
August 2023

Richard Wilkins, Ph.D.
Principal Technology Liaison
Phoenix Technologies
Dick_Wilkins@phoenix.com

Brian Mullen
Director of Product Security
AMI
briam@ami.com

Tim Lewis
CTO
Insyde Software
tim.lewis@insyde.com

Dong Wei, MBA
Lead Standards Architect and Fellow
Arm
Dong.Wei@arm.com

William Keown
Development Engineer
Lenovo
wkeown@lenovo.com

Vincent Zimmer
Senior Principal Engineer, Firmware
Intel
vincent.zimmer@intel.com

Authors:

Decoding UEFI
Firmware

Unraveling the Intricacies of System Firmware,
its Ecosystem and Supply Chain

2

Understanding System Firmware and its Relationship to UEFI
In recent years, the industry discussions and press reports related to “Platform Firmware”,
“System Firmware”, or “Host Firmware” and its flaws and vulnerabilities refer to the firmware as
“UEFI”. That is an easy leap to make as system firmware complying with the UEFI standard has
largely replaced BIOS (Basic I/O System) in x86 personal computers and servers. UEFI, as an
interface standard, is also widely adopted on Arm-based servers, DPU/IPUs, edge and IoT
devices even though these systems never used BIOS. In addition, the UEFI interface standard is
also supported on RISC-V and Loongson-based systems. Therefore, system firmware complying
with the UEFI standard is used on a significant range of devices with computing and networking
capabilities. Replacing one four letter acronym with another is an easy thing to do. The problem
is that the system firmware that initializes hardware and loads software in these systems is very
complex, as will be described below. It is a misnomer to apply the UEFI label to all system
firmware implementations and doing so drives confusion and misunderstandings with end users.

This is not to say that implementation flaws and design vulnerabilities are not a big deal.
Compromised firmware can have a serious effect on the operation and security of systems, and
it may be possible to gain malware persistence that resists system resets and software
reinstallation. This paper will not attempt to excuse or minimize these effects. It attempts to
educate readers about the complexities involved and show that there isn’t a silver bullet of
“following best practices”, or similar, that will provide a simple solution to “just fix it”.

Introduction

What is “UEFI”? The Unified Extensible Firmware Interface standard is an international standard
describing a consistent way for firmware on a computing platform to interact with operating
systems that are loaded into memory by it. It has various security features including Secure
Boot, Secure Update, and others. The standard is maintained by the UEFI Forum, a nonprofit
industry standards body, with an open membership. UEFI, as the name describes, defines the
interface, not the implementation. There are many different system firmware implementations
out there that are complying with this UEFI standard interface.

A Very Brief History – BIOS was created in the late 1970s to provide load and basic I/O services
to operating systems on the original x86 PCs. It became a de facto standard for these x86 PCs
and servers. In the late 1990s, new and more complex processor types were becoming available
where continued use of BIOS, that is tied to the x86 architecture, just did not make sense. The
Extensible Firmware Interface design was created to replace the way BIOS and OSes
communicate on systems with Intel CPUs. Eventually, the UEFI Forum was formed in 2005 to
make the standard interface more open, broaden its usage, and allow the system firmware
community to participate in maintenance and further development of the standard.

3

The Specifications

The UEFI Forum actively maintains several interrelated specifications.

a. PI Specification (Platform Initialization)

Originally catering exclusively to Intel CPU architectures, the PI Spec has recently
expanded to embrace Arm and anticipated RISC-V architectures. This specification
delineates the process of initializing a platform, spanning from power-on to operating
system load. PI provides one possible implementation of UEFI with the UEFI DXE
components providing the ‘kernel’ or core services found in the UEFI specification.

Note: For Arm A-profile based systems, Trusted Firmware is used for the initial platform
initialization phase. The next stage of the platform initialization may, or may not, be PI
Specification compliant depending on the implementations, even if the system firmware
is UEFI compliant. Trusted Firmware also provides additional interfaces to the operating
system that are Arm-specific and not governed by the PI, UEFI or ACPI specifications.

b. UEFI Specification (Unified Extensible Firmware Interface)

The UEFI specification outlines an interface for firmware to interact with the operating
system and the boot drivers, incorporating elements such as Secure Boot and Secure
Update to bolster security. Managed by the UEFI Forum, this specification defines the
interface only, avoiding prescription of specific implementations. Note: While large in
scope, much of the UEFI specification is optional and vendors may choose what portions
of it are needed for their systems.

c. ACPI Specification (Advanced Configuration and Power Interface)

The ACPI specification defines power management, enumeration of devices on buses
without standard discovery mechanism, and configuration interfaces. It encapsulates
various aspects of system management, including devices, power control, facilitating
hardware abstraction for the operating system.

