The Role UEFI Technologies Play in ARM Platform Architecture

Spring 2017 UEFI Seminar and Plugfest
March 27 - 31, 2017
Presented by Dong Wei (ARM)
Agenda

- ARM Ecosystem Update
- Specification Updates
- SBSA/SBBR
- SBSA/SBBR Tests
- Questions
 - ODM/OEM/ISV Badge Program?
 - UEFI Driver Binary Format
Section Heading

ARM Ecosystem Update
Economics

• What are the ARM numbers?
 – Silicon with ARM IP shipped in 2016: 16.7 Bu
 – Cumulative total shipped: 100+ Bu
 – Processor + GPU licenses: 1400+
 – Licensees: 450+
 – Foundry partners: 5+
 – Process technology: 7 – 250 nm
 – Connected community members\(^1\): 1000+

\(^1\) Important for a collaborative business model
Connected Community
Specification Updates
ACPI Next

- New introduction chapter
- NUMA SRAT (System Resource Affinity Table) support for ITS (Interrupt Translation Service)
- CPPC (Collaborative Processor Performance Control) Support for multiple PCC (Platform Communication Channels)
- Processor Properties and Topology Table (PPTT)
- Extended PCC subspaces – bidirectional interface between the OSPM and the platform
- SDE (Software Delegated Exception) hardware error notification and SDEI (SDE Interface) table
- IORT, and ARM ACPI Table, will have an update soon
- Heterogeneous Memory Attribute Table (HMAT)
- NVM Label, ARS (Address Range Scrubbing) Updates, Translate SPA (System Physical Address), Platform RAS Capabilities Updates, ARS Error Injection
PSCI

- **Power State Coordination Interface** is the ARM standard for core and system power management
 - Supported by all major OSs, UEFI and ACPI
- Expect to release PSCI v1.1 in 17Q2
 - Improves reset support, and allows implementing system warm resets
ARM Trusted Firmware (TF)

- Standardized ARMv8-A EL3 firmware
 - Optional trusted boot firmware

- BSD licensed, contributions welcome
 - No CLA (Contributor License Agreement) needed

- Reusable reference code
 - Including PSCI…

https://github.com/ARM-software/arm-trusted-firmware
ARM TF and PSCI

- AArch64 and AArch32 library
- Mostly generic with thin platform layer
- Supports all mandatory PSCI v1.0 functions
 - and most optional ones
- Latest TF v1.3 adds
 - Power state residency statistics functions
 - Instrumentation of key PSCI operations
- TF implementation will track specification
ARM TF Runtime Stack

Normal World

<table>
<thead>
<tr>
<th>EL0</th>
<th>Guest OS</th>
<th>App</th>
<th>App</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL1</td>
<td>OS Kernel</td>
<td>App</td>
<td>App</td>
</tr>
<tr>
<td>EL2</td>
<td>Hypervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL3</td>
<td>SMC Dispatcher</td>
<td>PSCI Core Interface</td>
<td>ARM System IP library</td>
</tr>
<tr>
<td></td>
<td>PSCI Platform</td>
<td>SoC SMC calls</td>
<td></td>
</tr>
</tbody>
</table>

Trusted World

<table>
<thead>
<tr>
<th>Trusted Execution Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trusted App</td>
</tr>
<tr>
<td>Trusted OS Kernel</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

UEFI Plugfest – March 2017
ACPI View

• A UEFI Shell utility
 – Provides a human readable output of the installed ACPI tables
 – Similar to SmbiosView
 – Provides extensive interface to validate ACPI tables
 – Useful for firmware developers to diagnose ACPI table issues that cause an OS to fail to boot
 – Assists in prototyping implementations against specification proposals
 – ARM initiated, collaborations welcome
 – https://github.com/tianocore/edk2-staging
Platform Architecture

• Base System Architecture (BSA)
 – Defines hardware requirements
• Base Boot Requirements (BBR)
 – Defines firmware requirements
• These specifications require a minimum set of hardware and firmware implementations that will ensure OS and firmware will interoperate
SBSA/SBBR

• SBSA/SBBR are the BSA/BBR for the enterprise systems
 – Developed using feedback from vendors across the industry (Silicon vendors, OSVs, Hypervisor vendors, BIOS vendors, OEMs and ODMs)
 – SBBR defines the required, recommended and optional UEFI, ACPI and SMBIOS interfaces
• SBSA are SBBR are now available at https://developer.arm.com/
 – Current versions are SBSA v3.0 and SBBR v1.0
 – No click through license required
SBSA/SBBR Compliance Tests

• SBSA test suite covers
 – SBSA PE properties
 – SBSA defined system components
 – SBSA rules for PCIe integration
 • Based on the PCIe specification
 • Based on standard OS drivers with no quirks enabled

• SBBR test suite covers
 – UEFI testing based on the UEFI SCT
 – ACPI testing based on FWTS
 – SMBIOS testing
SBSA Tests

• Provided as open source
 – Apache v2 License
• Built on top of a Platform Adaptation Layer
 – ARM will support one based on UEFI and ARM Trusted Firmware
 – A silicon vendor can also port to a bare metal environment
SBBR Tests

• From 3 sources (all open source)
 – UEFI SCT* (ARM will upstream into SCT)
 – FWTS (ARM + Linaro will upstream)
 – Standalone (ARM provides through github and packages into LuvOS image)

• Note: UEFI SCT is currently for UEFI member only. Would like to see it open source
Unified Release

• A unified software release, to tie all of these deliverables together with the enterprise FVP model
• Planned for future
SBSA/SBBR Tests Release

- Overarching github including SBBR
 - https://github.com/ARM-software/arm-enterprise-acs

- SBSA github
 - https://github.com/ARM-software/sbsa-acs
SBASA/SBBR Roadmap

2016 Q4

2017 Q1

2017 Q2

2017 Q3

2017 Q4

Future

SBASA – alpha
SBASA (source + binary)

SBBR – alpha
SBBR beta

SBASA – beta * PCIe testing alpha

SBASA/SBBR EAC

SBASA/SBBR update

SBASA/SBBR Compliance process

SBASA/SBBR update

SBASA-1.next

SBASA-3.next

SBBR-1.next

SBBR-next-next

SBASA-4.0

Specs

SBASA/BBR Test suites
Questions to the ARM Community
SBSA/SBRR Certification

• To improve the out-of-box experience for OS vendors and system users, ARM received feedback that a badge program certifying the SBSA/SBRR Compliance can be useful.

• Feedback?
UEFI Driver Binary Format

• EBC is a cross-architecture solution
 – One driver image for all ISAs
 – Open-source EBC Interpreter for ARM upstreamed to tianocore
• However,
 – Benefit cannot be realized if x86 uses its native format, unless more ISAs become relevant
 – No supported EBC Compiler
 – No Secure Boot Signing for EBC Drivers
• Can the industry come together to solve these problems?
 – If not, propose that ARM AArch64 native binary format be used for UEFI Drivers on ARM systems
 – Feedback?
Summary
Conclusion

• UEFI Technologies play significant roles in the ARM Platform Architecture
• ARM SBBR requires UEFI, ACPI and SMBIOS implementations
• SBSA/SBBR Tests can be used for compliance tests
• Drive closure on a remaining questions
Thanks for attending the Spring 2017 UEFI Seminar and Plugfest

For more information on the UEFI Forum and UEFI Specifications, visit http://www.uefi.org

presented by

ARM