
VOLUME 4: Platform Initialization
Specification

System Management Mode
Core Interface

Version 1.4

4/13/2015

Platform Initialization Specification VOLUME 4 SMM Core Interface
The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2015 Unified EFI, Inc. All Rights Reserved.
ii 4/13/2015 Version 1.4

Revision History

Revision Revision History Date

1.0 Initial public release. 8/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

1.1 Errata Revises typographical errors and minor omissions--see Errata for
details

04/25/08
Version 1.4 4/13/2015 iii

Platform Initialization Specification VOLUME 4 SMM Core Interface
1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File
Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09
iv 4/13/2015 Version 1.4

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp
PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09
Version 1.4 4/13/2015 v

Platform Initialization Specification VOLUME 4 SMM Core Interface
1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09
vi 4/13/2015 Version 1.4

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl
has EFI_STATUS w/o return code & errror on stage 3 recovery
description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service

clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10
Version 1.4 4/13/2015 vii

Platform Initialization Specification VOLUME 4 SMM Core Interface
1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM
architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState()
return code

• ERROR: listed by mistake:737

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• ERROR: listed by mistake: 753

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in
EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT, Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11
viii 4/13/2015 Version 1.4

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP)
clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM
Migration is not required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

1.2.1 Errata
A

• 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the
GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13
Version 1.4 4/13/2015 ix

Platform Initialization Specification VOLUME 4 SMM Core Interface
Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

1.3 Errata • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the
SEC Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record
needs to be indexed / CPU.

2/20/15
x 4/13/2015 Version 1.4

Contents

1
Overview.. 1
1.1 Definition of Terms.. 1
1.2 System Management Mode (SMM) .. 2
1.3 SMM Driver Execution Environment ... 2
1.4 Initializing System Management Mode ... 3
1.5 Entering & Exiting SMM .. 5
1.6 SMM Drivers ... 6

1.6.1 SMM Drivers ... 6
1.6.2 Combination SMM/DXE Drivers.. 6
1.6.3 SOR and Dependency Expressions for SMM ... 7

1.7 SMM Driver Initialization ... 7
1.8 SMM Driver Runtime... 7
1.9 Dispatching SMI Handlers ... 7
1.10 SMM Services... 9

1.10.1 SMM Driver Model .. 9
1.10.2 SMM Protocols.. 9

1.11 SMM UEFI Protocols .. 9
1.11.1 UEFI Protocols .. 9
1.11.2 SMM Protocols ... 10

2
SMM Foundation Entry Point .. 11
2.1 EFI_SMM_ENTRY_POINT ... 11

3
System Management System Table (SMST) .. 13
3.1 SMST Introduction .. 13
3.2 EFI_SMM_SYSTEM_TABLE2.. 13

SmmInstallConfigurationTable().. 18
SmmAllocatePool().. 20
SmmFreePool() ... 21
SmmAllocatePages()... 22
SmmFreePages() .. 23
SmmStartupThisAp()... 24
SmmInstallProtocolInterface() ... 25
SmmUninstallProtocolInterface()... 26
SmmHandleProtocol() ... 27
SmmRegisterProtocolNotify().. 28
SmmLocateHandle() ... 30
SmmLocateProtocol().. 31
SmiManage()... 32
SmiHandlerRegister().. 34
Version 1.4 4/13/2015 xi

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmiHandlerUnRegister() ... 36

4
SMM Protocols.. 37
4.1 Introduction ... 37
4.2 Status Codes Services.. 37

EFI_SMM_STATUS_CODE_PROTOCOL.. 37
EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode()......................... 38

4.3 CPU Save State Access Services .. 39
EFI_SMM_CPU_PROTOCOL... 39
EFI_SMM_CPU_PROTOCOL.ReadSaveState() .. 41
EFI_SMM_CPU_PROTOCOL.WriteSaveState() .. 45

4.3.1 SMM Save State IO Info ... 46
EFI_SMM_SAVE_STATE_IO_INFO... 46

4.4 SMM CPU I/O Protocol ... 47
EFI_SMM_CPU_IO2_PROTOCOL... 47
EFI_SMM_CPU_IO2_PROTOCOL.Mem() ... 49
EFI_SMM_CPU_IO2_PROTOCOL.Io() .. 51

4.5 SMM PCI I/O Protocol... 52
EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL .. 52

4.6 SMM Ready To Lock Protocol .. 52
EFI_SMM_READY_TO_LOCK_SMM_PROTOCOL... 52

4.7 SMM End of DXE Protocol.. 53
EFI_SMM_END_OF_DXE_PROTOCOL ... 53

5
UEFI Protocols.. 55
5.1 Introduction ... 55
5.2 EFI SMM Base Protocol.. 55

EFI_SMM_BASE2_PROTOCOL... 55
EFI_SMM_BASE2_PROTOCOL.InSmm() ... 57
EFI_SMM_BASE2_PROTOCOL.GetSmstLocation().. 58

5.3 SMM Access Protocol ... 58
EFI_SMM_ACCESS2_PROTOCOL ... 58
EFI_SMM_ACCESS2_PROTOCOL.Open() ... 60
EFI_SMM_ACCESS2_PROTOCOL.Close()... 61
EFI_SMM_ACCESS2_PROTOCOL.Lock() .. 62
EFI_SMM_ACCESS2_PROTOCOL.GetCapabilities().. 63

5.4 SMM Control Protocol ... 65
EFI_SMM_CONTROL2_PROTOCOL... 65
EFI_SMM_CONTROL2_PROTOCOL.Trigger().. 67
EFI_SMM_CONTROL2_PROTOCOL.Clear() .. 69

5.5 SMM Configuration Protocol ... 70
EFI_SMM_CONFIGURATION_PROTOCOL .. 70
EFI_SMM_CONFIGURATION_PROTOCOL.RegisterSmmEntry() 72

5.6 DXE Ready To Lock SMM Protocol .. 72
EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL.. 72

5.7 SMM Communication Protocol ... 73
xii 4/13/2015 Version 1.4

EFI_SMM_COMMUNICATION_PROTOCOL ... 73
EFI_SMM_COMMUNICATION_PROTOCOL.Communicate() 74

6
SMM Child Dispatch Protocols ... 77
6.1 Introduction ... 77
6.2 SMM Software Dispatch Protocol ... 77

EFI_SMM_SW_DISPATCH2_PROTOCOL ... 77
EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() 79
EFI_SMM_SW_DISPATCH2_PROTOCOL.UnRegister() 82

6.3 SMM Sx Dispatch Protocol ... 82
EFI_SMM_SX_DISPATCH2_PROTOCOL .. 82
EFI_SMM_SX_DISPATCH2_PROTOCOL.Register() 84
EFI_SMM_SX_DISPATCH2_PROTOCOL.UnRegister() 86

6.4 SMM Periodic Timer Dispatch Protocol .. 86
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL 86
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.Register() 88
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.UnRegister() 91
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.

GetNextShorterInterval() ... 92
6.5 SMM USB Dispatch Protocol .. 92

EFI_SMM_USB_DISPATCH2_PROTOCOL .. 92
EFI_SMM_USB_DISPATCH2_PROTOCOL.Register() 94
EFI_SMM_USB_DISPATCH2_PROTOCOL.UnRegister() 96

6.6 SMM General Purpose Input (GPI) Dispatch Protocol.. 96
EFI_SMM_GPI_DISPATCH2_PROTOCOL ... 96
EFI_SMM_GPI_DISPATCH2_PROTOCOL.Register() 98
EFI_SMM_GPI_DISPATCH2_PROTOCOL.UnRegister() 100

6.7 SMM Standby Button Dispatch Protocol... 100
EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL 100
EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL.Register() 102
EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL.UnRegister()..... 104

6.8 SMM Power Button Dispatch Protocol .. 104
EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL.............................. 104
EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL. Register() 106
EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL.UnRegister() 108

6.9 SMM IO Trap Dispatch Protocol ... 108
EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL... 108
EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL.Register ()........................... 110
EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL.UnRegister () 113

7
Interactions with PEI, DXE, and BDS.. 115
7.1 Introduction ... 115
7.2 SMM and DXE .. 115

7.2.1 Software SMI Communication Interface (Method #1) 115
7.2.2 Software SMI Communication Interface (Method #2) 115
Version 1.4 4/13/2015 xiii

Platform Initialization Specification VOLUME 4 SMM Core Interface
8
Other Related Notes For Support Of SMM Drivers.................................. 117
8.1 File Types ... 117

8.1.1 File Type EFI_FV_FILETYPE_SMM... 117
8.1.2 File Type EFI_FV_FILETYPE_COMBINED_SMM_DXE 117

8.2 File Section Types .. 118
8.2.1 File Section Type EFI_SECTION_SMM_DEPEX ... 118

9
MCA/INIT/PMI Protocol .. 119
9.1 Machine Check and INIT ... 119
9.2 MCA Handling... 121
9.3 INIT Handling .. 123
9.4 PMI.. 124
9.5 Event Handlers ... 125

9.5.1 MCA Handlers... 125
MCA Handler... 125

9.5.2 INIT Handlers .. 126
INIT Handler .. 126

9.5.3 PMI Handlers .. 127
PMI Handler .. 127

9.6 MCA PMI INIT Protocol... 127
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterMcaHandler () 129
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterInitHandler () 130
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterPmiHandler () 131

10
Extended SAL Services .. 133
10.1 SAL Overview ... 133
10.2 Extended SAL Boot Service Protocol ... 135

EXTENDED_SAL_BOOT_SERVICE_PROTOCOL ... 135
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableInfo() 137
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableEntry() ...

139
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddExtendedSalProc() 140
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.ExtendedSalProc()........... 143

10.3 Extended SAL Service Classes .. 144
10.3.1 Extended SAL Base I/O Services Class ... 146

ExtendedSalIoRead .. 147
ExtendedSalIoWrite... 149
ExtendedSalMemRead ... 151
ExtendedSalMemWrite.. 153

10.4 Extended SAL Stall Services Class .. 154
ExtendedSalStall ... 156

10.4.1 Extended SAL Real Time Clock Services Class ... 157
ExtendedSalGetTime .. 159
ExtendedSalSetTime... 161
xiv 4/13/2015 Version 1.4

ExtendedSalGetWakeupTime ... 163
ExtendedSalSetWakeupTime ... 165

10.4.2 Extended SAL Reset Services Class .. 166
ExtendedSalResetSystem... 168

10.4.3 Extended SAL PCI Services Class ... 169
ExtendedSalPciRead .. 171
ExtendedSalPciWrite... 173

10.4.4 Extended SAL Cache Services Class ... 174
ExtendedSalCacheInit... 175
ExtendedSalCacheFlush... 177

10.4.5 Extended SAL PAL Services Class... 178
ExtendedSalPalProc ... 179
ExtendedSalSetNewPalEntry.. 181
ExtendedSalGetNewPalEntry ... 183
ExtendedSalUpdatePal ... 185

10.4.6 Extended SAL Status Code Services Class... 186
ExtendedSalReportStatusCode .. 187

10.4.7 Extended SAL Monotonic Counter Services Class .. 188
ExtendedSalGetNextHighMtc.. 190

10.4.8 Extended SAL Variable Services Class ... 191
ExtendedSalGetVariable ... 193
ExtendedSalGetNextVariableName.. 195
ExtendedSalSetVariable ... 197
ExtendedSalQueryVariableInfo ... 199

10.4.9 Extended SAL Firmware Volume Block Services Class 200
ExtendedSalRead ... 203
ExtendedSalWrite.. 205
ExtendedSalEraseBlock.. 207
ExtendedSalGetAttributes ... 209
ExtendedSalSetAttributes ... 211
ExtendedSalGetPhysicalAddress.. 213
ExtendedSalGetBlockSize .. 215
ExtendedSalEraseCustomBlockRange... 217

10.4.10 Extended SAL MCA Log Services Class ... 218
ExtendedSalGetStateInfo.. 220
ExtendedSalGetStateInfoSize... 222
ExtendedSalClearStateInfo ... 224
ExtendedSalGetStateBuffer .. 226
ExtendedSalSaveStateBuffer.. 228

10.4.11 Extended SAL Base Services Class .. 229
ExtendedSalSetVectors .. 231
ExtendedSalMcRendez... 233
ExtendedSalMcSetParams ... 235
ExtendedSalGetVectors .. 237
ExtendedSalMcGetParams... 239
ExtendedSalMcGetMcParams .. 241
ExtendedSalGetMcCheckinFlags.. 243
Version 1.4 4/13/2015 xv

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetPlatformBaseFreq ... 245
ExtendedSalRegisterPhysicalAddr.. 247

10.4.12 Extended SAL MP Services Class ... 248
ExtendedSalAddCpuData ... 250
ExtendedSalRemoveCpuData .. 252
ExtendedSalModifyCpuData ... 254
ExtendedSalGetCpuDataById... 256
ExtendedSalGetCpuDataByIndex ... 258
ExtendedSalWhoiAmI ... 260
ExtendedSalNumProcessors .. 262
ExtendedSalSetMinState .. 264
ExtendedSalGetMinState .. 266
ExtendedSalPhysicalIdInfo.. 268

10.4.13 Extended SAL MCA Services Class .. 269
ExtendedSalMcaGetStateInfo ... 270
ExtendedSalMcaRegisterCpu ... 272
xvi 4/13/2015 Version 1.4

Figures

Figure 1. SMM Architecture .. 3
Figure 2. Example SMM Initialization Components .. 5
Figure 3. SMI Handler Relationships .. 8
Figure 4. Published Protocols for IA-32 Systems ... 10
Figure 5. Early Reset, MCA and INIT flow .. 120
Figure 6. Basic MCA processing flow ... 121
Figure 7. PI MCA processing flow... 121
Figure 8. PI architectural data in the min-state ... 122
Figure 9. PI INIT processing flow.. 124
Figure 10. PMI handling flow .. 124
Figure 11. SAL Calling Diagram ... 134
Version 1.4 4/13/2015 xvii

Platform Initialization Specification VOLUME 4 SMM Core Interface
Tables

Table 1. Extended SAL Service Classes – EFI Runtime Services 145
Table 2. Extended SAL Service Classes – SAL Procedures .. 145
Table 3. Extended SAL Service Classes – Hardware Abstractions.................................... 145
Table 4. Extended SAL Service Classes – Other ... 145
Table 5. Extended SAL Base I/O Services Class ... 146
Table 6. Extended SAL Stall Services Class .. 155
Table 7. Extended SAL Real Time Clock Services Class... 158
Table 8. Extended SAL Reset Services Class.. 167
Table 9. Extended SAL PCI Services Class ... 170
Table 10. Extended SAL Cache Services Class... 174
Table 11. Extended SAL PAL Services Class .. 178
Table 12. Extended SAL Status Code Services Class ... 186
Table 13. Extended SAL Monotonic Counter Services Class... 189
Table 14. Extended SAL Variable Services Class .. 192
Table 15. Extended SAL Variable Services Class .. 201
Table 16. Extended SAL MP Services Class.. 230
Table 17. Extended SAL MP Services Class.. 248
Table 18. Extended SAL MCA Services Class ... 269
xviii 4/13/2015 Version 1.4

Overview
1
Overview

1.1 Definition of Terms
The following terms are used in the SMM Core Interface Specification (CIS). See Glossary in the
master help system for additional definitions.

IP

Instruction pointer.

IPI

Interprocessor Interrupt. This interrupt is the means by which multiple processors in a system
or a single processor can issue APIC-directed messages for communicating with self or other
processors.

MTRR

Memory Type Range Register.

RSM

Resume. On IA-32, processor instruction to exit from System Management Mode (SMM).

SMI

System Management Interrupt. Generic term for a non-maskable, high priority interrupt which
transitions the system into System Management Mode.

SMM

System Management Mode. Generic term for the execution mode entered when a CPU detects
an SMI. The firmware, in response to the interrupt type, will gain control in physical mode.
For the purpose of this document, “SMM” will be used to describe the operational regime for
IA32 and x64 processors that share the OS-transparent characteristics.

SMM Driver

A driver launched directly into SMRAM, with access to the SMM interfaces.

SMM handler

A DXE driver that is loaded into and executed from SMRAM. SMM handlers are dispatched
during boot services time and invoked synchronously or asynchronously thereafter. SMM
handlers remain present during runtime.

SMM Initialization

The phase of SMM Driver initialization which starts with the call to the driver’s entry point
and ends with the return from the driver’s entry point.
Version 1.4 4/13/2015 1

Platform Initialization Specification VOLUME 4 SMM Core Interface
SMM Runtime

The phase of SMM Driver initialization which starts after the return from the driver’s entry
point.

SMST

System Management System Table. Hand-off to handler.

1.2 System Management Mode (SMM)
System Management Mode (SMM) is a generic term used to describe a unique operating mode of
the processor which is entered when the CPU detects a special high priority System Management
Interrupt (SMI). Upon detection of an SMI, a CPU will switch into SMM, jump to a pre-defined
entry vector and save some portion of its state (the “save state”) such that execution can be resumed.

The SMI can be generated synchronously by software or asynchronously by a hardware event. Each
SMI source can be detected, cleared and disabled.

Some systems provide for special memory (SMRAM) which is set aside for software running in
SMM. Usually the SMRAM is hidden during normal CPU execution, but this is not required.
Usually, the SMRAM is locked after initialization so that it cannot be exposed until the next system
reset.

1.3 SMM Driver Execution Environment
The SMM Core Interface Specification describes the optional SMM phase, which starts during the
DXE phase and runs in parallel with the other PI Architecture phases into runtime.

The SMM Core Interface Specification describes two pieces of the PI SMM architecture:

SMRAM Initialization

During DXE, an SMM related driver opens SMRAM, creates the SMRAM memory map and
provides the necessary services to launch SMM-related drivers and then, before boot, close
and lock SMRAM.

SMI Management

When an SMI generated, the driver execution environment is created and then the SMI sources
are detected and SMI handlers called.

The figure below shows the SMM architecture.
2 4/13/2015 Version 1.4

Overview
Figure 1. SMM Architecture

Note: The SMM architecture does not guarantee support for the execution of handlers written to the EFI
Byte Code (EBC) specification.

1.4 Initializing System Management Mode
System Management Mode initialization prepares the hardware for SMI generation and creates the
necessary data structures for managing the SMM resources such as SMRAM. It is initialized with
the cooperation of several DXE drivers.

1. A DXE driver produces the EFI_SMM_ACCESS2_PROTOCOL, which describes the different
SMRAM regions available in the system.

2. A DXE driver produces the EFI_SMM_CONTROL2_PROTOCOL, which allows synchronous
SMIs to be generated.

3. A DXE driver (dependent on the EFI_SMM_ACCESS2_PROTOCOL and, perhaps, the
EFI_SMM_CONTROL2_PROTOCOL), does the following:

• Initializes the SMM entry vector with the code necessary to meet the entry point
requirements described in “Entering & Exiting SMM”.

Power on

Security
(SEC)

[. . Platform initialization . .]

Pre-EFI
Initialization

(PEI)

Boot Device
Selection

(BDS)

[.. . OS boot . .]

Transient
System Load

(TSL)

Shutdown

Afterlife
(AL)

Runtime
(RT)

CPU
Init

Chipset
Init

Board
Init

ve
ri

fy

SMM IPL

Pre
Verifier

DXE
Dispatcher

Boot Services
Runtime Services

security

SMM Intrinsic
Services SMM Handler

Driver Execution
Environment

(DXE)
Version 1.4 4/13/2015 3

Platform Initialization Specification VOLUME 4 SMM Core Interface
• Produces the EFI_SMM_CONFIGURATION _PROTOCOL, which describes those areas of
SMRAM which should be excluded from the memory map.

4. The SMM IPL DXE driver (dependent on the EFI_SMM_ACCESS2_PROTOCOL,
EFI_SMM_CONTROL2_PROTOCOL and EFI_SMM_CONFIGURATION_PROTOCOL) does
the following:

• Opens SMRAM

• Creates the SMRAM heap, excluding any areas listed in
EFI_SMM_CONFIGURATION_PROTOCOL SmramReservedRegions field.

• Loads the SMM Foundation into SMRAM. The SMM Foundation produces the SMST.

• Invokes the EFI_SMM_CONFIGURATION_PROTOCOL.RegisterSmmEntry()
function with the SMM Foundation entry point.

• Publishes the EFI_SMM_BASE2_PROTOCOL in the UEFI Protocol Database

• At this point SMM is initially configured and SMIs can be generated.

• Register for notification upon installation of the
EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL in the UEFI protocol database.

5. During the remainder of the DXE phase, additional drivers may load and be initialized in
SMRAM.

6. At some point prior to the processing of boot options, a DXE driver will install the
EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL protocol in the UEFI protocol database.
(outside of SMM).

7. As a result, some DXE driver will cause the EFI_SMM_READY_TO_LOCK_PROTOCOL
protocol to be installed in the SMM protocol database.

• Optionally, close the SMRAM so that it is no longer visible using the
EFI_SMM_ACCESS2_PROTOCOL. Closing SMRAM may not be supported on all
platforms.

• Optionally, lock the SMRAM so that its configuration can no longer be altered using the
EFI_SMM_ACCESS2_PROTCOL. Locking SMRAM may not be supported on all
platforms.
4 4/13/2015 Version 1.4

Overview
Figure 2. Example SMM Initialization Components

1.5 Entering & Exiting SMM

The code at the entry vector must:

• Ensure that all CPUs have entered SMM (optional)

• Save any additional processor state necessary for supporting the EFI_SMM_CPU_ PROTOCOL

• Save any additional processor state so that the normal operation can be resumed.

• Select a single processor to execute the remaining steps. Other processors in SMM must be held
in a state where they can respond to the SmmStartupThisAP() function and resume properly.

• Switch to the same CPU mode as provided for DXE.

• If an entry point has been registered via RegisterSmmEntry(), then call the SMM
Foundation.

Memory
Controller

Driver

Chipset
Driver

CPU Driver

SMM IPL
Driver

EFI_SMM_ACCESS2_
PROTOCOL

EFI_SMM_CONTROL2_
PROTOCOL

EFI_SMM_CONFIGURATI
ON_PROTOCOL

EFI_SMM_BASE2_
PROTOCOL
Version 1.4 4/13/2015 5

Platform Initialization Specification VOLUME 4 SMM Core Interface
At this point, the SMM Foundation entry point registered must:

• Update the SMST with the processor information passed to the entry point.

• Call all root SMI controller handlers using SmiManage(NULL)

• Return to the entry vector code.

After returning from the SMM Foundation entry point, the code at the entry vector must:

• Release all CPUs in SMM (optional)

• Resume normal operation.

1.6 SMM Drivers
There are two types of SMM-related drivers: SMM Drivers and Combination SMM/DXE Drivers.
Both types of drivers are initialized by calling their main entry point.

The entry point of the driver is the same as a UEFI specification EFI_IMAGE_ENTRY_POINT.

1.6.1 SMM Drivers
SMM Drivers must have the file type EFI_FV_FILETYPE_SMM. SMM Drivers are launched once,
directly into SMRAM. SMM Drivers cannot be launched until the dependency expression in the file
section EFI_SECTION_SMM_DEPEX evaluates to true. This dependency expression can refer to
both UEFI and SMM protocols.

The entry point of the driver is the same as a UEFI specification EFI_IMAGE_ENTRY_POINT.

1.6.2 Combination SMM/DXE Drivers
Combination SMM/DXE Drivers must have the file type
EFI_FV_FILETYPE_COMBINED_SMM_DXE. Combination Drivers are launched twice.

They are launched by the DXE Dispatcher as a normal DXE driver outside of SMRAM after the
dependency expression in the file section EFI_SECTION_DXE_DEPEX evaluates to true. As DXE
Drivers, they have access to the normal UEFI interfaces.

Combination Drivers are also launched as SMM Drivers inside of SMRAM after the dependency
expression in the file section EFI_SECTION_SMM_DEPEX evaluates to true. Combination Drivers
have access to DXE, UEFI and SMM services during SMM Initialization. Combination Drivers have
access to SMM services during SMM Runtime.

Combination Drivers can determine whether or not they are executing during SMM Initialization or
SMM Runtime by locating the EFI_SMM_READY_TO_LOCK_SMM_PROTOCOL.

On the first load, the entry point of the driver is the same as a UEFI specification
EFI_IMAGE_ENTRY_POINT since the driver is loaded by the DXE core.

On the second load, the entry point of the driver is the same as a UEFI specification
EFI_IMAGE_ENTRY_POINT.
6 4/13/2015 Version 1.4

Overview
1.6.3 SOR and Dependency Expressions for SMM
The Apiori file can also contain DXE and SMM FFS files. The implementation doesn't support
SOR for the SMM drivers, though.

1.7 SMM Driver Initialization
An SMM Driver’s initialization phase begins when the driver has been loaded into SMRAM and its
entry point is called. An SMM Driver’s initialization phase ends when the entry point returns.

During SMM Driver initialization, SMM Drivers have access to two sets of protocols: UEFI and
SMM. UEFI protocols are those which are installed and discovered using the UEFI Boot Services.
UEFI protocols can be located and used by SMM drivers only during SMM Initialization. SMM
protocols are those which are installed and discovered using the System Management Services Table
(SMST). SMM protocols can be discovered by SMM drivers during initialization time and accessed
while inside of SMM.

SMM Drivers should not use the following UEFI Boot Services during SMM Driver Initialization:

• Exit()

• ExitBootServices()

1.8 SMM Driver Runtime
During SMM Driver runtime, SMM drivers only have access to SMM protocols. In addition,
depending on the platform architecture, memory areas outside of SMRAM may not be accessible to
SMM Drivers. Likewise, memory areas inside of SMRAM may not be accessible to UEFI drivers.

These SMM Driver Runtime characteristics lead to several restrictions regarding the usage of UEFI
services:

• UEFI interfaces and services which are located during SMM Driver Initialization should not be
called or referenced during SMM Driver Runtime. This includes the EFI System Table, the
UEFI Boot Services and the UEFI Runtime Services.

• Installed UEFI protocols should be uninstalled before exiting the driver entry point OR the UEFI
protocol should refer to addresses which are not within SMRAM..

• Events created during SMM Driver Initialization should be closed before exiting the drier entry
point..

1.9 Dispatching SMI Handlers
SMI handlers are registered using the SMST’s SmiHandlerRegister() function. SMI handlers
fall into three categories:

Root SMI Controller Handlers

These are handlers for devices which directly control SMI generation for the CPU(s). The
handlers have the ability to detect, clear and disable one or more SMI sources. They are
registered by calling SmiHandlerRegister() with HandlerType set to NULL. After
an SMI source has been detected, the Root SMI handler calls the Child SMI Controllers or
Version 1.4 4/13/2015 7

Platform Initialization Specification VOLUME 4 SMM Core Interface
SMI Handlers whose handler functions were registered using either a SMM Child Dispatch
protocols or using SmiHandlerRegister(). To call the latter, it calls Manage() with a
GUID identifying the SMI source so that any registered Child SMI Handlers or Leaf SMI
Handlers will be called. If the handler returns EFI_INTERRUPT_PENDING, it indicates that
the interrupt source could not be quiesced. If possible, the Root SMI handler should disable
and clear the SMI source. If the handler does not return an error, the Root SMI Handler should
clear the SMI source.

Child SMI Controller Handlers

These are SMI handlers which handle a single interrupt source from a Root or Child SMI
handler and, in turn, control one or more child SMI sources which can be detected, cleared and
disabled. They are registered by calling the SmiHandlerRegister() function with
HandlerType set to the GUID of the Parent SMI Controller SMI source. Handlers for this
SMI handler’s SMI sources are called in the same manner as Root SMI Handlers.

SMI Handlers

These SMI handlers perform basic software or hardware services based on the SMI source
received. If the SMI handler manages a device outside the control of the Parent SMI
Controller, it must make sure that the device is quiesced, especially if the device drives a level-
active input.

Figure 3. SMI Handler Relationships

SMM Entry
(CPU)

Manage(NULL)

SMM Exit
(CPU)

Root
SMI

Handler
(Driver)

Child SMI
Handler Driver

Manage
(GUID1)

SMI
Event

Sources

SMI
Event

Sources

SMI
Handler

SMI
Handler

SMI Handler

SMI Handler

SMI Handler

Manage
(GUID2)

Manage(GUID3)
8 4/13/2015 Version 1.4

Overview
1.10 SMM Services

1.10.1 SMM Driver Model
The SMM driver model has similar constraints to those of UEFI runtime drivers. Specifically, while
inside of SMM, the drivers may not be able to use core protocol services. There will be SMST-based
services, which the drivers can access, but the UEFI System Table and other protocols installed
during boot services may not necessarily be available.

Instead, the full collection of UEFI Boot Services and UEFI Runtime Services are available only
during the driver initialization phase. This visibility is useful so that the SMM driver can leverage
the rich set of UEFI services to do the following:

• Marshall interfaces to other UEFI services.
This design makes the UEFI protocol database useful to these drivers while outside of SMM and
during their initial load within SMM.

The SMST-based services that are available include the following:

• A minimal, blocking variant of the device I/O protocol

• A memory allocator from SMM memory

• A minimal protocol database for protocols for use inside of SMM.
These services are exposed by entries in the System Management System Table (SMST).

1.10.2 SMM Protocols
Additional standard protocols are exposed as SMM protocols that are located during the
initialization phase of the SMM driver in SMM. For example, the status code equivalent in SMM is
simply a UEFI protocol whose interface references an SMM-based driver's service. Other SMM
drivers locate this SMM-based status code and can use it during runtime to emit error or progress
information.

1.11 SMM UEFI Protocols

1.11.1 UEFI Protocols
The system architecture of the SMM driver is broken into the following pieces:

• SMM Base Protocol

• SMM Access Protocol

• SMM Control Protocol

The SMM Base Protocol will be published by the SMM IPL driver and is responsible for the
following:

• Opening SMRAM

• Creating the SMRAM heap

• Registering the handlers
Version 1.4 4/13/2015 9

Platform Initialization Specification VOLUME 4 SMM Core Interface
The SMM Access Protocol understands the particular enable and locking mechanisms that memory
controller might support while executing in SMM.

The SMM Control Protocol understands how to trigger synchronous SMIs either once or
periodically.

1.11.2 SMM Protocols
The following figure shows the SMM protocols that are published for an IA-32 system.

Figure 4. Published Protocols for IA-32 Systems

Memory
Controller

Driver

EFI_SMM_ACCESS2_PROTOCOL

CPU Driver

EFI_SMM_CONFIGURATION_PROTOCOL

Root SMI
Controller

EFI_SMM_CONTROL2_PROTOCOL
10 4/13/2015 Version 1.4

SMM Foundation Entry Point
2
SMM Foundation Entry Point

2.1 EFI_SMM_ENTRY_POINT

Summary

This function is the main entry point to the SMM Foundation.

Prototype
typedef
VOID
(EFIAPI *EFI_SMM_ENTRY_POINT) (
 IN CONST EFI_SMM_ENTRY_CONTEXT *SmmEntryContext
);

Parameters
SmmEntryContext

Processor information and functionality needed by SMM Foundation.

Description
This function is the entry point to the SMM Foundation. The processor SMM entry code will call
this function with the processor information and functionality necessary for SMM

Related Definitions
typedef struct _EFI_SMM_ENTRY_CONTEXT {
 EFI_SMM_STARTUP_THIS_AP SmmStartupThisAp;
 UINTN CurrentlyExecutingCpu;
 UINTN NumberOfCpus;
 UINTN *CpuSaveStateSize;
 VOID **CpuSaveState;
} EFI_SMM_ENTRY_CONTEXT;

SmmStartupThisAp

Initiate a procedure on an application processor while in SMM. See the
SmmStartupThisAp() function description.

