
Advanced Configuration and
Power Interface Specification

Compaq Computer Corporation
Intel Corporation
Microsoft Corporation
Phoenix Technologies Ltd.
Toshiba Corporation

Revision 2.0b
October 11, 2002

ii

Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002 Compaq Computer Corporation, Intel Corporation,
Microsoft Corporation, Phoenix Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. COMPAQ, INTEL, MICROSOFT, PHOENIX, AND
TOSHIBA DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT
INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

iii

Compaq/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

Oct. 2002

2.0b

Errata and clarifications added.

Clarified use of double-backslash within ACPI strings that refer to ACPI names
(Must use double backslash within quoted strings.)

Clarified Global Lock description and corrected table name

Clarification of description of _CID

Clarification of rules for _HID strings.

Corrected data type(s) for Source field in _PRT entries.

Clarified _PRT example to show full namepaths in addition to namesegs.

Defined OK status return for _WAK; return value is required

Added _UIDs to fan control example.

Changed DefinitionBlock grammar to disallow executable code outside of
control methods. Fixed indenting and boldface as necessary.

Added an overview of the explicit/implicit conversion rules for clarity

Clarified action of the ToString operator

Clarified description of Scope operator.

Clarified NULL termination condition of ToString operator

Added explanation of the use of the double-backslash within string literals.

Define allowable format of the EISAID string.

Define internal representation of Unicode strings.

Corrected data type in DWORD address space descriptor.

Corrected AML encoding of LGreaterEqualOp.

See below.

4.7.4.2.1
5.2.13
6.3.2

5.2.9.1

6.1.2

6.1.4

6.2.8

6.2.8.1

7.3.5

12.5.2

16.1.3

16.2.2.1

16.2.2.2

16.2.3.3.2.3

16.2.3.4.2.44

16.2.3.6.3.2

16.2.3.6.4.1

16.2.3.6.4.3

16.2.4.13

17.3

Mar. 2002

2.0a

Errata and clarifications added. ACPI 2.0 Errata Document Revision 1.0
through 1.5 integrated.

Clarifies that GAS fields other than Address_Space_ID may be used as
indicated by the CPU manufacturer. Updated table 5-2.

Split DESCRIPTION HEADER signature table into two tables. One for
signatures of ACPI defined tables and one for signatures reserved by ACPI.

Added “CPEP”, “HPET, and “TCPA” to ACPI reserved signature table 5-5a.

Update references to “DBGP”, “SPMI”, “SLIT”, and “SPCR” reserved
signatures in table 5-5a.

Added signature reservation email address.

Clarified description/use of Firmware_Waking_Vector fields in table 5-11.

Clarified Local APIC Address Override Structure - Local APIC Address field
value for ItaniumTM-based systems.

Clarified handling of GPEs and calling of _TXX and _QXX methods and added
description of _QXX methods for handling SMBus alarms.

See below.

5.2.3.1

5.2.5

5.2.9

5.2.10.11

5.6.2.2.2

iv

Described SMBus alarms and added example of _QXX method for SMBus
alarm.

Added SMBus Alarms to _Qxx description in Table 5.49.

Clarified _DDN description.

Corrected _TRA field description (swapped primary and secondary)

Clarfied firmware responsibilities during initialization and wake.

Clarified operation of bi-directional data transfer for BufferAcc AccessType.

Corrected examples to clarify that Store cannot change the value of the Source
argument, which should is read only. Corrected value of BitIndex for
CreateField in examples. Added examples of using BufferAcc fields with
opcodes other than Store.

Added description of arrow (=>) notation in table 16-1.

Clarification of the purpose and use of the Type 3, 4, and 5 opcodes. Added
AccessAttribKeyword SMBBlockProcessCall.

Added Nothing term to definition of Return statement.

Added return values to Package and Buffer definitions.

Noted the exception in the handling of execution result for BufferAcc fields.

Added Processor object to description of Notify.

Clarified Buffer-to-String conversion in ToDecimalString operator description.

Corrected Switch statement definition by adding TermArg.

Corrected names of conversion operators in Switch operator description.

Corrected ToBuffer description for the Integer source case from 4 to 8 bytes.

Added case where the source operand is an Integer to the ToInteger description.

Noted the exception in the handling of execution result for BufferAcc fields.

Added non-null ASCII restriction on hex and octal escape sequence values
within ASL String Literals.

Corrected Resource Descriptor Field example.

Added text to describe the type of offset (bit or byte) returned by a reference to
a named Resource Descriptor Field.

Add AccessAttrib SMBBlockProcessCall encoding information.

Corrected names for operators and added definition of LoadTable.

Table 17.2: Corrected names for various operators, corrected definition of
LoadTable.

Corrected _BCL example code to add return statement.

5.6.2.2.3

5.6.5

6.1.3

6.4.3.5.1,
6.4.3.5.2,
6.4.3.5.3

9.3

14.5

14.6,14.7

16.1.1

16.1.3

16.1.3
16.2.3.4.1.12

16.1.3
16.2.3.6.1
16.2.3.6.2

16.2.3.4

16.2.3.4.1.9

16.2.3.4.1.10

16.2.3.4.1.16

16.2.3.4.1.16

16.2.3.4.2.4

16.2.3.4.2.19

16.2.3.4.2.43

16.2.3.6.3.2

16.2.4

16.2.4

17.2.4.2

17.2.4.4

17.3

B.5.2

ACPI 2.0 Clarified Power / Sleep button override action will cause system to enter soft- 1.5

v

Compaq/Intel/Microsoft/Phoenix/Toshiba

Errata
Doc. Rev.
1.5

off state. Override action will not cause the system to reset.

Updated “SRAT” DESCRIPTION_HEADER signature reference.

Replaced ASL Data Type section with a new section that clarifies ASL Data
Type conversions.

5.2.5

16.2.2

ACPI 2.0
Errata
Doc. Rev.
1.4

Corrected Figure 5-1 location of system description tables. Removed redundant
description of finding the RSDP on IA-PC systems – added reference to other
sections.

Corrected FADT Boot Architecture Flags Reserved field bit offset from 3 to 2.

Clarified _INI object evaluation – OSPM evaluates _SB._INI

Corrected ElseTerm definition. Changed CMOS RegionSpaceKeyword to
SystemCMOS to avoid collisions with existing ASL.

Corrected description of Mutex object.

Changed ASL CopyTerm to CopyObjectTerm to avoid collision with existing
ASL.

5.1

5.2.8.3

6.5.1

16.1.3

16.2.3.3.1.14

16.2.3.4.2.8

ACPI 2.0
Errata
Doc. Rev.
1.3

Corrected location of Firmware ACPI Control Structure may exist anywhere in
the system’s memory address map.

Corrected description of the Local APIC Address Override Structure.

Corrected Local SAPIC Structure’s ACPI Processor ID field length from two
bytes to one byte to enable a correct comparison with processor term’s
ProcessorID field. Rearranged field ordering to more closely match the Local
APIC Structure.

Corrected _SCP reference section.

Corrected TermArg and NameTerm to reference DataObject rather than
DataRefObject. Added NameString to TermArg. Added missing DDBHandle
and ObjectReference to ASL type definitions.

Corrected Load and Unload operator descriptions – does not apply to
Differentiated Definition Block

Corrected table reference.

5.2.9

5.2.10.11

5.2.10.13

5.6.5

16.1.3

16.2.3.4.1.7,
16.2.3.4.1.17

16.2.3.4.2.37

ACPI 2.0
Errata
Doc. Rev.
1.2

Clarified that OSPM is only required to write non-zero values of FADT fields
PSTATE_CNT and CST_CNT to the SMI Command Port. Corrected
PM1_CNT_LEN value is ≥ 2.

Changed ASL type conversion function names to avoid collision with existing
ASL (Buff >ToBuffer, DecStr>ToDecimalString, HexStr>ToHexString,
Int>ToInteger, String>ToString).

5.2.8

16.1.3,
16.2.3.4.2,
16.2.3.4.2.4,
16.2.3.4.2.10,
16.2.3.4.2.16,
16.2.3.4.2.19,
16.2.3.4.2.44

ACPI 2.0
Errata
Doc. Rev.
1.1

Clarified hardware interfaces may be defined as Functional Fixed Hardware
only when directed by the CPU manufacturer as proprietary OS support is
required that must be coordinated with the OS vendor.

Clarified Definition Block support expanding from 32-bit to 64-bit integers.

Local SAPIC Structure length corrected to 8 from 10 bytes.

4.1.1

5.2.10,
5.2.10.1,
5.2.10.2

5.2.10.13

vi

Updated DSDT DefinitionBlock example compliance revision.

End value correction of event values for status bits in GPE0_BLK.

Corrected Defined Generic Object and Control Method section references.

Corrected Generic Register Descriptor Definition to include GAS reserved field.

Corrected memory term’s type field from TranslationType to Type

Corrected Switch ACPI 1.0 translation

5.5

5.6.2.2

5.6.5

6.4.3.7

16.1.3

16.2.3.4.1.16

ACPI 2.0
Errata
Doc. Rev.
1.0

Re-inserted mistakenly deleted sentence fragment.

FADT SCI_INT field - clarified to be the SCI interrupts’s Global System
Interrupt number when no 8259 exists in the system.

Incorrect reference to Processor declaration section.

Local APIC Address Override Structure length field corrected.

I/O SAPIC Strucure - length field corrected, Global System Interrupt Base and
I/O SAPIC Address field descriptions expanded/clarified.

Local SAPIC Structure flags length corrected to 4 from 2. Other offsets adjusted
accordingly. Incorrect reference to Processor declaration section.

_CS4 critical thermal trip point renamed to _HOT

Corrected Embedded Controller method name - removed trailing numbers

LNOT(Logical Not) evaluation result correction.

ASL macro for fixed I/O port descriptor listed incorrectly in previous section.

AML Root-Path only encoding for NamePath was missing as was NullName

5.2

5.2.8

5.2.10.5

5.2.10.11

5.2.10.12

5.2.10.13

12.4, 12.5

14.2

16.2.3.4.2.26

16.2.4.5,
16.2.4.6

17.2.1

Aug. 2000

2.0

Major specification revision. 64-bit addressing support added. Processor and
device performance state support added. Numerous multiprocessor workstation
and server-related enhancements. Consistency and readability enhancements
throughout.

Feb. 1999

1.0b

Fixed previous errata that deleted wrong paragraph in the RTC_EN description. 4.7.3.1.2

 Clarified P_BLK requirements on multiprocessor systems. 4.7.2.6.3
 Changed definition of SCI_INT pin in Table 5-5. 5.2.5
 Replaced section 5.2.8, adding new structures and clarifications to support

multiprocessor configurations.
5.2.8

 Expanded Name Space description—clarified the name search rules, added
Parent operator to operator list, described name padding.

5.3

 Expanded ASL definition—defined global objects, clarification that OpRegion
accesses may block, added description of the scope and life of variables in
control methods.

5.5.3

 Changed notify values. 5.6.3
 Added _PIC method to Table 5-33 and new section 5.8. 5.6.5 & 5.8
 Added USB _ADR values to Table 6-1. 6.1.1

vii

Compaq/Intel/Microsoft/Phoenix/Toshiba

 ACPI Control Method added for floppy enumeration (_FDE). 10.8
 ASL Grammar clarifications—initial and default SyncLevel values, ObjectType

behavior for specific objects, usage of the RefOf operator and behavior of non-
package method evaluation.

15.2.3

 Added top-level AML definition. 16.2
 Changed concat arguments to be TermArgs resolving to data. 16.2.4.4
 Added the _GLK object and referenced it in the Smart Battery and the Control

Method Battery sections.
6.5.6 &
11.1.4 &
11.2.2 & 13.8
& 13.9
&13.12

 Added Video Extensions as an Appendix. Appendix A

1.0a Added _PRT requirement for PCI root bridges. 1.7
 Clarification H/W behavior—PM timer may be stopped when not in the G0/S0

state, Lid Switch behavior and correction of the RTC_EN bit in Table 4-10.
4.7.2.1

 Clarification of tables—trailing blank required in signature in Table 5-1,
FLUSH_SIZE and FLUSH_STRIDE clarification Table 5-5.

5.2.x

 Clarified placement of APIC-related structures and general clean up, added
Interrupt source overrides.

5.2.8

 Various removals—Figure 5-4, DCK_CAP flag from Table 5-6, _SBC and
_SBS methods from Table 5-33.

viii

(continued)

Revision Change Description
Affected
Sections

 Various additions—AC device PnP ID to Table 5-32, _DDN (logical name
association) to Table 6-1, _ADR values for floppy, _FDI–floppy configuration
info, requirements for _CRS used with bus devices, battery presence bit to
_STA definition, QWORD to Large Resource data type, _INI Method.

5.6.4

 Wake/Sleep clarifications—_PTS not executed for S5 and SCI cannot occur
before enabled.

9.1 & 9.3

 Rewrote the IDE Controller Device section. 10.8
 Corrected the passive cooling equation for TC1 and TC2. 12.3.7 (&8)
 Removed requirement that PRx contain numeric lowest state. 7.2.x (0-2)
 Removed Duplicate Section “General-Purpose Register Blocks.” 4.7.4.3
 Clarified that C1 is required and C2 & C3 are optional and reiterate requirement

for C1 processor state in Table 5-6.
4.7.2.6 &
5.2.5

 Clarified the Passive Cooling Equation. 12.1.5
 Numerous grammar updates and corrections. 15 & 16
 Added SxD objects. 7.2 &7.2.x

1.0 Original Release.

ix

Compaq/Intel/Microsoft/Phoenix/Toshiba

Contents
1 INTRODUCTION... 1

1.1 Principal Goals ... 1
1.2 Power Management Rationale ... 2
1.3 Legacy Support... 3
1.4 OEM Implementation Strategy.. 3
1.5 Power and Sleep Buttons .. 3
1.6 ACPI Specification and the Structure Of ACPI .. 4
1.7 OS and Platform Compliance... 5

1.7.1 Platform Implementations of ACPI-defined Interfaces.. 5
1.7.2 OSPM Implementations... 9
1.7.3 OS Requirements... 10

1.8 Target Audience ... 10
1.9 Document Organization ... 10

1.9.1 ACPI Overview... 11
1.9.2 Programming Models .. 11
1.9.3 Implementation Details.. 11
1.9.4 Technical Reference .. 12

1.10 Related Documents ... 12
2 DEFINITION OF TERMS.. 13

2.1 General ACPI Terminology ... 13
2.2 Global System State Definitions ... 19
2.3 Device Power State Definitions... 21
2.4 Sleeping State Definitions ... 22
2.5 Processor Power State Definitions.. 23
2.6 Device and Processor Performance State Definitions .. 23

3 OVERVIEW.. 25
3.1 System Power Management ... 26
3.2 Power States ... 27

3.2.1 New Meanings for the Power Button.. 28
3.2.2 Platform Power Management Characteristics ... 28

3.3 Device Power Management .. 29
3.3.1 Power Management Standards ... 30
3.3.2 Device Power States .. 30
3.3.3 Device Power State Definitions.. 30

3.4 Controlling Device Power... 31
3.4.1 Getting Device Power Capabilities... 31
3.4.2 Setting Device Power States .. 31
3.4.3 Getting Device Power Status.. 32
3.4.4 Waking the Computer .. 32
3.4.5 Example: Modem Device Power Management ... 33

3.5 Processor Power Management ... 36
3.6 Device and Processor Performance States ... 36

x

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.7 Plug and Play.. 36
3.7.1 Example: Configuring the Modem ... 37

3.8 System Events... 37
3.9 Battery Management.. 38

3.9.1 Battery Communications.. 38
3.9.2 Battery Capacity.. 39
3.9.3 Battery Gas Gauge... 39
3.9.4 Low Battery Levels ... 40

3.10 Thermal Management .. 42
3.10.1 Active and Passive Cooling Modes .. 43
3.10.2 Performance vs. Energy Conservation .. 43
3.10.3 Acoustics... 43
3.10.4 Multiple Thermal Zones... 43

4 ACPI HARDWARE SPECIFICATION ... 45
4.1 Fixed Hardware Programming Model... 45

4.1.1 Functional Fixed Hardware.. 46
4.2 Generic Hardware Programming Model ... 47
4.3 Diagram Legends.. 49
4.4 Register Bit Notation .. 49
4.5 The ACPI Hardware Model ... 50

4.5.1 Hardware Reserved Bits .. 53
4.5.2 Hardware Ignored Bits... 54
4.5.3 Hardware Write-Only Bits ... 54
4.5.4 Cross Device Dependencies ... 54

4.6 ACPI Hardware Features... 55
4.7 ACPI Register Model ... 56

4.7.1 ACPI Register Summary.. 59
4.7.2 Fixed Hardware Features ... 61
4.7.3 Fixed Hardware Registers.. 71
4.7.4 Generic Hardware Registers... 78

5 ACPI SOFTWARE PROGRAMMING MODEL... 87
5.1 Overview of the System Description Table Architecture... 87

5.1.1 Address Space Translation ... 89
5.2 ACPI System Description Tables ... 90

5.2.1 Reserved Bits and Fields.. 90
5.2.2 Compatibility .. 91
5.2.3 Address Format ... 91
5.2.4 Root System Description Pointer (RSDP)... 92
5.2.5 System Description Table Header .. 94
5.2.6 Root System Description Table (RSDT)... 96
5.2.7 Extended System Description Table (XSDT).. 98
5.2.8 Fixed ACPI Description Table (FADT).. 99
5.2.9 Firmware ACPI Control Structure (FACS)..109
5.2.10 Definition Blocks..113

xi

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.11 Global System Interrupts...125
5.2.12 Smart Battery Table (SBST) ...126
5.2.13 Embedded Controller Boot Resources Table ...128

5.3 ACPI NameSpace ..130
5.3.1 Defined Root Namespaces ..133
5.3.2 Objects...133

5.4 Definition Block Encoding...133
5.5 Using the ACPI Control Method Source Language..135

5.5.1 ASL Statements..135
5.5.2 ASL Macros ...136
5.5.3 Control Method Execution ..136
5.5.4 Control Method Arguments, Local Variables, and Return Values ..137

5.6 ACPI Event Programming Model...137
5.6.1 ACPI Event Programming Model Components ...138
5.6.2 Types of ACPI Events ..139
5.6.3 Device Object Notifications..143
5.6.4 Device Class-Specific Objects ..145
5.6.5 Defined Generic Objects and Control Methods..146

5.7 Operating System-Defined Object Names...152
5.7.1 _GL (Global Lock Mutex) ...152
5.7.2 _OS (OS Name Object) ...152
5.7.3 _REV (Revision Data Object)..152

5.8 System Configuration Objects...152
5.8.1 _PIC Method ..152

6 CONFIGURATION ...153
6.1 Device Identification Objects ..153

6.1.1 _ADR (Address)...153
6.1.2 _CID (Compatible ID)..154
6.1.3 _DDN (DOS Device Name)..156
6.1.4 _HID (Hardware ID)...156
6.1.5 _STR (String)...156
6.1.6 _SUN (Slot User Number)..156
6.1.7 _UID (Unique ID) ..156

6.2 Device Configuration Objects ...157
6.2.1 _CRS (Current Resource Settings) ..158
6.2.2 _DIS (Disable) ...158
6.2.3 _DMA (Direct Memory Access) ...158
6.2.4 _FIX (Fixed Register Resource Provider)..159
6.2.5 _HPP (Hot Plug Parameters)...161
6.2.6 _MAT (Multiple APIC Table Entry) ...163
6.2.7 _PRS (Possible Resource Settings)..164
6.2.8 _PRT (PCI Routing Table)..165
6.2.9 _PXM (Proximity) ..167
6.2.10 _SRS (Set Resource Settings) ...167

xii

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.3 Device Insertion and Removal Objects ...167
6.3.1 _EDL (Eject Device List) ...169
6.3.2 _EJD (Ejection Dependent Device) ...169
6.3.3 _EJx (Eject)..170
6.3.4 _LCK (Lock)..171
6.3.5 _RMV (Remove) ..171
6.3.6 _STA (Status)...172

6.4 Resource Data Types for ACPI ...172
6.4.1 ASL Macros for Resource Descriptors ..172
6.4.2 Small Resource Data Type..172
6.4.3 Large Resource Data Type..179

6.5 Other Objects and Control Methods...199
6.5.1 _INI (Init)...199
6.5.2 _DCK (Dock)...200
6.5.3 _BDN (BIOS Dock Name) ...200
6.5.4 _REG (Region)...200
6.5.5 _BBN (Base Bus Number)..202
6.5.6 _SEG (Segment)...203
6.5.7 _GLK (Global Lock) ..204

7 POWER AND PERFORMANCE MANAGEMENT...205
7.1 Declaring a Power Resource Object..205

7.1.1 Defined Child Objects for a Power Resource...206
7.1.2 _OFF..206
7.1.3 _ON...207
7.1.4 _STA (Status)...207

7.2 Device Power Management Objects..207
7.2.1 _PS0 (Power State 0)..209
7.2.2 _PS1 (Power State 1)..209
7.2.3 _PS2 (Power State 2)..209
7.2.4 _PS3 (Power State 3)..209
7.2.5 _PSC (Power State Current)..210
7.2.6 _PR0 (Power Resources for D0) ...210
7.2.7 _PR1 (Power Resources for D1) ...210
7.2.8 _PR2 (Power Resources for D2) ...211
7.2.9 _PRW (Power Resources for Wake)..211
7.2.10 _PSW (Power State Wake) ...212
7.2.11 _IRC (In Rush Current)...212
7.2.12 _S1D (S1 Device State) ..212
7.2.13 _S2D (S2 Device State) ..212
7.2.14 _S3D (S3 Device State) ..212
7.2.15 _S4D (S4 Device State) ..213

7.3 OEM-Supplied System-Level Control Methods..213
7.3.1 _BFS (Back From Sleep) ...213
7.3.2 _PTS (Prepare To Sleep) ...213

xiii

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.3.3 _GTS (Going To Sleep)...214
7.3.4 System _Sx states ..214
7.3.5 _WAK (System Wake) ..218

8 PROCESSOR CONTROL ...219
8.1 Processor Power States..219

8.1.1 Processor Power State C0 ...221
8.1.2 Processor Power State C1 ...223
8.1.3 Processor Power State C2 ...223
8.1.4 Processor Power State C3 ...223
8.1.5 Additional Processor Power States ..224

8.2 Flushing Caches...224
8.3 Declaring a Processor Object ..225

8.3.1 _PTC (Processor Throttling Control)...225
8.3.2 _CST (C States)..226
8.3.3 Processor Performance Control ...228

9 WAKING AND SLEEPING...233
9.1 Sleeping States...234

9.1.1 S1 Sleeping State..236
9.1.2 S2 Sleeping State..236
9.1.3 S3 Sleeping State..237
9.1.4 S4 Sleeping State..237
9.1.5 S5 Soft Off State ..238
9.1.6 Transitioning from the Working to the Sleeping State..239
9.1.7 Transitioning from the Working to the Soft Off State ..239

9.2 Flushing Caches...240
9.3 Initialization...240

9.3.1 Placing the System in ACPI Mode ..242
9.3.2 BIOS Initialization of Memory ...244
9.3.3 OS Loading..246
9.3.4 Exiting ACPI Mode..248

10 ACPI-SPECIFIC DEVICE OBJECTS ..249
10.1 _SI System Indicators...249

10.1.1 _SST (System Status) ...250
10.1.2 _MSG (Message)..250

10.2 Battery Device..250
10.3 Control Method Lid Device...250

10.3.1 _LID ..250
10.4 Control Method Power and Sleep Button Devices ..251
10.5 Embedded Controller Device ..251
10.6 Fan Device..251
10.7 Generic ISA Bus Device...251
10.8 IDE Controller Device ...252

10.8.1 _GTF (Get Task File) ...254
10.8.2 _GTM (Get Timing Mode) ...255

xiv

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.8.3 _STM (Set Timing Mode)...256
10.9 Floppy Controller Device Objects ...256

10.9.1 _FDE (Floppy Disk Enumerate)..256
10.9.2 _FDI (Floppy Disk Information) ...257
10.9.3 _FDM (Floppy Disk Drive Mode) ...258

10.10 GPE Block Device ..258
10.10.1 Matching Control Methods for General-Purpose Events in a GPE Block Device259

10.11 Module Device..259
10.12 Memory Devices...261

10.12.1 Address Decoding...261
10.12.2 Example: Memory Device...261

11 POWER SOURCE DEVICES..263
11.1 Smart Battery Subsystems...263

11.1.1 ACPI Smart Battery Status Change Notification Requirements..265
11.1.2 Smart Battery Objects...267
11.1.3 Smart Battery Subsystem Control Methods ...268

11.2 Control Method Batteries..270
11.2.1 Battery Events ..270
11.2.2 Battery Control Methods...271

11.3 AC Adapters and Power Source Objects ..275
11.3.1 PSR (Power Source) ...275
11.3.2 PCL (Power Consumer List) ...275

11.4 Example: Power Source Name Space..276
12 THERMAL MANAGEMENT ...277

12.1 Thermal Control..277
12.1.1 Active, Passive, and Critical Policies...277
12.1.2 Dynamically Changing Cooling Temperatures ..278
12.1.3 Detecting Temperature Changes..278
12.1.4 Active Cooling ...280
12.1.5 Passive Cooling..280
12.1.6 Critical Shutdown ...282

12.2 Cooling Preferences...282
12.2.1 Evaluating Thermal Device Lists ..283

12.3 Thermal Objects ..284
12.3.1 ACx (Active Cooling)...284
12.3.2 ALx (Active List) ...285
12.3.3 CRT (Critical Temperature) ..285
12.3.4 HOT (Hot Temperature) ...285
12.3.5 PSL (Passive List) ..285
12.3.6 PSV (Passive)...286
12.3.7 SCP (Set Cooling Policy) ..286
12.3.8 TC1 (Thermal Constant 1) ..286
12.3.9 TC2 (Thermal Constant 2) ..286
12.3.10 TMP (Temperature) ..287

xv

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.3.11 TSP (Thermal Sampling Period)..287
12.3.12 TZD (Thermal Zone Devices) ...287
12.3.13 TZP (Thermal Zone Polling)...287

12.4 Thermal Zone Object Requirements...288
12.5 Thermal Zone Examples..288

12.5.1 Example: The Basic Thermal Zone ...288
12.5.2 Example: Multiple-Speed Fans ...290

13 ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATION293
13.1 Embedded Controller Interface Description...293
13.2 Embedded Controller Register Descriptions...296

13.2.1 Embedded Controller Status, EC_SC (R) ..297
13.2.2 Embedded Controller Command, EC_SC (W)...298
13.2.3 Embedded Controller Data, EC_DATA (R/W) ..298

13.3 Embedded Controller Command Set ..298
13.3.1 Read Embedded Controller, RD_EC (0x80) ..298
13.3.2 Write Embedded Controller, WR_EC (0x81)...299
13.3.3 Burst Enable Embedded Controller, BE_EC (0x82)...299
13.3.4 Burst Disable Embedded Controller, BD_EC (0x83) ...299
13.3.5 Query Embedded Controller, QR_EC (0x84)...300

13.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT..............................300
13.5 Embedded Controller Firmware...300
13.6 Interrupt Model...301

13.6.1 Event Interrupt Model...301
13.6.2 Command Interrupt Model..301

13.7 Embedded Controller Interfacing Algorithms..302
13.8 Embedded Controller Description Information..302
13.9 SMBus Host Controller Interface via Embedded Controller ...303

13.9.1 Register Description ...303
13.9.2 Protocol Description ...307
13.9.3 SMBus Register Set..311

13.10 SMBus Devices...312
13.10.1 SMBus Device Access Restrictions...313
13.10.2 SMBus Device Command Access Restriction..313

13.11 Defining an Embedded Controller Device in ACPI Namespace ...313
13.11.1 Example: EC Definition ASL Code...314

13.12 Defining an EC SMBus Host Controller in ACPI Namespace..314
13.12.1 Example: EC SMBus Host Controller ASL-Code ..315

14 ACPI SYSTEM MANAGEMENT BUS INTERFACE SPECIFICATION...................................317
14.1 SMBus Overview...317

14.1.1 SMBus Slave Addresses ...317
14.1.2 SMBus Protocols..317
14.1.3 SMBus Status Codes...318
14.1.4 SMBus Command Values ...318

14.2 Declaring SMBus Host Controller Objects ...319

xvi

Compaq/Intel/Microsoft/Phoenix/Toshiba

14.3 Declaring SMBus Devices..319
14.4 Declaring SMBus Operation Regions..320
14.5 Declaring SMBus Fields ..321
14.6 Declaring and Using an SMBus Data Buffer...323
14.7 Using the SMBus Protocols ...324

14.7.1 Read/Write Quick (SMBQuick) ..324
14.7.2 Send/Receive Byte (SMBSendReceive) ..324
14.7.3 Read/Write Byte (SMBByte) ..325
14.7.4 Read/Write Word (SMBWord) ...325
14.7.5 Read/Write Block (SMBBlock)...326
14.7.6 Word Process Call (SMBProcessCall)...327
14.7.7 Block Process Call (SMBBlockProcessCall) ...327

15 SYSTEM ADDRESS MAP INTERFACES ...329
15.1 INT 15H, E820H - Query System Address Map ...329
15.2 E820 Assumptions and Limitations...331
15.3 EFI GetMemoryMap() Boot Services Function ..331
15.4 EFI Assumptions and Limitations...333
15.5 Example Address Map ..333
15.6 Example: Operating System Usage ...334

16 ACPI SOURCE LANGUAGE (ASL) REFERENCE...335
16.1 ASL Language Grammar..335

16.1.1 ASL Grammar Notation..335
16.1.2 ASL Names..337
16.1.3 ASL Language and Terms...337

16.2 Full ASL Reference..351
16.2.1 ASL Names..351
16.2.2 ASL Data Types ...352
16.2.3 ASL Terms...359
16.2.4 ASL Macros for Resource Descriptors ..403

17 ACPI MACHINE LANGUAGE (AML) SPECIFICATION ...411
17.1 Notation Conventions ..411
17.2 AML Grammar Definition ..412

17.2.1 Name Objects Encoding..413
17.2.2 Data Objects Encoding ...414
17.2.3 Package Length Encoding...414
17.2.4 Term Objects Encoding ..415
17.2.5 Miscellaneous Objects Encoding...421

17.3 AML Byte Stream Byte Values ...422
17.4 AML Encoding of Names in the Namespace...429

A DEVICE CLASS PM SPECIFICATIONS..431
A.1 Overview...431
A.2 Device Power States..431

A.2.1 Bus Power Management...432
A.2.2 Display Power Management...432

xvii

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.2.3 PCMCIA/PCCARD/CardBus Power Management ...432
A.2.4 PCI Power Management...432
A.2.5 USB Power Management...433
A.2.6 Device Classes...433

A.3 Default Device Class ...433
A.3.1 Default Power State Definitions ...433
A.3.2 Default Power Management Policy ..434
A.3.3 Default Wake Events ...434
A.3.4 Minimum Power Capabilities...434

A.4 Audio Device Class..434
A.4.1 Power State Definitions..434
A.4.2 Power Management Policy...435
A.4.3 Wake Events..435
A.4.4 Minimum Power Capabilities...435

A.5 COM Port Device Class ..436
A.5.1 Power State Definitions..436
A.5.2 Power Management Policy...436
A.5.3 Wake Events..436
A.5.4 Minimum Power Capabilities...437

A.6 Display Device Class ...437
A.6.1 Power State Definitions..437
A.6.2 Power Management Policy...438
A.6.3 Wake Events..439
A.6.4 Minimum Power Capabilities...439

A.7 Input Device Class ..439
A.7.1 Power State Definitions..439
A.7.2 Power Management Policy...440
A.7.3 Wake Events..440
A.7.4 Minimum Power Capabilities...440

A.8 Modem Device Class ...441
A.8.1 Technology Overview..441
A.8.2 Power State Definitions..442
A.8.3 Power Management Policy...442
A.8.4 Wake Events..442
A.8.5 Minimum Power Capabilities...443

A.9 Network Device Class ...443
A.9.1 Power State Definitions..443
A.9.2 Power Management Policy...444
A.9.3 Wake Events..444
A.9.4 Minimum Power Capabilities...444

A.10 PC Card Controller Device Class ...444
A.10.1 Power State Definitions..445
A.10.2 Power Management Policy...446
A.10.3 Wake Events..446

xviii

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.10.4 Minimum Power Capabilities ...446
A.11 Storage Device Class ...446

A.11.1 Power State Definitions..447
A.11.2 Power Management Policy...448
A.11.3 Wake Events..449
A.11.4 Minimum Power Capabilities ...449

B ACPI EXTENSIONS FOR DISPLAY ADAPTERS ...451
B.1 Introduction ..451
B.2 Definitions ...452
B.3 ACPI Namespace ..452
B.4 Display-specific Methods ..453

B.4.1 _DOS (Enable/Disable Output Switching) ..453
B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)454
B.4.3 _ROM (Get ROM Data)...455
B.4.4 _GPD (Get POST Device)..456
B.4.5 _SPD (Set POST Device) ...456
B.4.6 _VPO (Video POST Options)...457

B.5 Output Device-specific Methods ...457
B.5.1 _ADR (Return the Unique ID for this Device) ..457
B.5.2 _BCL (Query List of Brightness Control Levels Supported)..457
B.5.3 _BCM (Set the Brightness Level) ...458
B.5.4 _DDC (Return the EDID for this Device) ...458
B.5.5 _DCS (Return the Status of Output Device) ..459
B.5.6 _DGS (Query Graphics State) ..459
B.5.7 _DSS – Device Set State ..460

B.6 Note on State Changes ..461

Introduction 1

Compaq/Intel/Microsoft/Phoenix/Toshiba

1 Introduction
The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration and
power management of both devices and entire systems. ACPI is the key element in Operating System-
directed configuration and Power Management (OSPM).

