
111
•Other trademarks and brands are the property of their respective owners

EDK II Remote Debug Support
Laurie Jarlstrom

Intel Corporation



222
•Other trademarks and brands are the property of their respective owners

Disclaimer

THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED 
"AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, 
NONINFRINGEMENT FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE 
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS 
PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY 
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS 
DOCUMENT OR BY THE SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND 
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND 
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL 
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER 
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life 
sustaining applications.

Intel retains the right to make changes to its specifications at any time, without notice.

Recipients of this information remain solely responsible for the design, sale and functionality of their 
products, including any liability arising from product infringement or product warranty.

Intel may make changes to specifications, product roadmaps and product descriptions at any time, 
without notice.  

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries 
in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008-2010, Intel Corporation



333
•Other trademarks and brands are the property of their respective owners

Agenda

• Overview

• General architecture

• Changes to the target firmware

• Debug Features

• Distribution

• Known Limitation

• Usage Scenario



444
•Other trademarks and brands are the property of their respective owners

Overview
• Provide ability to support both GDB* and WinDbg* with key 
debug features to trace the EDK II code flow and check status 
(variable, registers, etc).

• Supported features

−Use WinDbg to debug target machine which is running EDK II code

−Use GDB to debug target machine which is running EDK II code

−Use UART with Null modem cable connected to Host

−Starting as early as in late SEC phase

−Basic assembly level debug commands already supported in GDB 
(tried in early SEC/PEI)



555
•Other trademarks and brands are the property of their respective owners

Host Machine
(running Windows)

General Architecture (Windows*)

WinDgb

WinDBG 
Interposer

Debug
Channel

UART 

PDB and 
Source

COM 
interface

Exdi COM
interface
by Microsoft

PDB file 
generated 
by Visual 
Studio on 
Windows

Target Machine

Debug
Agent

Debug
Channel

Debug
Interrupt
Handler

Interrupt

Normal
Code
Flow



666
•Other trademarks and brands are the property of their respective owners

Host Machine
(1 Running Windows and 

1 running Linux, connected
through network)

General Architecture (Linux)

GDB

GDB Server
Python

Debug
Channel

UART 

Debug file 
and Source

COM 
interface

GDB Serial
Protocol over
TCP/IP

Debug file 
generated 
by MinGW

GCC on 
Linux

Target Machine

Debug
Agent

Debug
Channel

Debug
Interrupt
Handler

Interrupt

Normal
Code
Flow

(Optional) GUI tool (ddd)

Run on a Linux box

Run the red 
parts on 

Windows box



777
•Other trademarks and brands are the property of their respective owners

New Debug Library Agent

•New Debug Library agent installed at different phases

Pre EFI
Initialization 

(PEI) 

Driver 
Execution 

Environment 
(DXE)

Boot Dev
Select
(BDS) 

Transient 
System Load

(TSL)

After 
Life
(AL)

Power on [ . . Platform initialization . . ] [ . . . . OS boot . . . . ] Shutdown

Run Time
(RT)

?

OS-Present
App

Final OS 
Environment

Final OS 
Boot Loader

OS-Absent
App

Transient OS 
Environment

Boot 
Manager

CPU
Init

Chipset 
Init

Board 
Init

ve
rif

y

Device,  
Bus, or 
Service  
Driver

Exposed
Platform

Interface

Pre 
Verifier

EFI Driver 
Dispatcher

Intrinsic 
Services
security

Security 
(SEC) 

SMM Intrinsic 
Services 

SMM Handler

SMM Init



888
•Other trademarks and brands are the property of their respective owners

Changes to the Target Firmware

•Goal to minimize changes needed for target firmware

•Add a call to a new library class called the DebugAgentLib at a 
few key points in the boot flow.  One in SEC, one in DXE Main, 
and another in SMM CPU Module.  