CurrentlyExecutingCpu

A number between zero and the NumberOfCpus field. This field designates which
processor is executing the SMM Foundation.
Version 1.4 4/13/2015 11

Platform Initialization Specification VOLUME 4 SMM Core Interface
NumberOfCpus

The number of current operational processors in the platform. This is a 1 based
counter. This does not indicate the number of processors that entered SMM.

CpuSaveStateSize

Points to an array, where each element describes the number of bytes in the
corresponding save state specified by CpuSaveState. There are always
NumberOfCpus entries in the array.

CpuSaveState

Points to an array, where each element is a pointer to a CPU save state. The
corresponding element in CpuSaveStateSize specifies the number of bytes in the
save state area. There are always NumberOfCpus entries in the array.
12 4/13/2015 Version 1.4

System Management System Table (SMST)
3
System Management System Table (SMST)

3.1 SMST Introduction
This section describes the System Management System Table (SMST). The SMST is a set of
capabilities exported for use by all drivers that are loaded into System management RAM
(SMRAM).

The SMST is similar to the UEFI System Table. It is a fixed set of services and data that are
designed to provide basic services for SMM drivers. The SMST is provided by the SMM IPL driver,
which also manages the following:

• Dispatch of drivers in SMM

• Allocations of SMRAM

• Installation/discovery of SMM protocols

3.2 EFI_SMM_SYSTEM_TABLE2

Summary

The System Management System Table (SMST) is a table that contains a collection of common
services for managing SMRAM allocation and providing basic I/O services. These services are
intended for both preboot and runtime usage.

Related Definitions
#define SMM_SMST_SIGNATURE EFI_SIGNATURE_32('S','M','S','T')
#define SMM_SPECIFICATION_MAJOR_REVISION 1
#define SMM_SPECIFICATION_MINOR_REVISION 14
#define EFI_SMM_SYSTEM_TABLE2_REVISION
((SMM_SPECIFICATION_MAJOR_REVISION<<16) |
(SMM_SPECIFICATION_MINOR_REVISION)

typedef struct _EFI_SMM_SYSTEM_TABLE2 {
 EFI_TABLE_HEADER Hdr;

 CHAR16 *SmmFirmwareVendor;
 UINT32 SmmFirmwareRevision;

 EFI_SMM_INSTALL_CONFIGURATION_TABLE2 SmmInstallConfigurationTable;

EFI_SMM_CPU_IO2_PROTOCOL SmmIo;

 //
 // Runtime memory service
Version 1.4 4/13/2015 13

Platform Initialization Specification VOLUME 4 SMM Core Interface
 //
 EFI_ALLOCATE_POOL SmmAllocatePool;
 EFI_FREE_POOL SmmFreePool;
 EFI_ALLOCATE_PAGES SmmAllocatePages;
 EFI_FREE_PAGES SmmFreePages;

 //
 // MP service
 //
 EFI_SMM_STARTUP_THIS_AP SmmStartupThisAp;

 //
 // CPU information records
 //
 UINTN CurrentlyExecutingCpu;
 UINTN NumberOfCpus;
UINTN *CpuSaveStateSize;
VOID **CpuSaveState;

 //
 // Extensibility table
 //
 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *SmmConfigurationTable;

//
// Protocol services
//
 EFI_INSTALL_PROTOCOL_INTERFACE SmmInstallProtocolInterface;
 EFI_UNINSTALL_PROTOCOL_INTERFACE SmmUninstallProtocolInterface;
 EFI_HANDLE_PROTOCOL SmmHandleProtocol;
 EFI_SMM_REGISTER_PROTOCOL_NOTIFY SmmRegisterProtocolNotify;
EFI_LOCATE_HANDLE SmmLocateHandle;
EFI_LOCATE_PROTOCOL SmmLocateProtocol;

//
// SMI management functions
//
EFI_SMM_INTERRUPT_MANAGE SmiManage;
EFI_SMM_INTERRUPT_REGISTER SmiHandlerRegister;
EFI_SMM_INTERRUPT_UNREGISTER SmiHandlerUnRegister;
} EFI_SMM_SYSTEM_TABLE2;

Parameters
Hdr

The table header for the System Management System Table (SMST). This header
contains the SMM_SMST_SIGNATURE and
EFI_SMM_SYSTEM_TABLE2_REVISION values along with the size of the
14 4/13/2015 Version 1.4

System Management System Table (SMST)
EFI_SMM_SYSTEM_TABLE2 structure and a 32-bit CRC to verify that the contents
of the SMST are valid.

Note: In the SMM Foundation use of the EFI_TABLE_HEADER for the System Management Services
Table (SMST), there is special treatment of the CRC32 field. This value is ignorable for SMM and
should be set to zero

SmmFirmwareVendor

A pointer to a NULL-terminated Unicode string containing the vendor name. It is
permissible for this pointer to be NULL.

SmmFirmwareRevision

The particular revision of the firmware.

SmmInstallConfigurationTable

Adds, updates, or removes a configuration table entry from the SMST. See the
SmmInstallConfigurationTable() function description.

SmmIo

Provides the basic memory and I/O interfaces that are used to abstract accesses to
devices. The I/O services are provided by the driver which produces the SMM CPU
I/O Protocol. If that driver has not been loaded yet, this function pointer will return
EFI_UNSUPPORTED.

SmmAllocatePool

Allocates SMRAM.

SmmFreePool

Returns pool memory to the system.

SmmAllocatePages

Allocates pages from SMRAM.

SmmFreePages

Returns pages of memory to the system.

SmmStartupThisAp

Initiate a procedure on an application processor while in SMM. See the
SmmStartupThisAp() function description. SmmStartupThisAp may not be
used in the entry point of an SMM driver and must be considered "undefined". This
service only defined while an SMI is being processed.

CurrentlyExecutingCpu

A number between zero and and the NumberOfCpus field. This field designates
which processor is executing the SMM infrastructure. CurrentlyExecutingCpu
may not be used in the entry point of an SMM driver and must be considered
"undefined". This field is only defined while an SMI is being processed.
Version 1.4 4/13/2015 15

Platform Initialization Specification VOLUME 4 SMM Core Interface
NumberOfCpus

The number of possible processors in the platform. This is a 1 based counter.
NumberOfCpus may not be used in the entry point of an SMM driver and must be
considered "undefined". This field is only defined while an SMI is being processed.

CpuSaveStateSize

Points to an array, where each element describes the number of bytes in the
corresponding save state specified by CpuSaveState. There are always
NumberOfCpus entries in the array. CpuSaveStateSize may not be used in the
entry point of an SMM driver and must be considered "undefined". This field is only
defined while an SMI is being processed.

CpuSaveState

Points to an array, where each element is a pointer to a CPU save state. The
corresponding element in CpuSaveStateSize specifies the number of bytes in the
save state area. There are always NumberOfCpus entries in the array.
CpuSaveState may not be used in the entry point of an SMM driver and must be
considered "undefined". This field is only defined while an SMI is being processed.

NumberOfTableEntries

The number of UEFI Configuration Tables in the buffer
SmmConfigurationTable.

SmmConfigurationTable

A pointer to the UEFI Configuration Tables. The number of entries in the table is
NumberOfTableEntries. Type EFI_CONFIGURATION_TABLE is defined in
the UEFI 2.1 specification, section 4.6.

SmmInstallProtocolInterface

Installs an SMM protocol interface on a device handle. Type
EFI_INSTALL_PROTOCOL_INTERFACE is defined in the UEFI specification,
section 4.4.

SmmUninstallProtocolInterface

Removes a SMM protocol interface from a device handle. Type
EFI_UNINSTALL_PROTOCOL_INTERFACE is defined in the UEFI 2.1
specification, section 4.4.

SmmHandleProtocol

Queries a handle to determine if it supports a specified SMM protocol. Type
EFI_HANDLE_PROTOCOL is defined in the UEFI 2.1 specification, section 4.4.

SmmRegisterProtocolNotify

Registers a callback routine that will be called whenever an interface is installed for a
specified SMM protocol.

SmmLocateHandle

Returns an array of handles that support a specified SMM protocol. Type
EFI_LOCATE_HANDLE is defined in the UEFI 2.1 specification, section 4.4.
16 4/13/2015 Version 1.4

System Management System Table (SMST)
SmmLocateProtocol

Returns the first installed interface for a specific SMM protocol. Type
EFI_LOCATE_PROTOCOL is defined in the UEFI 2.1 specification, section 4.4.

SmiManage

Manage SMI sources of a particular type.

SmiHandlerRegister

Registers an SMI handler for an SMI source.

SmiHandlerUnRegister

Unregisters an SMI handler for an SMI source.

Description
The CurrentlyExecutingCpu parameter is a value that is less than the NumberOfCpus field.
The CpuSaveState is a pointer to an array of CPU save states in SMRAM. The
CurrentlyExecutingCpu can be used as an index to locate the respective save-state for which
the given processor is executing, if so desired.

The EFI_SMM_SYSTEM_TABLE2 provides support for SMRAM allocation. The functions have
the same function prototypes as UEFI Boot Services, but are only effective in allocating and freeing
SMRAM. Drivers cannot allocate or free UEFI memory using these services. Drivers cannot allocate
or free SMRAM using the UEFI Boot Services. The functions are:

• SmmAllocatePages()

• SmmFreePages()

• SmmAllocatePool()

• SmmFreePool()

The EFI_SMM_SYSTEM_TABLE2 provides support for SMM protocols, which are runtime
protocols designed to execute exclusively inside of SMM. Drivers cannot access protocols installed
using the UEFI Boot Services through this interface. Drivers cannot access protocols installed using
these interfaces through the UEFI Boot Services interfaces.

Five of the standard protocol-related functions from the UEFI boot services table are provided in the
SMST and perform in a similar fashion. These functions are required to be available until the
EFI_SMM_READY_TO_LOCK_PROTOCOL notification has been installed. The functions are:

• SmmInstallProtocolInterface()

• SmmUninstallProtocolInterface()

• SmmLocateHandle()

• SmmHandleProtocol()

• SmmLocateProtocol().

Noticeably absent are services which support the UEFI driver model. The function
SmmRegisterProtocolNotify(), works in a similar fashion to the UEFI 2.1 function except
that it does not use an event.
Version 1.4 4/13/2015 17

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmInstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the System Management System Table
(SMST).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INSTALL_CONFIGURATION_TABLE2) (
 IN CONST EFI_SMM_SYSTEM_TABLE2 *SystemTable,
 IN CONST EFI_GUID *Guid,
 IN VOID *Table,
 IN UINTN TableSize
)

Parameters
SystemTable

A pointer to the System Management System Table (SMST).

Guid

A pointer to the GUID for the entry to add, update, or remove.

Table

A pointer to the buffer of the table to add.

TableSize

The size of the table to install.

Description
The SmmInstallConfigurationTable() function is used to maintain the list of
configuration tables that are stored in the SMST. The list is stored as an array of (GUID, Pointer)
pairs. The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is not a valid GUID, EFI_INVALID_PARAMETER is returned. If Guid is valid, there
are four possibilities:

• If Guid is not present in the SMST and Table is not NULL, then the (Guid, Table) pair is
added to the SMST. See Note below.

• If Guid is not present in the SMST and Table is NULL, then EFI_NOT_FOUND is returned.

• If Guid is present in the SMST and Table is not NULL, then the (Guid, Table) pair is
updated with the new Table value.

• If Guid is present in the SMST and Table is NULL, then the entry associated with Guid is
removed from the SMST.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.
18 4/13/2015 Version 1.4

System Management System Table (SMST)
Note: If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is not valid.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.
Version 1.4 4/13/2015 19

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmAllocatePool()

Summary
Allocates pool memory from SMRAM.

Prototype
Type EFI_ALLOCATE_POOL is defined in the UEFI 2.1 specification, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.2.

Description
The SmmAllocatePool() function allocates a memory region of Size bytes from memory of
type PoolType and returns the address of the allocated memory in the location referenced by
Buffer. This function allocates pages from EfiConventionalMemory as needed to grow the
requested pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the SmmFreePool() function.

Note: All allocations of SMRAM should use EfiRuntimeServicesCode or
EfiRuntimeServicesData.

Status Codes Returned

EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType was invalid.
20 4/13/2015 Version 1.4

System Management System Table (SMST)
SmmFreePool()

Summary
Returns pool memory to the system.

Prototype
Type EFI_FREE_POOL is defined in the UEFI 2.1 specification, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.2.

Description
The SmmFreePool() function returns the memory specified by Buffer to the SMRAM heap.
The Buffer that is freed must have been allocated by SmmAllocatePool().

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.
Version 1.4 4/13/2015 21

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmAllocatePages()

Summary
Allocates page memory from SMRAM.

Prototype
Type EFI_ALLOCATE_PAGES is defined in the UEFI 2.1 specifications, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.2.

Description
The SmmAllocatePages() function allocates the requested number of pages from the SMRAM
heap and returns a pointer to the base address of the page range in the location referenced by
Memory. The function scans the SMM memory map to locate free pages. When it finds a physically
contiguous block of pages that is large enough and also satisfies the allocation requirements of Type,
it changes the memory map to indicate that the pages are now of type MemoryType.

All allocations of SMRAM should use EfiRuntimeServicesCode or
EfiRuntimeServicesData.

Allocation requests of Type

• AllocateAnyPages allocate any available range of pages that satisfies the request. On input,
the address pointed to by Memory is ignored.

• AllocateMaxAddress allocate any available range of pages whose uppermost address is
less than or equal to the address pointed to by Memory on input.

• AllocateAddress allocate pages at the address pointed to by Memory on input.

Status Codes Returned

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or
AllocateMaxAddress or AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range EfiMaxMemoryType
…0x7FFFFFFF.

EFI_NOT_FOUND The requested pages could not be found.
22 4/13/2015 Version 1.4

System Management System Table (SMST)
SmmFreePages()

Summary
Returns pages of memory to the system.

Protocol
Type EFI_FREE_PAGES is defined in the UEFI 2.1 specifications, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.2.

Description
The SmmFreePages() function returns memory allocated by SmmAllocatePages() to the
SMRAM heap.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with

SmmAllocatePages().

EFI_NOT_FOUND EFI_INVALID_PARAMETER Memory is not a page-aligned

address or Pages is invalid.
Version 1.4 4/13/2015 23

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmStartupThisAp()

Summary
This service lets the caller to get one distinct application processor (AP) in the enabled processor
pool to execute a caller-provided code stream while in SMM. It runs the given code on this processor
and reports the status. It must be noted that the supplied code stream will be run only on an enabled
processor which has also entered SMM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_STARTUP_THIS_AP) (
 IN EFI_AP_PROCEDURE Procedure
 IN UINTN CpuNumber,
 IN OUT VOID *ProcArguments OPTIONAL
);

Parameters
Procedure

A pointer to the code stream to be run on the designated AP of the system. Type
EFI_AP_PROCEDURE is defined below.

CpuNumber

The zero-based index of the processor number of the AP on which the code stream is
supposed to run. If the processor number points to the current processor or a disabled
processor, then it will not run the supplied code.

ProcArguments

Allows the caller to pass a list of parameters to the code that is run by the AP. It is an
optional common mailbox between APs and the BSP to share information.

Related Definitions
See Volume 2, EFI_MP_SERVICES_PROTOCOL.StartupAllAPs, Related definitions.

Description
This function is used to dispatch one specific, healthy, enabled, and non-busy AP out of the
processor pool to the code stream that is provided by the caller while in SMM. The recovery of a
failed AP is optional and the recovery mechanism is implementation dependent.

This call may be implemented in a blocking or non-blocking fashion.

Status Codes Returned

EFI_SUCCESS The call was successful and the return parameters are valid.

EFI_INVALID_PARAMETER The input arguments are out of range.

EFI_INVALID_PARAMETER The CPU requested is not available on this SMI invocation.

EFI_INVALID_PARAMETER The CPU cannot support an additional service invocation.
24 4/13/2015 Version 1.4

System Management System Table (SMST)
SmmInstallProtocolInterface()

Summary
Installs a SMM protocol interface on a device handle. If the handle does not exist, it is created and
added to the list of handles in the system.

Prototype
Type EFI_INSTALL_PROTOCOL_INTERFACE is defined in the UEFI 2.1 specification, section
4.4. The function description is found in the UEFI 2.1 specification, section 6.3.1.

Description
The SmmInstallProtocolInterface() function installs a protocol interface (a
GUID/Protocol Interface structure pair) on an SMM device handle. The same GUID cannot be
installed more than once onto the same handle. If installation of a duplicate GUID on a handle is
attempted, an EFI_INVALID_PARAMETER will result. Installing a protocol interface allows other
SMM drivers to locate the Handle, and the interfaces installed on it.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see the
SmmRegisterProtocolNotify() function description.

Status Codes Returned

EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER InterfaceType is not EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by

Handle.
Version 1.4 4/13/2015 25

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmUninstallProtocolInterface()

Summary
Removes a SMM protocol interface from a device handle.

Prototype
Type EFI_UNINSTALL_PROTOCOL_INTERFACE is defined in the UEFI 2.1 specification,
section 4.4. The function description is found in the UEFI 2.1 specification, section 6.3.1.

Description
The SmmUninstallProtocolInterface() function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has been
removed. If the last protocol interface is removed from a handle, the handle is freed and is no longer
valid.

Status Codes Returned

EFI_SUCCESS The interface was removed.

 EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface is still being
used by a driver.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

 EFI_INVALID_PARAMETER Protocol is NULL.
26 4/13/2015 Version 1.4

System Management System Table (SMST)
SmmHandleProtocol()

Summary

Queries a handle to determine if it supports a specified SMM protocol.

Prototype

Type EFI_HANDLE_PROTOCOL is defined in the UEFI 2.1 specification, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.3.1.

Description

The SmmHandleProtocol() function queries Handle to determine if it supports Protocol.
If it does, then, on return, Interface points to a pointer to the corresponding Protocol Interface.

Interface can then be passed to any protocol service to identify the context of the request.

Status Codes Returned

EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.
Version 1.4 4/13/2015 27

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmRegisterProtocolNotify()

Summary
Register a callback function be called when a particular protocol interface is installed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_REGISTER_PROTOCOL_NOTIFY)(
 IN CONST EFI_GUID *Protocol,
 IN EFI_SMM_NOTIFY_FN Function,
 IN OUT VOID **Registration
);

Parameters
Protocol

The unique ID of the protocol for which the event is to be registered. Type
EFI_GUID is defined in the InstallProtocolInterface() function
description.

Function

Points to the notification function, which is described below.

Registration

A pointer to a memory location to receive the registration value. This value must be
saved and used by the notification function to retrieve the list of handles that have
added a protocol interface of type Protocol.

Description
The SmmRegisterProtocolNotify() function creates a registration Function that is to be
called whenever a protocol interface is installed for Protocol by
SmmInstallProtocolInterface().

When Function has been called, the SmmLocateHandle() function can be called to identify
the newly installed handles that support Protocol. The Registration parameter in
SmmRegisterProtocolNotify() corresponds to the SearchKey parameter in
SmmLocateHandle(). Note that the same handle may be returned multiple times if the handle
reinstalls the target protocol ID multiple times.

If Function == NULL and Registration is an existing registration, then the callback is
unhooked. *Protocol must be validated it with *Registration. If Registration is not
found then EFI_NOT_FOUND is returned.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_NOTIFY_FN)(
 IN CONST EFI_GUID *Protocol,
28 4/13/2015 Version 1.4

System Management System Table (SMST)
 IN VOID *Interface,
 IN EFI_HANDLE Handle
);

Protocol

Points to the protocol’s unique identifier.

Interface

Points to the interface instance.

Handle

The handle on which the interface was installed.

Status Codes Returned

EFI_SUCCESS Successfully returned the registration record that has been
added or unhooked.

EFI_INVALID_PARAMETER Protocolis NULL or Registration is NULL.

EFI_OUT_OF_RESOURCES Not enough memory resource to finish the request.

EFI_NOT_FOUND If the registration is not found when Function == NULL
Version 1.4 4/13/2015 29

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmmLocateHandle()

Summary
Returns an array of handles that support a specified protocol.

Prototype
Type EFI_LOCATE_HANDLE is defined in the UEFI 2.1 specification, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.3.1.

Description
The SmmLocateHandle() function returns an array of handles that match the SearchType
request. If the input value of BufferSize is too small, the function returns
EFI_BUFFER_TOO_SMALL and updates BufferSize to the size of the buffer needed to obtain
the array.

Status Codes Returned

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been

updated with the size needed to complete the request.

EFI_INVALID_PARAMETER SearchType is not a member of EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and SearchKey is

NULL.

EFI_INVALID_PARAMETER SearchType is ByProtocol and Protocol is NULL.

EFI_INVALID_PARAMETER One or more matches are found and BufferSize is NULL.

EFI_INVALID_PARAMETER BufferSize is large enough for the result and Bufferis NULL.
30 4/13/2015 Version 1.4

System Management System Table (SMST)
SmmLocateProtocol()

Summary
Returns the first SMM protocol instance that matches the given protocol.

Prototype
Type EFI_LOCATE_PROTOCOL is defined in the UEFI 2.1 specification, section 4.4. The function
description is found in the UEFI 2.1 specification, section 6.3.1.

Description
The SmmLocateProtocol() function finds the first device handle that support Protocol, and
returns a pointer to the protocol interface from that handle in Interface. If no protocol instances are
found, then Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support
Protocol, then EFI_NOT_FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS A protocol instance matching Protocol was found and
returned in Interface.

EFI_INVALID_PARAMETER Interface is NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol
and Registration .
Version 1.4 4/13/2015 31

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmiManage()

Summary
Manage SMI of a particular type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INTERRUPT_MANAGE)(
 IN CONST EFI_GUID *HandlerType,
 IN CONST VOID *Context OPTIONAL,
 IN OUT VOID *CommBuffer OPTIONAL,
 IN OUT UINTN *CommBufferSize OPTIONAL
);

Parameters
HandlerType

Points to the handler type or NULL for root SMI handlers.

Context

Points to an optional context buffer. The format of the contents of the context buffer
depends on HandlerType.

CommBuffer

Points to the optional communication buffer. The format of the contents of the
communication buffer depends on HandlerType. The contents of the buffer (and its
size) may be altered if EFI_SUCCESS is returned.

CommBufferSize

Points to the size of the optional communication buffer. The size of the buffer may be
altered if EFI_SUCCESS is returned.

Description
This function will call the registered handler functions which match the specified interrupt type.

If NULL is passed in HandlerType, then only those registered handler functions which passed
NULL as their HandlerType will be called. If NULL is passed in HandlerType, then Context
should be NULL, CommBuffer should point to an instance of EFI_SMM_ENTRY_CONTEXT and
CommBufferSize should point to the size of that structure. Type EFI_SMM_ENTRY_CONTEXT
is defined in “Related Definitions” below.

If at least one of the handlers returns EFI_WARN_INTERRUPT_SOURCE_QUIESCED or
EFI_SUCCESS then the function will return EFI_SUCCESS. If a handler returns EFI_SUCCESS
and HandlerType is not NULL then no additional handlers will be processed.

If a handler returns EFI_INTERRUPT_PENDING and HandlerType is not NULL then no
additional handlers will be processed and EFI_INTERRUPT_PENDING will be returned.

If all the handlers returned EFI_WARN_INTERRUPT_SOURCE_PENDING then
EFI_WARN_INTERRUPT_SOURCE_PENDING will be returned.
32 4/13/2015 Version 1.4

System Management System Table (SMST)
If no handlers of HandlerType are found then EFI_NOT_FOUND will be returned.

Status Codes Returned

EFI_WARN_INTERRUPT_SOURCE_PENDING Interrupt source was processed
successfully but not quiesced.

EFI_INTERRUPT_PENDING One or more SMI sources could not be
quiesced.

EFI_NOT_FOUND Interrupt source was not handled or
quiesced.

EFI_SUCCESS Interrupt source was handled and
quiesced.
Version 1.4 4/13/2015 33

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmiHandlerRegister()

Summary
Registers a handler to execute within SMM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INTERRUPT_REGISTER) (
 IN EFI_SMM_HANDLER_ENTRY_POINT2 Handler,
 IN CONST EFI_GUID *HandlerType OPTIONAL,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
Handler

Handler service function pointer. Type EFI_SMM_HANDLER_ENTRY_POINT2 is
defined in “Related Definitions” below.

HandlerType

Points to an EFI_GUID which describes the type of interrupt that this handler is for or
NULL to indicate a root SMI handler.

DispatchHandle

On return, contains a unique handle which can be used to later unregister the handler
function. It is also passed to the handler function itself.

Description
This service allows the registration of a SMI handling function from within SMM.

The handler should have the EFI_SMM_HANDLER_ENTRY_POINT2 interface defined in “Related
Definitions” below.

Related Definitions
//***
// EFI_SMM_HANDLER_ENTRY_POINT2
//***

typedef
EFI_STATUS
(EFIAPI *EFI_SMM_HANDLER_ENTRY_POINT2) (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context OPTIONAL,
 IN OUT VOID *CommBuffer OPTIONAL,
 IN OUT UINTN *CommBufferSize OPTIONAL
);
34 4/13/2015 Version 1.4

System Management System Table (SMST)
DispatchHandle

The unique handle assigned to this handler by SmiHandlerRegister().Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Context

Points to the optional handler context which was specified when the handler was
registered.

CommBuffer

A pointer to a collection of data in memory that will be conveyed from a non-SMM
environment into an SMM environment. The buffer must be contiguous, physically
mapped, and be a physical address.

CommBufferSize

The size of the CommBuffer.

 SmiHandlerRegister() returns one of two status codes:

Status Codes Returned (SmiHandlerRegister())

EFI_SMM_HANDLER_ENTRY_POINT2 returns one of four status codes:

Status Codes Returned (EFI_SMM_HANDLER_ENTRY_POINT2)

EFI_SUCCESS SMI handler added successfully.

 EFI_INVALID_PARAMETER Handler is NULL or DispatchHandle is NULL

EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
should still be called.

EFI_WARN_INTERRUPT_SOURCE_Q
UIESCED

The interrupt has been quiesced but other handlers should
still be called.

EFI_WARN_INTERRUPT_SOURCE_P
ENDING

 The interrupt is still pending and other handlers should still
be called.

 EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
Version 1.4 4/13/2015 35

Platform Initialization Specification VOLUME 4 SMM Core Interface
SmiHandlerUnRegister()

Summary
Unregister a handler in SMM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INTERRUPT_UNREGISTER)(
 IN EFI_HANDLE DispatchHandle,
);

Parameters
DispatchHandle

The handle that was specified when the handler was registered.

Description
This function unregisters the specified handler function.

Status Codes Returned

EFI_SUCCESS Handler function was successfully unregistered.

EFI_INVALID_PARAMETER DispatchHandle does not refer to a valid

handle.
36 4/13/2015 Version 1.4

SMM Protocols
4
SMM Protocols

4.1 Introduction

There is a share-nothing model that is employed between the management-mode application and the
boot service/runtime UEFI environment. As such, a minimum set of services needs to be available
to the boot service agent.

The services described in this section coexist with a foreground pre-boot or runtime environment.
The latter can include both UEFI and non-UEFI aware operating systems. As such, the
implementation of these services must save and restore any "shared" resources with the foreground
environment or only use resources that are private to the SMM code.

4.2 Status Codes Services

EFI_SMM_STATUS_CODE_PROTOCOL

Summary
Provides status code services from SMM.

GUID
#define EFI_SMM_STATUS_CODE_PROTOCOL_GUID \
 { 0x6afd2b77, 0x98c1, 0x4acd, 0xa6, 0xf9, 0x8a, 0x94, \
 0x39, 0xde, 0xf, 0xb1 }

Protocol Interface Structure
typedef struct _EFI_SMM_STATUS_CODE_PROTOCOL {
 EFI_SMM_REPORT_STATUS_CODE ReportStatusCode;
} EFI_SMM_STATUS_CODE_PROTOCOL;

Parameters
ReportStatusCode

Allows for the SMM agent to produce a status code output. See the
ReportStatusCode() function description.

Description
The EFI_SMM_STATUS_CODE_PROTOCOL provides the basic status code services while in
SMRAM.
Version 1.4 4/13/2015 37

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode()

Summary
Service to emit the status code in SMM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_REPORT_STATUS_CODE) (
 IN CONST EFI_SMM_STATUS_CODE_PROTOCOL *This,
 IN EFI_STATUS_CODE_TYPE CodeType,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId,
 IN EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
This

Points to this instance of the EFI_SMM_STATUS_CODE_PROTOCOL.

CodeType

Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
is defined in "Related Definitions" below.

Value

Describes the current status of a hardware or software entity. This status includes
information about the class and subclass that is used to classify the entity, as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in "Related Definitions" below.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in "Related Definitions" below. The contents
of this data type may have additional GUID-specific data.
38 4/13/2015 Version 1.4

SMM Protocols
Description
The EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode() function enables a driver
to emit a status code while in SMM. The reason that there is a separate protocol definition from the
DXE variant of this service is that the publisher of this protocol will provide a service that is
capability of coexisting with a foreground operational environment, such as an operating system
after the termination of boot services.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform-wide view and may not be able to accurately assess the impact of the error
condition. The SMM driver that produces the Status Code SMM Protocol is responsible for
assessing the true severity level based on the reported severity and other information. This SMM
driver may perform platform specific actions based on the type and severity of the status code being
reported.

If Data is present, the driver treats it as read only data. The driver must copy Data to a local
buffer in an atomic operation before performing any other actions. This is necessary to make this
function re-entrant. The size of the local buffer may be limited. As a result, some of the Data can
be lost. The size of the local buffer should at least be 256 bytes in size. Larger buffers will reduce
the probability of losing part of the Data. If all of the local buffers are consumed, then this service
may not be able to perform the platform specific action required by the status code being reported.
As a result, if all the local buffers are consumed, the behavior of this service is undefined.

If the CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

Status Codes Returned

4.3 CPU Save State Access Services

EFI_SMM_CPU_PROTOCOL

Summary
Provides access to CPU-related information while in SMM.

GUID
#define EFI_SMM_CPU_PROTOCOL_GUID \
 { 0xeb346b97, 0x975f, 0x4a9f, \
 0x8b, 0x22, 0xf8, 0xe9, 0x2b, 0xb3, 0xd5, 0x69 }

Prototype
typedef struct _EFI_SMM_CPU_PROTOCOL {
 EFI_SMM_READ_SAVE_STATE ReadSaveState;
 EFI_SMM_WRITE_SAVE_STATE WriteSaveState;
} EFI_SMM_CPU_PROTOCOL;

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR The function should not be completed due to a device error.
Version 1.4 4/13/2015 39

Platform Initialization Specification VOLUME 4 SMM Core Interface
Members
ReadSaveState

Read information from the CPU save state. See ReadSaveState() for more
information.

WriteSaveState

Write information to the CPU save state. See WriteSaveState() for more
information.

Description
This protocol allows SMM drivers to access architecture-standard registers from any of the CPU
save state areas. In some cases, difference processors provide the same information in the save state,
but not in the same format. These so-called pseudo-registers provide this information in a standard
format.
40 4/13/2015 Version 1.4

SMM Protocols
EFI_SMM_CPU_PROTOCOL.ReadSaveState()

Summary
Read data from the CPU save state.