A popular alternative to ACPI, especially on embedded devices, is Device Tree, providing
description of the hardware, but not a control abstraction to the operating system.

Implementations

As the UEFI Specifications do not specify an implementation, only an interface, several
implementations have been developed.

1. Open Source

4

• Tianocore is a community-driven open-source project that builds upon the EDK II
codebase. It offers a code repository for UEFI firmware development, including
support for new hardware standards, features, and enhancements. Tianocore has
gained popularity for its versatility and robustness.

• UBoot is a popular open-source bootloader commonly used in embedded systems
and devices. It provides the initial boot and setup functionality for a system, loading
and executing the operating system or other software components.

Starting with its 2021.04 release, UEFI interface is added to the UBoot project,
enabling UBoot to support OS boot loaders such as grub, and to support UEFI-based
Secure Boot and Secure Firmware Update mechanisms.

• LinuxBoot is another popular open-source bootloader, currently used in server
systems deployed by some of the cloud service providers. LinuxBoot uses Linux as
the system firmware implementation, enabling Linux drivers for the boot devices to
be used in the boot environment. LinuxBoot may or may not use Tianocore EDK II
code to assist the passing of the ACPI information as well as some UEFI runtime
services to the operating system. LinuxBoot currently does not officially support the
UEFI boot services to the operating system as it kexec’s to Linux directly. However,
the LinuxBoot community has been interested and is working on adding a UEFI
payload to support the UEFI boot services such that the full UEFI interface can be
supported by LinuxBoot as well to allow the other generic operating systems to
work as well. In fact, when this is properly done, the operating system should not
care or know whether the underline implementation is Tianocore EDK II or
LinuxBoot.

• coreboot is an open-source firmware project for many system architectures. It
provides similar capabilities to UEFI PI PEI with its romstage and UEFI PI DXE with its
ramstage. In some cases, it may also provide UEFI defined interfaces via its payload
mechanism, using things like the UEFI Payload Package of EDKII.

2. Proprietary implementations that can be licensed from Independent Firmware Vendors
(IFVs). These implementations may be based on one or more of the above open-source
projects.

a. Phoenix SecureCore
b. AMI Aptio V
c. Insyde’s InsydeH2O

3. Proprietary system firmware implementations, that may, or may not, be fully

conformant to the UEFI specification.
a. Apple EFI - Apple's EFI firmware on MacBooks with Intel Silicon, while unique to

its ecosystem, shares commonalities with standard UEFI implementations.

5

b. Historically, there were many other implementations. For example, Intel had
UEFI layered on top of BIOS. HP had UEFI layered on top of two different
proprietary codebases.

c. There are others not captured here.

This illustrates that, while UEFI is a standard interface definition, there can be many different
implementations. It is not one size fit all. The system firmware that initializes hardware and
loads software in these systems is indeed very complex. It is not just one thing named “UEFI”. In
fact, there is no “one thing” that is UEFI.

Beyond the Surface: Other Components in the Image

As described above, there are many implementations of system firmware that have been
developed from many source roots. In addition to that, all these firmware systems typically pull
code from other sources, open-source and proprietary, some in source code format and some as
pre-compiled binary “blobs”.

Figure 1 – Some of the many components & elements of UEFI based firmware.

6

1. Chip Vendor Code
Chip vendors (Silicon Providers or SiPs) contribute essential low-level code to enable
hardware communication and functionality.

2. Open-Source Implementations
Code implementing typical UEFI requirements and features.

3. 3rd Party Binary Blobs or Source Modules
Firmware may include unchanged binary blobs or source modules from third-party
vendors, potentially introducing vulnerabilities.

4. Trusted Platform Module (TPM) Support
Trusted Platform Module (TPM) support, whether from dedicated TPM vendors or
firmware based TPM (fTPM) code, contributes cryptographic and security features.
Interfaces to the TPM are maintained by a related standards body called the Trusted
Computing Group (TCG). The latter publishes the UEFI APIs to abstract the TPM.

5. Customer Features developed by OEMs
Firmware allows for customization and introduction of unique features, although the
security implications need meticulous consideration.

6. Encryption/Decryption and Hashing Support
Encryption capabilities integrated into the firmware bolster data security and integrity.
These frequently come from open-source projects like OpenSSL.

