LIST) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 OUT UINTN *HpcCount,
 OUT EFI_HPC_LOCATION **HpcList
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcCount

The number of root HPCs that were returned.

HpcList

The list of root HPCs. HpcCount defines the number of elements in this list. Type
EFI_HPC_LOCATION is defined in "Related Definitions" below.

Description
This procedure returns a list of root HPCs. The PCI bus driver must initialize these controllers
during the boot process. The PCI bus driver may or may not be able to detect these HPCs. If the
platform includes a PCI-to-CardBus bridge, it can be included in this list if it requires initialization.
The HpcList must be self consistent. An HPC cannot control any of its parent buses. Only one HPC
can control a PCI bus. Because this list includes only root HPCs, no HPC in the list can be a child of
another HPC. This policy must be enforced by the EFI_PCI_HOT_PLUG_INIT_PROTOCOL.
The PCI bus driver may not check for such invalid conditions.

The callee allocates the buffer HpcList.

Platform Initialization Specification VOLUME 5 Standards

220 3/29/2013 Version 1.3

Related Definitions
//***
// EFI_HPC_LOCATION
//***
typedef struct {
 EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath;
 EFI_DEVICE_PATH_PROTOCOL *HpbDevicePath;
} EFI_HPC_LOCATION;

HpcDevicePath

The device path to the root HPC. An HPC cannot control its parent buses. The PCI bus
driver requires this information so that it can pass the correct HpcPciAddress to the
InitializeRootHpc() and GetResourcePadding() functions. Type
EFI_DEVICE_PATH_PROTOCOL is defined in LocateDevicePath() in
section 11.2 of the UEFI 2.1 Specification.

HpbDevicePath

The device path to the Hot Plug Bus (HPB) that is controlled by the root HPC. The
PCI bus driver uses this information to check if a particular PCI bus has hot-plug slots.
The device path of a PCI bus is the same as the device path of its parent. For Standard
(PCI) Hot Plug Controllers (SHPCs) and PCI Express*, HpbDevicePath is the same as
HpcDevicePath.

Status Codes Returned

EFI_SUCCESS HpcList was returned.

EFI_OUT_OF_RESOURCES HpcList was not returned due to insufficient resources.

EFI_INVALID_PARAMETER HpcCount is NULL.

EFI_INVALID_PARAMETER HpcList is NULL.

Hot Plug PCI

Version 1.3 3/29/2013 221

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()

Summary
Initializes one root Hot Plug Controller (HPC). This process may causes initialization of its
subordinate buses.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INITIALIZE_ROOT_HPC) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 IN EFI_EVENT Event, OPTIONAL
 OUT EFI_HPC_STATE *HpcState
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcDevicePath

The device path to the HPC that is being initialized. Type
EFI_DEVICE_PATH_PROTOCOL is defined in LocateDevicePath() in
section 11.2 of the UEFI 2.1 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.

Event

The event that should be signaled when the HPC initialization is complete. Set to
NULL if the caller wants to wait until the entire initialization process is complete. The
event must be of type EFI_EVENT_NOTIFY_SIGNAL. Type EFI_EVENT is
defined in CreateEvent() in the UEFI Specification.

HpcState

The state of the HPC hardware. The type EFI_HPC_STATE is defined in "Related
Definitions" below.

Description
This function initializes the specified HPC. At the end of initialization, the hot-plug slots or sockets
(controlled by this HPC) are powered and are connected to the bus. All the necessary registers in the
HPC are set up. For a Standard (PCI) Hot Plug Controller (SHPC), the registers that must be set up
are defined in the PCI Standard Hot Plug Controller and Subsystem Specification. For others HPCs,
they are specific to the HPC hardware. The initialization process may choose not to enable certain
PCI Hot Plug* slots or sockets for any reason. The PCI Hot Plug slots or CardBus sockets that are
left disabled at this stage are not available to the system. A PCI slot may be disabled due to a power

Platform Initialization Specification VOLUME 5 Standards

222 3/29/2013 Version 1.3

fault, PCI bus type mismatch, or power budget constraints. The HPC initialization process can be
time consuming. Powering up the slots that are controlled by SHPCs can take up to 15 seconds. In a
system with multiple HPCs, it is desirable to perform these activities in parallel. Therefore, this
procedure supports nonblocking execution mode.

If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of the
HPC initialization.

The PCI bus enumerator will call this function for every root HPC that is returned by
GetRootHpcList().

The PCI bus enumerator must make sure that the registers that are required during HPC initialization
are accessible before calling InitializeRootHpc(). The determination of whether the
registers are accessible is based on the following rules:

• For HPCs (legacy HPCs, SHPCs inside a PCI-to-PCI bridge, and PCI Express* HPCs), the PCI
configuration space of the HPC device must be accessible. In other words, all the upstream
bridges including root bridges and special-purpose PCI-to-PCI bridges are programmed to
forward PCI configuration cycles to the HPC.

• SHPCs inside a root bridge are accessible without any initialization of the PCI bus.

• PCI-to-CardBus bridges have their registers mapped into the memory space using a memory
Base Address Register (BAR).

This function takes the device path of the HPC as an input. At the time of HPC initialization, the PCI
bus enumeration is not complete. The PCI bus enumerator may not have created a handle for the
HPC and the hot-plug initialization code cannot use the EFI_PCI_IO_PROTOCOL or
EFI_DEVICE_PATH_PROTOCOL like other PCI device drivers. The device path uniquely
identifies the HPC and also the PCI bus that it controls.

If the HPC is a PCI device, the hot-plug initialization code may need its address on the PCI bus
(EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS; see the UEFI 2.1 Specification
for its definition) to access its registers. The PCI address of a regular PCI device is dynamic but is
known to the PCI bus driver. Therefore, the PCI bus driver provides it through the input parameter
HpcPciAddress to this function. Passing this address eliminates the need for
InitializeRootHpc() to convert the device path into the PCI address. If the HPC is a
function in a multifunction device, this address is the PCI address of that function. The HPC’s
configuration space must be accessible at the specified HpcPciAddress until the HPC initialization is
complete. In other words, the PCI bus driver cannot renumber PCI buses that are upstream to the
HPC while it is being initialized.

This member function can use the LocateDevicePath() function to locate the appropriate
instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

If the Event is not NULL, this function will return control to the caller without completing the
entire initialization. This function must perform some basic checks to make sure that it knows how
to initialize the specified HPC before returning control. The Event is signaled when the
initialization process completes, regardless of whether it results in a failure. The caller must check
HpcState to get the initialization status after the event is signaled.

Hot Plug PCI

Version 1.3 3/29/2013 223

If Event is not NULL, it is possible that the Event may be signaled before this function returns.
There are at least two cases where that may happen:

• A simple implementation of EFI_PCI_HOT_PLUG_INIT_PROTOCOL may force the caller
to wait until the initialization is complete. In that case, the InitializeRootHpc() function may
signal the event before it returns control back to the caller.

• The HPC may already have been initialized by the time InitializeRootHpc() is called.
In that case, InitializeRootHpc() will signal Event and return control back to the
caller.

HpcState returns the state of the HPC at the time when control returns. If Event is NULL, HpcState
must indicate that the HPC has completed initialization. If Event is not NULL, HpcState can indicate
that the HPC has not completed initialization when this function returns, but HpcState must be
updated before Event is signaled.

The firmware may not wait until InitializeRootHpc() to start HPC initialization. The firmware may
start the initialization earlier in the boot process and the initialization may be completely done by the
time the PCI bus enumerator calls InitializeRootHpc(). An HPC can be initialized by hardware
alone, and no firmware initialization may be needed. For such HPCs, this member function does not
have to do any real work. In such cases, InitializeRootHpc() merely acts as a synchronization point.

Related Definitions
//***
// EFI_HPC_STATE
//***
// Describes current state of an HPC

typedef UINT16 EFI_HPC_STATE;

#define EFI_HPC_STATE_INITIALIZED 0x01
#define EFI_HPC_STATE_ENABLED 0x02

Following is a description of the possible states for EFI_HPC_STATE.

Platform Initialization Specification VOLUME 5 Standards

224 3/29/2013 Version 1.3

Table 22. Description of possible states for EFI_HPC_STATE

Status Codes Returned

0 Not initialized

EFI_HPC_STATE_INITIALIZED The HPC initialization function was called and the HPC completed
initialization, but it was not enabled for some reason. The HPC may be
disabled in hardware, or it may be disabled due to user preferences,
hardware failure, or other reasons. No resource padding is required.

EFI_HPC_STATE_INITIALIZED |
EFI_HPC_ENABLED

The HPC initialization function was called, the HPC completed
initialization, and it was enabled. Resource padding is required.

EFI_SUCCESS If Event is NULL, the specific HPC was successfully initialized. If

Event is not NULL, Event will be signaled at a later time when

initialization is complete.

EFI_UNSUPPORTED This instance of EFI_PCI_HOT_PLUG_INIT_PROTOCOL does

not support the specified HPC. If Event is not NULL, it will not be

signaled.

EFI_OUT_OF_RESOURCES Initialization failed due to insufficient resources. If Event is not NULL,

it will not be signaled.

EFI_INVALID_PARAMETER HpcState is NULL.

Hot Plug PCI

Version 1.3 3/29/2013 225

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

Summary
Returns the resource padding that is required by the PCI bus that is controlled by the specified Hot
Plug Controller (HPC).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_HOT_PLUG_PADDING) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 OUT EFI_HPC_STATE *HpcState,
 OUT VOID **Padding,
 OUT EFI_HPC_PADDING_ATTRIBUTES *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcDevicePath

The device path to the HPC. Type EFI_DEVICE_PATH_PROTOCOL is defined in
LocateDevicePath() in section 11.2 of the UEFI 2.1 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.

HpcState

The state of the HPC hardware. Type EFI_HPC_STATE is defined in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc().

Padding

The amount of resource padding that is required by the PCI bus under the control of
the specified HPC. Because the caller does not know the size of this buffer, this buffer
is allocated by the callee and freed by the caller.

Attributes

Describes how padding is accounted for. The padding is returned in the form of ACPI
(2.0 & 3.0) resource descriptors. The exact definition of each of the fields is the same
as in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitRe
sources() in section 10.8.2. Type EFI_HPC_PADDING_ATTRIBUTES is
defined in "Related Definitions" below.

Platform Initialization Specification VOLUME 5 Standards

226 3/29/2013 Version 1.3

Description
This function returns the resource padding that is required by the PCI bus that is controlled by the
specified HPC. This member function is called for all the root HPCs and nonroot HPCs that are
detected by the PCI bus enumerator. This function will be called before PCI resource allocation is
completed. This function must be called after all the root HPCs, with the possible exception of a
PCI-to-CardBus bridge, have completed initialization. Waiting until initialization is completed
allows the HPC driver to optimize the padding requirement. The calculation may take into account
the number of empty and/or populated PCI Hot Plug* slots, the number of PCI-to-PCI bridges
among the populated slots, and other factors. This information is available only after initialization is
complete. PCI-to-CardBus bridges require memory resources before the initialization is started and
therefore are considered an exception. The padding requirements are relatively constant for PCI-to-
CardBus bridges and an estimated value must be returned.

If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of
HPC initialization.

The input parameters HpcDevicePath, HpcPciAddress, and HpcState are described in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). The value of
HpcPciAddress for the same root HPC may be different from what was passed to
InitializeRootHpc(). The HPC’s configuration space must be accessible at the specified
HpcPciAddress until this function returns control.

The padding is returned in the form of ACPI (2.0 & 3.0) resource descriptors. The exact definition of
each of the fields is the same as in the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitResources()
function. See the section 10.8 for the definition of this function.

The PCI bus driver is responsible for adding this resource request to the resource requests by the
physical PCI devices. If Attributes is EfiPaddingPciBus, the padding takes effect at the PCI bus
level. If Attributes is EfiPaddingPciRootBridge, the required padding takes effect at the root
bridge level. For details, see the definition of EFI_HPC_PADDING_ATTRIBUTES in "Related
Definitions" below.

Note that the padding request cannot ask for specific legacy resources such as COM port addresses.
Legacy PC Card devices may require such resources. Supporting these resource requirements is
outside the scope of this specification.

Hot Plug PCI

Version 1.3 3/29/2013 227

Related Definitions
//***
// EFI_HPC_PADDING_ATTRIBUTES
//***
// Describes how resource padding should be applied

typedef enum {
 EfiPaddingPciBus,
 EfiPaddingPciRootBridge

} EFI_HPC_PADDING_ATTRIBUTES;

Following is a description of the fields in the above definition.

Table 23. EFI_HPC_PADDING_ATTRIBUTES field descriptions

Status Codes Returned

12.7 PCI Hot Plug Request Protocol
A hot-plug capable PCI bus driver should produce the EFI PCI Hot Plug Request protocol. When a
PCI device or a PCI-like device (for example, 32-bit PC Card) is installed after PCI bus does the
enumeration, the PCI bus driver can be notified through this protocol. For example, when a 32-bit

EfiPaddingPciBus Apply the padding at a PCI bus level. In other words, the resources
that are allocated to the bus containing hot-plug slots are padded by
the specified amount. If the hot-plug bus is behind a PCI-to-PCI
bridge, the PCI-to-PCI bridge apertures will indicate the padding.

EfiPaddingPciRootBridge Apply the padding at a PCI root bridge level. If a PCI root bridge
includes more than one hot-plug bus, the resource padding requests
for these buses are added together and the resources that are
allocated to the root bridge are padded by the specified amount. This
strategy may reduce the total amount of padding, but requires
reprogramming of PCI-to-PCI bridges in a hot-add event. If the hot-
plug bus is behind a PCI-to-PCI bridge, the PCI-to-PCI bridge
apertures do not indicate the padding for that bus.

EFI_SUCCESS The resource padding was successfully returned.

EFI_UNSUPPORTED This instance of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL

does not support the specified HPC.

EFI_NOT_READY This function was called before HPC initialization is complete.

EFI_INVALID_PARAMETER HpcState is NULL.

EFI_INVALID_PARAMETER Padding is NULL.

EFI_INVALID_PARAMETER Attributes is NULL.

EFI_OUT_OF_RESOURCES ACPI (2.0 & 3.0) resource descriptors for Padding cannot be allocated
due to insufficient resources.

Platform Initialization Specification VOLUME 5 Standards

228 3/29/2013 Version 1.3

PC Card is inserted into the PC Card socket, the PC Card bus driver can call interface of this
protocol to notify PCI bus driver to allocate resource and create handles for this PC Card.

Summary
Provides services to notify PCI bus driver that some events have happened in a hot-plug controller
(for example, PC Card socket, or PHPC), and ask PCI bus driver to create or destroy handles for the
PCI-like devices.

GUID
#define EFI_PCI_HOTPLUG_REQUEST_PROTOCOL_GUID \
 {0x19cb87ab,0x2cb9,0x4665,0x83,0x60,0xdd,0xcf,0x60,0x54,\
 0xf7,0x9d}

Protocol Interface Structure
typedef struct _EFI_PCI_HOTPLUG_REQUEST_PROTOCOL {
 EFI_PCI_HOTPLUG_REQUEST_NOTIFY Notify;
} EFI_PCI_HOTPLUG_REQUEST_PROTOCOL;

Parameters
Notify

Notify the PCI bus driver that some events have happened in a hot-plug controller (for
example, PC Card socket, or PHPC), and ask PCI bus driver to create or destroy
handles for the PCI-like devices. See Section 0 for a detailed description.

Description
The EFI_PCI_HOTPLUG_REQUEST_PROTOCOL is installed by the PCI bus driver on a separate
handle when PCI bus driver starts up. There is only one instance in the system. Any driver that wants
to use this protocol must locate it globally.

The EFI_PCI_HOTPLUG_REQUEST_PROTOCOL allows the driver of hot-plug controller, for
example, PC Card Bus driver, to notify PCI bus driver that an event has happened in the hot-plug
controller, and the PCI bus driver is requested to create (add) or destroy (remove) handles for the
specified PCI-like devices. For example, when a 32-bit PC Card is inserted, this protocol interface
will be called with an add operation, and the PCI bus driver will enumerate and start the devices
inserted; when a 32-bit PC Card is removed, this protocol interface will be called with a remove
operation, and the PCI bus driver will stop the devices and destroy their handles.

The existence of this protocol represents the capability of the PCI bus driver. If this protocol exists in
system, it means PCI bus driver is hot-plug capable, thus together with the effort of PC Card bus
driver, hot-plug of PC Card can be supported. Otherwise, the hot-plug capability is not provided.

Hot Plug PCI

Version 1.3 3/29/2013 229

EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify()

Summary
This function is used to notify PCI bus driver that some events happened in a hot-plug controller,
and the PCI bus driver is requested to start or stop specified PCI-like devices.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_HOTPLUG_REQUEST_NOTIFY) (
 IN EFI_PCI_HOTPLUG_REQUEST_PROTOCOL *This,
 IN EFI_PCI_HOTPLUG_OPERATION Operation,
 IN EFI_HANDLE Controller,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
 IN OUT UINT8 NumberOfChildren,
 IN OUT EFI_HANDLE *ChildHandleBuffer
);

Parameters
This

A pointer to the EFI_PCI_HOTPLUG_REQUEST_PROTOCOL instance. Type
EFI_PCI_HOTPLUG_REQUEST_PROTOCOL is defined in Section 0.

Operation

The operation the PCI bus driver is requested to make. See "Related Definitions" for
the list of legal values.

Controller

The handle of the hot-plug controller.

RemainingDevicePath

The remaining device path for the PCI-like hot-plug device. It only contains device
path nodes behind the hot-plug controller. It is an optional parameter and only valid
when the Operation is a add operation. If it is NULL, all devices behind the PC Card
socket are started.

NumberOfChildren

The number of child handles. For a add operation, it is an output parameter. For a
remove operation, it’s an input parameter. When it contains a non-zero value, children
handles specified in ChildHandleBuffer are destroyed. Otherwise, PCI bus
driver is notified to stop managing the controller handle.

ChildHandleBuffer

The buffer which contains the child handles. For a add operation, it is an output
parameter and contains all newly created child handles. For a remove operation, it
contains child handles to be destroyed when NumberOfChildren contains a non-
zero value. It can be NULL when NumberOfChildren is 0. It’s the caller’s
responsibility to allocate and free memory for this buffer.

Platform Initialization Specification VOLUME 5 Standards

230 3/29/2013 Version 1.3

Description
This function allows the PCI bus driver to be notified to act as requested when a hot-plug event has
happened on the hot-plug controller. Currently, the operations include add operation and remove
operation.

If it is a add operation, the PCI bus driver will enumerate, allocate resources for devices behind the
hot-plug controller, and create handle for the device specified by RemainingDevicePath. The
RemainingDevicePath is an optional parameter. If it is not NULL, only the specified device is
started; if it is NULL, all devices behind the hot-plug controller are started. The newly created
handles of PC Card functions are returned in the ChildHandleBuffer, together with the number
of child handle in NumberOfChildren.