Prototype
typedef
 EFI_STATUS
(EFIAPI *EFI_SMM_READ_SAVE_STATE (
 IN CONST EFI_SMM_CPU_PROTOCOL *This,
 IN UINTN Width,
 IN EFI_SMM_SAVE_STATE_REGISTER Register,
 IN UINTN CpuIndex,
 OUT VOID *Buffer
);

Parameters
Width

The number of bytes to read from the CPU save state. If the register specified by
Register does not support the size specified by Width, then
EFI_INVALID_PARAMETER is returned.

Register

Specifies the CPU register to read form the save state. The type
EFI_SMM_SAVE_STATE_REGISTER is defined in “Related Definitions” below. If
the specified register is not implemented in the CPU save state map then
EFI_NOT_FOUND error will be returned.

CpuIndex

Specifies the zero-based index of the CPU save state

*Buffer

Upon return, this holds the CPU register value read from the save state.

Description
This function is used to read the specified number of bytes of the specified register from the CPU
save state of the specified CPU and place the value into the buffer. If the CPU does not support the
specified register Register, then EFI_NOT_FOUND should be returned. If the CPU does not
support the specified register width Width, then EFI_INVALID_PARAMETER is returned.

Related Definitions
typedef enum {

 //
 // x86/X64 standard registers
 //
Version 1.4 4/13/2015 41

Platform Initialization Specification VOLUME 4 SMM Core Interface
 EFI_SMM_SAVE_STATE_REGISTER_GDTBASE = 4,
 EFI_SMM_SAVE_STATE_REGISTER_IDTBASE = 5,
 EFI_SMM_SAVE_STATE_REGISTER_LDTBASE = 6,
 EFI_SMM_SAVE_STATE_REGISTER_GDTLIMIT = 7,
 EFI_SMM_SAVE_STATE_REGISTER_IDTLIMIT = 8,
 EFI_SMM_SAVE_STATE_REGISTER_LDTLIMIT = 9,
 EFI_SMM_SAVE_STATE_REGISTER_LDTINFO = 10,

 EFI_SMM_SAVE_STATE_REGISTER_ES = 20,
 EFI_SMM_SAVE_STATE_REGISTER_CS = 21,
 EFI_SMM_SAVE_STATE_REGISTER_SS = 22,
 EFI_SMM_SAVE_STATE_REGISTER_DS = 23,
 EFI_SMM_SAVE_STATE_REGISTER_FS = 24,
 EFI_SMM_SAVE_STATE_REGISTER_GS = 25,
 EFI_SMM_SAVE_STATE_REGISTER_LDTR_SEL = 26,
 EFI_SMM_SAVE_STATE_REGISTER_TR_SEL = 27,
 EFI_SMM_SAVE_STATE_REGISTER_DR7 = 28,
 EFI_SMM_SAVE_STATE_REGISTER_DR6 = 29,

 EFI_SMM_SAVE_STATE_REGISTER_R8 = 30,
 EFI_SMM_SAVE_STATE_REGISTER_R9 = 31,
 EFI_SMM_SAVE_STATE_REGISTER_R10 = 32,
 EFI_SMM_SAVE_STATE_REGISTER_R11 = 33,
 EFI_SMM_SAVE_STATE_REGISTER_R12 = 34,
 EFI_SMM_SAVE_STATE_REGISTER_R13 = 35,
 EFI_SMM_SAVE_STATE_REGISTER_R14 = 36,
 EFI_SMM_SAVE_STATE_REGISTER_R15 = 37,

 EFI_SMM_SAVE_STATE_REGISTER_RAX = 38,
 EFI_SMM_SAVE_STATE_REGISTER_RBX = 39,
 EFI_SMM_SAVE_STATE_REGISTER_RCX = 40,
 EFI_SMM_SAVE_STATE_REGISTER_RDX = 41,
 EFI_SMM_SAVE_STATE_REGISTER_RSP = 42,
 EFI_SMM_SAVE_STATE_REGISTER_RBP = 43,
 EFI_SMM_SAVE_STATE_REGISTER_RSI = 44,
 EFI_SMM_SAVE_STATE_REGISTER_RDI = 45,
 EFI_SMM_SAVE_STATE_REGISTER_RIP = 46,

 EFI_SMM_SAVE_STATE_REGISTER_RFLAGS = 51,
 EFI_SMM_SAVE_STATE_REGISTER_CR0 = 52,
 EFI_SMM_SAVE_STATE_REGISTER_CR3 = 53,
 EFI_SMM_SAVE_STATE_REGISTER_CR4 = 54,

 EFI_SMM_SAVE_STATE_REGISTER_FCW = 256,
 EFI_SMM_SAVE_STATE_REGISTER_FSW = 257,
 EFI_SMM_SAVE_STATE_REGISTER_FTW = 258,
 EFI_SMM_SAVE_STATE_REGISTER_OPCODE = 259,
42 4/13/2015 Version 1.4

SMM Protocols
 EFI_SMM_SAVE_STATE_REGISTER_FP_EIP = 260,
 EFI_SMM_SAVE_STATE_REGISTER_FP_CS = 261,
 EFI_SMM_SAVE_STATE_REGISTER_DATAOFFSET = 262,
 EFI_SMM_SAVE_STATE_REGISTER_FP_DS = 263,
 EFI_SMM_SAVE_STATE_REGISTER_MM0 = 264,
 EFI_SMM_SAVE_STATE_REGISTER_MM1 = 265,
 EFI_SMM_SAVE_STATE_REGISTER_MM2 = 266,
 EFI_SMM_SAVE_STATE_REGISTER_MM3 = 267,
 EFI_SMM_SAVE_STATE_REGISTER_MM4 = 268,
 EFI_SMM_SAVE_STATE_REGISTER_MM5 = 269,
 EFI_SMM_SAVE_STATE_REGISTER_MM6 = 270,
 EFI_SMM_SAVE_STATE_REGISTER_MM7 = 271,
 EFI_SMM_SAVE_STATE_REGISTER_XMM0 = 272,
 EFI_SMM_SAVE_STATE_REGISTER_XMM1 = 273,
 EFI_SMM_SAVE_STATE_REGISTER_XMM2 = 274,
 EFI_SMM_SAVE_STATE_REGISTER_XMM3 = 275,
 EFI_SMM_SAVE_STATE_REGISTER_XMM4 = 276,
 EFI_SMM_SAVE_STATE_REGISTER_XMM5 = 277,
 EFI_SMM_SAVE_STATE_REGISTER_XMM6 = 278,
 EFI_SMM_SAVE_STATE_REGISTER_XMM7 = 279,
 EFI_SMM_SAVE_STATE_REGISTER_XMM8 = 280,
 EFI_SMM_SAVE_STATE_REGISTER_XMM9 = 281,
 EFI_SMM_SAVE_STATE_REGISTER_XMM10 = 282,
 EFI_SMM_SAVE_STATE_REGISTER_XMM11 = 283,
 EFI_SMM_SAVE_STATE_REGISTER_XMM12 = 284,
 EFI_SMM_SAVE_STATE_REGISTER_XMM13 = 285,
 EFI_SMM_SAVE_STATE_REGISTER_XMM14 = 286,
 EFI_SMM_SAVE_STATE_REGISTER_XMM15 = 287,

 //
 // Pseudo-Registers
 //
 EFI_SMM_SAVE_STATE_REGISTER_IO = 512
 EFI_SMM_SAVE_STATE_REGISTER_LMA = 513
 EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID = 514
} EFI_SMM_SAVE_STATE_REGISTER;

The Read/Write interface for the pseudo-register
EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID follows these rules:

For ReadSaveState():

The pseudo-register only supports the 64-bit size specified by Width.

If the processor is in SMM at the time the SMI occurred, the pseudo register value
EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer. The value should
match the ProcessorId value, as described in the EFI_PROCESSOR_INFORMATION record
defined in Volume 2 of the Platform Initialization Specification.
Version 1.4 4/13/2015 43

Platform Initialization Specification VOLUME 4 SMM Core Interface
For WriteSaveState():

Write operations to this pseudo-register are ignored.

The Read/Write interface for the pseudo-register EFI_SMM_SAVE_STATE_REGISTER_LMA
follows these rules:

For ReadSaveState():

The pseudo-register only supports the single Byte size specified by Width. If the processor acts in
32-bit mode at the time the SMI occurred, the pseudo register value
EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT is returned in Buffer. Otherwise,
EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT is returned in Buffer.

#define EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT = 32
#define EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT = 64

 For WriteSaveState():

 Write operations to this pseudo-register are ignored.

Status Codes Returned

EFI_SUCCESS The register was read or written from Save State

EFI_NOT_FOUND The register is not defined for the Save State of Processor

EFI_NOT_FOUND The processor is not in SMM.

EFI_INVALID_PARAMETER Input parameters are not valid. For ex: Processor No or register width

is not correct.This or Buffer is NULL.
44 4/13/2015 Version 1.4

SMM Protocols
EFI_SMM_CPU_PROTOCOL.WriteSaveState()

Summary
Write data to the CPU save state.

Prototype
typedef
 EFI_STATUS
(EFIAPI *EFI_SMM_WRITE_SAVE_STATE (
 IN CONST EFI_SMM_CPU_PROTOCOL *This,
 IN UINTN Width,
 IN EFI_SMM_SAVE_STATE_REGISTER Register,
 IN UINTN CpuIndex,
 IN CONST VOID *Buffer
);

Parameters
Width

The number of bytes to write to the CPU save state. If the register specified by
Register does not support the size specified by Width, then
EFI_INVALID_PARAMETER s returned.

Register

Specifies the CPU register to write to the save state. The type
EFI_SMM_SAVE_STATE_REGISTER is defined in ReadSaveState()above. If
the specified register is not implemented in the CPU save state map then
EFI_NOT_FOUND error will be returned.

CpuIndex

Specifies the zero-based index of the CPU save state.

Buffer

Upon entry, this holds the new CPU register value.

Description
This function is used to write the specified number of bytes of the specified register to the CPU save
state of the specified CPU and place the value into the buffer. If the CPU does not support the
specified register Register, then EFI_NOT_FOUND should be returned. If the CPU does not
support the specified register width Width, then EFI_INVALID_PARAMETER is returned.
Version 1.4 4/13/2015 45

Platform Initialization Specification VOLUME 4 SMM Core Interface
Status Codes Returned

4.3.1 SMM Save State IO Info

EFI_SMM_SAVE_STATE_IO_INFO

Summary
Describes the I/O operation which was in process when the SMI was generated.

Prototype

typedef struct _EFI_SMM_SAVE_STATE_IO_INFO {
 UINT64 IoData;
 UINT16 IoPort;
 EFI_SMM_SAVE_STATE_IO_WIDTH IoWidth;
 EFI_SMM_SAVE_STATE_IO_TYPE IoType;
} EFI_SMM_SAVE_STATE_IO_INFO

Parameters
IoData

For input instruction (IN, INS), this is data read before the SMI occurred. For output
instructions (OUT, OUTS) this is data that was written before the SMI occurred. The
width of the data is specified by IoWidth. The data buffer is allocated by the Called
function, and it is the Caller's responsibility to free this buffer.

IoPort

The I/O port that was being accessed when the SMI was triggered.

IoWidth

Defines the size width (UINT8, UINT16, UINT32, UINT64) for IoData. See
Related Definitions.

IoType

Defines type of I/O instruction. See Related Definitions.

EFI_SUCCESS The register was read or written from Save State

EFI_NOT_FOUND The register Register is not defined for the Save

State of Processor

EFI_INVALID_PARAMETER Input parameters are not valid. For example:

ProcessorIndex or Width is not correct.

This or Buffer is NULL.
46 4/13/2015 Version 1.4

SMM Protocols
 Description
This is the structure of the data which is returned when ReadSaveState() is called with
EFI_SMM_SAVE_STATE_REGISTER_IO. If there was no I/O then ReadSaveState() will
return EFI_NOT_FOUND.

Related Definitions
typedef enum {
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 = 0,
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT16 = 1,
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT32 = 2,
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT64 = 3
} EFI_SMM_SAVE_STATE_IO_WIDTH

typedef enum {
 EFI_SMM_SAVE_STATE_IO_TYPE_INPUT = 1,
 EFI_SMM_SAVE_STATE_IO_TYPE_OUTPUT = 2,
 EFI_SMM_SAVE_STATE_IO_TYPE_STRING = 4,
 EFI_SMM_SAVE_STATE_IO_TYPE_REP_PREFIX = 8
} EFI_SMM_SAVE_STATE_IO_TYPE

4.4 SMM CPU I/O Protocol

EFI_SMM_CPU_IO2_PROTOCOL

Summary
Provides CPU I/O and memory access within SMM

GUID
#define EFI_SMM_CPU_IO2_PROTOCOL_GUID \
 { 0x3242a9d8, 0xce70, 0x4aa0, \
 0x95, 0x5d, 0x5e, 0x7b, 0x14, 0xd, 0xe4, 0xd2 }

Protocol Interface Structure
typedef struct _EFI_SMM_CPU_IO2_PROTOCOL {
 EFI_SMM_IO_ACCESS2 Mem;
 EFI_SMM_IO_ACCESS2 Io;
} EFI_SMM_CPU_IO2_PROTOCOL;

Parameters
Mem

Allows reads and writes to memory-mapped I/O space. See the Mem() function
description. Type EFI_SMM_IO_ACCESS2 is defined in “Related Definitions”
below.
Version 1.4 4/13/2015 47

Platform Initialization Specification VOLUME 4 SMM Core Interface
Io

Allows reads and writes to I/O space. See the Io() function description. Type
EFI_SMM_IO_ACCESS2 is defined in “Related Definitions” below.

Description
The EFI_SMM_CPU_IO2_PROTOCOL service provides the basic memory, I/O, and PCI interfaces
that are used to abstract accesses to devices.

The interfaces provided in EFI_SMM_CPU_IO2_PROTOCOL are for performing basic operations
to memory and I/O. The EFI_SMM_CPU_IO2_PROTOCOL can be thought of as the bus driver for
the system. The system provides abstracted access to basic system resources to allow a driver to
have a programmatic method to access these basic system resources.

Related Definitions
//***
// EFI_SMM_IO_ACCESS2
//***
typedef struct {
 EFI_SMM_CPU_IO2 Read;
 EFI_SMM_CPU_IO2 Write;
} EFI_SMM_IO_ACCESS2;

Read

This service provides the various modalities of memory and I/O read.

Write

This service provides the various modalities of memory and I/O write.
48 4/13/2015 Version 1.4

SMM Protocols
EFI_SMM_CPU_IO2_PROTOCOL.Mem()

Summary
Enables a driver to access device registers in the memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_SMM_CPU_IO2) (
 IN CONST EFI_SMM_CPU_IO2_PROTOCOL *This,
 IN EFI_SMM_IO_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

The EFI_SMM_CPU_IO2_PROTOCOL instance.

Width

Signifies the width of the I/O operations. Type EFI_SMM_IO_WIDTH is defined in
“Related Definitions” below.

Address

The base address of the I/O operations. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. Bytes moved is Width size * Count,
starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations,
the source buffer from which to write data.

Description
The EFI_SMM_CPU_IO2.Mem() function enables a driver to access device registers in the
memory.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues that the bus, device, platform, or type of I/O might require. For example, on
IA-32 platforms, width requests of SMM_IO_UINT64 do not work.

The Address field is the bus relative address as seen by the device on the bus.

Related Definitions
//***
Version 1.4 4/13/2015 49

Platform Initialization Specification VOLUME 4 SMM Core Interface
// EFI_SMM_IO_WIDTH
//***

typedef enum {
 SMM_IO_UINT8 = 0,
 SMM_IO_UINT16 = 1,
 SMM_IO_UINT32 = 2,
 SMM_IO_UINT64 = 3
} EFI_SMM_IO_WIDTH;

Status Codes Returned

EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
50 4/13/2015 Version 1.4

SMM Protocols
EFI_SMM_CPU_IO2_PROTOCOL.Io()

Summary
Enables a driver to access device registers in the I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_SMM_CPU_IO2) (
 IN CONST EFI_SMM_CPU_IO2_PROTOCOL *This,
 IN EFI_SMM_IO_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

The EFI_SMM_CPU_IO2_PROTOCOL instance.

Width

Signifies the width of the I/O operations. Type EFI_SMM_IO_WIDTH is defined in
Mem().

Address

The base address of the I/O operations. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. Bytes moved is Width size * Count,
starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations,
the source buffer from which to write data.

Description
The EFI_SMM_CPU_IO2.Io() function enables a driver to access device registers in the I/O
space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example, on
IA-32 platforms, width requests of SMM_IO_UINT64 do not work.

The caller must align the starting address to be on a proper width boundary.
Version 1.4 4/13/2015 51

Platform Initialization Specification VOLUME 4 SMM Core Interface
Status Codes Returned

4.5 SMM PCI I/O Protocol

EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL

Summary
Provides access to PCI I/O, memory and configuration space inside of SMM.

GUID
#define EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID \
 {0x8bc1714d, 0xffcb, 0x41c3, \
 0x89, 0xdc, 0x6c, 0x74, 0xd0, 0x6d, 0x98, 0xea}

Prototype
typedef EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL;

Description
This protocol provides the same functionality as the PCI Root Bridge I/O Protocol defined in the
UEFI 2.1 Specifcation, section 13.2, except that the functions for Map(), Unmap(), Flush(),
AllocateBuffer(), FreeBuffer(), SetAttributes(), and Configuration() may
return EFI_UNSUPPORTED.

4.6 SMM Ready To Lock Protocol

EFI_SMM_READY_TO_LOCK_SMM_PROTOCOL

Summary
Indicates that SMM is about to be locked.

GUID
#define EFI_SMM_READY_TO_LOCK_PROTOCOL_GUID \
 { 0x47b7fa8c, 0xf4bd, 0x4af6, \
 {0x82, 0x0, 0x33, 0x30, 0x86, 0xf0, 0xd2, 0xc8 } }

Prototype
NULL

EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
52 4/13/2015 Version 1.4

SMM Protocols
Description
This protocol is a mandatory protocol published by the SMM Foundation code when the system is
preparing to lock SMM. This protocol should be installed immediately after
EFI_END_OF_DXE_EVENT_GROUP_GUID with no intervening modules dispatched.

4.7 SMM End of DXE Protocol

EFI_SMM_END_OF_DXE_PROTOCOL

Summary
Indicates that SMM is about to be locked.

GUID
#define EFI_SMM_END_OF_DXE_PROTOCOL_GUID \
{ 0x24e70042, 0xd5c5, 0x4260, \
{ 0x8c, 0x39, 0xa, 0xd3, 0xaa, 0x32, 0xe9, 0x3d } }

Prototype
NULL

Description
This protocol is a mandatory protocol published by the PI platform code prior to invoking any 3rd
party content, including options ROM’s and UEFI executables that are not from the platform
manufacturer. There is an associated event GUID that is signaled for the DXE drivers called
EFI_END_OF_DXE_EVENT_GUID.
Version 1.4 4/13/2015 53

Platform Initialization Specification VOLUME 4 SMM Core Interface
54 4/13/2015 Version 1.4

UEFI Protocols
5
UEFI Protocols

5.1 Introduction
The services described in this chapter describe a series of protocols that locate the SMST,
manipulate the System Management RAM (SMRAM) apertures, and generate System Management
Interrupts (SMIs). Some of these protocols provide only boot services while others have both boot
services and runtime services.

The following protocols are defined in this chapter:

• EFI_SMM_BASE2_PROTOCOL

• EFI_SMM_ACCESS2_PROTOCOL

• EFI_SMM_CONTROL2_PROTOCOL

• EFI_SMM_CONFIGURATION_PROTOCOL

• EFI_SMM_COMMUNICATION_PROTOCOL

5.2 EFI SMM Base Protocol

EFI_SMM_BASE2_PROTOCOL

Summary

This protocol is used to locate the SMST during SMM driver initialization.

GUID
#define EFI_SMM_BASE2_PROTOCOL_GUID \
 { 0xf4ccbfb7, 0xf6e0, 0x47fd, \
 0x9d, 0xd4, 0x10, 0xa8, 0xf1, 0x50, 0xc1, 0x91 }

Protocol Interface Structure
typedef struct _EFI_SMM_BASE2_PROTOCOL {
 EFI_SMM_INSIDE_OUT2 InSmm;
 EFI_SMM_GET_SMST_LOCATION2 GetSmstLocation;
} EFI_SMM_BASE2_PROTOCOL;

Parameters
InSmm

Detects whether the caller is inside or outside of SMRAM. See the InSmm() function
description.
Version 1.4 4/13/2015 55

Platform Initialization Specification VOLUME 4 SMM Core Interface
GetSmstLocation

Retrieves the location of the System Management System Table (SMST). See the
GetSmstLocation() function description.

Description
The EFI_SMM_BASE2_PROTOCOL is provided by the SMM IPL driver. It is a required protocol.
It will be utilized by all SMM drivers to locate the SMM infrastructure services and determine
whether the driver is being invoked inside SMRAM or outside of SMRAM.
56 4/13/2015 Version 1.4

UEFI Protocols
EFI_SMM_BASE2_PROTOCOL.InSmm()

Summary
Service to indicate whether the driver is currently executing in the SMM Initialization phase.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INSIDE_OUT2) (
 IN CONST EFI_SMM_BASE2_PROTOCOL *This,
 OUT BOOLEAN *InSmram
)

Parameters
This

The EFI_SMM_BASE2_PROTOCOL instance.

InSmram

Pointer to a Boolean which, on return, indicates that the driver is currently executing
inside of SMRAM (TRUE) or outside of SMRAM (FALSE).

Description
This service returns whether the caller is being executed in the SMM Initialization phase. For SMM
drivers, this will return TRUE in InSmram while inside the driver’s entry point and otherwise
FALSE. For combination SMM/DXE drivers, this will return FALSE in the DXE launch. For the
SMM launch, it behaves as an SMM driver.

Status Codes Returned

EFI_SUCCESS The call returned successfully.

EFI_INVALID_PARAMETER InSmram was NULL.
Version 1.4 4/13/2015 57

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_BASE2_PROTOCOL.GetSmstLocation()

Summary
Returns the location of the System Management Service Table (SMST).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GET_SMST_LOCATION2) (
 IN CONST EFI_SMM_BASE2_PROTOCOL *This,
 IN OUT EFI_SMM_SYSTEM_TABLE2 **Smst
)

Parameters
This

The EFI_SMM_BASE2_PROTOCOL instance.

Smst

On return, points to a pointer to the System Management Service Table (SMST).

Description
This function returns the location of the System Management Service Table (SMST). The use of the
API is such that a driver can discover the location of the SMST in its entry point and then cache it in
some driver global variable so that the SMST can be invoked in subsequent handlers.

Status Codes Returned

5.3 SMM Access Protocol

EFI_SMM_ACCESS2_PROTOCOL

Summary
This protocol is used to control the visibility of the SMRAM on the platform.

GUID
#define EFI_SMM_ACCESS2_PROTOCOL_GUID \
 { 0xc2702b74, 0x800c, 0x4131, \
 0x87, 0x46, 0x8f, 0xb5, 0xb8, 0x9c, 0xe4, 0xac }

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Smst was invalid.

EFI_UNSUPPORTED Not in SMM.
58 4/13/2015 Version 1.4

UEFI Protocols
Protocol Interface Structure
typedef struct _EFI_SMM_ACCESS2_PROTOCOL {
 EFI_SMM_OPEN2 Open;
 EFI_SMM_CLOSE2 Close;
 EFI_SMM_LOCK2 Lock;
 EFI_SMM_CAPABILITIES2 GetCapabilities;
 BOOLEAN LockState;
 BOOLEAN OpenState;
} EFI_SMM_ACCESS2_PROTOCOL;

Parameters
Open

Opens the SMRAM. See the Open() function description.

Close

Closes the SMRAM. See the Close() function description.

Lock

Locks the SMRAM. See the Lock() function description.

GetCapabilities

Gets information about all SMRAM regions. See the GetCapabilities()
function description.

LockState

Indicates the current state of the SMRAM. Set to TRUE if SMRAM is locked.

OpenState

Indicates the current state of the SMRAM. Set to TRUE if SMRAM is open.

Description
The EFI_SMM_ACCESS2_PROTOCOL abstracts the location and characteristics of SMRAM. The
principal functionality found in the memory controller includes the following:

• Exposing the SMRAM to all non-SMM agents, or the "open" state

• Shrouding the SMRAM to all but the SMM agents, or the "closed" state

• Preserving the system integrity, or "locking" the SMRAM, such that the settings cannot be
perturbed by either boot service or runtime agents
Version 1.4 4/13/2015 59

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_ACCESS2_PROTOCOL.Open()

Summary
Opens the SMRAM area to be accessible by a boot-service driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_OPEN2) (
 IN EFI_SMM_ACCESS2_PROTOCOL *This
);

Parameters
This

The EFI_SMM_ACCESS2_PROTOCOL instance.

Description
This function “opens” SMRAM so that it is visible while not inside of SMM. The function should
return EFI_UNSUPPORTED if the hardware does not support hiding of SMRAM. The function
should return EFI_DEVICE_ERROR if the SMRAM configuration is locked.

Status Codes Returned

EFI_SUCCESS The operation was successful.

EFI_UNSUPPORTED The system does not support opening and closing of SMRAM.

EFI_DEVICE_ERROR SMRAM cannot be opened, perhaps because it is locked.
60 4/13/2015 Version 1.4

UEFI Protocols
EFI_SMM_ACCESS2_PROTOCOL.Close()

Summary
Inhibits access to the SMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CLOSE2) (
 IN EFI_SMM_ACCESS2_PROTOCOL *This
);

Parameters
This

The EFI_SMM_ACCESS2_PROTOCOL instance.

Description
This function “closes” SMRAM so that it is not visible while outside of SMM. The function should
return EFI_UNSUPPORTED if the hardware does not support hiding of SMRAM.

Status Codes Returned

EFI_SUCCESS The operation was successful.

EFI_UNSUPPORTED The system does not support opening and closing of SMRAM.

EFI_DEVICE_ERROR SMRAM cannot be closed.
Version 1.4 4/13/2015 61

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_ACCESS2_PROTOCOL.Lock()

Summary
Inhibits access to the SMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_LOCK2) (
 IN EFI_SMM_ACCESS2_PROTOCOL *This
);

Parameters
This

The EFI_SMM_ACCESS2_PROTOCOL instance.

Description
This function prohibits access to the SMRAM region. This function is usually implemented such
that it is a write-once operation.

Status Codes Returned

EFI_SUCCESS The device was successfully locked.

EFI_UNSUPPORTED The system does not support locking of SMRAM.
62 4/13/2015 Version 1.4

UEFI Protocols
EFI_SMM_ACCESS2_PROTOCOL.GetCapabilities()

Summary
Queries the memory controller for the regions that will support SMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CAPABILITIES2) (
 IN CONST EFI_SMM_ACCESS2_PROTOCOL *This,
 IN OUT UINTN *SmramMapSize,
 IN OUT EFI_SMRAM_DESCRIPTOR *SmramMap
);

Parameters
This

The EFI_SMM_ACCESS2_PROTOCOL instance.

SmramMapSize

A pointer to the size, in bytes, of the SmramMemoryMap buffer. On input, this value
is the size of the buffer that is allocated by the caller. On output, it is the size of the
buffer that was returned by the firmware if the buffer was large enough, or, if the
buffer was too small, the size of the buffer that is needed to contain the map.

SmramMap

A pointer to the buffer in which firmware places the current memory map. The map is
an array of EFI_SMRAM_DESCRIPTORs. Type EFI_SMRAM_DESCRIPTOR is
defined in “Related Definitions” below.

Description
This function describes the SMRAM regions.

This data structure forms the contract between the SMM_ACCESS2 and SMM_IPL drivers. There is
an ambiguity when any SMRAM region is remapped. For example, on some chipsets, some
SMRAM regions can be initialized at one physical address but is later accessed at another processor
address. There is currently no way for the SMM IPL driver to know that it must use two different
addresses depending on what it is trying to do. As a result, initial configuration and loading can use
the physical address PhysicalStart while SMRAM is open. However, once the region has
been closed and needs to be accessed by agents in SMM, the CpuStart address must be used.

This protocol publishes the available memory that the chipset can shroud for the use of installing
code.

These regions serve the dual purpose of describing which regions have been open, closed, or locked.
In addition, these regions may include overlapping memory ranges, depending on the chipset
implementation. The latter might include a chipset that supports T-SEG, where memory near the top
of the physical DRAM can be allocated for SMRAM too.
Version 1.4 4/13/2015 63

Platform Initialization Specification VOLUME 4 SMM Core Interface
The key thing to note is that the regions that are described by the protocol are a subset of the
capabilities of the hardware.

Related Definitions
//***
//EFI_SMRAM_STATE
//***
//
// Hardware state
//
#define EFI_SMRAM_OPEN 0x00000001
#define EFI_SMRAM_CLOSED 0x00000002
#define EFI_SMRAM_LOCKED 0x00000004
//
// Capability
//
#define EFI_CACHEABLE 0x00000008
//
// Logical usage
//
#define EFI_ALLOCATED 0x00000010
//
// Directive prior to usage
//
#define EFI_NEEDS_TESTING 0x00000020
#define EFI_NEEDS_ECC_INITIALIZATION 0x00000040

//***
// EFI_SMRAM_DESCRIPTOR
//***
typedef struct _EFI_SMRAM_DESCRIPTOR {
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 EFI_PHYSICAL_ADDRESS CpuStart;
 UINT64 PhysicalSize;
 UINT64 RegionState;
} EFI_SMRAM_DESCRIPTOR;

PhysicalStart

Designates the physical address of the SMRAM in memory. This view of memory is
the same as seen by I/O-based agents, for example, but it may not be the address seen
by the processors. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI 2.1 Specification.
64 4/13/2015 Version 1.4

UEFI Protocols
CpuStart

Designates the address of the SMRAM, as seen by software executing on the
processors. This address may or may not match PhysicalStart.

PhysicalSize

Describes the number of bytes in the SMRAM region.

RegionState

Describes the accessibility attributes of the SMRAM. These attributes include the
hardware state (e.g., Open/Closed/Locked), capability (e.g., cacheable), logical
allocation (e.g., allocated), and pre-use initialization (e.g., needs testing/ECC
initialization).

Status Codes Returned

5.4 SMM Control Protocol

EFI_SMM_CONTROL2_PROTOCOL

Summary

This protocol is used initiate synchronous SMI activations. This protocol could be published by a
processor driver to abstract the SMI IPI or a driver which abstracts the ASIC that is supporting the
APM port.

Because of the possibility of performing SMI IPI transactions, the ability to generate this event from
a platform chipset agent is an optional capability for both IA-32 and x64-based systems.

GUID
#define EFI_SMM_CONTROL2_PROTOCOL_GUID \
 { 0x843dc720, 0xab1e, 0x42cb, \
 0x93, 0x57, 0x8a, 0x0, 0x78, 0xf3, 0x56, 0x1b }

Protocol Interface Structure
typedef struct _EFI_SMM_CONTROL2_PROTOCOL {
 EFI_SMM_ACTIVATE2 Trigger;
 EFI_SMM_DEACTIVATE2 Clear;
 EFI_SMM_PERIOD MinimumTriggerPeriod;
 } EFI_SMM_CONTROL2_PROTOCOL;

EFI_SUCCESS The chipset supported the given resource.