ACPI evolves the existing collection of power management BIOS code, Advanced Power Management
(APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor Specification (MPS)
tables and so on into a well-defined power management and configuration interface specification. ACPI
provides the means for an orderly transition from existing (legacy) hardware to ACPI hardware, and it
allows for both ACPI and legacy mechanisms to exist in a single machine and to be used as needed.

Further, new system architectures are being built that stretch the limits of current Plug and Play interfaces.
ACPI evolves the existing motherboard configuration interfaces to support these advanced architectures in
a more robust, and potentially more efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of computers
including (but not limited to) desktop, mobile, workstation, and server machines. From a power
management perspective, OSPM/ACPI promotes the concept that systems should conserve energy by
transitioning unused devices into lower power states including placing the entire system in a low-power
state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals
ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPI and OSPM are to:
1. Enable all computer systems to implement motherboard configuration and power management

functions, using appropriate cost/function tradeoffs.
• Computer systems include (but are not limited to) desktop, mobile, workstation, and server

machines.
• Machine implementers have the freedom to implement a wide range of solutions, from the very

simple to the very aggressive, while still maintaining full OS support.
• Wide implementation of power management will make it practical and compelling for applications

to support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.
• Power management policies too complicated to implement in a ROM BIOS can be implemented

and supported in the OS, allowing inexpensive power managed hardware to support very elaborate
power management policies.

• Gathering power management information from users, applications, and the hardware together
into the OS will enable better power management decisions and execution.

• Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

2 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

3. Facilitate and accelerate industry-wide implementation of power management.
• OSPM and ACPI will reduce the amount of redundant investment in power management

throughout the industry, as this investment and function will be gathered into the OS. This will
allow industry participants to focus their efforts and investments on innovation rather than simple
parity.

• The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to
gain the benefits of OS improvements and innovations.

4. Create a robust interface for configuring motherboard devices.
• Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale
It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the
OS and the hardware to achieve the principal goals set forth above.
• Minimal support for power management inhibits application vendors from supporting or exploiting it.

• Moving power management functionality into the OS makes it available on every machine on
which the OS is installed. The level of functionality (power savings, and so on) varies from
machine to machine, but users and applications will see the same power interfaces and semantics
on all OSPM machines.

• This will enable application vendors to invest in adding power management functionality to their
products.

• Legacy power management algorithms were restricted by the information available to the BIOS that
implemented them. This limited the functionality that could be implemented.
• Centralizing power management information and directives from the user, applications, and

hardware in the OS allows the implementation of more powerful functionality. For example, an
OS can have a policy of dividing I/O operations into normal and lazy. Lazy I/O operations (such
as a word processor saving files in the background) would be gathered up into clumps and done
only when the required I/O device is powered up for some other reason. A non-lazy I/O request
made when the required device was powered down would cause the device to be powered up
immediately, the non-lazy I/O request to be carried out, and any pending lazy I/O operations to be
done. Such a policy requires knowing when I/O devices are powered up, knowing which
application I/O requests are lazy, and being able to assure that such lazy I/O operations do not
starve.

• Appliance functions, such as answering machines, require globally coherent power decisions. For
example, a telephone-answering application could call the OS and assert, “I am waiting for
incoming phone calls; any sleep state the system enters must allow me to wake and answer the
telephone in 1 second.” Then, when the user presses the “off” button, the system would pick the
deepest sleep state consistent with the needs of the phone answering service.

• BIOS code has become very complex to deal with power management. It is difficult to make work
with an OS and is limited to static configurations of the hardware.
• There is much less state information for the BIOS to retain and manage (because the OS manages

it).
• Power management algorithms are unified in the OS, yielding much better integration between the

OS and the hardware.
• Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a mobile

system docks, the OS can deal with dynamic machine configurations.
• Because the BIOS has fewer functions and they are simpler, it is much easier (and therefore

cheaper) to implement and support.

Introduction 3

Compaq/Intel/Microsoft/Phoenix/Toshiba

• The existing structure of the PC platform constrains OS and hardware designs.
• Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the

hardware from the OS.
• ACPI is by nature more portable across operating systems and processors. ACPI control methods

allow for very flexible implementations of particular features.

1.3 Legacy Support
ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS OSPM/ACPI OS

Legacy hardware A legacy OS on legacy hardware
does what it always did.

If the OS lacks legacy support, legacy
support is completely contained within the
hardware functions.

Legacy and ACPI hardware
support in machine

It works just like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware to
switch from legacy to OSPM/ACPI mode
and from then on, the system has full
OSPM/ACPI support.

ACPI-only hardware There is no power management. There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy
Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:
• An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software

and implement the hardware part of the ACPI specification (for a given platform) in one of many
possible ways.

• An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens up
even more hardware implementation possibilities. However, OEMs who implement hardware that is
OSPM-compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing
drivers for their implementation.

1.5 Power and Sleep Buttons
OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

4 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

1.6 ACPI Specification and the Structure Of ACPI
This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

ACPI TablesACPI BIOSACPI Registers

Kernel

Device
Driver

ACPI
Register
Interface

ACPI Table
Interface

ACPI BIOS
Interface

- ACPI Spec Covers this area.
- OS specific technology, not part of ACPI.
- Hardware/Platform specific technology, not part of ACPI.

Platform Hardware

Existing
industry
standard
register

interfaces to:
CMOS, PIC,

PITs, ...

ACPI Driver/
AML Interpreter

Applications
OS

Dependent
Application

APIs

OS Specific
technologies,

interfaces, and code.

OS
Independent
technologies,

interfaces,
code, and
hardware.

BIOS

OSPM System Code

Figure 1-1 OSPM/ACPI Global System

Introduction 5

Compaq/Intel/Microsoft/Phoenix/Toshiba

There are three run-time components to ACPI:
• ACPI System Description Tables. Describe the interfaces to the hardware. Some descriptions limit

what can be built (for example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be built in
arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function.
ACPI Tables containing “Definition Blocks” can make use of a pseudocode type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that
executes procedures encoded in the pseudocode language and stored in the ACPI tables containing
“Definition Blocks.” The pseudocode language, known as ACPI Machine Language (AML), is a
compact, tokenized, abstract type of machine language.

• ACPI Registers. The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

• ACPI System Firmware. Refers to the portion of the firmware that is compatible with the ACPI
specifications. Typically, this is the code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely, compared to a
legacy BIOS. The ACPI Description Tables are also provided by the ACPI System Firmware.

1.7 OS and Platform Compliance
The ACPI 2.0 specification contains only interface specifications. ACPI 2.0 does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces
System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

6 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

1.7.1.1 Recommended Features and Interface Descriptions for Design
Guides
Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI 2.0 specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI 2.0.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces specified
below are generally spread throughout the ACPI specification. The ACPI specification defines:

System address map reporting interfaces (Section 15)

ACPI System Description Tables (Section 5.2):

Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table

ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.8):

Power management timer control/status

Power or sleep button with S5 override (also possible in generic space)

Real time clock wakeup alarm control/status

SCI /SMI routing control/status for Power Management and General-purpose events

System power state controls (sleeping/wake control) (Section 9)

Processor power state control (c states) (Section 8)

Processor throttling control/status (Section 8)

Processor performance state control/status (Section 8)

General-purpose event control/status

Global Lock control/status

System Reset control (Section 4.7.3.6)

Embedded Controller control/status (Section 13)

SMBus Host Controller (HC) control/status (Section 14)

Smart Battery Subsystem (Section 11)

Introduction 7

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2,
Section 5.6.5):

General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 12)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 10.1)
Devices and device controls (Section 10):

Processor (Section 8)
Control Method Battery (Section 11)
Smart Battery Subsystem (Section 11)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 13)
Fan
Generic Bus Bridge
IDE Controller
Floppy Controller
GPE Block
Module
Memory

Global Lock related interfaces

ACPI Event programming model (Section 5.6)

ACPI-defined System BIOS Responsibilities (Section 9)

ACPI-defined State Definitions (Section 2):

Global system power states (G-states, S0, S5)
System sleeping states (S-states S1-S4) (Section 9)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides
The following provides an example of how a client platform design guide, whose goal is to require robust
configuration and power management for the system class, could use the recommended terminology to
define ACPI requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI 2.0 defined system
features, concepts, and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)

8 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events

(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

• ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:

General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (ACPI 2.0 Section 6)
System power state control (ACPI 2.0 Section 7.3)
Devices and device controls:

Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)

Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

• ACPI Event programming model (ACPI 2.0 Section 5.6)
• ACPI-defined System BIOS Responsibilities (ACPI 2.0 Section 9)
• ACPI-defined State Definitions:

System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class
specifications)

Processor power states (All processors must support the C1 Power State)

The following provides an example of how a design guide for systems that execute multiple OS instances,
whose goal is to require robust configuration and continuous availability for the system class, could use the
recommended terminology to define ACPI related requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI 2.0 defined system
features and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

General-purpose event control/status

Introduction 9

Compaq/Intel/Microsoft/Phoenix/Toshiba

SCI /SMI routing control/status for Power Management and General-purpose events

(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

• ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:

General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (ACPI 2.0 Section 6)
System power state control (ACPI 2.0 Section 7.3)
System indicators
Devices and device controls:

Processor
Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

• ACPI Event programming model (ACPI 2.0 Section 5.6)
• ACPI-defined System BIOS Responsibilities (ACPI 2.0 Section 9)
• ACPI-defined State Definitions:

Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations
OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their
associated event models appropriate to the system platform class upon which the OS executes. This is the
implementation of OSPM. The following outlines the OS enhancements and elements necessary to support
all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs to be
modified to:
• Use system address map reporting interfaces.
• Find and consume the ACPI System Description Tables.
• Interpret ACPI machine language (AML).
• Enumerate and configure motherboard devices described in the ACPI Namespace.
• Interface with the power management timer.
• Interface with the real-time clock wake alarm.
• Enter ACPI mode (on legacy hardware systems).
• Implement device power management policy.
• Implement power resource management.
• Implement processor power states in the scheduler idle handlers.
• Control processor and device performance states.
• Implement the ACPI thermal model.
• Support the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general-purpose events, embedded controller interrupts, and dynamic device support.
• Support acquisition and release of the Global Lock.
• Use the reset register to reset the system.
• Provide APIs to influence power management policy.
• Implement driver support for ACPI-defined devices.
• Implement APIs supporting the system indicators.
• Support all system states S1–S5.

10 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

1.7.3 OS Requirements
The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:
• Use system address map reporting interfaces to get the system address map on Intel Architecture (IA)

platforms:
INT 15H, E820H - Query System Address Map interface (see section 15, “System Address Map

Interfaces”)
EFI GetMemoryMap() Boot Services Function (see section 15, “System Address Map Interfaces”)

• Find and consume the ACPI System Description Tables (see section 5, “ACPI Software Programming
Model”).

• Implementation of an AML interpreter supporting all defined AML grammar elements (see section 17,
ACPI Machine Language Specification”).

• Support for the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

• Enumerate and configure motherboard devices described in the ACPI Namespace.
• Implement support for the following ACPI devices defined within this specification:

Embedded Controller Device (see section 13, “ACPI Embedded Controller Interface Specification”)
GPE Block Device (see section 10.10, “GPE Block Device”)
Module Device (see section 10.11, “Module Device”)

• Implementation of the ACPI thermal model (see section 12, “Thermal Management”).
• Support acquisition and release of the Global Lock.
• OS-directed power management support (device drivers are responsible for maintaining device context

as described by the Device Power Management Class Specifications described in Appendix A).

1.8 Target Audience
This specification is intended for the following users:
• OEMs building hardware containing ACPI-compatible interfaces
• Operating system and device driver developers
• BIOS and ACPI system firmware developers
• CPU and chip set vendors
• Peripheral vendors

1.9 Document Organization
The ACPI specification document is organized into the following four parts:
• The first part of the specification (sections 1 through 3) introduces ACPI and provides an executive

overview.
• The second part (sections 4 and 5) defines the ACPI hardware and software programming models.
• The third part (sections 6 through 15) specifies the ACPI implementation details; this part of the

specification is primarily for developers.
• The fourth part (sections 16 and 17) is technical reference material; section 16 is the ACPI Source

Language (ASL) reference, parts of which are referred to by most of the other sections in the
document.

• Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

Introduction 11

Compaq/Intel/Microsoft/Phoenix/Toshiba

1.9.1 ACPI Overview
The first three sections of the specification provide an executive overview of ACPI.
• Section 1: Introduction. Discusses the purpose and goals of the specification, presents an overview of

the ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-
compatible system, and provides references to related specifications.

• Section 2: Definition of Terms. Defines the key terminology used in this specification. In particular,
the global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are
defined in this section, along with the device power state definitions: Off (D3), D2, D1, and Fully-On
(D0). Device and processor performance states (P0, P1, …Pn) are also discussed.

• Section 3: Overview. Gives an overview of the ACPI specification in terms of the functional areas
covered by the specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal
management.

1.9.2 Programming Models
Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and 5.
These sections are the heart of the ACPI specification. There are extensive cross-references between the
two sections.
• Section 4: ACPI Hardware Specification. Defines a set of hardware interfaces that meet the goals of

this specification.
• Section 5: ACPI Software Programming Model. Defines a set of software interfaces that meet the

goals of this specification.

1.9.3 Implementation Details
The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.
• Section 6: Configuration. Defines the reserved Plug and Play objects used to configure and assign

resources to devices, and share resources and the reserved objects used to track device insertion and
removal. Also defines the format of ACPI-compatible resource descriptors.

• Section 7: Power and Performance Management. Defines the reserved device power-management
objects and the reserved-system power-management objects.

• Section 8: Processor Control. Defines how the OS manages the processors’ power consumption and
other controls while the system is in the working state.

• Section 9: Waking and Sleeping. Defines in detail the transitions between system working and
sleeping states and their relationship to wake events. Refers to the reserved objects defined in sections
6, 7, and 8.

• Section 10: ACPI-Specific Device Objects. Lists the integrated devices that need support for some
device-specific ACPI controls, along with the device-specific ACPI controls that can be provided.
Most device objects are controlled through generic objects and control methods and have generic
device IDs; this section discusses the exceptions.

• Section 11: Power Source Devices. Defines the reserved battery device and AC adapter objects.
• Section 12: Thermal Management. Defines the reserved thermal management objects.
• Section 13: ACPI Embedded Controller Interface Specification. Defines the interfaces between an

ACPI-compatible OS and an embedded controller.
• Section 14: ACPI System Management Bus Interface Specification. Defines the interfaces between

an ACPI-compatible OS and a System Management Bus (SMBus host controller.

12 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

1.9.4 Technical Reference
The fourth part of the specification contains reference material for developers.
• Section 15: System Address Map Interfaces. Explains the special INT 15 call for use in

ISA/EISA/PCI bus-based systems. This call supplies the OS with a clean memory map indicating
address ranges that are reserved and ranges that are available on the motherboard. Also describes
memory devices.

• Section 16: ACPI Source Language Reference. Defines the syntax of all the ASL statements that can
be used to write ACPI control methods, along with example syntax usage.

• Section 17: ACPI Machine Language Specification. Defines the grammar of the language of the
ACPI virtual machine language. An ASL translator (compiler) outputs AML.

• Appendix A: Device class specifications. Describes device-specific power management behavior on a
per device-class basis.

• Appendix B: Video Extensions. Contains video device class-specific ACPI interfaces.

1.10 Related Documents
Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from http://www.microsoft.com/hwdev/specs/:
• Advanced Power Management (APM) BIOS Specification, Revision 1.2.
• Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® ItaniumTM Architecture Software Developer’s Manual, Volumes 1–4, Revision 1.0, Intel
Corporation, January 2000.

ItaniumTM Processor Family System Abstraction Layer Specification, Intel Corporation, July 2001.

Extensible Firmware Interface Specification, Version 1.10, March 2002.

Documentation and specifications for the Smart Battery System components and the SMBus are available
from http://www.sbs-forum.org:
• Smart Battery Charger Specification, Revision 1.1, Smart Battery System Implementers Forum,

December, 1998.
• Smart Battery Data Specification, Revision 1.1, Smart Battery System Implementers Forum,

December, 1998.
• Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,

December, 1998.
• Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers

Forum, December, 1998.
• System Management Bus Specification, Revision 1.1, Smart Battery System Implementers Forum,

December, 1998.

Definition of Terms 13

Compaq/Intel/Microsoft/Phoenix/Toshiba

2 Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:

General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology
Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to allow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware
Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudocode for a virtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definition is provided in section 17, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)
An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple I/O subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICs commonly attached directly to
processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)
The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 16, “ACPI Source Language (ASL) Reference.”

14 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Control Method
A control method is a definition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of a thermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPI-compatible OS.
An ACPI-compatible system must provide a minimal set of control methods in the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by either including
control methods in the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.

Central Processing Unit (CPU) or processor
The part of a platform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines a working state, labeled G0 (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. For more information, see section 8, “Processor
Control.”

Definition Block
A definition block contains information about hardware implementation and configuration details in
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocks in the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the
contents of the Differentiated Definition Block into the ACPI Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPI Namespace, can contain
references to the Differentiated Definition Block. For more information, see section 5.2.10, “Device
Power States.”

Device
Hardware component outside the core chip set of a platform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Intergrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget this information
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS software is responsible for saving and restoring the information.
Device Context refers to small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base
system. The OS always inserts the DSDT information into the ACPI Namespace at system boot time
and never removes it.

Extensible Firmware Interface (EFI)
An interface between the OS and the platform firmware. The interface is in the form of data tables that
contain platform related information, and boot and run-time service calls that are available to the OS
and loader. Together, these provide a standard environment for booting an OS.

Definition of Terms 15

Compaq/Intel/Microsoft/Phoenix/Toshiba

Embedded Controller
The general class of microcontrollers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform design,
as long as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller Interface
A standard hardware and software communications interface between an OS driver and an embedded
controller. This allows any OS to provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
This in turn enables the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. FACS is passed to an ACPI-compatible OS via the Fixed ACPI Description Table (FADT). The
FACS contains the system’s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details the
OS needs to direct management of the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT that contains other platform implementation and configuration details. An OEM must
provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events
A set of events that occur at the ACPI interface when a paired set of status and event bits in the fixed
feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SCI is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registers in fixed feature register space at specific address locations in system I/O
address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
generic events generate SCIs.

Generic Feature
A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events.

16 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled G0 through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignores ignored bits in ACPI hardware registers on reads and preserves ignored bits on
writes.

Intel Architecture-Personal Computer (IA-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry-
standard PC architecture.

I/O APIC
An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the
processor’s local APIC.

I/O SAPIC
An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses a legacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.

Legacy OS
An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.

Local SAPIC
A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/O
SAPIC.

Multiple APIC Description Table (MADT)
The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.

Definition of Terms 17

Compaq/Intel/Microsoft/Phoenix/Toshiba

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
A set of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operate in a given
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows the
bits within a register grouping to be split between two chips.

Reserved Bits
Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bits in enable and status
registers and preserve bits in control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT.

Root System Description Table (RSDT)
A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform description.
After the DSDT is loaded into the ACPI Namespace, each secondary description table with a unique
OEM Table ID is loaded. This allows the OEM to provide the base support in one table, while adding
smaller system options in other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OS to transition to a sleeping state from the working state.

18 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Smart Battery Subsystem
A battery subsystem that conforms to the following specifications: Smart Battery and either Smart
Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

System Management Bus (SMBus)
A two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface
A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)
An advanced APIC commonly found on Intel Architecture-based 64-bit systems.

System Context
The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an active, low,
shareable, level interrupt.

System Management Interrupt (SMI)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems
must support a way of re-mapping the interrupt events between SMIs and SCIs when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are
marked by trip points, which are implemented to generate an SCI when the temperature in a thermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

Definition of Terms 19

Compaq/Intel/Microsoft/Phoenix/Toshiba

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:
• Does application software run?
• What is the latency from external events to application response?
• What is the power consumption?
• Is an OS reboot required to return to a working state?
• Is it safe to disassemble the computer?
• Can the state be entered and exited electronically?

Following is a list of the system states:

G3 Mechanical Off
A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of a large red switch). Various government agencies and countries
require this operating mode. It is implied by the entry of this off state through a mechanical means that
no electrical current is running through the circuitry and that it can be worked on without damaging the
hardware or endangering service personnel. The OS must be restarted to return to the Working state.
No hardware context is retained. Except for the real-time clock, power consumption is zero.

G2/S5 Soft Off
A computer state where the computer consumes a minimal amount of power. No user mode or system
mode code is run. This state requires a large latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machine in this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not
being executed, and the system “appears” to be off (from an end user’s perspective, the display is off,
and so on). Latency for returning to the Working state varies on the wake environment selected prior to
entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the
rest by system software. It is not safe to disassemble the machine in this state.

G0 Working
A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can
select, through some UI, various performance/power characteristics of the system to have the software
optimize for performance or battery life. The system responds to external events in real time. It is not
safe to disassemble the machine in this state.

20 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

S4 Non-Volatile Sleep
A special global system state that allows system context to be saved and restored (relatively slowly)
when power is lost to the motherboard. If the system has been commanded to enter S4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers.
The machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off state,
transitioning to Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OS restarting, it will reload the system context and activate it. The net effect for the
user is what looks like a resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or BIOS can save the system context takes too long from the user’s point of view. The
transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Global system state Software runs Latency
Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically

G0 Working Yes 0 Large No No Yes

G1 Sleeping No >0, varies
with sleep
state

Smaller No No Yes

G2/S5 Soft Off No Long Very near 0 Yes No Yes

G3 Mechanical Off No Long RTC battery Yes Yes No

Definition of Terms 21

Compaq/Intel/Microsoft/Phoenix/Toshiba

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the G0 and G1 states almost exclusively (the G3 state may be used for moving the machine or
repairing it).

2.3 Device Power State Definitions
Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
• Power consumption. How much power the device uses.
• Device context. How much of the context of the device is retained by the hardware. The OS is

responsible for restoring any lost device context (this may be done by resetting the device).
• Device driver. What the device driver must do to restore the device to full on.
• Restore time. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes, only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For a list of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 Off
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devices in this state do not decode their address lines. Devices in this state have the longest
restore times. All classes of devices define this state.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
D0. Buses in D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

D0 Fully-On
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

22 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 2-2 Summary of Device Power States

Device State
Power
Consumption

Device Context
Retained Driver Restoration

D0 - Fully-
On

As needed for
operation

All None

D1 D0>D1>D2>D3 >D2 <D2

D2 D0>D1>D2>D3 <D1 >D1

D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

2.4 Sleeping State Definitions
Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4, “System _Sx States.” For a detailed definition of the transitions between each of the Sx states, see
section 9.1, “Sleeping States.”

S1 Sleeping State
The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping state
except that the CPU and system cache context is lost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’s reset vector after the wake event.

S3 Sleeping State
The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L2 configuration context. Control starts from the processor’s reset
vector after the wake event.

S4 Sleeping State
The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 state is similar to the S4 state except that the OS does not save any context. The system is in
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the S4 state to allow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

Definition of Terms 23

Compaq/Intel/Microsoft/Phoenix/Toshiba

2.5 Processor Power State Definitions
Processor power states (Cx states) are processor power consumption and thermal management states within
the global working state, G0. The Cx states possess specific entry and exist semantics and are briefly
defined below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”

C0 Processor Power State
While the processor is in this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. While in the C3
state, the processor’s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions
Device and Processor performance states (Px states) are power consumption and capability states within the
active/executing states, C0 for processors and D0 for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.3.3, “Declaring a
Processor Object.” For a more detailed definition of each Px state from a device perspective see section 3.6,
“Device and Processor Performance States,” and the device class specifications in Appendix A.

P0 Performance State
While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of a device or processor is limited below
its maximum and consumes less than maximum power.

Pn Performance State

In this performance state, the performance capability of a device or processor is at its minimum level and
consumes minimal power while remaining in an active state. State n is a maximum number and is processor
or device dependent. Processors and devices may define support for an arbitrary number of performance
states not to exceed 16.

24 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Overview 25

Compaq/Intel/Microsoft/Phoenix/Toshiba

3 Overview
ACPI provides OSPM with direct and exclusive control over the power management and motherboard
device configuration functions of a computer. When it starts, OSPM takes over these functions from legacy
BIOS interfaces such as the APM BIOS and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as controlling the power, performance, and
thermal status of the system based on user preference and application requests. ACPI provides low-level
interfaces that allow OSPM to perform these functions. The functional areas covered by the ACPI
specification are:
• System power management. ACPI defines mechanisms for putting the computer as a whole in and

out of system sleeping states. It also provides a general mechanism for any device to wake the
computer.

• Device power management. ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

• Processor power management. While the OS is idle but not sleeping, it will use commands described
by ACPI to put processors in low-power states.

• Device and processor performance management. While the system is active, OSPM will transition
devices and processors into different performance states, defined by ACPI, to achieve a desirable
balance between performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

• Plug and Play. ACPI specifies information used to enumerate and configure motherboard devices.
This information is arranged hierarchically so when events such as docking and undocking take place,
the OS has precise, a priori knowledge of which devices are affected by the event.

• System Events. ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the core logic
chip set.

• Battery management. Battery management policy moves from the APM BIOS to the ACPI OS. An
ACPI-compatible battery device needs either a Smart Battery subsystem interface, which is controlled
by the OS directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an OEM to
choose any type of the battery and any kind of communication interface supported by ACPI. The
battery must comply with the requirements of its interface, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by adjusting
the Low Battery or Battery Warning trip point. When there are multiple batteries present, the battery
subsystem is not required to perform any synthesis of a “composite battery” from the data of the
separate batteries. In cases where the battery subsystem does not synthesize a “composite battery”
from the separate battery’s data, the OS must provide that synthesis.

• Thermal management. Since the OS controls the power states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scaleable model that allows OEMs to
define thermal zones, thermal indicators, and methods for cooling thermal zones.

26 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

• Embedded Controller. ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This allows any OS to provide a standard
bus enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

• SMBus Controller. ACPI defines a standard hardware and software communications interface
between an OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. This in turn enables the OEM
to provide platform features that the OS and applications can use.

Once in ACPI mode, system firmware or other software must not manipulate the platform’s configuration,
power, performance, and thermal control interfaces (if implemented) independently of OSPM. OSPM alone
is responsible for coordinating the configuration, power management, performance management, and
thermal control policy of the system. Manipulation of these interfaces independently of OSPM undermines
the purpose of OSPM/ACPI and may adversely impact the system’s configuration, power, performance,
and thermal policy goals. However, in the case of the possibility of damage to system from excessive
thermal conditions where OSPM latency is insufficient to remedy an adverse thermal condition, the
platform may exercise a failsafe thermal control mechanism that reduces the performance of a system
component to avoid damage. In this case, the platform should notify OSPM of the performance reduction if
the reduction is of significant duration (in other words, if the duration of reduced performance could
adversely impact OSPM’s power or performance control policy).

3.1 System Power Management
Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and
knowledge of how devices are being used by applications, the OS puts devices in and out of low-power
states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

Overview 27

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.2 Power States
From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:

G3 -Mech
Off

Legacy

Wake
Event

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure

G2 (S5) -
Soft Off

BIOS
Routine

C0

D0
D1

D2
D3

Modem

D0
D1

D2
D3
HDD

D0
D1

D2
D3

CDROM

C2
C1

Cn

Performance
State Px

Throttling

C0

CPU

Figure 3-1 Global System Power States and Transitions

See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to doing work. User-mode application threads are dispatched and running. Individual
devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not
being used. Any device the system turns off because it is not actively in use can be turned on with short
latency. (What “short” means depends on the device. An LCD display needs to come on in sub-second
times, while it is generally acceptable to wait a few seconds for a printer to wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

28 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

When the computer is idle or the user has pressed the power button, the OS will put the computer into one
of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
a switch and a latency of minutes is allowed, the OS could save all system context into an NVS file and
transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 New Meanings for the Power Button
In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or,
on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user wants
the machine to “come on” in less than 1 second with all context as it was when the user turned the machine
“off”), system alert functions (such as the system being used as an answering machine or fax machine), or
application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC
Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section
12, “Thermal Management”) and the embedded controller interface (see section 13, “ACPI Embedded
Controller Interface Specification”).

Overview 29

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.2.2.2 Desktop PCs
Power-managed desktops will be of two types, though the first type will migrate to the second over time.
• Ordinary “Green PC.” Here, new appliance functions are not the issue. The machine is really only

used for productivity computations. At least initially, such machines can get by with very minimal
function. In particular, they need the normal ACPI timers and controls, but don’t need to support
elaborate sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as possible (to
allow for maximum compute speed with minimum power wasted on unused devices). Such PCs will
also need to support wake from the sleeping state by means of a timer, because this allows
administrators to force them to turn on just before people are to show up for work.

• Home PC. Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management).

3.2.2.3 Multiprocessor and Server PCs
Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.
• Day Mode. In day mode, servers are power-managed much like a corporate ordinary green PC, staying

in the Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power management can
result in large savings. OSPM allows careful tuning of when to do this, thus making it workable.

• Night Mode. In night mode, servers look like home PCs. They sleep as deeply as they can and are still
able to wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a print job
at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and then goes back to
sleep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management
This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state is
described, and an example of ACPI-compatible device management using a modem is given.

30 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.3.1 Power Management Standards
To manage power of all the devices in the system, the OS needs standard methods for sending commands
to a device. These standards define the operations used to manage power of devices on a particular bus and
the power states that devices can be put into. Defining these standards for each bus creates a baseline level
of power management support the OS can utilize. Independent Hardware Vendors (IHVs) do not have to
spend extra time writing software to manage power of their hardware, because simply adhering to the
standard gains them direct OS support. For OS vendors, the bus standards allow the power management
code to be centralized in each bus driver. Finally, bus-driven power management allows the OS to track the
states of all devices on a given bus. When all the devices are in a given state (or example, D3 - off), the OS
can put the entire bus into the power supply mode appropriate for that state (for example, D3 - off).

Bus-level power management specifications are written for the following buses:
• PCI
• CardBus
• USB
• IEEE 1394

3.3.2 Device Power States
To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of the following criteria:
• Power consumption. How much power the device uses.
• Device context. How much of the context of the device is retained by the hardware.
• Device driver. What the device driver must do to restore the device to fully on.
• Restore latency. How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See section 2.3, “Device Power State Definitions,” for the detailed description of the four general
device power states (D0-D3).

3.3.3 Device Power State Definitions
The device power state definitions are device-independent, but classes of devices on a bus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to set
the device power state to a given level is invoked, the actions a device might take and the specific sorts of
behaviors the OS can assume while the device is in that state will vary from device type to device type. For
a fully integrated device power management system, these class-specific power characteristics must also be
standardized:
• Device Power State Characteristics. Each class of device has a standard definition of target power

consumption levels, state-change latencies, and context loss.
• Minimum Device Power Capabilities. Each class of device has a minimum standard set of power

capabilities.
• Device Functional Characteristics. Each class of device has a standard definition of what subset of

device functionality or features is available in each power state (for example, the net card can receive,
but cannot transmit; the sound card is fully functional except that the power amps are off, and so on).

• Device Wakeup Characteristics. Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state characteristics for
each class of device.

Overview 31

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.4 Controlling Device Power
ACPI provides the OS the controls and information needed to perform device power management. ACPI
describes to the OS the capabilities of all the devices it controls. It also gives the OS the control methods
used to set the power state or get the power status for each device. Finally, it has a general scheme for
devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. The ACPI table lists legacy devices that cannot be
reported through their own bus specification, the root of each bus in the system, and devices that have
additional power management or configuration options not covered by their own bus specification. Power
management of these devices is handled through their own bus specification (in this case, PCI). All other
devices are handled through ACPI.

For more detailed information see section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities
As the OS enumerates devices in the system, it gets information about the power management features that
the device supports. The Differentiated Definition Block given to the OS by the BIOS describes every
device handled by ACPI. This description contains the following information:
• A description of what power resources (power planes and clock sources) the device needs in each

power state that the device supports. For example, a device might need a high power bus and a clock in
the D0 state but only a low-power bus and no clock in the D2 state.

• A description of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use this information to infer what device
and system power states from which the device can support wake.

• The optional control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States
OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state based
on the current device requirements on that bus. For example, if all devices on a bus are in the D3 state, the
OS will send a command to the bus control chip set to remove power from the bus (thus putting the bus in
the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus in that state if all
devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be able to issue a Set
Power State command to can resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

32 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

When a device is to be set in a particular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS tracks all the devices on a given power
resource. When all the devices on a resource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to
be turned on, the OS first turns on the power resource using a control method and then signals the device to
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
device in that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status
OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model (see below) to signal power status changes (battery status changes, for
example), the ACPI chip set signals the OS via the SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining capacity),
the OS uses control methods from the battery’s description table to read this information. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfaces to
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer
The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devices.

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of this bit
is listed in the device’s entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine1 (based on capabilities reported in
the description table).

1 Some OS policies may require the OS to put the machine into a global system state for which the device
can no longer wake the system. Such as when a system has very low battery power.

Overview 33

Compaq/Intel/Microsoft/Phoenix/Toshiba

When the computer is in the Sleeping state and a wake device decides to wake the machine, it signals to the
ACPI chip set. The SCI status bit corresponding to the device waking the machine is set, and the ACPI chip
set resumes the machine. After the OS is running again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

3.4.5 Example: Modem Device Power Management
To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

D0 Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook

D2 Same as D3

D3 Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3 à D0 COM port opened

D0, D1 à D3 COM port closed

D0 à D1 Modem put in answer mode

D1 à D0 Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

34 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware
as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is not
intended to describe how OEMs should build hardware.

S
w

itc
he

d
po

w
er

S
w

itc
he

d
po

w
er

ACPI core
chip set Phone

interface
Modem

controller

I/O

Control
Phone

line

PWR1 PWR2

RI

WAKE

PWR1_EN

PWR2_EN

MDM_D1
MDM_D3

I/O COM port
(UART)

I/O

COM_D3

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Getting the Modem’s Capabilities
The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports D0, D1, and D3:

D0 requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from D0,
D1, and D3)

Control methods for setting power state and resources

Overview 35

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.4.5.2 Setting the Modem’s Power State
While the OS is running (G0 state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the D0 state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the
PWR2_EN line. Then, OSPM runs a control method (_PS1) provided in the modem’s entry to put the
device in the D1 state. This control method asserts the MDM_D1 signal that tells the modem controller to
go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWR1 is in use. OSPM does not turn off the PWR1 resource.
It continues the state transition process by running the modem’s control method to switch the device to the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM
port is closed, the same sequence of events will take place to put it in the D3 state. Notice that these
registers might not be in the device itself. For example, the control method could read the register that
controls MDM_D3.