If it is a remove operation, when NumberOfChildren contains a non-zero value, child handles
specified in ChildHandleBuffer are stopped and destroyed; otherwise, PCI bus driver is
notified to stop managing the controller handle.

Related Definitions
//***
// EFI PCI HOTPLUG NOTIFY OPERATION
//***
typedef enum {
 EfiPciHotPlugRequestAdd,
 EfiPciHotplugRequestRemove
} EFI_PCI_HOTPLUG_OPERATION;

EfiPciHotplugRequestAdd

The PCI bus driver is requested to create handles for the specified devices. An array of
EFI_HANDLE is returned, a NULL element marks the end of the array.

EfiPciHotplugRequestRemove

The PCI bus driver is requested to destroy handles for the specified devices.

Hot Plug PCI

Version 1.3 3/29/2013 231

Status Codes Returned

12.8 Sample Implementation for a Platform Containing PCI
Hot Plug* Slots

Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that hot plug PCI devices may require that multiple passes of bus
enumeration are required.

There are several phases during the PCI bus enumeration process when PCI hot plug slots are
present. At each phase, the PlatformNotify function of the EFI_PCI_PLATFORM_PROTOCOL and
EFI_PCI_OVERRIDE_PROTOCOL will be called with the execution phase BeforePciHostBridge.
Then the PCI host bridge driver function NotifyPhase is called. Finally, the PlatformNotify functions
are called again, but with the execution phase AfterPciHostBridge.

1. If the platform supports PCI Hot Plug, an instance of the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.

2. The PCI enumeration process begins.

3. Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the
hot-plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot Plug
Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

4. Notify the drivers using EfiPciHostBridgeBeginBusAllocation.

5. For every PCI root bridge handle, do the following:

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnum
eration (This, RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the UEFI 2.1`Specification for the
definition of the PCI Root Bridge I/O Protocol.

• Allocate memory to hold resource requirements.

EFI_SUCCESS The handles for the specified device have been created or destroyed
as requested, and for an add operation, the new handles are
returned in ChildHandleBuffer.

EFI_INVALID_PARAMETER Operation is not a legal value.

EFI_INVALID_PARAMETER Controller is NULL or not a valid handle.

EFI_INVALID_PARAMETER NumberOfChildren is NULL.

EFI_INVALID_PARAMETER ChildHandleBuffer is NULL while Operation is ìremoveî and
NumberOfChildren contains a non-zero value.

EFI_INVALID_PARAMETER ChildHandleBuffer is NULL while Operation is ìaddî.

EFI_OUT_OF_RESOURCES There are no enough resources to start the devices.

Platform Initialization Specification VOLUME 5 Standards

232 3/29/2013 Version 1.3

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttr
ibutes() to get the attributes of this PCI root bridge. This information is used to
combine different types of memory resources in the next step.

Scan all the devices in the specified bus range and the specified segment, one bus at a time. If the
device is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in
the PCI-to-PCI bridge hardware. If the device path of a device matches that of a root HPC and it
is not a PCI-to-CardBus bridge, it must be initialized by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() before the bus it
controls can be fully enumerated. The PCI bus enumerator determines the PCI address of the
PCI Hot Plug Controller (PHPC) and passes it as an input to InitializeRootHpc().

• Continue to scan devices on that root bridge and start the initialization of all root HPCs.

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumber
s() so that the HPCs under initialization are still accessible. SetBusNumbers() cannot
affect the PCI addresses of the HPCs.

6. Wait until all the HPCs that were found on various root bridges in step 5 to complete
initialization.

7. Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the
nonroot HPCs, call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()
to obtain the amount of overallocation and add that amount to the requests from the physical
devices. Reprogram the bus numbers by taking into account the bus resource padding
information. This action requires calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
. The rescan is not required if there is only one root bridge in the system.

Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it will
be initialized.

Super I/O Protocol

Version 1.3 3/29/2013 233

13
Super I/O Protocol

13.1 Super I/O Protocol

EFI_SIO_PROTOCOL

Summary
The Super I/O driver installs an instance of this protocol on the handle of every device within the
Super I/O chip.

GUID
#define EFI_SIO_PROTOCOL_GUID \
 { 0x215fdd18, 0xbd50, 0x4feb, { 0x89, 0xb, 0x58, 0xca, \
 0xb, 0x47, 0x39, 0xe9 } }

Protocol Interface Structure
typedef struct _EFI_SIO_PROTOCOL {
 EFI_SIO_REGISTER_ACCESS RegisterAccess;
 EFI_SIO_GET_RESOURCES GetResources;
 EFI_SIO_SET_RESOURCES SetResources;
 EFI_SIO_POSSIBLE_RESOURCES PossibleResources;
 EFI_SIO_MODIFY Modify;
} EFI_SIO_PROTOCOL;

Parameters
RegisterAccess

Provides a low level access to the registers for the Super I/O.

GetResources

Provides a list of current resources consumed by the device in ACPI Resource
Descriptor Format.

SetResources

Sets resources for a device.

PossibleResources

Provides a collection of possible resource descriptors for the device. Each resource
descriptor in the collection defines a combination of resources that can potentially be
used by the device.

Modify

Provides an interface for table based programming of the Super I/O registers.

Platform Initialization Specification VOLUME 5 Standards

234 3/29/2013 Version 1.3

Description
The Super I/O Protocol is installed by the Super I/O driver. The Super I/O driver is a UEFI driver
model compliant driver. In the Start() routine of the Super I/O driver, a handle with an instance
of EFI_SIO_PROTOCOL is created for each device within the Super I/O. The device within the
Super I/O is powered up, enabled, and assigned with the default set of resources. In the Stop()
routine of the Super I/O driver, the device is disabled and Super I/O protocol is uninstalled.

Super I/O Protocol

Version 1.3 3/29/2013 235

EFI_SIO_PROTOCOL.RegisterAccess()

Summary
Provides a low level access to the registers for the Super I/O.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_REGISTER_ACCESS) (
 IN CONST EFI_SIO_PROTOCOL *This,
 IN BOOLEAN Write,
 IN BOOLEAN ExitCfgMode,
 IN UINT8 Register,
 IN OUT UINT8 *Value
);

Parameters
This

Indicates a pointer to the calling context.

Write

Specifies the type of the register operation. If this parameter is TRUE, Value is
interpreted as an input parameter and the operation is a register write. If this parameter
is FALSE, Value is interpreted as an output parameter and the operation is a register
read.

ExitCfgMode

Exit Configuration Mode Indicator. If this parameter is set to TRUE, the Super I/O
driver will turn off configuration mode of the Super I/O prior to returning from this
function. If this parameter is set to FALSE, the Super I/O driver will leave Super I/O
in the configuration mode.

The Super I/O driver must track the current state of the Super I/O and enable the
configuration mode of Super I/O if necessary prior to register access.

Register

Register number.

Value

If Write is TRUE, Value is a pointer to the buffer containing the byte of data to be
written to the Super I/O register. If Write is FALSE, Value is a pointer to the
destination buffer for the byte of data to be read from the Super I/O register.

Description
The RegisterAccess() function provides low level interface to the registers in the Super I/O.

Note: This function only provides access to the internal registers of the Super I/O chip. For example, on
a typical desktop system, these are the registers accessed via the 0x2E/0x2F indexed port I/O.

Platform Initialization Specification VOLUME 5 Standards

236 3/29/2013 Version 1.3

This function cannot be used to access I/O or memory locations assigned to individual logical
devices.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER The Value is NULL

EFI_INVALID_PARAMETER Invalid Register number

Super I/O Protocol

Version 1.3 3/29/2013 237

EFI_SIO_PROTOCOL.GetResources()

Summary
Provides an interface to get a list of the current resources consumed by the device in the ACPI
Resource Descriptor format.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_GET_RESOURCES)(
 IN CONST EFI_SIO_PROTOCOL *This,
 OUT ACPI_RESOURCE_HEADER_PTR *ResourceList
);

Parameters
This

Indicates a pointer to the calling context.

ResourceList

A pointer to an ACPI resource descriptor list that defines the current resources used by
the device. Type ACPI_RESOURCE_HEADER_PTR is defined in the “Related
Definitions” below.

Description
GetResources() returns a list of resources currently consumed by the device. The
ResourceList is a pointer to the buffer containing resource descriptors for the device. The
descriptors are in the format of Small or Large ACPI resource descriptor as defined by ACPI
specification (2.0 & 3.0). The buffer of resource descriptors is terminated with the ‘End tag’
resource descriptor.

Platform Initialization Specification VOLUME 5 Standards

238 3/29/2013 Version 1.3

Related Definitions
typedef union {
 UINT8 Byte;
 struct{
 UINT8 Length : 3;
 UINT8 Name : 4;
 UINT8 Type : 1;
 }Bits;
} ACPI_SMALL_RESOURCE_HEADER;

typedef struct {
 union {
 UINT8 Byte;
 struct{
 UINT8 Name : 7;
 UINT8 Type : 1;
 }Bits;
 } Header;
 UINT16 Length;
} ACPI_LARGE_RESOURCE_HEADER;

typedef union {
 ACPI_SMALL_RESOURCE_HEADER *SmallHeader;
 ACPI_LARGE_RESOURCE_HEADER *LargeHeader;
} ACPI_RESOURCE_HEADER_PTR;

Length

Length of the resource descriptor in bytes.

Name

Resource descriptor name. Possible values for this field are defined in the ACPI
specification.

Type

Descriptor type.

0 – ACPI Small Resource Descriptor

1 – ACPI Large Resource Descriptor

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER ResourceList is NULL

Super I/O Protocol

Version 1.3 3/29/2013 239

EFI_SIO_PROTOCOL.SetResources()

Summary
Sets the resources for the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_SET_RESOURCES)(
 IN CONST EFI_SIO_PROTOCOL *This,
 IN ACPI_RESOURCE_HEADER_PTR ResourceList
);

Parameters
This

Indicates a pointer to the calling context.

ResourceList

Pointer to the ACPI resource descriptor list. Type ACPI_RESOURCE_HEADER_PTR
is defined in the “Related Definitions” section of
EFI_SIO_PROTOCOL.GetResources().

Description
SetResources() sets the resources for the device. ResourceList is a pointer to the ACPI
resource descriptor list containing requested resources for the device.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER ResourceList is invalid

EFI_ACCESS_DENIED Some of the resources in ResourceList are in use

Platform Initialization Specification VOLUME 5 Standards

240 3/29/2013 Version 1.3

EFI_SIO_PROTOCOL.PossibleResources()

Summary
Provides a collection of resource descriptor lists. Each resource descriptor list in the collection
defines a combination of resources that can potentially be used by the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_POSSIBLE_RESOURCES)(
 IN CONST EFI_SIO_PROTOCOL *This,
 OUT ACPI_RESOURCE_HEADER_PTR *ResourceCollection
);

Parameters
This

Indicates a pointer to the calling context.

ResourceCollection

Collection of the resource descriptor lists. Type ACPI_RESOURCE_HEADER_PTR is
defined in the “Related Definitions” section of
EFI_SIO_PROTOCOL.GetResources().

Description
PossibleResources() returns a collection of resource descriptor lists. Each resource
descriptor list in the collection defines a combination of resources that can potentially be used by the
device. The descriptors are in the format of Small or Large ACPI Resource Descriptor as defined by
the ACPI Specification (2.0 & 3.0). The collection is terminated with the ‘End tag’ resource
descriptor.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER ResourceCollection is NULL

Super I/O Protocol

Version 1.3 3/29/2013 241

EFI_SIO_PROTOCOL.Modify()

Summary
Provides an interface for a table based programming of the Super I/O registers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_MODIFY)(
 IN CONST EFI_SIO_PROTOCOL *This,
 IN CONST EFI_SIO_REGISTER_MODIFY *Command,
 IN UINTN NumberOfCommands
);

Parameters
This

Indicates a pointer to the calling context.

Command

A pointer to an array of NumberOfCommands EFI_SIO_REGISTER_MODIFY
structures. Each structure specifies a single Super I/O register modify operation. Type
EFI_SIO_REGISTER_MODIFY is defined in the “Related Definitions” below.

NumberOfCommands

Number of elements in the Command array.

Description
The Modify() function provides an interface for table based programming of the Super I/O
registers. This function can be used to perform programming of multiple Super I/O registers with a
single function call. For each table entry, the Register is read, its content is bitwise ANDed with
AndMask, and then ORed with OrMask before being written back to the Register. The Super
I/O driver must track the current state of the Super I/O and enable the configuration mode of Super I/
O if necessary prior to table processing. Once the table is processed, the Super I/O device has to be
returned to the original state.

Note: This function only provides access to the internal registers of the Super I/O chip. For example, on
a typical desktop system, these are the registers accessed via the 0x2E/0x2F indexed port I/O.

Platform Initialization Specification VOLUME 5 Standards

242 3/29/2013 Version 1.3

This function cannot be used to access I/O or memory locations assigned to individual logical
devices.

Related Definitions
typedef struct {
 UINT8 Register;
 UINT8 AndMask;
 UINT8 OrMask;
} EFI_SIO_REGISTER_MODIFY;

Register

Register number.

AndMask

Bitwise AND mask.

OrMask

Bitwise OR mask.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER Command is NULL

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 243

14
Super I/O and ISA Host Controller Interactions

14.1 Design Descriptions
The PI architecture provides a means to interact in a standard fashion with Super I/O devices. For the
purposes of this specification, the Super I/O is a device residing on an ISA or LPC or similar bus that
consumes I/O and/or memory resources and provides multiple standard logical devices, such as PC/
AT compatible floppy, serial port, parallel port, keyboard or mouse. There may be more than one of
these devices behind each of the ISA/LPC buses.

Figure 10. Super I/O and ISA Host Controller Interactions

Mouse, Floppy, Serial and keyboard Drivers
The Mouse, Floppy, Serial and Keyboard drivers are UEFI driver-model drivers that support devices
produced by the Super I/O component. When started, they use the optional SIO Control protocol to
enable the logical device, to produce the standard UEFI protocols used for console or booting, such
as Serial I/O or Block I/O. They typically examine the device paths on the child handles created by

PC/AT Floppy
Driver

PC/AT Serial
Driver

PC/AT
Keyboard

Driver

PC/AT Mouse
Driver

Super I/O Driver

ISA Host Controller Driver

SIO Protocol/PPI
SIO Control Protocol
Device Path
Driver Binding

Device Path
ISA Host Controller Protocol/PPI

Simple Pointer
Absolute Pointer
Driver Binding

Serial I/O
Driver Binding

Simple Text Input
Simple Text Input Ex
Driver Binding

Block I/O
Driver Binding

PCD ISA Bus Driver

ISA Host Controller Protocol
ISA Host Controller Service Binding Protocol

Platform Initialization Specification VOLUME 5 Standards

244 3/29/2013 Version 1.3

the Super I/O drivers for the ACPI device path nodes that refer to their devices (e.g. PNP0501,
PNP0303, etc.).

Super I/O Driver
The Super I/O driver consists of a UEFI driver-model driver (in DXE) and PEIM (in PEI) that
supports a Super I/O component. The Super I/O components support multiple logical devices, such
as the PS/2 keyboard controller, a floppy controller or serial/IrDa controller. When started, the Super
I/O driver verifies it is present on the board and produces child handles for each of the logical
devices that are enabled. On each child handle it installs an instance of the Device Path protocol, the
SIO protocol and the SIO Control protocol.

ISA Bus Driver
The ISA Bus driver consists of a UEFI driver-model driver (DXE only) that produces the ISA Host
Controller Service Binding protocol, which manages the many-to-one relationship between Super I/
O drivers in the system and an ISA Host Controller.

ISA Host Controller Driver
The ISA Host Controller driver is a DXE driver that supports a PCI-ISA or PCI-LPC bridge
component. It creates a child handle that represents the ISA Bus and installs the ISA Host Controller
protocol and the Device Path protocol with an ACPI device path node (PNP0A05/PNP0A06).

PCD
The Platform Configuration Database (PCD) provides configuration information about the device
configuration. Information concerning configured I/O addresses can be placed into the PCD by
platform drivers and then used by the various silicon drivers, including SIO to find base addresses
and logical device configuration.

14.1.1 Super I/O
The Super I/O DXE driver and PEIM encapsulate the functionality of the Super I/O component.
They are both responsible to:

• Detect the presence of the component, using information from the PCD and the apertures opened
by the ISA host controller.

• Configure the component and its logical devices using information from the PCD.

• Publish information about the component and the logical devices it supports using the SIO
protocol/PPI.

14.1.1.1 DXE
The Super I/O DXE Driver is responsible for:

• Producing the Driver Binding protocol’s Supported(), Start()and Stop()member
functions on the driver image handle.

• Installing the same GUID as used for the SioGuid member of the Super I/O PPI on the image
handle. This allows other drivers to detect which Super I/O is present in the system.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 245

• Checking Super I/O controller presence. The Supported() function must check whether the
Super I/O controller is present in the system and whether the handle has an instance of the ISA
Host Controller Service Binding protocol installed on it. For more information, see “Working
With The ISA Bus”, below.

• Creatingchild handles for each logical device. The Start() function creates a child handle for
each logical device using the ISA Host Controller Service Binding protocol and installs the SIO
and SIO Control protocols on each one. For more information, see “Working With Logical
Devices”, below.

14.1.1.1.1 Working with the ISA Bus

The system may contain an ISA bus bridge and zero or more Extended I/O bus bridges. The Super I/
O driver checks each of these to see whether it is present.

Supporter()
The Super I/O DXE driver’s Driver Binding protocol Supported() function typically performs
the following steps:

1. Verifies that the controller handle has an installed instance of the ISA Host Controller Service
Binding protocol.

2. Opens the apertures necessary to access the component’s configuration I/O address (i.e. 0x2e/
0x2f) using the ISA Host Controller protocol.

3. Verifies the device’s signature to determine whether the component is actually present using
these configuration I/O addresses. For example, it might read a device-specific register and
check for a signature.

4. Closes the aperture and any opened protocols.

Start()
The Super I/O DXE driver’s Driver Binding protocol Start()function typically performs the
following steps:

1. Detects whether Super I/O DXE driver is already managing the device indicated by the
configuration I/O address. One method of doing this is to create a Device Path with the
configuration I/O address embedded in one device node, then use LocateDevicePath to
determine whether a child handle with the ISA Host Controller protocol installed, exists.

2. Creates a child handle for the SIO using the ISA Host Controller Service Binding protocol.

• Opens the I/O apertures used for the configuration I/O address.

• Installs an instance of the Device Path and (optionally) the SIO and SIO Control protocol

3. Creates child handles for each logical device. Install an instance of the Device Path and SIO
protocol and (optionally) the SIO Control protocol on each child handle.