EFI_BUFFER_TOO_SMALL The SmramMap parameter was too small. The current buffer size

needed to hold the memory map is returned in SmramMapSize.
Version 1.4 4/13/2015 65

Platform Initialization Specification VOLUME 4 SMM Core Interface
Parameters
Trigger

Initiates the SMI activation. See the Trigger() function description.

Clear

Quiesces the SMI activation. See the Clear() function description.

MinimumTriggerPeriod

Minimum interval at which the platform can set the period. A maximum is not
specified in that the SMM infrastructure code can emulate a maximum interval that is
greater than the hardware capabilities by using software emulation in the SMM
infrastructure code. Type EFI_SMM_PERIOD is defined in "Related Definitions"
below.

Description

The EFI_SMM_CONTROL2_PROTOCOL is produced by a runtime driver. It provides an
abstraction of the platform hardware that generates an SMI. There are often I/O ports that, when
accessed, will generate the SMI. Also, the hardware optionally supports the periodic generation of
these signals.

Related Definitions
//**
// EFI_SMM_PERIOD
//**
typedef UINTN EFI_SMM_PERIOD;

Note: The period is in increments of 10 ns.
66 4/13/2015 Version 1.4

UEFI Protocols
EFI_SMM_CONTROL2_PROTOCOL.Trigger()

Summary
Invokes SMI activation from either the preboot or runtime environment.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_ACTIVATE2) (
 IN CONST EFI_SMM_CONTROL2_PROTOCOL *This,
 IN OUT UINT8 *CommandPort OPTIONAL,
 IN OUT UINT8 *DataPort OPTIONAL,
 IN BOOLEAN Periodic OPTIONAL,
 IN UINTN ActivationInterval OPTIONAL
);

Parameters
This

The EFI_SMM_CONTROL2_PROTOCOL instance.

CommandPort

The value written to the command port; this value corresponds to the
SwSmiInputValue in the RegisterContext parameter for the Register()
function in the EFI_SMM_SW_DISPATCH2_PROTOCOL and in the Context
parameter in the call to the DispatchFunction, see section 6.2.

DataPort

The value written to the data port; this value corresponds to the DataPort member
in the CommBuffer parameter in the call to the DispatchFunction, see
section 6.2.

Periodic

Optional mechanism to engender a periodic stream.

ActivationInterval

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description
This function generates an SMI.
Version 1.4 4/13/2015 67

Platform Initialization Specification VOLUME 4 SMM Core Interface
Status Codes Returned

EFI_SUCCESS The SMI has been engendered.

EFI_DEVICE_ERROR The timing is unsupported.

EFI_INVALID_PARAMETER The activation period is unsupported.

EFI_INVALID_PARAMETER The last periodic activation has not been cleared.

EFI_NOT_STARTED The SMM base service has not been initialized.
68 4/13/2015 Version 1.4

UEFI Protocols
EFI_SMM_CONTROL2_PROTOCOL.Clear()

Summary

Clears any system state that was created in response to the Trigger() call.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_DEACTIVATE2) (
 IN CONST EFI_SMM_CONTROL2_PROTOCOL *This,
 IN BOOLEAN Periodic OPTIONAL
);

Parameters
This

The EFI_SMM_CONTROL2_PROTOCOL instance.

Periodic

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description

This function acknowledges and causes the deassertion of the SMI activation source.that was
initiated by a preceding Trigger invocation.

The results of this function update the software state of the communication infrastructure in the
runtime code, but it is ignorable from the perspective of the hardware state, though. This distinction
stems from the fact that many implementations clear the hardware acknowledge in the SMM-
resident infrastructure itself and may also have other actions using that same activation hardware
generated by SMM drivers. This clear-in-SMM distinction also avoids having the possible
pathology of an asynchronous SMI being received in the time window between the RSM that
followed the flows engendered by the Trigger and the subsequent non-SMM resident runtime
driver code invocation of the Clear.

Status Codes Returned

EFI_SUCCESS The SMI has been engendered.

EFI_DEVICE_ERROR The source could not be cleared.

EFI_INVALID_PARAMETER The service did not support the Periodic input argument.
Version 1.4 4/13/2015 69

Platform Initialization Specification VOLUME 4 SMM Core Interface
5.5 SMM Configuration Protocol

EFI_SMM_CONFIGURATION_PROTOCOL

Summary
Reports the portions of SMRAM regions which cannot be used for the SMRAM heap.

GUID
#define EFI_SMM_CONFIGURATION_PROTOCOL_GUID \
 { 0x26eeb3de, 0xb689, 0x492e, \
 0x80, 0xf0, 0xbe, 0x8b, 0xd7, 0xda, 0x4b, 0xa7 }

Prototype
typedef struct _EFI_SMM_CONFIGURATION_PROTOCOL {
 EFI_SMM_RESERVED_SMRAM_REGION *SmramReservedRegions;
 EFI_SMM_REGISTER_SMM_ENTRY RegisterSmmEntry;
} EFI_SMM_CONFIGURATION_PROTOCOL;

Members
SmramReservedRegions

A pointer to an array SMRAM ranges used by the initial SMM entry code.

RegisterSmmEntry

A function to register the SMM Foundation entry point.

Description
This protocol is a mandatory protocol published by a DXE CPU driver to indicate which areas
within SMRAM are reserved for use by the CPU for any purpose, such as stack, save state or SMM
entry point.

The SmramReservedRegions points to an array of one or more
EFI_SMM_RESERVED_SMRAM_REGION structures, with the last structure having the
SmramReservedSize set to 0. An empty array would contain only the last structure.

The RegisterSmmEntry() function allows the SMM IPL DXE driver to register the SMM
Foundation entry point with the SMM entry vector code.

Related Definitions
typedef struct _EFI_SMM_RESERVED_SMRAM_REGION {
 EFI_PHYSICAL_ADDRESS SmramReservedStart;
 UINT64 SmramReservedSize;
} EFI_SMM_RESERVED_SMRAM_REGION;

SmramReservedStart

Starting address of the reserved SMRAM area, as it appears while SMRAM is open.
Ignored if SmramReservedSize is 0.
70 4/13/2015 Version 1.4

UEFI Protocols
SmramReservedSize

Number of bytes occupied by the reserved SMRAM area. A size of zero indicates the
last SMRAM area.
Version 1.4 4/13/2015 71

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_CONFIGURATION_PROTOCOL.RegisterSmmEntry()

Summary
Register the SMM Foundation entry point.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_REGISTER_SMM_ENTRY) (
 IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This,
 IN EFI_SMM_ENTRY_POINT SmmEntryPoint
)

Parameters
This

The EFI_SMM_CONFIGURATION_PROTOCOL instance.

SmmEntryPoint

SMM Foundation entry point.

Description

This function registers the SMM Foundation entry point with the processor code. This entry point
will be invoked by the SMM Processor entry code as defined in section 2.5.

Status Codes Returned

5.6 DXE Ready To Lock SMM Protocol

EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL

Summary
Indicates that SMM is about to be locked.

GUID
#define EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL_GUID \
{ 0x60ff8964, 0xe906, 0x41d0, \
0xaf, 0xed, 0xf2, 0x41, 0xe9, 0x74, 0xe0, 0x8e}

Prototype
NULL

EFI_SUCCESS The entry-point was successfully registered.
72 4/13/2015 Version 1.4

UEFI Protocols
Description
This protocol is a mandatory protocol published by a DXE driver prior to invoking the
EFI_SMM_ACCESS2_PROTOCOL.Lock() function to lock SMM.

5.7 SMM Communication Protocol

EFI_SMM_COMMUNICATION_PROTOCOL

Summary

This protocol provides a means of communicating between drivers outside of SMM and SMI
handlers inside of SMM.

GUID
#define EFI_SMM_COMMUNICATION_PROTOCOL_GUID \
 { 0xc68ed8e2, 0x9dc6, 0x4cbd, 0x9d, 0x94, 0xdb, 0x65, \
 0xac, 0xc5, 0xc3, 0x32 }

Prototype
typedef struct _EFI_SMM_COMMUNICATION_PROTOCOL {
 EFI_SMM_COMMUNICATE2 Communicate;
} EFI_SMM_COMMUNICATION_PROTOCOL;

Members
Communicate

Sends/receives a message for a registered handler. See the Communicate()
function description.

Description

This protocol provides runtime services for communicating between DXE drivers and a registered
SMI handler.
Version 1.4 4/13/2015 73

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_COMMUNICATION_PROTOCOL.Communicate()

Summary
Communicates with a registered handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_COMMUNICATE2) (
 IN CONST EFI_SMM_COMMUNICATION_PROTOCOL *This,
 IN OUT VOID *CommBuffer,
 IN OUT UINTN *CommSize
);

Parameters
This

The EFI_SMM_COMMUNICATION_PROTOCOL instance.

CommBuffer

Pointer to the buffer to convey into SMRAM.

CommSize

The size of the data buffer being passed in. On exit, the size of data being returned.
Zero if the handler does not wish to reply with any data.

Description
This function provides a service to send and receive messages from a registered UEFI service. The
EFI_SMM_COMMUNICATION_PROTOCOL driver is responsible for doing any of the copies such
that the data lives in boot-service-accessible RAM.

A given implementation of the EFI_SMM_COMMUNICATION_PROTOCOL may choose to use the
EFI_SMM_CONTROL2_PROTOCOL for effecting the mode transition, or it may use some other
method.

The agent invoking the communication interface at runtime may be virtually mapped. The SMM
infrastructure code and handlers, on the other hand, execute in physical mode. As a result, the non-
SMM agent, which may be executing in the virtual-mode OS context (as a result of an OS invocation
of the UEFI SetVirtualAddressMap() service), should use a contiguous memory buffer with
a physical address before invoking this service. If the virtual address of the buffer is used, the SMM
driver may not know how to do the appropriate virtual-to-physical conversion.

To avoid confusion in interpreting frames, the CommunicateBuffer parameter should always
begin with EFI_SMM_COMMUNICATE_HEADER, which is defined in “Related Definitions” below.
The header data is mandatory for messages sent into the SMM agent.

Once inside of SMM, the SMM infrastructure will call all registered handlers with the same
HandlerType as the GUID specified by HeaderGuid and the CommBuffer pointing to Data.

This function is not reentrant.
74 4/13/2015 Version 1.4

UEFI Protocols
Related Definitions
typedef struct {
 EFI_GUID HeaderGuid;
 UINTN MessageLength;
 UINT8 Data[ANYSIZE_ARRAY];
} EFI_SMM_COMMUNICATE_HEADER;

HeaderGuid

Allows for disambiguation of the message format. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

MessageLength

Describes the size of Data (in bytes) and does not include the size of the header..

Data

Designates an array of bytes that is MessageLength in size.

Status Codes Returned

EFI_SUCCESS The message was successfully posted

EFI_INVALID_PARAMETER The buffer was NULL.
Version 1.4 4/13/2015 75

Platform Initialization Specification VOLUME 4 SMM Core Interface
76 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
6
SMM Child Dispatch Protocols

6.1 Introduction

The services described in this chapter describe a series of protocols that abstract installation of
handlers for a chipset-specific SMM design. These services are all scoped to be usable only from
within SMRAM.

The following protocols are defined in this chapter:

• EFI_SMM_SW_DISPATCH2_PROTOCOL

• EFI_SMM_SX_DISPATCH2_PROTOCOL

• EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL

• EFI_SMM_USB_DISPATCH2_PROTOCOL

• EFI_SMM_GPI_DISPATCH2_PROTOCOL

• EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL

• EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL

• EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL

SMM drivers which create instances of these protocols should install an instance of the
EFI_DEVICE_PATH_PROTOCOL on the same handle. This allows other SMM drivers to
distinguish between multiple instances of the same child dispatch protocol

6.2 SMM Software Dispatch Protocol

EFI_SMM_SW_DISPATCH2_PROTOCOL

Summary
Provides the parent dispatch service for a given SMI source generator.

GUID
#define EFI_SMM_SW_DISPATCH2_PROTOCOL_GUID \
{ 0x18a3c6dc, 0x5eea, 0x48c8, \
0xa1, 0xc1, 0xb5, 0x33, 0x89, 0xf9, 0x89, 0x99}

Protocol Interface Structure
typedef struct _EFI_SMM_SW_DISPATCH2_PROTOCOL {
 EFI_SMM_SW_REGISTER2 Register;
 EFI_SMM_SW_UNREGISTER2 UnRegister;
 UINTN MaximumSwiValue;
} EFI_SMM_SW_DISPATCH2_PROTOCOL;
Version 1.4 4/13/2015 77

Platform Initialization Specification VOLUME 4 SMM Core Interface
Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

MaximumSwiValue

A read-only field that describes the maximum value that can be used in the
EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() service.

Description
The EFI_SMM_SW_DISPATCH2_PROTOCOL provides the ability to install child handlers for the
given software. These handlers will respond to software interrupts, and the maximum software
interrupt in the EFI_SMM_SW_REGISTER_CONTEXT is denoted by MaximumSwiValue.
78 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
EFI_SMM_SW_DISPATCH2_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SW_REGISTER2) (
 IN CONST EFI_SMM_SW_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN EFI_SMM_SW_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SW_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when the specified software SMI is generated. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister().

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the software
SMI input value for which the dispatch function should be invoked. Type
EFI_SMM_SW_REGISTER_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when the software
SMI source specified by RegisterContext->SwSmiCpuIndex is detected. On return,
DispatchHandle contains a unique handle which may be used later to unregister the function
using UnRegister().

If SwSmiInputValue is set to (UINTN) -1 then a unique value will be assigned and returned
in the structure. If no unique value can be assigned then EFI_OUT_OF_RESOURCES will be
returned.

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer (and CommBufferSize) pointing
Version 1.4 4/13/2015 79

Platform Initialization Specification VOLUME 4 SMM Core Interface
to an instance of EFI_SMM_SW_CONTEXT indicating the index of the CPU which generated the
software SMI.

Related Definitions
//**
// EFI_SMM_SW_CONTEXT
//**
typedef struct {
UINTN SwSmiCpuIndex;
UINT8 CommandPort;
UINT8 DataPort;
} EFI_SMM_SW_CONTEXT;

SwSmiCpuIndex

The 0-based index of the CPU which generated the software SMI.

CommandPort

This value corresponds directly to the CommandPort parameter used in the call to
Trigger(), see section 5.4.

DataPort

This value corresponds directly to the DataPort parameter used in the call to
Trigger(), see section 5.4.

//**
// EFI_SMM_SW_REGISTER_CONTEXT
//**
typedef struct {
 UINTN SwSmiInputValue;
} EFI_SMM_SW_REGISTER_CONTEXT;

SwSmiInputValue

A number that is used during the registration process to tell the dispatcher which
software input value to use to invoke the given handler.
80 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The SW SMI input value is not

within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.

EFI_OUT_OF_RESOURCES A unique software SMI value could not be assigned for this
dispatch.
Version 1.4 4/13/2015 81

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_SW_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters a software service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SW_UNREGISTER2) (
 IN CONST EFI_SMM_SW_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SW_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called in response to a software SMI.

Status Codes Returned

6.3 SMM Sx Dispatch Protocol

EFI_SMM_SX_DISPATCH2_PROTOCOL

Summary
Provides the parent dispatch service for a given Sx-state source generator.

GUID
#define EFI_SMM_SX_DISPATCH2_PROTOCOL_GUID \
{ 0x456d2859, 0xa84b, 0x4e47, \
0xa2, 0xee, 0x32, 0x76, 0xd8, 0x86, 0x99, 0x7d }

Protocol Interface Structure
typedef struct _EFI_SMM_SX_DISPATCH2_PROTOCOL {

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
82 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
 EFI_SMM_SX_REGISTER2 Register;
 EFI_SMM_SX_UNREGISTER2 UnRegister;
} EFI_SMM_SX_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_SX_DISPATCH2_PROTOCOL provides the ability to install child handlers to
respond to sleep state related events.
Version 1.4 4/13/2015 83

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_SX_DISPATCH2_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given Sx source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SX_REGISTER2) (
 IN CONST EFI_SMM_SX_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN CONST EFI_SMM_SX_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SX_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when the specified sleep state event occurs. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function's context. The caller in fills this context before calling
the Register() function to indicate to the Register() function on which Sx
state type and phase the caller wishes to be called back. For this interface, the Sx
driver will call the registered handlers for all Sx type and phases, so the Sx state
handler(s) must check the Type and Phase field of
EFI_SMM_SX_REGISTER_CONTEXT and act accordingly.

DispatchHandle

Handle of the dispatch function, for when interfacing with the parent Sx state SMM
driver. Type EFI_HANDLE is defined in InstallProtocolInterface() in
the UEFI 2.1 Specification.

Description
This service registers a function (DispatchFunction) which will be called when the sleep state
event specified by RegisterContext is detected. On return, DispatchHandle contains a
unique handle which may be used later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer and CommBufferSize set to
NULL and 0 respectively.
84 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Related Definitions
//**
// EFI_SMM_SX_REGISTER_CONTEXT
//**
typedef struct {
 EFI_SLEEP_TYPE Type;
 EFI_SLEEP_PHASE Phase;
} EFI_SMM_SX_REGISTER_CONTEXT;

//**
// EFI_SLEEP_TYPE
//**
typedef enum {
 SxS0,
 SxS1,
 SxS2,
 SxS3,
 SxS4,
 SxS5,
 EfiMaximumSleepType
} EFI_SLEEP_TYPE;

//**
// EFI_SLEEP_PHASE
//**
typedef enum {
 SxEntry,
 SxExit,
 EfiMaximumPhase
} EFI_SLEEP_PHASE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_UNSUPPORTED The Sx driver or hardware does not support that Sx

Type/Phase.

EFI_DEVICE_ERROR The Sx driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The ICHN input value is not

within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.
Version 1.4 4/13/2015 85

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_SX_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters an Sx-state service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_SX_UNREGISTER2) (
 IN CONST EFI_SMM_SX_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_SX_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called in response to sleep event.

Status Codes Returned

6.4 SMM Periodic Timer Dispatch Protocol

EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL

Summary

Provides the parent dispatch service for the periodical timer SMI source generator.

GUID
#define EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL_GUID \
 { 0x4cec368e, 0x8e8e, 0x4d71, \
 0x8b, 0xe1, 0x95, 0x8c, 0x45, 0xfc, 0x8a, 0x53}

Protocol Interface Structure
typedef struct _EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL {

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
86 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
 EFI_SMM_PERIODIC_TIMER_REGISTER2 Register;
 EFI_SMM_PERIODIC_TIMER_UNREGISTER2 UnRegister;
 EFI_SMM_PERIODIC_TIMER_INTERVAL2 GetNextShorterInterval;
} EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

GetNextShorterInterval

Returns the next SMI tick period that is supported by the chipset. See the
GetNextShorterInterval() function description.

Description
The EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL provides the ability to install
child handlers for the given event types.
Version 1.4 4/13/2015 87

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_PERIODIC_TIMER_REGISTER2) (
 IN CONST EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN CONST EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT
*RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when at least the specified amount of time has elapsed.
Type EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function's context. The caller fills this context in before calling
the Register() function to indicate to the Register() function the period at
which the dispatch function should be invoked. Type
EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when at least the
amount of time specified by RegisterContext has elapsed. On return, DispatchHandle
contains a unique handle which may be used later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer pointing to an instance of
EFI_SMM_PERIODIC_TIMER_CONTEXT and CommBufferSize pointing to its size.
88 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Related Definitions
//***
// EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT
//***

typedef struct {
 UINT64 Period;
 UINT64 SmiTickInterval;
} EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT;

Period

The minimum period of time in 100 nanosecond units that the child gets called. The
child will be called back after a time greater than the time Period.

SmiTickInterval

The period of time interval between SMIs. Children of this interface should use this
field when registering for periodic timer intervals when a finer granularity periodic
SMI is desired.

Example: A chipset supports periodic SMIs on every 64 ms or 2 seconds. A child wishes to
schedule a periodic SMI to fire on a period of 3 seconds. There are several ways to approach the
problem:

The child may accept a 4 second periodic rate, in which case it registers with the following:
Period = 40000
SmiTickInterval = 20000
The resulting SMI will occur every 2 seconds with the child called back on every second SMI.

Note: The same result would occur if the child set SmiTickInterval = 0.

The child may choose the finer granularity SMI (64 ms):
Period = 30000
SmiTickInterval = 640
The resulting SMI will occur every 64 ms with the child called back on every 47th SMI.

Note: The child driver should be aware that this will result in more SMIs occurring during system runtime,
which can negatively impact system performance.

typedef struct _EFI_SMM_PERIODIC_TIMER_CONTEXT {
UINT64 ElapsedTime;
} EFI_SMM_PERIODIC_TIMER_CONTEXT;

ElapsedTime

The actual time in 100 nanosecond units elapsed since last called. A value of 0
indicates an unknown amount of time.
Version 1.4 4/13/2015 89

Platform Initialization Specification VOLUME 4 SMM Core Interface
Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The ICHN input value is not

within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.
90 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters a periodic timer service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_PERIODIC_TIMER_UNREGISTER2) (
 IN CONST EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the time has elapsed.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
Version 1.4 4/13/2015 91

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.
GetNextShorterInterval()

Summary
Returns the next SMI tick period that is supported by the chipset.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_PERIODIC_TIMER_INTERVAL2) (
 IN CONST EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL *This,
 IN OUT UINT64 **SmiTickInterval
);

Parameters
This

Pointer to the EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL instance.

SmiTickInterval

Pointer to pointer of the next shorter SMI interval period that is supported by the child.
This parameter works as a get-first, get-next field. The first time that this function is
called, *SmiTickInterval should be set to NULL to get the longest SMI interval.
The returned *SmiTickInterval should be passed in on subsequent calls to get
the next shorter interval period until *SmiTickInterval = NULL.

Description
This service returns the next SMI tick period that is supported by the device. The order returned is
from longest to shortest interval period.

Status Codes Returned

6.5 SMM USB Dispatch Protocol

EFI_SMM_USB_DISPATCH2_PROTOCOL

Summary
Provides the parent dispatch service for the USB SMI source generator.

GUID
#define EFI_SMM_USB_DISPATCH2_PROTOCOL_GUID \
 { 0xee9b8d90, 0xc5a6, 0x40a2, \
 0xbd, 0xe2, 0x52, 0x55, 0x8d, 0x33, 0xcc, 0xa1 }

EFI_SUCCESS The service returned successfully.
92 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Protocol Interface Structure
typedef struct _EFI_SMM_USB_DISPATCH2_PROTOCOL {
 EFI_SMM_USB_REGISTER2 Register;
 EFI_SMM_USB_UNREGISTER2 UnRegister;
} EFI_SMM_USB_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_USB_DISPATCH2_PROTOCOL provides the ability to install child handlers for the
given event types.
Version 1.4 4/13/2015 93

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_USB_DISPATCH2_PROTOCOL.Register()

Summary
Provides the parent dispatch service for the USB SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_USB_REGISTER2) (
 IN CONST EFI_SMM_USB_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN CONST EFI_SMM_USB_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_USB_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when a USB-related SMI occurs. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills this context in before calling
the Register() function to indicate to the Register() function the USB SMI
source for which the dispatch function should be invoked. Type
EFI_SMM_USB_REGISTER_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when the USB-
related SMI specified by RegisterContext has occurred. On return, DispatchHandle
contains a unique handle which may be used later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer containing NULL and
CommBufferSize containing zero.

Related Definitions
//**
// EFI_SMM_USB_REGISTER_CONTEXT
94 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
//**

typedef struct {
 EFI_USB_SMI_TYPE Type;
 EFI_DEVICE_PATH_PROTOCOL *Device;
} EFI_SMM_USB_REGISTER_CONTEXT;

Type

Describes whether this child handler will be invoked in response to a USB legacy
emulation event, such as port-trap on the PS/2* keyboard control registers, or to a
USB wake event, such as resumption from a sleep state. Type EFI_USB_SMI_TYPE
is defined below.

Device

The device path is part of the context structure and describes the location of the
particular USB host controller in the system for which this register event will occur.
This location is important because of the possible integration of several USB host
controllers in a system. Type EFI_DEVICE_PATH is defined in the UEFI 2.1
Specification.

//**
// EFI_USB_SMI_TYPE
//**
typedef enum {
 UsbLegacy,
 UsbWake
} EFI_USB_SMI_TYPE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the SMI

source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The ICHN input value is not

within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this child.
Version 1.4 4/13/2015 95

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_USB_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters a USB service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_USB_UNREGISTER2) (
 IN CONST EFI_SMM_USB_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_USB_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the USB event occurs. .

Status Codes Returned

6.6 SMM General Purpose Input (GPI) Dispatch Protocol

EFI_SMM_GPI_DISPATCH2_PROTOCOL

Summary
Provides the parent dispatch service for the General Purpose Input (GPI) SMI source generator.

GUID
#define EFI_SMM_GPI_DISPATCH2_PROTOCOL_GUID \
{ 0x25566b03, 0xb577, 0x4cbf, \
0x95, 0x8c, 0xed, 0x66, 0x3e, 0xa2, 0x43, 0x80 }

EFI_SUCCESS The dispatch function has been successfully unregistered and the
SMI source has been disabled, if there are no other registered child
dispatch functions for this SMI source.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
96 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Protocol Interface Structure
typedef struct _EFI_SMM_GPI_DISPATCH2_PROTOCOL {
 EFI_SMM_GPI_REGISTER2 Register;
 EFI_SMM_GPI_UNREGISTER2 UnRegister;
 UINTN NumSupportedGpis;
} EFI_SMM_GPI_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

NumSupportedGpis

Denotes the maximum value of inputs that can have handlers attached.

Description
The EFI_SMM_GPI_DISPATCH2_PROTOCOL provides the ability to install child handlers for the
given event types. Several inputs can be enabled. This purpose of this interface is to generate an
SMI in response to any of these inputs having a true value provided.
Version 1.4 4/13/2015 97

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_GPI_DISPATCH2_PROTOCOL.Register()

Summary
Registers a child SMI source dispatch function with a parent SMM driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GPI_REGISTER2) (
 IN CONST EFI_SMM_GPI_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN CONST EFI_SMM_GPI_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_GPI_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when the specified GPI causes an SMI. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the GPI SMI
source for which the dispatch function should be invoked. Type
EFI_SMM_GPI_REGISTER_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an SMI is
generated because of one or more of the GPIs specified by RegisterContext. On return,
DispatchHandle contains a unique handle which may be used later to unregister the function
using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer pointing to another instance of
EFI_SMM_GPI_REGISTER_CONTEXT describing the GPIs which actually caused the SMI and
CommBufferSize pointing to the size of the structure.
98 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Related Definitions
//**
// EFI_SMM_GPI_REGISTER_CONTEXT
//**

typedef struct {
 UINT64 GpiNum;
} EFI_SMM_GPI_REGISTER_CONTEXT;

GpiNum

A number from one of 2^64 possible GPIs that can generate an SMI. A 0 corresponds
to logical GPI[0]; 1 corresponds to logical GPI[1]; and GpiNum of N corresponds to
GPI[N], where N can span from 0 to 2^64-1.

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The GPI input value is not

within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.
Version 1.4 4/13/2015 99

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_GPI_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters a General Purpose Input (GPI) service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_GPI_UNREGISTER2) (
 IN CONST EFI_SMM_GPI_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_GPI_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the GPI triggers an SMI.

Status Codes Returned

6.7 SMM Standby Button Dispatch Protocol

EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL

Summary
Provides the parent dispatch service for the standby button SMI source generator.

GUID
#define EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL_GUID \
 { 0x7300c4a1, 0x43f2, 0x4017, \
 0xa5, 0x1b, 0xc8, 0x1a, 0x7f, 0x40, 0x58, 0x5b }

Protocol Interface Structure
typedef struct _EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL {

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
100 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
 EFI_SMM_STANDBY_BUTTON_REGISTER2 Register;
 EFI_SMM_STANDBY_BUTTON_UNREGISTER2 UnRegister;
} EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL provides the ability to install
child handlers for the given event types.
Version 1.4 4/13/2015 101

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_STANDBY_BUTTON_REGISTER2) (
 IN CONST EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN EFI_SMM_STANDBY_BUTTON_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when the standby button is pressed or released. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the register function to indicate to the register function the standby button SMI source
for which the dispatch function should be invoked. Type
EFI_SMM_STANDBY_BUTTON_REGISTER_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an SMI is
generated because the standby button was pressed or released, as specified by
RegisterContext. On return, DispatchHandle contains a unique handle which may be used
later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer and CommBufferSize set to
NULL.
102 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Related Definitions
//***
// EFI_SMM_STANDBY_BUTTON_REGISTER_CONTEXT
//***
typedef struct {
 EFI_STANDBY_BUTTON_PHASE Phase;
} EFI_SMM_STANDBY_BUTTON_REGISTER_CONTEXT;

Phase

Describes whether the child handler should be invoked upon the entry to the button
activation or upon exit (i.e., upon receipt of the button press event or upon release of
the event). This differentiation allows for workarounds or maintenance in each of
these execution regimes. Type EFI_STANDBY_BUTTON_PHASE is defined below.

//***
// EFI_STANDBY_BUTTON_PHASE;
//***
typedef enum {
 EfiStandbyButtonEntry,
 EfiStandbyButtonExit,
 EfiStandbyButtonMax
} EFI_STANDBY_BUTTON_PHASE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The standby button input value

is not within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.
Version 1.4 4/13/2015 103

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters a child SMI source dispatch function with a parent SMM driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_STANDBY_BUTTON_UNREGISTER2) (
 IN CONST EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the standby button is pressed or released.

Status Codes Returned

6.8 SMM Power Button Dispatch Protocol

EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL

Summary
Provides the parent dispatch service for the power button SMI source generator.

GUID
#define EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL_GUID \
 { 0x1b1183fa, 0x1823, 0x46a7, \
 0x88, 0x72, 0x9c, 0x57, 0x87, 0x55, 0x40, 0x9d }

Protocol Interface Structure
typedef struct _EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL {

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
104 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
 EFI_SMM_POWER_BUTTON_REGISTER2 Register;
 EFI_SMM_POWER_BUTTON_UNREGISTER2 UnRegister;
} EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service that was dispatched by this protocol. See the
UnRegister() function description.

Description
The EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL provides the ability to install child
handlers for the given event types.
Version 1.4 4/13/2015 105

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL. Register()

Summary
Provides the parent dispatch service for a given SMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_POWER_BUTTON_REGISTER2) (
 IN CONST EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN EFI_SMM_POWER_BUTTON_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when power button is pressed or released. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the power
button SMI phase for which the dispatch function should be invoked. Type
EFI_SMM_POWER_BUTTON_REGISTER_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an SMI is
generated because the power button was pressed or released, as specified by RegisterContext.
On return, DispatchHandle contains a unique handle which may be used later to unregister the
function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer and CommBufferSize set to
NULL.
106 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Related Definitions
//**
// EFI_SMM_POWER_BUTTON_REGISTER_CONTEXT
//**
typedef struct {
 EFI_POWER_BUTTON_PHASE Phase;
} EFI_SMM_POWER_BUTTON_REGISTER_CONTEXT;

Phase

Designates whether this handler should be invoked upon entry or exit. Type
EFI_POWER_BUTTON_PHASE is defined in "Related Definitions" below.