3.4.5.3 Getting the Modem’s Power Status
Integrated modems have no batteries; the only power status information for the device is the power state of
the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control method (_PSC)
supplied in the modem’s entry in the Differentiated Definition Block. This control method reads from the
necessary registersto determine the modem’s power state.

3.4.5.4 Waking the Computer
As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can still provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devices in the appropriate power state, and puts all other devices in the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core chip set to generate a wake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OS is running, it puts the device in
the D0 state and begins handling interrupts from the modem to process the event.

36 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.5 Processor Power Management
To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when an
interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in section 8, “Processor Control.”

3.6 Device and Processor Performance States
This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, C0 for processors and D0 for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest impact
when the states invoke different device and processor efficiency levels as opposed to a linear scaling of
performance and energy consumption. Since performance state transitions occur in the active/executing
device states, care must be taken to ensure that performance state transitions do not adversely impact the
system.

Examples of device performance states include:
• A hard drive that provides levels of maximum throughput that correspond to levels of power

consumption.
• An LCD panel that supports multiple brightness levels that correspond to levels of power consumption.
• A graphics component that scales performance between 2D and 3D drawing modes that corresponds to

levels of power consumption.
• An audio subsystem that provides multiple levels of maximum volume that correspond to levels of

maximum power consumption.
• A Direct-RDRAMTM controller that provides multiple levels of memory throughput performance,

corresponding to multiple levels of power consumption, by adjusting the maximum bandwidth
throttles.

Processor performance states are described in Section 8, “Processor Control.”

3.7 Plug and Play
In addition to power management, ACPI provides controls and information so that the OS can direct Plug
and Play on the motherboard. The Differentiated Description Table describes the motherboard devices. The
OS enumerates motherboard devices simply by reading through the Differentiated Description Table
looking for devices with hardware IDs.

Each device enumerated by ACPI includes control methods that report the hardware resources the device
could occupy and those that are currently used, and a control method for configuring those resources. The
information is used by the Plug and Play system to configure the devices.

Overview 37

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI is used only to enumerate and configure motherboard devices that do not have other hardware
standards for enumeration and configuration. For example, PCI devices on the motherboard must not be
enumerated by ACPI; therefore Plug and Play information for these devices is not included in the
Differentiated Description Table. However, power management information for these devices can still
appear in the table if the devices’ power management is to be controlled through ACPI.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes
boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Example: Configuring the Modem
Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:
• The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/O 2E8-2EF
• The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the device
for those resources by running a control method supplied in the modem’s section of the Differentiated
Definition Block. This control method will write to any I/O ports or memory addresses necessary to
configure the device to the given resources.

3.8 System Events
ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the
status bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

38 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three status
bits (and three enable bits). Yet another design might have every individual event wired to its own pin and
status bit. This design, at the opposite extreme from the single pin design, allows very complex hardware,
yet very simple control methods. Countless variations in wiring up events are possible.

3.9 Battery Management
Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem is
not required to perform any synthesis of a “composite battery” from the data of the separate batteries. In
cases where the battery subsystem does not synthesize a “composite battery” from the separate battery's
data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method
Battery interface.
• Smart Battery is controlled by the OS directly through the embedded controller (EC). For more

information about the ACPI Embedded Controller SMBus interface, see section 13.9, “SMBus Host
Controller Interface via Embedded Controller.” For additional information about the Smart Battery
subsystem interface, see section 11.1, “Smart Battery Subsystems.”

• Control Method Battery is completely accessed by AML code control methods, allowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI. For more
information about the Control Method Battery Interface, see section 11.2, “Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications
Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery system
types must provide notification to the OS when there is a change such as inserting or removing a battery, or
when a battery starts or stops discharging. Smart Batteries and some Control Method Batteries are also able
to give notifications based on changes in capacity. Smart batteries provide extra information such as
estimated run-time, information about how much power the battery is able to provide, and what the run-
time would be at a predetermined rate of consumption.

Overview 39

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.9.2 Battery Capacity
Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

OEM designed initial capacity for warning
OEM designed initial capacity for low

Last full charged capacity
Designed capacity

Present remaining capacity

Figure 3-3 Reporting Battery Capacity

3.9.3 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Remaining Battery Percentage[%] =
Battery Remaining Capacity [mAh/mWh]

Last Full Charged Capacity [mAh/mWh]
* 100

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Remaining Battery Life [h]=
Battery Remaining Capacity [mAh/mWh]
Battery Present Rate [mA/mW]

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

40 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.9.4 Low Battery Levels
A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteries in
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM-designed levels, but cannot set these values lower than the OEM-designed
values, as shown in Figure 3-4.

Warning

Low

Full

Critical

OEM-designed initial capacity for warning (minimum)

OEM-designed initial capacity for low (minimum)

Last full charged capacity

OSPM-selected low battery
capacity

OSPM-selected low battery warning capacity

OEM-defined Battery Critical flag

F

E

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular
machine type, so the OEM-designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.12.

Overview 41

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 3-1 described how these values should be set by the OEM and interpreted by the OS.

Table 3-1 Low Battery Levels

Level Description

Warning When the total available energy (mWh) or capacity (mAh) in the batteries falls below
this level, the OS will notify the user through the UI. This value should allow for a few
minutes of run-time before the “Low” level is encountered so the user has time to wrap
up any important work, change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user
defined system state (S1-S5). In most situations this should be S4 so that system state is
not lost if the battery eventually becomes completely empty. The design of the OS
should consider that users of a multiple battery system may remove one or more of the
batteries in an attempt replace or charge it. This might result in the remaining capacity
falling below the “Low” level not leaving sufficient battery capacity for the OS to safely
transition the system into the sleeping state. Therefore, if the batteries are discharging
simultaneously, the action might need to be initiated at the point when both batteries
reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the
OS must attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity
of 0, but an OEM may choose to put a larger value in the Smart Battery Table to provide
an extra margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the system is in a critically low state and is still providing
power to the system (in other words, the battery is discharging), the system is considered
to be in a critical energy state. The _BST control method is required to return the
Critical flag on a discharging battery only when all batteries have reached a critical
state; the ACPI BIOS is otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown
Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may be lost at
any time. For example, if a hard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt files if the write were not
completed. Even if a disk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settings if power was lost halfway through the write operation.

42 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.10 Thermal Management
ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone. This
notebook uses one fan for active cooling and the CPU for passive cooling.

F0: PIC, PITs,
 DMA, RTC, EIO, ...

CPU

CPU/
Memory/

PCI Bridge

F2:
USB

F1: BM
IDE

SIO:
COMs,
LPT,
FDC,
ACPI

EPROM

Graphics

Embedded
Controller

D
R
A
M

L
2

D
R
A
M

PCI/PCI
Bridge

L
A
N

M
P
E
G

NVRAM

LCD

LPT

COM

HDD
1

USB
Port 1

CRT

Keyboard

PS/2
Ports

Mouse

Docking

HDD
0

FDD

Momentary

Thermal
Zone

DPR0

DPR1

P
L
L

Fan
(Active Cooling)

(Passive Cooling)

Figure 3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see section 12.4, “Thermal Zone Object
Requirements.”

Overview 43

Compaq/Intel/Microsoft/Phoenix/Toshiba

3.10.1 Active and Passive Cooling Modes
ACPI defines two cooling modes, Active and Passive:
• Passive cooling. OS reduces the power consumption of devices at the cost of system performance to

reduce the temperature of the machine.
• Active cooling. OS increases the power consumption of the system (for example, by turning on a fan)

to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship is that Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation
A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or a
level of preference) for either performance or energy conservation. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference for
energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey the
cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing a thermal
trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to manipulate
device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics
Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’s physical requirement for fan silence may override the preference
for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire for fan
silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see section 12, “Thermal Management.”

3.10.4 Multiple Thermal Zones
The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in a complex system, ACPI specifies a multiple thermal zone implementation. Under a multiple
thermal zone model, OSPM will independently manage several thermal-coupled devices and a designated
thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods available to
each thermal zone. Each thermal zone can have more than one Passive and Active cooling device.
Furthermore, each zone might have unique or shared cooling resources. In a multiple thermal zone
configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

44 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 45

Compaq/Intel/Microsoft/Phoenix/Toshiba

4 ACPI Hardware Specification
ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. This section describes the hardware aspects of
ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goals, designated features
conform to a specific addressing and programming scheme. Hardware that falls within this category is
referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware
model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has a wide degree of flexibility in its implementation.

4.1 Fixed Hardware Programming Model
Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:
• Performance sensitive features
• Features that drivers require during wake
• Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing a thermal condition or extending battery life. If this logic were allowed
to reside in PCI configuration space, for example, several layers of drivers would be called to access this
address space. This takes a long time and will either adversely affect the power of the system (when trying
to enter a low-power state) or the accuracy of the event (when trying to get a time stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCI configuration space access is needed, the bus enumerator is loaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which OSPM
can communicate without any other driver’s assistance, allows OSPM to gather information prior to
making a decision as to whether it continues loading the entire OS or puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power button
events, the power button override feature provides a back-up mechanism to unconditionally transition the
system to the soft-off state.

46 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.1.1 Functional Fixed Hardware
ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined in
this specification, conveys to OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI 2.0 as Functional Fixed
Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach is not recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach is that functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

In ACPI 2.0, the hardware register definition has been expanded to allow registers to exist in address spaces
other than the System I/O address space. This is accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information).
When specifically directed by the CPU manufacturer, the system firmware may define an interface as
functional fixed hardware by supplying a special address space identifier, FfixedHW (0x7F), in the address
space ID field for register definitions. It is emphasized that functional fixed hardware definitions may be
declared in the ACPI system firmware only as indicated by the CPU Manufacturer for specific interfaces
as the use of functional fixed hardware requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it a reliance on OS specific
software that must be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

ACPI Hardware Specification 47

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.2 Generic Hardware Programming Model
Although the fixed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provide system OEMs with a wide degree of flexibility in the implementation of
specific functions in hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM-
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s control
and event logic.

Section 16, “ACPI Source Language Reference,” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is a very compact machine language that the ACPI AML code interpreter
executes.

AML does two things:
• Abstracts the hardware from OSPM
• Buffers OEM code from the different OS implementations

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware is that it is all implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has to
execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic feature
is described to OSPM through AML code. This description takes the form of an object that sits in the ACPI
Namespace associated with the hardware to which it is adding value.

Generic Event
Logic

Control
Events

ACPI Driver
and AML-
Interpreter

Generic
Control
Logic

AML
Code

Rds

GP Event Status

Generic Child
Event Status

Figure 4-1 Generic Hardware Feature Model

48 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have a reference to the AML PowerResource object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the D3
state of the drive:
• _PS0. A control method to sequence the IDE drive to the D0 state.
• _PS3. A control method to sequence the IDE drive to the D3 state.
• _PSC. A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined PowerResource object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would describe
its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within the
_PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware to
place the HDD into an even lower power state.

As an example of a generic event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been detected
or when the user requests to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
a reader to understand the following:
• Which hardware registers are required or optional when an ACPI feature, concept or interface is

required by a design guide for a platform class
• How to design fixed hardware features
• How to design generic hardware features
• The ACPI Event Model

ACPI Hardware Specification 49

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.3 Diagram Legends
The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

 Write-only control bit

 Enable, control or status bit

 Sticky status bit

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior
that it generates its control function when it is set. Reads to write-only bits are treated as ignore by software
(the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit it
directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCI event.
The query value is associated with the event control method that is scheduled to execute upon an embedded
controller event.

4.4 Register Bit Notation
Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is as follows:

 Registername.Bit

Registername contains the name of the register as it appears in this specification

Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

 SLP_EN
 PM1x_CNT.13

50 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.5 The ACPI Hardware Model
The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (G0-G3) as illustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This state is
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device still runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 state transitions into either the G0 working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the G0
working state by always returning the status bit SCI_EN set (1) (for more information, see section 4.7.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3 state requires a total
boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “Soft Off,” or the G0 “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCIs are
generated) and the hardware uses legacy power management and configuration mechanisms. While in the
Legacy state, an ACPI-compliant OS can request a transition into the G0 working state by performing an
ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in the
G0 “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE value
to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN
bit LOW (for more information, see section 4.7.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The G0 “Working” state is the normal operating environment of an ACPI machine. In this state different
devices are dynamically transitioning between their respective power states (D0, D1, D2 or D3) and
processors are dynamically transitioning between their respective power states (C0, C1, C2 or C3). In this
state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state. The
platform can only enter a single sleeping state at a time (referred to as the global G1 state); however, the
hardware can provide up to four system sleeping states that have different power and exit latencies
represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled wake
events and what sleeping state these support). OSPM initiates the sleeping transition by enabling the
appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state and
then setting the SLP_ENx bit. The system will then enter a sleeping state; when one of the enabled wake
events occurs, it will transition the system back to the working state (for more information, see section 9,
“Waking and Sleeping”).

Another global state transition option while in the G0 “working” state is to enter the G2 “soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring the
system down in an orderly fashion (unloading applications, closing files, and so on). The policy for these
types of transitions can be associated with the ACPI power button, which when pressed generates an event
to the power button driver. When OSPM is finished preparing the operating environment for a power loss,
it will either generate a pop-up message to indicate to the user to remove power, in order to enter the G3
“Mechanical Off” state, or it will initiate a G2 “soft-off” transition by writing the value of the S5 “soft off”
system state to the SLP_TYPx register and setting the SLP_EN bit.

ACPI Hardware Specification 51

Compaq/Intel/Microsoft/Phoenix/Toshiba

The G1 sleeping state is represented by five possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low-power state until awakened by an
enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context and
wake sequences (for more information, see section 9, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping
state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence).
Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only machine will re-enter
the G0 state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy machine transitions to
the Legacy state (SCI_EN bit is clear).

S4BIOS_F
S4BIOS_REQ

ACPI_DISABLE
(SCI_EN=0)

G3 -Mech
Off

Legacy
Boot

(SCI_EN=0)

Legacy
Boot

(SCI_EN=0)

ACPI_ENABLE
(SCI_EN=1)

Legacy

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

C0

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure

ACPI
Boot

(SCI_EN=1)

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=(S1-S4)
and

SLP_EN

D0
D1

D2
D3

Modem

D0
D1

D2
D3
HDD

D0
D1

D2
D3

CDROM

BIOS
Routine

C2
C1

Cn

Performance
State Px

Throttling

C0

CPU

Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement
this behavior model. Events are used to notify OSPM that some action is needed, and control logic is used
by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A
hardware event is one that causes the hardware to unconditionally perform some operation. For example,
any wake event will sequence the system from a sleeping state (S1, S2, S3, and S4 in the global G1 state) to
the G0 working state (see Figure 9-1).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPI-aware driver acts as the event handler. For generic logic events OSPM will schedule the execution
of an OEM-supplied AML control method associated with the event.

52 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support a way of re-mapping the interrupt events between
SMIs and SCIs when switching between ACPI and legacy models. This is illustrated in the following block
diagram.

Power Plane
Control

Generic Space

GLBL STBY
Timer

PWRBTN
LID

THRM

DOCK
STS_CHG

RI

SMI Arbiter

Sleep/Wake
State machine

SMI#

SCI#

Legacy Only Event Logic
ACPI/Legacy Event Logic
ACPI Only Event Logic

SMI Events

SCI/SMI Events

Dec
0

1

CPU Clock
Control

Device
Traps

Device Idle
Timers

User
Interface

Thermal
Logic

Hardware
Events

RTC

SCI_EN

ACPI/Legacy Generic Control Features
ACPI/Legacy Fixed Control Features

Wake-up Events

PM Timer

SCI Arbiter

Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports a number of external events that are power-related (power
button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic
represents the three different types of events:
• OS Transparent Events. These events represent OEM-specific functions that have no OS support and

use software that can be operated in an OS-transparent fashion (that is, SMIs).
• Interrupt Events. These events represent features supported by ACPI-compatible operating systems,

but are not supported by legacy operating systems. When a legacy OS is loaded, these events are
mapped to the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped
to an OS-visible shareable interrupt (SCI#). This logic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI#
arbiter when the SCI_EN bit is set.

• Hardware events. These events are used to trigger the hardware to initiate some hardware sequence
such as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power management
models use the idle timers to determine when a device should be placed in a low-power state because it is
idle—that is, the device has not been accessed for the programmed amount of time. The device traps are
used to indicate when a device in a low-power state is being accessed by OSPM. The global standby timer
is used to determine when the system should be allowed to go into a sleeping state because it is idle—that
is, the user interface has not been used for the programmed amount of time.

ACPI Hardware Specification 53

Compaq/Intel/Microsoft/Phoenix/Toshiba

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI mode.
This work is now handled by different software structures in an ACPI-compatible OS. For example, the
driver model of an ACPI-compatible OS is responsible for placing its device into a low-power state (D1,
D2, or D3) and transitioning it back to the On state (D0) when needed. And OSPM is responsible for
determining when the system is idle by profiling the system (using the PM Timer) and other knowledge it
gains through its operating structure environment (which will vary from OS to OS). When the system is
placed into the ACPI mode, these events no longer generate SMIs, as drivers now handle this function.
These events are disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking,
the power button, and so on) and this type of interrupt event changes to an SCI event when enabled for
ACPI. The ACPI OS will generate a request to the platform’s hardware (BIOS) to enter into the ACPI
mode. The BIOS sets the SCI_EN bit to indicate that the system has successfully entered into the ACPI
mode, so this is a convenient mechanism to map the desired interrupt (SMI or SCI) for these events (as
shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system
activity. The frequency of this timer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their use is limited by the defined ACPI control methods
(for more information, see section 10, “ACPI-Specific Device Objects”). Generic hardware usually controls
power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt status bits can be
accessed via generic hardware interfaces; however, they have a “parent” interrupt status bit in the GP_STS
register. ACPI defines five address spaces where generic hardware may exist. These include:
• System I/O space
• System memory space
• PCI configuration space
• Embedded controller space
• System Management Bus (SMBus) space

Generic hardware power management features can be implemented using spare I/O ports residing in any of
these I/O spaces. The ACPI specification defines an optional embedded controller and SMBus interfaces
needed to communicate with these associated I/O spaces.

4.5.1 Hardware Reserved Bits
ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status registers
and preserve bits in control registers, and they will treat these bits as ignored.

54 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.5.2 Hardware Ignored Bits
ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to a register with ignored bit fields, it
preserves the ignored bit fields.

4.5.3 Hardware Write-Only Bits
ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a 1
to their bit position. Reads to write-only bit positions generate undefined results. Upon reads to registers
with write-only bits, software masks out all write-only bits.

4.5.4 Cross Device Dependencies
Cross Device Dependency is a condition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This condition is
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

4.5.4.1 Example 1: Related Device Interference
This example illustrates a cross device dependency where a device interferes with the proper operation of
other unrelated devices. Device A has a dependency that when it is being configured it blocks all accesses
that would normally be targeted for Device B. Thus, the device driver for Device B cannot access Device B
while Device A is being configured; therefore, it would need to synchronize access with the driver for
Device A. High performance, multithreaded operating systems cannot perform this kind of synchronization
without seriously impacting performance.

To further illustrate the point, assume that device A is a serial port and device B is a hard drive controller.
If these devices demonstrate this behavior, then when a software driver configures the serial port, accesses
to the hard drive need to block. This can only be done if the hard disk driver synchronizes access to the disk
controller with the serial driver. Without this synchronization, hard drive data will be lost when the serial
port is being configured.

4.5.4.2 Example 2: Unrelated Device Interference
This example illustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully write to its registers; if any other platform
access is able to break between the back-to-back accesses, then the write to device A is unsuccessful. If the
device A driver is unable to generate atomic back-to-back accesses to its device, then it relies on software
to synchronize accesses to its device with every other driver in the system; then a device cross dependency
is created and the platform is prone to device A failure.

ACPI Hardware Specification 55

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.6 ACPI Hardware Features
This section describes the different hardware features defined by the ACPI interface. These features are
categorized as the following:
• Fixed Hardware Features
• Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described
by the ACPI programming model. Generic hardware features reside in one of five address spaces (system
I/O, system memory, PCI configuration, embedded controller, or serial device I/O space) and are described
by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described. This is necessary because a
standard OS driver is talking to these registers and expects the defined behavior. Fixed functional hardware
provides functional equivalents of the fixed hardware feature interfaces as described in section 4.1.1,
“Functional Fixed Hardware.”

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code
(for more information, see section 5, “ACPI Software Programming Model”), which can be written to
support a wide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A good
understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many
types of hardware not listed.

Table 4-1 Feature/Programming Model Summary

Feature Name Description Programming Model

Power Management Timer 24-bit/32-bit free running timer. Fixed Hardware Feature Control
Logic

Power Button User pushes button to switch the
system between the working and
sleeping states.

Fixed Hardware Event and Control
Logic or Generic Hardware Event
and Logic

Sleep Button User pushes button to switch the
system between the working and
sleeping state.

Fixed Hardware Event and Control
Logic or Generic Hardware Event
and Logic

Power Button Override User sequence (press the power
button for 4 seconds) to turn off a
hung system.

Real Time Clock Alarm Programmed time to wake the
system.

Optional Fixed Hardware Event2

Sleep/Wake Control Logic Logic used to transition the system
between the sleeping and
working.states.

Fixed Hardware Control and Event
Logic

2 RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

56 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 4-1 Feature/Programming Model Summary (continued)

Feature Name Description Programming Model

Embedded Controller
Interface

ACPI Embedded Controller protocol
and interface, as described in section
13, “ACPI Embedded Controller
Interface Specification.”

Generic Hardware Event Logic,
must reside in the general-purpose
register block

Legacy/ACPI Select Status bit that indicates the system is
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

Lid switch Button used to indicate whether the
system’s lid is open or closed
(mobile systems only).

Generic Hardware Event Feature

C1 Power State Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control Logic to place the processor into a
C2 power state.

Fixed Hardware Control Logic

C3 Power Control Logic to place the processor into a
C3 power state.

Fixed Hardware Control Logic

Thermal Control Logic to generate thermal events at
specified trip points.

Generic Hardware Event and
Control Logic (See description of
thermal logic in section 3.9,
“Battery Management.”)

Device Power Management Control logic for switching between
different device power states.

Generic Hardware control logic

AC Adapter Logic to detect the insertion and
removal of the AC adapter.

Generic Hardware event logic

Docking/device insertion
and removal

Logic to detect device insertion and
removal events.

Generic Hardware event logic

4.7 ACPI Register Model
ACPI hardware resides in one of six address spaces:
• System I/O
• System memory
• PCI configuration
• SMBus
• Embedded controller
• Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI-defined interfaces. The generic hardware registers are needed for
any events generated by value-added hardware.

ACPI Hardware Specification 57

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registers that ACPI defines are:
• Status/Enable Registers (for events)
• Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation definition
that needs to be followed (unless otherwise noted), which is illustrated by the following diagram:

Status Bit

Enable Bit

Event Input Event Output

Figure 4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,” which
generates an SCI when set if its enable bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or
unused bits within a register block always return zero for reads and have no side effects for writes (which is
a requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object _Sx
contains a SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer values
of 0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed by the
SLP_TYPb value within the field to the “B” register block. All other bit locations will be written with the
same value. Also, OSPM does not read the SLP_TYPx value but throws it away.

Register Block A

Register Block B

Bit d Bit c Bit b Bit aBit e

Register
Grouping

Figure 4-5 Example Fixed Hardware Feature Register Grouping

As an example, the above diagram represents a register grouping consisting of register block A and register
block b. Bits “a” and “d” are implemented in register block B and register block A returns a zero for these
bit positions. Bits “b”, “c” and “e” are implemented in register block A and register block B returns a zero
for these bit positions. All reserved or ignored bits return their defined ACPI values.

58 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer from
the FADT. These addresses are set by the OEM as static resources, so they are never changed—the Plug
and Play driver cannot re-map ACPI resources. The following register blocks are defined:

PM1a_EVT_BLK

PM1b_EVT_BLK

PM2 Control Block

PM Timer Block

Processor Block

Register GroupingsRegister Blocks

PM1a_STS
PM1a_EN PM1 EVT Grouping

PM1 CNT Grouping
PM1a_CNT_BLK

PM1b_CNT_BLK

PM1b_STS
PM1b_EN

PM1a_CNT

PM1b_CNT

PM2_CNT_BLKPM2_CNT

PM_TMR_BLKPM_TMR

P_BLK
P_CNT

P_LVL2
P_LVL3

Registers

GPE0_BLK

GPE1_BLK

GPE0_STS
GPE0_EN

GPE1_STS
GPE1_EN

General Purpose Event 0
Block

General Purpose Event 1
Block

Figure 4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain the
fixed hardware feature event bits. Each event register block (if implemented) contains two registers: a
status register and an enable register. Each register grouping has a defined bit position that cannot be
changed; however, the bit can be implemented in either register block (A or B). The A and B register
blocks for the events allow chipsets to vary the partitioning of events into two or more chips. For read
operations, OSPM will generate a read to the associated A and B registers, OR the two values together, and
then operate on this result. For write operations, OSPM will write the value to the associated register in
both register blocks. Therefore, there are a number of rules to follow when implementing event registers:
• Reserved or unimplemented bits always return zero (control or enable).
• Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PM1a_CNT_BLK and PM1b_CNT_BLK register blocks. Each register block is associated with a single
control register. Each register grouping has a defined bit position that cannot be changed; however, the bit
can be implemented in either register block (A or B). There are a number of rules to follow when
implementing CNT registers:
• Reserved or unimplemented bits always return zero (control or enable).
• Writes to reserved or unimplemented bits have no affect.

ACPI Hardware Specification 59

Compaq/Intel/Microsoft/Phoenix/Toshiba

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the top-
level generic event resides in one of the general-purpose register blocks. Any generic feature event status
not in the general-purpose register space is considered a child or sibling status bit, whose parent status bit is
in the general-purpose event register space. Notice that it is possible to have N levels of general-purpose
events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPE0_BLK or the GPE1_BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-purpose event
registers follow the event model for the fixed hardware event registers.

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:

Table 4-2 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)

PM1a_STS PM1_EVT_LEN/2 <PM1a_EVT_BLK >

PM1a_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2

PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >

PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-3 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)

PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >

PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >

Table 4-4 PM2 Control Register

Register Size (Bytes) Address (relative to register block)

PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Table 4-5 PM Timer Register

Register Size (Bytes) Address (relative to register block)

PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Table 4-6 Processor Control Registers

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See section 8.3.1,
“PTC [Processor Throttling Control].”)

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

60 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 4-7 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)

GPE0_STS GPE0_LEN/2 <GPE0_BLK>

GPE0_EN GPE0_LEN/2 <GPE0_BLK>+GPE0_LEN/2

GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2

4.7.1.1 PM1 Event Registers
The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:
• Power management timer control/status
• Processor power state control/status
• Global Lock related interfaces
• Power or Sleep button (fixed register interfaces)
• System power state controls (sleeping/wake control)

The PM1b_EVT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_EVT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same size:
the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and is
described by the PM1_EVT_LEN field in the FADT, which indicates the total length of the register block
in bytes. Hence if a length of “4” is given, this indicates that each register contains two bytes of I/O space.
The PM1 event register block has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers
The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required
register block when the following ACPI interface categories are required by a class specific platform design
guide:
• SCI/SMI routing control/status for power management and general-purpose events
• Processor power state control/status
• Global Lock related interfaces
• System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_CNT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of
the register is variable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register
The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains a length
variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register
(the only register in this register block). This register block is optional, if not supported its block pointer
and length contains a value of zero.

ACPI Hardware Specification 61

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.1.4 PM Timer Register
The PM timer register is contained in the PM_TMR_BLK register block, which is a required register block
when the power management timer control/status ACPI interface category is required by a class specific
platform design guide.

This register block contains the register that returns the running value of the power management timer. The
FADT also contains a length variable for this register block (PM_TMR_LEN) that is equal to the size in
bytes of the PM_TMR register (the only register in this register block).

4.7.1.5 Processor Control Block (P_BLK)
There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains the
processor control register (P_CNT-a 32-bit performance control configuration register), and the P_LVL2
and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of the
processor clock logic for that processor, the P_LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers
The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPE0_BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own
length variable in the FADT, where GPE0_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is 0 or 1).
The length of the GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN. The length of the
GPE1_STS and GPE1_EN registers is equal to half the GPE1_LEN. If a generic register block is not
supported then its respective block pointer and block length values in the FADT table contain zeros. The
GPE0_LEN and GPE1_LEN do not need to be the same size.

4.7.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPI.

4.7.2.1 Power Management Timer
The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system is in the working (G0) state. To allow software to
extend the number of bits in the timer, the power management timer generates an interrupt when the last bit
of the timer changes (from 0 to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management
timer. The PM Timer is accessed directly by OSPM, and its programming model is contained in fixed
register space. The programming model can be partitioned in up to three different register blocks. The
event bits are contained in the PM1_EVT register grouping, which has two register blocks, and the timer
value can be accessed through the PM_TMR_BLK register block. A block diagram of the power
management timer is illustrated in the following figure:

62 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

PMTMR_PME

TMR_EN
PM1x_EN.0

3.579545 MHz

-- 24/32

TMR_VAL
PM_TMR.0-23/0-31

TMR_STS
PM1x_STS.024/32-bit

Counter
Bits(23/31-0)

Figure 4-7 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or
24-bit timer. The programming model for the PM Timer consists of event logic, and a read port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then the
setting of the TMR_STS will generate an ACPI event in the PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate a larger timer.

OSPM uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial
TMR_VAL upon loading OSPM and assumes that the timer is counting. It is allowable to stop the Timer
when the system transitions out of the working (G0/S0) state. The only timer reset requirement is that the
timer functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the accuracy
of reading the timer.

4.7.2.2 Buttons
ACPI defines user-initiated events to request OSPM to transition the platform between the G0 working
state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended
mechanism to unconditionally transition the platform from a hung G0 working state to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:
• A single-button model that generates an event for both sleeping and entering the soft-off state. The

function of the button can be configured using OSPM UI.
• A dual-button model where the power button generates a soft-off transition request and a sleeping

button generates a sleeping transition request. The type of button implies the function of the button.

Control of these button events is either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a crashed
system with a fixed hardware power button, OSPM can make a “best” effort to determine whether the
power button has been pressed to transition to the system to the soft-off state, because it doesn’t require the
AML interpreter to access the event bits.

4.7.2.2.1 Power Button
The power button logic can be used in one of two models: single button or dual button. In the single-button
model, the user button acts as both a power button for transitioning the system between the G0 and G2
states and a sleeping button for transitioning the system between the G0 and G1 states. The action of the
user pressing the button is determined by software policy or user settings. In the dual-button model, there
are separate buttons for sleeping and power control. Although the buttons still generate events that cause
software to take an action, the function of the button is now dedicated: the sleeping button generates a
sleeping request to OSPM and the power button generates a waking request.

ACPI Hardware Specification 63

Compaq/Intel/Microsoft/Phoenix/Toshiba

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table 4-8 Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object

Fixed hardware power button Clear Absent

Control method power button Set Present

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’t have a mechanical off button, which can also provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

4.7.2.2.1.1 Fixed Power Button

PWRBTN#

PWRBTN_EN
PM1x_EN.8

PWRBTN_STS
PM1x_STS.8

Debounce
Logic

PWRBTN Event

PWRBTN
Over-ridePWRBTN

Statemachine

Figure 4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system is in the
G0 state, then an SCI is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that sets the PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally sets the
power button status bit and wakes the system, regardless of the value of the power button enable bit. OSPM
responds by clearing the power button status bit and waking the system.

4.7.2.2.1.2 Control Method Power Button
The power button programming model can also use the generic hardware programming model. This allows
the power button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the power button is implemented using generic hardware, then the
OEM needs to define the power button as a device with an _HID object value of “PNP0C0C,” which then
identifies this device as the power button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a power button event was generated. While the system is in the working
state, a power button press is a user request to transition the system into either the sleeping (G1) or soft-off
state (G2). In these cases, the power button event handler issues the Notify command with the device
specific code of 0x80. This indicates to OSPM to pass control to the power button driver (PNP0C0C) with
the knowledge that a transition out of the G0 state is being requested. Upon waking from a G1 sleeping
state, the AML event handler generates a notify command with the code of 0x2 to indicate it was
responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform and
only requires an _HID. An example definition follows.

64 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

This example ASL code performs the following:
• Creates a device named “PWRB” and associates the Plug and Play identifier (through the _HID object)

of “PNP0C0C.”
The Plug and Play identifier associates this device object with the power button driver.

• Creates an operational region for the control method power button’s programming model:
System I/O space at 0x200.
Fields are not accessed are written as zeros. These status bits clear upon writing a 1 to their bit

position, therefore preserved would fail in this case.
• Creates a field within the operational region for the power button status bit (called PBP). In this case

the power button status bit is a child of the general-purpose event status bit 0. When this bit is set, it is
the responsibility of the ASL-code to clear it (OSPM clears the general-purpose status bits). The
address of the status bit is 0x200.0 (bit 0 at address 0x200).

• Creates an additional status bit called PBW for the power button wake event. This is the next bit and its
physical address would be 0x200.1 (bit 1 at address 0x200).

