presented by

Compute Express LinkTM 2.0 Update

UEFI 2021 Virtual Plugfest March 30, 2021 Mahesh Natu

www.uefi.org

Meet the Presenters

Mahesh Natu

Systems and Software WG Co-chair, CXL[™] Consortium

Data Center Platform Architect, Intel Corporation

Agenda

- CXLTM Overview
 - CXL 2.0 additions
- CXL Topology Discovery
- Memory Expansion Usage
 - Hetero memory
 - Interleaving
 - Memory Device interface
 - Memory RAS
- Summary and Call to Action

What is CXL?

- Open industry standard for high bandwidth, low-latency interconnect
- Connectivity between host processor and accelerators/ memory \bullet device/ smart NIC
- Addresses high-performance computational workloads across AI, ML, HPC, and Comms segments
- Multiplex 3 protocols over PCIe[®] 5.0 PHY infrastructure
 - CXL.io I/O semantics, similar to PCIe, mandatory
 - CXL.cache Caching Semantics, optional
 - CXL.memory Memory semantics, optional
- CXL spec is at https://www.computeexpresslink.org/downloadthe-specification

Usage Models

What Does CXL 2.0 Bring to the Table?

Feature	Description
CXL PCIe End-Point	CXL device to be discovered as PCIe Endpoint Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch
Switching	CXL Memory Fan-Out & Pooling with Interleaving CXL.Cache is direct routed between CPU and device with a single caching device w a hierarchy. Downstream port must be capable of being PCIe.
Resource Pooling	Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device be pooled across 16 Virtual Hierarchies.
CXL.cachemem enhancements	Persistence (Global Persistence Flush), Managed Hot-Plug, Memory Error Reportine and QoS Telemetry
Security	Authentication, link integrity and Encryption
Software Infrastructure/ API	ACPI & UEFI changes to cover notification and management of CXL Ports and devia Standardized configuration register interface to Memory Devices including PMEM Standardized Memory Error Reporting CXL Switch API for a multi-host or memory pooled CXL switch configuration and management
enhancements Security Software	and QoS Telemetry Authentication, link integrity and Encryption ACPI & UEFI changes to cover notification and management of CXL Ports and Standardized configuration register interface to Memory Devices including PI Standardized Memory Error Reporting CXL Switch API for a multi-host or memory pooled CXL switch configuration a

- h Port
- within
- e to
- ing
- vices Л

CXL Discovery Flow – Step 1

Host Bridge 1 Registers

PCIe RP

CXL Host Bridge 1

DVSEC

CXL 2.0 RP

PCIe RP+

DVSEC

CXL 2.0 RP

PCIe RP+

- CXL Host Bridges registers \bullet can be discovered via CXL Early Discovery Table (CEDT), 2 now ACDI table

CHBS Structure PCIe					L 2.0 hierarchies	
Field	Byte Length	Offset	device	mpty Slot	CXL Upstream S	witch Port
Туре	1	0	0 to indicate this is a CUDC cotors	add capable	PCIe USP + DVSE	
Reserved	1	1	'Reserved			
Record Length	2	2	Length of this record (32)		CXL 2.0	
UID	4	4	CXL Host Bridge Unique ID. Used to associate a CHBS instance with CXL Host Bridge instance. T value of this field shall match the output of _U under the associated CXL Host Bridge in ACPI namespace.	The	Switch CXL DSP,	
CXL Version	4	8	00h: CXL 1.1 Specification compliant Host Brid 01h: CXL 2.0 Specification compliant Host Brid	-	PCIe DSP + DVSEC	PCIe DSF
Reserved	4	12	Reserved		DVSLC	
Base	8	16	If Version = 0, this represents the base address CXL 1.1 Downstream Port RCRB. If version =1, this represents the base address the CXL 2.0 CHBCR. See Table 137.		PCIe EP +	PCIe
Length	8	24	If Version = 0, this field must be set to 8 KB (2000h). If Version = 1, this field must be set to 64 KB (10000h).	CXL 2.0 Device	DVSEC	

CXL Discovery Flow – Step 2

- Next level of discovery is based on ACPI Namespace
 - CXL HB Hardware ID="ACPI0016"
 - Compatibility ID of PCIe Host Bridge to enable enumeration by non-**CXL** enabled OSs
- Underneath, SW will find standard PCIe objects like _BBN, _CRS, PCIe OSC and new objects like CXL OSC

CXL Discovery Flow – Step 3

- The last leg of discovery uses standard PCIe enumeration
- CXL Root Ports, Switch Ports and Devices appear like their PCIe counterparts, but are decorated with CXL spec defined register blocks called DVSEC.