7. Special Processor Mode Support (SMM/TrustZone)
Special modes like System Management Mode (SMM) or ARM TrustZone introduce
isolated execution environments, enhancing security.

8. Binary Blobs or Source Modules
Firmware may include unchanged binary blobs or source modules from third-party
vendors, potentially introducing vulnerabilities.

9. IFV/IBV Added Value Customizations
Features added by Independent Firmware Vendors (IFVs/IBVs).

10. Device Firmware
There may be other Device Firmware, or the plurality of embedded firmware that
executes on I/O devices, SOC microcontrollers, embedded controllers, and baseboard
management controllers (BMCs) on a modern client system. A single system firmware
image may include many instances of ‘device firmware’.

Supply Chain Dynamics

When a platform enters production, the UEFI compliant firmware that powers on that device is
the collaborative product of numerous industry partners. Each partner’s contribution is passe

7

on to the next until the production platform’s final UEFI compliant firmware image is finished.
The UEFI specification makes this work, allowing each partner to add the pieces that are closely
related to their specialty. There are many variations, with some partners taking on multiple
roles.

Figure 2 – The general Firmware Supply Chain

Life for a UEFI compliant firmware image generally starts as a curated combination of open-
source components (like Tianocore/EDK2), most often includes reference code from a silicon
vendor (SiP), and depending on the development model, may include framework and/or feature
modules from an IFV/IBV (independent Firmware/BIOS Vendor) that are targeted at specific
reference pieces of hardware. This reference version, following the UEFI standards, allows a
single OS image like those found in Windows or Linux to run on the amazing diversity of CPUs,
silicon and platforms manufactured each year that run on UEFI-based firmware.

If involved in the supply chain, an ODM (Original Design Manufacturer) usually takes the
upstream FW from an IBV/IFV or OEM (Original Equipment Manufacturer) development team
and customizes it to meet the requirements of the specific platform and the requirements of the
OEM.

The flexibility of the UEFI standard has helped this dynamic ecosystem evolve by supporting this
model, but it also contributes to the difficulty of responding to security vulnerabilities. Each
partner in the supply chain spends time evaluating the vulnerability, finding a mitigation,
applying, and testing that mitigation to all the platforms they are working with, and then
distributing a fixed version to the next partner.

This takes time. Time is the malware author’s friend. There is a balance between giving
all partners a reasonable time to create fixes and reducing the time systems are without
a patch. To make sure that one company’s security fix does not become another
company’s zero-day attack, the UEFI Security Response Team (USRT) works with
CERT/CC (Computer Emergency Response Team/ Coordination Center) to manage the
disclosure process and make sure all partners in the supply chain work together to
implement coordinated vulnerability disclosures.

This takes information. The last link in the supply chain is the platform owner. This
might be an individual end-user, or it might be a company’s IT department. They are the
least-informed partner, yet they are the partner that ultimately agrees to a security-
related firmware update. To provide more visibility into the UEFI components, UEFI
Forum’s SBOM Sub-Team (USBT) is drafting recommendations about how partners
disclose a SBOM (Software Bill of Materials) with details of each component, its version,
its source code, and a unique identifier. This SBOM is delivered to the next link in the

8

supply chain, helping each to identify the contents of their UEFI compliant firmware and
recognize when a publicly disclosed vulnerability might affect them. This aligns well with
the ongoing Vulnerability Exchange (VEX) goals of the U.S. and other national
governments.

The UEFI forum also reaches out to all partners in the supply chain with security best
practices targeted to the unique security challenges of UEFI firmware, including threat
modeling, coding standards, and training.

The UEFI community, working together, can help secure the diverse and creative ecosystem of
UEFI firmware, one link in the supply chain at a time.

Vulnerability Management

In an ever-evolving landscape of technology, ensuring the security of firmware systems has
become paramount. The Unified Extensible Firmware Interface (UEFI) ecosystem is a complex
web of manufacturers, integrators, and developers, all collectively responsible for producing
secure products. This section of this paper delves into the intricate realm of vulnerability
management within the UEFI supply chain, examining the concepts of proactive and reactive
vulnerability management, the responsibilities of each link in the chain, and the collaboration
required to maintain the security of these critical components.

Defining Vulnerability Management: Vulnerability management is a multifaceted practice
aimed at mitigating risks posed by vulnerabilities in products. This practice involves two distinct
phases: proactive and reactive vulnerability management.