4. Installs an instance of the Device Path, SIO and SIO Control protocols on each of the child
handles.

Stop()
The Super I/O DXE driver’s Driver Binding protocol Stop()function typically performs the
following steps:

Platform Initialization Specification VOLUME 5 Standards

246 3/29/2013 Version 1.3

1. Uninstalls the instances of the Device Path, SIO and SIO control protocols from each of the
child handles.

2. Destroys the Super I/O’s own child handle using the ISA Host Controller Service Binding
protocol.

SetResources()
The Super I/O DXE driver’s SIO protocol SetResources()function typically calls the
OpenIoAperture() and CloseIoAperture() member functions of the ISA Host Controller
protocol for the I/O addresses related to the individual logical devices.

14.1.1.1.2 Working with Logical Devices

The Super I/O controller supports many different logical devices. Some of these devices, such as the
floppy controller, keyboard controller, MIDI controller and serial port are standard PC/AT devices.
These drivers produce interfaces based on these industry-standard interfaces. Also, the Super I/O
component itself may act as a logical device.

For each logical device, the following steps are taken during Start():

1. Create a child handle.

2. Install the EFI_SIO_PROTOCOL (with correct current resource settings) on the child handle.

3. Install the EFI_SIO_CONTROL_PROTOCOL on the same child handle. This protocol allows a
standard drivers to correctly enable and disable their resources when the Start() and
Stop() members of the Driver Binding protocol that they produce is called.

4. If the device implements one of the standard PC/AT devices, install the
EFI_DEVICE_PATH_PROTOCOL by appending a device node containing the ACPI HID of
the PC/AT device to the device path of the ISA bus on which it is installed..

For more information, see “Logical Devices”

14.1.1.2 PEI
The Super I/O PEIM is responsible to:

• Read its configuration information from the PCD.

• Detect if the Super I/O device is present in the system. If necessary, it should open the aperture
required to access the configuration registers using the ISA Host Controller PPI. If the Super I/O
device is not detected, the driver should close the aperture and exit immediately.

• Install the EFI_SIO_PPI for the Super I/O. The Identifier field allows consumers of the PPI to
know which device’s register set can be accessed by using the PPI’s functions, in cases where
multiple Super I/Os are supported on a platform.

• Allocate I/O and memory resources. All I/O and memory resources are allocated using the
EFI_ISA_HC_PPI, which handles opening and closing bridge apertures.

The Super I/O PEIM should have the EFI_ISA_HC_PPI in its dependency expression.

14.1.2 ISA Bus
The ISA Bus is the logical device that manages the child devices attached to the ISA Host
Controller.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 247

It consumes the ISA Host Controller protocol produced by the ISA Host Controller and installs the
ISA Host Controller Service Binding protocol on the ISA Host Controller’s handle.

14.1.3 ISA Host Controller
The Host Controller is the device that translates the memory and I/O cycles from a parent device
(such as a PCI bus) into memory and I/O cycles for the target devices.

14.1.3.1 DXE
The ISA Host Controller driver creates a child handle for the ISA Host Controller and installs an
instance of the ISA Host Controller protocol and Device Path protocol on it. The Device Path
instance for the child handle will have an extra ACPI device path node for either PNP0A05 (standard
subtractive-decode ISA bus) or PNP0A06 (positive-decode extended I/O bus). If a bridge device can
support more than one of these simultaneously, the _UID field of the device path node must contain
a different value.

For PCI-ISA/LPC bridges, there are two classes of the ISA Host Controller Driver: generic and
chipset-specific. The generic ISA Bus driver connects to any standard subtractive-decode PCI-ISA
bridge device (class code:6, sub-class: 1, programming I/F 0).

Chipset-specific ISA Bus Drivers are used for PCI-ISA (or PCI-LPC) bridges that support positive
decode. These bridges have device-specific mechanisms for opening and closing the I/O and
memory apertures. These apertures determine which address ranges will be passed through to
devices attached to the ISA/LPC side of the bridge. In this case, the registration process includes
opening of apertures and guaranteeing that I/O access falls within the addresses that go the specified
bus.

The ISA Host Controller is responsible for reporting the actual address and size of the apertures
using the DXE GCD services.

14.1.3.2 PEI
The ISA Bus PEIM comes in two versions: generic and chipset-specific.

The generic version is used for subtractive-decode ISA (or LPC) buses. It implements the
EFI_ISA_HC_PPI with a device identifier of all zeroes. All of the aperture functions report
EFI_UNSUPPORTED.

The chipset-specific version implements the EFI_ISA_HC_PPI, which opens and close apertures
for ISA/LPC buses that are positive decode. The device identifier is filled in with the PCI PFA of the
PCI-ISA bridge device.

14.1.4 Logical Devices
Logical Device drivers are UEFI driver model drivers that support many of the standard PC/AT
peripherals. They are designed to connect to the device paths produced by the Super I/O DXE driver.
Each of these drivers produces the Driver Binding and related protocols used in implementing UEFI
driver model drivers.

Each of these drivers supports more than one instance of a specific device can be in a system. Calls
to Stop()and Start() will disable or enable the device and stop consumption of all system
resources. This allows Super I/O drivers to be loaded and unloaded. These drivers can use the SIO

Platform Initialization Specification VOLUME 5 Standards

248 3/29/2013 Version 1.3

Control protocol to enable consumption of system I/O and memory resources when they are started
or stopped.

14.2 Code Definitions

14.2.1 EFI_SIO_PPI

Summary
Super I/O register access.

GUID
#define EFI_SIO_PPI_GUID \
 {0x23a464ad, 0xcb83, 0x48b8, \
 {0x94, 0xab, 0x1a, 0x6f, 0xef, 0xcf, 0xe5, 0x22}}

Protocol Interface Structure
typedef struct _EFI_SIO_PPI {
 EFI_PEI_SIO_REGISTER_READ Read;
 EFI_PEI_SIO_REGISTER_WRITE Write;
 EFI_PEI_SIO_REGISTER_MODIFY Modify;
 EFI_GUID SioGuid;
 PEFI_SIO_INFO Info;
} EFI_SIO_PPI, *PEFI_SIO_PPI;

Members
Read

This function reads a register's value from the Super I/O controller.

Write

This function writes a value to a register in the Super I/O controller.

Modify

This function modifies zero or more registers in the Super I/O controller using a table.

SioGuid

This GUID uniquely identifies the Super I/O controller.

Info

This pointer is to an array which maps EISA identifiers to logical devices numbers.

Description
This PPI provides low-level access to Super I/O registers using Read() and Write(). It also
uniquely identifies this Super I/O controller using a GUID and provides mappings between ACPI-
style PNP IDs and the logical device numbers. There is one instance of this PPI per Super I/O
device.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 249

This PPI is produced by the Super I/O PEIM after the driver has determined that it is present in the
system.

Related Definitions
typedef struct _EFI_SIO_INFO {
 EFI_ACPI_HID Hid;
 EFI_ACPI_UID Uid;
 UINT8 Ldn;
} EFI_SIO_INFO, *PEFI_SIO_INFO;
Hid

This is the EISA-style Plug-and-Play identifier for one of the devices on the super I/O controller.
The standard values are:

EFI_ACPI_PNP_HID_KBC - 101/102-key Keyboard

EFI_ACPI_PNP_HID_LPT - Standard parallel port

EFI_ACPI_PNP_HID_COM - Standard serial port

EFI_ACPI_PNP_HID_FDC - Standard floppy controller

EFI_ACPI_PNP_HID_MIDI - Standard MIDI controller

EFI_ACPI_PNP_HID_GAME - Standard joystick controller

EFI_ACPI_PNP_HID_END - Specifies the end of the information list.

Uid

This is the unique zero-based instance number for a device on the super I/O. For
example, if there are two serial ports, one of them would have a Uid of 0 and the other
would have a Uid of 1.

Ldn

This is the Logical Device Number for this logical device in the Super I/O. This value
can be used in the Read() and Write() functions. The logical device number of
EFI_SIO_LDN_GLOBAL indicates that global registers will be used.

typedef UINT32 EFI_ACPI_HID;
typedef UINT32 EFI_ACPI_UID;

#define EFI_ACPI_PNP_HID_KBC EFI_PNP_ID(0x0303)
#define EFI_ACPI_PNP_HID_LPT EFI_PNP_ID(0x0400)
#define EFI_ACPI_PNP_HID_COM EFI_PNP_ID(0x0500)
#define EFI_ACPI_PNP_HID_FDC EFI_PNP_ID(0x0700)
#define EFI_ACPI_PNP_HID_MIDI EFI_PNP_ID(0xB006)
#define EFI_ACPI_PNP_HID_GAME EFI_PNP_ID(0xB02F)

Platform Initialization Specification VOLUME 5 Standards

250 3/29/2013 Version 1.3

#pragma pack(1)
typedef struct _EFI_SIO_INFO {
 EFI_ACPI_HID Hid;
 EFI_ACPI_UID Uid;
 UINT8 Ldn;
} EFI_SIO_INFO, *PEFI_SIO_INFO;
#pragma pack()

14.2.1.1 EFI_SIO_PPI.Read()

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SIO_REGISTER_READ) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_SIO_PPI *This,
 IN BOOLEAN ExitCfgMode,
 IN EFI_SIO_REGISTER Register,
 OUT UINT8 *IoData
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services.

This

A pointer to this instance of the EFI_SIO_PPI.

ExitCfgMode

A boolean specifying whether the driver should turn on configuration mode (FALSE)
or turn off configuration mode (TRUE) after completing the read operation. The
driver must track the current state of the configuration mode (if any) and turn on
configuration mode (if necessary) prior to register access.

Register

A value specifying the logical device number (bits 15:8) and the register to read (bits
7:0). The logical device number of EFI_SIO_LDN_GLOBAL indicates that global
registers will be used.

IoData

A pointer to the returned register value.

Description
This function provides low-level read access to a device register. The register is specified as an 8-bit
logical device number and an 8-bit register value. The logical device numbers for specific SIO
devices can be determined using the Info member of the PPI structure.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 251

If this function completes successfully, it will return EFI_SUCCESS and IoData will point to the
returned Super I/O register value. If the register value was invalid for this device or IoData was
NULL, then it will return EFI_INVALID_PARAMETERS. If the register could not be read within
the correct amount of time, it will return EFI_TIMEOUT. If the device had some sort of fault or the
device was not present, it will return EFI_DEVICE_ERROR.

Return Values
This function returns standard EFI status codes.

Related Definitions
typedef UINT16 EFI_SIO_REGISTER;

#define EFI_SIO_REG(ldn,reg) (EFI_SIO_REGISTER)(((ldn)<<8)|reg)

#define EFI_SIO_LDN_GLOBAL 0xFF

14.2.1.2 EFI_SIO_PPI.Write()
Write a Super I/O register.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SIO_REGISTER_WRITE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_SIO_PPI *This,
 IN BOOLEAN ExitCfgMode,
 IN EFI_SIO_REGISTER Register,
 IN UINT8 IoData
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services.

This

A pointer to this instance of the EFI_SIO_PPI.

Status Code Value Description

EFI_SUCCESS Success.

EFI_TIMEOUT The register could not be read in the a reasonable amount of time. The
exact time is device-specific.

EFI_INVALID_PARAMETERS Register was out of range for this device.

IoData was NULL

EFI_DEVICE_ERROR There was a device fault or the device was not present.

Platform Initialization Specification VOLUME 5 Standards

252 3/29/2013 Version 1.3

ExitCfgMode

A boolean specifying whether the device should turn on configuration mode (FALSE)
or turn off configuration mode (TRUE) after completing the write operation. The
driver must track the current state of the configuration mode (if any) and turn on
configuration mode (if necessary) prior to register access.

Register

A value specifying the logical device number and the register to read. The logical
device number can be determined by using the Super I/O chip specification or by
looking up the value in the Info field of the EFI_SIO_PPI. The logical device
number of EFI_SIO_LDN_GLOBAL indicates that global registers will be used.

IoData

An 8-bit register value.

Status Code Return

Description
This function provides low-level write access to a Super I/O register.

The register is specified as an 8-bit logical device number and an 8-bit register value. The logical
device numbers for specific SIO devices can be determined using the Info member of the PPI
structure.

If this function completes successfully, it will return EFI_SUCCESS and IoData will point to the
returned Super I/O register value. If the register value was invalid for this device or IoData was
NULL, then it will return EFI_INVALID_PARAMETERS. If the register could not be read within
the correct amount of time, it will return EFI_TIMEOUT. If the device had some sort of fault or the
device was not present, it will return EFI_DEVICE_ERROR.

14.2.1.3 EFI_SIO_PPI.Modify()

Summary
Provides an interface for a table based programming of the Super I/O registers.

Status Code Value Description

EFI_SUCCESS Success.

EFI_TIMEOUT The register could not be read in the a reasonable amount
of time. The exact time is device-specific.

EFI_INVALID_PARAMETERS Register was out of range for this device.

IoData was NULL

EFI_DEVICE_ERROR There was a device fault or the device was not present.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 253

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_MODIFY)(
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_SIO_PPI *This,
 IN CONST EFI_SIO_REGISTER_MODIFY *Command,
 IN UINTN NumberOfCommands
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services.

This

A pointer to this instance of the EFI_SIO_PPI.

Command

A pointer to an array of NumberOfCommands EFI_SIO_REGISTER_MODIFY
structures. Each structure specifies a single Super I/O register modify operation. Type
EFI_SIO_REGISTER_MODIFY is defined in EFI_SIO_PROTOCOL.Modify().

NumberOfCommands

The number of elements in the Command array.

Description
The Modify() function provides an interface for table based programming of the Super I/O
registers. This function can be used to perform programming of multiple Super I/O registers with a
single function call. For each table entry, the Register is read, its content is bitwise ANDed with
AndMask, and then ORed with OrMask before being written back to the Register. The Super I/
O driver must track the current state of the Super I/O and enable the configuration mode of Super I/
O if necessary prior to table processing. Once the table is processed, the Super I/O device must be
returned to the original state.

Platform Initialization Specification VOLUME 5 Standards

254 3/29/2013 Version 1.3

Status Code Return

14.2.2 EFI_ISA_HC_PPI

GUID
#define EFI_ISA_HC_PPI_GUID \
 {0x8d48bd70, 0xc8a3, 0x4c06, \
 {0x90, 0x1b, 0x74, 0x79, 0x46, 0xaa, 0xc3, 0x58}}

PPI Structure
typedef struct _EFI_ISA_HC_PPI {
 UINT32 Version;

 UINT32 Address;
 EFI_PEI_ISA_HC_OPEN_IO OpenIoAperture;
 EFI_PEI_ISA_HC_CLOSE_IO CloseIoAperture;
} EFI_ISA_HC_PPI, *PEFI_ISA_HC_PPI;

Members
Version

An unsigned integer that specifies the version of the PPI structure. Initialized to zero.

PciAddress

The address of the ISA/LPC Bridge device. For PCI, this is the segment, bus, device
and function of the a ISA/LPC Bridge device.

If bits 24-31 are 0, then the definition is:

Bits 0:2 – Function

Bits 3-7 – Device

Bits 8:15 – Bus

Bits 16-23 – Segment

Bits 24-31 – Bus Type

If bits 24-31 are 0xff, then the definition is platform-specific.

OpenIoAperture

Opens an aperture on a positive-decode ISA Host Controller.

Status Code Value Description

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETERS Command is NULL

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 255

CloseIoAperture

Closes an aperture on a positive-decode ISA Host Controller.

14.2.2.1 EFI_ISA_HC_PPI.OpenIoAperture()
Open I/O aperture.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ISA_HC_OPEN_IO) (
 IN CONST EFI_ISA_HC_PPI *This,
 IN UINT16 IoAddress,
 IN UINT16 IoLength,
 OUT UINT64 *IoApertureHandle
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services Table.

This

A pointer to this instance of the EFI_ISA_HC_PPI.

IoAddress

An unsigned integer that specifies the first byte of the I/O space required.

IoLength

An unsigned integer that specifies the number of bytes of the I/O space required.

IoApertureHandle

A pointer to the returned I/O aperture handle. This value can be used on subsequent
calls to CloseIoAperture().

Description
This function opens an I/O aperture in a ISA Host Controller for the I/O addresses specified by
IoAddress to IoAddress + IoLength - 1. It is possible that more than one caller may be
assigned to the same aperture.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and doesa not close the
hardware aperture (via CloseIoAperture()) until there are no more references to it.

If this function completes successfully, then it returns EFI_SUCCESS. If there is no available I/O
aperture, then this function returns EFI_OUT_OF_RESOURCES.

14.2.2.2 EFI_ISA_HC_PPI.CloseIoAperture()
Close I/O aperture.

Platform Initialization Specification VOLUME 5 Standards

256 3/29/2013 Version 1.3

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ISA_HC_CLOSE_IO) (
 IN CONST EFI_ISA_HC_PPI *This,
 IN UINT64 IoApertureHandle
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services Table.

This

A pointer to this instance of the EFI_ISA_HC_PPI.

IoApertureHandle

The I/O aperture handle previously returned from a call to OpenIoAperture().

Description
This function closes a previously opened I/O aperture handle. If there are no more I/O aperture
handles that refer to the hardware I/O aperture resource, then the hardware I/O aperture is closed.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and does not close the hardware
aperture (via CloseIoAperture()) until there are no more references to it.

14.2.3 EFI_ISA_HC_PROTOCOL

Summary
Provides registration and enumeration of ISA devices.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 257

GUID
#define EFI_ISA_HC_PROTOCOL_GUID \
 {0xbcdaf080, 0x1bde, 0x4e22, \
 {0xae, 0x6a, 0x43, 0x54, 0x1e, 0x12, 0x8e, 0xc4}}

Protocol Interface Structure
typedef struct _EFI_ISA_HC_PROTOCOL {
 UINT32 Version;

 EFI_ISA_HC_OPEN_IO OpenIoAperture;
 EFI_ISA_HC_CLOSE_IO CloseIoAperture;
} EFI_ISA_HC_PROTOCOL, *PEFI_ISA_HC_PROTOCOL;

Members
Version

The version of this protocol. Higher version numbers are backward compatible with
lower version numbers. The current version is 0.

OpenIoAperture

Open an I/O aperture.

CloseIoAperture

Close an I/O aperture.

Description
This protocol provides registration for ISA devices on a positive- or subtractive-decode ISA bus. It
allows devices to be registered and also handles opening and closing the apertures which are
positively-decoded.

14.2.3.1 EFI_ISA_HC_PROTOCOL.OpenIoAperture()
Open I/O aperture.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ISA_HC_OPEN_IO) (
 IN CONST EFI_ISA_HC_PROTOCOL *This,
 IN UINT16 IoAddress,
 IN UINT16 IoLength,
 OUT UINT64 *IoApertureHandle
);

Parameters
This

A pointer to this instance of the EFI_ISA_HC_PROTOCOL.