• Generates an event handler for the power button that is connected to bit 0 of the general-purpose event
status register 0. The event handler does the following:
Clears the power button status bit in hardware (writes a one to it).
Notifies OSPM of the event by calling the Notify command passing the power button object and the

device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){
 Name(_HID, EISAID(“PNP0C0C”))
 Name(_PRW,Package(){0, 0x4})
 }

OperationRegion(\Pho, SystemIO, 0x200, 0x1)
Field(\Pho, ByteAcc, NoLock, WriteAsZeros){
 PBP, 1, // sleep/off request
 PBW, 1 // wakeup request
 } // end of power button device object

Scope(_GPE){ // Root level event handlers
 Method(_L00){ // uses bit 0 of GP0_STS register
 If(PBP){
 Store(One, PBP) // clear power button status
 Notify(_SB.PWRB, 0x80) // Notify OS of event
 }
 IF(PBW){
 Store(One, PBW)
 Notify(_SB.PWRB, 0x2)
 }
 } // end of _L00 handler
 } // end of _GPE scope

4.7.2.2.1.3 Power Button Override
The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system is in the working state, a hardware event is generated and the system will transition to the
soft-off state. This hardware event is called a power button override. In reaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

ACPI Hardware Specification 65

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.2.2.2 Sleep Button
When using the two button model, ACPI supports a second button that when pressed will request OSPM to
transition the platform between the G0 working and G1 sleeping states. Support for a sleep button is
indicated by a combination of the SLEEP_BUTTON flag and the sleep button device object:

Table 4-9 Sleep Button Support

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object

No sleep button Set Absent

Fixed hardware sleep button Clear Absent

Control method sleep button Set Present

4.7.2.2.2.1 Fixed Hardware Sleeping Button

SLPBTN#

SLPBTN_EN
PM1x_EN.9

SLPBTN_STS
PM1x_STS.9Debounce

Logic
SLPBTN Event

SLPBTN
State machine

Figure 4-9 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the sleep button, the sleep button
status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN)
is set, and the sleep button status bit is set (SLPBTN_STS, due to a button press) while the system is in the
G0 state, then an SCI is generated. OSPM responds to the event by clearing the SLPBTN_STS bit. The
sleep button logic provides debounce logic that sets the SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the S0, S1, S2, S3 or S4 states), any further sleep button press (after
the button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the sleep
button status bit and waking the system.

4.7.2.2.2.2 Control Method Sleeping Button
The sleep button programming model can also use the generic hardware programming model. This allows
the sleep button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the sleep button is implemented via generic hardware, then the OEM
needs to define the sleep button as a device with an _HID object value of “PNP0C0E”, which then
identifies this device as the sleep button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a sleep button event was generated. While in the working state, a sleep
button press is a user request to transition the system into the sleeping (G1) state. In these cases the sleep
button event handler issues the Notify command with the device specific code of 0x80. This will indicate to
OSPM to pass control to the sleep button driver (PNP0C0E) with the knowledge that the user is requesting
a transition out of the G0 state. Upon waking-up from a G1 sleeping state, the AML event handler
generates a Notify command with the code of 0x2 to indicate it was responsible for waking the system.

66 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform and
only requires an _HID. An example definition is shown below.

The AML code below does the following:
• Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID object)

of “PNP0C0E.”
The Plug and Play identifier associates this device object with the sleep button driver.

• Creates an operational region for the control method sleep button’s programming model:
System I/O space at 0x201.
Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to their bit

position, hence preserved would fail in this case).
• Creates a field within the operational region for the sleep button status bit (called PBP). In this case the

sleep button status bit is a child of the general-purpose status bit 0. When this bit is set it is the
responsibility of the AML code to clear it (OSPM clears the general-purpose status bits). The address
of the status bit is 0x201.0 (bit 0 at address 0x201).

• Creates an additional status bit called PBW for the sleep button wake event. This is the next bit and its
physical address would be 0x201.1 (bit 1 at address 0x201).

• Generates an event handler for the sleep button that is connected to bit 0 of the general-purpose status
register 0. The event handler does the following:
Clears the sleep button status bit in hardware (writes a “1” to it).
Notifies OSPM of the event by calling the Notify command passing the sleep button object and the

device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){
 Name(_HID, EISAID(“PNP0C0E”))
 Name(_PRW, Package(){0x01, 0x04})
 OperationRegion(\Boo, SystemIO, 0x201, 0x1)
 Field(\Boo, ByteAcc, NoLock, WriteAsZeros){
 SBP, 1, // sleep request
 SBW, 1 // wakeup request
 } // end of field definition
 }
Scope(_GPE){ // Root level event handlers
 Method(_L01){ // uses bit 1 of GP0_STS register
 If(SBP){
 Store(One, SBP) // clear sleep button status
 Notify(_SB.SLPB, 0x80) // Notify OS of event
 }
 IF(SBW){
 Store(One, SBW)
 Notify(_SB.SLPB, 0x2)
 }
 } // end of _L01 handler
 } // end of _GPE scope

ACPI Hardware Specification 67

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.2.3 Sleeping/Wake Control
The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working state
upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more information, see
section 9.1.4.2, “The S4BIOS Transistion”).

SLP_EN
PM1x_CNT.S4.13

WAK_STS
PM1x_STS.S0.15

Sleeping

SLP_TYP:3
PM1x_CNT.S4.[10-12]

Wakeup/
Sleep
Logic

"OR" or all
Wake
Events

PWRBTN_OR

Figure 4-10 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type
of sleep state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN the
hardware will sequence the system into the defined sleeping state. OSPM gets values for the SLP_TYPx
field from the _Sx objects defined in the static definition block. If the object is missing OSPM assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, OSPM will read
the designated _Sx object and place this value in the SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI defines that this sequence be initiated by the user pressing the power
button for over 4 seconds, at which point the hardware unconditionally sequences the system to the Off
state. This logic is represented by the PWRBTN_OR signal coming into the sleep logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-
on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’s reset vector). The WAK_STS bit
provides a mechanism to separate OSPM’s sleeping and waking code during an S1 sequence. When the
hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able
to execute instructions), any enabled wake event is allowed to set the WAK_STS bit and sequence the
system back on (to the G0 state). If the system does not support the S1 sleeping state, the WAK_STS bit
can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. This is accomplished by waking the system;
OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit–placing the
system again in the sleeping state.

68 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.2.4 Real Time Clock Alarm
If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system is in a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STS and RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible
wake source; however, it might miss certain wake events. If implemented the RTC wake feature is required
to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the RTC_S4
flag within the FADT (if set, then the platform supports RTC wake in the S4 state)3.

When the RTC generates an alarm event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

Real Time Clock
(RTC) RTC Wake-up

Event

RTC_EN
PM1x_EN.10

RTC_STS
PM1x_STS.10

Figure 4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIXED_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status
and enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. If the fixed hardware feature event bits are not supported, then
OSPM will attempt to determine this by reading the RTC’s status field.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:

• Day Alarm. The DAY_ALRM field points to an optional CMOS RAM location that selects the
day within the month to generate an RTC alarm.

• Month Alarm. The MON_ALRM field points to an optional CMOS RAM location that selects
the month within the year to generate an RTC alarm.

• Centenary Value. The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

3 Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will
disable the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

ACPI Hardware Specification 69

Compaq/Intel/Microsoft/Phoenix/Toshiba

The RTC_STS bit is set through the RTC interrupt (IRQ8 in IA-PC architecture systems). OSPM will
insure that the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s
interrupt pin to serve as the source for the RTC_STS bit generation.

Table 4-10 Alarm Field Decodings within the FADT

Field Value
Address (Location) in RTC CMOS
RAM (Must be Bank 0)

DAY_ALRM Eight bit value that can represent
0x01-0x31 days in BCD or 0x01-
0x1F days in binary. Bits 6 and 7 of
this field are treated as Ignored by
software. The RTC is initialized
such that this field contains a “don’t
care” value when the BIOS
switches from legacy to ACPI
mode. A don’t care value can be
any unused value (not 0x1-0x31
BCD or 0x01-0x1F hex) that the
RTC reverts back to a 24 hour
alarm.

The DAY_ALRM field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM
area that contains the day alarm value. A
value of zero in the DAY_ALRM field
indicates that the day alarm feature is not
supported.

MON_ALRM Eight bit value that can represent
01-12 months in BCD or 0x01-0xC
months in binary. The RTC is
initialized such that this field
contains a don’t care value when the
BIOS switches from legacy to ACPI
mode. A “don’t care” value can be
any unused value (not 1-12 BCD or
x01-xC hex) that the RTC reverts
back to a 24 hour alarm and/or 31
day alarm).

The MON_ALRM field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM
area that contains the month alarm value.
A value of zero in the MON_ALRM field
indicates that the month alarm feature is
not supported. If the month alarm is
supported, the day alarm function must
also be supported.

CENTURY 8-bit BCD or binary value. This
value indicates the thousand year
and hundred year (Centenary)
variables of the date in BCD (19 for
this century, 20 for the next) or
binary (x13 for this century, x14 for
the next).

The CENTURY field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM
area that contains the Centenary value for
the date. A value of zero in the
CENTURY field indicates that the
Centenary value is not supported by this
RTC.

70 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt
As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems
use some type of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler).
ACPI-compatible hardware can choose to support both legacy and ACPI modes or just an ACPI mode.
Legacy hardware is needed to support these features for non-ACPI-compatible operating systems. When
the ACPI OS loads, it scans the BIOS tables to determine that the hardware supports ACPI, and then if the
it finds the SCI_EN bit reset (indicating that ACPI is not enabled), issues an ACPI activate command to the
SMI handler through the SMI command port. The BIOS acknowledges the switching to the ACPI model of
power management by setting the SCI_EN bit (this bit can also be used to switch over the event mechanism
as illustrated below):

Dec
0

1

Power
Management
Event Logic

SCI_EN
PM1x_CNT.0

SMI_EVNT

SCI_EVNT
Shareable
Interrupt

Figure 4-12 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events to
the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt
logic. This bit always returns set for ACPI-compatible hardware that does not support a legacy power
management mode (in other words, the bit is wired to read as “1” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses
a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is mapped to
(see section 5.2.5, “System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware
event (for example, SMI for IA-PC processors). OSPM uses this register to make the hardware to switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SMI_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would
occur:

ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.

OSPM does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the FADT.

OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.

OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the FADT.

OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the
Legacy to ACPI transition stated above.

ACPI Hardware Specification 71

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.2.6 Processor Control
The ACPI specification defines several processor controls including power state control, throttling control,
and performance state control. See Section 8, “Processor Control,” for a complete description of the
processor controls.

4.7.3 Fixed Hardware Registers
The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.7.3.1 PM1 Event Grouping
The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in a single chip. Although the
bits can be split between the two register blocks (each register blocks has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 PM1 Status Registers

Register Location: <PM1a_EVT_BLK/PM1b_EVT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN/2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two
registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state this register is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the
23rd/31st bit of a 24/32-bit counter changes (whenever the MSB
changes from clear to set or set to clear. While TMR_EN and
TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system
bus master requests the system bus, and can only be cleared by
writing a “1” to this bit position. Notice that this bit reflects bus
master activity, not CPU activity (this bit monitors any bus
master that can cause an incoherent cache for a processor in the
C3 state when the bus master performs a memory transaction).

72 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits (continued)

Bit Name Description

5 GBL_STS This bit is set when an SCI is generated due to the BIOS wanting
the attention of the SCI handler. BIOS will have a control bit
(somewhere within its address space) that will raise an SCI and
set this bit. This bit is set in response to the BIOS releasing
control of the Global Lock and having seen the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.

8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the
system working state, while PWRBTN_EN and PWRBTN_STS
are both set, an interrupt event is raised. In the sleeping or soft-
off state, a wake event is generated when the power button is
pressed (regardless of the PWRBTN_EN bit setting). This bit is
only set by hardware and can only be reset by software writing a
“1” to this bit position.

ACPI defines an optional mechanism for unconditional
transitioning a system that has stopped working from the G0
working state into the G2 soft-off state called the power button
override. If the Power Button is held active for more than four
seconds, this bit is cleared by hardware and the system
transitions into the G2/S5 Soft Off state (unconditionally).

Support for the power button is indicated by the PWR_BUTTON
flag in the FADT being reset (zero). If the PWR_BUTTON flag
is set or a power button device object is present in the ACPI
Namespace, then this bit field is ignored by OSPM.

If the power button was the cause of the wake (from an S1-S4
state), then this bit is set prior to returning control to OSPM.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the
system working state, while SLPBTN_EN and SLPBTN_STS
are both set, an interrupt event is raised. In the sleeping or soft-
off states a wake event is generated when the sleeping button is
pressed and the SLPBTN_EN bit is set. This bit is only set by
hardware and can only be reset by software writing a “1” to this
bit position.

Support for the sleep button is indicated by the SLP_BUTTON
flag in the FADT being reset (zero). If the SLP_BUTTON flag is
set or a sleep button device object is present in the ACPI
Namespace, then this bit field is ignored by OSPM.

If the sleep button was the cause of the wake (from an S1-S4
state), then this bit is set prior to returning control to OSPM.

ACPI Hardware Specification 73

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits (continued)

Bit Name Description

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts
the RTC IRQ signal). Additionally, if the RTC_EN bit is set then
the setting of the RTC_STS bit will generate a power
management event (an SCI, SMI, or resume event). This bit is
only set by hardware and can only be reset by software writing a
“1” to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then
this bit is set prior to returning control to OSPM. If the RTC_S4
flag within the FADT is set, and the RTC was the cause of the
wake from the S4 state), then this bit is set prior to returning
control to OSPM.

11 Ignore This bit field is ignored by software.

12-14 Reserved Reserved. These bits always return a value of zero.

15 WAK_STS This bit is set when the system is in the sleeping state and an
enabled wake event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and
can only be cleared by software writing a “1” to this bit position.

4.7.3.1.2 PM1 Enable Registers

Register Location: <PM1a_EVT_BLK/PM1b_EVT_BLK>+PM1_EVT_LEN/2 System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN/2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two
registers: PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 Enable registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state the enables are
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as zero.

74 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 4-12 PM1 Enable Registers Fixed Hardware Feature Enable Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set
then an SCI event is generated anytime the TMR_STS bit is set.
When this bit is reset then no interrupt is generated when the
TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the
GBL_STS bit are set, an SCI is raised.

6-7 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the
PWRBTN_STS bit to generate a power management event (SCI
or wake). The PWRBTN_STS bit is set anytime the power
button is asserted. The enable bit does not have to be set to
enable the setting of the PWRBTN_STS bit by the assertion of
the power button (see description of the power button hardware).

Support for the power button is indicated by the PWR_BUTTON
flag in the FADT being reset (zero). If the PWR_BUTTON flag
is set or a power button device object is present in the ACPI
Namespace, then this bit field is ignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the
SLPBTN_STS bit to generate a power management event (SCI
or wake). The SLPBTN_STS bit is set anytime the sleep button
is asserted. The enable bit does not have to be set to enable the
setting of the SLPBTN_STS bit by the active assertion of the
sleep button (see description of the sleep button hardware).

Support for the sleep button is indicated by the SLP_BUTTON
flag in the FADT being reset (zero). If the SLP_BUTTON flag is
set or a sleep button device object is present in the ACPI
Namespace, then this bit field is ignored by OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit
to generate a wake event. The RTC_STS bit is set any time the
RTC generates an alarm.

11-15 Reserved Reserved. These bits always return a value of zero.

4.7.3.2 PM1 Control Grouping
The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT), the
bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

ACPI Hardware Specification 75

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.3.2.1 PM1 Control Registers

Register Location: <PM1a_CNT_BLK/PM1b_CNT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split between
two registers: PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these pointers to
the register space are found in the FADT. Accesses to PM1 control registers are accessed through byte and
word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-13 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI
interrupt for the following events. When this bit is set, then
power management events will generate an SCI interrupt. When
this bit is reset power management events will generate an SMI
interrupt. It is the responsibility of the hardware to set or reset
this bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request
to cause any processor in the C3 state to transition to the C0
state. When this bit is reset, the generation of a bus master
request does not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an
event to the BIOS software, that is, generates an SMI to pass
execution control to the BIOS for IA-PC platforms. BIOS
software has a corresponding enable and status bit to control its
ability to receive ACPI events (for example, BIOS_EN and
BIOS_STS). The GBL_RLS bit is set by OSPM to indicate a
release of the Global Lock and the setting of the pending bit in
the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.

10-12 SLP_TYPx Defines the type of sleeping state the system enters when the
SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is
set. The _Sx object contains 3-bit binary values associated with
the respective sleeping state (as described by the object). OSPM
takes the two values from the _Sx object and programs each
value into the respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero.
Setting this bit causes the system to sequence into the sleeping
state associated with the SLP_TYPx fields programmed with the
values from the _Sx object.

14-15 Reserved Reserved. This field always returns zero.

76 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.3.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read-Only
Size: 32-bits

This read-only register returns the current value of the power management timer (PM timer). The FADT
has a flag called TMR_VAL_EXT that an OEM sets to indicate a 32-bit PM timer or reset to indicate a 24-
bit PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is accessed as 32
bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-14 PM Timer Bits

Bit Name Description

0-23 TMR_VAL This read-only field returns the running count of the power
management timer. This is a 24-bit counter that runs off a
3.579545-MHz clock and counts while in the S0 working system
state. The starting value of the timer is undefined, thus allowing
the timer to be reset (or not) by any transition to the S0 state
from any other state. The timer is reset (to any initial value), and
then continues counting until the system’s 14.31818 MHz clock
is stopped upon entering its Sx state. If the clock is restarted
without a reset, then the counter will continue counting from
where it stopped.

24-31 E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power
management timer. If the hardware supports a 32-bit timer, then
this field will return the upper eight bits; if the hardware supports
a 24-bit timer then this field returns all zeros.

4.7.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-15 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit
is CLEAR the system arbiter is enabled and the arbiter can grant the
bus to other bus masters. When this bit is SET the system arbiter is
disabled and the default CPU has ownership of the system.

OSPM clears this bit when using the C0, C1 and C2 power states.

1-7 Reserved Reserved

ACPI Hardware Specification 77

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.3.5 Processor Register Block (P_BLK)
This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and control
methods that can be used to control processors, see section 8, “Processor Control.” This register block is
DWORD aligned and the context of this register block is not maintained across S3 or S4 sleeping states, or
the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System I/O Space or
 Specified by _PTC Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: 32-bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FADT.
Software treats all other CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4-16 Processor Control Register Bits

Bit Name Description

0-3 CLK_VAL Possible locations for the clock throttling value.

4 THT_EN This bit enables clock throttling of the clock as set in the
CLK_VAL field. THT_EN bit must be reset LOW when
changing the CLK_VAL field (changing the duty setting).

5-31 CLK_VAL Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK>+4: System I/O Space or
 Specified by _CST Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8-bits

This register is accessed as a byte.

Table 4-17 Processor LVL2 Register Bits

Bit Name Description

0-7 P_LVL2 Reads to this register return all zeros; writes to this register have
no effect. Reads to this register also generate an “enter a C2
power state” to the clock control logic.

78 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK>+5: System I/O Space or
 Specified by _CST Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8-bits

This register is accessed as a byte.

Table 4-18 Processor LVL3 Register Bits

Bit Name Description

0-7 P_LVL3 Reads to this register return all zeros; writes to this register have
no effect. Reads to this register also generate an “enter a C3
power state” to the clock control logic.

4.7.3.6 Reset Register
The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset.
When implemented, this mechanism must reset the entire system. This includes processors, core logic, all
buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the logical
equivalent to power cycling the machine. Upon gaining control after a reset, OSPM will perform actions in
like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT (always
accessed via the natural alignment and size described in RESET_REG). To reset the machine, software will
write a value (indicated in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the
FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a function
in bus 0. Therefore, the Address_Space_ID value in RESET_REG must be set to I/O space, Memory space,
or PCI Configuration space (with a bus number of 0). As the register is only 8 bits, Register_Bit_Width
must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.

4.7.4 Generic Hardware Registers
ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in
the general-purpose event registers. The general-purpose event registers are pointed to by the GPE0_BLK
and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined ACPI
address spaces. A device’s generic hardware programming model is described through an associated object
in the ACPI Namespace, which specifies the bit’s function, location, address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bits reside in either the GPE0_STS or GPE1_STS registers, and “child”
event status bits can reside in generic address space.

ACPI Hardware Specification 79

Compaq/Intel/Microsoft/Phoenix/Toshiba

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned
into two chips: a chipset and an embedded controller.

• The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

• The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

GPx_REG
Block

ACPI-Compatible
Chip Set

Momentary

Momentary

PWRBTN#

LID
Switch

Power
Button

LID#

Embedded
Controller

8

EC_CS#

EXTSMI#

EXTPME#

AC#

E
m

be
dd

ed
 C

on
tr

ol
le

r
In

te
rf

ac
e

EC_STS
GP_STS.0

EC_EN
GP_EN.0

Other SCI
sources

SCI#
Shareable

Interrupt

AC_STS
E0.0

DOCK_STS
P0.40.1

DOCK#

RI#

EXTPME#

RI_STS
GP_STS.1

RI_EN
GP_EN.1

RI#

AC#

DOCK#

EXTPME# EXTPME#

LID_STS
GP_STS.2

LID_EN
GP_EN.2

LID

LID_POL
S33.2

EXTSMI#
SMI-only
sourcesEXTSMI#

EXTSMI#SMI Only
Events

Debounce

Docking
Chip

DOCK#

34

35

Figure 4-13 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEx_STS register are the:
• Embedded controller interrupt, which contains two query events: one for AC detection and one for

docking (the docking query event has a child interrupt status bit in the docking chip).
• Ring indicate status (used for waking the system).
• Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is
active.

• A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this event;
OSPM will then schedule for execution the control method associated with query value 34.

• Another query event is for the docking chip that generates a docking event. In this case, the
embedded controller will return a query value of 35 upon a query command from system software
responding to an SCI from the embedded controller. OSPM will then schedule the control method
associated with the query value of 35 to be executed, which services the docking event.

80 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is
and LID is) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space (in
this case, bit 2 of system I/O space 33h) and would be manipulated with a control method associated with
the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks. However,
AML code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following is a list of features supported by
ACPI. The list is not intended to be complete or comprehensive.

• Device insertion/ejection (for example, docking, device bay, A/C adapter)
• Batteries4
• Platform thermal subsystem
• Turning on/off power resources
• Mobile lid Interface
• Embedded controller
• System indicators
• OEM-specific wake events
• Plug and Play configuration

4.7.4.1 General-Purpose Event Register Blocks
ACPI supports up to two general-purpose register blocks as described in the FADT (see section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as a byte. It is up to the specific
design to determine if these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing control
to the OS upon waking.

4.7.4.1.1 General-Purpose Event 0 Register Block
This register block consists of two registers: The GPE0_STS and the GPE0_EN registers. Each register’s
length is defined to be half the length of the GPE0 register block, and is described in the ACPI FADT’s
GPE0_BLK and GPE0_BLK_LEN operators. OSPM owns the general-purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a platform
has GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the
platform and have no associated AML code. In such, cases these event pins are to be tied inactive such that
the corresponding SCI status bit in the GPE register is not set by a floating input pin.

4 ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined
standard for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control
methods for use by OEMs that use a proprietary “control method” battery interface.

ACPI Hardware Specification 81

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.4.1.1.1 General-Purpose Event 0 Status Register

Register Location: <GPE0_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero of
the general-purpose registers. Each available status bit in this register corresponds to the bit with the same
bit position in the GPE0_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a “1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPE0_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE0_STS register. The
enable bits work similar to how the enable bits in the fixed-event registers are defined: When the enable bit
is set, then a set status bit in the corresponding status bit will generate an SCI bit. OSPM accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block
This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPE1 register block, and is described in the ACPI FADT’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register

Register Location: <GPE1_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available
status bit in this register corresponds to the bit with the same bit position in the GPE1_EN register. Each
available status bit in this register is set when the event is active, and can only be cleared by software
writing a “1” to its respective bit position. For the general-purpose event registers, unimplemented bits are
ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

82 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

4.7.4.1.2.2 General-Purpose Event 1 Enable Register

Register Location: <GPE1_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STS register. The
enable bits work similar to how the enable bits in the fixed-event registers are defined: When the enable bit
is set, a set status bit in the corresponding status bit will generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices
This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch
The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by
the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used, then
the OEM needs to define the lid switch as a device with an _HID object value of “_PNP0C0D”, which
identifies this device as the lid switch to OSPM. The Lid device needs to contain a control method that
returns its status. The Lid event handler AML code reconfigures the lid hardware (if it needs to) to generate
an event in the other direction, clear the status, and then notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

LID_POL

LID_STS

8 ms
Debounce

Momentary Normally
Open push button

Figure 4-14 Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL
bit).

The ASL code defines the following:
• An operational region where the lid polarity resides in address space

System address space in registers 0x201.
• A field operator to allow AML code to access this bit:

Polarity control bit (LID_POL) is called LPOL and is accessed at 0x201.0.
• A device named _SB.LID with the following:

A Plug and Play identifier “PNP0C0D” that associates OSPM with this object.
Defines an object that specifies a change in the lid’s status bit can wake the system from the S4 sleep

state and from all higher sleep states (S1, S2, or S3).

ACPI Hardware Specification 83

Compaq/Intel/Microsoft/Phoenix/Toshiba

• The lid switch event handler that does the following:
Defines the lid’s status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.
Defines the event handler for the lid (only event handler on this status bit) that does the following:

Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite condition).
Generates a notify to the OS that does the following:

Passes the _SB.LID object.
Indicates a device specific event (notify value 0x80).

// Define a Lid switch
OperationRegion(\Pho, SystemIO, 0x201, 0x1)
Field(\Pho, ByteAcc, NoLock, Preserve) {
 LPOL, 1 // Lid polarity control bit
 }

Device(_SB.LID){
 Name(_HID, EISAID(“PNP0C0D”))
 Method(_LID){Return(LPOL)}
 Name(_PRW, Package(2){
 1, // bit 1 of GPE to enable Lid wakeup
 0x04} // can wakeup from S4 state
)
 }
Scope(_GPE){ // Root level event handlers
 Method(_L01){ // uses bit 1 of GP0_STS register
 Not(LPOL, LPOL) // Flip the lid polarity bit
 Notify(LID, 0x80) // Notify OS of event
 }
 }

At the top level, the generic events in the GPEx_STS register are:

Embedded controller interrupt, which contains two query events: one for AC detection and one for docking
(the docking query event has a child interrupt status bit in the docking chip)

Ring indicate status (used for waking the system)

Lid status

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is
active.

A query event is generated when the AC# signal is asserted. The embedded controller returns a query value
of 34 (any byte number can be used) upon a query command in response to this event; OSPM will then
schedule for execution the control method associated with query value 34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the query
value of 35 to be executed, which services the docking event.

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is set
and LID is set) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space
(in this case, bit 2 of system I/O space 33h) and would be manipulated with a control method associated
with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks. However,
AML code is required to clear all sibling status bits in generic space.

84 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Generic hardware features are controlled by OEM supplied AML code. ACPI provides both an event and
control model for development of these features. The ACPI specification also provides specific control
methods for notifying OSPM of certain power management and Plug and Play events. Section 5, “ACPI
Software Programming Model,” provides information on the types of hardware hooks required to support
the different types of subsystems. The following is a list of features supported by ACPI, however the list is
not intended to be complete or comprehensive

Device insertion/ejection (for example, docking, device bay, A/C adapter)

Batteries5

Platform thermal subsystem

Turning on/off power resources

Mobile lid interface

Embedded controller

System indicators

OEM-specific wake events

Plug and Play configuration

4.7.4.2.2 Embedded Controller
ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

The embedded controller is defined as a device and must contain a set number of control methods:
• _HID with a value of PNP0C09 to associate this device with the ACPI’s embedded controller’s driver.
• _CRS to return the resources being consumed by the embedded controller.
• _GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s device
as control methods. An example of defining an embedded controller device is shown below:

5 ACPI OS’s assume the use of the Duracell/Intel defined standard for batteries, called the “Smart Battery
Specification” (SBS). ACPI provides a set of control methods for use by OEMs that use a proprietary
“control method” battery interface.

ACPI Hardware Specification 85

Compaq/Intel/Microsoft/Phoenix/Toshiba

Device(EC0) {
// PnP ID
Name(_HID, EISAID(“PNP0C09”))
// Returns the “Current Resources” of EC
Name(_CRS,
ResourceTemplate(){
 IO(Decode16, 0x62, 0x62, 0, 1)
 IO(Decode16, 0x66, 0x66, 0, 1)
})
// Define that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

OperationRegion(\EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {
// Field definitions
 }
Method(Q00){..}
Method(QFF){..}
}

For more information on the embedded controller, see section 13, “ACPI Embedded Controller Interface
Specification.”

4.7.4.2.3 Fan
ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNP0C0B.” It should then contain a list power resources used to control the
fan.

For more information, see section 10, “ACPI-Specific Device Objects.”

86 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 87

Compaq/Intel/Microsoft/Phoenix/Toshiba

5 ACPI Software Programming Model
ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in section 4, “ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI system.
Finally, ACPI defines an interface between an ACPI-compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tables list devices on the system
board or devices that cannot be detected or power managed using some other hardware standard, plus their
capabilities as described in section 3, “Overview.” They also list system capabilities such as the sleeping
power states supported, a description of the power planes and clock sources available in the system,
batteries, system indicator lights, and so on. This enables OSPM to control system devices without needing
to know how the system controls are implemented.

Topics covered in this section are:
• The ACPI system description table architecture is defined, and the role of OEM-provided

definition blocks in that architecture is discussed.
• The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture
The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the BIOS. This structure contains the address of the Root System Description Table
(RSDT), which references other description tables that provide data to OSPM, supplying it with knowledge
of the base system’s implementation and configuration (see Figure 5-1).

Located in system's memory address space

Extended System
Description Table

Header

XSDT

Entry

Entry

...

Entry

...

Root System
Description Pointer

Header

Sig

 contents

Header

Sig

 contents

RSD PTR

Pointer

Pointer

Figure 5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

88 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The Root System Description Table (RSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-2.

Device I/O
Device Memory

PCI configuration
Embedded Controller space

Firmware ACPI
Control Structure

Wake Vector
Shared Lock

FACS

GPx_BLK

PM2x_BLK

Differentiated System
Description Table

Header

DSDT

Differentiated
Definition

Block

PM1x_BLK

Fixed ACPI
Description Table

Header

FACP

Static info

Located in
port space

OEM-Specific

ACPI
Driver

Software

Hardware

FIRM
DSDT
BLKs

...

Figure 5-2 Description Table Structures

• OSPM finds the RSDP structure as described in section 5.2.4.1 (“Finding the RSDP on IA-PC
Systems”) or section 5.2.4.2 (“Finding the RSDP on EFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table.
The Root System Description Table starts with the signature “RSDT” and contains one or more physical
pointers to other system description tables that provide various information about the system. As shown in
Figure 5-1, there is always a physical address in the Root System Description Table for the Fixed ACPI
Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, OSPM can then interpret the implementation-specific data within the description
table.

The purpose of the FADT is to define various static system information related to configuration and power
management. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT describes
the implementation and configuration details of the ACPI hardware registers on the platform.

ACPI Software Programming Model 89

Compaq/Intel/Microsoft/Phoenix/Toshiba

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK, and one
or more P_BLKs), see section 4.7, “ACPI Register Model.” The PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling
low-level ACPI system functions.

The GPE0_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to the Differentiated System Description Table (DSDT). The DSDT contains a Definition Block named the
Differentiated Definition Block for the DSDT that contains implementation and configuration information
OSPM can use to perform power management, thermal management, or Plug and Play functionality that
goes beyond the information described by the ACPI hardware registers.

A Definition Block contains information about hardware implementation details in the form of a
hierarchical namespace, data, and control methods encoded in AML. OSPM “loads” or “unloads” an entire
definition block as a logical unit. The Differentiated Definition Block is always loaded by OSPM at boot
time and cannot be unloaded.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from I/O space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to OSPM. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware designs to be expressed.

5.1.1 Address Space Translation
Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass through
the bridges. This translation can take the form of the addition or subtraction of an offset. Or it can take the
form of a conversion from I/O cycles into Memory cycles and back again. When translation takes place, the
addresses placed on the processor bus by the processor during a read or write cycle are not the same
addresses that are placed on the I/O bus by the I/O bus bridge. The address the processor places on the
processor bus will be known here as the processor-relative address. And the address that the bridge places
on the I/O bus will be known as the bus-relative address. Unless otherwise noted, all addresses used within
this section are processor-relative addresses.

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode the
entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into memory space. In this second
scenario, when the processor needs to read from an I/O register of a device underneath the second root PCI
bus, it would need to perform a memory read within the range that the root PCI bus bridge is using to map
the I/O space.

Note: Industry standard PCs do not provide address space translations because of historical compatibility
issues.

90 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2 ACPI System Description Tables
This section specifies the structure of the system description tables:
• Root System Description Pointer (RSDP)
• System Description Table Header
• Root System Description Table (RSDT)
• Fixed ACPI Description Table (FADT)
• Firmware ACPI Control Structure (FACS)
• Differentiated System Description Table (DSDT)
• Secondary System Description Table (SSDT)
• Multiple APIC Description Table (MADT)
• Smart Battery Table (SBST)
• Extended System Description Table (XSDT)
• Embedded Controller Boot Resources Table (ECDT)

All numeric values from the above tables, blocks, and structures are always encoded in little endian format.
Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields
For future expansion, all data items marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
• OEM implementations of software and AML code return the bit value of 0 for all reserved bits in

ACPI tables or in other software values, such as resource descriptors.
• For all reserved bits in ACPI tables and registers, OSPM implementations must:

• Ignore all reserved bits that are read.
• Preserve reserved bit values of read/write data items (for example, OSPM writes back

reserved bit values it reads).
• Write zeros to reserved bits in write-only data items.
•

5.2.1.2 Reserved Values and Software Components
• OEM implementations of software and AML code return only defined values and do not return

reserved values.
• OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components
• Software ignores all reserved bits read from hardware enable or status registers.
• Software writes zero to all reserved bits in hardware enable registers.
• Software ignores all reserved bits read from hardware control and status registers.
• Software preserves the value of all reserved bits in hardware control registers by writing back read

values.