//**
// EFI_POWER_BUTTON_PHASE
//**
typedef enum {
 EfiPowerButtonEntry,
EfiPowerButtonExit,
EfiPowerButtonMax
} EFI_POWER_BUTTON_PHASE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

SMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the SMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The power button input value is

not within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SMM) to manage this
child.
Version 1.4 4/13/2015 107

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL.UnRegister()

Summary
Unregisters a power-button service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_POWER_BUTTON_UNREGISTER2) (
 IN CONST EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description

This service removes the handler associated with DispatchHandle so that it will no longer be
called when the standby button is pressed or released.

Status Codes Returned

6.9 SMM IO Trap Dispatch Protocol

EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL

Summary
This protocol provides a parent dispatch service for IO trap SMI sources.

GUID
#define EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL_GUID \
 { 0x58dc368d, 0x7bfa, 0x4e77, \
 0xab, 0xbc, 0xe, 0x29, 0x41, 0x8d, 0xf9, 0x30 }

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
108 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
Protocol Interface Structure
struct _EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL {
 EFI_SMM_IO_TRAP_DISPATCH2_REGISTER Register;
 EFI_SMM_IO_TRAP_DISPATCH2_UNREGISTER UnRegister;
} EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched when the requested IO trap SMI occurs. See
the Register() function description.

UnRegister

Removes a previously registered child service. See the Register() and
UnRegister() function descriptions.

Description
This protocol provides the ability to install child handlers for IO trap SMI. These handlers will be
invoked to respond to specific IO trap SMI. IO trap SMI would typically be generated on reads or
writes to specific processor IO space addresses or ranges. This protocol will typically abstract a
limited hardware resource, so callers should handle errors gracefully.
Version 1.4 4/13/2015 109

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL.Register ()

Summary
Register an IO trap SMI child handler for a specified SMI.

Prototype
EFI_STATUS
(EFIAPI *EFI_SMM_IO_TRAP_DISPATCH2_REGISTER) (
 IN CONST EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL *This,
 IN EFI_SMM_HANDLER_ENTRY_POINT2 DispatchFunction,
 IN OUT EFI_SMM_IO_TRAP_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL instance.

DispatchFunction

Function to register for handler when I/O trap location is accessed. Type
EFI_SMM_HANDLER_ENTRY_POINT2 is defined in "Related Definitions" in
SmiHandlerRegister() in the SMST.

RegisterContext

Pointer to the dispatch function's context. The caller fills this context in before calling
the register function to indicate to the register function the IO trap SMI source for
which the dispatch function should be invoked.

DispatchHandle

Handle of the dispatch function, for when interfacing with the parent SMM driver.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.1 Specification.

Description
This service registers a function (DispatchFunction) which will be called when an SMI is
generated because of an access to an I/O port specified by RegisterContext. On return,
DispatchHandle contains a unique handle which may be used later to unregister the function
using UnRegister(). If the base of the I/O range specified is zero, then an I/O range with the
specified length and characteristics will be allocated and the Address field in RegisterContext
updated. If no range could be allocated, then EFI_OUT_OF_RESOURCES will be returned.

The service will not perform GCD allocation if the base address is non-zero or
EFI_SMM_READY_TO_LOCK has been installed. In this case, the caller is responsible for the
existence and allocation of the specific IO range.

An error may be returned if some or all of the requested resources conflict with an existing IO trap
child handler.
110 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
It is not required that implementations will allow multiple children for a single IO trap SMI source.
Some implementations may support multiple children.

The DispatchFunction will be called with Context updated to contain information
concerning the I/O action that actually happened and is passed in RegisterContext, with
CommBuffer pointing to the data actually written and CommBufferSize pointing to the size of
the data in CommBuffer.

Related Definitions
//
// IO Trap valid types
//
typedef enum {
 WriteTrap,
 ReadTrap,
 ReadWriteTrap,
 IoTrapTypeMaximum
} EFI_SMM_IO_TRAP_DISPATCH_TYPE;

//
// IO Trap context structure containing information about the
// IO trap event that should invoke the handler
//
typedef struct {
 UINT16 Address;
 UINT16 Length;
 EFI_SMM_IO_TRAP_DISPATCH_TYPE Type;
} EFI_SMM_IO_TRAP_REGISTER_CONTEXT;

//
// IO Trap context structure containing information about the IO
trap that occurred
//
typedef struct {
 UINT32 WriteData;
} EFI_SMM_IO_TRAP_CONTEXT;
Version 1.4 4/13/2015 111

Platform Initialization Specification VOLUME 4 SMM Core Interface
Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered.

EFI_DEVICE_ERROR The driver was unable to complete due to hardware error.

EFI_OUT_OF_RESOURCES Insufficient resources are available to fulfill the IO trap range request.

EFI_INVALID_PARAMETER RegisterContext is invalid. The input value is not within a

valid range.
112 4/13/2015 Version 1.4

SMM Child Dispatch Protocols
EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL.UnRegister ()

Summary
Unregister a child SMI source dispatch function with a parent SMM driver.

Prototype
EFI_STATUS
(EFIAPI *EFI_SMM_IO_TRAP_DISPATCH2_UNREGISTER) (
 IN CONST EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL instance.

DispatchHandle

Handle of the child service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a previously installed child dispatch handler. This does not guarantee that the
system resources will be freed from the GCD.

Related Definitions
None

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully unregistered.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
Version 1.4 4/13/2015 113

Platform Initialization Specification VOLUME 4 SMM Core Interface
114 4/13/2015 Version 1.4

Interactions with PEI, DXE, and BDS
7
Interactions with PEI, DXE, and BDS

7.1 Introduction
This chapter describes issues related to image verification and interactions between SMM and other
PI Architecture phases.

7.2 SMM and DXE

7.2.1 Software SMI Communication Interface (Method #1)
During the boot service phase of DXE/UEFI, there will be a messaging mechanism between SMM
and DXE drivers. This mechanism will allow a gradual state evolution of the SMM handlers during
the boot phase.

The purpose of the DXE/UEFI communication is to allow interfaces from either runtime or boot
services to be proxied into SMM. For example, a vendor may choose to implement their UEFI
Variable Services in SMM. The motivation to do so would include a design in which the SMM code
performed error logging by writing data to an UEFI variable in flash. The error generation would be
asynchronous with respect to the foreground operating system (OS). A problem is that the OS could
be writing an UEFI variable when the error condition, such as a Single-Bit Error (SBE) that was
generated from main memory, occurred. To avoid two agents—SMM and UEFI Runtime—both
trying to write to flash at the same time, the runtime implementation of the SetVariable() UEFI
call would simply be an invocation of the
EFI_SMM_COMMUNICATION_PROTOCOL.Communicate() interface. Then, the SMM code
would internally serialize the error logging flash write request and the OS SetVariable()
request.

See the EFI_SMM_COMMUNICATION_PROTOCOL.Communicate() service for more
information on this interface.

7.2.2 Software SMI Communication Interface (Method #2)
This section describes an alternative mechanism that can be used to initiate inter-mode
communication. This mechanism can be used in the OS present environment by non-firmware
agents. Inter-mode communication can be initiated using special software SMI.

Details regarding the SMI are described in the SMM Communication ACPI Table. This table is
described in Appendix O of the UEFI Specification.

Firmware processes this software SMI in the same manner it processes direct invocation of the
Communicate() function.
Version 1.4 4/13/2015 115

Platform Initialization Specification VOLUME 4 SMM Core Interface
116 4/13/2015 Version 1.4

Other Related Notes For Support Of SMM Drivers
8
Other Related Notes For Support Of SMM Drivers

8.1 File Types

The following new file type is added:
#define EFI_FV_FILETYPE_SMM 0x0A
#define EFI_FV_FILETYPE_COMBINED_SMM_DXE 0x0C

8.1.1 File Type EFI_FV_FILETYPE_SMM
The file type EFI_FV_FILETYPE_SMM denotes a file that contains a PE32+ image that will be
loaded into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_SMM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

8.1.2 File Type EFI_FV_FILETYPE_COMBINED_SMM_DXE
The file type EFI_FV_FILETYPE_COMBINED_SMM_DXE denotes a file that contains a PE32+
image that will be dispatched by the DXE Dispatcher and will also be loaded into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section. This section is
ignored when the file is loaded into SMRAM.

• The file must contain no more than one EFI_SECTION_SMM_DEPEX section. This section is
ignored when the file is dispatched by the DXE Dispatcher.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
Version 1.4 4/13/2015 117

Platform Initialization Specification VOLUME 4 SMM Core Interface
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

8.2 File Section Types

The following new section type must be added:
#define EFI_SECTION_SMM_DEPEX 0x1c

8.2.1 File Section Type EFI_SECTION_SMM_DEPEX

Summary

A leaf section type that is used to determine the dispatch order for an SMM driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_SMM_DEPEX_SECTION;

Description

The SMM dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for SMM drivers. Before the SMRAM invocation of the
SMM driver’s entry point, this dependency expression must evaluate to TRUE. See the Platform
Initialization Specification, Volume 2for details regarding the format of the dependency expression.

The dependency expression may refer to protocols installed in either the UEFI or the SMM protocol
database.
118 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
9
MCA/INIT/PMI Protocol

This document defines the basic plumbing required to run the MCA, PMI & INIT in a generic
framework. They have been group together since MCA and INIT follows a very similar flow and all
three have access to the min-state as defined by PAL.

It makes an attempt to bind the platform knowledge by the way of generic abstraction to the SAL
MCA, PMI & INIT code. We have tried to create a private & public data structures for each CPU.
For example, any CPU knowledge that should remain within the context of that CPU should be
private. Any CPU knowledge that may be accessed by another CPU should be a Global Structure
that can be accessed by any CPU for that domain. There are some flags that may be required globally
(Sal Proc, Runtime Services, PMI, INIT, MCA) are made accessible through a protocol pointer that
is described in section 5.

9.1 Machine Check and INIT
This section describes how Machine Check Abort Interrupt and INIT are handled in a UEFI 2.0
compliant system.
Version 1.4 4/13/2015 119

Platform Initialization Specification VOLUME 4 SMM Core Interface
Figure 5. Early Reset, MCA and INIT flow

As shown in Figure 5 resets, MCA and INIT follow a near identical early flow. For all three events,
PAL first processes the event, save some states if needed in the min-state before jumping to SAL
through the common SALE_ENTRY entry point. SAL performs some early processor initialization,
save some extra states to set up an environment in which the event can be handled and then branch to
the appropriate event dispatcher (normal reset flow, MCA, INIT).

MCA/INIT handling per say consists of a generic dispatcher and one or more platform specific
handlers. The dispatcher is responsible for handling tasks specified in SAL specification, such as
performing rendezvous, before calling the event handlers in a fixed order. The handlers are
responsible for error logging, error correction and any other platform specific task required to
properly handle a MCA or INIT event.

PALE_CHECK

SALE_ENTRY

INIT dispatcherdispatch eventMCA dispatcher

Reset event

Normal RESET flow
(SecStartup)

MCA Event INIT Event

PALE_RESET PALE_INIT

PAL processing

Context save, processor
setup
120 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
9.2 MCA Handling
The machine check (MCA) code path in a typical machine based on IPF architecture is shown in the
diagram below (see Figure 6).

Figure 6. Basic MCA processing flow

MCA processing starts in PAL, running in physical mode. Control is then pass to SAL through the
SALE_ENTRY entry point which in turn, after processing the MCA, pass control to the OS MCA
handler.

In the PI architecture, OEMs have the choice to process MCA events in either entirely in ROM code,
entirely in the RAM code or partly in ROM and partly in RAM. The early part of the MCA flow
follow the SEC->PEI boot flow, with SALE_ENTRY residing in SEC while the MCA dispatcher is
a PEIM dispatcher (see Figure 7). From that point on the rest of the code can reside in ROM or
RAM.

Figure 7. PI MCA processing flow

When PAL hands off control to SALE_ENTRY, it will supply unique hand off state in the processor
registers as well as the minimum state saved buffer area pointer called “min-state pointer”. The min-
state pointer is the only context available to SALE_ENTRY. This buffer is a unique per processor
save area registered to each processor during normal OS boot path.

..
.PALE_CHECK SALE_ENTRY

MCA Dispatcher
(PEIM dispatcher)

MCA handler #n

MCA handler #1
Version 1.4 4/13/2015 121

Platform Initialization Specification VOLUME 4 SMM Core Interface
A sample implementation is described below to clarify some of the finer points of MCA/INIT/PMI.
Actual implementations may vary.

 Usually, we can anchor some extra data (the MCA_INIT_PMI_PER_PROCESSOR_DATA data
structure) required by the PEIM dispatcher and the MCA and INIT dispatchers to the min-state (see
Figure 8).

Figure 8. PI architectural data in the min-state

The software component (a PEIM or a DXE module) that includes the MCA and INIT dispatchers is
responsible for registering the min-state on all processors and initializing
MCA_INIT_PMI_PER_PROCESSOR_DATA data structures. Only then can MCA be properly
handled by the platform. To guarantee proper MCA and INIT handling, at least one handler is
required to be registered with the MCA dispatcher. OEM might decide to use a monolithic handler
or use multiple handlers.

The register state at the MCA dispatcher entry point is the same as the PALE_CHECK exit state
with the following exceptions -

• GR1 contains GP for the McaDispatcherProc.

• PAL saves b0 in the min-state and can be used as scratch. b0 contains the address of the
McaDispatcherProc.

• PAL saves static registers to the min-state. All static registers in both banks except GR16-GR20
in bank 0 can be used as scratch registers. SALE_ENTRY may freely modify these registers.

The MCA dispatcher is responsible for setting up a stack and backing store based on the values in
the MCA_INIT_PMI_PER_PROCESSOR_DATA data structure. The OS stack and backing store
cannot be used since they might point to virtual addresses. The MCA dispatcher is also responsible
for saving any registers not saved in the min-state that may be used by the MCA handling code in the
PI per processor data. Since we want to use high-level language such as C, floating point registers f2
to f31 as well as branch registers b6 and b7 must be saved. Code used during MCA handling must be
compiled with /f32 option to prevent the use of registers f33-f127. Otherwise, such code is
responsible for saving and restoring floating point registers f33-f127 as well as any other registers
not saved in the min-state or the PI per processor data.

Note that nested MCA recovery is not supported by the Itanium architecture as PAL uses the same
min-state for every MCA and INIT event. As a result, the same context within the min-state is used
by PI every time the MCA dispatcher is entered.

Architectural State

 Processor Data

PAL Scratch area

1 KiB

3+ KiB

Processor’s min-state Buffer
512 bytes aligned
122 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
All the MCA handles are presented in a form of an Ordered List. The head of the Ordered List is a
member of the Private Data Structure. In order to reach the MCA handle Ordered List the following
steps are used:

1. PerCpuInfoPointer = MinStatePointer (From SALE_CHECK) + 4K

2. ThisCpuMcaPrivateData = PerCpuInfoPointer->Private

3. McaHandleListHead = ThisCpuMcaPrivateData->McaList

Or ((EFI_MCA_SAVE_DATA*)(((UINT8*) MinStatePointer) + 4*1024))-
>Private-> McaList

On reaching the Ordered List from the private data we can obtain Plabel & MCA Handle Context.
Using that we can execute each handle as they appear in the ordered list.

Once the last handler has completed execution, the MCA dispatcher is responsible for deciding
whether to resume execution, halt the platform or reset the platform. This is based on the OS request
and platform policies. Resuming to the interrupted context is accomplished by calling
PAL_MC_RESUME.

As shown in Figure 6, the MCA handling flow requires access to certain shared hardware and
software resources to support things such as error logging, error handling/correction and processor
rendezvous. In addition, since MCAs are asynchronous, they might happen while other parts of the
system are using those shared resources or while accessing those resources (for example during the
execution of a SAL_PROC like PCI config write). We thus need a mechanism to allow shared
access to two isolated model which are not aware of each others.

This is handled through the use of common code (libraries) and semaphores. The SAL PROCs and
the MCAA/INIT code use the same libraries to implement any functionality shared between them
such as platform reset, stall, PCI read/write. Semaphores are used to gate access to critical portion of
the code and prevent multiple accesses to the same HW resource at the same time. To prevent
deadlocks and guarantee proper OS handling of an MCA it might be necessary for the MCA/INIT
handler to break semaphore or gets priority access to protected resources.

In addition to the previously mentioned semaphores used for gating access to HW resource, the
multithreaded/MP MCA model may require an MCA specific semaphore to support things like
monarch processor selection and log access. This semaphore should be visible from all processors.
In addition some global are required for MCA processing to indicate a processor status (entering
MCA, in MCA rendezvous, ready to enter OS MCA) with regards to the current MCA. This flags
need to have a global scope since the MCA monarch may need to access them to make sure all
processor are where they are supposed to be.

9.3 INIT Handling
Most of what have been defined for the MCA handling and dispatcher applies to the INIT code path.
The early part of the INIT code path, up to the INIT dispatcher is identical to the MCA code path
while some of the INIT handler code, like logging, can be shared with the MCA handler.
Version 1.4 4/13/2015 123

Platform Initialization Specification VOLUME 4 SMM Core Interface
The INIT code path in a typical machine based on IPF architecture is shown in the diagram below.

..
.PALE_CHECK SALE_ENTRY

INIT Dispatcher
(PEIM dispatcher)

INIT handler #n

INIT handler #1

Figure 9. PI INIT processing flow

Like MCA, INIT processing starts in the PAL code in physical mode and then flows into PI code
(OEM firmware code) through SALE_ENTRY. The INIT dispatcher is responsible for setting up a
stack and backing store, saving the floating point registers before calling any code that may be
written in higher level languages. At that point the dispatcher is ready to call the INIT handlers. As
with MCA only one handler is required to exist but OEMs are free to implement a monolithic
handler or use multiple handlers. Once the last handler has been executed, the dispatcher will resume
to the interrupted context or reset the platform based on the OS request.

The MCA handler limitations regarding access to shared HW and SW resources applies to the INIT
handler, as such library code and common semaphores should be used.

INIT events are always local to each processor. As a result we do not need INIT specific flags or
semaphore in the MCA_INIT_PMI_PER_PROCESSOR_DATA data structures.

9.4 PMI
This section describes how PMI, platform management interrupts, are handled in EFI 2.0 compliant
system. PMIs provide an operating system-independent interrupt mechanism to support OEM and
vendor specific hardware event.

Figure 10. PMI handling flow

As shown in Figure 10, PMI handling is pretty similar to MCA and INIT handling in such that it
consists of a generic dispatcher and one of more platform specific handlers. The dispatchers is the
SAL PMI entry point (SALE_PMI) and is responsible for saving state and setting up the
environment for the handler to execute. Contrary to MCA and INIT, PAL does not save any context
in the min-state and it is the responsibility of the PMI dispatcher to save state. Since the min-state is
available during PMI handling (PAL provides its address to the SAL PMI handler) the

..
.PALE_PMI
SALE_PMI

(PMI dispatcher)

INIT handler #n

INIT handler #1
124 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
MCA_INIT_PMI_PER_PROCESSOR_DATA data structure present in the min-state can be used.
However an MCA/INIT event occurring while PMI is being would preclude the system from
resuming from the PMI event. To alleviate this, a platform may decide to implement a separate copy
of the MCA_INIT_PMI_PER_PROCESSOR_DATA data structure out side of the min-state, to be
used for PMI state saving.

Once the state is saved, the platform specific PMI handlers are found using the order handler list
provided in the private data structure. The mechanism used is the same one used in MCA and INIT
handling.

9.5 Event Handlers
The events handlers are called by the various dispatchers.

9.5.1 MCA Handlers

MCA Handler

typedef
EFI_STATUS
SAL_RUNTIMESERVICE
(EFIAPI *EFI_SAL_MCA_HANDLER) (
 IN VOID *ModuleGlobal,
 IN UINT64 ProcessorStateParameters,
 IN EFI_PHYSICAL_ADDRESS MinstateBase,
 IN UINT64 RendezvouseStateInformation,
 IN UINT64 CpuIndex,
 IN SAL_MCA_COUNT_STRUCTURE *McaCountStructure,
 IN OUT BOOLEAN *CorrectedMachineCheck
);

Parameters
ModuleGlobal

The context of MCA Handler.

ProcessorStateParameters

The processor state parameters (PSP),

MinstateBase

Base address of the min-state.

RendezvousStateInformation

Rendezvous state information to be passed to the OS on OS MCA entry. Refer to the
Sal Specification 3.0 , section 4.8 for more information.

CpuIndex

Index of the logical processor
Version 1.4 4/13/2015 125

Platform Initialization Specification VOLUME 4 SMM Core Interface
McaCountStructure

Pointer to the MCA records structure

CorrectedMachineCheck

This flag is set to TRUE is the MCA has been corrected by the handler or by a
previous handler.

#pragma pack(1)
//
// MCA Records Structure
//
typedef struct {
 UINT64 First : 1;
 UINT64 Last : 1;
 UINT64 EntryCount : 16;
 UINT64 DispatchedCount : 16;
 UINT64 Reserved : 30;
} SAL_MCA_COUNT_STRUCTURE;

#pragma pack()

9.5.2 INIT Handlers

INIT Handler

typedef
EFI_STATUS
SAL_RUNTIMESERVICE
(EFIAPI *EFI_SAL_INIT_HANDLER) (
 IN VOID *ModuleGlobal,
 IN UINT64 ProcessorStateParameters,
 IN EFI_PHYSICAL_ADDRESS MinstateBase,
 IN BOOLEAN McaInProgress,
 IN UINT64 CpuIndex,
 IN SAL_MCA_COUNT_STRUCTURE *McaCountStructure,
 OUT BOOLEAN *DumpSwitchPressed
);

Parameters
ModuleGlobal

The context of MCA Handler.

ProcessorStateParameters

The processor state parameters (PSP),
126 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
MinstateBase

Base address of the min-state.

McaInProgress

This flag indicates if an MCA is in progress.

CpuIndex

Index of the logical processor

McaCountStructure

Pointer to the MCA records structure

DumpSwitchPressed

This flag indicates the crash dump switch has been pressed.

9.5.3 PMI Handlers

PMI Handler

typedef
EFI_STATUS
(EFIAPI *SAL_PMI_HANDLER) (
 IN VOID *ModuleGlobal,
 IN UINT64 CpuIndex,
 IN UINT64 PmiVector
);

Description
ModuleGlobal

The context of MCA Handler.

CpuIndex

Index of the logical processor

PmiVector

The PMI vector number as received from the PALE_PMI exit state (GR24).

9.6 MCA PMI INIT Protocol

Summary
This protocol is used to register MCA, INIT and PMI handlers with their respective dispatcher.

GUID
#define EFI_SAL_MCA_INIT_PMI_PROTOCOL_GUID \
 {
0xb60dc6e8,0x3b6f,0x11d5,0xaf,0x9,0x0,0xa0,0xc9,0x44,0xa0,0x5b }
Version 1.4 4/13/2015 127

Platform Initialization Specification VOLUME 4 SMM Core Interface
Protocol Interface Structure
typedef struct {
 EFI_SAL_REGISTER_MCA_HANDLER RegisterMcaHandler;
 EFI_SAL_REGISTER_INIT_HANDLER RegisterInitHandler;
 EFI_SAL_REGISTER_PMI_HANDLER RegisterPmiHandler;
 BOOLEAN McaInProgress;
 BOOLEAN InitInProgress;
 BOOLEAN PmiInProgress;
} EFI_SAL_MCA_INIT_PMI_PROTOCOL;

Parameters
RegisterMcaHandler

Function to register a MCA handler.

RegisterInitHandler

Function to register an INIT handler.

RegisterPmiHandler

Function to register a PMI hander.

McaInProgress

Whether MCA handler is in progress

InitInProgress

Whether Init handler is in progress

PmiInProgress

Whether Pmi handler is in progress
128 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterMcaHandler ()

Summary
Register a MCA handler with the MCA dispatcher.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SAL_REGISTER_MCA_HANDLER) (
 IN struct _EFI_SAL_MCA_INIT_PMI_PROTOCOL *This,
 IN EFI_SAL_MCA_HANDLER McaHandler,
 IN VOID ModuleGlobal
 IN BOOLEAN MakeFirst,
 IN BOOLEAN MakeLast
);

Parameters
This

The EFI_SAL_MCA_INIT_PMI_PROTOCOL instance.

McaHandler

The MCA handler to register as defined in section 9.5.1.

ModuleGlobal

The context of the MCA Handler.

MakeFirst

This flag specifies the handler should be made first in the list.

MakeLast

This flag specifies the handler should be made last in the list.

Status Codes Returned

EFI_SUCCESS MCA Handle was registered

EFI_OUT_OF_RESOURCES No more resources to register an MCA handler

EFI_INVALID_PARAMETER Invalid parameters were passed.
Version 1.4 4/13/2015 129

Platform Initialization Specification VOLUME 4 SMM Core Interface
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterInitHandler ()

Summary
Register an INIT handler with the INIT dispatcher.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SAL_REGISTER_INIT_HANDLER) (
 IN struct _EFI_SAL_MCA_INIT_PMI_PROTOCOL *This,
 IN EFI_SAL_INIT_HANDLER InitHandler,
 IN VOID ModuleGlobal
 IN BOOLEAN MakeFirst,
 IN BOOLEAN MakeLast
);

Parameters
This

The EFI_SAL_MCA_INIT_PMI_PROTOCOL instance.

InitHandlerT

The INIT handler to register as defined in section 9.5.2

ModuleGlobal

The context of the INIT Handler.

MakeFirst

This flag specifies the handler should be made first in the list.

MakeLast

This flag specifies the handler should be made last in the list.

Status Codes Returned

EFI_SUCCESS INIT Handle was registered

EFI_OUT_OF_RESOURCES No more resources to register an INIT handler

EFI_INVALID_PARAMETER Invalid parameters were passed.
130 4/13/2015 Version 1.4

MCA/INIT/PMI Protocol
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterPmiHandler ()

Summary
Register a PMI handler with the PMI dispatcher.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SAL_REGISTER_PMI_HANDLER) (
 IN struct _EFI_SAL_MCA_INIT_PMI_PROTOCOL *This,
 IN EFI_SAL_PMI_HANDLER PmiHandler,
 IN VOID ModuleGlobal
 IN BOOLEAN MakeFirst,
 IN BOOLEAN MakeLast
);

Parameters
This

The EFI_SAL_MCA_INIT_PMI_PROTOCOL instance.

PmiHandler

The PMI handler to register as defined in section 9.5.3.

ModuleGlobal

The context of the PMI Handler.

MakeFirst

This flag specifies the handler should be made first in the list.

MakeLast

This flag specifies the handler should be made last in the list.

Status Codes Returned

EFI_SUCCESS INIT Handle was registered

EFI_OUT_OF_RESOURCES No more resources to register a PMI handler

EFI_INVALID_PARAMETER Invalid parameters were passed.
Version 1.4 4/13/2015 131

Platform Initialization Specification VOLUME 4 SMM Core Interface
132 4/13/2015 Version 1.4

Extended SAL Services
10
Extended SAL Services

This document describes the Extended SAL support for the EDK II. The Extended SAL uses a
calling convention that is very similar to the SAL calling convention. This includes the ability to
call Extended SAL Procedures in physical mode prior to SetVirtualAddressMap(), and the
ability to call Extended SAL Procedures in physical mode or virtual mode after
SetVirtualAddressMap().

10.1 SAL Overview
The Extended SAL can be used to implement the following services:

• SAL Procedures required by the Intel Itanium Processor Family System Abstraction Layer
Specification.

• EFI Runtime Services required by the UEFI 2.0 Specification, that may also be required by SAL
Procedures, other Extended SAL Procedures, or MCA, INIT, and PMI flows.

• Services required to abstract hardware accesses from SAL Procedures and Extended SAL
Procedures. This includes I/O port accesses, MMIO accesses, PCI Configuration Cycles, and
access to non-volatile storage for logging purposes.

• Services required during the MCA, INIT, and PMI flows.

Note: Arguments to SAL procedures are formatted the same as arguments and paramenters in this
document. Example “address parameter to . . .”

The Extended SAL support includes a DXE Protocol that supports the publishing of the SAL System
Table along with services to register and call Extended SAL Procedures. It also includes a number
of standard Extended SAL Service Classes that are required to implement EFI Runtime Services, the
minimum set of required SAL Procedures, services to abstract hardware accesses, and services to
support the MSA, INIT, and PMI flows. Platform developer may define addition Extended SAL
Service Classes to provide platform specific functionality that requires the Extended SAL calling
conventions.The SAL calling convention requires operation in both physical and virtual mode.
Standard EFI runtime services work in either physical mode or virtual mode at a time. Therefore, the
EFI code can call the SAL code, but not vice versa. To reduce code duplication resulting out of
multiple operating modes, additional procedures called Extended SAL Procedures are implemented.
Architected SAL procedures are a subset of the Extended SAL procedures. The individual Extended
SAL procedures can be called through the entry point ExtendedSalProc() in the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL. The cost of writing dual mode code is that one
must strictly follow the SAL runtime coding rules. Experience on prior IPF platform shows us that
the benefits outweigh the cost.
Version 1.4 4/13/2015 133

Platform Initialization Specification VOLUME 4 SMM Core Interface

E xtended SAL
R T C class
driver

E xtended SAL
R eset class
driver

E xtended SAL
class X Y Z
driver

E xtended SA L B oot Ser vice Dr iver

E xtended SAL Procedure L ook-up table. (Prepared during B oot Services)

E X T E NDE D_SA L _PR OC () SA L _PR OC ()

Operating
System

(Can call
SA L _PR OCs or
E FI R T
services)

E FI R untime
Services (e.g.
runtime R T C
services, or
R eset service)

MCA , INIT ,
PMI code
(needs to get
current time
during logging
events)

Coded to EFI runtime conventions (Physical or Virtual)

PE32+ Image Type is EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER.

Physical Mode Only. PE32+ Image Type is EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER.

Coded to SAL conventions (both physical and virtual mode).

 PE32+ Image Type is EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER.

Figure 11. SAL Calling Diagram

Note: In the figure above, arrows indicate the direction of calling. For example, OS code may call EFI
runtime services or SAL_PROCs. Extended SAL functions are divided in several classes based
on their functionality, with no defined hierarchy. It is legal for an EFI Boot Service Code to call
ExtendedSalProc(). It is also legal for an Extended SAL procedure to call another Extended
SAL Procedure via ExtendedSalProc(). These details are not shown in the figure in order to
maintain clarity.

A driver with a module type of DXE_SAL_DRIVER is required to produce the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL. This driver contains the entry point of the
Extended SAL Procedures and dispatches previously registered procedures. It also provides services
to register Extended SAL Procedures and functions to help construct the SAL System Table.

Drivers with a module type of DXE_SAL_DRIVER are required to produce the various Extended
SAL Service Classes. It is expected that a single driver will supply all the Extended SAL Procedures
that belong to a single Extended SAL Service Class. As each Extended SAL Service Class is
registered, the GUID associated with that class is also installed into the EFI Handle Database. This
allows other DXE drivers to use the Extended SAL Service Class GUIDs in their dependency
expressions, so they only execute once their dependent Extended SAL Service Classes are available.
134 4/13/2015 Version 1.4

Extended SAL Services
Drivers register the set of Extended SAL Procedures they produce with the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL. Once this registration step is complete, the
Extended SAL Procedure are available for use by other drivers.

