LinuxCon Europe
UEFI Mini-Summit
7 October 2015

Session 4 – Goodbye PXE, Hello HTTP Boot
Dong Wei, HP
Agenda

- Challenges of Firmware in the Data Center
- PXE and HTTP Boot
- UEFI Shell Scripting
- Data Center Manageability: Redfish and REST APIs
- Putting it all together: HP ProLiant Servers
- Summary and Q&A
Agenda

• Challenges of Firmware in the Data Center
 • PXE and HTTP Boot
 • UEFI Shell Scripting
 • Data Center Manageability: Redfish and REST APIs
 • Putting it all together: HP ProLiant* Servers
 • Summary and Q&A
Firmware Challenges In The Data Center

- Bare Metal Provisioning
- Deployment
- Firmware Updates
- Firmware Configuration
- Automation
- Security
- Scalability
- Eco-system
The UEFI Solution

- **Pre-Boot networking**
 - IPv4, IPv6 TCP/UDP
 - PXE, iSCSI, HTTP, FTP

- **Boot device selection**
 - Boot order control
 - OS install & recovery

- **UEFI Shell**
 - Scripting language

- **Firmware Management Protocol**
 - Capsule updates

- **Human Interface Infrastructure (HII)**
 - Platform-To-Driver Configuration (CLP)
 - REST Protocol

- **New hardware abstraction with UEFI protocols**
 - UEFI driver model
 - UEFI device path

- **Bare Metal Provisioning**

- **Deployment**

- **Automation**

- **Scalability**
The UEFI Solution

- Secure Boot and driver signing
- Security technologies (OpenSSL®, RNG, etc…)
- Encrypted disks and key management
- Interoperability with TCG standards

- Standards (UEFI Forum)
- Compliance: Self Certification Test (SCT), Linux® UEFI Validation (LUV)
- Open source code (EDK2 - http://tianocore.org)
- Ubiquitous vendor support (OEMs, ISVs, IHVs, OSVs)

UEFI offers solutions to today’s data center firmware challenges
Data Center Manageability Interface Requirements

- **Use security best practices**
- **Support modern architectures**
 - Describe modern architectures (multi-node servers)
 - UEFI-aware (boot order selection, Secure Boot)
- **Scaling**
 - Scale-out servers usage model drastically different from traditional/enterprise servers
 - Management complexities grow exponentially
- **Interoperability for “OEM extensions”**

Today’s Data Center Manageability Interfaces do not meet all of these needs
Agenda

• Challenges of Firmware in the Data Center
• PXE and HTTP Boot
• UEFI Shell Scripting
• Data Center Manageability: Redfish and REST APIs
• Putting it all together: HP ProLiant Servers
• Summary and Q&A
PXE Boot Challenges

- **Preboot eXecution Environment**
- **Security Issues**
 - Only physical. No encryption or authentication.
 - Rouge DHCP servers, man-in-the-middle attacks
- **Scaling issues**
 - Circa 1998
 - TFTP timeouts / UDP packet loss
 - Download time = deployment time = $$$
 - Aggravated in density-optimized data centers
- **OEMs and users workarounds**
 - Chain-load 3rd party boot loaders (iPXE, mini-OS)

PXE is not keeping up with modern data center requirements
iPXE (http://ipxe.org) Before UEFI 2.5

• Open-source PXE client and bootloader
 – Required chain loading (PXE boot to iPXE then run iPXE to HTTP download)

• Adds support of HTTP Boot:
 – Used to only work with traditional BIOS, users have to choose between HTTP Boot and UEFI Secure Boot
 – Used to only provides low-level SNP interface (no HTTP Boot) in UEFI
 – Recently “the iPXE UEFI vision has mostly been implemented”
 – Not part of the UEFI standard

• iPXE UEFI vision
 – “Provide the same advanced features within the UEFI environment as are currently provided within the Traditional BIOS environment” - http://ipxe.org/efi/vision