•A NULL implementation of the DebugAgentLib will be checked 
into open source so all modules can build with debug feature 
disabled



999
•Other trademarks and brands are the property of their respective owners

Updates to DSC

Libraries 
[LibraryClasess]  General

PeCoffExtraActionLib

[LibraryClasses.IA32] PEI

DebugAgentLib

[LibraryClasses.X64] DXE

DebugAgentLib

[LibraryClasses.X64.DXE_SMM_DRIVER]  SMM

DebugAgentLib

SourceLevelDebugPkg Lib Instance

PeCoffExtraActionLibDebug.inf

SecPeiDebugAgentLib.inf

DxeDebugAgentLib.inf

SmmDebugAgentLib.inf



101010
•Other trademarks and brands are the property of their respective owners

Updates to FDF

[FV.FVMAIN]

. . .

#  DXE Phase modules

. . .

Comment out module for 

TerminalDxe.inf
INF  MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf#



111111
•Other trademarks and brands are the property of their respective owners

Debug Features

• Insert CpuBreakpoint() in source code, to start debugging a module

• Source level debug

•Go/Halt/Go till

• Set breakpoint (<=3 for code running on flash)

• Step into, step over

• View and edit local variables and global variables (suggest use 
Disable Optimization for the compiler option)

• Call-stack (in PEI, PE image should be used to see complete call 
stack)

• View disassembly, view and edit general purpose register values



121212
•Other trademarks and brands are the property of their respective owners

Distribution 

• Plan to provide single package to contain:

−DebugAgentLib implementations

−DebugPortLib implementations

−binaries of the tools that run on the host

−Documentation

−License for Intel Tiano Direct Licenses only as non-distributable 
end point code. 

>For Direct Licenses to use for Development purposes only 



131313
•Other trademarks and brands are the property of their respective owners

Known Limitations

• Do not debug debugger itself
• MSR read/write access not supported yet
• Do not support Multi Processors
• Do not support pure 32-bit platform
• Not all WinDbg commands validated yet
• Cannot set breakpoint before a module get loaded
• Do not use 2 debuggers at the same time
• Do not support 16-bit debugging
• Do not support IPF
• A small set of code is not debug-able, like early SEC, early SMM
• May have bugs or unsupported features (usually corner cases)



141414
•Other trademarks and brands are the property of their respective owners

Usage Scenario WinDBG

• Environment
−WinDbg 6.11.1.404 -Microsoft website 

http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.
404.msi

−Windows XP (development environment)

− or, GDB on Linux 

• Configuration
− Host: Configure the DebugPortUart.ini for COM port used

− Target: Configure target to use right COM (through PCD), ensure the COM is 
not used by other module/feature (for example, remove Terminal driver), use 
non-NULL DebugAgent library instance  get used
> COM 1 is the Default on Target

> Simply print ASCII though that COM is allowed

http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi�
http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi�


151515
•Other trademarks and brands are the property of their respective owners

Starting Debug 

• Launch
−Launch WinDbg Batch file script

−Then power on the target (within 40s)

−If target CPU mode switch (like 32->64 bit when PEI -> DXE), close and 
relaunch WinDbg

•Optional Configure the  Symbol path (Alt. “F”, then “S”) to the 
Workspace the Build was invoked

Symbol File Path



161616
•Other trademarks and brands are the property of their respective owners

WinDBG Command window
•Command Window must be 
floating

•After PEI-IPL will need to exit 
the WinDBG and then Re-
invoke. DO NOT exit the 
“DebugPortUart” window.

