Compute Express Link™ 2.0 Update

UEFI 2021 Virtual Plugfest
March 30, 2021
Mahesh Natu
Meet the Presenters

Mahesh Natu
Systems and Software WG Co-chair, CXL™ Consortium
Data Center Platform Architect, Intel Corporation
Agenda

• CXL™ Overview
 – CXL 2.0 additions
• CXL Topology Discovery
• Memory Expansion Usage
 – Hetero memory
 – Interleaving
 – Memory Device interface
 – Memory RAS
• Summary and Call to Action
What is CXL?

- Open industry standard for high bandwidth, low-latency interconnect
- Connectivity between host processor and accelerators/memory device/smart NIC
- Addresses high-performance computational workloads across AI, ML, HPC, and Comms segments
- Multiplex 3 protocols over PCIe® 5.0 PHY infrastructure
 - CXL.io – I/O semantics, similar to PCIe, mandatory
 - CXL.cache – Caching Semantics, optional
 - CXL.memory – Memory semantics, optional
- CXL spec is at https://www.computeexpresslink.org/download-the-specification
What Does CXL 2.0 Bring to the Table?

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| CXL PCIe End-Point | CXL device to be discovered as PCIe Endpoint
Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port |
| Switching | CXL Memory Fan-Out & Pooling with Interleaving
CXL.Cache is direct routed between CPU and device with a single caching device within a hierarchy.
Downstream port must be capable of being PCIe. |
| Resource Pooling | Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual Hierarchies. |
| CXL.cachemem enhancements | Persistence (Global Persistence Flush), Managed Hot-Plug, Memory Error Reporting and QoS Telemetry |
| Security | Authentication, link integrity and Encryption |
| Software Infrastructure/ API | ACPI & UEFI changes to cover notification and management of CXL Ports and devices
Standardized configuration register interface to Memory Devices including PMEM
Standardized Memory Error Reporting
CXL Switch API for a multi-host or memory pooled CXL switch configuration and management |
CXL Discovery Flow – Step 1

- CXL Host Bridges registers can be discovered via CXL Early Discovery Table (CEDT), a new ACPI table.
- Defined in CXL Specification

CHBS Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Byte Length</th>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>1</td>
<td>0</td>
<td>0 to indicate this is a CHBS entry</td>
</tr>
<tr>
<td>Reserved</td>
<td>1</td>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>Record Length</td>
<td>2</td>
<td>2</td>
<td>Length of this record (32)</td>
</tr>
<tr>
<td>UID</td>
<td>4</td>
<td>4</td>
<td>CXL Host Bridge Unique ID. Used to associate a CHBS instance with CXL Host Bridge instance. The value of this field shall match the output of UID under the associated CXL Host Bridge in ACPI namespace.</td>
</tr>
<tr>
<td>CXL Version</td>
<td>4</td>
<td>8</td>
<td>00h: CXL 1.1 Specification compliant Host Bridge, 01h: CXL 2.0 Specification compliant Host Bridge</td>
</tr>
<tr>
<td>Reserved</td>
<td>4</td>
<td>12</td>
<td>Reserved</td>
</tr>
<tr>
<td>Base</td>
<td>8</td>
<td>16</td>
<td>If Version = 0, this represents the base address of CXL 1.1 Downstream Port RCRB. If version =1, this represents the base address of the CXL 2.0 CHBCR. See Table 137.</td>
</tr>
<tr>
<td>Length</td>
<td>8</td>
<td>24</td>
<td>If Version = 0, this field must be set to 0 KB (2000h). If Version = 1, this field must be set to 04 KB (10000h).</td>
</tr>
</tbody>
</table>
CXL Discovery Flow – Step 2

- Next level of discovery is based on ACPI Namespace
 - CXL HB Hardware ID="ACPI0016"
 - Compatibility ID of PCIe Host Bridge to enable enumeration by non-CXL enabled OSs
- Underneath, SW will find standard PCIe objects like _BBN, _CRS, PCIe _OSC and new objects like CXL _OSC
CXL Discovery Flow – Step 3

- The last leg of discovery uses standard PCIe enumeration
- CXL Root Ports, Switch Ports and Devices appear like their PCIe counterparts, but are decorated with CXL spec defined register blocks called DVSEC.
Namespace example

Device(CXL0)
{
 Name(_HID,EISAID("ACPI0016"))// CXL Host Bridge
 Name(_CID, Package(2){ EISAID("PNP0A03), EISAID("PNP0A08")}) // compatible with PCIe and PCI Host Bridges
 Name(_UID, 0) // Instance 0 of CXL HB, cross-reference with CEDT table entry to get HB register base
 Name(_BBN, ..) // Same as PCIe, enables PCIe SW to enumerate the tree
 Name(_CRS, ..) // Same as PCIe, enables PCIe SW to discover CXL.io resource assignment
 Method(_OSC,4) // CXL _OSC, identified by CXL GUID
 // PCIe OSC, identified by PCIe GUID, PCIe SW can enumerate
 ..
} // End CXL0

Device(CXL1)
{
 Name(_HID,EISAID("ACPI0016"))// CXL Host Bridge
 Name(_CID, Package(2){ EISAID("PNP0A03), EISAID("PNP0A08")}) // compatible with PCIe and PCI Host Bridges
 Name(_UID, 0) // Instance 1 of CXL HB, cross-reference with CEDT table entry to get HB register base
 ..
} // End CXL1
PCIe relies on ACPI _OSC method to keep OS and Firmware in sync regarding management of PCIe capabilities

CXL _OSC extends PCIe _OSC to cover CXL features

Identified by new UUID

Defined as a superset of PCIe _OSC

_Osc Capability Buffer

First DWORD = Generic to _OSC, follows ACPI specification

2nd DWORD = PCIe Support Field as defined by PCI Firmware Specification.