5.2.1.4 Ignored Hardware Bits and Software Components
• Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits in

these same types of registers.

ACPI Software Programming Model 91

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.2 Compatibility
All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and values plus appending data to the 1.0
tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format
Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O
space. This was targeted at the IA-32 environment. Newer architectures require addressing mechanisms
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it
must allow the placement of control registers in address spaces other than System I/O.

5.2.3.1 Generic Address Structure
In order to expand ACPI addressing capabilities, a Generic Address Structure (GAS) is defined that enables
access to registers in ACPI-defined address spaces. This 12-byte structure, described below (Table 5-1), is
used to express register addresses within the new tables defined by ACPI 2.0.

Table 5-1 Generic Address Structure (GAS)

Field
Byte
Length

Byte
Offset Description

Address_Space_ID 1 0 The address space where the data structure or
register exists.
Defined values are:

0–System Memory

1–System I/O

2–PCI Configuration Space

3–Embedded Controller

4–SMBus

0x7F–Functional Fixed Hardware

Register_Bit_Width 1 1 The size in bits of the given register. When
addressing a data structure, this field must be zero.

Register_Bit_Offset 1 2 The bit offset of the given register at the given
address. When addressing a data structure, this field
must be zero.

Reserved 1 3 Must be 0.

Address 8 4 The 64-bit address of the data structure or register
in the given address space (relative to the
processor). (See below for specific formats.)

92 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-2 Address Space Format

Address Space Format

0–System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1–System I/O The 64-bit I/O address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

PCI Configuration space addresses must be confined to devices on PCI bus 0
segment 0. The format of addresses are defined as follows:

WORD Location Description

Highest WORD Reserved (must be 0)

… PCI Device number on bus 0

… PCI Function number

Lowest WORD Offset in the configuration space header

2–PCI Configuration
Space

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F–Functional
Fixed Hardware

Use of GAS fields other than Address_Space_ID is specified by the CPU
manufacturer. The use of functional fixed hardware carries with it a reliance on
OS specific software that must be considered. OEMs should consult OS vendors
to ensure that specific functional fixed hardware interfaces are supported by
specific operating systems.

5.2.4 Root System Description Pointer (RSDP)
During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.

5.2.4.1 Finding the RSDP on IA-PC Systems
OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges
on 16-byte boundaries for a valid Root System Description Pointer structure signature and checksum match
as follows:
• The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can

be found in the two-byte location 40:0Eh on the BIOS data area.
• The BIOS read-only memory space between 0E0000h and 0FFFFFh.

5.2.4.2 Finding the RSDP on EFI Enabled Systems
In Extensible Firmware Interface (EFI) enabled systems (for example, ItaniumTM-based platforms) a
pointer to the RSDP structure exists within the EFI System Table. The OS loader’s EFI image is provided a
pointer to the EFI System Table at invocation. The OS loader must retrieve the pointer to the RSDP
structure from the EFI System table and convey the pointer to OSPM, using an OS dependent data
structure, as part of the hand off of control from the OS loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI configuration table within
the EFI system table. EFI configuration table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The EFI 1.0 specification defines a GUID for ACPI. An EFI configuration table entry that
matches this GUID points to an ACPI 1.0-compatible RSDP structure (ACPI 1.0 GUID).

ACPI Software Programming Model 93

Compaq/Intel/Microsoft/Phoenix/Toshiba

The EFI GUID for the ACPI 2.0 RSDP structure pointer is: 8868E871-E4F1-11d3-BC22-0080C73C8881.

The OS loader for an ACPI 2.0-compatible OS will search for an RSDP structure pointer using the ACPI
2.0 GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is not
found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before assuming
platform control via the EFI ExitBootServices interface. See the EFI specification for more information.

5.2.4.3 RSDP Structure
The revision number contained within the structure indicates the size of the table structure.

Table 5-3 Root System Description Pointer Structure

Field
Byte
Length

Byte
Offset Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing
blank character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table,
bytes 0 to 19, including the checksum field. These bytes must
sum to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI
version 1.0 revision number of this table is zero. The ACPI 2.0
value for this field is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended
Checksum

1 32 This is a checksum of the entire table, including both checksum
fields.

Reserved 3 33 Reserved field

94 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.5 System Description Table Header
All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
are listed in Table 5-5.

Table 5-4 DESCRIPTION_HEADER Fields

Field
Byte
Length

Byte
Offset Description

Signature 4 0 The ASCII string representation of the table identifier. Notice
that if OSPM finds a signature in a table that is not listed in
Table 5-5, OSPM ignores the entire table (it is not loaded into
ACPI namespace); OSPM ignores the table even though the
values in the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero
to be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are
assumed to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

ACPI Software Programming Model 95

Compaq/Intel/Microsoft/Phoenix/Toshiba

Tables 5-5 and 5-5a contain the system description table signatures defined by this specification. These
system description tables may be defined by ACPI (Table 5-5) or reserved by ACPI and declared by other
industry specifications (Table 5-5a). This allows OS and platform specific tables to be defined and pointed
to by the RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI
specification acts as gatekeeper to avoid collisions in table signatures. To help avoid signature collisions,
table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI Web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference url to a document that describes the table format.

Table 5-5 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.10.4, “Multiple APIC Description
Table”

“DSDT” Differentiated System Description Table Section 5.2.10.1, “Differentiated System
Description Table”

“ECDT” Embedded Controller Boot Resources Table Section 5.2.13, “Embedded Controller Boot
Resources Table”

”FACP” Fixed ACPI Description Table (FADT) Section 5.2.8, “Fixed ACPI Description
Table”

“FACS” Firmware ACPI Control Structure Section 5.2.9, “Firmware ACPI Control
Structure”

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures
starting with “OEM” are reserved for OEM
use.

“PSDT” Persistent System Description Table Section 5.2.10.3, “Persistent System
Description Table”

“RSDT” Root System Description Table Section 5.2.6, “Root System Description
Table”

“SBST” Smart Battery Specification Table Section 5.2 12, “Smart Battery Table”

“SSDT” Secondary System Description Table Section 5.2.10.2, “Secondary System
Description Table”

“XSDT” Extended System Description Table Section 5.2.7, “Extended System Description
Table”

96 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-5a DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature Description Reference

“BOOT” Simple Boot Flag Table Microsoft Simple Boot Flag Specification
http://www.microsoft.com/HWDEV/
desinit/simp_bios.htm

“CPEP” Corrected Platform Error Polling Table Corrected Platform Error Polling Table
Specification
http://h21007.www2.hp.com/dspp/files/unprot
ected/devresource/Docs/TechPapers/IA64/cpe
p.pdf

“DBGP” Debug Port Table Microsoft Debug Port Specification
http://www.microsoft.com/HWDEV/PLATFO
RM/pcdesign/LR/debugspec.asp

“ETDT” Event Timer Description Table IA-PC Multimedia Timers Specification. This
signature has been superceded by “HPET” and
is now obsolete.

“HPET” IA-PC High Precision Event Timer Table IA-PC High Precision Event Timer
Specification.
http://developer.intel.com/ial/home/sp/pcmms
pec.htm

“SLIT” System Locality Information Table http://h21007.www2.hp.com/dspp/files/unprot
ected/devresource/Docs/TechPapers/IA64/slit.
pdf

“SPCR” Serial Port Console Redirection Table Microsoft Serial Port Console Redirection
Table
http://www.microsoft.com/HWDEV/PLATFO
RM/server/headless/SPCR.asp

“SRAT” Static Resource Affinity Table Interim processor-memory proximity table
http://www.microsoft.com/HWDEV/design/S
RAT.htm

“SPMI” Server Platform Management Interface Table http://h21007.www2.hp.com/dspp/files/unprot
ected/devresource/Docs/TechPapers/IA64/hps
pmi.pdf

“TCPA” Trusted Computing Platform Alliance
Capabilities Table

http://www.trustedpc.org TCPA PC Specific
Implementation Specification

5.2.6 Root System Description Table (RSDT)
OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shown in Table 5-6, starts with the signature ‘RSDT’ followed by an array of physical pointers to
other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then
interpret the implementation-specific data within the table.

Systems provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT, described
in the next section, supersedes RSDT functionality for ACPI 2.0.

ACPI Software Programming Model 97

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-6 Root System Description Table Fields (RSDT)

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘RSDT.’ Signature for the Root System Description Table.

 Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the FADT.

 OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

98 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.7 Extended System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI 2.0-compatible OS must use the XSDT if present.

Table 5-7 Extended System Description Table Fields (XSDT)

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘XSDT’. Signature for the Extended System Description
Table.

 Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the RSDTle, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the FADT.

 OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

ACPI Software Programming Model 99

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.8 Fixed ACPI Description Table (FADT)
The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
PM_TMR_BLK, GPE0_BLK, and GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Table 5-8 Fixed ACPI Description Table (FADT) Format

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.

 Length 4 4 Length, in bytes, of the entire FADT.

 Revision 1 8 3

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the RSDT.

 OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address (0-4 GB) of the FACS, where
OSPM and Firmware exchange control information. See
section 5.2.6, “Root System Description Table,” for a
description of the FACS.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named
INT_MODEL, which has been eliminated in ACPI 2.0.as
operating systems to date have had no use for this field.
New systems should set this field to zero but field values of
one are also allowed to maintain compatibility with ACPI
1.0.

100 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to
set default power management policy parameters during OS
installation.

Field Values:

0–Unspecified

1–Desktop

2–Mobile

3–Workstation

4–Enterprise Server

5–SOHO Server

6–Appliance PC

>6–Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode.
On systems that do not contain the 8259, this field contains
the Global System interrupt number of the SCI interrupt.
OSPM is required to treat the ACPI SCI interrupt as a
sharable, level, active low interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During
ACPI OS initialization, OSPM can determine that the ACPI
hardware registers are owned by SMI (by way of the
SCI_EN bit), in which case the ACPI OS issues the
ACPI_ENABLE command to the SMI_CMD port. The
SCI_EN bit effectively tracks the ownership of the ACPI
hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor.
This field is reserved and must be zero on system that does
not support System Management mode.

ACPI_ENABLE

1 52 The value to write to SMI_CMD to disable SMI ownership
of the ACPI hardware registers. The last action SMI does to
relinquish ownership is to set the SCI_EN bit. During the
OS initialization process, OSPM will synchronously wait
for the transfer of SMI ownership to complete, so the ACPI
system releases SMI ownership as quickly as possible. This
field is reserved and must be zero on systems that do not
support Legacy Mode.

ACPI Software Programming Model 101

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI
ownership of the ACPI hardware registers. This can only be
done when ownership was originally acquired from SMI by
OSPM using ACPI_ENABLE. An OS can hand ownership
back to SMI by relinquishing use to the ACPI hardware
registers, masking off all SCI interrupts, clearing the
SCI_EN bit and then writing ACPI_DISABLE to the
SMI_CMD port from the boot processor. This field is
reserved and must be zero on systems that do not support
Legacy Mode.

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates
S4BIOS_REQ is not supported. (See Table 5-12.)

PSTATE_CNT 1 55 If non-zero, this field contains the value OSPM writes to
the SMI_CMD register to assume processor performance
state control responsibility.

PM1a_EVT_BLK 4 56 System port address of the PM1a Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded in ACPI 2.0 by the
X_PM1a_EVT_BLK field.

PM1b_EVT_BLK 4 60 System port address of the PM1b Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM1b_EVT_BLK field.

PM1a_CNT_BLK 4 64 System port address of the PM1a Control Register Block.
See section 4.7.3.2, “PM1 Control Grouping,” for a
hardware description layout of this register block. This is a
required field. This field is superseded in ACPI 2.0 by the
X_PM1a_CNT_BLK field.

PM1b_CNT_BLK 4 68 System port address of the PM1b Control Register Block.
See section 4.7.3.2, “PM1 Control Grouping,” for a
hardware description layout of this register block. This field
is optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM1b_CNT_BLK field.

PM2_CNT_BLK 4 72 System port address of the PM2 Control Register Block.
See section 4.7.3.4, “PM2 Control (PM2_CNT),” for a
hardware description layout of this register block. This field
is optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM2_CNT_BLK field.

102 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

PM_TMR_BLK 4 76 System port address of the Power Management Timer
Control Register Block. See section 4.7.3.3, “Power
Management Timer (PM_TMR),” for a hardware
description layout of this register block. This is a required
field. This field is superseded in ACPI 2.0 by the
X_PM_TMR_BLK field.

GPE0_BLK 4 80 System port address of General-Purpose Event 0 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero. This field is superseded in ACPI 2.0 by
the X_GPE0_BLK field.

GPE1_BLK 4 84 System port address of General-Purpose Event 1 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero. This field is superseded in ACPI 2.0 by
the X_GPE1_BLK field.

PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if
supported, PM1b_ EVT_BLK. This value is ≥ 4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if
supported, PM1b_CNT_BLK. This value is ≥ 2.

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support for
the PM2 register block is optional. If supported, this value
is ≥ 1. If not supported, this field contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. This field’s
value must be 4.

GPE0_BLK_LEN 1 92 Number of bytes decoded by GPE0_BLK. The value is a
non-negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a
non-negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where
GPE1 based events start.

CST_CNT 1 95 If non-zero, this field contains the value OSPM writes to
the SMI_CMD register to indicate OS support for the _CST
object and C States Changed notification.

P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system
does not support a C3 state.

ACPI Software Programming Model 103

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush
strides that need to be read (using cacheable addresses) to
completely flush dirty lines from any processor’s memory
caches. Notice that the value in FLUSH_STRIDE is
typically the smallest cache line width on any of the
processor’s caches (for more information, see the
FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’s caches, then
FLUSH_SIZE and WBINVD are set to zero. Notice that
this method of flushing the processor caches has
limitations, and WBINVD=1 is the preferred way to flush
the processors caches. This value is typically at least 2
times the cache size. The maximum allowed value for
FLUSH_SIZE multiplied by FLUSH_STRIDE is 2 MB for
a typical maximum supported cache size of 1 MB. Larger
cache sizes are supported using WBINVD=1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate this to OSPM by setting
the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line
width, in bytes, of the processor’s memory caches. This
value is typically the smallest cache line width on any of
the processor’s caches. For more information, see the
description of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate this to OSPM by setting
the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle
setting is within the processor’s P_CNT register.

104 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in
the P_CNT register. Each processor’s duty cycle setting
allows the software to select a nominal processor frequency
below its absolute frequency as defined by:

THTL_EN = 1

BF * DC/(2DUTY_WIDTH)

 Where:

BF–Base frequency

DC–Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF.
A DUTY_WIDTH value of 0 indicates that processor duty
cycle is not supported and the processor continuously runs
at its base frequency.

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm
value. If this field contains a zero, then the RTC day of the
month alarm feature is not supported. If this field has a non-
zero value, then this field contains an index into RTC RAM
space that OSPM can use to program the day of the month
alarm. See section 4.7.2.4, “Real Time Clock Alarm,” for a
description of how the hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm
value. If this field contains a zero, then the RTC month of
the year alarm feature is not supported. If this field has a
non-zero value, then this field contains an index into RTC
RAM space that OSPM can use to program the month of
the year alarm. If this feature is supported, then the
DAY_ALRM feature must be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains
a zero, then the RTC centenary feature is not supported. If
this field has a non-zero value, then this field contains an
index into RTC RAM space that OSPM can use to program
the centenary field.

IAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5-10 for a
description of this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5-9 for a description of this
field.

ACPI Software Programming Model 105

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

RESET_REG 12 116 The address of the reset register represented in Generic
Address Structure format (See section 4.7.3.6, “Reset
Register,” for a description of the reset mechanism.)

Note: Only System I/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8
and Register_Bit_Offset must be 0.

RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to
reset the system. (See section 4.7.3.6, “Reset Register,” for
a description of the reset mechanism.)

Reserved 3 129 Must be 0.

X_FIRMWARE_CTRL 8 132 64bit physical address of the FACS.

X_DSDT 8 140 64bit physical address of the DSDT.

X_PM1a_EVT_BLK 12 148 Extended address of the PM1a Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM1a_CNT_BLK 12 172 Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM2_CNT_BLK 12 196 Extended address of the Power Management 2 Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.4, “PM2 Control (PM2_CNT),”
for a hardware description layout of this register block. This
field is optional; if this register block is not supported, this
field contains zero.

106 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field
Byte
Length

Byte
Offset Description

X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this
register block. This is a required field.

X_GPE0_BLK 12 220 Extended address of the General-Purpose Event 0 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero.

X_GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero.

Table 5-9 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag
Bit
length

Bit
offset Description

WBINVD 1 0 Processor properly implements a functional equivalent to
the WBINVD IA-32 instruction.

If set, signifies that the WBINVD instruction correctly
flushes the processor caches, maintains memory coherency,
and upon completion of the instruction, all caches for the
current processor contain no cached data other than what
OSPM references and allows to be cached. If this flag is not
set, the ACPI OS is responsible for disabling all ACPI
features that need this function. This field is maintained for
ACPI 1.0 processor compatibility on existing systems.
Processors in new ACPI 2.0-compatible systems are
required to support this function and indicate this to OSPM
by setting this field.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency,
but does not guarantee the caches are invalidated. This
provides the complete semantics of the WBINVD
instruction, and provides enough to support the system
sleeping states. If neither of the WBINVD flags is set, the
system will require FLUSH_SIZE and FLUSH_STRIDE to
support sleeping states. If the FLUSH parameters are also
not supported, the machine cannot support sleeping states
S1, S2, or S3.

ACPI Software Programming Model 107

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-9 Fixed ACPI Description Table Fixed Feature Flags (continued)

FACP - Flag
Bit
length

Bit
offset Description

PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors.

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to
only work on a uniprocessor (UP) system. A one indicates
that the C2 power state is configured to work on a UP or
multiprocessor (MP) system.

PWR_BUTTON 1 4 A zero indicates the power button is handled as a fixed
feature programming model; a one indicates the power
button is handled as a control method device. If the system
does not have a power button, this value would be “1” and
no sleep button device would be present.

SLP_BUTTON 1 5 A zero indicates the sleep button is handled as a fixed
feature programming model; a one indicates the sleep
button is handled as a control method device.

If the system does not have a sleep button, this value would
be “1” and no sleep button device would be present.

FIX_RTC 1 6 A zero indicates the RTC wake status is supported in fixed
register space; a one indicates the RTC wake status is not
supported in fixed register space.

RTC_S4 1 7 Indicates whether the RTC alarm function can wake the
system from the S4 state. The RTC must be able to wake
the system from an S1, S2, or S3 sleep state. The RTC
alarm can optionally support waking the system from the
S4 state, as indicated by this value.

TMR_VAL_EXT 1 8 A zero indicates TMR_VAL is implemented as a 24-bit
value. A one indicates TMR_VAL is implemented as a 32-
bit value. The TMR_STS bit is set when the most
significant bit of the TMR_VAL toggles.

DCK_CAP 1 9 A zero indicates that the system cannot support docking. A
one indicates that the system can support docking. Notice
that this flag does not indicate whether or not a docking
station is currently present; it only indicates that the system
is capable of docking.

RESET_REG_SUP 1 10 If set, indicates the system supports system reset via the
FADT RESET_REG as described in section 4.7. 3.6, “Reset
Register.”

SEALED_CASE 1 11 System Type Attribute. If set indicates that the system has
no internal expansion capabilities and the case is sealed.

HEADLESS 1 12 System Type Attribute. If set indicates the system does not
have local video capabilities or local input devices.

CPU_SW_SLP 1 13 If set, indicates to OSPM that a processor native instruction
must be executed after writing the SLP_TYPx register.

Reserved 18 14

108 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.8.1 Preferred PM Profile System Types
The following descriptions of preferred power management profile system types are to be used as a guide
for setting the Preferred_PM_Profile field in the FADT. OSPM can use this field to set default power
management policy parameters during OS installation.

Desktop. A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This device is
used to perform work that is considered mainstream corporate or home computing (for example, word
processing, Internet browsing, spreadsheets, and so on).

Mobile. A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devices to perform its normal functions. Most often contains one processor. This
device performs the same task set as a desktop. However it may have limitations dues to its size, thermal
requirements, and/or power source life.

Workstation. A single-user, full-featured, stationary computing device that resides on or near an
individual’s work area. Often contains more than one processor. Must be connected to AC power to
function. This device is used to perform large quantities of computations in support of such work as
CAD/CAM and other graphics-intensive applications.

Enterprise Server. A multiuser, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database, communications, or
financial operations within a corporation or government.

SOHO Server. A multiuser, stationary computing device that frequently resides in a separate area or room
in a small or home office. May contain more than one processor. Must be connected to AC power to
function. This device is generally used to support all of the networking, database, communications, and
financial operations of a small office or home office.

Appliance PC. A device specifically designed to operate in a low-noise, high-availability environment
such as a consumer’s living rooms orfamily room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be
connected to AC power to function. Normally they are sealed case style and may only perform a subset of
the tasks normally associated with today’s personal computers.

5.2.8.2 System Type Attributes
This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power management
and device settings. For example, a system that has the SEALED_CASE bit set may take a very aggressive
low noise policy toward thermal management. In another example an OS might not load video, keyboard or
mouse drivers on a HEADLESS system.

5.2.8.3 IA-PC Boot Architecture Flags
This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none are
present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.”

These flags pertain only to IA-PC platforms. On other system architectures, the entire field should be set
to 0.

ACPI Software Programming Model 109

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-10 Fixed ACPI Description Table Boot Architecture Flags

BOOT_ARCH
Bit
length

Bit
offset Description

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are
devices that have end-user accessible connectors (for
example, LPT port), or devices for which the OS must load
a device driver so that an end-user application can use a
device. If clear, the OS may assume there are no such
devices and that all devices in the system can be detected
exclusively via industry standard device enumeration
mechanisms (including the ACPI namespace).

8042 1 1 If set, indicates that the motherboard contains support for a
port 60 and 64 based keyboard controller, usually
implemented as an 8042 or equivalent micro-controller.

Reserved 14 2 Must be 0.

5.2.9 Firmware ACPI Control Structure (FACS)
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.8, “Fixed ACPI Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address space.
The memory where the FACS structure resides must not be reported as system AddressRangeMemory in
the system address map. For example, the E820 address map reporting interface would report the region as
AddressRangeReserved. For more information about system address map reporting interfaces, see
section 15, “System Address Map Interfaces.”

Table 5-11 Firmware ACPI Control Structure (FACS)

Field
Byte
Length

Byte
Offset Description

Signature 4 0 ‘FACS’

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. This value is 64 bytes or larger.

Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.
This value is calculated by the BIOS on a best effort basis
to indicate the base hardware configuration of the system
such that different base hardware configurations can have
different hardware signature values. OSPM uses this
information in waking from an S4 state, by comparing the
current hardware signature to the signature values saved in
the non-volatile sleep image. If the values are not the same,
OSPM assumes that the saved non-volatile image is from a
different hardware configuration and cannot be restored.

110 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-11 Firmware ACPI Control Structure (FACS) (continued)

Field
Byte
Length

Byte
Offset Description

Firmware_Waking_
 Vector

4 12 This field is superseded in ACPI 2.0 by the
X_Firmware_Waking_Vector field.

The 32-bit address field where OSPM puts its waking
vector. Before transitioning the system into a global
sleeping state, OSPM fills in this field with the physical
memory address of an OS-specific wake function. During
POST, the platform firmware first checks if the value of the
X_Firmware_Waking_Vector field is non-zero and if so
transfers control to OSPM as outlined in the
X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the
platform firmware checks the value of this field and if it is
non-zero, transfers control to the specified address.

On PCs, the wake function address is in memory below 1
MB and the control is transferred while in real mode.
OSPM’s wake function restores the processors’ context.

For IA-PC platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps
to. If, for example, the physical address is 0x12345, then
the BIOS must jump to real mode address 0x1234:0x0005.
In general this relationship is

 Real-mode address =

 Physical address>>4 : Physical address and 0x000F

Notice that on IA-PC platforms, A20 must be enabled when
the BIOS jumps to the real mode address derived from the
physical address stored in the Firmware Waking Vector.

Global_Lock 4 16 This field contains the Global Lock used to synchronize
access to shared hardware resources between the OSPM
environment and an external controller environment (for
example, the SMI environment). This lock is owned
exclusively by either OSPM or the firmware at any one
time. When ownership of the lock is attempted, it might be
busy, in which case the requesting environment exits and
waits for the signal that the lock has been released. For
example, the Global Lock can be used to protect an
embedded controller interface such that only OSPM or the
firmware will access the embedded controller interface at
any one time. See section 5.2.9.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags 4 20 Firmware control structure flags. See Table 5-12 for a
description of this field.

ACPI Software Programming Model 111

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-11 Firmware ACPI Control Structure (FACS) (continued)

Field
Byte
Length

Byte
Offset Description

X_Firmware_Waking
_Vector

8 24 64-bit physical address of OSPM’s Waking Vector.

Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address
of an OS-specific wake function. During POST, the
platform firmware checks if the value of this field is non-
zero and if so transfers control to OSPM by jumping to this
address. Prior to transferring control, the execution
environment must be configured as follows:

Memory address translation / paging and interrupts must be
disabled.

For IA 32-bit platforms, a 4GB flat address space for all
segment registers and EFLAGS.IF set to 0.

For 64-bit ItaniumTM-based platforms, the processor must
have psr.i, psr.it, psr.dt, and psr.rt set to 0. See the Intel®
ItaniumTM Architecture Software Developer’s Manual for
more information.

If this field is zero then OSPM checks the
Firmware_Waking_Vector field as outlined above.

Version 1 32 1–Version of this table

Reserved 31 33 This value is zero.

Table 5-12 Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset Description

S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the S4 state.

Reserved 31 1 The value is zero.

5.2.9.1 Global Lock
The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the ROM
BIOS. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the FACS and is
accessed and updated by both the OS environment and the SMI environment in a defined manner to
provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the actual memory location
of the lock. The FACS and Global Lock may be located anywhere in physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its attempt to
acquire the lock, and waits for the owning environment to signal that the lock has been released before
attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after the
lock is released, a signal is sent via an interrupt mechanism to the other environment to inform it that the
lock has been released. During interrupt handling for the “lock released” event within the corresponding

112 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

environment, if the lock ownership were still desired an attempt to acquire the lock would be made. If
ownership is not acquired, then the environment must again set “pending” and wait for another “lock
release” signal.

Table 5-13 shows the encoding of the Global Lock DWORD in memory.

Table 5-13 Global Lock Structure within the FACS

Field
Bit
Length

Bit
Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero is returned by the function, the caller has been granted ownership of the Global Lock and
can proceed. If zero is returned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt event that
the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
 mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
acq10: mov eax, [ecx] ; Get current value of Global Lock

 mov edx, eax
 and edx, not 1 ; Clear pending bit
 bts edx, 1 ; Check and set owner bit
 adc edx, 0 ; If owned, set pending bit

 lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
 jnz short acq10 ; If not set, try again

 cmp dl, 3 ; Was it acquired or marked pending?
 sbb eax, eax ; acquired = -1, pending = 0

 ret

ACPI Software Programming Model 113

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following code sequence is used by OSPM and the firmware to release ownership of the
Global Lock. If non-zero is returned, the caller must raise the appropriate event to the
other environment to signal that the Global Lock is now free. Depending on the
environment, this signaling is done by setting the either the GBL_RLS or BIOS_RLS within
their respective hardware register spaces. This signal only occurs when the other
environment attempted to acquire ownership while the lock was owned.

ReleaseGlobalLock:
 mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
rel10: mov eax, [ecx] ; Get current value of Global Lock

 mov edx, eax
 and edx, not 03h ; Clear owner and pending field

 lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
 jnz short rel10 ; If not set, try again

 and eax, 1 ; Was pending set?

 ; If one is returned (we were pending) the caller must signal that the
 ; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

 ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice
that its usage when there is ownership contention could entail a significant amount of system overhead as
well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit 0 is
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to be
protected under the Global Lock, ensuring that the register’s contents do not change from underneath one
environment while the other is making changes to it. Similarly if the entire register is shared, as the case
might be for the embedded controller interface, access to the register needs to be protected under the Global
Lock.

5.2.10 Definition Blocks
A Definition Block consists of data in AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permits implementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined as
a “built in” operator.

114 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type is expanded to 64 bits in ACPI 2.0, see
section 16.2.2, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL DefinitionBlockTerm’s ComplianceRevision field. See
section 16.2.3.1, “Definition Block Term”, for more information. It is the responsibility of the ASL writer
to ensure the Definition Block’s compatibility with the corresponding integer width when setting the
ComplianceRevision field.

5.2.10.1 Differentiated System Description Table (DSDT)
The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. This
Definition Block is like all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.10, “Definition Blocks,” for a description of Definition Blocks.

Table 5-13a Differentiated System Description Table Fields (DSDT)

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘DSDT.’ Signature for the Differentiated System
Description Table.

 Length 4 4 Length, in bytes, of the entire DSDT (including the header).

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)

5.2.10.2 Secondary System Description Table (SSDT)
Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by data in Definition Block format. There can be multiple
SSDTs present. OSPM first loads the DSDT and then loads each SSDT. This allows the OEM to provide

ACPI Software Programming Model 115

Compaq/Intel/Microsoft/Phoenix/Toshiba

the base support in one table and add smaller system options in other tables. For example, the OEM might
put dynamic object definitions into a secondary table such that the firmware can construct the dynamic
information at boot without needing to edit the static DSDT. A SSDT can only rely on the DSDT being
loaded prior to it.

Table 5-13b Secondary System Description Table Fields (SSDT)

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘SSDT.’ Signature for the Secondary System Description
Table.

 Length 4 4 Length, in bytes, of the entire SSDT (including the header).

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4 , “Definition Block
Encoding”)

5.2.10.3 Persistent System Description Table (PSDT)
The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
this version of the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in like
manner to the evaluation of an SSDT as described in section 5.2.10.2, “Secondary System Description
Table.”

5.2.10.4 Multiple APIC Description Table (MADT)
The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT–compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller (APIC) and
Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically changed by
the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports both models, an OS will install support for one model or the other; it
will not mix models. Multi-boot capability is a feature in many modern operating systems. This means that
a system may have multiple operating systems or multiple instances of an OS installed at any one time.
Platform designers must allow for this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC or SAPIC implementations.

116 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support
APICs or SAPICs on an ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped
to the global system interrupt value used by ACPI. See Section 5.2.11. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that APIC or SAPIC
implementations might support (for example, identifying each processor’s local APIC ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-14 Multiple APIC Description Table (MADT) Format

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘APIC.’ Signature for the Multiple APIC Description Table.

 Length 4 4 Length, in bytes, of the entire MADT.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of MADTfor supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Local APIC Address 4 36 The 32-bit physical address at which each processor can
access its local APIC.

Flags 4 40 Multiple APIC flags. See Table 5-15 for a description of
this field.

APIC Structure[n] — 44 A list of APIC structures for this implementation. This list
will contain all of the I/O APIC, I/O SAPIC, Local APIC,
Local SAPIC, Interrupt Source Override, Non-maskable
Interrupt Source, Local APIC NMI Source, Local APIC
Address Override, and Platform Interrupt Sources structures
needed to support this platform. These structures are
described in the following sections.

Table 5-15 Multiple APIC Flags

Multiple APIC Flags
Bit
Length

Bit
Offset Description

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-
compatible dual-8259 setup. The 8259 vectors must be
disabled (that is, masked) when enabling the ACPI APIC
operation.

ACPI Software Programming Model 117

Compaq/Intel/Microsoft/Phoenix/Toshiba

Multiple APIC Flags
Bit
Length

Bit
Offset Description

Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADTis a list of APIC structures that declare the APIC features of
the machine. The first byte of each structure declares the type of that structure and the second byte declares
the length of that structure.

Table 5-16 APIC Structure Types

Value Description

0 Processor Local APIC

1 I/O APIC

2 Interrupt Source Override

3 Non-maskable Interrupt Source (NMI)

4 Local APIC NMI Structure

5 Local APIC Address Override Structure

6 I/O SAPIC

7 Local SAPIC

8 Platform Interrupt Sources

>8 Reserved. OSPM skips structures of the reserved type.

5.2.10.5 Processor Local APIC
When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table 5-17 Processor Local APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 0–Processor Local APIC structure

Length 1 1 8

ACPI Processor ID 1 2 The ProcessorId for which this processor is listed in the
ACPI Processor declaration operator. For a definition of the
Processor operator, see section 16.2.3.3.1.17, “Processor
(Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-18 for a description of this
field.

118 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-18 Local APIC Flags

Local APIC - Flags
Bit
Length

Bit
Offset Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Reserved 31 1 Must be zero.

5.2.10.6 I/O APIC
In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of n is from 0 to the number of the last interrupt input on the
I/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with the
I/O APIC interrupt inputs. There is one I/O APIC structure for each I/O APIC in the system. For more
information on global system interrupts see Section 5.2.11, “Global System Interrupts.”

Table 5-19 I/O APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 1–I/O APIC structure

Length 1 1 12

I/O APIC ID 1 2 The I/O APIC’s ID.

Reserved 1 3 0

I/O APIC Address 4 4 The 32-bit physical address to access this I/O APIC. Each
I/O APIC resides at a unique address.

Global System
Interrupt Base

4 8 The global system interrupt number where this I/O APIC’s
interrupt inputs start. The number of interrupt inputs is
determined by the I/O APIC’s Max Redir Entry register.

5.2.10.7 Platforms with APIC and Dual 8259 Support
Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to
the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see section 5.2.10.8, “Interrupt
Source Overrides”). This means that I/O APIC interrupt inputs 0-15 must be mapped to global system
interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless overrides are used. This allows a
platform to support OSPM implementations that use the APIC model as well as OSPM implementations
that use the 8259 model (OSPM will only use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global system
interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are
ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the I/O APIC structures. For more information on hardware resource configuration see
section 6, “Configuration.”