Platform Initialization Specification VOLUME 5 Standards

258 3/29/2013 Version 1.3

IoAddress

An unsigned integer that specifies the first byte of the I/O space required.

IoLength

An unsigned integer that specifies the number of bytes of the I/O space required.

IoApertureHandle

A pointer to the returned I/O aperture handle. This value can be used on subsequent
calls to CloseIoAperture().

Description
This function opens an I/O aperture in a ISA Host Controller for the I/O addresses specified by
IoAddress to IoAddress + IoLength - 1.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and does not close the
hardware aperture (via CloseIoAperture()) until there are no more references to it.

If this function completes successfully, then it returns EFI_SUCCESS. If there is no available I/O
aperture, then this function returns EFI_OUT_OF_RESOURCES.

14.2.3.2 EFI_ISA_HC_PROTOCOL.CloseIoAperture()
Close I/O aperture.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ISA_HC_CLOSE_IO) (
 IN CONST EFI_ISA_HC_PROTOCOL *This,
 IN UINT64 IoApertureHandle
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services Table.

This

A pointer to this instance of the EFI_ISA_HC_PROTOCOL.

IoApertureHandle

The I/O aperture handle previously returned from a call to OpenIoAperture().

Description
This function closes a previously opened I/O aperture handle. If there are no more I/O aperture
handles that refer to the hardware I/O aperture resource, then the hardware I/O aperture is closed.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and does not close the
hardware aperture (via CloseIoAperture()) until there are no more references to it.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 259

14.2.4 EFI_ISA_HC_SERVICE_BINDING_PROTOCOL

Summary
Manages child devices for an ISA Host Controller.

GUID
#define EFI_ISA_HC_SERVICE_BINDING_PROTOCOL_GUID \
 {0xfad7933a, 0x6c21, 0x4234, \
 {0xa4, 0x34, 0x0a, 0x8a, 0x0d, 0x2b, 0x07, 0x81}}

Protocol Interface Structure
The protocol interface structure is the same for all service binding protocols and can be found in
Section 10.6 (“EFI Service Binding Protocol”).

Description
The ISA Host Controller Service Binding protocol permits multiple Super I/O devices to use the
services provide by an ISA Host Controller. The function CreateChild() installs an instance of
the ISA Host Controller protocol on each child handle created.

14.2.5 EFI_SIO_CONTROL_PROTOCOL

Summary
Provide low-level services for SIO devices that enable them to be used in the UEFI driver model.

GUID
#define EFI_SIO_CONTROL_PROTOCOL_GUID \
 {0xb91978df, 0x9fc1, 0x427d, \
 {0xbb, 0x5, 0x4c, 0x82, 0x84, 0x55, 0xca, 0x27}}

Protocol Interface Structure

typedef struct _EFI_SIO_CONTROL_PROTOCOL {
 UINT32 Version;

 EFI_SIO_CONTROL_ENABLE EnableDevice;
 EFI_SIO_CONTROL_DISABLE DisableDevice;
} EFI_SIO_CONTROL_PROTOCOL, PEFI_SIO_CONTROL_PROTOCOL;

Members
Version

 The version of this protocol. Higher version numbers are backward compatible with
lower version numbers. The current version is 0.

EnableDevice

Enable a device.

Platform Initialization Specification VOLUME 5 Standards

260 3/29/2013 Version 1.3

DisableDevice

Disable a device.

Description
The EFI_SIO_CONTROL_PROTOCOL provides control over the decoding of Super I/O and
memory resources by a logical device within a Super I/O. While the logical devices often implement
industry standard interfaces (such as PS/2 keyboard or serial port), these standard interfaces do not
describe how to enable or disable the memory and I/O resources for those devices. Instead, this
control is usually implemented within the Super I/O device itself through proprietary means. The
industry standard drivers may utilize these functions in their implementations of the Driver Binding
protocol’s Start()and Stop()functions.

 The Super I/O driver installs this protocol on the same child handle as the EFI_SIO_PROTOCOL.

14.2.5.1 EFI_SIO_CONTROL_PROTOCOL.Enable()

Summary
Enable an ISA-style device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_CONTROL_ENABLE)(
 IN CONST EFI_SIO_CONTROL_PROTOCOL *This
);

Parameters
This

A pointer to this instance of the EFI_SIO_CONTROL_PROTOCOL.

Description
This function enables a logical ISA device and, if necessary, configures it to default settings,
including memory, I/O, DMA and IRQ resources.

If the function completed successfully, then this function returns EFI_SUCCESS.

If the device could not be enabled because there were insufficient resources either for the device
itself or for the records needed to track the device, then this function returns
EFI_OUT_OF_RESOURCES.

If this device is already enabled, then this function returns EFI_ALREADY_STARTED. If this
device cannot be enabled, then this function returns EFI_UNSUPPORTED.

14.2.5.2 EFI_SIO_CONTROL_PROTOCOL.Disable()

Summary
Disable a logical ISA device.

Super I/O and ISA Host Controller Interactions

Version 1.3 3/29/2013 261

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_CONTROL_DISABLE)(
 IN CONST EFI_SIO_CONTROL_PROTOCOL *This
);

Parameters
This

A pointer to this instance of the EFI_SIO_CONTROL_PROTOCOL.

Description
This function disables a logical ISA device so that it no longer consumes system resources, such as
memory, I/O, DMA and IRQ resources. Enough information must be available so that subsequent
Enable() calls would properly reconfigure the device.

If this function completed successfully, then it returns EFI_SUCCESS.

If the device could not be disabled because there were insufficient resources either for the device
itself or for the records needed to track the device, then this function returns
EFI_OUT_OF_RESOURCES.

If this device is already disabled, then this function returns EFI_ALREADY_STARTED. If this
device cannot be disabled, then this function returns EFI_UNSUPPORTED.

Platform Initialization Specification VOLUME 5 Standards

262 3/29/2013 Version 1.3

CPU I/O Protocol

Version 1.3 3/29/2013 263

15
CPU I/O Protocol

 This document describes the CPU I/O Protocol. This protocol provides an I/O abstraction for a
system processor. This protocol is used by a PCI root bridge I/O driver to perform memory-mapped
I/O and I/O transactions. The I/O or memory primitives can be used by the consumer of the protocol
to materialize bus-specific configuration cycles, such as the transitional configuration address and
data ports for PCI. Only drivers that require direct access to the entire system should use this
protocol. This is a boot-services only protocol.

15.1 CPU I/O Protocol Terms
The following are the terms that are used throughout this document to describe the CPU I/O
Protocol.

coherency domain

The address resources of a system as seen by a processor. It consists of both system memory
and I/O space.

CPU I/O Protocol

A software abstraction that provides access to the I/O and memory regions in a single
coherency domain.

SMP

Symmetric multiprocessing. A collection of processors that share a common view of I/O and
memory-mapped I/O.

15.2 CPU I/O Protocol2 Description
This section describes the CPU I/O Protocol. This protocol is used by code—typically PCI root
bridge I/O drivers and drivers that need I/O prior to the loading of the PCI root bridge I/O driver—
that is running in the EFI Boot Services environment to access memory and I/O.This protocol can be
also used by non-PC-AT* systems to abstract the I/O mechanism published by the processor and/or
integrated CPU-I/O complex.

See Code Definitions for the definition of EFI_CPU_IO_PROTOCOL2.

15.2.1 EFI CPU I/O Overview
The interfaces that are provided in the EFI_CPU_IO2_PROTOCOL are for performing basic
operations to memory and I/O. The system provides abstracted access to basic system resources to
allow a driver to have a programmatic method to access these basic system resources.

The EFI_CPU_IO2_PROTOCOL allows for future innovation of the platform. It abstracts
processor-device-specific code from the system memory map. This abstraction allows system

Platform Initialization Specification VOLUME 5 Standards

264 3/29/2013 Version 1.3

designers to make changes to the system memory map without impacting platform-independent code
that is consuming basic system resources.

Systems with one to many processors in a symmetric multiprocessing (SMP) configuration will
contain a single instance of the EFI_CPU_IO2_PROTOCOL. This protocol is an abstraction from a
software point of view. This protocol is attached to the device handle of a processor driver. The CPU
I/O Protocol is the parent to a set of PCI Root Bridge I/O Protocol instances that may contain many
PCI segments. A CPU I/O Protocol instance might also be the parent of a series of protocols that
abstract host-bus attached devices.

CPU I/O Protocol instances are either produced by the system firmware or an EFI driver. When a
CPU I/O Protocol is produced, it is placed on a device handle without an EFI Device Path Protocol
instance. The figure below shows a device handle that has the EFI_CPU_IO2_PROTOCOL
installed on it.

Figure 11. EFI CPU I/O2 Protocol

Other characteristics of the CPU I/O Protocol include the following:

• The protocol uses re-entrancy to enable possible use by a debugger agent that is outside of the
generic EFI Task Priority Level (TPL) priority mechanism.

See Code Definitions for the definition of EFI_CPU_IO2_PROTOCOL.

15.3 Code Definitions
This section contains the basic definitions of the CPU I/O Protocol (EFI_CPU_IO2_PROTOCOL).

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent protocol or function definition:

• EFI_CPU_IO_PROTOCOL_ACCESS

• EFI_CPU_IO_PROTOCOL_WIDTH

Device Handle

EFI_CPU_IO2_PROTOCOL

FG10010

CPU I/O Protocol

Version 1.3 3/29/2013 265

15.3.1 CPU I/O Protocol

EFI_CPU_IO2_PROTOCOL

Summary
Provides the basic memory and I/O interfaces that are used to abstract accesses to devices in a
system.

GUID
#define EFI_CPU_IO2_PROTOCOL_GUID \
 {0xad61f191, 0xae5f, 0x4c0e, 0xb9, 0xfa, 0xe8, 0x69, 0xd2, \
 0x88, 0xc6, 0x4f}

Protocol Interface Structure
typedef struct _EFI_CPU_IO2_PROTOCOL {
 EFI_CPU_IO_PROTOCOL_ACCESS Mem;
 EFI_CPU_IO_PROTOCOL_ACCESS Io;

} EFI_CPU_IO2_PROTOCOL;

Parameters
Mem.Read

Allows reads from memory-mapped I/O space. See the Mem.Read() function
description. Type EFI_CPU_IO_PROTOCOL_ACCESS is defined in "Related
Definitions" below.

Mem.Write

Allows writes to memory-mapped I/O space. See the Mem.Write() function
description.

Io.Read

Allows reads from I/O space. See the Io.Read() function description. Type
EFI_CPU_IO_PROTOCOL_ACCESS is defined in "Related Definitions" below.

Io.Write

Allows writes to I/O space. See the Io.Write() function description.

Description
The EFI_CPU_IO2_PROTOCOL provides the basic memory and I/O interfaces that are used to
abstract accesses to platform hardware. This hardware can include PCI- or host-bus-attached
peripherals and buses. There is one EFI_CPU_IO2_PROTOCOL instance for each PI System.
Embedded systems, desktops, and workstations will typically have only one PI System. Non–
symmetric multiprocessing (non-SMP), high-end servers may have multiple PI Systems. A device
driver that wishes to make I/O transactions in a system will have to retrieve the
EFI_CPU_IO2_PROTOCOL instance. A device handle for an PI System will minimally contain an
EFI_CPU_IO2_PROTOCOL instance.

Platform Initialization Specification VOLUME 5 Standards

266 3/29/2013 Version 1.3

Related Definitions
//***
// EFI_CPU_IO2_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_CPU_IO_PROTOCOL_IO_MEM Read;
 EFI_CPU_IO_PROTOCOL_IO_MEM Write;
} EFI_CPU_IO_PROTOCOL_ACCESS;

Read

This service provides the various modalities of memory and I/O read.

Write

This service provides the various modalities of memory and I/O write.

CPU I/O Protocol

Version 1.3 3/29/2013 267

EFI_CPU_IO2_PROTOCOL.Mem.Read() and Mem.Write()

Summary
Enables a driver to access memory-mapped registers in the PI System memory space.

Prototype
typedef
EFI_STATUS

(EFIAPI *EFI_CPU_IO_PROTOCOL_IO_MEM) (
 IN EFI_CPU_IO2_PROTOCOL *This,
 IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_CPU_IO2_PROTOCOL instance.

Width

Signifies the width of the memory operation. Type
EFI_CPU_IO_PROTOCOL_WIDTH is defined in "Related Definitions" below.

Address

The base address of the memory operation.

Count

The number of memory operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations, the
source buffer from which to write data.

Description
The Mem.Read() and Mem.Write() functions enable a driver to access memory-mapped
registers in the PI System memory space.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PI System on a platform might require. For
example, on some platforms, width requests of EfiCpuIoWidthUint64 do not work.
Misaligned buffers, on the other hand, will be handled by the driver.

If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations that is performed.

Platform Initialization Specification VOLUME 5 Standards

268 3/29/2013 Version 1.3

If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times from the first element of Buffer.

Related Definitions
//***
// EFI_CPU_IO_PROTOCOL_WIDTH
//***
typedef enum {
EfiCpuIoWidthUint8,
EfiCpuIoWidthUint16,
EfiCpuIoWidthUint32,
EfiCpuIoWidthUint64,
EfiCpuIoWidthFifoUint8,
EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32,
EfiCpuIoWidthFifoUint64,
EfiCpuIoWidthFillUint8,
EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32,
EfiCpuIoWidthFillUint64,
EfiCpuIoWidthMaximum

} EFI_CPU_IO_PROTOCOL_WIDTH;

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PI System.

EFI_INVALID_PARAMETER Width is invalid for this PI System.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The Buffer is not aligned for the given Width.

EFI_UNSUPPORTED The address range specified by Address, Width, and Count is not

valid for this PI System.

CPU I/O Protocol

Version 1.3 3/29/2013 269

EFI_CPU_IO2_PROTOCOL.Io.Read() and Io.Write()

Summary
Enables a driver to access registers in the PI CPU I/O space.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_CPU_IO_PROTOCOL_IO_MEM) (
 IN EFI_CPU_IO2_PROTOCOL *This,
 IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_CPU_IO2_PROTOCOL instance.

Width

Signifies the width of the I/O operation. Type EFI_CPU_IO_PROTOCOL_WIDTH is
defined in EFI_CPU_IO2_PROTOCOL.Mem().

Address

The base address of the I/O operation. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. The number of bytes moved is Width size
* Count, starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations, the
source buffer from which to write data.

Description
The Io.Read() and Io.Write() functions enable a driver to access PCI controller registers in
the PI CPU I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and I/O width restrictions that a PI System on a platform might require. For example on
some platforms, width requests of EfiCpuIoWidthUint64 do not work. Misaligned buffers, on
the other hand, will be handled by the driver.

If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations that is performed.

Platform Initialization Specification VOLUME 5 Standards

270 3/29/2013 Version 1.3

If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times from the first element of Buffer.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PI System.

EFI_INVALID_PARAMETER Width is invalid for this PI System.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The Buffer is not aligned for the given Width.

EFI_UNSUPPORTED The address range specified by Address, Width, and Count is not

valid for this PI System.

Legacy Region Protocol

Version 1.3 3/29/2013 271

16
Legacy Region Protocol

This section describes the legacy region protocol that abstracts the platform capability for the BIOS
memory region from 0xC0000 to 0xFFFFF. The Legacy Region Protocol is used to abstract the
hardware control of the Option ROM and Compatibility 16-bit code region shadowing.

16.1 Legacy Region Protocol
The Legacy Region Protocol controls the read, write and boot-lock attributes for the region 0xC0000
to 0xFFFFF. The table below lists the functions that are included in the Legacy Region Protocol. See
EFI_LEGACY_REGION2_PROTOCOL in Code Definitions for the definitions of these functions.

Table 24. Functions in Legacy Region Protocol

16.2 Code Definitions

16.2.1 Legacy Region Protocol

EFI_LEGACY_REGION2_PROTOCOL

Summary
Abstracts the hardware control of the physical address region 0xC0000–0xFFFFF.

Function Description

Decode() Programs the chipset to decode or not decode regions in the 0xC0000 to
0xFFFFF range. Governs the read attribute.

Lock() Programs the chipset to lock (write protect) regions in the 0xC0000 to 0xFFFFF
range. Disables the write attribute.

BootLock() Programs the chipset to boot-lock regions in the 0xC0000 to 0xFFFFF range.
Enables the boot-lock attribute.

Unlock() Programs the chipset to unlock regions in the 0xC0000 to 0xFFFFF range.
Enables the write attribute.

GetInfo() Get information about the granularity of the regions for each attribute.

Platform Initialization Specification VOLUME 5 Standards

272 3/29/2013 Version 1.3

GUID
#define EFI_LEGACY_REGION2_PROTOCOL_GUID \
 { 0x70101eaf, 0x85, 0x440c, 0xb3, 0x56, 0x8e, 0xe3, 0x6f,\
 0xef, 0x24, 0xf0 }

Protocol Interface Structure
typedef struct _EFI_LEGACY_REGION2_PROTOCOL {
 EFI_LEGACY_REGION2_DECODE Decode;
 EFI_LEGACY_REGION2_LOCK Lock;
 EFI_LEGACY_REGION2_BOOT_LOCK BootLock;
 EFI_LEGACY_REGION2_UNLOCK UnLock;

 EFI_LEGACY_REGION_GET_INFO GetInfo;
} EFI_LEGACY_REGION2_PROTOCOL;

Parameters
Decode

Modify the read attribute of a memory region. See the Decode() function
description.

Lock

Modify the write attribute of a memory region to prevent writes. See the Lock()
function description.

BootLock

Modify the boot-lock attribute of a memory region to prevent future changes to the
memory attributes for this region. See the BootLock() function description.

Unlock

Modify the write attribute of a memory region to allow writes. See the Unlock()
function description.

GetInfo

Modify the write attribute of a memory region to allow writes. See the GetInfo()
function description.

Description
The EFI_LEGACY_REGION2_PROTOCOL is used to abstract the hardware control of the memory
attributes of the Option ROM shadowing region, 0xC0000 to 0xFFFFF.

There are three memory attributes that can be modified through this protocol: read, write and boot-
lock. These protocols may be set in any combination.

Legacy Region Protocol

Version 1.3 3/29/2013 273

EFI_LEGACY_REGION2_PROTOCOL.Decode()

Summary
Modify the hardware to allow (decode) or disallow (not decode) memory reads in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_DECODE) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity ,
 IN BOOLEAN *On
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

On

Decode / Non-Decode flag.

Description
 If the On parameter evaluates to TRUE, this function enables memory reads in the address range
Start to (Start + Length - 1).

If the On parameter evaluates to FALSE, this function disables memory reads in the address range
Start to (Start + Length - 1).

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully modified.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the

Legacy Region.

Platform Initialization Specification VOLUME 5 Standards

274 3/29/2013 Version 1.3

EFI_LEGACY_REGION2_PROTOCOL.Lock()

Summary
Modify the hardware to disallow memory writes in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_LOCK) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

Description
This function changes the attributes of a memory range to not allow writes.