•Bottom window allows 
commands to be entered
.reboot
Smmentrybreak=1 or 0
g - Go
B[C|D|E][<bps>] -

clear/disable/enable 
breakpoint(s)
Q - quit
? – Command list



171717
•Other trademarks and brands are the property of their respective owners

Debug Commands (WinDBG) GUI

•Go – “G”, “F5” or

•Halt – Control Break

•Step Into “F8” or 

•Step Over “F10” or

•Step Out  “Shift F11” or 

•Run to Cursor 



181818
•Other trademarks and brands are the property of their respective owners

Source Code View

•“C” source code can be viewed after a “Control Break”



191919
•Other trademarks and brands are the property of their respective owners

Setting a Break point

DEBUG ((EFI_D_INFO | EFI_D_LOAD, "Loading PEIM at 0x%11p EntryPoint=0x%11p “,(VOID 



202020
•Other trademarks and brands are the property of their respective owners

Suggested Breakpoints 

• Debugging the Boot Phases 

− Security (SEC) Phase

− Pre-EFI (PEI) Phase 

− DXE Phase

− BDS Phase

− SMM



212121
•Other trademarks and brands are the property of their respective owners

Security Phase (SEC)

•Function
−Authenticate BIOS
−Switch to 32-bit flat mode
−BSP selection
−Initialize PEI temporary memory
−Transfer control to PEI Core

•Platform specific functions
−AP waking stub
−Early microcode update
−Common ratio programming
−Collect BIST (Built-in Self Test)

•Executed in place from flash
•Written in assembly (16-bit & 32-bit)

SEC 



222222
•Other trademarks and brands are the property of their respective owners

Debugging Done In The SEC phase
•Checking if reset vector is accessible

•Stepping though the instructions singly 

•Make certain the CPU is able to fetch the instructions from the 
flash and validates that the address is being decoded correctly

•Check for setting up of Cache-As-RAM (CAR)

•Switch to protected mode

•Execution of microcode patch

•Use .reboot command to reset the target 



232323
•Other trademarks and brands are the property of their respective owners

PEI Phase 

•Function
−Discover and initialize some RAM that won’t be reconfigured
−Describes location of FV(s) containing DXE Core & Architecture 
Protocols
−Describes other fixed, platform specific resources that only PEI can 
know about

•Components
−Binaries: PEI Core and PEI Modules (PEIMs)

>PEIMs are modules scheduled by the PEI core in the early phase of 
platform initialization. PEIMs are typically executed in place before system 
memory is available. Only hardware breakpoints can be set on PEIMS 
because the flash is read only and doesn’t allow ITP to patch instructions 
in the flash.

−Interfaces: Methods of Inter-PEIM communication
>Core set of services (PeiServices), PEIM to PEIM Interfaces (PPIs), and 

simple Notifies (no timer in PEI)

PEI 



242424
•Other trademarks and brands are the property of their respective owners

Debugging Done In 
The PEI Phase

•Check for proper execution and order of all the PEI drivers 

•Execution of basic chipset initialization 
−GMCH/Uncore, ICH/PCH, SIO device initialization

•Execution of memory init instruction

•Availability of memory, and complete flash accessibility

•Execution of recovery driver if the recovery jumper is 
selected, and execution of recovery path if recovery is 
detected 

•Detection of DXE IPL PEIM which in turn detects and 
launches the DXE core

PEI 



252525
•Other trademarks and brands are the property of their respective owners

PEI Phase - Trace each PEIM
−Location

>File: MdeModulePkg\Core\Pei\Dispatcher\Dispatcher.c
>Function: PeiDispatcher()
>For Loop

•Trace all the PEIMs being dispatched load the Dispatcher.c file in PEIMAIM 
module 

•Scroll down to PeiDispatcher() function and set a break point at the main 
dispatch loop before each PEIM Entry

// Call the PEIM entry point

CpuBreakpoint() ;

PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);

•The next time you hit this breakpoint, you can step into this function to 
trace each PEIMs being dispatched. 



