
presented by

UEFI and Security Development
Lifecycle (SDL) – Unit Testing

Fall 2018 UEFI Plugfest
October 15 – 19, 2018

Presented by Trevor Western (Insyde Software)

www.uefi.org 1

Agenda

• SDL and Unit Testing

• Why Unit Test

• Real world example

• Recommendations

• Resources

www.uefi.org 2

The Security Development Lifecycle
• The SDL improves the capability to support,

design, develop, test and release secure
software.
– Improved support through training and in-house

security expertise.
– Improved design using risk assessment and threat

modeling.
– Improved development with best practices that

minimize chances of attacks.
– Improved testing using tools to detect and test

for vulnerabilities.
– Improved response by root causing, deploying

fixes, informing customers and updating tests.

• The Security Development Lifecycle promotes
continuous improvement.

www.uefi.org 3

Support /
Training

Design / Risk
assessment /

Threat
Modeling

Development Unit Testing

Response

SDL and UEFI Unit Testing
• What are Unit Tests?

– Collections of test cases that verify the functionality and behavior of
new code; and prevent “breaking” previously checked in code.

– The scope of a test case is limited to the smallest piece of testable code

– Meant to run automatically and frequently.

– Can be used to guide software development (Test-Driven Development
or Test-First-Code-After Development).

www.uefi.org 4

Simple
Procedure

()
1 Unit Test

Test Results:

Pass or

SDL and UEFI Unit Testing
• Why do we need Unit Tests?

– Provide visible evidence that the new code functions and
behaves correctly in the form of PASSED/FAILED report.

– Prevent new code from “breaking” previously checked in
code.

– Provide reproducible and verifiable results for QA reports.

– Promote good software development practices (SDL)

www.uefi.org 5

SDL and UEFI Unit Testing
• Many tests exist for the UEFI Runtime interfaces, such

as the UEFI Self-Certification Test (SCT), and the
Canonical Firmware Test Suite (FWTS)

• Start with tests for internal UEFI modules for pre-OS

• You can’t write Unit Tests for everything at once
- Start with writing Unit Tests for bugs; or

- Write Unit Tests for new code

• Keep the Unit Test code in same location as UEFI module code

- They should be maintained together

- Use a Unit Test Framework (Test Harness) to manage the tests

www.uefi.org 6

SDL and UEFI Unit Testing
• A Unit Test Harness provides the following capabilities:

– A common language to express test cases (usually ‘C’)

– A common language to express the expected results

– Access to the features of the production code

– A place to collect the Unit Test cases for the project

– A mechanism to run all the Unit Test cases

– A small summary report of the test suite success or failure

– A detailed report of any test failures

• The following slides show an example of Unit Testing for a bug

www.uefi.org 7

UEFI

SDL and UEFI Unit Testing
• The ‘MacEmpty’ code below checks if a Mac Address is not null. It

has a bug.
MacEmpty(IN UINT8 *MacAddr){

UINTN Index;

UINT8 TempValue = 0;

For (Index=0; Index < 4; Index++) {

TempValue = TempValue + UINT8(MacAddr[Index]);

}

If(TempValue == 0) return (TRUE)

Else return (FALSE);

};

• Bug: TempValue overflows (sum of MacAddr[0,1,2,3] is a 32 bit
value); but only causes a problem if TempValue % 0x100 = 0 (e.g.,
0x200; 0x300; etc). This is a really strange bug.

www.uefi.org 8

SDL and UEFI Unit Testing
• Create a Unit Test for the MacEmpty() routine. Feed MacEmpty() test

data to show the normal working case.

UNIT_TEST_BEGIN (UT_IsMacZero?)

{

UINT8 TestMacAddrs[4] = {0x00,0x00,0x00,0x00};

if (MacEmpty(TestMacAddrs) != TRUE) {

UNIT_TEST_RESULT(“MacEmpty Failed Empty Mac test”, FAILED)

} else

UNIT_TEST_RESULT(“”, PASS)

};

UNIT_TEST_END

• A simple test proves you did not break the working code

www.uefi.org 9

SDL and UEFI Unit Testing
• Now create a Unit Test to see if you can catch the bug

UNIT_TEST_BEGIN (UT_Is8BitOverFlowBugFixed?)

{

UINT8 TestMacAddrs[4] = {0x00, 0xFF, 0x01, 0x00};

if (MacEmpty(TestMacAddrs) == TRUE) {

UNIT_TEST_RESULT(“MacEmpty has 8BitOverFlow bug”, FAILED)

} else

UNIT_TEST_RESULT(“”, PASS)

};

UNIT_TEST_END

• A simple test proves the bug is fixed
- But Unit Test on the unfixed code first

www.uefi.org 10

SDL and UEFI Unit Testing
• Collect the Unit Test together for the Test Harness:

UNIT_TEST_GROUP_BEGIN (“MacEmpty”)

& UT_IsMacZero?()

& UT_Is8BitOverFlowBugFixed?()

UNIT_TEST_GROUP_END

<make all

Compiling “MacEmpty” …

Running “MacEmpty” …

OK (2 tests run, 0 failed)

• Setup the Test Harness to run these tests automatically when this code
module changes

www.uefi.org 11

SDL and UEFI Unit Testing
Recommendations

• Test the Unit Test Code:
– Make sure you test the Unit Test code with inputs designed to expose the

bug in the unfixed code

• New product code has to be testable:
– Modular design with well-defined API.
– Separate functional code from UEFI framework details.

• Unit Tests are stored same place as code and managed by Test Harness
– Update Unit Tests when code is expected to change.
– Keep in a common code package (e.g. OurUnitTestPkg)

www.uefi.org 12

SDL and UEFI Unit Testing
Recommendations

• Don’t create a test framework or test
harness from nothing
• Several are available for free and easily adaptable

• Some are designed to work in a UEFI environment

– “Implementing MicroPython as a UEFI Test Framework” -
Spring 2018 UEFI Plugfest March 26-30, 2018 Presented
by Chris McFarland (Intel)

www.uefi.org 13

SDL and UEFI Unit Testing

www.uefi.org 14

• SDL can now move to the
Response step:

• Update the Unit Tests to
catch the issue

Resources:
• UEFI test tools - http://www.uefi.org/testtools

• “Implementing MicroPython as a UEFI Test Framework” - Spring 2018 UEFI Plugfest
March 26-30, 2018 Presented by Chris McFarland (Intel)

• “Practical Unit Testing for Embedded Systems”
http://www.public.asu.edu/~atrow/ser456/articles/PracticalUnitTesting.pdf

• “Test-Driven Development for Embedded C” by James Grenning
http://www.pragprog.com/titles/jgade

• Unity test framework / test harness
http://unity.sourceforge.net

www.uefi.org 15

http://www.uefi.org/testtools
http://www.public.asu.edu/~atrow/ser456/articles/PracticalUnitTesting.pdf
http://www.pragprog.com/titles/jgade
http://unity.sourceforge.net/

Thanks for attending the Fall 2018
UEFI Plugfest

For more information on the Unified
EFI Forum and UEFI Specifications,
visit http://www.uefi.org

presented by

www.uefi.org 16

Thanks to Tim Lewis and Tuan

Vu for their contributions to this

UEFI presentation

http://www.uefi.org/