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully modified.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the

Legacy Region.

Legacy Region Protocol

Version 1.3 3/29/2013 275

EFI_LEGACY_REGION2_PROTOCOL.BootLock()

Summary
Modify the hardware to disallow memory attribute changes in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_BOOT_LOCK) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

Description
This function makes the attributes of a region read only. Once a region is boot-locked with this
function, the read and write attributes of that region cannot be changed until a power cycle has reset
the boot-lock attribute. Calls to Decode(), Lock() and Unlock() will have no effect.

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully locked.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy
Region.

EFI_UNSUPPORTED The chipset does not support locking the configuration
registers in a way that will not affect memory regions
outside the legacy memory region.

Platform Initialization Specification VOLUME 5 Standards

276 3/29/2013 Version 1.3

EFI_LEGACY_REGION2_PROTOCOL.UnLock()

Summary
Modify the hardware to allow memory writes in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_UNLOCK) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

Description
This function changes the attributes of a memory range to allow writes.

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully modified.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the

Legacy Region.

Legacy Region Protocol

Version 1.3 3/29/2013 277

EFI_LEGACY_REGION2_PROTOCOL.GetInfo()

Summary
Get region information for the attributes of the Legacy Region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION_GET_INFO) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 OUT UINT32 *DescriptorCount,
 OUT EFI_LEGACY_REGION_DESCRIPTOR **Descriptor
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

DescriptorCount

The number of region descriptor entries returned in the Descriptor buffer. Type
EFI_LEGACY_REGION_DESCRIPTOR is defined in the “Related Definitions”
section.

Descriptor

A pointer to a pointer used to return a buffer where the legacy region information is
deposited. This buffer will contain a list of DescriptorCount number of region
descriptors. This function will provide the memory for the buffer.

Description
This function is used to discover the granularity of the attributes for the memory in the legacy
region. Each attribute may have a different granularity and the granularity may not be the same for
all memory ranges in the legacy region.

Platform Initialization Specification VOLUME 5 Standards

278 3/29/2013 Version 1.3

Status Codes Returned

Related Definitions
typedef enum {
 LegacyRegionDecoded,
 LegacyRegionNotDecoded,
 LegacyRegionWriteEnabled,
 LegacyRegionWriteDisabled,
 LegacyRegionBootLocked,
 LegacyRegionNotLocked
} EFI_LEGACY_REGION_ATTRIBUTE;

LegacyRegionDecoded

This region is currently set to allow reads.

LegacyRegionNotDecoded

This region is currently set to not allow reads.

LegacyRegionWriteEnabled

This region is currently set to allow writes.

LegacyRegionWriteDisabled

This region is currently set to write protected.

LegacyRegionBootLocked

This region’s attributes are locked, cannot be modified until after a power cycle.

LegacyRegionNotLocked

This region’s attributes are not locked.

typedef struct {
 UINT32 Start;
 UINT32 Length;
 EFI_LEGACY_REGION_ATTRIBUTE Attribute;
 UINT32 Granularity;
} EFI_LEGACY_REGION_DESCRIPTOR;

Start

The beginning of the physical address of this region.

Length

The number of bytes in this region.

EFI_SUCCESS The information structure was returned.

EFI_UNSUPPORTED This function is not supported.

Legacy Region Protocol

Version 1.3 3/29/2013 279

Attribute

Attribute of the Legacy Region Descriptor that describes the capabilities for that
memory region.

Granularity

Describes the byte length programmability associated with the Start address and the
specified Attribute setting.

Platform Initialization Specification VOLUME 5 Standards

280 3/29/2013 Version 1.3

I2C Protocol Stack

Version 1.3 3/29/2013 281

17

I2C Protocol Stack

17.1 Design Discussion

The Inter-Integrated Circuit (I2C) protocol stack enables third party silicon vendors to write UEFI

drivers for their products by decoupling the I2C chip details from the I2C controller and I2C bus
configuration details.

17.1.1 I2C Bus Overview

The Inter-Integrated Circuit (I2C) bus enables simple low speed communications between chips.

The following sections describe the attributes of the I2C bus configurations supported by the I2C

protocol stack and the I2C-bus specification and user manual.

17.1.1.1 Single Master

Figure 12. Simple 12C Bus

 Figure 12 shows a simple I2C bus configuration consisting of one host controller and two I2C

devices which use the same I2C clock frequency. In this configuration the I2C host controller gets

initialized with a single clock frequency and performs transactions to the I2C devices using their
slave addresses.

17.1.1.2 Multiple I2C Bus Frequencies

Figure 13. Multiple I2C Bus Frequencies

I2C Host

I2C Device
0x20

I2C Device
0x30

I2C Host

I2C Device
0x20

I2C Device
0x30

http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://www.acpi.info/spec.htm
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx

Platform Initialization Specification VOLUME 5 Standards

282 3/29/2013 Version 1.3

Two I2C bus configurations are shown in Figure 2 - Multiple I2C Bus Frequencies separated by a

switch. This allows the I2C bus to operate at two different frequencies depending on the state of the

switch. Device requiring higher bus frequencies are placed closer to the I2C host controller and are
accessed when the switch is turned off. Devices using lower bus frequencies are placed after the

switch and may only be accessed when the switch is on. Note that the I2C bus frequency needs to be

set to a frequency supported by all devices currently accessible by the I2C host controller.

17.1.1.3 Limited Address Space

Figure 14. Limited address Space

I2C devices have a limited number of address settings, sometimes only one. When the hardware

design requires more I2C devices than the address space supports a multiplexer may be introduced to
create additional bus configurations (address spaces). Note that the host must first select the

appropriate bus configuration before communicating with the I2C device.

17.1.1.4 I2C Bus Configurations

A bus configuration is a concept introduced by the I2C protocol stack to configure the state of the

switches and multiplexers in the I2C bus. The I2C protocol stack calls into the platform code with a
value from zero (0) to N-1 to request the platform code enable a specific configuration of the
switches and multiplexers. The platform code then sets the requested state for the switches and

multiplexers and sets the I2C clock frequency for this I2C bus configuration. Upon return the I2C

protocol stack is able to access the I2C devices in this configuration.

17.1.2 I2C Protocol Stack Overview

The following is a representation of the I2C protocol stack and an I2C bus layout.
 +-----------------+
 | Application |
 +-----------------+
 |
 | Third Party or UEFI
 |
 V
 +-----------------+

I2C Host

I2C Device
0x20

I2C Device
0x30

Multiplexer

I2C Device
0x30

http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://www.acpi.info/spec.htm

I2C Protocol Stack

Version 1.3 3/29/2013 283

 | Third Party |
 | I2C Device |
 | Driver |
 +-----------------+
 |
 |
 V
 +-----------------+
 | I2C IO Protocol |
 +-----------------+
 |
 |
 V
 +-----------------+ +------------------------+
 | I2C Bus Driver |-->| I2C Enumerate Protocol |
 +-----------------+ +------------------------+
 |
 |
 V
 +-------------------+
 | I2C Host Protocol |---------.
 +-------------------+ |
 | V
 | +-----------------------+
 | | I2C Bus Configuration |
 |<-----------| Management Protocol |
 V +-----------------------+
 +---------------------+ | |
 | I2C Master Protocol |
 +---------------------+ | |
 |
 Software | | |

 Hardware | | |
 |
 V | |
 +-----------------+
 | I2C Controller | | |
 +-----------------+
 | | |

 I2C Bus | | |
 | +------------+
 +----| High speed | | |
 | | I2C device |
 | | 0x01 | | |
 | +------------+
 | | |
 +---------+ 0

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf

Platform Initialization Specification VOLUME 5 Standards

284 3/29/2013 Version 1.3

 | Switch |<- - - - - - - - - ` |
 +---------+ 1
 | |
 | +------------+
 +----| Fast speed | |
 | | I2C device |
 | | 0x02 | |
 | +------------+
 | |
 +-------------+
 | Multiplexer |< - - - - - - - - - - - `
 +-------------+
 0 | | 1
 | |
 | |
 | | +-------------+
 | +----| Third Party | |
 | | | I2C Device |
 | | | 0x03, 0x04 |
 | | +-------------+
 | |
 |
 | +-------------+
 +------------| Third Party |
 | | I2C Device |
 | | 0x03, 0x04 |
 | +-------------+
 |

Figure 15. I2C Protocol Stack

The platform hardware designer chooses the bus layout based upon the platform, I2C chip and
software requirements. The design uses switches to truncate the bus to enable higher bus
frequencies for a subset of devices which are placed closer to the controller. When the switch is on,
the extended bus must operate at a lower bus frequency. The design uses multiplexer to create
separate address spaces enabling the use of multiple devices which would otherwise have conflicting

addresses. See the I2C-bus specification and user manual for more details.

N.B. Some operating systems may prohibit the changing of switches and multiplexers in the I2C bus.

In this case the platform hardware and software designers must select a single I2C bus configuration

consisting of constant input values for the switches and multiplexers. The I2C subsystem must be

placed in the OS compatible I2C bus configuration upon successful completion of
ExitBootServices().

The platform hardware designer needs to provide the platform software designer the following data

for each I2C bus:

1. Which controller controls this bus

2. A list of logic blocks contained in one or more I2C devices:

I2C Protocol Stack

Version 1.3 3/29/2013 285

• I2C device which contains this logic block

• Logic block I2C slave address

• Logic block description

3. For each configuration of the switches and multiplexers in the I2C bus

• What is the maximum frequency of operation for the I2C bus

• What I2C slave addresses are accessible

4. The settings for the switches and multiplexers when control is given to the operating system.

17.1.2.1 Handles

The I2C protocol stack uses two groups of handles:

• I2C controller handles

• I2C device handles

Some bus driver (PCI, USB, etc.) or the platform specific code may expose a handle for each of the

I2C controllers. The platform specific code installs the I2C bus configuration management and I2C

enumeration protocols on the controller handle. As the I2C stack is initialized, additional protocols

are placed on the I2C controller handle. When the I2C stack initialization is complete, the controller
handle contains:

The I2C Bus Driver uses the EFI_I2C_ENUMERATE_PROTOCOL to enumerate the set of I2C

devices connected to an I2C controller, and creates an I2C device handle for each I2C device
installing the following protocols on each:

I2C Controller Handle

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL

EFI_I2C_HOST_PROTOCOL

EFI_I2C_MASTER_PROTOCOL

EFI_I2C_ENUMERATE_PROTOCOL

EFI_DEVICE_PATH_PROTOCOL

Platform Initialization Specification VOLUME 5 Standards

286 3/29/2013 Version 1.3

It is possible for the SMBus Host Controller Protocol to be implemented using the services on an I2C
Controller Handle. The SMBus Host Controller Protocol does not support the concept of multiple

bus configurations, so the state of the I2C controller handle required for the SMBus Host Controller

Protocol to be produced on an I2C Controller Handle is as follows:

17.1.2.2 Driver Loading Order
A race condition potentially exists between the platform specific code and a layered SMBus driver

when a driver for a PCI or USB I2C controller installs the EFI_I2C_MASTER_PROTOCOL on its
handle. The layered SMBus driver may start on this controller as soon as the
EFI_I2C_MASTER_PROTOCOL is installed as long as the
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL is not installed on the controller
handle. However if the platform specific code wants to use this controller with the
EFI_I2C_HOST_PROTOCOL then the platform specific code needs to prevent the SMBus driver
from starting by installing the EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.

Note that the I2C host protocol opens the EFI_I2C_MASTER_PROTOCOL only if the handle
contains the EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.

Chapter 10 of the Universal Extensible Firmware Interface Specification describes several ways for
the platform specific code to adjust the driver load order. One possible way to eliminate this race
condition is to use the version number for the driver binding protocol. The platform specific code
implements the driver binding protocol’s Supported() and Start() routines and sets the
version field to a value in the range of 0xfffffff0 – 0xffffffff. The SMBus driver should
set the version field of the driver binding protocol to a value in the range of 0x00000010 –
0xffffffef. This selection delays the SMBus driver to execute its Supported() and
Start() routines after the platform specific code, enabling the platform specific code to install the
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL and the
EFI_I2C_ENUMERATE_PROTOCOL on the controller’s handle.

I2C Device Handle

EFI_I2C_IO_PROTOCOL

EFI_DEVICE_PATH_PROTOCOL

I2C Controller Handle

EFI_I2C_MASTER_PROTOCOL

EFI_DEVICE_PATH_PROTOCOL

I2C Protocol Stack

Version 1.3 3/29/2013 287

17.1.2.3 Third Party I2C Drivers

Third party I2C drivers are I2C chip specific but platform and host controller independent.

Third party I2C driver writers, typically silicon vendors, need to provide:

• The vendor specific GUID that is used to select their driver.

• I2C slave address array guidance (described below) when the I2C device uses more than one I2C
slave address consisting of the order for the blocks of logic that get referenced by the entries in
the slave address array.

The hardware version of the I2C device, this value is passed to the third party I2C driver to enable it
to perform workarounds for the specific hardware version. It is recommended that value match the
value in the ACPI _HRV tag. See the Advanced Configuration and Power Interface Specification,
Revision 5.0 for the field format and the Plug and play support for I2C web-page for restriction on
values.

The third party I2C driver uses relative addressing to abstract the platform specific details of the I2C

device. Using an example I2C device containing an accelerometer and a magnetometer which

consumes two I2C slave addresses, one for each logic block. The third party I2C driver writer may
choose to write two drivers, one for each block of logic, in which case each driver refers to the single

I2C slave address using the relative value of zero (0). However if the third party I2C driver writer

chooses to write a single driver which consumes multiple I2C slave addresses then the third party

I2C driver writer needs to convey the order of the I2C slave address entries in the I2C slave address
array to the platform software designer. For the example:

 0: Accelerometer

 1: Magnetometer

The platform hardware designer picks the actual slave addresses from the I2C device's data sheet and
provides this information to the platform software designer. The platform software designer then

places the I2C slave addresses into the I2C slave address array in the

EFI_I2C_ENUMERATE_PROTOCL in the order specified by the third party I2C driver writer. The

third party I2C driver writer uses the index into the I2C slave address array as the relative I2C slave

address. The I2C IO protocol uses the I2C slave address array to translate the relative I2C slave

address into the platform specific I2C slave address. The relative value always starts at zero (0) and

its maximum value is the number of entries in I2C slave address array minus one.

Each I2C slave address entry is specified as a 32-bit integer to allow room for future I2C slave

address expansion. Only the I2C master protocol knows the maximum I2C slave address value. All
other drivers and applications must look for the EFI_NOT_FOUND status for the indication that a

reserve bit was set in the I2C slave address.

Platform Initialization Specification VOLUME 5 Standards

288 3/29/2013 Version 1.3

17.1.2.3.1 Driver Binding Protocol Supported() API

The driver binding protocol’s Supported() routine looks for controllers which declare the
EFI_I2C_IO_PROTOCOL and match the device path supplied by the silicon vendor or third party

I2C driver writer to the platform integrator.

The third party I2C device driver creates a GUID for a Vendor-Defined Hardware Device Path Node

when describing the I2C device. The third party I2C device driver writer provides this GUID to the

person writing the platform specific code to identify the type of I2C device.

The third party I2C driver which consumes the EFI_I2C_IO_PROTOCOL compares the known
GUID with the GUID pointed to by the DeviceGuid field.

An example algorithm for the driver binding protocol Supported() routine:

1. Open the EFI_I2C_IO_PROTOCOL using EFI_OPEN_PROTOCOL_BY_DRIVER

2. If OpenProtocol() fails return the error status

3. Get the vendor GUID from the EFI_I2C_IO_PROTOCOL

4. Close the EFI_I2C_IO_PROTOCOL

5. Compare the expected vendor GUID to the GUID from the EFI_I2C_IO_PROTOCOL
structure.

6. If the GUIDS don’t match then return EFI_NOT_SUPPORTED

7. Return EFI_SUCCESS

17.1.2.3.2 Supporting Multiple Hardware Versions

Note that package markings are important to allow the platform integrator to verify the hardware
revision after the part is integrated! The platform integrator includes the hardware revision

information into the EFI_I2C_ENUMERATE_PROTOCOL. The I2C bus driver gets this data

during the I2C device enumeration and makes it available to the third party I2C device driver via the
EFI_I2C_IO_PROTOCOL. There are a couple of ways in which the silicon vendor or third party

I2C driver writer may support multiple hardware versions of the I2C device:

• Provide a different GUID value to the platform integrator for each hardware revision

• Provide a different hardware version value to the platform integrator with the devices

0 7‐bit Slave AddressReserved (Must Be Zero)

78 030 31

1 10‐bit Slave AddressReserved (Must Be Zero)

910 030 31

I2C Protocol Stack

Version 1.3 3/29/2013 289

Each of the above methods describes an interface to the I2C device. The interface specifies the

number of slave addresses as well as the features and software workarounds for the I2C device.

17.1.2.4 I2C IO Protocol

The I2C IO protocol is platform, host controller, and I2C chip independent.

The I2C bus driver creates a handle for each of the I2C devices returned by the I2C enumerate

protocol. The I2C controller's device path is extended with the vendor GUID and unique ID value

returned by the I2C enumerate protocol and attached to the handle. The vendor GUID is used to
extend the device path with a Vendor-define Hardware Device Path Node and the unique ID is used
to further extend the device path with a Controller Device Path Node. If the unique ID is 0, then the

Controller Device Path Node is optional. The third party I2C device driver uses the device GUID to
determine if it may connect.

When a third party I2C device driver or application calls QueueRequest(), the I2C IO protocol

validates the SlaveAddressIndex (relative I2C address) for the I2C device and then converts

the SlaveAddressIndex to a I2C slave address. The request is then passed to the I2C host

protocol along with the tuple BusConfiguration:I2C slave address.

17.1.2.5 I2C Host Protocol

The I2C host protocol is platform, host controller, and I2C chip independent.

Note: For proper operation of the I2C bus, only the I2C IO protocol and I2C test applications connect to
the EFI_I2C_HOST_PROTOCOL.

The I2C host protocol may access any device on the I2C bus. The I2C host protocol has the
following responsibilities:

• Limits the number of requests to the I2C master protocol to one. The I2C host protocol holds on

to additional requests until the I2C master protocol is available to process the request. The I2C

requests are issued in FIFO order to the I2C master protocol.

• Enable the proper I

• 2C bus configuration before starting the I2C request using the I2C master protocol

I2C devices are addressed as the tuple: BusConfiguration:SlaveAddress. I2C bus configuration zero

(0) is the portion of the I2C bus that connects to the host controller. The bus configuration specifies

the control values for the switches and multiplexers in the I2C bus. After the switches and

multiplexers are properly configured, the I2C controller uses the slave address to access the

requested I2C device.