ACPI Software Programming Model 119

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.10.8 Interrupt Source Overrides
Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259
interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0,
but in APIC mode, it is connected to I/O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-20 Interrupt Source Override Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 2–Interrupt Source Override

Length 1 1 10

Bus 1 2 0–Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System
Interrupt

4 4 The Global System Interrupt that this bus-relative interrupt
source will signal.

Flags 2 8 MPS INTI flags. See Table 5-21 for a description of this
field.

The MPS INTI flags listed in Table 5-21 are identical to the flags used in Table 4-10 of the MPS version
1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table 5-21 MPS INTI Flags

Local APIC - Flags
Bit
Length

Bit
Offset Description

Polarity 2 0 Polarity of the APIC I/O input signals:

00–Conforms to the specifications of the bus

(For example, EISA is active-low for level-triggered
interrupts)

01–Active high

10–Reserved

11–Active low

120 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Local APIC - Flags
Bit
Length

Bit
Offset Description

Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:

00–Conforms to specifications of the bus

(For example, ISA is edge-triggered)

01–Edge-triggered

10–Reserved

11–Level-triggered

Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-standard
polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this IRQ
is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if SCI is
connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in
SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.10.9 Non-Maskable Interrupt Sources (NMIs)
This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-22 Non-maskable Source Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 3–NMI

Length 1 1 8

Flags 2 2 Same as MPS INTI flags

Global System
Interrupt

4 4 The Global System Interrupt that this NMI will signal.

ACPI Software Programming Model 121

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.10.10 Local APIC NMI
This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of the
processors in the system where such a connection exists. This information is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the
platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table 5-23 Local APIC NMI Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 4–Local APIC NMI Structure

Length 1 1 6

ACPI Processor ID 1 2 Processor ID corresponding to the ID listed in the processor
object. A value of 0xff signifies that this applies to all
processors in the machine.

Flags 2 3 MPS INTI flags. See Table 5-21 for a description of this
field.

Local APIC LINT# 1 5 Local APIC interrupt input LINTn to which NMI is
connected.

122 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.10.11 Local APIC Address Override Structure
This optional structure supports 64-bit systems by providing an override of the physical address of the local
APIC in the MADT’stable header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),
rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.

Table 5-24 Local APIC Address Override Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 5–Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC Address 8 4 Physical address of Local APIC. For ItaniumTM-based
systems, this field contains the starting address of the
Processor Interrupt Block. See the Intel® ItaniumTM
Architecture Software Developer’s Manual for more
information.

5.2.10.12 I/O SAPIC Structure
The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O_APIC_ID field as defined in the I/O APIC table. The Vector_Base
field remains unchanged but has been moved. The I/O APIC address has been deleted. A new address and
reserved field have been added.

Table 5-25 I/O SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 6–I/O SAPIC Structure

Length 1 1 16

I/O APIC ID 1 2 I/O SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System
Interrupt Base

4 4 The global system interrupt number where this I/O SAPIC’s
interrupt inputs start. The number of interrupt inputs is
determined by the I/O SAPIC’s Max Redir Entry register.

I/O SAPIC Address 8 8 The 64-bit physical address to access this I/O SAPIC. Each
I/O SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information
from the I/O APIC structure.

ACPI Software Programming Model 123

Compaq/Intel/Microsoft/Phoenix/Toshiba

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many I/O
SAPIC structures as I/O APIC structures and that every I/O APIC structure has a corresponding I/O SAPIC
structure (same APIC ID).

5.2.10.13 Local SAPIC Structure
The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table 5-26 Processor Local SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 7–Processor Local SAPIC structure

Length 1 1 12

ACPI Processor ID 1 2 The Processor Id listed in the processor object. For a
definition of the Processor object, see section 16.2.3.3.1.17,
“Processor (Declare Processor).”

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPIC EID 1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-18 for a description of this
field.

5.2.10.14 Platform Interrupt Source Structure
The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events
(similar to SMI in IA-32). The Intel® ItaniumTM architecture permits the I/O SAPIC to send a vector value
in the interrupt message of the PMI type. This value is specified in the I/O SAPIC Vector field of the
Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

124 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the
interrupt input line used to signal such corrected errors is specified by the Global System Interrupt field in
the following table. The firmware indicates the processor that can retrieve the corrected platform error
information through the Processor ID and EID fields in the structure below. In some systems, retrieval of
the error information may not be possible from other processors. OSPM is required to program the I/O
SAPIC redirection table entries with the Processor ID, EID values specified by the ACPI system firmware.
Refer to the ItaniumTM Processor Family System Abstraction Layer (SAL) Specification for details on
handling the Corrected Platform Error Interrupt.

Table 5-27 Platform Interrupt Sources Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 8–Platform Interrupt Source structure

Length 1 1 16

Flags 2 2 MPS INTI flags. See Table 5-21 for a description of this
field.

Interrupt Type 1 4 1–PMI

2–INIT

3–Corrected Platform Error Interrupt

All other values are reserved.

Processor ID 1 5 Processor ID of destination.

Processor EID 1 6 Processor EID of destination.

I/O SAPIC Vector 1 7 Value that OSPM must use to program the vector field of
the I/O SAPIC redirection table entry for entries with the
PMI interrupt type.

Global System
Interrupt

4 8 The Global System Interrupt that this platform interrupt will
signal.

Reserved 4 12 Reserved, must be zero.

ACPI Software Programming Model 125

Compaq/Intel/Microsoft/Phoenix/Toshiba

0 INTI_0 0
.
.
.
23 INTI_23

24 INTI_0 24
.
.
.
39 INTI_15

40 INTI_0 40
.
51 INTI_11
.
55 INTI_23

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Global System Interrupt Vector
(ie ACPI PnP IRQ#)

Interrupt Input Lines
on IOAPIC

‘System Vector Base’
reported in IOAPIC Struc

Figure 5-3 APIC–Global System Interrupts

5.2.11 Global System Interrupts
Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by each
I/O APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
many interrupt inputs each I/O APIC supports and by determining the global system interrupt base for each
I/O APIC as specified by the I/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to that I/O
APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. This mapping is depicted in Figure 5-3.

126 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

There is exactly one I/O APIC structure per I/O APIC in the system.

Figure 5-4 8259–Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in
Figure 5-4.

5.2.12 Smart Battery Table (SBST)
If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the user
to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in current
(mA/mAh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh) mode so that
the energy levels specified in the SBST can be used. OSPM uses these tables with the capabilities of the
batteries to determine the different trip points. For more precise definitions of these levels, see section
3.9.3, “Battery Gas Gauge.”

IRQ0
.
IRQ3
.
IRQ7
IR8
.
IRQ11
.
IRQ15

8259 ISA IRQsGlobal System Interrupt Vector
 (ie ACPI PnP IRQ#)

Master
8259

Slave
8259

0

8

15

7

ACPI Software Programming Model 127

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-28 Smart Battery Description Table (SBST) Format

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘SBST.’ Signature for the Smart Battery Description Table
(SBST).

 Length 4 4 Length, in bytes, of the entire SBST

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Warning Energy
Level

4 36 OEM suggested energy level in milliWatt-hours (mWh) at
which OSPM warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which
OSPM will transition the system to a sleeping state.

Critical Energy Level 4 44 OEM suggested platform energy level in mWh at which
OSPM performs an emergency shutdown.

128 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.2.13 Embedded Controller Boot Resources Table
This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access before
the namespace has been evaluated. If this table is not provided, the Embedded Controller region space will
not be available until the Embedded Controller device in the AML namespace has been discovered and
enumerated. The availability of the region space can be detected by providing a _REG method object
underneath the Embedded Controller device.

ACPI Software Programming Model 129

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-29 Embedded Controller Boot Resources Table Format

Field
Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘ECDT.’ Signature for the Embedded Controller Table.

 Length 4 4 Length, in bytes, of the entire Embedded Controller Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID
 OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the

manufacturer model ID.

 OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied
OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in
Generic Address Structure format, of the Embedded
Controller Command/Status register.
Note: Only System I/O space and System Memory space
are valid for values for Address_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in
Generic Address Structure format, of the Embedded
Controller Data register.
Note: Only System I/O space and System Memory space
are valid for values for Address_Space_ID.

UID 4 60 Unique ID–Same as the value returned by the _UID under
the device in the namespace that represents this embedded
controller.

GPE_BIT 1 64 The bit assignment of the SCI interrupt within the
GPEx_STS register of a GPE block described in the FADT
that the embedded controller triggers.

EC_ID Variable 65 ASCII, null terminated, string that contains a fully qualified
reference to the name space object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC”).
Quotes are omitted in the data field.

130 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI 2.0 OSPM implementations supporting Embedded Controller devices must also support the ECDT.
ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The following example
code shows how to detect whether the Embedded Controller operation regions are available in a manner
that is backward compatible with prior versions of ACPI/OSPM.

Device(EC0) {

Name(REGC,Ones)
Method(_REG,2) {

If(Lequal(Arg0, 3)) {
Store(Arg1, REGC)

 }
 }

Method(ECAV,0) {
 If(Lequal(REGC,Ones)) {
 If(LgreaterEqual(_REV,2)) {

Return(One)
}

 Else {
Return(Zero)

}
 }
 Return(REGC)
}

}

To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCI0.EC0.ECAV()) {
 ...regions are available...
}
else {
 ...regions are not available...
}

5.3 ACPI NameSpace
For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take care
to avoid any naming collisions6. Only an unload operation of a Definition Block can remove names from
the namespace, so a name collision in an attempt to load a Definition Block is considered fatal. The
contents of the namespace changes only on a load or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:

• All names are a fixed 32 bits.
• The first byte of a name is inclusive of: ‘A’–‘Z’, ‘_’, (0x41–0x5A, 0x5F).
• The remaining three bytes of a name are inclusive of: ‘A’–‘Z’, ‘0’–‘9’, ‘_’, (0x41–0x5A, 0x30–

0x39, 0x5F).
• By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with

trailing underscores (‘_’). See the language definition for AML NameSeg in Section 16, “ACPI
Source Language Reference.”

• Names beginning with ‘_’ are reserved by this specification. Definition Blocks can only use names
beginning with ‘_’ as defined by this specification.

• A name proceeded with ‘\’ causes the name to refer to the root of the namespace (‘\’ is not part of
the 32-bit fixed-length name).

• A name proceeded with ‘^’ causes the name to refer to the parent of the current namespace (‘^’ is
not part of the 32-bit fixed-length name).

6 For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where
interaction is being designed are the areas in which extra care must be taken.

ACPI Software Programming Model 131

Compaq/Intel/Microsoft/Phoenix/Toshiba

Except for names preceded with a ‘\’, the current namespace determines where in the namespace hierarchy
a name being created goes and where a name being referenced is found. A name is located by finding the
matching name in the current namespace, and then in the parent namespace. If the parent namespace does
not contain the name, the search continues recursively upwards until either the name is found or the
namespace does not have a parent (the root of the namespace). This indicates that the name is not found7.
An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a ‘\’
prefix), and a relative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which is a relative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes, ‘^’, the
search rules do not apply. If the search rules do not apply to a relative namespace path, the namespace
object is looked up relative to the current namespace. For example:

ABCD //search rules apply

^ABCD //search rules don’t apply

XYZ.ABCD //search rules don’t apply

\XYZ.ABCD //search rules don’t apply

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-bit fixed-length name components together. This is useful for referring to the name of an object, such as
a control method, that is not in the scope of the current namespace.

7 Unless the operation being performed is explicitly prepared for failure in name resolution, this is
considered an error and may cause the system to stop working.

132 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Figure 5-5 shows a sample of the ACPI namespace after a Differentiated Definition Block has been loaded.

P

R

d

d

Root

_PR

CPU0

\PID0

_STA

_ON

_OFF

_SB

PCI0

_HID

_CRS

IDE0

_ADR

_PR0

_GPE

_L01

_E02

_L03

– Processor Tree

– Processor 0 object

– Power resource for IDE0

– Method to return status of power resourse

– Method to turn on power resourse

– Method to turn off power resourse

– System bus tree

– PCI bus

– Device ID

– Current resources (PCI bus number)

– IDE0 device

– PCI device #, function #

– Power resource requirements for D0

– General purpose events (GP_STS)

– Method to handle level GP_STS.1

– Method to handle edge GP_STS.2

– Method to handle level GP_STS.3

P

R

d

Package

Processor Object

Power Resource
Object

Bus/Device Object

Data Object

Control Method (AML code)

Key

Figure 5-5 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of the
namespace search rules. An attempt to access a relative object recurses toward the root until the object is
found or the root is encountered. This can cause unintentional results. For example, using the namespace
described in Figure 5.5, attempting to access a _CRS named object from within the _SB_.PCI0.IDE0 will
have different results depending on if an absolute or relative path name is used. If an absolute pathname is
specified (_SB_.PCI0.IDE0._CRS) an error will result since the object does not exist. Access using a
single segment name (_CRS) will actually access the _SB_.PCI0._CRS object. Notice that the access will
occur successfully with no errors.

ACPI Software Programming Model 133

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.3.1 Defined Root Namespaces
The following namespaces are defined under the namespace root.

Table 5-30 Namespaces Defined Under the Namespace Root

Name Description

_GPE General events in GPE register block.

_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined
under this namespace. ACPI 2.0 allows Processor object definitions under the _SB
namespace. ACPI 2.0-compatible systems may maintain the _PR namespace for
compatibility with ACPI 1.0 operating systems. An ACPI 2.0-compatible namespace may
define Processor objects in either the _SB or _PR scope but not both.

For more information about defining Processor objects, see section 8, “Processor
Control.”

_SB All Device/Bus Objects are defined under this namespace.

_SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see section 10.1, _S1 System Indicators.”

_TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be
defined under this namespace. ACPI 2.0 allows Thermal Zone object definitions under the
_SB namespace. ACPI 2.0-compatible systems may maintain the _TZ namespace for
compatibility with ACPI 1.0 operating systems. An ACPI 2.0-compatible namespace may
define Thermal Zone objects in either the _SB or _TZ scope but not both.

For more information about defining Thermal Zone objects, see section 12, “Thermal
Management.”

5.3.2 Objects
All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

5.4 Definition Block Encoding
This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages. The Definition Block is encoded as a stream from beginning to end. The lead byte in the
stream comes from the AML encoding tables shown in section 16, “ACPI Source Language Reference,”
and signifies how to interpret some number of following bytes, where each following byte can in turn
signify how to interpret some number of following bytes. For a full specification of the AML encoding, see
section 16, “ACPI Source Language Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents/run-time).

134 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadByte PkgLength data... LeadByte ...

PkgLength

Figure 5-6 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of 0x0FFF,
three-byte encodings of 0x0FFFFF, and four-byte length encodings of 0x0FFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly for
a datum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPI namespace and initializes objects
accordingly. The namespace for which population occurs is either from the current namespace location, as
defined by all nested packages or from the root if the name is preceded with ‘\’.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in
the “root.” Unnamed objects can be used as arguments in control methods.

Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. This is true even if the object name specified is relative. For example, the following
ASL code segments are functionally identical.

 Method (DEAD,)
Scope (_SB_.FOO) {
 Name (BAR,) // Run time definition
}

}
Scope (_SB_) {Name (_SB_. FOO.BAR,) // Load time definition
}

Notice that in the above example the execution of the DEAD method will always fail because the object
SB.FOO.BAR is created at load time.

ACPI Software Programming Model 135

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.5 Using the ACPI Control Method Source Language
OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4. For example, the ASL
statements that produce the example byte stream shown in that earlier section are shown in the following
ASL example. For a full specification of the ASL statements, see section 16, “ACPI Source Language
Reference.”

// ASL Example
DefinitionBlock (
 "forbook.aml", // Output Filename
 "DSDT", // Signature
 0x02, // DSDT Compliance Revision
 "OEM", // OEMID
 "forbook", // TABLE ID
 0x1000 // OEM Revision
)
{ // start of definition block
 OperationRegion(\GIO, SystemIO, 0x125, 0x1)
 Field(\GIO, ByteAcc, NoLock, Preserve) {
 CT01, 1,
 }

 Scope(_SB) { // start of scope
 Device(PCI0) { // start of device
 PowerResource(FET0, 0, 0) { // start of pwr
 Method(_ON) {
 Store (Ones, CT01) // assert power
 Sleep (30) // wait 30ms
 }
 Method(_OFF) {
 Store (Zero, CT01) // assert reset#
 }
 Method(_STA) {
 Return (CT01)
 }
 } // end of pwr
 } // end of device
 } // end of scope
} // end of definition block

5.5.1 ASL Statements
ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

 Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must
have. It is written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as {x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see section 16, “ACPI Source Language Reference.” For
a detailed specification of the ACPI Control Method Machine Language (AML), upon which the output of
the ASL translator is based, see section 17, “ACPI Machine Language Specification.”

136 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.5.2 ASL Macros
The ASL compiler supports some built in macros to assist in various ASL coding operations. The following
table lists the supported directives and an explanation of their function.

Table 5-31 ASL Built-in Macros

ASL Statement Description

Offset (a) Used in a FieldList parameter to supply the byte offset of the next defined
field within its parent region. This can be used instead of defining the bit
lengths that need to be skipped. All offsets are defined from beginning to
end of a region.

EISAID (Id) Macro that converts the 7-character text argument into its corresponding 4-
byte numeric EISA ID encoding. This can be used when declaring IDs for
devices that are EISA IDs.

ResourceTemplate () Macro used to supply Plug and Play resource descriptor information in
human readable form, which is then translated into the appropriate binary
Plug and Play resource descriptor encodings. For more information about
resource descriptor encodings, see section 6.4, “Resource Data Types for
ACPI.”

Unicode (string) Macro that converts an ASCII string to a Unicode string contained in a
buffer.

5.5.3 Control Method Execution
The operating software will initiate well-defined control methods as necessary to either interrogate or
adjust system-level hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Interpretation of a Control
Method is not preemptive, but it can block. When a control method does block, the operating software can
initiate or continue the execution of a different control method. A control method can only assume that
access to global objects is exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.3.1 Control Methods, Objects, and Operation Regions
Control Methods can reference any objects anywhere in the Namespace as well as address spaces defined
in operation regions. Control methods must have exclusive access to the any address accessed via
OpRegions. Control methods do not directly access any other hardware registers, including the ACPI-
defined register blocks. Some of the ACPI registers, in the defined ACPI registers blocks, are maintained
on behalf of control method execution. For example, the GPEx_BLK is not directly accessed by a control
method but is used to provide an extensible interrupt handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of embedded controller, embedded controller OpRegion field access may block.

ACPI Software Programming Model 137

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.5.4 Control Method Arguments, Local Variables, and Return Values
Control methods can be passed up to seven arguments. Each argument is an object, and could in turn be a
“package” style object that refers to other objects. Access to the argument objects is via the ASL ArgTerm
language elements. The number of arguments passed to any control method is fixed and is defined when
the control method package is created.

Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initial control method execution, the local data objects are NULL. Access to local objects is
via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wants to
preserve it. See the description of the Return ASL operator for additional details.
NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XYZ) {
 Name (BAR, 5) // Creates \XYZ.BAR
 Method (FOO, 1) {
 Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
 Name (BAR, 7) // Creates \XYZ.FOO.BAR
 Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG
 Name (\XYZ.FOOB, 3) // Creates \XYZ.FOOB
 } // end method
} // end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is loaded. The
object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \XYZ.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XYZ.FOOB object is destroyed after the
\XYZ.FOO method exits.

5.6 ACPI Event Programming Model
The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

138 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.6.1 ACPI Event Programming Model Components
The components of the ACPI event programming model are the following:
• OSPM
• FADT
• PM1a_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
• GPE0_BLK and GPE1_BLK register blocks
• GPE register blocks defined in GPE block devices
• SCI interrupt
• ACPI AML code general-purpose event model
• ACPI device-specific model events
• ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

Table 5-32 ACPI Event Programming Model Components

Component Description

OSPM Receives all SCI interrupts raised (receives all SCI events). Either
handles the event or masks the event off and later invokes an
OEM-provided control method to handle the event. Events
handled directly by OSPM are fixed ACPI events; interrupts
handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks
on an ACPI-compatible platform: PM1x_STS and PM1x_EN
fixed registers and the GPEx_STS and GPEx_EN fixed registers.

PM1x_STS and PM1x_EN fixed registers PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit
is set, if the matching PM1x_EN bit is set, the ACPI SCI event is
raised.

GPEx_STS and GPEx_EN fixed registers GPEx_STS bits that raise general-purpose events. For every
event bit implemented in GPEx_STS, there must be a comparable
bit in GPEx_EN. Up to 256 GPEx_STS bits and matching
GPEx_EN bits can be implemented. While a GPEx_STS bit is
set, if the matching GPEx_EN bit is set, then the general-purpose
SCI event is raised.

SCI interrupt A level-sensitive, shareable interrupt mapped to a declared
interrupt vector. The SCI interrupt vector can be shared with
other low-priority interrupts that have a low frequency of
occurrence.

ACPI AML code general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events.
This includes using GPEx_STS events as “wake” sources as well
as other general service events defined by the OEM (“button
pressed,” “thermal event,” “device present/not present changed,”
and so on).

ACPI device-specific model events Devices in the ACPI namespace that have ACPI-specific device
IDs can provide additional event model functionality. In
particular, the ACPI embedded controller device provides a
generic event model.

ACPI Embedded Controller event model A model that allows OEM AML code to use the response from
the Embedded Controller Query command to provide general-
service event defined by the OEM.

ACPI Software Programming Model 139

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.6.2 Types of ACPI Events
At the direct ACPI hardware level, two types of events can be signaled by an SCI interrupt:
• Fixed ACPI events
• General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as in
the case of the embedded controller, a well-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows a large number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM can
also build additional levels of event dispatching by using AML code on a general-purpose event to sub-
dispatch in an OEM defined manner.

5.6.2.1 Fixed ACPI Event Handling
When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see section 4, “ACPI
Hardware Specification.”

Table 5-33 Fixed ACPI Events

Event Comment

Power management timer
carry bit set.

For more information, see the description of the TMR_STS and TMR_EN bits
of the PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping,” as
well as the TMR_VAL register in the PM_TMR_BLK in section 4.7.3.3,
“Power Management Timer.”

Power button signal A power button can be supplied in two ways. One way is to simply use the fixed
status bit, and the other uses the declaration of an ACPI power device and AML
code to determine the event. For more information about the alternate-device
based power button, see section 4.7.2.2.1.2, Control Method Power Button.”

Notice that during the S0 state, both the power and sleep buttons merely notify
OSPM that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the
power button to initiate sleep operations as requested by the user.

Sleep button signal A sleep button can be supplied in one of two ways. One way is to simply use the
fixed status button. The other way requires the declaration of an ACPI sleep
button device and AML code to determine the event.

RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month
granularity. The ACPI status bit for the device is optional. If the ACPI status bit
is not present, the RTC status can be used to determine when an alarm has
occurred. For more information, see the description of the RTC_STS and
RTC_EN bits of the PM1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.”

Wake status The wake status bit is used to determine when the sleeping state has been
completed. For more information, see the description of the WAK_STS and
WAK_EN bits of the PM1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.”

140 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-33 Fixed ACPI Events (continued)

Event Comment

System bus master request The bus-master status bit provides feedback from the hardware as to when a bus
master cycle has occurred. This is necessary for supporting the processor C3
power savings state. For more information, see the description of the BM_STS
bit of the PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping.”

Global release status This status is raised as a result of the Global Lock protocol, and is handled by
OSPM as part of Global Lock synchronization. For more information, see the
description of the GBL_STS bit of the PM1x fixed register block in section
4.7.3.1, “PM1 Event Grouping.” For more information on Global Lock, see
section 5.2.9.1, “Global Lock.”

5.6.2.2 General-Purpose Event Handling
When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or uses an
OEM-supplied control method to handle the event. An OEM can implement up to 128 general-purpose
event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.

An example of a general-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPI-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a platform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event is from a GPEx_BLK STS bit), OSPM does the following:
1. Disables the interrupt source (GPEx_BLK EN bit).
2. If an edge event, clears the status bit.
3. Performs one of the following:

• Dispatches to an ACPI-aware device driver.
• Queues the matching control method for execution.
• Manages a wake event using device _PRW objects.

4. If a level event, clears the status bit.
5. Enables the interrupt source.

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name _GPE._TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’ for a level
event). The event values for status bits in GPE0_BLK start at zero (_T00) and end at the
(GPE0_BLK_LEN / 2) - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + (GPE1_BLK_LEN / 2) - 1. GPE0_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all
defined in the FADT.

For OSPM to manage the bits in the GPEx_BLK blocks directly:
• Enable bits must be read/write.
• Status bits must be latching.
• Status bits must be read/clear, and cleared by writing a “1” to the status bit.

ACPI Software Programming Model 141

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.6.2.2.1 Wake Events
An important use of the general-purpose events is to implement device wake events. The components of the
ACPI event programming model interact in the following way:

When a device asserts its wake signal, the general-purpose status event bit used to track that device is set.

While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

If the system is sleeping, this will cause the hardware, if possible, to transition the system into the S0 state.

Once the system is running, OSPM will dispatch the corresponding GPE handler.

The handler needs to determine which device object has signaled wake and performs a wake Notify
command on the corresponding device object(s) that have asserted wake.

In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to service it.

Events that wake may not be intermixed with non-wake events on the same GPE input. Also, all wake
events not exclusively tied to a GPE input (for example, one input is shared for multiple wake events) need
to have individual enable and status bits in order to properly handle the semantics used by the system.

5.6.2.2.2 Dispatching to an ACPI-Aware Device Driver
Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for its
device. This driver services the embedded controller device and determines when events are to be reported
by the embedded controller by using the Query command. When an embedded controller event occurs, the
ACPI-aware driver dispatches the requests to other ACPI-aware drivers that have registered to handle the
embedded controller queries or queues control methods to handle each event. If there is no device driver to
handle specific queries, OEM AML code can perform OEM-specific functions that are customized to each
event on the particular platform by including specific control methods in the namespace to handle these
events. For an embedded controller event, OSPM will queue the control method of the name _QXX, where
XX is the hex format of the query code. Notice that each embedded controller device can have query event
control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue
control methods to handle these. Methods must be placed under the SMBus device with the name _QXX
where XX is the hex format of the SMBus address of the device sending the alarm.

5.6.2.2.3 Queuing the Matching Control Method for Execution
When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the
GPEx_BLK are indexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form _GPE._Txx where xx is the event value and T
indicates the event EOI protocol to use (either edge or level). The event values for status bits in
GPE0_BLK start at zero (_T00), end at the (GPE0_BLK_LEN / 2) - 1, and correspond to each status bit
index within GPE0_BLK. The event values for status bits in GPE1_BLK are offset by GPE_BASE and
therefore start at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN / 2) - 1.

142 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPE0_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name _GPE._L04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Method (_GPE._L04) { // GPE 4 level wake handler
 Notify (_SB.PCIO.COM0, 2)
}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object. Or, the cause of
the general-purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01 through
FF. (A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The
name of the control method to queue is always of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Method(_Q34) { // embedded controller event for thermal
 Notify (_SB.TZ0.THM1, 0x80)
}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution. When
an alarm is received by the SMBus host controller, it generally receives the SMBus address of the device
issuing the alarm and one word of data. On implementations that use SMBALERT# for notifications, only
the device address will be received. The name of the control method to queue is always of the form _Qxx
where xx is the SMBus address of the device that issued the alarm. The SMBus address is 7 bits long
corresponding to hex values 0 through 7F, although some addresses are reserved and will not be used. The
control method will always be queued with one argument that contains the word of data received with the
alarm. An exception is the case of an SMBus using SMBALERT# for notifications, in this case the
argument will be 0. An example declaration for a control method that handles a SMBus alarm follows:

Method(_Q18, 1) { // Thermal sensor device at address 0011 000

 // Arg0 contains notification value (if any)
 // Arg0 = 0 if devuice supports only SMBALERT#

 Notify (_SB.TZ0.THM1, 0x80)
}

5.6.2.2.4 Managing a Wake Event Using Device _PRW Objects
A device’s _PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general-purpose event bit by using OEM-specific hardware to
provide second-level status and enable bits. In this case, the OEM AML code is responsible for the second-
level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its _PSW control method (which is used to take care of the second-level enables). When the GPE
is asserted, OSPM still executes the corresponding GPE control method that determines which device

ACPI Software Programming Model 143

Compaq/Intel/Microsoft/Phoenix/Toshiba

wakes are asserted and notifies the corresponding device objects. The native OS driver is then notified that
its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the S0 state, if possible.

5.6.3 Device Object Notifications
Some objects need to notify the OSPM of various object-related events. All such notifications are
accomplished using the Notify operator, which supplies the ACPI object and a notification value that
signifies the type of notification being performed. Notification values from 0 through 0x7F are common
across any device object type. Notification values of 0x80 and above are device-specific and defined by
each such device. For more information on the Notify operator, see section 16.2.3.4.1.9, “Notify (Notify).”

Table 5-34 Device Object Notification Types

Value Description

0 Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform the Plug and Play re-enumeration operation on the device tree starting from
the point where it has been notified. OSPM will only perform this operation at boot, and when
notified. It is the responsibility of the ACPI AML code to notify OSPM at any other times that
this operation is required. The more accurately and closer to the actual device tree change the
notification can be done, the more efficient the operating system’s response will be; however,
it can also be an issue when a device change cannot be confirmed. For example, if the
hardware cannot notice a device change for a particular location during a system sleeping
state, it issues a Bus Check notification on wake to inform OSPM that it needs to check the
configuration for a device change.

1 Device Check. Used to notify OSPM that the device either appeared or disappeared. If the
device has appeared, OSPM will re-enumerate from the parent. If the device has disappeared,
OSPM will invalidate the state of the device. OSPM may optimize out re-enumeration. If
_DCK is present, then Notify(object,1) is assumed to indicate an undock request.

2 Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needs to notify OSPM native device driver for the device. This is only used for devices
that support _PRW.

3 Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM needs
to perform the Plug and Play ejection operation. OSPM will run the _EJx method.

4 Device Check Light. Used to notify OSPM that the device either appeared or disappeared. If
the device has appeared, OSPM will re-enumerate from the device itself, not the parent. If the
device has disappeared, OSPM will invalidate the state of the device.

5 Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the bus.
For example, this would be used if a user tried to hot-plug a 33 MHz PCI device into a slot
that was on a bus running at greater than 33 MHz.

6 Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or bay
that cannot support the device in its current mode of operation. For example, this would be
used if a user tried to hot-plug a PCI device into a slot that was on a bus running in PCI-X
mode.

7 Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state because
of a power fault.

8-7F Reserved.

144 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-35 Control Method Battery Device Notification Values

Hex value Description

80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.

>81 Reserved.

Table 5-36 Power Source Object Notification Values

Hex value Description

80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.

>80 Reserved.

Table 5-37 Thermal Zone Object Notification Values

Hex value Description

80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone
temperature has changed.

81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip
points have changed.

82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx,
_PSL, _TZD) have changed.

>82 Reserved.

Table 5-38 Control Method Power Button Notification Values

Hex value Description

80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

>80 Reserved.

Table 5-39 Control Method Sleep Button Notification Values

Hex value Description

80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

>80 Reserved.

ACPI Software Programming Model 145

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-40 Control Method Lid Notification Values

Hex value Description

80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.

>80 Reserved.

Table 5-41 Processor Device Notification Values

Hex value Description

80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to
re-evaluate the _PPC object. See section 8, “Processor Control,” for more information.

81 C States Changed. Used to notify OSPM that the number or type of supported processor
C States has changed. This notification causes OSPM to re-evaluate the _CST object. See
section 8, “Processor Control,” for more information.

>81 Reserved.

5.6.4 Device Class-Specific Objects
Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 10, 11,
and 12. Section 5.6.5, “Defined Generic Objects and Control Methods,” lists all the generic objects and
control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The following table lists the Plug and Play IDs defined by the ACPI specification.

Table 5-42 ACPI Device IDs

Plug and Play ID Description

PNP0C08 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the
hardware resources consumed by the ACPI fixed register spaces, and the operation
regions used by AML code. It represents the core ACPI hardware itself.

PNP0A05 Generic ISA Bus Device. A bus only device whose bus settings are totally
controlled by its ACPI resource information, and otherwise needs no bus-specific
driver support.

PNP0A06 Extended I/O Bus. A special case of the PNP0A05 device, where the only
difference is in the name of the device. There is no functional difference between
the two IDs.

PNP0C09 Embedded Controller Device. A host embedded controller controlled through an
ACPI-aware driver.

PNP0C0A Control Method Battery. A device that solely implements the ACPI Control
Method Battery functions. A device that has some other primary function would
use its normal device ID. This ID is used when the devices primary function is that
of a battery.

PNP0C0B Fan. A device that causes cooling when “on” (D0 device state).

146 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-42 ACPI Device IDs (continued)

Plug and Play ID Description

PNP0C0C Power Button Device. A device controlled through an ACPI-aware driver that
provides power button functionality. This device is only needed if the power button
is not supported using the fixed register space.

PNP0C0D Lid Device. A device controlled through an ACPI-aware driver that provides lid
status functionality. This device is only needed if the lid state is not supported
using the fixed register space.

PNP0C0E Sleep Button Device. A device controlled through an ACPI-aware driver that
provides power button functionality. This device is optional.

PNP0C0F PCI Interrupt Link Device. A device that allocates an interrupt connected to a
PCI interrupt pin. See section 6., “Configuration,” for more details.

PNP0C80 Memory Device. This device is a memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible
with the embedded controller-based SMB-HC interface (as specified in section
13.9, “SMBus Host Controller Interface via Embedded Controller”) and
implementing the SMBus 1.0 Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 11,
“Power Source Devices.”

ACPI0003 AC Device. The AC adapter specified in section 11, “Power Source Devices.”

ACPI0004 Module Device. This device is a container object that acts as a bus node in a
namespace.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible
with the embedded controller-based SMB-HC interface (as specified in section
13.9, “SMBus Host Controller Interface via Embedded Controller”) and
implementing the SMBus 2.0 Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks
beyond the two that are described in the FADT.