10.2 Extended SAL Boot Service Protocol
This protocol supports the creation of the SAL System Table, and provides services to register and
call Extended SAL Procedures. The driver that produces this protocol is required to allocate and
initialize the SAL System Table. The SAL System Table must also be registered in the list of EFI
System Configuration tables. The driver that produces this protocol must be of type
DXE_SAL_DRIVER. This is required because the entry point to the ExtendedSalProc()
function is always available, even after the OS assumes control of the platform at
ExitBootServices().

EXTENDED_SAL_BOOT_SERVICE_PROTOCOL

Summary
This section provides a detailed description of the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.

GUID
#define EXTENDED_SAL_BOOT_SERVICE_PROTOCOL_GUID \
 {0xde0ee9a4,0x3c7a,0x44f2, \
 {0xb7,0x8b,0xe3,0xcc,0xd6,0x9c,0x3a,0xf7}}

Protocol Interface Structure
typedef struct _EXTENDED_SAL_BOOT_SERVICE_PROTOCOL {
 EXTENDED_SAL_ADD_SST_INFO AddSalSystemTableInfo;
 EXTENDED_SAL_ADD_SST_ENTRY AddSalSystemTableEntry;
 EXTENDED_SAL_REGISTER_INTERNAL_PROC RegisterExtendedSalProc;
 EXTENDED_SAL_PROC ExtendedSalProc;
} EXTENDED_SAL_BOOT_SERVICE_PROTOCOL;

Parameters
AddSalSystemTableInfo

Adds platform specific information to the to the header of the SAL System Table.
Only available prior to ExitBootServices().

AddSalSystemTableEntry

Add an entry into the SAL System Table. Only available prior to
ExitBootServices().

RegisterExtendedSalProc

Registers an Extended SAL Procedure. Extended SAL Procedures are named by a
(GUID, FunctionID) pair. Extended SAL Procedures are divided into classes based on
the functionality they provide. Extended SAL Procedures are callable only in
Version 1.4 4/13/2015 135

Platform Initialization Specification VOLUME 4 SMM Core Interface
physical mode prior to SetVirtualAddressMap(), and are callable in both
virtual and physical mode after SetVirtualAddressMap(). Only available
prior to ExitBootServices().

ExtendedSalProc

Entry point for all extended SAL procedures. This entry point is always available.

Description
The EXTENDED_SAL_BOOT_SERVICE_PROTOCOL provides a mechanisms for platform specific
drivers to update the SAL System Table and register Extended SAL Procedures that are callable in
physical or virtual mode using the SAL calling convention. The services exported by the SAL
System Table are typically implemented as Extended SAL Procedures. Services required by MCA,
INIT, and PMI flows that are also required in the implementation of EFI Runtime Services are also
typically implemented as Extended SAL Procedures. Extended SAL Procedures are named by a
(GUID, FunctionID) pair. A standard set of these (GUID, FunctionID) pairs are defined in this
specification. Platforms that require additional functionality from their Extended SAL Procedures
may define additional (GUID, FunctionID) pairs.
136 4/13/2015 Version 1.4

Extended SAL Services
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableIn
fo()

Summary
Adds platform specific information to the to the header of the SAL System Table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EXTENDED_SAL_ADD_SST_INFO) (
 IN EXTENDED_SAL_BOOT_SERVICE_PROTOCOL *This,
 IN UINT16 SalAVersion,
 IN UINT16 SalBVersion,
 IN CHAR8 *OemId,
 IN CHAR8 *ProductId
);

Parameters
This

A pointer to the EXTENDED_SAL_BOOT_SERVICE_PROTOCOL instance.

SalAVersion
Version of recovery SAL PEIM(s) in BCD format. Higher byte contains the major
revision and the lower byte contains the minor revision.

SalBVersion

Version of DXE SAL Driver in BCD format. Higher byte contains the major revision
and the lower byte contains the minor revision.

OemId

A pointer to a Null-terminated ASCII string that contains OEM unique string. The
string cannot be longer than 32 bytes in total length.

ProductId

A pointer to a Null-terminated ASCII string that uniquely identifies a family of
compatible products. The string cannot be longer than 32 bytes in total length.

Description
This function updates the platform specific information in the SAL System Table header. The
SAL_A_VERSION field of the SAL System Table is set to the value specified by SalAVersion.
The SAL_B_VERSION field of the SAL System Table is set to the value specified by
SalBVersion. The OEM_ID field of the SAL System Table is filled in with the contents of the
Null-terminated ASCII string specified by OemId. If OemId is NULL or the length of OemId is
greater than 32 characters, then EFI_INVALID_PARAMETER is returned. The PRODUCT_ID
field of the SAL System Table is filled in with the contents of the Null-terminated ASCII string
specified by ProductId. If ProductId is NULL or the length of ProductId is greater than 32
characters, then EFI_INVALID_PARAMETER is returned. This function is also responsible for re-
Version 1.4 4/13/2015 137

Platform Initialization Specification VOLUME 4 SMM Core Interface
computing the CHECKSUM field of the SAL System Table after the SAL_A_REVISION,
SAL_B_REVISION, OEM_ID, and PRODUCT_ID fields have been filled in. Once the CHEKSUM
field has been updated, EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The SAL System Table header was updated successfully.

EFI_INVALID_PARAMETER OemId is NULL.

EFI_INVALID_PARAMETER ProductId is NULL.

EFI_INVALID_PARAMETER The length of OemId is greater than 32 characters.

EFI_INVALID_PARAMETER The length of ProductId is greater than 32 characters.
138 4/13/2015 Version 1.4

Extended SAL Services
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableE
ntry()

Summary
Adds an entry to the SAL System Table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EXTENDED_SAL_ADD_SST_ENTRY) (
 IN EXTENDED_SAL_BOOT_SERVICE_PROTOCOL *This,
 IN UINT8 *TableEntry,
 IN UINTN EntrySize
);

Parameters
This

A pointer to the EXTENDED_SAL_BOOT_SERVICE_PROTOCOL instance.

TableEntry

Pointer to a buffer containing a SAL System Table entry that is EntrySize bytes
in length. The first byte of the TableEntry describes the type of entry. See the
Intel Itanium Processor Family System Abstraction Layer Specification for more
details.

EntrySize

The size, in bytes, of TableEntry.

Description
This function adds the SAL System Table Entry specified by TableEntry and EntrySize to the
SAL System Table. If TableEntry is NULL, then EFI_INVALID_PARAMETER is returned. If
the entry type specified in TableEntry is invalid, then EFI_INVALID_PARAMETER is
returned. If the length of the TableEntry is not valid for the entry type specified in
TableEntry, then EFI_INVALID_PARAMETER is returned. Otherwise, TableEntry is
added to the SAL System Table. This function is also responsible for re-computing the CHECKSUM
field of the SAL System Table. Once the CHEKSUM field has been updated, EFI_SUCCESS is
returned.

Status Codes Returned

EFI_SUCCESS The SAL System Table was updated successfully

EFI_INVALID_PARAMETER TableEntry is NULL.

EFI_INVALID_PARAMETER TableEntry specifies an invalid entry type.

EFI_INVALID_PARAMETER EntrySize is not valid for this type of entry.
Version 1.4 4/13/2015 139

Platform Initialization Specification VOLUME 4 SMM Core Interface
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddExtendedSalProc(
)

Summary
Registers an Extended SAL Procedure.

Prototype
typedef
EFI_STATUS
(EFIAPI *EXTENDED_SAL_REGISTER_INTERNAL_PROC) (
 IN EXTENDED_SAL_BOOT_SERVICE_PROTOCOL *This,
 IN UINT64 ClassGuidLo,
 IN UINT64 ClassGuidHi,
 IN UINT64 FunctionId,
 IN SAL_INTERNAL_EXTENDED_SAL_PROC InternalSalProc,
 IN VOID \
 *PhysicalModuleGlobal OPTIONAL
);

Parameters
This

A pointer to the EXTENDED_SAL_BOOT_SERVICE_PROTOCOL instance.

ClassGuidLo

The lower 64-bits of the class GUID for the Extended SAL Procedure being added.
Each class GUID contains one or more functions specified by a Function ID.

ClassGuidHi

The upper 64-bits of the class GUID for the Extended SAL Procedure being added.
Each class GUID contains one or more functions specified by a Function ID.

FunctionId

The Function ID for the Extended SAL Procedure that is being added. This Function
ID is a member of the Extended SAL Procedure class specified by ClassGuidLo
and ClassGuidHi.

InternalSalProc

A pointer to the Extended SAL Procedure being added. The Extended SAL Procedure
is named by the GUID and Function ID specified by ClassGuidLo,
ClassGuidHi, and FunctionId.

PhysicalModuleGlobal

Pointer to a module global structure. This is a physical mode pointer. This pointer is
passed to the Extended SAL Procedure specified by ClassGuidLo,
ClassGuidHi, FunctionId, and InternalSalProc. If the system is in
physical mode, then this pointer is passed unmodified to InternalSalProc. If the
system is in virtual mode, then the virtual address associated with this pointer is
140 4/13/2015 Version 1.4

Extended SAL Services
passed to InternalSalProc. This parameter is optional and may be NULL. If it
is NULL, then NULL is always passed to InternalSalProc.

Related Definitions
typedef
SAL_RETURN_REGS
(EFIAPI *SAL_INTERNAL_EXTENDED_SAL_PROC) (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

FunctionId

The Function ID associated with this Extended SAL Procedure.

Arg2

Second argument to the Extended SAL procedure.

Arg3

Third argument to the Extended SAL procedure.

Arg4

Fourth argument to the Extended SAL procedure.

Arg5

Fifth argument to the Extended SAL procedure.

Arg6

Sixth argument to the Extended SAL procedure.

Arg7

Seventh argument to the Extended SAL procedure.

Arg8

Eighth argument to the Extended SAL procedure.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Version 1.4 4/13/2015 141

Platform Initialization Specification VOLUME 4 SMM Core Interface
Description
The Extended SAL Procedure specified by InternalSalProc and named by
ClassGuidLo, ClassGuidHi, and FunctionId is added to the set of available Extended
SAL Procedures. Each Extended SAL Procedure is allowed one module global to record any state
information required during the execution of the Extended SAL Procedure. This module global is
specified by PhysicalModuleGlobal.

If there are not enough resource available to add the Extended SAL Procedure, then
EFI_OUT_OF_RESOURCES is returned.

If the Extended SAL Procedure specified by InternalSalProc and named by ClassGuidLo,
ClassGuidHi, and FunctionId was not previously registered, then the Extended SAL
Procedure along with its module global specified by PhysicalModuleGlobal is added to the
set of Extended SAL Procedures, and EFI_SUCCESS is returned.

If the Extended SAL Procedure specified by InternalSalProc and named by ClassGuidLo,
ClassGuidHi, and FunctionId was previously registered, then the module global is replaced
with PhysicalModuleGlobal, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The Extended SAL Procedure was added.

EFI_OUT_OF_RESOURCES There are not enough resources available to add the Extended SAL
Procedure.
142 4/13/2015 Version 1.4

Extended SAL Services
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.ExtendedSalProc()

Summary
Calls a previously registered Extended SAL Procedure.

Prototype
typedef
SAL_RETURN_REGS
(EFIAPI *EXTENDED_SAL_PROC) (
 IN UINT64 ClassGuidLo,
 IN UINT64 ClassGuidHi,
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8
);

Parameters
ClassGuidLo

The lower 64-bits of the class GUID for the Extended SAL Procedure that is being
called.

ClassGuidHi

The upper 64-bits of the class GUID for the Extended SAL Procedure that is being
called.

FunctionId

Function ID for the Extended SAL Procedure being called.

Arg2

Second argument to the Extended SAL procedure.

Arg3

Third argument to the Extended SAL procedure.

Arg4

Fourth argument to the Extended SAL procedure.

Arg5

Fifth argument to the Extended SAL procedure.

Arg6

Sixth argument to the Extended SAL procedure.
Version 1.4 4/13/2015 143

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Seventh argument to the Extended SAL procedure.

Arg8

Eighth argument to the Extended SAL procedure.

Description
This function calls the Extended SAL Procedure specified by ClassGuidLo, ClassGuidHi,
and FunctionId. The set of previously registered Extended SAL Procedures is searched for a
matching ClassGuidLo, ClassGuidHi, and FunctionId. If a match is not found, then
EFI_SAL_NOT_IMPLEMENTED is returned. The module global associated with ClassGuidLo,
ClassGuidHi, and FunctionId is retrieved. If that module global is not NULL and the system
is in virtual mode, and the virtual address of the module global is not available, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the Extended SAL Procedure
associated with ClassGuidLo, ClassGuidHi, and FunctionId is called. The arguments
specified by FunctionId, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, and Arg8 are passed into
the Extended SAL Procedure along with the VirtrualMode flag and ModuleGlobal pointer.

If the system is in physical mode, then the ModuleGlobal that was originally registered with
AddExtendedSalProc() is passed into the Extended SAL Procedure. If the system is in virtual
mode, then the virtual address associated with ModuleGlobal is passed to the Extended SAL
Procedure. The EFI Runtime Service ConvertPointer() is used to convert the physical
address of ModuleGlobal to a virtual address. If ModuleGlobal was registered as NULL, then
NULL is always passed into the Extended SAL Procedure.

The return status from this Extended SAL Procedure is returned.

Status Codes Returned

10.3 Extended SAL Service Classes
This chapter contains the standard set of Extended SAL service classes. These include EFI Runtime
Services in the UEFI 2.0 Specification, SAL Procedures required by the Intel Itanium Processor
Family System Abstraction Layer Specification , services required to abstract access to hardware
devices, and services required in the handling of MCA, INIT, and PMI flows. Extended SAL
Service Classes behave like PPIs and Protocols. They are named by GUID and contain a set of
services for each GUID. This also allows platform developers to add new Extended SAL service
classes over time to implement platform specific features that require the Extended SAL capabilities.

The following tables list the Extended SAL Service Classes defined by this specification. The
following sections contain detailed descriptions of the functions in each of the classes.

EFI_SAL_NOT_IMPLEMENTED The Extended SAL Procedure specified by ClassGuidLo,

ClassGuidHi, and FunctionId has not been

registered.

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other The result returned from the specified Extended SAL Procedure
144 4/13/2015 Version 1.4

Extended SAL Services
Table 1. Extended SAL Service Classes – EFI Runtime Services

Table 2. Extended SAL Service Classes – SAL Procedures

Table 3. Extended SAL Service Classes – Hardware Abstractions

Table 4. Extended SAL Service Classes – Other

Name Description

Real Time Clock Services Class The Extended SAL Real Time Clock Services Class provides
functions to access the real time clock.

Reset Services Class The Extended SAL Reset Services Class provides platform reset
services.

Status Code Services Class The Extended SAL Status Code Services Class provides
services to report status code information.

Monotonic Counter Services Class The Extended SAL Monotonic Counter Services Class provides
functions to access the monotonic counter.

Variable Services Class The Extended SAL Variable Services Class provides functions
to access EFI variables.

Name Description

Base Services Class The Extended SAL Base Services Class provides base services
that do not have any hardware dependencies including a
number of SAL Procedures required by the Intel Itanium
Processor Family System Abstraction Layer Specification.

Cache Services Class The Extended SAL Cache Services Class provides services to
initialize and flush the caches.

PAL Services Class The Extended SAL PAL Services Class provides services to
make PAL calls.

PCI Services Class The Extended SAL PCI Services Class provides services to
perform PCI configuration cycles.

MCA Log Services Class The Extended SAL MCA Log Services Class provides logging
services for MCA events.

Name Description

Base I/O Services Class The Extended SAL Base I/O Services Class provides the basic
abstractions for accessing I/O ports and MMIO.

Stall Services Class The Extended SAL Stall Services Class provides functions to
perform calibrated delays.

Firmware Volume Block Services Class The Extended SAL Firmware Volume Block Services Class
provides services that are equivalent to the Firmware Volume
Block Protocol in the Platform Initialization Specification.

Name Description

MP Services Class The Extended SAL MP Services Class provides services for
managing multiple CPUs.
Version 1.4 4/13/2015 145

Platform Initialization Specification VOLUME 4 SMM Core Interface
10.3.1 Extended SAL Base I/O Services Class

Summary
The Extended SAL Base I/O Services Class provides the basic abstractions for accessing I/O ports
and MMIO.

GUID
#define EFI_EXTENDED_SAL_BASE_IO_SERVICES_PROTOCOL_GUID_LO \
 0x451531e15aea42b5
#define EFI_EXTENDED_SAL_BASE_IO_SERVICES_PROTOCOL_GUID_HI \
 0xa6657525d5b831bc
#define EFI_EXTENDED_SAL_BASE_IO_SERVICES_PROTOCOL_GUID \
 {0x5aea42b5,0x31e1,0x4515,
 {0xbc,0x31,0xb8,0xd5,0x25,0x75,0x65,0xa6}}

Related Definitions
typedef enum {
 IoReadFunctionId,
 IoWriteFunctionId,
 MemReadFunctionId,
 MemWriteFunctionId,
} EFI_EXTENDED_SAL_BASE_IO_SERVICES_FUNC_ID;

Description

Table 5. Extended SAL Base I/O Services Class

MCA Services Class TBD

Name Description

ExtendedSalIoRead This function is equivalent in functionality to the Io.Read() function of the
CPU I/O PPI. See Volume1:Platform Initialization Specification Section 7.2.
The function prototype for the Io.Read() service is shown in Related
Definitions.

ExtendedSalIoWrite This function is equivalent in functionality to the Io.Write() function of
the CPU I/O PPI. See Volume1:Platform Initialization Specification Section
7.2. The function prototype for the Io.Write() service is shown in
Related Definitions.

ExtendedSalMemRead This function is equivalent in functionality to the Mem.Read() function of
the CPU I/O PPI. See Volume1:Platform Initialization Specification Section
7.2. The function prototype for the Mem.Read() service is shown in
Related Definitions.

ExtendedSalMemWrite This function is equivalent in functionality to the Mem.Write() function of
the CPU I/O PPI. See Volume1:Platform Initialization Specification Section
7.2. The function prototype for the Mem.Write() service is shown in
Related Definitions.
146 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalIoRead

Summary
This function is equivalent in functionality to the Io.Read() function of the CPU I/O PPI. See
Volume1:Platform Initialization Specification Section 7.2. The function prototype for the
Io.Read() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalIoRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalIoReadFunctionId.

Arg2

Signifies the width of the I/O read operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the I/O read operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of I/O read operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The destination buffer to store the results. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 147

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Io.Read() function in the CPU I/O PPI. If
this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Io.Read() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Io.Read() function in the
CPU I/O PPI.
148 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalIoWrite

Summary
This function is equivalent in functionality to the Io.Write() function of the CPU I/O PPI. See
Volume1:Platform Initialization Specification Section 7.2. The function prototype for the
Io.Write() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalIoWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalIoWriteFunctionId.

Arg2

Signifies the width of the I/O write operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the I/O write operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of I/O write operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The source buffer of the value to write. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 149

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Io.Write() function in the CPU I/O PPI.
If this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Io.Write() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Io.Write() function in the
CPU I/O PPI.
150 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalMemRead

Summary
This function is equivalent in functionality to the Mem.Read() function of the CPU I/O PPI. See
Volume 1:Platform Initialization Specification Section 7.2. The function prototype for the
Mem.Read() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMemRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL

);

Parameters
FunctionId

Must be EsalMemReadFunctionId.

Arg2

Signifies the width of the MMIO read operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the MMIO read operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of MMIO read operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The destination buffer to store the results. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 151

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Mem.Read() function in the CPU I/O PPI.
If this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Mem.Read() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Mem.Read() function in the
CPU I/O PPI.
152 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalMemWrite

Summary
This function is equivalent in functionality to the Mem.Write() function of the CPU I/O PPI. See
Volume 1:Platform Initialization Specification Section 7.2. The function prototype for the
Mem.Write() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMemWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMemWriteFunctionId.

Arg2

Signifies the width of the MMIO write operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the MMIO write operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of MMIO write operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The source buffer of the value to write. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 153

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Mem.Write() function in the CPU I/O PPI.
If this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Mem.Write() function of the CPU I/O PPI is returned.

Status Codes Returned

10.4 Extended SAL Stall Services Class

Summary
The Extended SAL Stall Services Class provides functions to perform calibrated delays.

GUID
#define EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID_LO \

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Mem.Write() function in the
CPU I/O PPI.
154 4/13/2015 Version 1.4

Extended SAL Services
 0x4d8cac2753a58d06
#define EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID_HI \
 0x704165808af0e9b5
#define EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID \
 {0x53a58d06,0xac27,0x4d8c,\
 {0xb5,0xe9,0xf0,0x8a,0x80,0x65,0x41,0x70}}

Related Definitions
typedef enum {
 StallFunctionId,
} EFI_EXTENDED_SAL_STALL_FUNC_ID;

Description

Table 6. Extended SAL Stall Services Class

Name Description

ExtendedSalStall This function is equivalent in functionality to the EFI Boot Service

Stall(). See UEFI 2.0 Specification Section 6.5. The function

prototype for the Stall() service is shown in Related Definitions.
Version 1.4 4/13/2015 155

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalStall

Summary
This function is equivalent in functionality to the EFI Boot Service Stall(). See UEFI 2.0
Specification Section 6.5. The function prototype for the Stall() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalStall (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalStallFunctionId.

Arg2

Specifies the delay in microseconds. This argument is interpreted as type UINTN.
See Microseconds in Related Definitions.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
156 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_STALL) (
 IN UINTN Microseconds
);

Description
This function performs the equivalent operation as the Stall() function in the EFI Boot Services
Table. If this function is called in virtual mode before any required mapping have been converted to
virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the one
of the status codes defined in the Stall() function of the EFI Boot Services Table is returned.

Status Codes Returned

10.4.1 Extended SAL Real Time Clock Services Class

Summary
The Extended SAL Real Time Clock Services Class provides functions to access the real time clock.

GUID
#define EFI_EXTENDED_SAL_RTC_SERVICES_PROTOCOL_GUID_LO \
 0x4d02efdb7e97a470
#define EFI_EXTENDED_SAL_RTC_SERVICES_PROTOCOL_GUID_HI \
 0x96a27bd29061ce8f
#define EFI_EXTENDED_SAL_RTC_SERVICES_PROTOCOL_GUID \
 {0x7e97a470,0xefdb,0x4d02, \
 {0x8f,0xce,0x61,0x90,0xd2,0x7b,0xa2,0x96}

Related Definitions
typedef enum {
 GetTimeFunctionId,
 SetTimeFunctionId,

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Stall() function in the EFI
Boot Services Table.
Version 1.4 4/13/2015 157

Platform Initialization Specification VOLUME 4 SMM Core Interface
 GetWakeupTimeFunctionId,
 SetWakeupTimeFunctionId,
 GetRtcClassMaxFunctionId
 InitializeThresholdFunctionId,
 BumpThresholdCountFunctionId,
 GetThresholdCountFunctionId
} EFI_EXTENDED_SAL_RTC_SERVICES_FUNC_ID;

Description

Table 7. Extended SAL Real Time Clock Services Class

Name Description

ExtendedSalGetTime This function is equivalent in functionality to the EFI Boot Service

GetTime(). See UEFI 2.0 Specification Section 7.2. The function

prototype for the GetTime() service is shown in Related Definitions.

ExtendedSalSetTime This function is equivalent in functionality to the EFI Runtime Service

SetTime(). See UEFI 2.0 Specification Section 7.2. The function

prototype for the SetTime() service is shown in Related Definitions.

ExtendedSalGetWakeupTime This function is equivalent in functionality to the EFI Runtime Service

GetWakeupTime(). See UEFI 2.0 Specification Section 7.2. The

function prototype for the GetWakeupTime() service is shown in

Related Definitions.

ExtendedSalSetWakeupTime This function is equivalent in functionality to the EFI Runtime Service

SetWakeupTime(). See UEFI 2.0 Specification Section 7.2. The

function prototype for the SetWakeupTime() service is shown in

Related Definitions.
158 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetTime

Summary
This function is equivalent in functionality to the EFI Runtime Service GetTime(). See UEFI 2.0
Specification Section 7.2. The function prototype for the GetTime() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetTimeFunctionId.

Arg2

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_TIME_CAPABILITIES
structure. See Capabilities in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.4 4/13/2015 159

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_TIME) (
 OUT EFI_TIME *Time,
 OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

Description
This function performs the equivalent operation as the GetTime() function in the EFI Runtime
Services Table. If this function is called in virtual mode before any required mapping have been
converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the GetTime() function of the EFI Runtime
Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetTime() function in the
EFI Runtime Services Table.
160 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalSetTime

Summary
This function is equivalent in functionality to the EFI Runtime Service SetTime(). See UEFI 2.0
Specification Section 7.2. The function prototype for the SetTime() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetTimeFunctionId.

Arg2

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 161

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SET_TIME) (
 IN EFI_TIME *Time
);

Description
This function performs the equivalent operation as the SetTime() function in the EFI Runtime
Services Table. If this function is called in virtual mode before any required mapping have been
converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the SetTime() function of the EFI Runtime
Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetTime() function in the
EFI Runtime Services Table.
162 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetWakeupTime

Summary
This function is equivalent in functionality to the EFI Runtime Service GetWakeupTime(). See
UEFI 2.0 Specification Section 7.2. The function prototype for the GetWakeupTime() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetWakeupTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetWakeupTimeFunctionId.

Arg2

This argument is interpreted as a pointer to a BOOLEAN value. See Enabled in
Related Definitions.

Arg3

This argument is interpreted as a pointer to a BOOLEAN value. See Pending in
Related Definitions.

Arg4

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.4 4/13/2015 163

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_WAKEUP_TIME) (
 OUT BOOLEAN *Enabled,
 OUT BOOLEAN *Pending,
 OUT EFI_TIME *Time
);

Description
This function performs the equivalent operation as the GetWakeupTime() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the GetWakeupTime() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetWakeupTime() function
in the EFI Runtime Services Table.
164 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalSetWakeupTime

Summary
This function is equivalent in functionality to the EFI Runtime Service SetWakeupTime(). See
UEFI 2.0 Specification Section 7.2. The function prototype for the SetWakeupTime() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetWakeupTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetWakeupTimeFunctionId.

Arg2

This argument is interpreted as a BOOLEAN value. See Enable in Related
Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.4 4/13/2015 165

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SET_WAKEUP_TIME) (
 IN BOOLEAN Enable,
 IN EFI_TIME *Time OPTIONAL
);

Description
This function performs the equivalent operation as the SetWakeupTime() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the SetWakeupTime() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

10.4.2 Extended SAL Reset Services Class

Summary
The Extended SAL Reset Services Class provides platform reset services.

GUID
#define EFI_EXTENDED_SAL_RESET_SERVICES_PROTOCOL_GUID_LO \
 0x46f58ce17d019990
#define EFI_EXTENDED_SAL_RESET_SERVICES_PROTOCOL_GUID_HI \
 0xa06a6798513c76a7
#define EFI_EXTENDED_SAL_RESET_SERVICES_PROTOCOL_GUID \
 {0x7d019990,0x8ce1,0x46f5,
 {0xa7,0x76,0x3c,0x51,0x98,0x67,0x6a,0xa0}}

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetWakeupTime() function
in the EFI Runtime Services Table.
166 4/13/2015 Version 1.4

Extended SAL Services
Related Definitions
typedef enum {
 ResetSystemFunctionId,
} EFI_EXTENDED_SAL_RESET_FUNC_ID;

Description

Table 8. Extended SAL Reset Services Class

Name Description

ExtendedSalResetSystem This function is equivalent in functionality to the EFI Runtime Service

ResetSystem(). See UEFI 2.0 Specification Section 7.4.1. The

function prototype for the ResetSystem() service is shown in Related

Definitions.
Version 1.4 4/13/2015 167

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalResetSystem

Summary
This function is equivalent in functionality to the EFI Runtime Service ResetSystem(). See
UEFI 2.0 Specification Section 7.4.1. The function prototype for the ResetSystem() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalResetSystem (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalResetSystemFunctionId.

Arg2

This argument is interpreted as a EFI_RESET_TYPE value. See ResetType in
Related Definitions.

Arg3

This argument is interpreted as EFI_STATUS value. See ResetStatus in Related
Definitions.

Arg4

This argument is interpreted as UINTN value. See DataSize in Related
Definitions.

Arg5

This argument is interpreted a pointer to a Unicode string. See ResetData in
Related Definitions.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
168 4/13/2015 Version 1.4

Extended SAL Services
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
VOID
(EFIAPI *EFI_RESET_SYSTEM) (
 IN EFI_RESET_TYPE ResetType,
 IN EFI_STATUS ResetStatus,
 IN UINTN DataSize,
 IN CHAR16 *ResetData OPTIONAL
);

Description
This function performs the equivalent operation as the ResetSystem() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the ResetSystem() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

10.4.3 Extended SAL PCI Services Class

Summary
The Extended SAL PCI Services Class provides services to perform PCI configuration cycles.

GUID
#define EFI_EXTENDED_SAL_PCI_SERVICES_PROTOCOL_GUID_LO \
 0x4905ad66a46b1a31
#define EFI_EXTENDED_SAL_PCI_SERVICES_PROTOCOL_GUID_HI \
 0x6330dc59462bf692
#define EFI_EXTENDED_SAL_PCI_SERVICES_PROTOCOL_GUID \

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the ResetSystem() function in
the EFI Runtime Services Table.
Version 1.4 4/13/2015 169

Platform Initialization Specification VOLUME 4 SMM Core Interface
 {0xa46b1a31,0xad66,0x4905,
 {0x92,0xf6,0x2b,0x46,0x59,0xdc,0x30,0x63}}

Related Definitions
typedef enum {
 SalPciConfigReadFunctionId,
 SalPciConfigWriteFunctionId,
} EFI_EXTENDED_SAL_PCI_SERVICES_FUNC_ID;

Description

Table 9. Extended SAL PCI Services Class

Name Description

ExtendedSalPciRead This function is equivalent in functionality to the SAL Procedure

SAL_PCI_CONFIG_READ. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.

ExtendedSalPciWrite This function is equivalent in functionality to the SAL Procedure

SAL_PCI_CONFIG_WRITE. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.
170 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalPciRead

Summary
This function is equivalent in functionality to the SAL Procedure SAL_PCI_CONFIG_READ. See
the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalPciRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPciReadFunctionId.

Arg2

address parameter to SAL_PCI_CONFIG_WRITE.

Arg3

size parameter to SAL_PCI_CONFIG_WRITE.

Arg4

address_type parameter to SAL_PCI_CONFIG_WRITE.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 171

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
172 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalPciWrite

Summary
This function is equivalent in functionality to the SAL Procedure SAL_PCI_CONFIG_WRITE.
See the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalPciWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPciWriteFunctionId.

Arg2

address parameter to SAL_PCI_CONFIG_WRITE.

Arg3

size parameter to SAL_PCI_CONFIG_WRITE.

Arg4

value parameter to SAL_PCI_CONFIG_WRITE.

Arg5

address_type parameter to SAL_PCI_CONFIG_WRITE.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 173

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

10.4.4 Extended SAL Cache Services Class

Summary
The Extended SAL Cache Services Class provides services to initialize and flush the caches.