1. Proactive Vulnerability Management: The proactive phase focuses on identifying
vulnerabilities before they manifest into real threats. The efficacy of proactive security
can be measured using d using key performance indicator (KPI) metrics:

• Number of Vulnerabilities Found in Released Products: This KPI serves as a
litmus test for the robustness of proactive security practices. The lower the
count of vulnerabilities discovered post-release, the stronger the proactive
security measures in place.

2. Reactive Vulnerability Management: The reactive phase involves responding to
vulnerabilities that have been detected, with an emphasis on rapid and comprehensive
resolution. This phase is crucial in preventing the exploitation of vulnerabilities that
manage to surface despite proactive efforts. The efficacy of an organization’s reactive
security or PSIRT.

• Speed of Vulnerability Remediation: This KPI gauges how rapidly vulnerabilities
are addressed once identified. Swift remediation is indicative of an agile and
effective vulnerability management process.

The example described here is for firmware targeting typical computing devices, PCs, and
Servers. UEFI compliant firmware is also used in embedded and IoT devices, appliances,

9

Electronic Vehicles, Autonomous Vehicles, and many other types of systems. The supply chains
may be somewhat different in their details, but the complexities described here still apply.

Understanding the UEFI supply chain, as described in the previous section, is essential to grasp
the complexities of vulnerability management. The supply chain comprises several crucial links,
each playing a unique role:

1. Silicon Provider (SiP)

2. Independent Firmware Vendor (IFV):

3. Original Design Manufacturers (ODMs) and Original Equipment Manufacturers (OEMs)

Figure 3 - Illustration of a UEFI Supply Chain

In this supply chain, each link is responsible for performing vulnerability management functions.
For pro-active security, this could mean supporting various SSDLC processes, such as those
covered in NIST SP 800-218, to minimize the number of vulnerabilities passed downstream to
the next vendor. For reactive security, each vendor should have a team responsible for receiving
and advising on security sightings. This team is typically called a PSIRT or Product Security
Incident Response Team.

Each vendor’s PSIRT in the supply chain is responsible for advising on security vulnerabilities
which exist in their product. For example, the SiP should report all vulnerabilities in their
hardware and reference code firmware including vulnerabilities against the open source they
leveraged as well as the proprietary code they authored. If the next vendor in the supply chain is
an IFV, the downstream vendor often relies on them to advise on all the SiP’s vulnerabilities that
affect the IFV product, plus all the vulnerabilities introduced by the IFV. The downstream vendor
must also comprehend IFV introduced vulnerabilities that could come from OSS that they
integrated or additional proprietary code that they added. When part of the supply chain, the
IFV is often responsible for integrating any remediations by the SiP and passing those down the
supply chain. This pattern of advising and remediating repeats for each link in the supply chain
as it continues downstream.

10

The finders of vulnerabilities in UEFI products typically report their sightings to the PSIRTs of
manufacturers of the product the vulnerability was found in. This is typically the ODM or OEM.
Once the sighting is received by the OEM, they must begin an investigation to determine which
vendor in the supply chain is responsible for the remediation. Customarily, if the finder wants to
go public with the vulnerability details, a 90-day public embargo is placed on the vulnerability
details. This means that no details related to vulnerability are to be discussed outside of the
finder and supply chain vendor involved in the investigation. It is important to note that all
vendors affected by the vulnerability need to have their products remediated and released prior
to the public embargo expiration or a zero-day vulnerability would result for vendors in the
supply chain that do not have access to a fix for their exposed product. The embargo date can be
negotiated with the finder if it is known ahead of time that some vendors cannot remediate
their products prior to public disclosure.

During the public embargo period, each vendor in the supply integrates the fix, tests, and
releases the fix project downstream. Then, the vendor repeats the process, integrates the fix,
tests, and releases the fix. This pattern repeats until the whole supply chain is remediated. It
should be clarified that each supply chain vendor has advised on fixes for vulnerabilities to their
customers prior to a public advisory being released. These communications among supply chain
partners are carried out under NDAs. This is so that those that might exploit the vulnerabilities
are not made aware of them until such a time that the supply chain has already fixed the issues,
and when a public disclosure is made.

In the illustration below, the SiP release cadence is every quarter (which is typical, but it can be
less frequent than this). IFVs typically mirror the SiP release cadence and issue releases once a
quarter (at most). ODMs typically follow the same pattern. It should be noted that there is a
concept of EOL or end of life products in the UEFI firmware supply chain. These are products
that have been determined to be too old or simply don’t warrant the cost to maintain. To give
an example, a scenario exists where the IFV could still be maintaining a product and issuing
remediations, but the ODM has EOLed their derived product. In this case, remediations would
never propagate past the IFV, leaving the OEMs, CSPs and retail users in a “vulnerable” position.