5.6.5 Defined Generic Objects and Control Methods
The following table lists all of the generic object and control methods defined in this specification and
provides a reference to the defining section of the specification.

Table 5-43 Defined Generic Object and Control Methods

Object Description Reference

_ACx Thermal Zone object that returns active cooling policy threshold values in
tenths of degrees Kelvin.

12.3.1

_ADR Device object that evaluates to a device’s address on its parent bus. For the
display output device, this object returns a unique ID. (B.5.1, “_ADR -
Return the Unique ID for this Device.”)

6.1.1

_ALx Thermal zone object containing a list of cooling device objects. 12.3.2

_ALN Resource data type reserved field name 16.2.4

_ASI Resource data type reserved field name 16.2.4.16

ACPI Software Programming Model 147

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_BAS Resource data type reserved field name 16.2.4

_BBN PCI bus number setup by the BIOS 6.5.5

_BCL Returns a buffer of bytes indicating list of brightness control levels
supported.

B.5.2

_BCM Sets the brightness level of the built-in display output device. B.5.3

_BDN Correlates a docking station between ACPI and legacy interfaces. 6.5.3

_BFS Control method executed immediately following a wake event. 7.3.1

_BIF Control Method Battery information object 11.2.2.1

_BM Resource data type reserved field name 16.2.4

_BST Control Method Battery status object 11.2.2.2

_BTP Sets Control Method Battery trip point 11.2.2.3

_CID Device identification object that evaluates to a device’s Plug and Play
Compatible ID list.

6.1.2

_CRS Device configuration object that specifies a device’s current resource
settings, or a control method that generates such an object.

6.2.1

_CRT Thermal zone object that returns critical trip point in tenths of degrees
Kelvin.

12.3.3

_CST Processor power state declaration object 8.3.2

_DCK Indicates that the device is a docking station. 6.5.2

_DCS Returns the status of the display output device. B.5.5

_DDC Returns the EDID for the display output device B.5.4

_DDN Object that associates a logical software name (for example, COM1) with a
device.

6.1.3

_DEC Resource data type reserved field name 16.2.4

_DGS Control method used to query the state of the output device. B.5.6

_DIS Device configuration control method that disables a device. 6.2.2

_DMA Object that specifies a device’s current resources for DMA transactions. 6.2.3

_DOD Control method used to enumerate devices attached to the display adapter. B.4.2

_DOS Control method used to enable/disable display output switching. B.4.1

_DSS Control method used to set display device state. B.5.7

_Exx Control method executed as a result of a general-purpose event. 5.6.2.2,
5.6.2.2.3

_EC Control Method used to define the offset address and Query value of an
SMB-HC defined within an embedded controller device.

13.12

_EDL Device removal object that returns a packaged list of devices that are
dependent on a device.

6.3.1

_EJx Device insertion/removal control method that ejects a device. 6.3.3

148 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_EJD Device removal object that evaluates to the name of a device object upon
which a device is dependent. Whenever the named device is ejected, the
dependent device must receive an ejection notification.

6.3.2

_FDE Object that indicates the presence or absence of floppy disks. 10.9.1

_FDI Object that returns floppy drive information. 10.9.2

_FDM Control method that changes the mode of floppy drives. 10.9.3

_FIX Object used to provide correlation between the fixed hardware register
blocks defined in the FADT and the devices that implement these fixed
hardware registers.

6.2.4

_GL OS-defined Global Lock mutex object 5.7.1

_ GLK Indicates the need to acquire the Global Lock, must be acquired when
accessing the device.

6.5.7

_GPD Control method that returns which VGA device will be posted at boot B.4.4

_GPE 1. General-Purpose Events root name space
2. Object that returns the SCI interrupt within the GPx_STS register that

is connected to the EC.

5.3.1
13.11

_GRA Resource data type reserved field name. 16.2.4

_GTF IDE device control method to get the Advanced Technology Attachement
(ATA) task file needed to re-initialize the drive to bootup defaults.

10.8.1

_GTM IDE device control method to get the IDE controller timing information. 10.8.2

_GTS Control method executed just prior to setting the sleep enable (SLP_EN)
bit.

7.3.3

_HE Resource data type reserved field name 16.2.4

_HID Device identification object that evaluates to a device’s Plug and Play
Hardware ID.

6.1.4

_HPP An object that specifies the Cache-line size, Latency timer, SERR enable,
and PERR enable values to be used when configuring a PCI device
inserted into a hot-plug slot or initial configuration of a PCI device at
system boot.

6.2.5

_INI Device initialization method that performs device specific initialization. 6.5.1

_INT Resource data type reserved field name 16.2.4

_IRC Power management object that signifies the device has a significant inrush
current draw.

 7.2.11

_Lxx Control method executed as a result of a general-purpose event. 5.6.2.2,
5.6.2.2.3

_LCK Device insertion/removal control method that locks or unlocks a device. 6.3.4

_LEN Resource data type reserved field name 16.2.4

_LID Object that returns the status of the Lid on a mobile system. 10.3.1

_LL Resource data type reserved field name 16.2.4

ACPI Software Programming Model 149

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_MAF Resource data type reserved field name 16.2.4

_MAT Object evaluates to a buffer of MADT APIC Structure entries. 6.2.6

_MAX Resource data type reserved field name 16.2.4

_MEM Resource data type reserved field name 16.2.4

_MIF Resource data type reserved field name 16.2.4

_MIN Resource data type reserved field name 16.2.4

_MSG System indicator control that indicates messages are waiting. 10.1.2

_OFF Power resource object that sets the resource off. 7.1.2

_ON Power resource object that sets the resource on. 7.1.3

_OS Object that evaluates to a string that identifies the operating system. 5.7.2

_PCL Power source object that contains a list of devices powered by a power
source.

11.3.2

_PCT Processor performance control object 8.3.3.1

_PIC Control method that conveys interrupt model in use to the system firmware. 5.8.1

_PPC Control method used to determine number of performance states currently
supported by the platform.

8.3.3.3

_PR ACPI 1.0 Processor Namespace 5.3.1

_PR0 Power management object that evaluates to the device’s power
requirements in the D0 device state (device fully on).

7.2.6

_PR1 Power management object that evaluates to the device’s power
requirements in the D1 device state. Only devices that can achieve the
defined D1 device state according to its given device class would supply
this level.

7.2.7

_PR2 Power management object that evaluates to the device’s power
requirements in the D2 device state. Only devices that can achieve the
defined D2 device state according to its given device class would supply
this level.

7.2.8

_PRS Device configuration object that specifies a device’s possible resource
settings, or a control method that generates such an object.

6.2.7

_PRT An object that specifies the PCI interrupt Routing Table. 6.2.8

_PRW Power management object that evaluates to the device’s power
requirements in order to wake the system from a system sleeping state.

7.2.9

_PS0 Power management control method that puts the device in the D0 device
state. (device fully on).

7.2.1

_PS1 Power management control method that puts the device in the D1 device
state.

7.2.2

_PS2 Power management control method that puts the device in the D2 device
state.

7.2.3

150 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_PS3 Power management control method that puts the device in the D3 device
state (device off).

7.2.4

_PSC Power management object that evaluates to the device’s current power
state.

7.2.5

_PSL Thermal zone object that returns list of passive cooling device objects. 12.3.4

_PSR Power source object that returns present power source device. 11.3.1

_PSS Object indicates the number of supported processor performance states. 8.3.3.2

_PSV Thermal zone object that returns Passive trip point in tenths of degrees
Kelvin.

12.3.5

_PSW Power management control method that enables or disables the device’s
wake function.

7.2.10

_PTC Object used to define a processor throttling control register. 8.3.1

_PTS Control method used to prepare to sleep. 7.3.2

_PXM Object used to describe proximity domains within a machine. 6.2.9

_Qxx Embedded Controller Query and SMBus Alarm control method 5.6.2.2.3

_RBO Resource data type reserved field name 16.2.4

_RBW Resource data type reserved field name 16.2.4

_REG Notifies AML code of a change in the availability of an operation region. 6.5.4

_REV Revision of the ACPI specification that OSPM implements. 5.7.3

_RMV Device insertion/removal object that indicates that the given device is
removable.

6.3.5

_RNG Resource data type reserved field name 16.2.4

_ROM Control method used to get a copy of the display devices’ ROM data. B.4.3

_RW Resource data type reserved field name 16.2.4

_S0 Power management package that defines system _S0 state mode. 7.3.4.1

_S1 Power management package that defines system _S1 state mode. 7.3.4.2

_S2 Power management package that defines system _S2 state mode. 7.3.4.3

_S3 Power management package that defines system _S3 state mode. 7.3.4.4

_S4 Power management package that defines system _S4 state mode. 7.3.4.5

_S5 Power management package that defines system _S5 state mode. 7.3.4.6

_S1D Highest D-state supported by the device in the S1 state. 7.2.12

_S2D Highest D-state supported by the device in the S2 state. 7.2.13

_S3D Highest D-state supported by the device in the S3 state. 7.2.14

_S4D Highest D-state supported by the device in the S4 state. 7.2.15

_SB System bus scope 5.3.1

ACPI Software Programming Model 151

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference

_SBS Smart Battery object that returns Smart Battery configuration. 11.1.2

_SCP Thermal zone object that sets user cooling policy (Active or Passive). 12.3.7

_SEG Bus identification object that evaluates to a bus’s segment number. 6.5.6

_SHR Resource data type reserved field name 16.4.2

_SI System indicators scope 5.3.1

_SIZ Resource data type reserved field name 16.4.2

_SPD Control method used to update which video device will be posted at boot. B.4.5

_SRS Device configuration control method that sets a device’s settings. 6.2.10

_SST System indicator control method that indicates the system status. 10.1.1

_STA 1. Device insertion/removal control method that returns a device’s status.
2. Power resource object that evaluates to the current on or off state of the
Power Resource.

6.3.6
7.1.4

_STM IDE device control method used to set the IDE controller transfer timings. 10.8.3

_STR Object evaluates to a Unicode string to describe a device. 6.1.5

_SUN Object that evaluates to the slot unique ID number for a slot. 6.1.6

_T_x Reserved for use by the ASL compiler. 16.2.1.1

_TC1 Thermal zone object that contains thermal constant for Passive cooling. 12.3.7

_TC2 Thermal zone object that contains thermal constant for Passive cooling. 12.3.8

_TMP Thermal zone object that returns current temperature in tenths of degrees
Kelvin.

12.3.9

_TRA Resource data type reserved field name 16.4.2

_TRS Resource data type reserved field name 16.4.2

_TSP Thermal zone object that contains thermal sampling period for Passive
cooling.

12.3.10

_TTP Resource data type reserved field name 16.4.2

_TYP Resource data type reserved field name 16.4.2

_TZ ACPI 1.0 thermal zone scope 5.3.1

_TZD Object evaluates to a package of device names associated with a Thermal
Zone.

12.3.11

_TZP Thermal zone polling frequency in tenths of seconds. 12.3.12

_UID Device identification object that specifies a device’s unique persistent ID,
or a control method that generates it.

6.1.7

_VPO Returns 32-bit integer indicating the video post options. B.4.6

_WAK Power management control method run once system is awakened. 7.3.5

152 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

5.7 Operating System-Defined Object Names
A list of OS supplied object names are shown in the following table.

Table 5-44 Predefined Global Events

Name Description

_GL Global Lock

_OS Name of the operating system

_REV Revision of the ACPI specification that OSPM implements.

5.7.1 _GL (Global Lock Mutex)
This object is a Mutex object that behaves like a Mutex as defined in section 16.2.3.3.1.13, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also acquires
the shared environment Global Lock defined in section 5.2.11, “Global System Interrupts.” This allows
Control Methods to explicitly synchronize with the Global Lock if necessary

5.7.2 _OS (OS Name Object)
This object evaluates to a string that identifies the operating system. In robust OSPM implementations,
_OS evaluates differently for each OS release. This may allow AML code to accommodate differences in
OSPM implementations. This value does not change with different revisions of the AML interpreter.

5.7.3 _REV (Revision Data Object)
This object evaluates to the revision of the ACPI Specification that the specified _OS implements as a
DWORD. Larger values are newer revisions of the ACPI specification.

5.8 System Configuration Objects

5.8.1 _PIC Method
The _PIC optional method is to report to the BIOS the current interrupt model used by the OS. This
control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM.
If the method is never called, the BIOS must assume PIC mode. It is important that the BIOS save the value
passed in by OSPM for later use during wake operations.

_PIC(x):

_PIC(0) => PIC Mode

_PIC(1) => APIC Mode

_PIC(2) => SAPIC Mode

_PIC(3-n) => Reserved

Configuration 153

Compaq/Intel/Microsoft/Phoenix/Toshiba

6 Configuration
This section specifies the objects OSPM expects to be used in control methods to configure devices. There
are three types of configuration objects:
• Device identification objects associate platform devices with Plug and Play IDs.
• Device configuration objects declare and configure hardware resources and characteristics for devices

enumerated via ACPI.
• Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal

of devices.

This section also defines the ACPI device–resource descriptor formats. Device–resource descriptors are
used as parameters by some of the device configuration control method objects.

6.1 Device Identification Objects
Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed Table 6-1:

Table 6-1 Device Identification Objects

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_DDN Object that associates a logical software name (for example, COM1) with a device.

_HID Object that evaluates to a device’s Plug and Play hardware ID.

_SUN Object that evaluates to the slot-unique ID number for a slot.

_STR Object that contains a Unicode identifier for a device.

_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is not on an enumerable type of bus (for example, an ISA bus), OSPM enumerates the
devices’ Plug and Play ID(s) and the ACPI BIOS must supply an _HID object (plus an optional _CID
object) for each device to enable OSPM to do that. For devices on an enumerable type of bus, such as a PCI
bus, the ACPI system must identify which device on the enumerable bus is identified by a particular Plug
and Play ID; the ACPI BIOS must supply an _ADR object for each device to enable this. A device object
must contain either an _HID object or an _ADR object, but can contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region provider.
(_REG methods notify the BIOS of the presence of operation region providers.) When a control method
cannot determine the current state of the hardware due to a lack of operation region provider, it is
recommended that the control method should return the condition that was true at the time that control
passed from the BIOS to the OS. (The control method should return a default, boot value).

6.1.1 _ADR (Address)
This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used to specify the address of any device on a bus that has a standard enumeration algorithm.

An _ADR object can be used to provide capabilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a slot on the parent bus.

154 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

OSPM infers the parent bus from the location of the _ADR object’s device package in the ACPI
namespace. For more information about the positioning of device packages in the ACPI namespace, see
section 16.2.3.3.1.9, “Device–Declare Bus/Device Package.”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-2.

Table 6-2 _ADR Object Bus Types

BUS Address encoding

EISA EISA slot number 0–F

Floppy Bus Drive select values used for programming the floppy
controller to access the specified INT13 unit number. The
_ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller 0–Primary Channel, 1–Secondary Channel

IDE Channel 0–Master drive, 1–Slave drive

PCI High word–Device #, Low word–Function #. (for example,
device 3, function 2 is 0x00030002). To refer to all the
functions on a device #, use a function number of FFFF).

PCMCIA Socket #; 0–First Socket

PC CARD Socket #; 0–First Socket

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must have an _ADR
of 0. No other children or values of _ADR are allowed.

USB Ports Port number

6.1.2 _CID (Compatible ID)
This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID. Use
_CID objects when a device has no other defined hardware standard method to report its compatible IDs.

A _CID object evaluates to either:
• A single Compatible Device ID

• A package of Compatible Device IDs for the device — in the order of preference, highest preference
first.

Each Compatible Device ID must be either:

• A valid HID value (a 32-bit compressed EISA type ID or a string such as “ACPI0004”).

• A string that uses a bus-specific nomenclature. For example, _CID can be used to specify the PCI ID.
The format of a PCI ID string is one of the following:

“PCI\CC_ccss”
“PCI\CC_ccsspp”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss”
“PCI\VEN_vvvv&DEV_dddd&REV_rr”
“PCI\VEN_vvvv&DEV_dddd”

Where:

Configuration 155

Compaq/Intel/Microsoft/Phoenix/Toshiba

cc – hexadecimal representation of the Class Code byte
ss – hexadecimal representation of the Subclass Code byte
pp – hexadecimal representation of the Programming interface byte
vvvv – hexadecimal representation of the Vendor ID
dddd – hexadecimal representation of the Device ID
ssssssss – hexadecimal representation of the Subsystem ID
rr – hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.

Example ASL:

 Device (XYZ) {
 Name (_HID, EISAID ("PNP0303")) // PC Keyboard Controller
 Name (_CID, EISAID ("PNP030B")) }

156 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.1.3 _DDN (DOS Device Name)
This object is used to associate a logical name (for example, COM1) with a device. This name can be used
by applications to connect to the device.

6.1.4 _HID (Hardware ID)
This object is used to supply OSPM with the device’s Plug and Play hardware ID.8 When describing a
platform, use of any _HID objects is optional. However, a _HID object must be used to describe any device
that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, devices on an ISA bus are enumerated by OSPM. Use the _ADR object to describe
devices enumerated by bus enumerators other than OSPM.

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a string, the
format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading characters.

Example ASL:

 Name (_HID, EISAID ("PNP0C0C")) // Control-Method Power Button
 Name (_HID, EISAID ("INT0800")) // Firmware Hub
 Name (_HID, "ACPI0003") // AC adapter device

6.1.5 _STR (String)
The _STR object evaluates to a Unicode string that may be used by an OS to provide information to an end
user describing the device. This information is particularly valuable when no other information is available.

Example ASL:

 Device (XYZ) {
 Name (_ADR, 0x00020001)
 Name (_STR, Unicode("ACME super DVD controller"))
 }

Then, when all else fails, an OS can use the info included in the _STR object to describe the hardware to
the user.

6.1.6 _SUN (Slot User Number)
_SUN is used by OSPM UI to identify slots for the user. For example, this can be used for battery slots,
PCMCIA slots, or swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates
to a DWORD that is the number to be used in the user interface. This number should match any slot
number printed on the physical slot.

6.1.7 _UID (Unique ID)
This object provides OSPM with a serial number-style ID of a device (or battery), which does not change
across reboots. This object is optional, but is required when the device has no other way to report a
persistent unique device ID. When a system has two devices that report the same _HID, each device must
have a _UID object. When reported, the UID needs to be unique only among devices with the same device
ID. OSPM typically uses the unique device ID to ensure that the device-specific information, such as
network protocol binding information, is remembered for the device even if its relative location changes.
For most integrated devices, this object contains a unique identifier. For other devices, like a docking
station, this object can be a control method that returns the unique docking station ID.

A _UID object evaluates to either a numeric value or a string.

8A Plug and Play (EISA) ID can be obtained by sending e-mail to pnpid@microsoft.com.

Configuration 157

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2 Device Configuration Objects
Device configuration objects are used to configure hardware resources for devices enumerated via ACPI.
Device configuration objects provide information about current and possible resource requirements, the
relationship between shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the device. It
may also call _CRS to find the current resource settings for the device. Using this information, the Plug and
Play system determines what resources the device should consume and sets those resources by calling the
device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
a proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource producer)
that claims the shared resource in its _PRS. This allows OSPM to clearly understand the resource
dependencies in the system and move all related devices together if it needs to change resources.
Furthermore, it allows OSPM to allocate resources only to resource producers when devices that consume
that resource appear.

The device configuration objects are listed in Table 6-3.

Table 6-3 Device Configuration Objects

Object Description

_CRS Object that specifies a device’s current resource settings, or a control method that generates
such an object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the
FADT and the devices that implement these fixed-hardware registers.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration
of a PCI device at system boot.

_MAT Object that evaluates to a buffer of MADT APIC Structure entries.

_PRS An object that specifies a device’s possible resource settings, or a control method that
generates such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SRS Control method that sets a device’s settings.

158 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2.1 _CRS (Current Resource Settings)
This required object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If a device is disabled, then _CRS returns a valid resource template for the device, but the actual
resource assignments in the return byte stream are ignored. If the device is disabled when _CRS is called, it
must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in section 6.4, “Resource
Data Types for ACPI,” a compatible extension of the formats specified in the PNPBIOS specification.9 The
resource data is provided as a series of data structures, with each of the resource data structures having a
unique tag or identifier. The resource descriptor data structures specify the standard PC system resources,
such as memory address ranges, I/O ports, interrupts, and DMA channels.

Arguments:
None

Result Code:
Byte stream

6.2.2 _DIS (Disable)
This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, OSPM will have already put the device in the D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with the
Disabled bit set.

Arguments:
None

Result Code:
None

6.2.3 _DMA (Direct Memory Access)
This optional object returns a byte stream in the same format as a _CRS object. _DMA is only defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-
side of its interface. (This is analogous to the _CRS object, which describes the resources that the bus
controller decodes on the parent-side of its interface.) Any ranges described in the resources of a _DMA
object can be used by child devices for DMA or bus master transactions.

The _DMA object is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA object
after an _SRS object has been executed because the _DMA ranges resources may change depending on
how the bridge has been configured.

If the _DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a
child device will be decoded either by a device on the bus or by the bus itself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCI bus that cannot access all of physical memory, it has a _DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices on
that bus.

9 Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp.,
Phoenix Technologies Ltd.

Configuration 159

Compaq/Intel/Microsoft/Phoenix/Toshiba

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _SRS method.

Arguments:
None

Result Code:

Byte stream

6.2.4 _FIX (Fixed Register Resource Provider)
This optional object is used to provide a correlation between the fixed-hardware register blocks defined in
the FADT and the devices in the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays a role in the implementation of the fixed-hardware (for example, implements the hardware or decodes
the hardware’s address). _FIX conveys to OSPM whether a given device can be disabled, powered off, or
should be treated specially by conveying its role in the implementation of the ACPI fixed-hardware register
interfaces. This object takes no arguments.

The _CRS object describes a device’s resources. That _CRS object may contain a superset of the resources
in the FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,
in a machine that performs translation of resources within I/O bridges, the processor-relative resources in
the FADT may not be the same as the bus-relative resources in the _CRS.

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:
• PNP0C20 - SMI_CMD
• PNP0C21 - PM1a_EVT_BLK / X_ PM1a_EVT_BLK
• PNP0C22 - PM1b_EVT_BLK / X_PM1b_EVT_BLK
• PNP0C23 - PM1a_CNT_BLK / X_PM1a_CNT_BLK
• PNP0C24 - PM1b_CNT_BLK / X_ PM1b_CNT_BLK
• PNP0C25 - PM2_CNT_BLK / X_ PM2_CNT_BLK
• PNP0C26 - PM_TMR_BLK / X_ PM_TMR_BLK
• PNP0C27 - GPE0_BLK / X_GPE0_BLK
• PNP0C28 - GPE1_BLK / X_ GPE1_BLK

160 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Example ASL for _FIX usage:

Scope(_SB) {

Device(PCI0) { // Root PCI Bus
Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
Name(_ADR,0) // Device 0 on this bus

 Method (_CRS,0){ // Need current resources for root device
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })

Name(_FIX, Package(1) {
 EISAID("PNP0C25")} //PM2 control ID
)

 Device (PX40) { // ISA
 Name(_ADR,0x00070000)
 Name(_FIX, Package(1) {
 EISAID("PNP0C20")} //SMI command port
)
 Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)
 Name(_HID, EISAID("PNP0C02"))
 Name(_FIX, Package(3) {
 EISAID("PNP0C22"), //PM1b event ID
 EISAID("PNP0C24"), //PM1b control ID
 EISAID("PNP0C28")} //GPE1 ID
 }
 } // end PX40

 Device (PX43) { // PM Control
 Name(_ADR,0x00070003)
 Name(_FIX, Package(4) {
 EISAID("PNP0C21"), //PM1a event ID
 EISAID("PNP0C23"), //PM1a control ID
 EISAID("PNP0C26"), //PM Timer ID
 EISAID("PNP0C27")} //GPE0 ID
)
 } // end PX43

 } // end PCI0

} // end scope SB

Configuration 161

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2.5 _HPP (Hot Plug Parameters)
This optional object evaluates to the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or for performing configuration of a
PCI devices not configured by the BIOS at system boot. The object is placed under a PCI bus where this
behavior is desired, such as a bus with hot-plug slots. _HPP provided settings apply to all child buses, until
another _HPP object is encountered.

Arguments:

 None

Result Code:

 Method (_HPP, 0) {
 Return (Package(4){
 0x08, // CacheLineSize in DWORDS
 0x40, // LatencyTimer in PCI clocks
 0x01, // Enable SERR (Boolean)
 0x00 // Enable PERR (Boolean)
 })

Table 6-4 _HPP

Field Format Definition

Cache-line size INTEGER Cache-line size reported in number of DWORDs.

Latency timer INTEGER Latency timer value reported in number of PCI clock
cycles.

Enable SERR INTEGER When set to 1, indicates that action must be performed to
enable SERR in the command register.

Enable PERR INTEGER When set to 1, indicates that action must be performed to
enable PERR in the command register.

162 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2.5.1 Example: Using _HPP

Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // _HID for root device
 Name(_ADR,0) // Device 0 on this bus
 Method (_CRS,0){ // Need current resources for root dev
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })

 Device (P2P1) { // First PCI-to-PCI bridge (No Hot Plug slots)
 Name(_ADR,0x000C0000) // Device#Ch, Func#0 on bus PCI0
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 } // end P2P1

 Device (P2P2) { // Second PCI-to-PCI bridge (Bus contains Hot plug slots)
 Name(_ADR,0x000E0000) // Device#Eh, Func#0 on bus PCI0
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 Name(_HPP, Package(){0x08,0x40, 0x01, 0x00})

 // Device definitions for Slot 1- HOT PLUG SLOT
 Device (S1F0) { // Slot 1, Func#0 on bus P2P2
 Name(_ADR,0x00020000)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S1F1) { // Slot 1, Func#1 on bus P2P2
 Name(_ADR,0x00020001)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S1F2) { // Slot 1, Func#2 on bus P2P2
 Name(_ADR,0x000200 02)
 Method(_EJ0, 1) { //Remove all power to device} }
 Device (S1F3) { // Slot 1, Func#3 on bus P2P2
 Name(_ADR,0x00020003)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S1F4) { // Slot 1, Func#4 on bus P2P2
 Name(_ADR,0x00020004)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S1F5) { // Slot 1, Func#5 on bus P2P2
 Name(_ADR,0x00020005)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S1F6) { // Slot 1, Func#6 on bus P2P2
 Name(_ADR,0x00020006)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S1F7) { // Slot 1, Func#7 on bus P2P2
 Name(_ADR,0x00020007)
 Method(_EJ0, 1) { //Remove all power to device}
 }

Configuration 163

Compaq/Intel/Microsoft/Phoenix/Toshiba

 // Device definitions for Slot 2- HOT PLUG SLOT
 Device (S2F0) { // Slot 2, Func#0 on bus P2P2
 Name(_ADR,0x00030000)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F1) { // Slot 2, Func#1 on bus P2P2
 Name(_ADR,0x00030001)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F2) { // Slot 2, Func#2 on bus P2P2
 Name(_ADR,0x00030002)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F3) { // Slot 2, Func#3 on bus P2P2
 Name(_ADR,0x00030003)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F4) { // Slot 2, Func#4 on bus P2P2
 Name(_ADR,0x00030004)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F5) { // Slot 2, Func#5 on bus P2P2
 Name(_ADR,0x00030005)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F6) { // Slot 2, Func#6 on bus P2P2
 Name(_ADR,0x00030006)
 Method(_EJ0, 1) { //Remove all power to device}
 }
 Device (S2F7) { // Slot 2, Func#7 on bus P2P2
 Name(_ADR,0x00030007)
 Method(_EJ0, 1) { //Remove all power to device}
 }

 } // end P2P2
 } // end PCI0
} // end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32
(Notice this field is in DWORDs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.6 _MAT (Multiple APIC Table Entry)
This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or processor
object definition as processors may contain Local APICs. Specific types of entries from section 5.2.11
“Global System Interrupt Vectors” are meaningful to (in other words, is processed by) OSPM when
returned via the evaluation of this object as described below. Other entry types returned by the evaluation
of _MAT are ignored by OSPM.

When _MAT appears under a Processor object, OSPM processes Local APIC (section 5.2.10.5, “Processor
Local APIC”), Local SAPIC (section 5.2.10.13, “Local SAPIC Structure”), and local APIC NMI (section
5.2.10.10, “Local APIC NMI”) entries returned from the object’s evaluation. Other entry types are ignored
by OSPM. OSPM uses the ACPI processor ID in the entries returned from the object’s evaluation to
identify the entries corresponding to the ACPI processor ID of the Processor object.

164 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

When _MAT appears under an I/O APIC, OSPM processes I/O APIC (section 5.2.10.6), I/O SAPIC
(section 5.2.10.12, “I/O SAPIC Structure”), non-maskable interrupt sources (section 5.2.10.9, “Non-
Maskable Interrupt Sources”), interrupt source overrides (section 5.2.10.8, “Interrupt Source Overrides”),
and platform interrupt source structure (section 5.2.10.14, “Platform Interrupt Source Structure”) entries
returned from the object’s evaluation. Other entry types are ignored by OSPM.

Arguments:

None

Result Code:

A buffer

Example ASL for _MAT usage:

Scope(_SB) {

Device(PCI0) { // Root PCI Bus
Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
Name(_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root device

 // Return current resources for root bridge 0
}
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

 // Package with PCI IRQ routing table information
})

Device (P64A) { // P64A ACPI

Name(_ADR,0)
 OperationRegion(TABD, SystemMemory, //Physical address of first
 // data byte of multiple ACPI table, Length of tables)
 Field (TABD, ByteAcc, NoLock, Preserve){
 MATD, Length of tables x 8
 }
 Method(_MAT, 0){

return (MATD)}
 } // end P64A

 } // end PCI0

} // end scope SB

6.2.7 _PRS (Possible Resource Settings)
This optional object evaluates to a byte stream that describes the possible resource settings for the device.
When describing a platform, specify a _PRS for all the configurable devices. Static (non-configurable)
devices do not specify a _PRS object. The information in this package is used by OSPM to select a
conflict-free resource allocation without user intervention. This method must not reference any operation
regions that have not been declared available by a _REG method.

The format of the data in a _PRS object follows the same format as the _CRS object (for more information,
see the _CRS object definition).

If the device is disabled when _PRS is called, it must remain disabled.

Arguments:

None

Result Code:

Byte stream

Configuration 165

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2.8 _PRT (PCI Routing Table)
PCI interrupts are inherently non-hierarchical. PCI interrupt pins are wired to interrupt inputs of the
interrupt controllers. The _PRT object provides a mapping from PCI interrupt pins to the interrupt inputs of
the interrupt controllers. The _PRT object is required under all PCI root bridges. _PRT evaluates to a
package that contains a list of packages, each of which describes the mapping of a PCI interrupt pin.

Note: The PCI function number in the Address field of the_PRT packages must be 0xFFFF, indicating
“any” function number or “all functions”.

The _PRT mapping packages have the fields listed in Table 6-5.

Table 6-5 Mapping Fields

Field Type Description

Address DWORD The address of the device (uses the same format as _ADR).

Pin BYTE The PCI pin number of the device (0–INTA, 1–INTB, 2–INTC, 3–INTD).

Source NamePath
Or
BYTE

Name of the device that allocates the interrupt to which the above pin is
connected. The name can be a fully qualified path, a relative path, or a simple
name segment that utilizes the namespace search rules. Note: This field is a
NamePath and not a String literal, meaning that it should not be surrounded by
quotes. If this field is the integer constant Zero (or a BYTE value of 0), then the
interrupt is allocated from the global interrupt pool.

Source
Index

DWORD Index that indicates which resource descriptor in the resource template of the
device pointed to in the Source field this interrupt is allocated from. If the Source
field is the BYTE value zero, then this field is the global system interrupt number
to which the pin is connected.

There are two ways that _PRT can be used. Typically, the interrupt input that a given PCI interrupt is on is
configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCI Interrupt
Link Device.

These objects have _PRS, _CRS, _SRS, and _DIS control methods to allocate the interrupt. Then, OSPM
handles the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The driver
looks up the device’s pins in the _PRT to determine which device objects allocate the interrupts. To move
the PCI interrupt to a different interrupt input on the interrupt controller, OSPM uses _PRS, _CRS, _SRS,
and _DIS control methods for the PCI Interrupt Link Device.

In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt controller
and are not configurable. In this case, the Source field in _PRT does not reference a device, but instead
contains the value zero, and the Source Index field contains the global system interrupt to which the PCI
interrupt is hardwired.

166 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2.8.1 Example: Using _PRT to Describe PCI IRQ Routing
The following example describes two PCI slots and a PCI video chip. Notice that the interrupts on the two
PCI slots are wired differently (barber-poled).

Scope(_SB) {
 Device(LNKA){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 1)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {10,11} // IRQs 10,11
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKB){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 2)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {11,12} // IRQs 11,12
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKC){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 3)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {12,14} // IRQs 12,14
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKD){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 4)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {10,15} // IRQs 10,15
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(PCI0){
 …
 Name(_PRT, Package{
 Package{0x0004ffff, 0, _SB_.LNKA, 0}, // Slot 1, INTA // A fully
 Package{0x0004ffff, 1, _SB_.LNKB, 0}, // Slot 1, INTB // qualified
 Package{0x0004ffff, 2, _SB_.LNKC, 0}, // Slot 1, INTC // pathname
 Package{0x0004ffff, 3, _SB_.LNKD, 0}, // Slot 1, INTD // can be used,
 Package{0x0005ffff, 0, LNKB, 0}, // Slot 2, INTA // or a simple
 Package{0x0005ffff, 1, LNKC, 0}, // Slot 2, INTB // name segment
 Package{0x0005ffff, 2, LNKD, 0}, // Slot 2, INTC // utilizing the
 Package{0x0005ffff, 3, LNKA, 0}, // Slot 2, INTD // search rules
 Package{0x0006ffff, 0, LNKC, 0} // Video, INTA
 })
 }
}

Configuration 167

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.2.9 _PXM (Proximity)
This optional object is used to describe proximity domains within a machine. _PXM evaluates to an integer
that identifies the device as belonging to a specific proximity domain. The OS assumes that two devices in
the same proximity domain are tightly coupled. An OS could choose to optimize its behavior based on this.
For example, in a system with four processors and six memory devices, there might be two separate
proximity domains (0 and 1), each with two processors and three memory devices. In this case, the OS may
decide to run some software threads on the processors in proximity domain 0 and others on the processors
in proximity domain 1. Furthermore, for performance reasons, it could choose to allocate memory for those
threads from the memory devices inside the proximity domain common to the processor and the memory
device rather than from a memory device outside of the processor’s proximity domain. _PXM can be used
to identify any device belonging to a proximity domain. Children of a device belong to the same proximity
domain as their parent unless they contain an overriding _PXM. Proximity domains do not imply any
ejection relationships.