Why not solve the PXE boot challenges natively in a standard way in UEFI?
Network Stack In UEFI v2.4

IPv4 PXE

Ping IfConfig

IPv6 PXE

Ping6 IfConfig6

DHCP4
MTFTP4
FTP4

IP4Config
TCP4
UDP4
ARP
IP4

MTFTP6
DHCP6

TCP6
UDP6
IP6
IP6Config

IPSec

VLAN
VLANConfig

MNP
SNP
UNDI / NII

EAP

iSCSI4
iSCSI6

IPv4 PXE

IPv6 PXE

DHCP4
MTFTP4
FTP4

MTFTP6
DHCP6

TCP6
UDP6
IP6
IP6Config

IPSec

VLAN
VLANConfig
Network Stack In UEFI v2.5

- Builds on top of UEFI 2.4
- DNS (IPv4 / IPv6)
- HTTP (IPv4 / IPv6)
- TLS (for HTTPs)
- HTTP Boot Wire Protocol
- Bluetooth® technology
- Wi-Fi*
UEFI Native HTTP Boot

HTTP Boot Wire Protocol
- Boot from a URL
- Target can be:
 1. EFI Network Boot Program (NBP)
 2. Shrink-wrapped ISO image
- URL pre-configured or auto-discovered (DHCP)

Addresses PXE issues
- HTTPS addresses security
- TCP reliability
- HTTP load balancing

Diagram:
- Corporate
- EFI HTTP Boot Client
- DNS Server
- DHCP Server /w HTTPBoot Extension
- HTTP Server
 - Http://Webserver/Boot/Boot.afi
HTTP Boot DHCP Discovery

- **HTTP Boot DHCP Discovery**
 - New HTTP Boot “Architectural Types” to distinguish from PXE
 - Client sends DHCP Discover request
 - DHCP Server responds with offer that includes the boot file URL
 - Clients resolves URL server name from DNS
 - Client downloads boot image from HTTP server using HTTP(s)
RAM Disk Standard

- UEFI 2.5 defined RAM Disk device path nodes
 - Standard access to a RAM Disk in UEFI
 - Supports Virtual Disk and Virtual CD (ISO image) in persistent or volatile memory

- ACPI 6.0 NVDIMM Firmware Interface Table (NFIT)
 - Describe the RAM Disks to the OS
 - Runtime access of the ISO boot image in memory

HTTP Boot is the emerging solution for modern data centers.
iPXE After UEFI 2.5

• Open-source HTTP client and bootloader
 – Still requires chain loading (HTTP boot to iPXE then run iPXE to HTTP download)

• Application note on using UEFI HTTP Boot to chain load into iPXE (courtesy of Michael Brown)
 – http://ipxe.org/appnote/uefihttp

Options to address the PXE challenges:
Native UEFI HTTP Boot, iPXE using UEFI HTTP
Agenda

- Challenges of Firmware in the Data Center
- PXE and HTTP Boot
- UEFI Shell Scripting
- Data Center Manageability: Redfish and REST APIs
- Putting it all together: HP ProLiant* Servers
- Summary and Q&A
UEFI Shell

• UEFI Pre-boot command line interface (CLI)
 – Much like DOS* or Linux*/Unix* Shell environment
• Interactive prompt and scriptable
• Built-in commands
 – **Standard Commands:** File manipulations, driver management, device access, scripting control, system information, basic network operations
 – **Extensible:** OEMs can provide value-add commands
• Can be embedded as a boot option or bootable from storage
• Fully documented
 – Latest UEFI Shell Specification v2.1
UEFI Shell Standard

Commands

Scripting
- echo, stall, set, shift, pause, parse, if / else / endif, for/endfor, reset, exit, cls
- **startup.nsh** auto-start script
- Parsable comma-separated output (-sfo)

File Operations
- dir cd, md, rd, mv, copy, del, type, edit, touch, attrib, setsize, comp, compress
- Read/Write files (FAT/FAT32)
- Console/file redirection and piping