262626
•Other trademarks and brands are the property of their respective owners

DXE Phase  

•Works after system memory has been discovered and 
initialized

•DXE drivers are typically stored in flash in compressed form 
and must be decompressed into memory before execution

•Both hardware and software breakpoints can be set in DXE 
drivers

DXE



272727
•Other trademarks and brands are the property of their respective owners

Debugging Done In The DXE 
Phase 

•Cyclic dependency check 

•Tracing any assert that may have been caused during DXE 
execution

•Debugging of individual DXE driver

•Check for failure to load architectural protocols

•Check to see if BDS entry has been called

DXE
DXE



282828
•Other trademarks and brands are the property of their respective owners

Break point at DXE-Phase Entry Point 

•Check if PEI-phase reaches DXE-phase
−Location

>File: MdeModulePkg\Core\Pei\PeiMain\PeiMain.c

>Function: PeiCore()

>Call: DxeIpl->Entry()
// Enter DxeIpl to load Dxe core.
//
CpuBreakpoint() ;
Status = TempPtr.DxeIpl->Entry (

TempPtr.DxeIpl,
&PrivateData.Ps,
PrivateData.HobList
);return EFI_NOT_FOUND;



292929
•Other trademarks and brands are the property of their respective owners

Break point at DXE-Phase Entry Point 
– part 2
•Verify the address of DXE Core Entry point after IPL 
from PEI

•Check if we pass behind HandOffToDxeCore call
•Location
−File:MdeModulePkg\Core\DxeIplPeim\DxeLoad.c
−Function: DxeLoadCore (inside the call DxeIpl->Entry())
−Call: HandOffToDxeCore()

>Argument: DxeCoreEntryPoint
// Transfer control to the DXE Core
// The hand off state is simply a pointer to the HOB list
//

CpuBreakpoint() ;
HandOffToDxeCore (DxeCoreEntryPoint, HobList);

//
// If we get here, then the DXE Core returned.  This is an error



303030
•Other trademarks and brands are the property of their respective owners

DXE – Trace each Driver Load

•Check if control has been transferred to loaded image 
entry points
−The system breaks at this point successfully every time a new 
DXE driver is loaded. Step into this function to trace individual 
drivers.
−Location

>File: MdeModulePkg\Core\Dxe\Image\Image.c
>Function: CoreStartImage
>Call: Image->EntryPoint()

Image->Started = TRUE;
CpuBreakpoint() ;
Image->Status=Image->EntryPoint (ImageHandle, Image->Info.SystemTable);



313131
•Other trademarks and brands are the property of their respective owners

BDS Phase

•Centralize Policy and User Interface

−Lets you customize to different look and feels

•Make a central repository for platform boot policy

•Allow for the ability to boot with minimal driver initialization 
and user interaction

•Allow for implementation of setup menu

•Allow for ability to store information using NVRAM variables.

BDS



323232
•Other trademarks and brands are the property of their respective owners

Debugging Done In The BDS Phase 

•Ensuring detection of console devices (both input and output)

•Ensuring complete enumeration of all the devices preset (for 
which the BIOS has the drivers)

•Detection of Boot policy

•Loading of BIOS front page

BDS



333333
•Other trademarks and brands are the property of their respective owners

Debugging BDS-Phase Entry Pont
•Check if you reached and entered the BDS-phase
−Location:

>File: MdeModulePkg\Core\Dxe\DxeMain DxeMain.c

>Function: DxeMain

>Call: gBds->Entry (gBds);

CpuBreakpoint() ;

gBds->Entry (gBds);

// BDS should never return

ASSERT (FALSE);

CpuDeadLoop ();



343434
•Other trademarks and brands are the property of their respective owners

System Management Mode

•Registration vehicle for dispatching drivers in response to 
System Management Interrupts (SMI) 

•Dispatch of drivers in System Management Mode (SMM) will 
not be able to use core protocol services 

•SMM handlers will be logically prevented from accessing 
conventional memory resources 

•SmmLib includes a subset of the DXE core services, such as 
memory allocation, device I/O protocol, and others