Since the I2C protocol stack supports asynchronous transactions the I2C host protocol maintains a

queue of I2C requests until the I2C controller is available them. When a request reaches the head of

Platform Initialization Specification VOLUME 5 Standards

290 3/29/2013 Version 1.3

the queue the necessary bus configuration is enabled and then the request is sent to the I2C master
protocol.

17.1.2.6 I2C Master Protocol
The I2C master protocol is I2C controller specific but platform independent.

This protocol is designed to allow the implementation to be built as a driver which may be delivered
in binary form as an EFI image.

The master protocol manipulates the I2C controller to perform a transaction on the I2C bus. The I2C
master protocol does not configure the I2C bus so it is up to the caller to ensure that the I2C bus is in

the proper configuration before issuing the I2C request.

The I2C master protocol typically needs the following information:

• Host controller address

• Controller's input clock frequency

Depending upon the I2C controller, more data may be necessary. This protocol may use any method
to get these values: hard coded values, PCD values, or may choose to communicate with the
platform specific code using an undefined mechanism to get these values.

If the I2C master protocol requires data from the platform specific code then the I2C master
protocol writer needs to provide the platform interface details to the platform software designer.

17.1.2.7 Platform Specific Code
The platform specific code installs the EFI_I2C_ENUMERATE_PROTOCOL to provide the I2C
device descriptions to the I2C bus driver using the EFI_I2C_DEVICE structure. These
descriptions include the bus configuration number required for the I2C device, the slave address
array, the vendor GUID and a unique ID value.

The EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL enables the I2C host
protocol to call into the platform specific code to enable a specific I2C bus configuration and set the
I2C bus frequency. This protocol is required to get the I2C host protocol to start for the I2C
controller’s handle.

The platform software designer collects the data requirements from third party I2C driver writers,
the vendor specific I2C master protocol writer, the
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL and
EFI_I2C_ENUMERATE_PROTOCOL. The platform software designer gets the necessary data
from the platform hardware designer. The platform software designer then builds the data structures

and implements the necessary routines to construct the platform specific code for I2C.

17.1.2.8 Switches and Multiplexers
There are some I2C switches and I2C multiplexers where the control is done via I2C commands.

When the control inputs come via the same I2C bus that is being configured then the platform

specific code must use the EFI_I2C_MASTER_PROTOCOL. While the I2C host protocol makes

the call to EnableI2cBusConfiguration to configure the I2C bus, the I2C host protocol

I2C Protocol Stack

Version 1.3 3/29/2013 291

keeps the I2C master protocol idle, enabling the platform specific code to perform the necessary I2C
configuration transactions.

If however the configuration control is done via an I2C device connected to a different I2C bus (host
controller), then the platform software designer may choose between the following:

• Call into a third party I2C driver to manipulate the I2C bus control device.

• Call into the EFI_I2C_IO_PROTOCOL if no third party I2C driver exists for the I2C bus
control device

• Call into the EFI_I2C_HOST_PROTOCOL if the platform does not expose the I2C bus control
device.

17.1.3 PCI Comparison
PCI provides several features to describe the device to the operating system as well decoupling the
driver from the specific platform.

17.1.3.1 Device Description
PCI uses the Vendor ID and Device ID fields in configuration space to identify the piece of
hardware. Where the Vendor ID is assigned by the PCI committee and the Device ID is assigned by
the hardware manufacture.

PCI also uses the Base Class, Sub Class and Programming Interface fields to help
identify the operating system driver.

The I2C protocol stack uses the vendor GUID associated with the I2C device to identify the UEFI

driver. This GUID is supplied by the silicon vendor or third party I2C driver writer to the platform

integrator and gets included in the I2C platform driver. The EFI_I2C_ENUMERATE_PROTOCOL

provides this GUID to the I2C bus driver during the I2C bus enumeration.

The driver binding protocol’s Supported() routine of the third party I2C device driver looks for
controllers which have the EFI_I2C_IO_PROTOCOL and have a match for the vendor GUID.

17.1.3.2 Hardware Features and Workarounds
PCI provides a Revision ID field to allow the driver to determine which version of hardware is
present and which features and software workarounds are necessary to support this device.

The I2C protocol stack uses the HardwareRevision field in the EFI_I2C_IO_PROTOCOL for
this same purpose. It is recommended that this value match the _HRV value in the DSDT for this

I2C device. See the Advanced Configuration and Power Interface Specification, Revision 5.0 for
the field format and the Plug and play support for I2C web-page for restriction on values.

17.1.3.3 Device Relative Addressing
PCI provides Base Address Registers (BARs) to decouple the device driver software from
the details of the platform’s PCI bus configuration. Typically, all device register references are fixed
offsets from one of the BAR addresses.

Platform Initialization Specification VOLUME 5 Standards

292 3/29/2013 Version 1.3

The I2C protocol stack provides a similar mechanism using an index into an array of slave addresses.
The silicon vendor or third party driver writer provides the structure of the array listing the major
functions to the platform integrator. An example is:

0: Accelerometer

1: Compass

The platform integrator works with the platform’s hardware designer to get the I2C slave addresses

of the I2C device and builds the array which is included in the platform specific code. During I2C

device enumeration, this array is passed to the I2C bus driver for use by the I2C IO protocol.

The third party I2C driver references the major components within the I2C device using the index

values, thus remaining platform independent. The I2C IO protocol performs the array lookup,

translating the index into an actual slave address on the I2C bus.

Most I2C devices only have a single I2C slave address and thus the third party I2C device driver will

only use index zero (0). Also depending upon the I2C device architecture, the silicon vendor or third

party I2C device writer may choose to write multiple drivers, each supporting a single I2C slave
address.

17.1.4 Hot Plug Support

I2C protocol stack enables the platform specific code to support hot-plug with the following
algorithm:

1. Describe all possible devices on all possible busses, including the hot-plug devices.

2. The platform specific code detects hot-plug events: Add and Remove

3. For a removal event:

• The platform specific code opens the EFI_I2C_IO_PROTOCOL on the hot-plug device’s
handle exclusively. This operation tears down any upper layer protocols on this handle.
Note that the open request may fail if I/O is pending in the lower protocols.

• When the step above fails, delay below TPL_NOTIFY to allow the current I

• 2C transaction complete and then retry until the open is successful

• After the open is successful, the platform specific code may use the I

• 2C IO protocol to perform I2C transactions for device probing.

4. For an add event:

• The platform specific code waits for completion any outstanding I/O that the platform
specific code initiated on the hot-plug I2C device.

• The platform specific code closes the EFI_I2C_IO_PROTOCOL

• The platform specific code issues a ConnectController() on the hot-plug device’s
handle. This causes the protocol stack which uses the hot-plug device to be reloaded.

I2C Protocol Stack

Version 1.3 3/29/2013 293

17.2 DXE Code definitions

The I2C protocol stack consists of the following protocols:

• EFI_I2C_IO_PROTOCOL – Third party silicon vendors use this protocol to access their I2C

device. This protocol enables a driver or application to perform I/O transactions to a single I2C

device independent of the I2C bus configuration.

• EFI_I2C_HOST_PROTOCOL – The I2C bus driver uses this protocol to produce the

EFI_I2C_IO_PROTOCOL that provides access a device on the I2C bus.

• EFI_I2C_MASTER_PROTOCOL – The I2C host protocol uses this protocol to manipulate the

I2C host controller and perform transactions as a master on the I2C bus.

• EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL – The I2C host protocol

uses this protocol to request the proper state for the switches and multiplexers in the I2C bus and

set the I2C clock frequency.

• EFI_I2C_ENUMERATE_PROTOCOL – The I2C bus driver uses this protocol to enumerate the

devices on the I2C bus, getting the bus configuration and an array of slave addresses for each of

the I2C devices.

The following sections describe these protocols in detail.

17.2.1 I2C Master Protocol

EFI_I2C_MASTER_PROTOCOL

Summary
This protocol manipulates the I2C host controller to perform transactions as a master on the I2C bus
using the current state of any switches or multiplexers in the I2C bus.

GUID
#define EFI_I2C_MASTER_PROTOCOL_GUID \
{ 0xcd72881f, 0x45b5, 0x4feb, { 0x98, 0xc8, 0x31, 0x3d, \
0xa8, 0x11, 0x74, 0x62 }}

Platform Initialization Specification VOLUME 5 Standards

294 3/29/2013 Version 1.3

Protocol Interface Structure

typedef struct _EFI_I2C_MASTER_PROTOCOL {
 EFI_I2C_MASTER_PROTOCOL_SET_BUS_FREQUENCY SetBusFrequency;
 EFI_I2C_MASTER_PROTOCOL_RESET Reset;
 EFI_I2C_MASTER_PROTOCOL_START_REQUEST StartRequest;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES
*I2cControllerCapabilities;
} EFI_I2C_MASTER_PROTOCOL;

Parameters
SetBusFrequency

Set the clock frequency for the I2C bus.

Reset

Reset the I2C host controller.

StartRequest

Start an I2C transaction in master mode on the host controller.

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Description

The EFI_I2C_MASTER_PROTOCOL is typically used by the I2C host protocol to perform

transactions on the I2C bus. This protocol may also be used to configure the I2C clock frequency

and use I2C transactions to set the state of switches and multiplexers in the I2C bus.

Related Definitions

A 10-bit slave address is or’ed with the following value enabling the I2C protocol stack to address
the duplicated address space between 0 and 127 in 10-bit mode.

0 7‐bit Slave AddressReserved (Must Be Zero)

78 030 31

1 10‐bit Slave AddressReserved (Must Be Zero)

9 10 030 31

I2C Protocol Stack

Version 1.3 3/29/2013 295

#define I2C_ADDRESSING_10_BIT 0x80000000

The I2C protocol stack uses the EFI_I2C_REQUEST_PACKET structure to describe I2C

transactions on the I2C bus. The EFI_I2C_OPERATION describes a portion of the I2C transaction.
The transaction starts with a start bit followed by the first operation in the operation array.
Subsequent operations are separated with repeated start bits and the last operation is followed by a
stop bit which concludes the transaction.

typedef struct {
 UINTN OperationCount;
 EFI_I2C_OPERATION Operation[];
} EFI_I2C_REQUEST_PACKET;

Parameters
OperationCount

Number of elements in the operation array.

Operation

Description of the I2C operation

Description
The EFI_I2C_REQUEST_PACKET describes a single I2C transaction. The transaction starts with
a start bit followed by the first operation in the operation array. Subsequent operations are separated
with repeated start bits and the last operation is followed by a stop bit which concludes the
transaction. Each operation is described by one of the elements in the Operation array.

typedef struct {
 UINT32 Flags;
 UINT32 LengthInBytes;
 UINT8 *Buffer;
} EFI_I2C_OPERATION;

Parameters
Flags

Flag bits qualify the I2C operation.

Flag Bits:

Platform Initialization Specification VOLUME 5 Standards

296 3/29/2013 Version 1.3

///
/// Define the I2C flags
///
/// I2C read operation when set
#define I2C_FLAG_READ 0x00000001

///
/// Define the flags for SMBus operation
///
/// The following flags are also present in only the first I2C operation
/// and are ignored when present in other operations. These flags
/// describe a particular SMB transaction as shown in the following table.
///

/// SMBus operation
#define I2C_FLAG_SMBUS_OPERATION 0x00010000

/// SMBus block operation
/// The flag I2C_FLAG_SMBUS_BLOCK causes the I2C master protocol to update
/// the LengthInBytes field of the operation in the request packet with
/// the actual number of bytes read or written. These values are only
/// valid when the entire I2C transaction is successful.
/// This flag also changes the LengthInBytes meaning to be: A maximum
/// of LengthInBytes is to be read from the device. The first byte
/// read contains the number of bytes remaining to be read, plus an
/// optional PEC value.
#define I2C_FLAG_SMBUS_BLOCK 0x00020000

/// SMBus process call operation
#define I2C_FLAG_SMBUS_PROCESS_CALL 0x00040000

/// SMBus use packet error code (PEC)
/// Note that the I2C master protocol may clear the I2C_FLAG_SMBUS_PEC bit
/// to indicate that the PEC value was checked by the hardware and is
/// not appended to the returned read data.
///
#define I2C_FLAG_SMBUS_PEC 0x00080000

//--
///
/// QuickRead: OperationCount=1,
/// LengthInBytes=0, Flags=I2C_FLAG_READ
/// QuickWrite: OperationCount=1,
/// LengthInBytes=0, Flags=0
///
///
/// ReceiveByte: OperationCount=1,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_READ
/// ReceiveByte+PEC: OperationCount=1,
/// LengthInBytes=2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_READ
/// | I2C_FLAG_SMBUS_PEC
///
///

I2C Protocol Stack

Version 1.3 3/29/2013 297

/// SendByte: OperationCount=1,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// SendByte+PEC: OperationCount=1,
/// LengthInBytes=2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ReadDataByte: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// LengthInBytes=1, Flags=I2C_FLAG_READ
/// ReadDataByte+PEC: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=2, Flags=I2C_FLAG_READ
///
///
/// WriteDataByte: OperationCount=1,
/// LengthInBytes=2, Flags=I2C_FLAG_SMBUS_OPERATION
/// WriteDataByte+PEC: OperationCount=1,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ReadDataWord: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// LengthInBytes=2, Flags=I2C_FLAG_READ
/// ReadDataWord+PEC: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=3, Flags=I2C_FLAG_READ
///
///
/// WriteDataWord: OperationCount=1,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// WriteDataWord+PEC: OperationCount=1,
/// LengthInBytes=4, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ReadBlock: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_BLOCK
/// LengthInBytes=33, Flags=I2C_FLAG_READ
/// ReadBlock+PEC: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_BLOCK
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=34, Flags=I2C_FLAG_READ
///
///
/// WriteBlock: OperationCount=1,
/// LengthInBytes=N+2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_BLOCK
/// WriteBlock+PEC: OperationCount=1,
/// LengthInBytes=N+3, Flags=I2C_FLAG_SMBUS_OPERATION

Platform Initialization Specification VOLUME 5 Standards

298 3/29/2013 Version 1.3

/// | I2C_FLAG_SMBUS_BLOCK
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ProcessCall: OperationCount=2,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// LengthInBytes=2, Flags=I2C_FLAG_READ
/// ProcessCall+PEC: OperationCount=2,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=3, Flags=I2C_FLAG_READ
///
///
/// BlkProcessCall: OperationCount=2,
/// LengthInBytes=N+2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// | I2C_FLAG_SMBUS_BLOCK
/// LengthInBytes=33, Flags=I2C_FLAG_READ
/// BlkProcessCall+PEC: OperationCount=2,
/// LengthInBytes=N+2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// | I2C_FLAG_SMBUS_BLOCK
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=34, Flags=I2C_FLAG_READ
///
//--

LengthInBytes

Number of bytes to send to or receive from the I2C device. A ping (address only byte/
bytes) is indicated by setting the LengthInBytes to zero.

Buffer

Pointer to a buffer containing the data to send or to receive from the I2C device. The
Buffer must be at least LengthInBytes in size.

Description

The EFI_I2C_OPERATION describes a subset of an I2C transaction in which the I2C controller is
either sending or receiving bytes from the bus. Some transactions will consist of a single operation
while others will be two or more.

I2C Protocol Stack

Version 1.3 3/29/2013 299

Note: Some I2C controllers do not support read or write ping (address only) operation and will return
EFI_UNSUPPORTED status when these operations are requested.

Note: I2C controllers which do not support complex transactions requiring multiple repeated start bits
return EFI_UNSUPPORTED without processing any of the transaction.

typedef struct {
 UINT32 StructureSizeInBytes;
 UINT32 MaximumReceiveBytes;
 UINT32 MaximumTransmitBytes;
 UINT32 MaximumTotalBytes;
} EFI_I2C_CONTROLLER_CAPABILITIES;

Parameters
StructureSizeInBytes

Length of this data structure in bytes

MaximumReceiveBytes;

The maximum number of bytes the I2C host controller is able to receive from the I2C
bus.

MaximumTransmitBytes

The maximum number of bytes the I2C host controller is able to send on the I2C bus.

MaximumTotalBytes

The maximum number of bytes in the I2C bus transaction.

Description

The EFI_I2C_CONTROLLER_CAPABILITIES specifies the capabilities of the I2C host
controller. The StructureSizeInBytes enables variations of this structure to be identified if
there is need to extend this structure in the future.

Platform Initialization Specification VOLUME 5 Standards

300 3/29/2013 Version 1.3

EFI_I2C_MASTER_PROTOCOL.SetBusFrequency()

Summary

Set the frequency for the I2C clock line.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_MASTER_PROTOCOL_SET_BUS_FREQUENCY) (
 IN CONST EFI_I2C_MASTER_PROTOCOL *This,
 IN OUT UINTN *BusClockHertz
);

Parameters
This

Pointer to an EFI_I2C_MASTER_PROTOCOL structure.

BusClockHertz

Pointer to the requested I2C bus clock frequency in Hertz. Upon return this value

contains the actual frequency in use by the I2C controller.

Description
This routine must be called at or below TPL_NOTIFY.

The software and controller do a best case effort of using the specified frequency for the I2C bus. If

the frequency does not match exactly then the I2C master protocol selects the next lower frequency

to avoid exceeding the operating conditions for any of the I2C devices on the bus. For example if
400 KHz was specified and the controller's divide network only supports 402 KHz or 398 KHz then

the I2C master protocol selects 398 KHz. If there are not lower frequencies available, then return
EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The bus frequency was set successfully.

EFI_ALREADY_STARTED The controller is busy with another transaction.

EFI_UNSUPPORTED The controller does not support this frequency.

I2C Protocol Stack

Version 1.3 3/29/2013 301

EFI_I2C_MASTER_PROTOCOL.Reset()

Summary

Reset the I2C controller and configure it for use.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_MASTER_PROTOCOL_RESET) (
 IN CONST EFI_I2C_MASTER_PROTOCOL *This
);

Parameters
This

Pointer to an EFI_I2C_MASTER_PROTOCOL structure.

Description
This routine must be called at or below TPL_NOTIFY.

The I2C controller is reset. The caller must call SetBusFrequency() after calling Reset().

Status Codes Returned

EFI_SUCCESS The reset completed successfully.

EFI_ALREADY_STARTED The controller is busy with another transaction.

EFI_DEVICE_ERROR The reset operation failed.

Platform Initialization Specification VOLUME 5 Standards

302 3/29/2013 Version 1.3

EFI_I2C_MASTER_PROTOCOL.StartRequest()

Summary

Start an I2C transaction on the host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_MASTER_PROTOCOL_START_REQUEST) (
 IN CONST EFI_I2C_MASTER_PROTOCOL *This,
 IN UINTN SlaveAddress,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket,
 IN EFI_EVENT Event OPTIONAL,
 OUT EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_MASTER_PROTOCOL structure.

SlaveAddress

Address of the device on the I2C BUS. Set the I2C_ADDRESSING_10_BIT when
using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit

I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses.