GUID
#define EFI_EXTENDED_SAL_CACHE_SERVICES_PROTOCOL_GUID_LO \
 0x4ba52743edc9494
#define EFI_EXTENDED_SAL_CACHE_SERVICES_PROTOCOL_GUID_HI \
 0x88f11352ef0a1888
#define EFI_EXTENDED_SAL_CACHE_SERVICES_PROTOCOL_GUID \
 {0xedc9494,0x2743,0x4ba5,\
 {0x88,0x18,0x0a,0xef,0x52,0x13,0xf1,0x88}}

Related Definitions
typedef enum {
 SalCacheInitFunctionId,
 SalCacheFlushFunctionId,
 SalCacheClassMaxFunctionId
} EFI_EXTENDED_SAL_CACHE_SERVICES_FUNC_ID;

Description

Table 10. Extended SAL Cache Services Class

Name Description

ExtendedSalCacheInit This function is equivalent in functionality to the SAL Procedure

SAL_CACHE_INIT. See the Intel Itanium Processor Family System

Abstraction Layer Specification Chapter 9.

ExtendedSalCacheFlush This function is equivalent in functionality to the SAL Procedure

SAL_CACHE_FLUSH. See the Intel Itanium Processor Family System

Abstraction Layer Specification Chapter 9.
174 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalCacheInit

Summary
This function is equivalent in functionality to the SAL Procedure SAL_CACHE_INIT. See the Intel
Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalCacheInit (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalCacheInitFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 175

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
176 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalCacheFlush

Summary
This function is equivalent in functionality to the SAL Procedure SAL_CACHE_FLUSH. See the
Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalCacheFlush (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalCacheFlushFunctionId.

Arg2

i_or_d parameter in SAL_CACHE_FLUSH.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 177

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

10.4.5 Extended SAL PAL Services Class

Summary
The Extended SAL PAL Services Class provides services to make PAL calls.

GUID
#define EFI_EXTENDED_SAL_PAL_SERVICES_PROTOCOL_GUID_LO \
 0x438d0fc2e1cd9d21
#define EFI_EXTENDED_SAL_PAL_SERVICES_PROTOCOL_GUID_HI \
 0x571e966de6040397
#define EFI_EXTENDED_SAL_PAL_SERVICES_PROTOCOL_GUID \
 {0xe1cd9d21,0x0fc2,0x438d, \
 {0x97,0x03,0x04,0xe6,0x6d,0x96,0x1e,0x57}}

Related Definitions
typedef enum {
 PalProcFunctionId,
 SetNewPalEntryFunctionId,
 GetNewPalEntryFunctionId,
 EsalUpdatePalFunctionId,
} EFI_EXTENDED_SAL_PAL_SERVICES_FUNC_ID;

Description

Table 11. Extended SAL PAL Services Class

Name Description

ExtendedSalPalProc This function provides a C wrapper for making PAL Procedure calls. See
the Intel Itanium Architecture Software Developers Manual Volume2:
System Architecture Section 11.10 for details on the PAL calling
conventions and the set of PAL Procedures.

ExtendedSalSetNewPalEntry This function records the physical or virtual PAL entry point.

ExtendedSalSetNewPalEntry This function retrieves the physical or virtual PAL entry point.
178 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalPalProc

Summary
This function provides a C wrapper for making PAL Procedure calls. See the Intel Itanium
Architecture Software Developers Manual Volume2: System Architecture Section 11.10 for details
on the PAL calling conventions and the set of PAL Procedures.

Prototype
PAL_PROC_RETURN
EFIAPI
ExtendedSalPalProc (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPalProcFunctionId.

Arg2

PAL_PROC Function ID.

Arg3

Arg2of the PAL_PROC.

Arg4

Arg3 of the PAL_PROC.

Arg5

Arg4 of the PAL_PROC.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 179

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function provide a C wrapper for making PAL Procedure calls. The PAL_PROC Function ID in
Arg2 is used to determine if the PAL_PROC is stacked or static. If the PAL has been shadowed, then
the memory copy of the PAL is called. Otherwise, the ROM version of the PAL is called. The caller
does not need to worry whether or not the PAL has been shadowed or not (except for the fact that
some of the PAL calls don’t work until PAL has been shadowed). If this function is called in virtual
mode before any required mapping have been converted to virtual addresses, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the return status from the
PAL_PROC is returned.
180 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalSetNewPalEntry

Summary
This function records the physical or virtual PAL entry point.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetNewPalEntry (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetNewPalEntryFunctionId.

Arg2

This parameter is interpreted as a BOOLEAN. If it is TRUE, then PAL Entry Point
specified by Arg3 is a physical address. If it is FALSE, then the Pal Entry Point
specified by Arg3 is a virtual address.

Arg3

The PAL Entry Point that is being set.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 181

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function records the PAL Entry Point specified by Arg3, so PAL_PROC calls can be made
with the EsalPalProcFunctionId Function ID. If Arg2 is TRUE, then Arg3 is the physical
address of the PAL Entry Point. If Arg2 is FALSE, then Arg3 is the virtual address of the PAL
Entry Point. If this function is called in virtual mode before any required mapping have been
converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The PAL Entry Point was set

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.
182 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetNewPalEntry

Summary
This function retrieves the physical or virtual PAL entry point.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetNewPalEntry (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetNewPalEntryFunctionId.

Arg2

This parameter is interpreted as a BOOLEAN. If it is TRUE, then physical address of
the PAL Entry Point is retrieved. If it is FALSE, then the virtual address of the Pal
Entry Point is retrieved.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 183

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function retrieves the PAL Entry Point that as previously set with
EsalSetNewPalEntryFunctionId. If Arg2 is TRUE, then the physical address of the PAL
Entry Point is returned in SAL_RETURN_REGS.r9 and EFI_SAL_SUCCESS is returned. If Arg2
is FALSE and a virtual mapping for the PAL Entry Point is not available, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. If Arg2 is FALSE and a virtual mapping
for the PAL Entry Point is available, then the virtual address of the PAL Entry Point is returned in
SAL_RETURN_REGS.r9 and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The PAL Entry Point was retrieved and returned in
SAL_RETURN_REGS.r9.

EFI_SAL_VIRTUAL_ADDRESS_ERROR A request for the virtual mapping of the PAL Entry Point was
requested, and a virtual mapping is not currently available.
184 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalUpdatePal

Summary
This function is equivalent in functionality to the SAL Procedure SAL_UPDATE_PAL. See the Intel
Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalUpdatePal (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalUpdatePal.

Arg2

param_buf parameter to SAL_UPDATE_PAL.

Arg3

scratch_buf parameter to SAL_UPDATE_PAL.

Arg4

scratch_buf_size parameter to SAL_UPDATE_PAL.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 185

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

10.4.6 Extended SAL Status Code Services Class

Summary
The Extended SAL Status Code Services Class provides services to report status code information.

GUID
#define EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_PROTOCOL_GUID_LO \
 0x420f55e9dbd91d
#define EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_PROTOCOL_GUID_HI \
 0x4fb437849f5e3996
#define EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_PROTOCOL_GUID \
 {0xdbd91d,0x55e9,0x420f,
 {0x96,0x39,0x5e,0x9f,0x84,0x37,0xb4,0x4f}}

Related Definitions
typedef enum {
 ReportStatusCodeServiceFunctionId,
} EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_FUNC_ID;

Description

Table 12. Extended SAL Status Code Services Class

Name Description

ExtendedSalReportStatusCode This function is equivalent in functionality to the
ReportStatusCode() service of the Status Code Runtime

Protocol. See Section 12.2 of the Volume 2:Platform Initialization
Specification, Driver Execution Environment, Core Interface. The

function prototype for the ReportStatusCode() service is shown

in Related Definitions.
186 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalReportStatusCode

Summary
This function is equivalent in functionality to the ReportStatusCode() service of the Status
Code Runtime Protocol. See Section 12.2 of the Volume 2:Platform Initialization Specification,
Driver Execution Environment, Core Interface. The function prototype for the
ReportStatusCode() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalReportStatusCode (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalReportStatusCodeFunctionId.

Arg2

This argument is interpreted as type EFI_STATUS_CODE_TYPE. See the Type
parameter in Related Definitions.

Arg3 T

his argument is interpreted as type EFI_STATUS_CODE_VALUE. See the Value
parameter in Related Definitions.

Arg4

This argument is interpreted as type UINT32. See the Instance parameter in
Related Definitions.

Arg5

This argument is interpreted as a pointer to type CONST EFI_GUID. See the
CallerId parameter in Related Definitions.

Arg6

This argument is interpreted as pointer to type CONST EFI_STATUS_CODE_DATA.
See the Data parameter in Related Definitions.
Version 1.4 4/13/2015 187

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_REPORT_STATUS_CODE) (
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId OPTIONAL,
 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Description
This function performs the equivalent operation as the ReportStatusCode function of the Status
Code Runtime Protocol. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the ReportStatusCode() function of the
Status Code Runtime Protocol is returned.

Status Codes Returned

10.4.7 Extended SAL Monotonic Counter Services Class

Summary
The Extended SAL Monotonic Counter Services Class provides functions to access the monotonic
counter.

GUID
#define EFI_EXTENDED_SAL_MTC_SERVICES_PROTOCOL_GUID_LO \

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the ReportStatusCode()
function in the Status Code Runtime Protocol.
188 4/13/2015 Version 1.4

Extended SAL Services
 0x408b75e8899afd18
#define EFI_EXTENDED_SAL_MTC_SERVICES_PROTOCOL_GUID_HI \
 0x54f4cd7e2e6e1aa4
#define EFI_EXTENDED_SAL_MTC_SERVICES_PROTOCOL_GUID \
 {0x899afd18,0x75e8,0x408b,\
 {0xa4,0x1a,0x6e,0x2e,0x7e,0xcd,0xf4,0x54}}

Related Definitions
typedef enum {
 GetNextHighMotonicCountFunctionId,
} EFI_EXTENDED_SAL_MTC_SERVICES_FUNC_ID;

Description

Table 13. Extended SAL Monotonic Counter Services Class

Name Description

ExtendedSalGetNextHighMtc This function is equivalent in functionality to the EFI Runtime Service

GetNextHighMonotonicCount(). See UEFI 2.0 Specification

Section 7.4.2. The function prototype for the

GetNextHighMonotonicCount() service is shown in Related

Definitions.
Version 1.4 4/13/2015 189

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetNextHighMtc

Summary
This function is equivalent in functionality to the EFI Runtime Service
GetNextHighMonotonicCount(). See UEFI 2.0 Specification Section 7.4.2. The function
prototype for the GetNextHighMonotonicCount() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetNextHighMtc (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetNextHighMtcFunctionId.

Arg2

This argument is interpreted as a pointer to a UINT32. See the HighCount
parameter in Related Definitions.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
190 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_NEXT_HIGH_MONO_COUNT) (
 OUT UINT32 *HighCount
);

Description
This function performs the equivalent operation as the GetNextHighMonotoicCount()
function in the EFI Runtime Services Table. If this function is called in virtual mode before any
required mapping have been converted to virtual addresses, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the one of the status codes
defined in the GetNextHighMonotonicCount() function of the EFI Runtime Services Table
is returned.

Status Codes Returned

10.4.8 Extended SAL Variable Services Class

Summary
The Extended SAL Variable Services Class provides functions to access EFI variables.

GUID
#define EFI_EXTENDED_SAL_VARIABLE_SERVICES_PROTOCOL_GUID_LO \
 0x4370c6414ecb6c53
#define EFI_EXTENDED_SAL_VARIABLE_SERVICES_PROTOCOL_GUID_HI \
 0x78836e490e3bb28c
#define EFI_EXTENDED_SAL_VARIABLE_SERVICES_PROTOCOL_GUID \
 {0x4ecb6c53,0xc641,0x4370, \
 {0x8c,0xb2,0x3b,0x0e,0x49,0x6e,0x83,0x78}}

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the
GetNextHighMonotonicCount() function in the EFI Runtime
Services Table.
Version 1.4 4/13/2015 191

Platform Initialization Specification VOLUME 4 SMM Core Interface
Related Definitions
typedef enum {
 EsalGetVariableFunctionId,
 EsalGetNextVariableNameFunctionId,
 EsalSetVariableFunctionId,
 EsalQueryVariableInfoFunctionId,
} EFI_EXTENDED_SAL_VARIABLE_SERVICES_FUNC_ID;

Description

Table 14. Extended SAL Variable Services Class

Name Description

ExtendedSalGetVariable This function is equivalent in functionality to the EFI Runtime Service

GetVariable(). See UEFI 2.0 Specification Section 7.1. The

function prototype for the GetVariable() service is shown in

Related Definitions.

ExtendedSalGetNextVariableName This function is equivalent in functionality to the EFI Runtime Service

GetNextVariableName(). See UEFI 2.0 Specification

Section 7.1. The function prototype for the

GetNextVariableName() service is shown in Related

Definitions.

ExtendedSalSetVariable This function is equivalent in functionality to the EFI Runtime Service

SetVariable(). See UEFI 2.0 Specification Section 7.1. The

function prototype for the SetVariable() service is shown in

Related Definitions.

ExtendedSalQueryVariableInfo This function is equivalent in functionality to the EFI Runtime Service

QueryVariableInfo(). See UEFI 2.0 Specification Section

7.1. The function prototype for the QueryVariableInfo()

service is shown in Related Definitions.
192 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetVariable

Summary
This function is equivalent in functionality to the EFI Runtime Service GetVariable(). See
UEFI 2.0 Specification Section 7.1. The function prototype for the GetVariable() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetVariable (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetVariableFunctionId.

Arg2

This argument is interpreted as a pointer to a Unicode string. See the
VariableName parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_GUID. See the VendorGuid
parameter in Related Definitions.

Arg4

This argument is interpreted as a pointer to a value of type UINT32. See the
Attributes parameter in Related Definitions.

Arg5

This argument is interpreted as a pointer to a value of type UINTN. See the
DataSize parameter in Related Definitions.

Arg6

This argument is interpreted as a pointer to a buffer with type VOID *. See the Data
parameter in Related Definitions.
Version 1.4 4/13/2015 193

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_VARIABLE) (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 OUT UINT32 *Attributes, OPTIONAL
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Description
This function performs the equivalent operation as the GetVariable() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the GetVariable() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetVariable() function in the
EFI Runtime Services Table.
194 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetNextVariableName

Summary
This function is equivalent in functionality to the EFI Runtime Service
GetNextVariableName(). See UEFI 2.0 Specification Section 7.1. The function prototype
for the GetNextVariableName() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetNextVariableName (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetNextVariableNameFunctionId.

Arg2

This argument is interpreted as a pointer to value of type UINTN. See the
VariableNameSize parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to a Unicode string. See the VendorName
parameter in Related Definitions.

Arg4

This argument is interpreted as a pointer to a value of type EFI_GUID. See the
VendorGuid parameter in Related Definitions.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.4 4/13/2015 195

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_NEXT_VARIABLE_NAME) (
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VendorGuid
);

Description
This function performs the equivalent operation as the GetNextVariableName() function in
the EFI Runtime Services Table. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetNextVariableName()
function of the EFI Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetNextVariableName()
function in the EFI Runtime Services Table.
196 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalSetVariable

Summary
This function is equivalent in functionality to the EFI Runtime Service SetVariable(). See
UEFI 2.0 Specification Section 7.1. The function prototype for the SetVariable() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetVariable (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetVariableFunctionId.

Arg2

This argument is interpreted as a pointer to a Unicode string. See the
VariableName parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_GUID. See the VendorGuid
parameter in Related Definitions.

Arg4

This argument is interpreted as a value of type UINT32. See the Attributes
parameter in Related Definitions.

Arg5

This argument is interpreted as a value of type UINTN. See the DataSize
parameter in Related Definitions.

Arg6

This argument is interpreted as a pointer to a buffer with type VOID *. See the
Data parameter in Related Definitions.
Version 1.4 4/13/2015 197

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SET_VARIABLE) (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 IN UINT32 Attributes,
 IN UINTN DataSize,
 IN VOID *Data
);

Description
This function performs the equivalent operation as the SetVariable() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the SetVariable() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetVariable() function in the
EFI Runtime Services Table.
198 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalQueryVariableInfo

Summary
This function is equivalent in functionality to the EFI Runtime Service
QueryVariableInfo(). See UEFI 2.0 Specification Section 7.1. The function prototype for
the QueryVariableInfo() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalQueryVariableInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalQueryVariableInfoFunctionId.

Arg2

This argument is interpreted as a value of type UINT32. See the Attributes
parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to a value of type UINT64. See the
MaximumVariableStorageSize parameter in Related Definitions.

Arg4

This argument is interpreted as a pointer to a value of type UINT64. See the
RemainingVariableStorageSize parameter in Related Definitions.

Arg5

This argument is interpreted as a pointer to a value of type UINT64. See the
MaximumVariableSize parameter in Related Definitions.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.4 4/13/2015 199

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_QUERY_VARIABLE_INFO) (
 IN UINT32 Attributes,
 OUT UINT64 *MaximumVariableStorageSize,
 OUT UINT64 *RemainingVariableStorageSize,
 OUT UINT64 *MaximumVariableSize
);

Description
This function performs the equivalent operation as the QueryVariableInfo() function in the
EFI Runtime Services Table. If this function is called in virtual mode before any required mapping
have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is
returned. Otherwise, the one of the status codes defined in the QueryVariableInfo() function
of the EFI Runtime Services Table is returned.

Status Codes Returned

10.4.9 Extended SAL Firmware Volume Block Services Class

Summary
The Extended SAL Firmware Volume Block Services Class provides services that are equivalent to
the Firmware Volume Block Protocol in the Platform Initialization Specification.

GUID
#define EFI_EXTENDED_SAL_FVB_SERVICES_PROTOCOL_GUID_LO \
 0x4f1dbcbba2271df1
#define EFI_EXTENDED_SAL_FVB_SERVICES_PROTOCOL_GUID_HI \
 0x1a072f17bc06a998

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the QueryVariableInfo() function
in the EFI Runtime Services Table.
200 4/13/2015 Version 1.4

Extended SAL Services
#define EFI_EXTENDED_SAL_FVB_SERVICES_PROTOCOL_GUID \
 {0xa2271df1,0xbcbb,0x4f1d,\
 {0x98,0xa9,0x06,0xbc,0x17,0x2f,0x07,0x1a}}

Related Definitions
typedef enum {
 ReadFunctionId,
 WriteFunctionId,
 EraseBlockFunctionId,
 GetVolumeAttributesFunctionId,
 SetVolumeAttributesFunctionId,
 GetPhysicalAddressFunctionId,
 GetBlockSizeFunctionId,
} EFI_EXTENDED_SAL_FV_BLOCK_SERVICES_FUNC_ID;

Description

Table 15. Extended SAL Variable Services Class

Name Description

ExtendedSalRead This function is equivalent in functionality to the Read() service of the

EFI Firmware Volume Block Protocol. See Section 2.4 of the Volume
3:Platform Initialization Specification, Shared Architectural Elements.

The function prototype for the Read() service is shown in Related

Definitions.

ExtendedSalWrite This function is equivalent in functionality to the Write() service of

the EFI Firmware Volume Block Protocol. See Section 2.4 of the
Volume 3:Platform Initialization Specification, Shared Architectural

Elements. The function prototype for the Write() service is shown in

Related Definitions.

ExtendedSalEraseBlock This function is equivalent in functionality to the EraseBlocks()

service of the EFI Firmware Volume Block Protocol except this function
can only erase one block per request. See Section 2.4 of the Volume
3:Platform Initialization Specification, Shared Architectural Elements.

The function prototype for the EraseBlock() service is shown in

Related Definitions.

ExtendedSalGetAttributes This function is equivalent in functionality to the

GetAttributes() service of the EFI Firmware Volume Block

Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for

the GetAttributes() service is shown in Related Definitions.

ExtendedSalSetAttributes This function is equivalent in functionality to the

SetAttributes() service of the EFI Firmware Volume Block

Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for

the SetAttributes() service is shown in Related Definitions.
Version 1.4 4/13/2015 201

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetPhysicalAddress This function is equivalent in functionality to the

GetPhysicalAddress() service of the EFI Firmware Volume

Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for

the GetPhysicalAddress() service is shown in Related

Definitions.

ExtendedSalGetBlockSize This function is equivalent in functionality to the GetBlockSize()

service of the EFI Firmware Volume Block Protocol. See Section 2.4 of
the Volume 3:Platform Initialization Specification, Shared Architectural

Elements. The function prototype for the GetBlockSize() service

is shown in Related Definitions.

ExtendedSalEraseCustomBlockR
ange

This function is similar in functionality to the EraseBlocks() service of
the EFI Firmware Volume Block Protocol except this function can specify
a range of blocks with offsets into the starting and ending block. See
Section 2.4 of the Volume 3:Platform Initialization Specification, Shared
Architectural Elements. The function prototype for the

EraseBlock() service is shown in Related Definitions.
202 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalRead

Summary
This function is equivalent in functionality to the Read() service of the EFI Firmware Volume
Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification, Shared
Architectural Elements. The function prototype for the Read() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbReadFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. See the Lba parameter in Related
Definitions.

Arg4

This argument is interpreted as type UINTN. See the Offset parameter in Related
Definitions.

Arg5

This argument is interpreted as a pointer to type UINTN. See the NumBytes
parameter in Related Definitions.
Version 1.4 4/13/2015 203

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg6

This argument is interpreted as pointer to a buffer of type VOID *. See the Buffer
parameter in Related Definitions.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 OUT UINT8 *Buffer
);

Description
This function performs the equivalent operation as the Read() function of the EFI Firmware
Volume Block Protocol. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the Read() function of the EFI Firmware Volume
Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Read() function in the EFI
Firmware Volume Block Protocol.
204 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalWrite

Summary
This function is equivalent in functionality to the Write() service of the EFI Firmware Volume
Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification, Shared
Architectural Elements. The function prototype for the Write() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbWriteFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. See the Lba parameter in Related
Definitions.

Arg4

This argument is interpreted as type UINTN. See the Offset parameter in Related
Definitions.

Arg5

This argument is interpreted as a pointer to type UINTN. See the NumBytes
parameter in Related Definitions.
Version 1.4 4/13/2015 205

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg6

This argument is interpreted as pointer to a buffer of type VOID *. See the Buffer
parameter in Related Definitions.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_WRITE) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 IN UINT8 *Buffer
);

Description
This function performs the equivalent operation as the Write() function of the EFI Firmware
Volume Block Protocol. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the Write() function of the EFI Firmware
Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Write() function in the EFI
Firmware Volume Block Protocol.
206 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalEraseBlock

Summary
This function is equivalent in functionality to the EraseBlocks() service of the EFI Firmware
Volume Block Protocol except this function can only erase one block per request. See Section 2.4 of
the Volume 3:Platform Initialization Specification, Shared Architectural Elements. The function
prototype for the EraseBlock() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalEraseBlock (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbEraseBlockFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. This is the logical block address in
the firmware volume to erase. Only a single block can be specified with this Extended
SAL Procedure. The EraseBlocks() function in the EFI Firmware Volume Block
Protocol supports a variable number of arguments that allow one or more block ranges
to be specified.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.
Version 1.4 4/13/2015 207

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_ERASE_BLOCKS) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 ...
);

Description
This function performs the equivalent operation as the EraseBlock() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the EraseBlock() function of the
EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the EraseBlock() function in the
EFI Firmware Volume Block Protocol.
208 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetAttributes

Summary
This function is equivalent in functionality to the GetAttributes() service of the EFI Firmware
Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the GetAttributes() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetAttributes (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbGetAttributesFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as pointer to a value of type EFI_FVB_ATTRIBUTES.
See the Attributes parameter in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 209

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
EFI_STATUS
(EFIAPI *EFI_FVB_GET_ATTRIBUTES) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 OUT EFI_FVB_ATTRIBUTES *Attributes
);

Description
This function performs the equivalent operation as the GetAttributes() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetAttributes() function of
the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetAttributes() function in
the EFI Firmware Volume Block Protocol.
210 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalSetAttributes

Summary
This function is equivalent in functionality to the SetAttributes() service of the EFI Firmware
Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the SetAttributes() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetAttributes (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbSetAttributesFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as pointer to a value of type EFI_FVB_ATTRIBUTES.
See the Attributes parameter in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 211

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_SET_ATTRIBUTES) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN OUT EFI_FVB_ATTRIBUTES *Attributes
);

Description
This function performs the equivalent operation as the SetAttributes() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the SetAttributes() function of
the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetAttributes() function in
the EFI Firmware Volume Block Protocol.
212 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetPhysicalAddress

Summary
This function is equivalent in functionality to the GetPhysicalAddress() service of the EFI
Firmware Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for the
GetPhysicalAddress() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetPhysicalAddress (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbGetPhysicalAddressFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as pointer to a value of type
EFI_PHYSICAL_ADDRESS. See the Address parameter in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 213

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_GET_PHYSICAL_ADDRESS) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 OUT EFI_PHYSICAL_ADDRESS *Address
);

Description

This function performs the equivalent operation as the GetPhysicalAddress() function of the
EFI Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetPhysicalAddress() func-
tion of the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetPhysicalAddress()
function in the EFI Firmware Volume Block Protocol.
214 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetBlockSize

Summary
This function is equivalent in functionality to the GetBlockSize() service of the EFI Firmware
Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the GetBlockSize() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetBlockSize (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbGetBlockSizeFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL.

Arg3

This argument is interpreted as type EFI_LBA. See Lba parameter in Related
Definitions.

Arg4 T

his argument is interpreted as a pointer to a value of type UINTN. See BlockSize
parameter in Related Definitions.

Arg5

This argument is interpreted as a pointer to a value of type UINTN. See
NumberOfBlocks parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.4 4/13/2015 215

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_GET_BLOCK_SIZE) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN EFI_LBA Lba,
 OUT UINTN *BlockSize,
 OUT UINTN *NumberOfBlocks
);

Description
This function performs the equivalent operation as the GetBlockSize() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetBlockSize() function of
the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetBlockSize() function in
the EFI Firmware Volume Block Protocol.
216 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalEraseCustomBlockRange

Summary
This function is similar in functionality to the EraseBlocks() service of the EFI Firmware
Volume Block Protocol except this function can specify a range of blocks with offsets into the
starting and ending block. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the EraseBlock() service is shown
in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalEraseCustomBlockRange (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbEraseCustomBlockRangeFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. This is the starting logical block
address in the firmware volume to erase.

Arg4

This argument is interpreted as type UINTN. This is the offset into the starting logical
block to erase.

Arg5

This argument is interpreted as type EFI_LBA. This is the ending logical block
address in the firmware volume to erase.
Version 1.4 4/13/2015 217

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg6

This argument is interpreted as type UINTN. This is the offset into the ending logical
block to erase.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_ERASE_BLOCKS) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 ...
);

Description
This function performs a similar operation as the EraseBlock() function of the EFI Firmware
Volume Block Protocol. The main difference is that this function can perform a partial erase of the
starting and ending blocks. The start of the erase operation is specified by Arg3 and Arg4. The
end of the erase operation is specified by Arg5 and Arg6. If this function is called in virtual mode
before any required mapping have been converted to virtual addresses, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the one of the status codes
defined in the EraseBlock() function of the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

10.4.10 Extended SAL MCA Log Services Class

Summary
The Extended SAL MCA Log Services Class provides logging services for MCA events.

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the EraseBlock() function in the
EFI Firmware Volume Block Protocol.
218 4/13/2015 Version 1.4

Extended SAL Services
GUID
#define EFI_EXTENDED_SAL_MCA_LOG_SERVICES_PROTOCOL_GUID_LO \
 0x4c0338a3cb3fd86e
#define EFI_EXTENDED_SAL_MCA_LOG_SERVICES_PROTOCOL_GUID_HI \
 0x7aaba2a3cf905c9a
#define EFI_EXTENDED_SAL_MCA_LOG_SERVICES_PROTOCOL_GUID \
 {0xcb3fd86e,0x38a3,0x4c03,\
 {0x9a,0x5c,0x90,0xcf,0xa3,0xa2,0xab,0x7a}}

Related Definitions
typedef enum {
 SalGetStateInfoFunctionId,
 SalGetStateInfoSizeFunctionId,
 SalClearStateInfoFunctionId,
 SalGetStateBufferFunctionId,
 SalSaveStateBufferFunctionId,
} EFI_EXTENDED_SAL_MCA_LOG_SERVICES_FUNC_ID;
Version 1.4 4/13/2015 219

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetStateInfo

Summary
This function is equivalent in functionality to the SAL Procedure SAL_GET_STATE_INFO. See
the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetStateInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateInfoFunctionId.

Arg2

type parameter to SAL_GET_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

memaddr parameter to SAL_GET_STATE_INFO.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
220 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
Version 1.4 4/13/2015 221

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetStateInfoSize

Summary
This function is equivalent in functionality to the SAL Procedure SAL_GET_STATE_INFO_SIZE.
See the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetStateInfoSize (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateInfoSizeFunctionId.

Arg2

type parameter to SAL_GET_STATE_INFO_SIZE.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
222 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
Version 1.4 4/13/2015 223

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalClearStateInfo

Summary
This function is equivalent in functionality to the SAL Procedure SAL_CLEAR_STATE_INFO.
See the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalClearStateInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateInfoFunctionId.

Arg2

type parameter to SAL_CLEAR_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
224 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
Version 1.4 4/13/2015 225

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetStateBuffer

Summary

Returns a memory buffer to store error records.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetStateBuffer (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateBufferFunctionId.

Arg2

Same as type parameter to SAL_GET_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
226 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns a memory buffer to store error records. The base address of the buffer is
returned in SAL_RETURN_REGS.r9, and the size of the buffer, in bytes, is returned in
SAL_RETURN_REGS.r10. If a buffer is not available, then EFI_OUT_OF_RESOURCES is
returned. Otherwise, EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The memory buffer to store error records was returned in r9 and r10.

EFI_OUT_OF_RESOURCES A memory buffer for string error records in not available.
Version 1.4 4/13/2015 227

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalSaveStateBuffer

Summary
Saves a memory buffer containing an error records to nonvolatile storage.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSaveStateBuffer (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSaveStateBufferFunctionId.

Arg2

Same as type parameter to SAL_GET_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
228 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description

This function saved a memory buffer containing an error record to nonvolatile storage.

Status Codes Returned

10.4.11 Extended SAL Base Services Class

Summary
The Extended SAL Base Services Class provides base services that do not have any hardware
dependencies including a number of SAL Procedures required by the Intel Itanium Processor
Family System Abstraction Layer Specification.

GUID
#define EFI_EXTENDED_SAL_BASE_SERVICES_PROTOCOL_GUID_LO \
 0x41c30fe0d9e9fa06
#define EFI_EXTENDED_SAL_BASE_SERVICES_PROTOCOL_GUID_HI \
 0xf894335a4283fb96
#define EFI_EXTENDED_SAL_BASE_SERVICES_PROTOCOL_GUID \
 {0xd9e9fa06,0x0fe0,0x41c3,\
 {0x96,0xfb,0x83,0x42,0x5a,0x33,0x94,0xf8}}

Related Definitions
typedef enum {
 SalSetVectorsFunctionId,
 SalMcRendezFunctionId,
 SalMcSetParamsFunctionId,
 EsalGetVectorsFunctionId,
 EsalMcGetParamsFunctionId,
 EsalMcGetMcParamsFunctionId,
 EsalGetMcCheckinFlagsFunctionId,
 EsalGetPlatformBaseFreqFunctionId,
 EsalRegisterPhysicalAddrFunctionId,
 EsalBaseClassMaxFunctionId
} EFI_EXTENDED_SAL_BASE_SERVICES_FUNC_ID;

EFI_SUCCESS The memory buffer containing the error record was written to nonvolatile
storage.