Debug and Test
- **UEFI Drivers Debug**: load, unload, connect, disconnect, drivers, devices, devtree, dh, openinfo
- **System debug**: memmap, dmem, sbiosview, pci, dblk
Agenda

• Challenges of Firmware in the Data Center
• PXE and HTTP Boot
• UEFI Shell Scripting
• Data Center Manageability: Redfish and REST APIs
• Putting it all together: HP* ProLiant* Servers
• Summary and Q&A
Data Center Manageability Interface Requirements

- Use security best practices
- Support modern architectures
- Scaling
- Interoperability for “OEM extensions”

Today’s Data Center Manageability Interfaces do not meet all of these needs
Redfish

Architectural successor to previous manageability interfaces (e.g., IPMI)

- **Industry Standard**
 - DMTF Scalable Platforms Management Forum (SPMF)
 - www.dmtf.org/standards/redfish
 - Specification, schema, mockup, whitepaper, FAQ, resource browser

- **RESTful interface over HTTPs**
 - JSON format
 - Secure (HTTPs)
 - Multi-node and aggregated rack-level servers capable
 - Schema-backed, human readable output
Redfish Data Model

- Root of service “/redfish/v1”
- Each resource has a type
 - Versioned schema
 - Meta-data
 - OEM extensions
- Collections to describe versatile server hardware architectures
 - Stand-alone
 - Multi-node
 - Rack-level aggregated
UEFI REST Protocol

- New in UEFI v2.5
- Standard pre-boot in-band access to a RESTful API, like Redfish
- Abstracts BMC-specific access methods (proprietary)

![Diagram of UEFI REST Protocol](image-url)
Agenda

- Challenges of Firmware in the Data Center
- PXE and HTTP Boot
- UEFI Shell Scripting
- Data Center Manageability: Redfish and REST APIs
- Putting it all together: HP* ProLiant* Servers
- Summary and Q&A
UEFI Deployment Solution
On HP* ProLiant* Servers

• UEFI Network Stack Extensions
 - HTTP, FTP, DNS
 - “Boot from URL” to EFI file or ISO image
 - UEFI iSCSI Software Initiator

• HP RESTful API
 - Accessible in-band (from OS) or out-of-band (iLO4* HTTPs)
 - HP* OEM extensions including support for UEFI BIOS configuration

• Embedded UEFI Shell
 - Built into the system firmware
 - HP value-add commands for bare-metal deployment
 - Startup script loading from media or network location
UEFI Deployment Solution
On HP* ProLiant* Servers

HP* ProLiant* Gen9 Servers with UEFI Network Deployment

LAN / WAN / Cloud

DHCP Server
DNS Server
HTTP Server
FTP Server
HP Embedded UEFI Shell
HP UEFI Pre-Boot UI

UEFI network stack

Management Network

In-band RESTful API

Out-of-band RESTful API (HTTPs)

Console and Virtual Media (USB, Keyboard, Mouse)

RAM Disk
Boot ISO

UEFI Shell startup script
Tools & Scripts

Management Clients (Remote Console, RESTful tools, etc...)

Deployment Assets
Boot ISO
UEFI Shell startup script
Tools & Scripts

Tools & Scripts

UEFI Shell
startup
script

Boot ISO
Config
Management Clients
(Remote Console, RESTful tools, etc...)

HTTPs

Management Clients (Remote Console, RESTful tools, etc...)

HTTP
FTP

HTTP Server
FTP Server

Management Clients (Remote Console, RESTful tools, etc...)

HTTPs

Management Clients (Remote Console, RESTful tools, etc...)

Tools & Scripts

UEFI Shell
startup
script

Boot ISO
Config
Management Clients
(Remote Console, RESTful tools, etc...)