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C
transaction.

Event

Event to signal for asynchronous transactions, NULL for synchronous transactions

I2cStatus

Optional buffer to receive the I2C transaction completion status

Description
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

This function initiates an I2C transaction on the controller. To enable proper error handling by the

I2C protocol stack, the I2C master protocol does not support queuing but instead only manages one

I2C transaction at a time. This API requires that the I2C bus is in the correct configuration for the

I2C transaction.

The transaction is performed by sending a start-bit and selecting the I2C device with the specified

I2C slave address and then performing the specified I2C operations. When multiple operations are

I2C Protocol Stack

Version 1.3 3/29/2013 303

requested they are separated with a repeated start bit and the slave address. The transaction is
terminated with a stop bit.

When Event is NULL, StartRequest operates synchronously and returns the I2C completion
status as its return value.

When Event is not NULL, StartRequest synchronously returns EFI_SUCCESS indicating that

the I2C transaction was started asynchronously. The transaction status value is returned in the buffer

pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL.
After the transaction status is returned the Event is signaled.

Note: The typical consumer of this API is the I2C host protocol. Extreme care must be taken by other
consumers of this API to prevent confusing the third party I2C drivers due to a state change at the
I2C device which the third party I2C drivers did not initiate. I2C platform specific code may use this
API within these guidelines.

Status Codes Returned

17.2.2 I2C Host Protocol

EFI_I2C_HOST_PROTOCOL

Summary

This protocol provides callers with the ability to do I/O transactions to all of the devices on the I2C
bus.

EFI_SUCCESS The asynchronous transaction was successfully started when

Event is not NULL.

EFI_SUCCESS The transaction completed successfully when Event is NULL.

EFI_ALREADY_STARTED The controller is busy with another transaction.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETE
R

RequestPacket is NULL

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR will be returned if the controller cannot

distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCE
S

Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

Platform Initialization Specification VOLUME 5 Standards

304 3/29/2013 Version 1.3

GUID
#define EFI_I2C_HOST_PROTOCOL_GUID \
{ 0xa5aab9e3, 0xc727, 0x48cd, { 0x8b, 0xbf, 0x42, 0x72, \
0x33, 0x85, 0x49, 0x48 }}

Protocol Interface Structure

typedef struct _EFI_I2C_HOST_PROTOCOL {
 EFI_I2C_HOST_PROTOCOL_QUEUE_REQUEST QueueRequest;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES
*I2cControllerCapabilities;
} EFI_I2C_HOST_PROTOCOL;

Parameters
QueueRequest

Queue an transaction for execution on the I2C bus

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Description
The I2C bus driver uses the services of the EFI_I2C_HOST_PROTOCOL to produce an instance of

the EFI_I2C_IO_PROTOCOL for each I2C device on an I2C bus.

The EFI_I2C_HOST_PROTOCOL exposes an asynchronous interface to callers to perform

transactions to any device on the I2C bus. Internally, the I2C host protocol manages the flow of the

I2C transactions to the host controller, keeping them in FIFO order. Prior to each transaction, the

I2C host protocol ensures that the switches and multiplexers are properly configured. The I2C host
protocol then starts the transaction on the host controller using the
EFI_I2C_MASTER_PROTOCOL.

I2C Protocol Stack

Version 1.3 3/29/2013 305

EFI_I2C_HOST_PROTOCOL.QueueRequest()

Summary

Queue an I2C transaction for execution on the I2C controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_HOST_PROTOCOL_QUEUE_REQUEST) (
 IN CONST EFI_I2C_HOST_PROTOCOL *This,
 IN UINTN I2cBusConfiguration,
 IN UINTN SlaveAddress,
 IN EFI_EVENT Event OPTIONAL,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket,
 OUT EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_HOST_PROTOCOL structure.

I2cBusConfiguration

I2C bus configuration to access the I2C device

SlaveAddress

Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when
using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit

I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses.

Event

Event to signal for asynchronous transactions, NULL for synchronous transactions

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction

I2cStatus

Optional buffer to receive the I2C transaction completion status

Description

Queue an I2C transaction for execution on the I2C controller.

This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

The I2C host protocol uses the concept of I2C bus configurations to describe the I2C bus. An I2C bus

configuration is defined as a unique setting of the multiplexers and switches in the I2C bus which

Platform Initialization Specification VOLUME 5 Standards

306 3/29/2013 Version 1.3

enable access to one or more I2C devices. When using a switch to divide a bus, due to bus frequency

differences, the I2C bus configuration management protocol defines an I2C bus configuration for the

I2C devices on each side of the switch. When using a multiplexer, the I2C bus configuration

management defines an I2C bus configuration for each of the selector values required to control the

multiplexer. See Figure 1 in the I2C -bus specification and user manual for a complex I2C bus
configuration.

The I2C host protocol processes all transactions in FIFO order. Prior to performing the transaction,

the I2C host protocol calls EnableI2cBusConfiguration to reconfigure the switches and

multiplexers in the I2C bus enabling access to the specified I2C device. The

EnableI2cBusConfiguration also selects the I2C bus frequency for the I2C device. After the I2C bus

is configured, the I2C host protocol calls the I2C master protocol to start the I2C transaction.

If the I2C host protocol has pending I2C transactions queued when the driver binding Stop()

routine is called then the I2C host protocol completes all of the pending I2C transactions by returning
EFI_ABORTED status. This notifies the upper layers allowing them to take corrective action or
prepare to stop.

When Event is NULL, QueueRequest() operates synchronously and returns the I2C completion
status as its return value.

When Event is not NULL, QueueRequest() synchronously returns EFI_SUCCESS indicating

that the asynchronously I2C transaction was queued. The values above are returned in the buffer

pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL.

I2C Protocol Stack

Version 1.3 3/29/2013 307

Status Codes Returned

17.2.3 I2C I/O Protocol

EFI_I2C_IO_PROTOCOL

Summary

The EFI I2C I/O protocol enables the user to manipulate a single I2C device independent of the host

controller and I2C design.

EFI_SUCCESS The asynchronous transaction was successfully queued when

Event is not NULL.

EFI_SUCCESS The transaction completed successfully when Event is NULL.

EFI_ABORTED The request did not complete because the driver binding Stop()
routine was called.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETE
R

RequestPacket is NULL

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_NO_MAPPING Invalid I2cBusConfiguration value

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR will be returned if the controller cannot

distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCE
S

Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

Platform Initialization Specification VOLUME 5 Standards

308 3/29/2013 Version 1.3

GUID
#define EFI_I2C_IO_PROTOCOL_GUID \
{ 0xb60a3e6b, 0x18c4, 0x46e5, { 0xa2, 0x9a, 0xc9, 0xa1, \
0x06, 0x65, 0xa2, 0x8e }}

Protocol Interface Structure

typedef struct _EFI_I2C_IO_PROTOCOL {
 EFI_I2C_IO_PROTOCOL_QUEUE_REQUEST QueueRequest;
 CONST EFI_GUID *DeviceGuid;
 UINT32 DeviceIndex;
 UINT32 HardwareRevision;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES
*I2cControllerCapabilities;
} EFI_I2C_IO_PROTOCOL;

Parameters
QueueRequest

Queue an I2C transaction for execution on the I2C device.

DeviceGuid

Unique value assigned by the silicon manufacture or the third party I2C driver writer

for the I2C part. This value logically combines both the manufacture name and the

I2C part number into a single value specified as a GUID.

DeviceIndex

Unique ID of the I2C part within the system

HardwareRevision

Hardware revision - ACPI _HRV value. See the Advanced Configuration and Power
Interface Specification, Revision 5.0 for the field format and the Plug and play
support for I2C web-page for restriction on values.

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Description

• The I2C IO protocol enables access to a specific device on the I2C bus.

• Each I2C device is identified uniquely in the system by the tuple
DeviceGuid:DeviceIndex. The DeviceGuid represents the manufacture and part

number and is provided by the silicon vendor or the third party I2C device driver writer. The
DeviceIndex identifies the part within the system by using a unique number and is created by the
board designer or the writer of the EFI_I2C_ENUMERATE_PROTOCOL.

I2C Protocol Stack

Version 1.3 3/29/2013 309

I2C slave addressing is abstracted to validate addresses and limit operation to the specified I2C

device. The third party providing the I2C device support provides an ordered list of slave addresses

for the I2C device required to implement the EFI_I2C_ENUMERATE_PROTOCOL. The order of
the list must be preserved.

Platform Initialization Specification VOLUME 5 Standards

310 3/29/2013 Version 1.3

 EFI_I2C_IO_PROTOCOL.QueueRequest()

Summary

Queue an I2C transaction for execution on the I2C device.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_I2C_IO_PROTOCOL_QUEUE_REQUEST) (
 IN CONST EFI_I2C_IO_PROTOCOL *This,
 IN UINTN SlaveAddressIndex,
 IN EFI_EVENT Event OPTIONAL,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket,
 OUT EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_IO_PROTOCOL structure.

SlaveAddressIndex

Index value into an array of slave addresses for the I2C device. The values in the array

are specified by the board designer, with the third party I2C device driver writer
providing the slave address order.

For devices that have a single slave address, this value must be zero. If the I2C device

uses more than one slave address then the third party (upper level) I2C driver writer
needs to specify the order of entries in the slave address array.

Event

Event to signal for asynchronous transactions, NULL for synchronous transactions

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction

I2cStatus

Optional buffer to receive the I2C transaction completion status

Description
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

This routine queues an I2C transaction to the I2C controller for execution on the I2C bus.

I2C Protocol Stack

Version 1.3 3/29/2013 311

When Event is NULL, QueueRequest() operates synchronously and returns the I2C
completion status as its return value.

When Event is not NULL, QueueRequest() synchronously returns EFI_SUCCESS indicating

that the asynchronous I2C transaction was queued. The values above are returned in the buffer

pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL.

Status Codes Returned

17.2.4 I2C Bus Configuration Management Protocol

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL

Summary

The EFI I2C bus configuration management protocol provides platform specific services that allow

the I2C host protocol to reconfigure the switches and multiplexers and set the clock frequency for the

I2C bus. This protocol also enables the I2C host protocol to reset an I2C device which may be

locking up the I2C bus by holding the clock or data line low.

EFI_SUCCESS The asynchronous transaction was successfully queued when

Event is not NULL.

EFI_SUCCESS The transaction completed successfully when Event is NULL.

EFI_ABORTED The request did not complete because the driver binding Stop()

routine was called.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETE
R

RequestPacket is NULL

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_NO_MAPPING The EFI_I2C_HOST_PROTOCOL could not set the bus

configuration required to access this I2C device.

EFI_NO_RESPONSE The I2C device is not responding to the slave address selected by

SlaveAddressIndex. EFI_DEVICE_ERROR will be

returned if the controller cannot distinguish when the NACK
occurred.

EFI_OUT_OF_RESOURCE
S

Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

Platform Initialization Specification VOLUME 5 Standards

312 3/29/2013 Version 1.3

GUID
#define EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL_GUID \
{ 0x55b71fb5, 0x17c6, 0x410e, { 0xb5, 0xbd, 0x5f, 0xa2, \
0xe3, 0xd4, 0x46, 0x6b }}

Protocol Interface Structure
typedef struct _EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL {

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL_ENABLE_I2C_BUS_CON
FIGURATION EnableI2cBusConfiguration;
} EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL;

Parameters
EnableI2cBusConfiguration

Enable an I2C bus configuration for use.

Description

The I2C protocol stack uses the concept of an I2C bus configuration as a way to describe a particular

state of the switches and multiplexers in the I2C bus.

A simple I2C bus does not have any multiplexers or switches is described to the I2C protocol stack

with a single I2C bus configuration which specifies the I2C bus frequency.

An I2C bus with switches and multiplexers use an I2C bus configuration to describe each of the

unique settings for the switches and multiplexers and the I2C bus frequency. However the I2C bus

configuration management protocol only needs to define the I2C bus configurations that the software
uses, which may be a subset of the total.

The I2C bus configuration description includes a list of I2C devices which may be accessed when

this I2C bus configuration is enabled. I2C devices before a switch or multiplexer must be included in

one I2C bus configuration while I2C devices after a switch or multiplexer are on another I2C bus
configuration.

The I2C bus configuration management protocol is an optional protocol. When the I2C bus

configuration protocol is not defined the I2C host protocol does not start and the I2C master protocol

may be used for other purposes such as SMBus traffic. When the I2C bus configuration protocol is

available, the I2C host protocol uses the I2C bus configuration protocol to call into the platform

specific code to set the switches and multiplexers and set the maximum I2C bus frequency.

The platform designers determine the maximum I2C bus frequency by selecting a frequency which

supports all of the I2C devices on the I2C bus for the setting of switches and multiplexers. The

platform designers must validate this against the I2C device data sheets and any limits of the I2C
controller or bus length.

I2C Protocol Stack

Version 1.3 3/29/2013 313

During I2C device enumeration, the I2C bus driver retrieves the I2C bus configuration that must be

used to perform I2C transactions to each I2C device. This I2C bus configuration value is passed into

the I2C host protocol to identify the I2C bus configuration required to access a specific I2C device.

The I2C host protocol calls EnableBusConfiguration() to set the switches and multiplexers

in the I2C bus and the I2C clock frequency. The I2C host protocol may optimize calls to

EnableBusConfiguration() by only making the call when the I2C bus configuration value

changes between I2C requests.

When I2C transactions are required on the same I2C bus to change the state of multiplexers or

switches, the I2C master protocol must be used to perform the necessary I2C transactions.

It is up to the platform specific code to choose the proper I2C bus configuration when

ExitBootServices() is called. Some operating systems are not able to manage the I2C bus

configurations and must use the I2C bus configuration that is established by the platform firmware
before ExitBootServices() returns.

Platform Initialization Specification VOLUME 5 Standards

314 3/29/2013 Version 1.3

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.
EnableI2cBusConfiguration()

Summary

Enable access to an I2C bus configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL_ENABLE_I2C_BUS_CO
NFIGURATION) (
 IN CONST EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL *This,
 IN UINTN I2cBusConfiguration,
 IN EFI_EVENT Event OPTIONAL,
 IN EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL
structure.

I2cBusConfiguration

Index of an I2C bus configuration. All values in the range of zero to N-1 are valid

where N is the total number of I2C bus configurations for an I2C bus.

Event

Event to signal when the transaction is complete

I2cStatus

Buffer to receive the transaction status.

Description
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

Reconfigure the switches and multiplexers in the I2C bus to enable access to a specific I2C bus

configuration. Also select the maximum clock frequency for this I2C bus configuration.

This routine uses the I2C Master protocol to perform I2C transactions on the local bus. This

eliminates any recursion in the I2C stack for configuration transactions on the same I2C bus. This

works because the local I2C bus is idle while the I2C bus configuration is being enabled.

If I2C transactions must be performed on other I2C busses, then the EFI_I2C_HOST_PROTOCOL,

the EFI_I2C_IO_PROTCOL, or a third party I2C driver interface for a specific device must be

I2C Protocol Stack

Version 1.3 3/29/2013 315

used. This requirement is because the I2C host protocol controls the flow of requests to the I2C

controller. Use the EFI_I2C_HOST_PROTOCOL when the I2C device is not enumerated by the
EFI_I2C_ENUMERATE_PROTOCOL. Use a protocol produced by a third party driver when it is
available or the EFI_I2C_IO_PROTOCOL when the third party driver is not available but the
device is enumerated with the EFI_I2C_ENUMERATE_PROTOCOL.

When Event is NULL, EnableI2cBusConfiguration operates synchronously and returns the

I2C completion status as its return value. The values returned from
EnableI2cBusConfiguration are:

Status Codes Returned

17.2.5 I2C Enumerate Protocol

EFI_I2C_ENUMERATE_PROTOCOL

Summary

Support the enumeration of the I2C devices.

GUID
#define EFI_I2C_ENUMERATE_PROTOCOL_GUID \
{ 0xda8cd7c4, 0x1c00, 0x49e2, { 0x80, 0x3e, 0x52, 0x14, \
0xe7, 0x01, 0x89, 0x4c }}

Protocol Interface Structure
typedef struct _EFI_I2C_ENUMERATE_PROTOCOL {
 EFI_I2C_ENUMERATE_PROTOCOL_ENUMERATE Enumerate;
 EFI_I2C_ENUMERATE_PROTOCOL_GET_BUS_FREQUENCY GetBusFrequency;
} EFI_I2C_ENUMERATE_PROTOCOL;

Parameters
Enumerate

Traverse the set of I2C devices on an I2C bus. This routine returns the next I2C device

on an I2C bus.

GetBusFrequency

Get the requested I2C bus frequency for a specified bus configuration.

EFI_SUCCESS The asynchronous bus configuration request was successfully

started when Event is not NULL.

EFI_SUCCESS The bus configuration request completed successfully when

Event is NULL.

EFI_DEVICE_ERROR The bus configuration failed.

EFI_NO_MAPPING Invalid I2cBusConfiguration value

Platform Initialization Specification VOLUME 5 Standards

316 3/29/2013 Version 1.3

Description

The I2C bus driver uses this protocol to enumerate the devices on the I2C bus.

Related Definitions
typedef struct {
 CONST EFI_GUID *DeviceGuid;
 UINT32 DeviceIndex;
 UINT32 HardwareRevision;
 UINT32 I2cBusConfiguration;
 UINT32 SlaveAddressCount;
 CONST UINT32 *SlaveAddressArray;
} EFI_I2C_DEVICE;

Parameters
DeviceGuid

Unique value assigned by the silicon manufacture or the third party I2C driver writer

for the I2C part. This value logically combines both the manufacture name and the

I2C part number into a single value specified as a GUID.

DeviceIndex

Unique ID of the I2C part within the system

HardwareRevision

Hardware revision - ACPI _HRV value. See the Advanced Configuration and Power
Interface Specification, Revision 5.0 for the field format and the Plug and play
support for I2C web-page for restriction on values.

I2cBusConfiguration

I2C bus configuration for the I2C device

SlaveAddressCount

Number of slave addresses for the I2C device.

SlaveAddressArray

Pointer to the array of slave addresses for the I2C device.

Description
The EFI_I2C_ENUMERATE_PROTOCOL uses the EFI_I2C_DEVICE to describe the platform

specific details associated with an I2C device. This description is passed to the I2C bus driver during

enumeration where it is made available to the third party I2C device driver via the
EFI_I2C_IO_PROTOCOL.

I2C Protocol Stack

Version 1.3 3/29/2013 317

EFI_I2C_ENUMERATE_PROTOCOL.Enumerate()

Summary

Enumerate the I2C devices

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_ENUMERATE_PROTOCOL_ENUMERATE) (
 IN CONST EFI_I2C_ENUMERATE_PROTOCOL *This,
 IN OUT CONST EFI_I2C_DEVICE **Device
);

Parameters
This

Pointer to an EFI_I2C_ENUMERATE_PROTOCOL structure.