TBD
Version 1.4 4/13/2015 229

Platform Initialization Specification VOLUME 4 SMM Core Interface
Description

Table 16. Extended SAL MP Services Class

Name Description

ExtendedSalSetVectors This function is equivalent in functionality to the SAL Procedure

SAL_SET_VECTORS. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.

ExtendedSalMcRendez This function is equivalent in functionality to the SAL Procedure

SAL_MC_RENDEZ. See the Intel Itanium Processor Family System

Abstraction Layer Specification Chapter 9.

ExtendedSalMcSetParams This function is equivalent in functionality to the SAL Procedure

SAL_MC_SET_PARAMS. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.

ExtendedSalGetVectors Retrieves information that was previously registered with the SAL

Procedure SAL_SET_VECTORS.

ExtendedSalMcGetParams Retrieves information that was previously registered with the SAL

Procedure SAL_MC_SET_PARAMS.

ExtendedSalMcGetMcParams Retrieves information that was previously registered with the SAL

Procedure SAL_MC_SET_PARAMS.

ExtendedSalGetMcCheckinFlags Used to determine if a specific CPU has called the SAL Procedure

SAL_MC_RENDEZ.

ExtendedSalGetPlatformBaseFreq This function is equivalent in functionality to the SAL Procedure

SAL_FREQ_BASE with a clock_type of 0. See the Intel Itanium

Processor Family System Abstraction Layer Specification Chapter 9.

ExtendedSalRegisterPhysicalAddr This function is equivalent in functionality to the SAL Procedure

SAL_REGISTER_PHYSICAL_ADDR. See the Intel Itanium

Processor Family System Abstraction Layer Specification Chapter 9.
230 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalSetVectors

Summary
This function is equivalent in functionality to the SAL Procedure SAL_SET_VECTORS. See the
Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetVectors (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetVectorsFunctionId.

Arg2

vector_type parameter to SAL_SET_VECTORS.

Arg3

phys_addr_1 parameter to SAL_SET_VECTORS.

Arg4

gp_1 parameter to SAL_SET_VECTORS.

Arg5

length_cs_1 parameter to SAL_SET_VECTORS.

Arg6

phys_addr_2 parameter to SAL_SET_VECTORS.

Arg7

gp_2 parameter to SAL_SET_VECTORS.

Arg8

length_cs_2 parameter to SAL_SET_VECTORS.
Version 1.4 4/13/2015 231

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
232 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalMcRendez

Summary
This function is equivalent in functionality to the SAL Procedure SAL_MC_RENDEZ. See the Intel
Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcRendez (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcRendezFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 233

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
234 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalMcSetParams

Summary

This function is equivalent in functionality to the SAL Procedure SAL_MC_SET_PARAMS. See the
Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcSetParams (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcSetParamsFunctionId.

Arg2

param_type parameter to SAL_MC_SET_PARAMS.

Arg3

i_or_m parameter to SAL_MC_SET_PARAMS.

Arg4

i_or_m_val parameter to SAL_MC_SET_PARAMS.

Arg5

time_out parameter to SAL_MC_SET_PARAMS.

Arg6

mca_opt parameter to SAL_MC_SET_PARAMS.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 235

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
236 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetVectors

Summary
Retrieves information that was previously registered with the SAL Procedure
SAL_SET_VECTORS.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetVectors (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetVectorsFunctionId.

Arg2

The vector type to retrieve. 0 – MCA, 1-BSP INIT, 2 – BOOT_RENDEZ, 3 – AP
INIT.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 237

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns the vector information for the vector specified by Arg2. If the specified vector
was not previously registered with the SAL Procedure SAL_SET_VECTORS, then
SAL_NO_INFORMATION_AVAILABLE is returned. Otherwise, the physical address of the
requested vector is returned in SAL_RETURN_REGS.r9, the global pointer(GP) value is returned in
SAL_RETURN_REGS.r10, the length and checksum information is returned in
SAL_RETURN_REGS.r10, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The information for the requested vector was returned,

SAL_NO_INFORMATION_AVAILABLE The requested vector has not been registered with the SAL
Procedure SAL_SET_VECTORS.
238 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalMcGetParams

Summary
Retrieves information that was previously registered with the SAL Procedure
SAL_MC_SET_PARAMS.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetParams (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetParamsFunctionId.

Arg2

The parameter type to retrieve. 1 – rendezvous interrupt, 2 – wake up, 3 – Corrected
Platform Error Vector.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 239

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns information for the parameter type specified by Arg2 that was previously
registered with the SAL Procedure SAL_MC_SET_PARAMS. If the parameter type specified by
Arg2 was not previously registered with the SAL Procedure SAL_MC_SET_PARAMS, then
SAL_NO_INFORMATION_AVAILABLE is returned. Otherwise, the i_or_m value is returned in
SAL_RETURN_REGS.r9, the i_or_m_val value is returned in SAL_RETURN_REGS.r10, and
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The information for the requested vector was returned,

SAL_NO_INFORMATION_AVAILABLE The requested vector has not been registered with the SAL
Procedure SAL_SET_VECTORS.
240 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalMcGetMcParams

Summary
Retrieves information that was previously registered with the SAL Procedure
SAL_MC_SET_PARAMS.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetMcParams (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetMcParamsFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 241

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns information that was previously registered with the SAL Procedure
SAL_MC_SET_PARAMS. If the information was not previously registered with the SAL Procedure
SAL_MC_SET_PARAMS, then SAL_NO_INFORMATION_AVAILABLE is returned. Otherwise,
the rz_always value is returned in SAL_RETURN_REGS.r9, time_out value is returned in
SAL_RETURN_REGS.r10, binit_escalate value is returned in SAL_RETURN_REGS.r11.

Status Codes Returned

EFI_SUCCESS The information for the requested vector was returned,

SAL_NO_INFORMATION_AVAILABLE The requested vector has not been registered with the SAL
Procedure SAL_SET_VECTORS.
242 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetMcCheckinFlags

Summary
Used to determine if a specific CPU has called the SAL Procedure SAL_MC_RENDEZ.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetMcCheckinFlags (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetMcChckinFlagsFunctionId.

Arg2

The index of the CPU in the set of enabled CPUs to check.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
Version 1.4 4/13/2015 243

Platform Initialization Specification VOLUME 4 SMM Core Interface
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function check to see if the CPU index specified by Arg2 has called the SAL Procedure
SAL_MC_RENDEZ. The CPU index values are assigned by the Extended SAL MP Services Class.
If the CPU specified by Arg2 has called the SAL Procedure SAL_MC_RENDEZ, then 1 is returned
in SAL_RETURN_REGS.r9. Otherwise, SAL_RETURN_REGS.r9 is set to 0.
EFI_SAL_SUCCESS is always returned.

Status Codes Returned

EFI_SAL_SUCCESS The checkin status of the requested CPU was returned.
244 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetPlatformBaseFreq

Summary
This function is equivalent in functionality to the SAL Procedure SAL_FREQ_BASE with a
clock_type of 0. See the Intel Itanium Processor Family System Abstraction Layer Specification
Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetPlatformBaseFreq (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetPlatformBaseFreqFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.4 4/13/2015 245

Platform Initialization Specification VOLUME 4 SMM Core Interface
Arg8 Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended

SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
246 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalRegisterPhysicalAddr

Summary
This function is equivalent in functionality to the SAL Procedure
SAL_REGISTER_PHYSICAL_ADDR. See the Intel Itanium Processor Family System Abstraction
Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalRegisterPhysicalAddr (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalRegisterPhysicalAddrFunctionId.

Arg2

phys_entity parameter to SAL_REGISTER_PHYSICAL_ADDRESS.

Arg3

paddr parameter to SAL_REGISTER_PHYSICAL_ADDRESS.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.4 4/13/2015 247

Platform Initialization Specification VOLUME 4 SMM Core Interface
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

10.4.12 Extended SAL MP Services Class

Summary
The Extended SAL MP Services Class provides services for managing multiple CPUs.

GUID
#define EFI_EXTENDED_SAL_MP_SERVICES_PROTOCOL_GUID_LO \
 0x4dc0cf18697d81a2
#define EFI_EXTENDED_SAL_MP_SERVICES_PROTOCOL_GUID_HI \
 0x3f8a613b11060d9e
#define EFI_EXTENDED_SAL_MP_SERVICES_PROTOCOL_GUID \
 {0x697d81a2,0xcf18,0x4dc0,\
 {0x9e,0x0d,0x06,0x11,0x3b,0x61,0x8a,0x3f}}

Related Definitions
typedef enum {
 AddCpuDataFunctionId,
 RemoveCpuDataFunctionId,
 ModifyCpuDataFunctionId,
 GetCpuDataByIdFunctionId,
 GetCpuDataByIndexFunctionId,
 SendIpiFunctionId,
 CurrentProcInfoFunctionId,
 NumProcessorsFunctionId,
 SetMinStateFunctionId,
 GetMinStateFunctionId,
 EsalPhysicalIdInfo,
} EFI_EXTENDED_SAL_MP_SERVICES_FUNC_ID;

Description

Table 17. Extended SAL MP Services Class

Name Description

ExtendedSalAddCpuData Add a CPU to the database of CPUs.

ExtendedSalRemoveCpuData Add a CPU to the database of CPUs.

ExtendedSalModifyCpuData Updates the data for a CPU that is already in the database of CPUs.

ExtendedSalGetCpuDataById Returns the information on a CPU specified by a Global ID.
248 4/13/2015 Version 1.4

Extended SAL Services
ExtendedSalGetCpuDataByIndex Returns information on a CPU specified by an index.

ExtendedSalWhoAmI Returns the Global ID for the calling CPU.

ExtendedSalNumProcessors Returns the number of currently enabled CPUs, the total number of
CPUs, and the maximum number of CPUs that the platform supports.

ExtendedSalSetMinState Sets the MINSTATE pointer for the CPU specified by a Global ID.

ExtendedSalGetMinState Retrieves the MINSTATE pointer for the CPU specified by a Global ID.

ExtendedSalPhysicalIdInfo Retrieves the Physical ID of a CPU in the platform.
Version 1.4 4/13/2015 249

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalAddCpuData

Summary
Add a CPU to the database of CPUs.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalAddCpuData (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalAddCpuDataFunctionId.

Arg2

The 64-bit Global ID of the CPU being added.

Arg3

The enable flag for the CPU being added. This value is interpreted as type BOOLEAN.
TRUE means the CPU is enabled. FALSE means the CPU is disabled.

Arg4 T

he PAL Compatibility value for the CPU being added.

Arg5

The 16-bit Platform ID of the CPU being added.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
250 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function adds the CPU with a Global ID specified by Arg2, the enable flag specified by Arg3,
and the PAL Compatibility value specified by Arg4 to the database of CPUs in the platform. If
there are not enough resource available to add the CPU, then EFI_SAL_NOT_ENOUGH_SCRATCH
is returned. Otherwise, the CPU to added to the database, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU was added to the database.

EFI_SAL_NOT_ENOUGH_SCRATCH There are not enough resource available to add the CPU.
Version 1.4 4/13/2015 251

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalRemoveCpuData

Summary
Add a CPU to the database of CPUs.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalRemoveCpuData (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalRemoveCpuDataFunctionId.

Arg2

The 64-bit Global ID of the CPU being added.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
252 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function removes the CPU with a Global ID specified by Arg2 from the database of CPUs in
the platform. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, the CPU specified by Arg2 is removed
from the database of CPUs, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU was removed from the database.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.4 4/13/2015 253

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalModifyCpuData

Summary
Updates the data for a CPU that is already in the database of CPUs.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalModifyCpuData (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalModifyCpuDataFunctionId.

Arg2

The 64-bit Global ID of the CPU being updated.

Arg3

The enable flag for the CPU being updated. This value is interpreted as type
BOOLEAN. TRUE means the CPU is enabled. FALSE means the CPU is disabled.

Arg4

The PAL Compatibility value for the CPU being updated.

Arg5

The 16-bit Platform ID of the CPU being updated.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
254 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function updates the CPU with a Global ID specified by Arg2, the enable flag specified by
Arg3, and the PAL Compatibility value specified by Arg4 in the database of CPUs in the platform.
If the CPU specified by Arg2 is not present in the database, then EFI_SAL_NO_INFORMATION is
returned. Otherwise, the CPU specified by Arg2 is updates with the enable flag specified by Arg3
and the PAL Compatibility value specified by Arg4, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU database was updated.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.4 4/13/2015 255

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetCpuDataById

Summary
Returns the information on a CPU specified by a Global ID.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetCpuDataById (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetCpuDataByIdFunctionId.

Arg2

The 64-bit Global ID of the CPU to lookup.

Arg3 T

his parameter is interpreted as a BOOLEAN value. If TRUE, then the index in the set of
enabled CPUs in the database is returned. If FALSE, then the index in the set of all
CPUs in the database is returned.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
256 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the CPU specified by Arg2 in the CPU database and returns the enable status
and PAL Compatibility value. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, the enable status is returned in
SAL_RETURN_REGS.r9, the PAL Compatibility value is returned in SAL_RETURN_REGS.r10,
and EFI_SAL_SUCCESS is returned. If Arg3 is TRUE, then the index of the CPU specified by
Arg2 in the set of enabled CPUs is returned in SAL_RETURN_REGS.r11. If Arg3 is FALSE,
then the index of the CPU specified by Arg2 in the set of all CPUs is returned in
SAL_RETURN_REGS.r11.

Status Codes Returned

EFI_SAL_SUCCESS The information on the specified CPU was returned.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.4 4/13/2015 257

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetCpuDataByIndex

Summary
Returns information on a CPU specified by an index.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetCpuDataByIndex (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetCpuDataByIndexFunctionId.

Arg2

The index of the CPU to lookup.

Arg3

This parameter is interpreted as a BOOLEAN value. If TRUE, then the index in Arg2
is the index in the set of enabled CPUs. If FALSE, then the index in Arg2 is the index
in the set of all CPUs.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
258 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the CPU specified by Arg2 in the CPU database and returns the enable status
and PAL Compatibility value. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, the enable status is returned in
SAL_RETURN_REGS.r9, the PAL Compatibility value is returned in SAL_RETURN_REGS.r10,
the Global ID is returned in SAL_RETURN_REGS.r11, and EFI_SAL_SUCCESS is returned. If
Arg3 is TRUE, then Arg2 is the index in the set of enabled CPUs. If Arg3 is FALSE, then Arg2
is the index in the set of all CPUs.

Status Codes Returned

EFI_SAL_SUCCESS The information on the specified CPU was returned.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.4 4/13/2015 259

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalWhoiAmI

Summary
Returns the Global ID for the calling CPU.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalWhoAmI (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalWhoAmIFunctionId.

Arg2 T

his parameter is interpreted as a BOOLEAN value. If TRUE, then the index in the set of
enabled CPUs in the database is returned. If FALSE, then the index in the set of all
CPUs in the database is returned.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
260 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the Global ID of the calling CPU. If the calling CPU is not present in the
database, then EFI_SAL_NO_INFORMATION is returned. Otherwise, the Global ID is returned in
SAL_RETURN_REGS.r9, the PAL Compatibility value is returned in SAL_RETURN_REGS.r10,
and EFI_SAL_SUCCESS is returned. If Arg2 is TRUE, then the index of the calling CPU in the
set of enabled CPUs is returned in SAL_RETURN_REGS.r11. If Arg3 is FALSE, then the index of
the calling CPU in the set of all CPUs is returned in SAL_RETURN_REGS.r11.

Status Codes Returned

EFI_SAL_SUCCESS The Global ID for the calling CPU was returned.

EFI_SAL_NO_INFORMATION The calling CPU is not in the database.
Version 1.4 4/13/2015 261

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalNumProcessors

Summary
Returns the number of currently enabled CPUs, the total number of CPUs, and the maximum
number of CPUs that the platform supports.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalNumProcessors (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalNumProcessorsFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
262 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns the maximum number of CPUs that the platform supports in
SAL_RETURN_REGS.r9, the total number of CPUs in SAL_RETURN_REGS.r10, and the
number of enabled CPUs in SAL_RETURN_REGS.r11. EFI_SAL_SUCCESS is always returned.

Status Codes Returned

EFI_SAL_SUCCESS The information on the number of CPUs in the platform was
returned.
Version 1.4 4/13/2015 263

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalSetMinState

Summary
Sets the MINSTATE pointer for the CPU specified by a Global ID.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetMinState (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetMinStateFunctionId.

Arg2

The 64-bit Global ID of the CPU to set the MINSTATE pointer.

Arg3

This parameter is interpreted as a pointer to the MINSTATE area for the CPU
specified by Arg2.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
264 4/13/2015 Version 1.4

Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function sets the MINSTATE pointer for the CPU specified by Arg2 to the buffer specified by
Arg3. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The MINSTATE pointer was set for the specified CPU.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.4 4/13/2015 265

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalGetMinState

Summary
Retrieves the MINSTATE pointer for the CPU specified by a Global ID.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetMinState (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetMinStateFunctionId.

Arg2

The 64-bit Global ID of the CPU to get the MINSTATE pointer.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
266 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function retrieves the MINSTATE pointer for the CPU specified by Arg2. If the CPU specified
by Arg2 is not present in the database, then EFI_SAL_NO_INFORMATION is returned. Other-
wise, the MINSTATE pointer for the specified CPU is returned in SAL_RETURN_REGS.r9, and
EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The MINSTATE pointer for the specified CPU was retrieved.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.4 4/13/2015 267

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalPhysicalIdInfo

Summary
Returns the Physical ID for the calling CPU.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalPhysicalIdInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPhysicalIdInfo.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
268 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the Physical ID of the calling CPU. If the calling CPU is not present in the
database, then EFI_SAL_NO_INFORMATION is returned. Otherwise, the Physical ID is returned
in SAL_RETURN_REGS.r9, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

10.4.13 Extended SAL MCA Services Class

Summary
The Extended SAL MCA Services Class provides services to

GUID
#define EFI_EXTENDED_SAL_MCA_SERVICES_PROTOCOL_GUID_LO \
 0x42b16cc72a591128
#define EFI_EXTENDED_SAL_MCA_SERVICES_PROTOCOL_GUID_HI \
 0xbb2d683b9358f08a
#define EFI_EXTENDED_SAL_MCA_SERVICES_PROTOCOL_GUID \
 {0x2a591128,0x6cc7,0x42b1,\
 {0x8a,0xf0,0x58,0x93,0x3b,0x68,0x2d,0xbb}}

Related Definitions
typedef enum {
 McaGetStateInfoFunctionId,
 McaRegisterCpuFunctionId,
} EFI_EXTENDED_SAL_MCA_SERVICES_FUNC_ID;

Description

Table 18. Extended SAL MCA Services Class

EFI_SAL_SUCCESS The Physical ID for the calling CPU was returned.

EFI_SAL_NO_INFORMATION The calling CPU is not in the database.

Name Description

ExtendedSalMcaGetStateInfo Obtain the buffer corresponding to the Machine Check Abort state
information.

ExtendedSalMcaRegisterCpu Register the CPU instance for the Machine Check Abort handling.
Version 1.4 4/13/2015 269

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalMcaGetStateInfo

Summary
Obtain the buffer corresponding to the Machine Check Abort state information.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcaGetStateInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcaGetStateInfoFunctionId.

Arg2

The 64-bit Global ID of the CPU to get the MINSTATE pointer.

Arg3

Pointer to the state buffer for output.

Arg4

Pointer to the required buffer size for output

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
270 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function retrieves the MINSTATE pointer specified by Arg3 for the CpuId specified by Arg2,
and calculates required size specified by Arg4. If the CPU specified by Arg2 was not registered in
system, then EFI_SAL_NO_INFORMATION is returned. Otherwise, the CPU state buffer related
information will be returned, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS MINSTATE successfully got and size calculated.

EFI_SAL_NO_INFORMATION The CPU was not registered in system.
Version 1.4 4/13/2015 271

Platform Initialization Specification VOLUME 4 SMM Core Interface
ExtendedSalMcaRegisterCpu

Summary
Register the CPU instance for the Machine Check Abort handling.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcaRegisterCpu (
IN UINT64 FunctionId,
IN UINT64 Arg2,
IN UINT64 Arg3,
IN UINT64 Arg4,
IN UINT64 Arg5,
IN UINT64 Arg6,
IN UINT64 Arg7,
IN UINT64 Arg8,
IN BOOLEAN VirtualMode,
IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcaRegisterCpuFunctionId.

Arg2

The 64-bit Global ID of the CPU to register its MCA state buffer.

Arg3

The pointer of the CPU's state buffer.

Arg4

Reserved. Must be zero

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
272 4/13/2015 Version 1.4

Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function registers MCA state buffer specified by Agr3 for CPU specified by Arg2. If the CPU
specified by Arg2 was not registered in system, then EFI_SAL_NO_INFORMATION is returned.
Otherwise, the CPU state buffer is registered for MCA handing, and EFI_SAL_SUCCESS is
returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU state buffer is registered for MCA handing
successfully.

EFI_SAL_NO_INFORMATION The CPU was not registered in system.
Version 1.4 4/13/2015 273

Platform Initialization Specification VOLUME 4 SMM Core Interface
274 4/13/2015 Version 1.4

	Revision History
	Contents
	Figures
	Tables
	1 Overview
	1.1 Definition of Terms
	1.2 System Management Mode (SMM)
	1.3 SMM Driver Execution Environment
	1.4 Initializing System Management Mode
	1.5 Entering & Exiting SMM
	1.6 SMM Drivers
	1.6.1 SMM Drivers
	1.6.2 Combination SMM/DXE Drivers
	1.6.3 SOR and Dependency Expressions for SMM

	1.7 SMM Driver Initialization
	1.8 SMM Driver Runtime
	1.9 Dispatching SMI Handlers
	1.10 SMM Services
	1.10.1 SMM Driver Model
	1.10.2 SMM Protocols

	1.11 SMM UEFI Protocols
	1.11.1 UEFI Protocols
	1.11.2 SMM Protocols

	2 SMM Foundation Entry Point
	2.1 EFI_SMM_ENTRY_POINT

	3 System Management System Table (SMST)
	3.1 SMST Introduction
	3.2 EFI_SMM_SYSTEM_TABLE2
	SmmInstallConfigurationTable()
	SmmAllocatePool()
	SmmFreePool()
	SmmAllocatePages()
	SmmFreePages()
	SmmStartupThisAp()
	SmmInstallProtocolInterface()
	SmmUninstallProtocolInterface()
	SmmHandleProtocol()
	SmmRegisterProtocolNotify()
	SmmLocateHandle()
	SmmLocateProtocol()
	SmiManage()
	SmiHandlerRegister()
	SmiHandlerUnRegister()

	4 SMM Protocols
	4.1 Introduction
	4.2 Status Codes Services
	EFI_SMM_STATUS_CODE_PROTOCOL
	EFI_SMM_STATUS_CODE_PROTOCOL.ReportStatusCode()

	4.3 CPU Save State Access Services
	EFI_SMM_CPU_PROTOCOL
	EFI_SMM_CPU_PROTOCOL.ReadSaveState()
	EFI_SMM_CPU_PROTOCOL.WriteSaveState()
	4.3.1 SMM Save State IO Info
	EFI_SMM_SAVE_STATE_IO_INFO

	4.4 SMM CPU I/O Protocol
	EFI_SMM_CPU_IO2_PROTOCOL
	EFI_SMM_CPU_IO2_PROTOCOL.Mem()
	EFI_SMM_CPU_IO2_PROTOCOL.Io()

	4.5 SMM PCI I/O Protocol
	EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL

	4.6 SMM Ready To Lock Protocol
	EFI_SMM_READY_TO_LOCK_SMM_PROTOCOL

	4.7 SMM End of DXE Protocol
	EFI_SMM_END_OF_DXE_PROTOCOL

	5 UEFI Protocols
	5.1 Introduction
	5.2 EFI SMM Base Protocol
	EFI_SMM_BASE2_PROTOCOL
	EFI_SMM_BASE2_PROTOCOL.InSmm()
	EFI_SMM_BASE2_PROTOCOL.GetSmstLocation()

	5.3 SMM Access Protocol
	EFI_SMM_ACCESS2_PROTOCOL
	EFI_SMM_ACCESS2_PROTOCOL.Open()
	EFI_SMM_ACCESS2_PROTOCOL.Close()
	EFI_SMM_ACCESS2_PROTOCOL.Lock()
	EFI_SMM_ACCESS2_PROTOCOL.GetCapabilities()

	5.4 SMM Control Protocol
	EFI_SMM_CONTROL2_PROTOCOL
	EFI_SMM_CONTROL2_PROTOCOL.Trigger()
	EFI_SMM_CONTROL2_PROTOCOL.Clear()

	5.5 SMM Configuration Protocol
	EFI_SMM_CONFIGURATION_PROTOCOL
	EFI_SMM_CONFIGURATION_PROTOCOL.RegisterSmmEntry()

	5.6 DXE Ready To Lock SMM Protocol
	EFI_DXE_SMM_READY_TO_LOCK_PROTOCOL

	5.7 SMM Communication Protocol
	EFI_SMM_COMMUNICATION_PROTOCOL
	EFI_SMM_COMMUNICATION_PROTOCOL.Communicate()

	6 SMM Child Dispatch Protocols
	6.1 Introduction
	6.2 SMM Software Dispatch Protocol
	EFI_SMM_SW_DISPATCH2_PROTOCOL
	EFI_SMM_SW_DISPATCH2_PROTOCOL.Register()
	EFI_SMM_SW_DISPATCH2_PROTOCOL.UnRegister()

	6.3 SMM Sx Dispatch Protocol
	EFI_SMM_SX_DISPATCH2_PROTOCOL
	EFI_SMM_SX_DISPATCH2_PROTOCOL.Register()
	EFI_SMM_SX_DISPATCH2_PROTOCOL.UnRegister()

	6.4 SMM Periodic Timer Dispatch Protocol
	EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL
	EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.Register()
	EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL.UnRegister()
	EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL. GetNextShorterInterval()

	6.5 SMM USB Dispatch Protocol
	EFI_SMM_USB_DISPATCH2_PROTOCOL
	EFI_SMM_USB_DISPATCH2_PROTOCOL.Register()
	EFI_SMM_USB_DISPATCH2_PROTOCOL.UnRegister()

	6.6 SMM General Purpose Input (GPI) Dispatch Protocol
	EFI_SMM_GPI_DISPATCH2_PROTOCOL
	EFI_SMM_GPI_DISPATCH2_PROTOCOL.Register()
	EFI_SMM_GPI_DISPATCH2_PROTOCOL.UnRegister()

	6.7 SMM Standby Button Dispatch Protocol
	EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL
	EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL.Register()
	EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL.UnRegister()

	6.8 SMM Power Button Dispatch Protocol
	EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL
	EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL. Register()
	EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL.UnRegister()

	6.9 SMM IO Trap Dispatch Protocol
	EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL
	EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL.Register ()
	EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL.UnRegister ()

	7 Interactions with PEI, DXE, and BDS
	7.1 Introduction
	7.2 SMM and DXE
	7.2.1 Software SMI Communication Interface (Method #1)
	7.2.2 Software SMI Communication Interface (Method #2)

	8 Other Related Notes For Support Of SMM Drivers
	8.1 File Types
	8.1.1 File Type EFI_FV_FILETYPE_SMM
	8.1.2 File Type EFI_FV_FILETYPE_COMBINED_SMM_DXE

	8.2 File Section Types
	8.2.1 File Section Type EFI_SECTION_SMM_DEPEX

	9 MCA/INIT/PMI Protocol
	9.1 Machine Check and INIT
	9.2 MCA Handling
	9.3 INIT Handling
	9.4 PMI
	9.5 Event Handlers
	9.5.1 MCA Handlers
	MCA Handler

	9.5.2 INIT Handlers
	INIT Handler

	9.5.3 PMI Handlers
	PMI Handler

	9.6 MCA PMI INIT Protocol
	EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterMcaHandler ()
	EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterInitHandler ()
	EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterPmiHandler ()

	10 Extended SAL Services
	10.1 SAL Overview
	10.2 Extended SAL Boot Service Protocol
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableIn fo()
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableE ntry()
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddExtendedSalProc()
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.ExtendedSalProc()

	10.3 Extended SAL Service Classes
	10.3.1 Extended SAL Base I/O Services Class
	ExtendedSalIoRead
	ExtendedSalIoWrite
	ExtendedSalMemRead
	ExtendedSalMemWrite

	10.4 Extended SAL Stall Services Class
	ExtendedSalStall
	10.4.1 Extended SAL Real Time Clock Services Class
	ExtendedSalGetTime
	ExtendedSalSetTime
	ExtendedSalGetWakeupTime
	ExtendedSalSetWakeupTime

	10.4.2 Extended SAL Reset Services Class
	ExtendedSalResetSystem

	10.4.3 Extended SAL PCI Services Class
	ExtendedSalPciRead
	ExtendedSalPciWrite

	10.4.4 Extended SAL Cache Services Class
	ExtendedSalCacheInit
	ExtendedSalCacheFlush

	10.4.5 Extended SAL PAL Services Class
	ExtendedSalPalProc
	ExtendedSalSetNewPalEntry
	ExtendedSalGetNewPalEntry
	ExtendedSalUpdatePal

	10.4.6 Extended SAL Status Code Services Class
	ExtendedSalReportStatusCode

	10.4.7 Extended SAL Monotonic Counter Services Class
	ExtendedSalGetNextHighMtc

	10.4.8 Extended SAL Variable Services Class
	ExtendedSalGetVariable
	ExtendedSalGetNextVariableName
	ExtendedSalSetVariable
	ExtendedSalQueryVariableInfo

	10.4.9 Extended SAL Firmware Volume Block Services Class
	ExtendedSalRead
	ExtendedSalWrite
	ExtendedSalEraseBlock
	ExtendedSalGetAttributes
	ExtendedSalSetAttributes
	ExtendedSalGetPhysicalAddress
	ExtendedSalGetBlockSize
	ExtendedSalEraseCustomBlockRange

	10.4.10 Extended SAL MCA Log Services Class
	ExtendedSalGetStateInfo
	ExtendedSalGetStateInfoSize
	ExtendedSalClearStateInfo
	ExtendedSalGetStateBuffer
	ExtendedSalSaveStateBuffer

	10.4.11 Extended SAL Base Services Class
	ExtendedSalSetVectors
	ExtendedSalMcRendez
	ExtendedSalMcSetParams
	ExtendedSalGetVectors
	ExtendedSalMcGetParams
	ExtendedSalMcGetMcParams
	ExtendedSalGetMcCheckinFlags
	ExtendedSalGetPlatformBaseFreq
	ExtendedSalRegisterPhysicalAddr

	10.4.12 Extended SAL MP Services Class
	ExtendedSalAddCpuData
	ExtendedSalRemoveCpuData
	ExtendedSalModifyCpuData
	ExtendedSalGetCpuDataById
	ExtendedSalGetCpuDataByIndex
	ExtendedSalWhoiAmI
	ExtendedSalNumProcessors
	ExtendedSalSetMinState
	ExtendedSalGetMinState
	ExtendedSalPhysicalIdInfo

	10.4.13 Extended SAL MCA Services Class
	ExtendedSalMcaGetStateInfo
	ExtendedSalMcaRegisterCpu