It was mentioned that there is a customary 90-day public embargo for vulnerabilities. Now, since
readers have a basic understanding of the UEFI supply chain, let’s look at the feasibility of the
90-day embargo for this supply chain.

In this illustration, the SiP receives the vulnerability sighting on February 1st.

11

1) It immediately begins an investigation into which product is determined to be affected.
The SiP issues an advisory to the IFV within a week (which is a reasonable response
time) of the sighting.

2) The IFV performs an investigation and determines its product is also affected so an IFV
advisory is issued to the ODM.

3) The ODM follows suit by issuing an advisory to the OEM after it determines that it has
inherited the same vulnerability.

4) And finally, the OEM issues an advisory to all its CSP customers that the issue exists, and
a fix is being worked on.

5) The SiP addresses the issue in the first release the patch is available in.
6) The SiP may have had the patch earlier but typically SiPs only provide remediations in

releases which are made available on a quarterly basis. After the SiP issues the patch,
the IFV integrates the fix. Typically, this integration takes a minimum of 3 weeks. In this
illustration, it can be observed that the IFV is able to integrate the changes just in time
to have the fix available in the release issued at point 7.

7) Unfortunately, the remediation was made available to the ODM at a bad time as there is
not enough time to include the remediation in the next release so it must be targeted
for the subsequent release which is almost four months away and at that time it is made
available to the OEM (to put up on their website so customers can download it).

8) After the OEM makes the UEFI FW release available, the CSP will download the image
and update all the servers in the data center.

9) The next step is public disclosure. Given the organic sequence of events detailed in the
illustration above, October 1st, ~300 days after the initial sighting, seems like an
appropriate time to go public. In this case, a 300-day embargo period seems reasonable
for the UEFI supply chain as opposed to the arbitrary 90-day embargo period.

10) Steps (10), (11), (12), and (13) represent all supply chain partners issuing public
advisories after the 300-day embargo period expires.

This example demonstrates how complex and time-consuming vulnerability management is in
the firmware ecosystem. It shows that arbitrary public vulnerability information embargo
periods do not work well in this complex supply chain.

Open-source vulnerability management

It should be noted that in the above flow, there are open-source inputs into the supply chain
elements, including “OSS/Tianocore EDK2.” Since the UEFI Forum does not endorse any specific
UEFI implementation, the Tianocore community maintains its own vulnerability process via its
infosec team. Open-source issues are managed through this team and it, in turn, can coordinate
updates to the EDKII upstream, especially aligned with the EDKII ‘stable tags’ upon which many
of the SiP, IFV, OEM, and others base their downstream deliverables. This process is
complementary to the USRT efforts to handle UEFI specification issues and coordinate the
various SiP, OEM, ODM, and IFV PSIRT organizations. Other open-source and proprietary inputs
to the supply chain will have their own vulnerability handling processes.

12

Conclusion

Platform firmware's complexity transcends the mere label “UEFI”. It encompasses a plethora of
standards, implementations, and supply chain dynamics. While vulnerabilities in firmware are a
pressing concern, a nuanced understanding of the intricate relationships and dependencies
within this ecosystem is imperative. A comprehensive approach to firmware security
necessitates collaboration among industry stakeholders, continued refinement of best practices,
and an unceasing commitment to adapt and evolve alongside the ever-changing landscape of
platform firmware.

The UEFI Forum, its security response team (USRT), security sub-team (USST), SBOM Sub-team
(USBT), specification working groups, and Industry Communications Working Group (ICWG) are
dedicated to making UEFI compliant firmware as secure as possible. They are also dedicated to
aiding members of the supply chain to respond to vulnerabilities in a timely manner and
communicating with stakeholders to improve to state of the art in firmware.

About UEFI Forum

The UEFI Forum, a nonprofit industry standards body, champions firmware innovation through industry
collaboration and the advocacy of a standardized interface that simplifies and secures platform
initialization and firmware bootstrap operations. Both developed and supported by representatives
from more than 350 industry-leading technology companies, UEFI Forum specifications promote
business and technological efficiency, improve performance and security, facilitate interoperability
between devices, platforms, and systems, and comply with next-generation technologies.

The Forum’s spheres of input and influence are large: Membership represents major voices from all
players in the industry—open source to proprietary technology, hardware to software, mobile to
stationary devices. The Forum collaborates with other standards groups that are essential to computing.

For More Information

Please visit www.uefi.org for more information about UEFI, including current specifications and
membership options.