Namespace example

Device(CXL0)

{

Name(_HID,EISAID("ACPI0016"))// CXL Host Bridge

Name(_CID, Package(2){ EISAID("PNP0A03), EISAID("PNP0A08")}) // compatible with PCIe and PCI Host Bridges

Name(_UID, 0) // Instance 0 of CXL HB, cross-reference with CEDT table entry to get HB register base

Name(_BBN, ..) // Same as PCIe, enables PCIe SW to enumerate the tree

Name(_CRS, ..) // Same as PCIe, enables PCIe SW to discover CXL.io resource assignment

Method(_OSC,4)

// CXL _OSC, identified by CXL GUID

// PCIe OSC, identified by PCIe GUID, PCIe SW can enumerate

} // End CXL0

Device(CXL1)

{

Name(_HID,EISAID("ACPI0016"))// CXL Host Bridge

Name(_CID, Package(2){ EISAID("PNP0A03), EISAID("PNP0A08")}) // compatible with PCIe and PCI Host Bridges Name(_UID, 0) // Instance 1 of CXL HB, cross-reference with CEDT table entry to get HB register base

} // End CXL1

CXL OSC

- PCIe relies on ACPI OSC method to keep OS and Firmware in sync regarding lacksquaremanagement of PCIe capabilities
- CXL OSC extends PCIe OSC to cover CXL features
- Identified by new UUID
- Defined as a superset of PCIe OSC
- OSC Capability Buffer
 - First DWORD = Generic to _OSC, follows ACPI specification
 - 2nd DWORD = PCIe Support Field as defined by PCI Firmware Specification.
 - 3rd DWORD = PCIe Control Field as defined by PCI Firmware Specification (In/Out)
 - 4th DWORD = CXL Support Field, defined in CXL 2.0 Specification
 - 5th DWORD = CXL Control Field , defined in CXL 2.0 Specification (In/Out)
- If CXL_OSC is present, CXL aware OS evaluates it and ignores PCIe_OSC

Hetero Memory Attributes

- CXL systems are heterogenous by nature
- SRAT and HMAT models work great when system firmware has apriori knowledge of coherent components and the config is relatively static.
- CXL breaks both assumptions \bullet
 - Open ecosystem, fully PnP architecture with hot-plug support
- However, OS/VMMs still need SRAT and HMAT equivalent information to allocate memory optimally ...
- **Coherent Device Attribute Table is the answer**
 - Each coherent device reports its local latency/BW characteristics via DOE interface. This data structure is called CDAT.
 - System Firmware or OS/VMM stiches together CDAT obtained from each component to construct SRAT/HMAT equivalent structures.

CXL Memory Interleaving

- CXL 2.0 memory devices may be interleaved for performance reasons
- An Interleave Set is identified by
 - Base HPA, Limit Multiples of 256 MB
 - Interleave Way -2, 4 or 8_____
 - Interleave Granularity 2** (8,9,10, 11, 12, 13, 14)
 - Targets (applicable to RC and USP)
- Configured via HDM Decoder registers in USP, RC and Device
 - USP and RC use these decoders to pick the target
 - Device uses these decoders to translate Host Physical Address (HPA) to Device Physical Address (DPA)
- Can be configured by UEFI or OS
 - OS: Lazy config or hot-plug

Memory Device Configuration Interface

- Type 3 devices, especially persistent memory devices, rely on system software for provisioning and management
- CXL 2.0 introduces a standard register interface for managing CXL attached memory devices
- Enables OSs to carry vendor-agnostic memory device driver
- **Architecture Elements**
 - Defined as number of discoverable Capabilities
 - Capabilities includes Device Status and standard mailboxes, accessed via **MMIO** registers
 - Standardized mailbox commands
 - Standardized Error log formats
 - Accommodates Firmware First Error Handling Model
- CXL does not have to rely on NFIT and NVDIMM DSM methods \bullet

No impact to applications that consume memory

www.uefi.org

CXL 1.1 Memory Error Reporting

- CXL 1.1 Baseline
 - CXL device is expected to be self-sufficient and not rely on CPU for its **RAS** functionality
 - Any demand access to CXL.mem that results in uncorrected error will return poison
 - Non-demand errors (e.g. memory scrubber on the device) reported to device driver
- Limitations of above approach

 - Industry is interested in gaining more visibility into memory errors Vendor specific driver is burdensome for memory vendors and OS vendors/distros
 - No firmware first support

CXL 2.0 Memory Error Reporting Improvements

- Standardized access to error logs
 - New register interface that enables host to access memory error records from the device directly
 - Standard error log structure, superset of Machine check banks
 - Multiple error queues in the device, one per error severity
 - Common interface for volatile and non-volatile memory
 - Allows software to keep track of correctable errors, poison generation, memory scrub detected errors etc. and take corrective actions
- Standardized signaling
 - OS signaling via standard MSI/MSI-X
 - Support for Firmware First and new CPER record type
 - Per severity masking
 - Leaky buckets for corrected errors

Summary and Call to Action

- CXL Consortium momentum continues to grow
 - 130+ members and growing
- CXL 2.0 introduces new features & usage models
 - Switching, pooling, persistent memory support, security
 - Fully backward compatible with CXL 1.1 and 1.0
 - Built in Compliance & Interop program
 - UEFI 2.9, ACPI 6.4 and CXL 2.0 specification comprehend CXL related UEFI/ACPI changes
- Call to action
 - Help drive CXL enhancements into UEFI and ACPI specifications
 - Get your firmware and software CXL ready
 - Join CXL Consortium

Questions?

www.uefi.org

Thanks for attending the UEFI 2021 Virtual Plugfest

For more information on UEFI Forum and UEFI Specifications, visit <u>http://www.uefi.org</u>

presented by

www.uefi.org