3rd DWORD = PCIe Control Field as defined by PCI Firmware Specification (In/Out)

4th DWORD = CXL Support Field, defined in CXL 2.0 Specification

5th DWORD = CXL Control Field, defined in CXL 2.0 Specification (In/Out)

If CXL _OSC is present, CXL aware OS evaluates it and ignores PCIe _OSC
Hetero Memory Attributes

• CXL systems are heterogenous by nature
• SRAT and HMAT models work great when system firmware has apriori knowledge of coherent components and the config is relatively static.
• CXL breaks both assumptions
 – Open ecosystem, fully PnP architecture with hot-plug support
• However, OS/VMMs still need SRAT and HMAT equivalent information to allocate memory optimally..
• **Coherent Device Attribute Table** is the answer
 – Each coherent device reports its local latency/BW characteristics via DOE interface. This data structure is called CDAT.
 – System Firmware or OS/VMM stiches together CDAT obtained from each component to construct SRAT/HMAT equivalent structures.
CXL Memory Interleaving

- CXL 2.0 memory devices may be interleaved for performance reasons
- An Interleave Set is identified by
 - Base HPA, Limit - Multiples of 256 MB
 - Interleave Way – 2, 4 or 8
 - Interleave Granularity - 2^n (8,9,10, 11, 12, 13,14)
 - Targets (applicable to RC and USP)
- Configured via HDM Decoder registers in USP, RC and Device
 - USP and RC use these decoders to pick the target
 - Device uses these decoders to translate Host Physical Address (HPA) to Device Physical Address (DPA)
- Can be configured by UEFI or OS
 - OS: Lazy config or hot-plug
Memory Device Configuration Interface

- Type 3 devices, especially persistent memory devices, rely on system software for provisioning and management
- CXL 2.0 introduces a standard register interface for managing CXL attached memory devices
- Enables OSs to carry vendor-agnostic memory device driver
- Architecture Elements
 - Defined as number of discoverable Capabilities
 - Capabilities includes Device Status and standard mailboxes, accessed via MMIO registers
 - Standardized mailbox commands
 - Standardized Error log formats
 - Accommodates Firmware First Error Handling Model
- CXL does not have to rely on NFIT and NVDIMM _DSM methods
Comparison with NVDIMM Model

Generic NVM Driver, bound to NVDIMM Root Device (“ACPI0012”) → BIOS → NVDIMM

ACPI Standard (DSM, NFIT)

Vendor specific

CXL NVM Driver, may be bound to “ACPI0017” device → PCIe/CXL Bus Driver

CXL 2.0 Register Interface

CXL Attached MEM

No impact to applications that consume memory
CXL 1.1 Memory Error Reporting

• CXL 1.1 Baseline
 – CXL device is expected to be self-sufficient and not rely on CPU for its RAS functionality
 – Any demand access to CXL.mem that results in uncorrected error will return poison
 – Non-demand errors (e.g. memory scrubber on the device) reported to device driver

• Limitations of above approach
 – Industry is interested in gaining more visibility into memory errors
 – Vendor specific driver is burdensome for memory vendors and OS vendors/distros
 – No firmware first support

www.uefi.org
CXL 2.0 Memory Error Reporting Improvements

• Standardized access to error logs
 – New register interface that enables host to access memory error records from the device directly
 – Standard error log structure, superset of Machine check banks
 – Multiple error queues in the device, one per error severity
 – Common interface for volatile and non-volatile memory
 – Allows software to keep track of correctable errors, poison generation, memory scrub detected errors etc. and take corrective actions

• Standardized signaling
 – OS signaling via standard MSI/MSI-X
 – Support for Firmware First and new CPER record type
 – Per severity masking
 – Leaky buckets for corrected errors
Summary and Call to Action

• CXL Consortium momentum continues to grow
 – 130+ members and growing

• CXL 2.0 introduces new features & usage models
 – Switching, pooling, persistent memory support, security
 – Fully backward compatible with CXL 1.1 and 1.0
 – Built in Compliance & Interop program
 – UEFI 2.9, ACPI 6.4 and CXL 2.0 specification comprehend CXL related
 UEFI/ACPI changes

• Call to action
 – Help drive CXL enhancements into UEFI and ACPI specifications
 – Get your firmware and software CXL ready
 – Join CXL Consortium
Questions?
Thanks for attending the UEFI 2021 Virtual Plugfest

For more information on UEFI Forum and UEFI Specifications, visit http://www.uefi.org