353535
•Other trademarks and brands are the property of their respective owners

Debugging Done In The System 
Management Mode

•SMM drivers are a special type of DXE drivers. As with other 
DXE drivers, SMM drivers are scheduled by the DXE core, but 
SMM drivers perform the following steps in the entry point: 
−Locate the SmmBase protocol. 
−Invoke SmmBase.InSmm() to see whether the driver is in SMM. If 

yes, proceed to other initialization relevant to this driver, like what 
a DXE driver does, and return EFI_SUCCESS. If the driver is not in 
SMM, proceed with the following steps. 
−Invoke SmmBase.Register() to fork another copy of the SMM 

driver in SMRAM. At this point, two copies of this driver exist: one 
in BS memory and the other in SMRAM. 
−The copy of the driver in BS memory returns an error code to 

make DXE core release the memory occupied by this copy.
•SMM drivers are not as straightforward as DXE drivers, 
because the processor automatically cleans up debug registers 
when it enters SMM. Set smmentrybreak=1



363636
•Other trademarks and brands are the property of their respective owners

Debugging Done In The System 
Management Mode

SmmBase->InSmm (SmmBase, &InSmm);
if (!InSmm) {

// Retrieve the Device Path Protocol from the DeviceHandle that this driver was loaded from
Status = mBS->HandleProtocol (LoadedImage->DeviceHandle, 

&gEfiDevicePathProtocolGuid,
(VOID*)&ImageDevicePath);

ASSERT_EFI_ERROR (Status);
// Build the full device path to the currently executing image
CompleteFilePath = SmmAppendDevicePath (ImageDevicePath, LoadedImage->FilePath);
// Load the image in memory to SMRAM; it will automatically generate the SMI.
Status = SmmBase->Register (SmmBase, CompleteFilePath, NULL, 0, &Handle, FALSE);
ASSERT_EFI_ERROR (Status);
return Status;

}
Status = mBS->HandleProtocol ( ImageHandle, &gEfiLoadedImageProtocolGuid, (VOID 

**)&LoadedImage);
ASSERT_EFI_ERROR (Status);
LoadedImage->Unload = _DriverUnloadHandler;
// Skipped...
return Status;



373737
•Other trademarks and brands are the property of their respective owners

Debugging Done In The System 
Management Mode For Platform 
Initialization (PI) Spec

SMM Initialization - Load the SMM Core image into SMRAM and 
execute the SMM Core from SMRAM

−Location:

>File: MdeModulePkg\Core\PiSmmCore\PiSmmIpl.c

>Function: SmmIplEntry

>Call: ExecuteSmmCoreFromSmram

// Load SMM Core into SMRAM and execute it from SMRAM

//

Status = ExecuteSmmCoreFromSmram (mCurrentSmramRange, gSmmCorePrivate);



383838
•Other trademarks and brands are the property of their respective owners

Backup


	EDK II Remote Debug Support
	Disclaimer
	Agenda
	Overview
	General Architecture (Windows*)
	General Architecture (Linux)
	New Debug Library Agent
	Changes to the Target Firmware
	Updates to DSC
	Updates to FDF
	Debug Features
	Distribution 
	Known Limitations
	Usage Scenario WinDBG
	Starting Debug 
	WinDBG Command window
	Debug Commands (WinDBG) GUI
	Source Code View
	Setting a Break point
	Suggested Breakpoints 
	Security Phase (SEC)
	Debugging Done In The SEC phase
	PEI Phase 
	Debugging Done In �The PEI Phase
	PEI Phase - Trace each PEIM
	DXE Phase  
	Debugging Done In The DXE Phase 
	Break point at DXE-Phase Entry Point 
	Break point at DXE-Phase Entry Point – part 2
	DXE – Trace each Driver Load
	BDS Phase
	Debugging Done In The BDS Phase 
	Debugging BDS-Phase Entry Pont
	System Management Mode
	Debugging Done In The System Management Mode
	Debugging Done In The System Management Mode
	Debugging Done In The System Management Mode For Platform Initialization (PI) Spec
	Backup