Device

Pointer to a buffer containing an EFI_I2C_DEVICE structure. Enumeration is
started by setting the initial EFI_I2C_DEVICE structure pointer to NULL. The

buffer receives an EFI_I2C_DEVICE structure pointer to the next I2C device.

Description

This function enables the caller to traverse the set of I2C devices on an I2C bus.

Status Codes Returned

EFI_SUCCESS The platform data for the next device on the I2C bus was returned
successfully.

EFI_INVALID_PARAMETER Device is NULL

EFI_NO_MAPPING *Device does not point to a valid EFI_I2C_DEVICE

structure returned in a previous call Enumerate().

Platform Initialization Specification VOLUME 5 Standards

318 3/29/2013 Version 1.3

EFI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency()

Summary

Get the requested I2C bus frequency for a specified bus configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_ENUMERATE_PROTOCOL_GET_BUS_FREQUENCY) (
 IN CONST EFI_I2C_ENUMERATE_PROTOCOL *This,
 IN UINTN I2cBusConfiguration,
 OUT UINTN *BusClockHertz
);

Parameters
This

Pointer to an EFI_I2C_ENUMERATE_PROTOCOL structure.

I2cBusConfiguration

I2C bus configuration to access the I2C device

BusClockHertz

Pointer to a buffer to receive the I2C bus clock frequency in Hertz

Description

This function returns the requested I2C bus clock frequency for the I2cBusConfiguration.
This routine is provided for diagnostic purposes and is meant to be called after calling Enumerate
to get the I2cBusConfiguration value.

Status Codes Returned

17.3 PEI Code definitions

For the Pre-EFI Initialization environment a subset of the I2C stack is defined to support basic
hardware initialization in the PEI phase. The EFI_PEI_I2C_MASTER PPI is defined to

standardize access to the I2C controller.

EFI_SUCCESS The I2C bus frequency was returned successfully.

EFI_INVALID_PARAMETER BusClockHertz was NULL

EFI_NO_MAPPING Invalid I2cBusConfiguration value

I2C Protocol Stack

Version 1.3 3/29/2013 319

17.3.1 I2C Master PPI

EFI_PEI_I2C_MASTER

Summary

This PPI manipulates the I2C host controller to perform transactions as a master on the I2C bus using

the current state of any switches or multiplexers in the I2C bus.

GUID
#define EFI_PEI_I2C_MASTER_PPI_GUID \
{ 0xb3bfab9b, 0x9f9c, 0x4e8b, { 0xad, 0x37, 0x7f, 0x8c, \
0x51, 0xfc, 0x62, 0x80 }}

PEIM-to-PEIM Interface Structure
typedef struct _EFI_PEI_I2C_MASTER_PPI {
 EFI_PEI_I2C_MASTER_PPI_SET_BUS_FREQUENCY SetBusFrequency;
 EFI_PEI_I2C_MASTER_PPI_RESET Reset;
 EFI_PEI_I2C_MASTER_PPI_START_REQUEST StartRequest;
 CONST EFI_PEI_I2C_CONTROLLER_CAPABILITIES *
I2cControllerCapabilities;
 EFI_GUID Identifier;
} EFI_PEI_I2C_MASTER_PPI;

Parameters
SetBusFrequency

Set the clock frequency in Hertz for the I2C bus.

Reset

Reset the I2C host controller.

StartRequest

Start an I2C transaction in master mode on the host controller.

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Identifier

Identifier which uniquely identifies thisI2C controller in the system.

Description

The EFI_PEI_I2C_MASTER PPI enables the platform code to perform transactions on the I2C
bus.

Platform Initialization Specification VOLUME 5 Standards

320 3/29/2013 Version 1.3

EFI_PEI_I2C_MASTER_PPI.SetBusFrequency()

Summary

Set the frequency for the I2C clock line.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_MASTER_PPI_SET_BUS_FREQUENCY) (
 IN EFI_PEI_I2C_MASTER *This,
 IN UINTN *BusClockHertz
);

Parameters
This

Pointer to an EFI_PEI_I2C_MASTER_PPI structure.

BusClockHertz

Pointer to the requested I2C bus clock frequency in Hertz. Upon return this value

contains the actual frequency in use by the I2C controller.

Description

The software and controller do a best case effort of using the specified frequency for the I2C bus. If

the frequency does not match exactly then the I2C master protocol selects the next lower frequency

to avoid exceeding the operating conditions for any of the I2C devices on the bus. For example if
400 KHz was specified and the controller's divide network only supports 402 KHz or 398 KHz then
the controller would be set to 398 KHz. If there are no lower frequencies available, then return
EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The bus frequency was set successfully.

EFI_INVALID_PARAMETE
R

BusClockHertz is NULL

EFI_UNSUPPORTED The controller does not support this frequency.

I2C Protocol Stack

Version 1.3 3/29/2013 321

EFI_PEI_I2C_MASTER_PPI.Reset()

Summary

Reset the I2C controller and configure it for use.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_MASTER_PPI_RESET) (
 IN CONST EFI_PEI_I2C_MASTER *This
);

Parameters
This

Pointer to an EFI_PEI_I2C_MASTER_PPI structure.

Description

The I2C controller is reset. The caller must call SetBusFrequency() after calling Reset().

Status Codes Returned

EFI_SUCCESS The reset completed successfully.

EFI_DEVICE_ERROR The reset operation failed.

Platform Initialization Specification VOLUME 5 Standards

322 3/29/2013 Version 1.3

EFI_PEI_I2C_MASTER_PPI.StartRequest()

Summary

Start an I2C transaction on the host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_MASTER_PPI_START_REQUEST) (
 IN CONST EFI_PEI_I2C_MASTER *This,
 IN UINTN SlaveAddress,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket
);

Parameters
This

Pointer to an EFI_PEI_I2C_MASTER_PPI structure.

SlaveAddress

Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when
using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit

I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses.

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C
transaction.

Description

This function initiates an I2C transaction on the controller.

The transaction is performed by sending a start-bit and selecting the I2C device with the specified

I2C slave address and then performing the specified I2C operations. When multiple operations are
requested they are separated with a repeated start bit and the slave address. The transaction is
terminated with a stop bit. When the transaction completes, the status value is returned.

I2C Protocol Stack

Version 1.3 3/29/2013 323

Status Codes Returned

§

EFI_SUCCESS The transaction completed successfully.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETER RequestPacket is NULL

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR will be returned if the controller cannot

distinguish when the NACK occurred.

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_OUT_OF_RESOURCES Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

Platform Initialization Specification VOLUME 5 Standards

324 3/29/2013 Version 1.3

Version 1.3 3/29/2013 325

Appendix A
Error Codes

A.1 Error Code Definitions
For 32-bit architecture:

#define EFI_INTERRUPT_PENDING 0xa0000000
#define EFI_WARN_INTERRUPT_SOURCE_PENDING 0x20000000
#define EFI_WARN_INTERRUPT_SOURCE_QUIESCED 0x20000001

For 64-bit architecture:
#define EFI_INTERRUPT_PENDING 0xa000000000000000
#define EFI_WARN_INTERRUPT_SOURCE_PENDING 0x2000000000000000
#define EFI_WARN_INTERRUPT_SOURCE_QUIESCED 0x2000000000000001

Platform Initialization Specification VOLUME 5 Standards

326 3/29/2013 Version 1.3

	Revision History
	Contents
	Figures
	Tables
	1 Platform Initialization Standards Introduction
	1.1 Overview
	1.2 Terms Used in this Document
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Protocol Descriptions
	1.3.3 Procedure Descriptions
	1.3.4 Pseudo-Code Conventions
	1.3.5 Typographic Conventions

	1.4 Requirements

	2 SMBus Host Controller Design Discussion
	2.1 SMBus Host Controller Overview
	2.2 Related Information
	2.3 SMBus Host Controller Protocol Terms
	2.4 SMBus Host Controller Protocol Overview

	3 SMBus Host Controller Code Definitions
	3.1 Introduction
	3.2 SMBus Host Controller Protocol
	EFI_SMBUS_HC_PROTOCOL
	EFI_SMBUS_HC_PROTOCOL.Execute()
	EFI_SMBUS_HC_PROTOCOL.ArpDevice()
	EFI_SMBUS_HC_PROTOCOL.GetArpMap()
	EFI_SMBUS_HC_PROTOCOL.Notify()

	4 SMBus Design Discussion
	4.1 Introduction
	4.2 Target Audience
	4.3 Related Information
	4.4 PEI SMBus PPI Overview

	5 SMBus PPI Code Definitions
	5.1 Introduction
	5.2 PEI SMBus PPI
	EFI_PEI_SMBUS2_PPI
	EFI_PEI_SMBUS2_PPI.Execute()
	EFI_PEI_SMBUS2_PPI.ArpDevice()
	EFI_PEI_SMBUS2_PPI.GetArpMap()
	EFI_PEI_SMBUS2_PPI.Notify()

	6 SMBIOS Protocol
	EFI_SMBIOS_PROTOCOL
	EFI_SMBIOS_PROTOCOL.Add()
	EFI_SMBIOS_PROTOCOL.UpdateString()
	EFI_SMBIOS_PROTOCOL.Remove()
	EFI_SMBIOS_PROTOCOL.GetNext()

	7 IDE Controller
	7.1 IDE Controller Overview
	7.2 Design Discussion
	7.2.1 IDE Controller Initialization Protocol Overview
	7.2.2 IDE Controller Initialization Protocol References
	7.2.3 Background
	7.2.4 Simplifying the Design of IDE Drivers
	7.2.5 Configuring Devices on the IDE Bus
	7.2.6 Sample Implementation for a Simple PCI IDE Controller

	7.3 Code Definitions
	EFI_IDE_CONTROLLER_INIT_PROTOCOL
	EFI_IDE_CONTROLLER_INIT_PROTOCOL
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()
	7.3.1 IDE Disk Information Protocol
	EFI_DISK_INFO_PROTOCOL
	EFI_DISK_INFO_PROTOCOL.Interface
	EFI_DISK_INFO_PROTOCOL.Inquiry()
	EFI_DISK_INFO_PROTOCOL.Identify()
	EFI_DISK_INFO_PROTOCOL.SenseData()
	EFI_DISK_INFO_PROTOCOL.WhichIde()

	8 S3 Resume
	8.1 S3 Overview
	8.2 Goals
	8.3 Requirements
	8.4 Assumptions
	8.4.1 Multiple Phases of Platform Initialization
	8.4.2 Process of Platform Initialization

	8.5 Restoring the Platform
	8.5.1 Phases in the S3 Resume Boot Path

	8.6 PEI Boot Script Executer PPI
	EFI_PEI_S3_RESUME2_PPI
	EFI_PEI_S3_RESUME_PPI. S3RestoreConfig()

	8.7 S3 Save State Protocol
	EFI_S3_SAVE_STATE_PROTOCOL
	8.7.1 Save State Write
	EFI_S3_SAVE_STATE_PROTOCOL.Write()
	EFI_BOOT_SCRIPT_IO_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_POLL_OPCODE
	EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_POLL_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE
	EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE
	EFI_BOOT_SCRIPT_STALL_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE
	EFI_BOOT_SCRIPT_INFORMATION_OPCODE

	8.7.2 Save State Insert
	EFI_S3_SAVE_STATE_PROTOCOL.Insert()

	8.7.3 Save State Label
	EFI_S3_SAVE_STATE_PROTOCOL.Label()

	8.7.4 Save State Compare
	EFI_S3_SAVE_STATE_PROTOCOL.Compare()

	8.8 S3 SMM Save State Protocol
	EFI_S3_SMM_SAVE_STATE_PROTOCOL

	9 ACPI System Description Table Protocol
	9.1 EFI_ACPI_SDT_PROTOCOL
	EFI_ACPI_SDT_PROTOCOL.GetAcpiTable()
	EFI_ACPI_SDT_PROTOCOL.RegisterNotify()
	EFI_ACPI_SDT_PROTOCOL.Open()
	EFI_ACPI_SDT_PROTOCOL.OpenSdt()
	EFI_ACPI_SDT_PROTOCOL.Close()
	EFI_ACPI_SDT_PROTOCOL.GetChild()
	EFI_ACPI_SDT_PROTOCOL.GetOption()
	EFI_ACPI_SDT_PROTOCOL.SetOption()
	EFI_ACPI_SDT_PROTOCOL.FindPath()

	10 PCI Host Bridge
	10.1 PCI Host Bridge Overview
	10.2 PCI Host Bridge Design Discussion
	10.3 PCI Host Bridge Resource Allocation Protocol
	10.3.1 PCI Host Bridge Resource Allocation Protocol Overview
	10.3.2 Host Bus Controllers
	10.3.3 Producing the PCI Host Bridge Resource Allocation Protocol
	10.3.4 Required PCI Protocols
	10.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

	10.4 Sample PCI Architectures
	10.4.1 Sample PCI Architectures Overview
	10.4.2 Desktop System with 1 PCI Root Bridge
	10.4.3 Server System with 4 PCI Root Bridges
	10.4.4 Server System with 2 PCI Segments
	10.4.5 Server System with 2 PCI Host Buses

	10.5 ISA Aliasing Considerations
	10.6 Programming of Standard PCI Configuration Registers
	10.7 Sample Implementation
	10.7.1 PCI enumeration process
	10.7.2 Sample Enumeration Implementation

	10.8 PCI HostBridge Code Definitions
	10.8.1 Introduction
	10.8.2 PCI Host Bridge Resource Allocation Protocol
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Noti fyPhase()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get NextRootBridge()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get AllocAttributes()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Star tBusEnumeration()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Set BusNumbers()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Sub mitResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get ProposedResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Pre processController()

	10.9 End of PCI Enumeration Overview
	10.9.1 End of PCI Enumeration Protocol

	11 PCI Platform
	11.1 Introduction
	11.2 PCI Platform Overview
	11.3 PCI Platform Support Related Information
	11.3.1 Industry Specifications
	11.3.2 PCI Specifications

	11.4 PCI Platform Protocol
	11.4.1 PCI Platform Protocol Overview

	11.5 Incompatible PCI Device Support Protocol
	11.5.1 Incompatible PCI Device Support Protocol Overview
	11.5.2 Usage Model for the Incompatible PCI Device Support Protocol

	11.6 PCI Code Definitions
	11.6.1 PCI Platform Protocol
	EFI_PCI_PLATFORM_PROTOCOL
	EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()
	EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()
	EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()
	EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

	11.6.2 PCI Override Protocol
	EFI_PCI_OVERRIDE_PROTOCOL

	11.6.3 Incompatible PCI Device Support Protocol
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevi ce()

	12 Hot Plug PCI
	12.1 HOT PLUG PCI Overview
	12.2 Hot Plug PCI Initialization Protocol Introduction
	12.3 Hot Plug PCI Initialization Protocol Related Information
	12.4 Requirements
	12.5 Sample Implementation for a Platform Containing PCI Hot Plug* Slots
	12.6 PCI Hot Plug PCI Initialization Protocol
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

	12.7 PCI Hot Plug Request Protocol
	EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify()

	12.8 Sample Implementation for a Platform Containing PCI Hot Plug* Slots

	13 Super I/O Protocol
	13.1 Super I/O Protocol
	EFI_SIO_PROTOCOL
	EFI_SIO_PROTOCOL.RegisterAccess()
	EFI_SIO_PROTOCOL.GetResources()
	EFI_SIO_PROTOCOL.SetResources()
	EFI_SIO_PROTOCOL.PossibleResources()
	EFI_SIO_PROTOCOL.Modify()

	14 Super I/O and ISA Host Controller Interactions
	14.1 Design Descriptions
	14.1.1 Super I/O
	14.1.2 ISA Bus
	14.1.3 ISA Host Controller
	14.1.4 Logical Devices

	14.2 Code Definitions
	14.2.1 EFI_SIO_PPI
	14.2.2 EFI_ISA_HC_PPI
	14.2.3 EFI_ISA_HC_PROTOCOL
	14.2.4 EFI_ISA_HC_SERVICE_BINDING_PROTOCOL
	14.2.5 EFI_SIO_CONTROL_PROTOCOL

	15 CPU I/O Protocol
	15.1 CPU I/O Protocol Terms
	15.2 CPU I/O Protocol2 Description
	15.2.1 EFI CPU I/O Overview

	15.3 Code Definitions
	15.3.1 CPU I/O Protocol
	EFI_CPU_IO2_PROTOCOL
	EFI_CPU_IO2_PROTOCOL.Mem.Read() and Mem.Write()
	EFI_CPU_IO2_PROTOCOL.Io.Read() and Io.Write()

	16 Legacy Region Protocol
	16.1 Legacy Region Protocol
	16.2 Code Definitions
	16.2.1 Legacy Region Protocol
	EFI_LEGACY_REGION2_PROTOCOL
	EFI_LEGACY_REGION2_PROTOCOL.Decode()
	EFI_LEGACY_REGION2_PROTOCOL.Lock()
	EFI_LEGACY_REGION2_PROTOCOL.BootLock()
	EFI_LEGACY_REGION2_PROTOCOL.UnLock()
	EFI_LEGACY_REGION2_PROTOCOL.GetInfo()

	17 I2C Protocol Stack
	17.1 Design Discussion
	17.1.1 I2C Bus Overview
	17.1.2 I2C Protocol Stack Overview
	17.1.3 PCI Comparison
	17.1.4 Hot Plug Support

	17.2 DXE Code definitions
	17.2.1 I2C Master Protocol
	EFI_I2C_MASTER_PROTOCOL
	EFI_I2C_MASTER_PROTOCOL.SetBusFrequency()
	EFI_I2C_MASTER_PROTOCOL.Reset()
	EFI_I2C_MASTER_PROTOCOL.StartRequest()

	17.2.2 I2C Host Protocol
	EFI_I2C_HOST_PROTOCOL
	EFI_I2C_HOST_PROTOCOL.QueueRequest()

	17.2.3 I2C I/O Protocol
	EFI_I2C_IO_PROTOCOL
	EFI_I2C_IO_PROTOCOL.QueueRequest()

	17.2.4 I2C Bus Configuration Management Protocol
	EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL
	EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL. EnableI2cBusConfiguration()

	17.2.5 I2C Enumerate Protocol
	EFI_I2C_ENUMERATE_PROTOCOL
	EFI_I2C_ENUMERATE_PROTOCOL.Enumerate()
	EFI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency()

	17.3 PEI Code definitions
	17.3.1 I2C Master PPI
	EFI_PEI_I2C_MASTER
	EFI_PEI_I2C_MASTER_PPI.SetBusFrequency()
	EFI_PEI_I2C_MASTER_PPI.Reset()
	EFI_PEI_I2C_MASTER_PPI.StartRequest()

	Appendix A Error Codes
	A.1 Error Code Definitions