WiFi

LTE

LE
Embedded UEFI Shell HP* Commands

- **HP* value-add commands for bare-metal deployment**
- **ramdisk**: Provision memory disks and mount ISO files
- **webclient** and **ftp**: Scriptable network download/upload
- **restclient**: In-band client for the HP RESTful API
- **sysconfig**: Configuration CLI (integrates with HP* RESTful API)
- **secboot**: Secure Boot management (physical presence)
- **boot**: Transition to OS/boot targets without rebooting
- **sysinfo**: System hardware/firmware inventory
- **fwupdate**: Firmware updates
- **compress**: ZIP/UNZIP archives
- **ifconfig**: UEFI network stack configuration
- Commands to collect server service/troubleshooting logs
HP* RESTful API

• HP* RESTful API in iLO4*
 – Modern management API for HP ProLiant* and Moonshot servers
 – Comprehensive inventory and server configuration
 – Conformance with Redfish 1.0

• Integrated with UEFI
 – UEFI BIOS settings configuration
 – UEFI Boot Order and Secure Boot configuration
 – UEFI iSCSI Software Initiator configuration
HP* RESTful API Example: UEFI BIOS Settings

GET @ /rest/v1/systems/1/bios

- Get a list of all UEFI BIOS settings (name/values)
HP* RESTful API Example: Secure Boot

GET @ /rest/v1/systems/1/secureboot

- Enable/Disable Secure Boot
- Reset all Secure Boot variables to defaults
- Clear all keys (Setup Mode)

```json
{
    "Name": "SecureBoot",
    "ResetAllKeys": false,
    "ResetToDefaultKeys": false,
    "SecureBootCurrentState": false,
    "SecureBootEnable": false,
    "Type": "HpSecureBoot.0.9.5"
}
```
Sample Configuration Script Using HPREST Tool

Login to iLO
hprest login https://clientilo.domain.com -u username -p password

Configure UEFI network settings (Use Auto and DHCP defaults)
hprest set PreBootNetwork=Auto --selector HpBios.
hprest set Dhcpv4=Enabled

Configure UEFI Shell startup script from URL
hprest set UefiShellStartup=Enabled
hprest set UefiShellStartupLocation=NetworkLocation
hprest set UefiShellStartupUrl=http://192.168.1.1/deploy/startup.nsh

Set one-time-boot to Embedded UEFI Shell
hprest set Boot/BootSourceOverrideEnabled=Once --selector ComputerSystem.
hprest set Boot/BootSourceOverrideTarget=UefiShell

Save and reboot server
hprest commit --reboot=ON
Sample UEFI Shell Deployment Script (startup)

```
# Create FAT32 RAM Disk
ramdisk -c -s 512 -v MYRAMDISK -t F32
FS0:

# Download provisioning OS files from HTTP to RAM Disk
webclient -g http://repo.hp.com/deploy/efilinux.efi
webclient -g http://repo.hp.com/deploy/deploy.kernel
webclient -g http://repo.hp.com/deploy/deploy.ramdisk

# Start provisioning OS
efilinux.efi -f deploy.kernel initrd=deploy.ramdisk
```
Agenda

- Challenges of Firmware in the Data Center
- PXE and HTTP Boot
- UEFI Shell Scripting
- Data Center Manageability: Redfish and REST APIs
- Putting it all together: HP ProLiant Servers

- Summary and Q&A
Summary

• UEFI 2.5 HTTP Boot bridges the gaps of network boot in the data center

• Redfish is emerging RESTful management API to address modern data center requirements

• HP* ProLiant* Servers showcase of a bare-metal UEFI deployment solution using HTTP Boot, Embedded UEFI Shell, and RESTful APIs
Next Steps/Call to Action

• Adopt UEFI 2.5 implementations with HTTP Boot

• Adopt Redfish implementations in servers and management software

• Transition data centers to use HTTP Boot and Redfish REST APIs
Interested In Joining?
www.uefi.org/membership

UEFI FW/OS Forum:
uefi.org/FWOSForum
A free public forum focused on firmware and O/S integration

USRT Security Issue Reporting:
uefi.org/security
A safe reporting site to inform the UEFI of any security issue or vulnerability based on firmware