An OS makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance between
the proximity domains (in other words, proximity domain 1 is not assumed to be closer to proximity
domain 0 than proximity domain 6).

Arguments:

None

Result Code:

An integer

6.2.10 _SRS (Set Resource Settings)
This optional control method takes one byte stream argument that specifies a new resource allocation for a
device. The resource descriptors in the byte stream argument must be specified in the same order as listed
in the _CRS byte stream (for more information, see the _CRS object definition). A _CRS object can be
used as a template to ensure that the descriptors are in the correct format.

The settings must take effect before the _SRS control method returns.

This method must not reference any operation regions that have not been declared available by a _REG
method.

If the device is disabled, _SRS enables the device at the specified resources. _SRS is not used to disable a
device; use the _DIS control method instead.

Arguments:

Byte stream

Result Code:

None

6.3 Device Insertion and Removal Objects
Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal of
devices. These same mechanisms are used for docking and undocking. These objects give information
about whether or not devices are present, which devices are physically in the same device (independent of
which bus the devices live on), and methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection
mechanism instead of a “surprise-style” ejection mechanism. In this system, the eject button for a device
does not immediately remove the device, but simply signals the operating system. OSPM then shuts down
the device, closes open files, unloads the driver, and sends a command to the hardware to eject the device.

168 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

In ACPI, the sequence of events for dynamically inserting a device follows the process below. Notice that
this process supports hot, warm, and cold insertion of devices.
1. If the device is physically inserted while the computer is in the working state (in other words, hot

insertion), the hardware generates a general-purpose event.
2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of the bus

that the new device is on or the device object for the new device. If the Notify command points to the
device object for the new device, the control method must have changed the device’s status returned by
_STA to indicate that the device is now present. The performance of this process can be optimized by
having the object of the Notify as close as possible, in the namespace hierarchy, to where the new
device resides. The Notify command can also be used from the _WAK control method (for more
information about _WAK, see section 7.3.5 “_WAK (System Wake)”) to indicate device changes that
may have occurred while the computer was sleeping. For more information about the Notify command,
see section 5.6.3 “Device Object Notification.”.”

3. OSPM uses the identification and configuration objects to identify, configure, and load a device driver
for the new device and any devices found below the device in the hierarchy.

4. If the device has a _LCK control method, OSPM may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. OSPM will then load and configure all
devices it found below that bridge. The control method can also point to several different devices in the
hierarchy if the new devices do not all live under the same bus. (in other words, more than one bus goes
through the connector).

For removing devices, ACPI supports both hot removal (system is in the S0 state), and warm removal
(system is in a sleep state: S1-S4). This is done using the _EJx control methods. Devices that can be ejected
include an _EJx control method for each sleeping state the device supports (a maximum of 2 _EJx objects
can be listed). For example, hot removal devices would supply an _EJ0; warm removal devices would use
one of _EJ1-EJ4. These control methods are used to signal the hardware when an eject is to occur.

The sequence of events for dynamically removing a device goes as follows:
1. The eject button is pressed and generates a general-purpose event. (If the system was in a sleeping

state, it should wake the computer).
2. The control method for the event uses the Notify(device, 3) command to inform OSPM which specific

device the user has requested to eject. Notify does not need to be called for every device that may be
ejected, but for the top-level device. Any child devices in the hierarchy or any ejection-dependent
devices on this device (as described by _EJD, below) are automatically removed.

3. The OS shuts down and unloads devices that will be removed.
4. If the device has a _LCK control method, OSPM runs this control method to unlock the device.
5. The OS looks to see what _EJx control methods are present for the device. If the removal event will

cause the system to switch to battery power (in other words, an undock) and the battery is low, dead, or
not present, OSPM uses the lowest supported sleep state _EJx listed; otherwise it uses the highest state
_EJx. Having made this decision, OSPM runs the appropriate _EJx control method to prepare the
hardware for eject.

6. Warm removal requires that the system be put in a sleep state. If the removal will be a warm removal,
OSPM puts the system in the appropriate Sx state. If the removal will be a hot removal, OSPM skips to
step 8, below.

7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on, to
eject the device. Immediately after ejection, the hardware transitions the computer to S0. If the system
was sleeping when the eject notification came in, the OS returns the computer to a sleeping state
consistent with the user’s wake settings.

8. OSPM calls _STA to determine if the eject successfully occurred. (In this case, control methods do not
need to use the Notify(device,3) command to tell OSPM of the change in _STA) If there were any
mechanical failures, _STA returns 3: device present and not functioning, and OSPM informs the user
of the problem.

Note: This mechanism is the same for removing a single device and for removing several devices, as in an
undock.

Configuration 169

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not
recommended because system and data integrity cannot be guaranteed when a surprise-style removal
occurs. Because the OS is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal, a general-purpose
event must be raised. Its associated control method must use the Notify command to indicate which bus the
device was removed from.

The device insertion and removal objects are listed in Table 6-6.

Table 6-6 Device Insertion and Removal Objects

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing _EDL. Whenever the named device is ejected, OSPM ejects all
dependent devices.

_EJD Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is ejected, the dependent device must receive an ejection notification.

_EJx Control method that ejects a device.

_LCK Control method that locks or unlocks a device.

_RMV Object that indicates that the given device is removable.

_STA Control method that returns a device’s status.

6.3.1 _EDL (Eject Device List)
This object evaluates to a package of namespace references containing the names of device objects that
depend on the device under which the _EDL object is declared. This is primarily used to support docking
stations. Before the device under which the _EDL object is declared may be ejected, OSPM prepares the
devices listed in the _EDL object for physical removal.

Before OSPM ejects a device via the device’s _EJx methods, all dependent devices listed in the package
returned by _EDL are prepared for removal. Notice that _EJx methods under the dependent devices are not
executed.

When describing a platform that includes a docking station, an _EDL object is declared under the docking
station device. For example, if a mobile system can attach to two different types of docking stations, _EDL
is declared under both docking station devices and evaluates to the packaged list of devices that must be
ejected when the system is ejected from the docking station.

An ACPI 2.0-compliant OS evaluates the _EDL method just prior to ejecting the device.

6.3.2 _EJD (Ejection Dependent Device)
This object is used to specify the name of a device on which the device, under which this object is declared,
is dependent. This object is primarily used to support docking stations. Before the device indicated by
_EJD is ejected, OSPM will prepare the dependent device (in other words, the device under which this
object is declared) for removal.

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by _EJD will
be used to eject all the dependent devices. A device’s dependents will be ejected when the device itself is
ejected.

Note: OSPM will not execute a dependent device’s _EJx methods when the device indicated by _EJD is
ejected.

170 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

When describing a platform that includes a docking station, usually more than one _EJD object will be
needed. For example, if a dock attaches both a PCI device and an ACPI-configured device to a mobile
system, then both the PCI device description package and the ACPI-configured device description package
must include an _EJD object that evaluates to the name of the docking station (the name specified in an
_ADR or _HID object in the docking station’s description package). Thus, when the docking connector
signals an eject request, OSPM first attempts to disable and unload the drivers for both the PCI and ACPI
configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This greatly
restricts a table designer’s freedom to describe dynamic dependencies such as those created in scenarios
with multiple docking stations. This restriction is illustrated in the example below; the _EJD information
supplied via and ACPI 1.0-compatible namespace omits the IDE2 device from DOCK2’s list of ejection
dependencies. In ACPI 2.0, OSPM will be presented with a more in-depth view of the ejection
dependencies in a system by use of the _EDL methods.

Example

An example use of _EJD and _EDL is as follows:

Scope(_SB.PCI0) {

 Device(DOCK1) { // Pass through dock – DOCK1
 Name(_ADR, …)
 Method(_EJ0, 0) {…}
 Method(_DCK, 1) {…}
 Name(_BDN, …)
 Method(_STA, 0) {0xF}
 Name(_EDL, Package() { // DOCK1 has two dependent devices – IDE2 and CB2
 _SB.PCI0.IDE2,
 _SB.PCI0.CB2})
 }
 Device(DOCK2) { // Pass through dock – DOCK2
 Name(_ADR, …)
 Method(_EJ0, 0) {…}
 Method(_DCK, 1) {…}
 Name(_BDN, …)
 Method(_STA, 0) {0x0}
 Name(_EDL, Package() { // DOCK2 has one dependent device – IDE2
 _SB.PCI0.IDE2})
 }

 Device(IDE1) { // IDE Drive1 not dependent on the dock
 Name(_ADR, …)
 }

 Device(IDE2) { // IDE Drive2
 Name(_ADR, …)
 Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1
 }

 Device(CB2) { // CardBus Controller
 Name(_ADR, …)
 Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1
 }
} // end _SB.PCIO

6.3.3 _EJx (Eject)
These control methods are optional and are supplied for devices that support a software-controlled VCR-
style ejection mechanism or that require an action be performed such as isolation of power/data lines before
the device can be removed from the system. To support warm (system is in a sleep state) and hot (system is
in S0) removal, an _EJx control method is listed for each sleep state from which the device supports
removal, where x is the sleeping state supported. For example, _EJ0 indicates the device supports hot
removal; _EJ1–EJ4 indicate the device supports warm removal.

Configuration 171

Compaq/Intel/Microsoft/Phoenix/Toshiba

For hot removal, the device must be immediately ejected when OSPM calls the _EJ0 control method. The
_EJ0 control method does not return until ejection is complete. After calling _EJ0, OSPM verifies the
device no longer exists to determine if the eject succeeded. For _HID devices, OSPM evaluates the _STA
method. For _ADR devices, OSPM checks with the bus driver for that device.

For warm removal, the _EJ1–_EJ4 control methods do not cause the device to be immediately ejected.
Instead, they set proprietary registers to prepare the hardware to eject when the system goes into the given
sleep state. The hardware ejects the device only after OSPM has put the system in a sleep state by writing
to the SLP_EN register. After the system resumes, OSPM calls _STA to determine if the eject succeeded.

The _EJx control methods take one parameter to indicate whether eject should be enabled or disabled:

1–Hot eject or mark for ejection
0–Cancel mark for ejection (EJ0 will never be called with this value)

A device object may have multiple _EJx control methods. First, it lists an EJx control method for the
preferred sleeping state to eject the device. Optionally, the device may list an EJ4 control method to be
used when the system has no power (for example, no battery) after the eject. For example, a hot-docking
notebook might list _EJ0 and _EJ4.

6.3.4 _LCK (Lock)
This control method is optional and is required only for a device that supports a software-controlled locking
mechanism. When the OS invokes this control method, the associated device is to be locked or unlocked
based upon the value of the argument that is passed. On a lock request, the control method must not
complete until the device is completely locked.

The _LCK control method takes one parameter that indicates whether or not the device should be locked:

1 –Lock the device.
0–Unlock the device.

When describing a platform, devices use either a _LCK control method or an _EJx control method for a
device.

6.3.5 _RMV (Remove)
The optional _RMV object indicates to OSPM whether the device can be removed while the system is in
the working state and does not require any ACPI system firmware actions to be performed for the device to
be safely removed from the system (in other words, any device that only supports surprise-style removal).
Any such removable device that does not have _LCK or _EJx control methods must have an _RMV object.
This allows OSPM to indicate to the user that the device can be removed and to provide a way for shutting
down the device before removing it. OSPM will transition the device into D3 before telling the user it is
safe to remove the device.

This method is reevaluated after a device-check notification.

Arguments:

 None

Result Code:

 0–The device cannot be removed.

 1–The device can be removed.

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
device is removable.

172 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.3.6 _STA (Status)
This object returns the status of a device, which can be one of the following: enabled, disabled, or removed.

Arguments:
None

Result Code (bitmap):
Bit 0–Set if the device is present.
Bit 1–Set if the device is enabled and decoding its resources.
Bit 2–Set if the device should be shown in the UI.
Bit 3–Set if the device is functioning properly (cleared if the device failed its diagnostics).
Bit 4–Set if the battery is present.
Bits 5–31–Reserved (must be cleared).

If bit 0 is cleared, then bit 1 must also be cleared (in other words, a device that is not present cannot be
enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit
0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

If a device is present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared.
For example, a notebook could have joystick hardware (thus it is present and decoding its resources), but
the connector for plugging in the joystick requires a port replicator. If the port replicator is not plugged in,
the joystick should not appear in the UI, so bit 2 is cleared.

If a device object does not have an _STA object, then OSPM assumes that all of the above bits are set (in
other words, the device is present, enabled, shown in the UI, and functioning).

This method must not reference any operation regions that have not been declared available by a _REG
method.

6.4 Resource Data Types for ACPI
The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors
ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined
in section 16.2.4, “ASL Macros for Resource Descriptors.”

6.4.2 Small Resource Data Type
A small resource data type may be 2 to 8 bytes in size and adheres to the following format:

Table 6-7 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]

 Type–0 Small item name Length–n bytes

Bytes 1 to n Data bytes

Configuration 173

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following small information items are currently defined for Plug and Play devices:

Table 6-8 Small Resource Items

Small Item Name Value

Reserved 0x1

Reserved 0x2

Reserved 0x3

IRQ format 0x4

DMA format 0x5

Start dependent Function 0x6

End dependent Function 0x7

I/O port descriptor 0x8

Fixed location I/O port descriptor 0x9

Reserved 0xA–0xD

Vendor defined 0xE

End tag 0xF

6.4.2.1 IRQ Format (Type 0, Small Item Name 0x4, Length=2 or 3)
The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so a two-byte field is used. This structure is repeated for each separate interrupt required.

Table 6-9 IRQ Descriptor Definition

Offset Field Name

Byte 0 Value = 0010001nB (Type = 0, small item name = 0x4, length = (2 or 3))

Byte 1 IRQ mask bits[7:0], _INT

Bit[0] represents IRQ0, bit[1] is IRQ1, and so on.

Byte 2 IRQ mask bits[15:8], _INT

Bit[0] represents IRQ8, bit[1] is IRQ9, and so on.

174 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-9 IRQ Descriptor Definition (continued)

Offset Field Name

Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a
certain type of interrupt. (Optional—if not included then assume edge sensitive,
high true interrupts)

Note: These bits can be used both for reporting and setting IRQ resources.

Note: This descriptor is meant for describing interrupts that are connected to PIC-
compatible interrupt controllers, which can only be programmed for Active-High-
Edge-Triggered or Active-Low-Level-Triggered interrupts. Any other
combination is illegal. The Extended Interrupt Descriptor can be used to describe
other combinations.
Bit[7:5] Reserved (must be 0)
Bit[4] Interrupt is sharable, _SHR

Bit[3] Interrupt Polarity, _LL
 0: Active-High–This interrupt is sampled when the signal is high, or true.

 1: Active-Low–This interrupt is sampled when the signal is low, or false.

Bit[2:1] Ignored
Bit[0] Interrupt Mode, _HE

 0: Level-Triggered–This interrupt is triggered in response to the signal being in
a low state.

 1: Edge-Triggered–This interrupt is triggered in response to a change in signal
state from low to high.

Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work is beyond the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See section 16.2.4.1, “ASL Macro for IRQ Descriptor,” for a description of the ASL macro that creates an
IRQ descriptor.

Configuration 175

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.2.2 DMA Format (Type 0, Small Item Name 0x5, Length=2)
The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table 6-10 DMA Descriptor Definition

Offset Field Name

Byte 0 Value = 00101010B (Type = 0, small item name = 0x5, length = 2)

Byte 1 DMA channel mask bits[7:0], _DMA

Bit[0] is channel 0

Byte 2 Bit[7] Reserved (must be 0)

Bits[6:5] DMA channel speed supported, _TYP
 Status
 00 Indicates compatibility mode
 01 Indicates Type A DMA as described in the EISA

 Specification
 10 Indicates Type B DMA
 11 Indicates Type F

Bits[4:3] Ignored

Bit[2] Logical device bus master status, _BM
 Status
 0 Logical device is not a bus master
 1 Logical device is a bus master

Bits[1:0] DMA transfer type preference, _SIZ
 Status
 00 8-bit only
 01 8- and 16-bit
 10 16-bit only
 11 Reserved

See section 16.2.4.2, “ASL Macro for DMA Descriptor,” for a description of the ASL macro that creates a
DMA descriptor.

6.4.2.3 Start Dependent Functions (Type 0, Small Item Name 0x6, Length=0
or 1)
Each logical device requires a set of resources. This set of resources may have interdependencies that need
to be expressed to allow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to express these interdependencies. The data structure definitions for
dependent functions are shown here. For a detailed description of the use of dependent functions refer to
the next section.

Table 6-11 Start Dependent Functions

Offset Field Name

Byte 0 Value = 0_0110_00nB (Type = 0, small item name = 0x6, length =(0 or 1))

176 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Start Dependent Function fields may be of length 0 or 1 bytes. The extra byte is optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority is a ranking of configurations for compatibility with legacy operating systems. This is
the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM1 is IRQ4, I/O 3F8-3FF. The performance/robustness performance is a
ranking of configurations for performance and robustness reasons. For example, a device may have a high-
performance, bus mastering configuration that may not be supported by legacy operating systems. The bus-
mastering configuration would have the highest performance/robustness priority while its polled I/O mode
might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byte is
defined as:

Table 6-12 Start Dependent Function Priority Byte Definition

Bits Definition

1:0 Compatibility priority. Acceptable values are:

0–Good configuration: Highest Priority and preferred configuration

1–Acceptable configuration: Lower Priority but acceptable configuration

2–Sub-optimal configuration: Functional configuration but not optimal

3–Reserved

3:2 Performance/robustness. Acceptable values are:

0–Good configuration: Highest Priority and preferred configuration

1–Acceptable configuration: Lower Priority but acceptable configuration

2–Sub-optimal configuration: Functional configuration but not optimal

3–Reserved

7:4 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the order
in which they appear in the resource data structure. The Dependent Function that appears earliest (nearest
the beginning) in the structure has the highest priority, and so on.

See section 16.2.4.3, “ASL Macro for Start-Dependent Function Descriptor,” for a description of the ASL
macro that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions (Type 0, Small Item Name 0x7, Length=0)
Table 6-13 End Dependent Functions

Offset Field Name

Byte 0 Value = 0_0111_000B (Type = 0, small item name = 0x7 length =0)

Notice that only one End Dependent Function item is allowed per logical device. This enforces the fact that
Dependent Functions cannot be nested.

See section 16.2.4.4, “ASL Macro for End-Dependent Functions Descriptor,” for a description of the ASL
macro that creates an End Dependent Functions descriptor.

Configuration 177

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.2.5 I/O Port Descriptor (Type 0, Small Item Name 0x8, Length=7)
There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for
programmable devices. The second descriptor is a minimal descriptor for old ISA cards with fixed I/O
requirements that use a 10-bit ISA address decode. The first type descriptor can also be used to describe
fixed I/O requirements for ISA cards that require a 16-bit address decode. This is accomplished by setting
the range minimum base address and range maximum base address to the same fixed I/O value.

Table 6-14 I/O Port Descriptor Definition

Offset Field Name Definition

Byte 0 I/O port descriptor Value = 01000111B (Type = 0, Small item name =
0x8, Length = 7)

Byte 1 Information Bits[7:1] are reserved and must be 0

Bit[0] (_DEC)

If set, indicates the logical device decodes 16-bit
addresses. If bit[0] is not set, this indicates the logical
device only decodes address bits[9:0].

Byte 2 Range minimum base
address, _MIN
bits[7:0]

Address bits[7:0] of the minimum base I/O address
that the card may be configured for.

Byte 3 Range minimum base
address, _MIN
bits[15:8]

Address bits[15:8] of the minimum base I/O address
that the card may be configured for.

Byte 4 Range maximum base
address, _MAX
bits[7:0]

Address bits[7:0] of the maximum base I/O address
that the card may be configured for.

Byte 5 Range maximum base
address, _MAX
bits[15:8]

Address bits[15:8] of the maximum base I/O address
that the card may be configured for.

Byte 6 Base alignment, _ALN Alignment for minimum base address, increment in 1-
byte blocks.

Byte 7 Range length, _LEN The number of contiguous I/O ports requested.

See section 16.2.4.5, “ASL Macro for I/O Port Descriptor,” for a description of the ASL macro that creates
an I/O Port descriptor.

178 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.2.6 Fixed Location I/O Port Descriptor (Type 0, Small Item Name 0x9,
Length=3)
This descriptor is used to describe 10-bit I/O locations.

Table 6-15 Fixed-Location I/O Port Descriptor Definition

Offset Field Name Definition

Byte 0 Fixed Location I/O port
descriptor

Value = 01001011B (Type = 0, Small item name =
0x9, Length = 3)

Byte 1 Range base address, _BAS
bits[7:0]

Address bits[7:0] of the base I/O address that the card
may be configured for. This descriptor assumes a 10-
bit ISA address decode.

Byte 2 Range base address, _BAS
bits[9:8]

Address bits[9:8] of the base I/O address that the card
may be configured for. This descriptor assumes a 10-
bit ISA address decode.

Byte 3 Range length, _LEN The number of contiguous I/O ports requested.

See section 16.2.4.6, “ASL Macro for Fixed I/O Port Descriptor,” for a description of the ASL macro that
creates a Fixed I/O Port descriptor.

6.4.2.7 Vendor Defined (Type 0, Small Item Name 0xE, Length=1-7)
The vendor defined resource data type is for vendor use.

Table 6-16 Vendor-Defined Resource Descriptor Definition

Offset Field Name

Byte 0 Value = 01110nnnB (Type = 0, small item name = 0xE, length = (1-7))

Byte 1 to 7 Vendor defined

See section 16.2.4.7, “ASL Macro for Short Vendor-Defined Descriptor,” for a description of the ASL
macro that creates a short Vendor Defined descriptor.

6.4.2.8 End Tag (Type 0, Small Item Name 0xF, Length 1)
The End tag identifies an end of resource data.

Note: If the checksum field is zero, the resource data is treated as if the checksum operation succeeded.
Configuration proceeds normally.

Table 6-17 End Tag Definition

Offset Field Name

Byte 0 Value = 01111001B (Type = 0, small item name = 0xF, length = 1)

Byte 1 Check sum covering all resource data after the serial identifier. This check sum is
generated such that adding it to the sum of all the data bytes will produce a zero
sum.

The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate
statement.

Configuration 179

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3 Large Resource Data Type
To allow for larger amounts of data to be included in the configuration data structure the large format is
shown below. This includes a 16-bit length field allowing up to 64 KB of data.

Table 6-18 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Value = 1xxxxxxxB (Type = 1, Large item name = xxxxxxx)

Byte 1 Length of data items bits[7:0]

Byte 2 Length of data items bits[15:8]

Bytes 3 to n Actual data items

The following large information items are currently defined for Plug and Play ISA devices:

Table 6-19 Large Resource Items

Large Item Name Value

24-bit memory range descriptor 0x1

Generic register descriptor 0x2

Reserved 0x3

Vendor defined 0x4

32-bit memory range descriptor 0x5

32-bit fixed location memory range descriptor 0x6

DWORD address space descriptor 0x7

WORD address space descriptor 0x8

Extended IRQ descriptor 0x9

QWORD address space descriptor 0xA

Reserved 0xB–0x7F

6.4.3.1 24-Bit Memory Range Descriptor (Type 1, Large Item Name 0x1)
The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address
space.

Table 6-20 Large Memory Range Descriptor Definition

Offset Field Name, ASL Field Name Definition

Byte 0 Memory range descriptor Value = 10000001B (Type = 1, Large item name =
0x1)

Byte 1 Length, bits[7:0] Value = 00001001B (9)

Byte 2 Length, bits[15:8] Value = 00000000B (0)

180 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-20 Large Memory Range Descriptor Definition (continued)

Offset Field Name, ASL Field Name Definition

Byte 3 Information This field provides extra information about this
memory.

Bit[7:1] Ignored

Bit[0] Write status, _RW

 1 writeable (read/write)
 0 non-writeable (read-only)

Byte 4 Range minimum base address,
_MIN
bits[7:0]

Address bits[15:8] of the minimum base memory
address for which the card may be configured.

Byte 5 Range minimum base address,
_MIN
bits[15:8]

Address bits[23:16] of the minimum base memory
address for which the card may be configured

Byte 6 Range maximum base address,
_MAX,
bits[7:0]

Address bits[15:8] of the maximum base memory
address for which the card may be configured.

Byte 7 Range maximum base address,
_MAX,
bits[15:8]

Address bits[23:16] of the maximum base memory
address for which the card may be configured

Byte 8 Base alignment, _ALN,
bits[7:0]

This field contains the lower eight bits of the base
alignment. The base alignment provides the
increment for the minimum base address. (0x0000 =
64 KB)

Byte 9 Base alignment, _ALN,
bits[15:8]

This field contains the upper eight bits of the base
alignment. The base alignment provides the
increment for the minimum base address. (0x0000 =
64 KB)

Byte 10 Range length, _LEN, bits[7:0] This field contains the lower eight bits of the
memory range length. The range length provides the
length of the memory range in 256 byte blocks.

Byte 11 Range length, _LEN, bits[15:8] This field contains the upper eight bits of the
memory range length. The range length field
provides the length of the memory range in 256 byte
blocks.

Notes: Address bits [7:0] of memory base addresses are assumed to be 0.
A Memory range descriptor can be used to describe a fixed memory address by setting the range minimum
base address and the range maximum base address to the same value.
24-bit Memory Range descriptors are used for legacy devices.
Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 16.2.4.8, “ASL Macro for 24-Bit Memory Descriptor,” for a description of the ASL macro that
creates a 24-bit Memory descriptor.

Configuration 181

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3.2 Vendor Defined (Type 1, Large Item Name 0x4)
The vendor defined resource data type is for vendor use.

Table 6-21 Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor defined Value = 10000100B (Type = 1, Large item name = 0x4)

Byte 1 Length, bits[7:0] Lower eight bits of vendor defined data length

Byte 2 Length, bits[15:8] Upper eight bits of vendor defined data length

N * bytes Vendor Defined Vendor defined data bytes

See section 16.2.4.9, “ASL Macro for Long Vendor-Defined Descriptor,” for a description of the ASL
macro that creates a long Vendor Defined descriptor.

6.4.3.3 32-Bit Memory Range Descriptor (Type 1, Large Item Name 0x5)
This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-22 Large 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 Memory range descriptor Value = 10000101B (Type = 1, Large item name =
0x5)

Byte 1 Length, bits[7:0] Value = 00010001B (17)

Byte 2 Length, bits[15:8] Value = 00000000B (0)

Byte 3 Information This field provides extra information about this
memory.

Bit[7:1] Ignored

Bit[0] Write status, _RW

 1 writeable (read/write)
 0 non-writeable (read-only)

Byte 4 Range minimum base address,
_MIN
bits[7:0]

Address bits[7:0] of the minimum base memory
address for which the card may be configured.

Byte 5 Range minimum base address,
_MIN
bits[15:8]

Address bits[15:8] of the minimum base memory
address for which the card may be configured.

Byte 6 Range minimum base address,
_MIN
bits[23:16]

Address bits[23:16] of the minimum base memory
address for which the card may be configured.

Byte 7 Range minimum base address,
_MIN
bits[31:24]

Address bits[31:24] of the minimum base memory
address for which the card may be configured.

182 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-22 Large 32-Bit Memory Range Descriptor Definition (continued)

Offset Field Name Definition

Byte 8 Range maximum base address,
_MAX
bits[7:0]

Address bits[7:0] of the maximum base memory
address for which the card may be configured.

Byte 9 Range maximum base address,
_MAX
bits[15:8]

Address bits[15:8] of the maximum base memory
address for which the card may be configured.

Byte 10 Range maximum base address,
_MAX
bits[23:16]

Address bits[23:16] of the maximum base memory
address for which the card may be configured.

Byte 11 Range maximum base address,
_MAX
bits[31:24]

Address bits[31:24] of the maximum base memory
address for which the card may be configured.

Byte 12

Base alignment, _ALN
bits[7:0]

This field contains Bits[7:0] of the base alignment.
The base alignment provides the increment for the
minimum base address.

Byte 13

Base alignment, _ALN
bits[15:8]

This field contains Bits[15:8] of the base
alignment. The base alignment provides the
increment for the minimum base address.

Byte 14

Base alignment, _ALN
bits[23:16]

This field contains Bits[23:16] of the base
alignment. The base alignment provides the
increment for the minimum base address.

Byte 15

Base alignment, _ALN
bits[31:24]

This field contains Bits[31:24] of the base
alignment. The base alignment provides the
increment for the minimum base address.

Byte 16

Range length, _LEN
bits[7:0]

This field contains Bits[7:0] of the memory range
length. The range length provides the length of the
memory range in 1-byte blocks.

Byte 17

Range length, _LEN
bits[15:8]

This field contains Bits[15:8] of the memory range
length. The range length provides the length of the
memory range in 1-byte blocks.

Byte 18

Range length, _LEN
bits[23:16]

This field contains Bits[23:16] of the memory
range length. The range length provides the length
of the memory range in 1-byte blocks.

Byte 19

Range length, _LEN
bits[31:24]

This field contains Bits[31:24] of the memory
range length. The range length provides the length
of the memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 16.2.4.10, “ASL Macro for 32-Bit Memory Descriptor,” for a description of the ASL macro
that creates a 32-bit Memory descriptor.

Configuration 183

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3.4 32-Bit Fixed Location Memory Range Descriptor (Type 1, Large
Item Name 0x6)
This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-23 Large Fixed-Location Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 Memory range descriptor Value = 10000110B (Type = 1, Large item name = 6)

Byte 1 Length, bits[7:0] Value = 00001001B (9)

Byte 2 Length, bits[15:8] Value = 00000000B (0)

Byte 3 Information This field provides extra information about this memory.

Bit[7:1] Ignored
Bit[0] Write status, _RW

 1 writeable (read/write)
 0 non-writeable (read-only))

Byte 4 Range base address, _BAS
bits[7:0]

Address bits[7:0] of the base memory address for which
the card may be configured.

Byte 5 Range base address, _BAS
bits[15:8]

Address bits[15:8] of the base memory address for which
the card may be configured.

Byte 6 Range base address, _BAS
bits[23:16]

Address bits[23:16] of the base memory address for
which the card may be configured.

Byte 7 Range base address, _BAS
bits[31:24]

Address bits[31:24] of the base memory address for
which the card may be configured.

Byte 8

Range length, _LEN
bits[7:0]

This field contains Bits[7:0] of the memory range length.
The range length provides the length of the memory
range in 1-byte blocks.

Byte 9

Range length, _LEN
bits[15:8]

This field contains Bits[15:8] of the memory range
length. The range length provides the length of the
memory range in 1-byte blocks.

Byte 10

Range length, _LEN
bits[23:16]

This field contains Bits[23:16] of the memory range
length. The range length provides the length of the
memory range in 1-byte blocks.

Byte 11

Range length, _LEN
bits[31:24]

This field contains Bits[31:24] of the memory range
length. The range length provides the length of the
memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 16.2.4.11, “ASL Macro for 32-Bit Fixed Memory Descriptor,” for a description of the ASL
macro that creates a 32-bit Fixed Memory descriptor.

184 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3.5 Address Space Descriptors
The QWORD, DWORD, and WORD Address Space Descriptors are general-purpose structures for
describing a variety of types of resources. These resources also include support for advanced server
architectures (such as multiple root buses), and resource types found on some RISC processors. These
descriptors can describe various kinds of resources. The following table defines the valid combination of
each field and how they should be interpreted.

Table 6-24 Valid combination of Address Space Descriptors fields

_LEN _MIF _MAF Definition
0 0 0

0 0 1

0 1 0

Variable size, variable location resource descriptor for _PRS.

If _MIF is set, _MIN must be a multiple of (_GRA+1). If _MAF is set,
_MAX must be (a multiple of (_GRA+1))-1.

OS can pick the resource range that satisfies following conditions:

• If _MIF is not set, start address is a multiple of (_GRA+1) and
greater or equal to _MIN. Otherwise, start address is _MIN.

• If _MAF is not set, end address is (a multiple of (_GRA+1))-1
and less or equal to _MAX. Otherwise, end address is _MAX.

0 1 1 (Illegal combination)

Non-0 0 0 Fixed size, variable location resource descriptor for _PRS.

_LEN must be a multiple of (_GRA+1).

OS can pick the resource range that satisfies following conditions:

• Start address is a multiple of (_GRA+1) and greater or equal to
_MIN.

• End address is (start address+_LEN-1) and less or equal to
_MAX.

Non-0 0 1 (Illegal combination)

Non-0 1 0 (Illegal combination)

Non-0 1 1 Fixed size, fixed location resource descriptor.

_GRA must be 0 and _LEN must be (_MAX - _MIN +1).

Configuration 185

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3.5.1 QWORD Address Space Descriptor (Type 1, Large Item Name
0xA)
The QWORD address space descriptor is used to report resource usage in a 64-bit address space (like
memory and I/O).

Table 6-25 QWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 QWORD Address Space
Descriptor

Value=10001010B (Type = 1, Large item name = 0xA)

Byte 1 Length, bits[7:0] Variable: Value = 43 (minimum)

Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor
describes. Defined values are:

0 Memory range
1 I/O range
2 Bus number range
3–255 Reserved

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)

Bit[3] _MAF:

1–The specified max address is fixed.

0–The specified max address is not fixed andcan
be changed.

Bit[2] _MIF:

1–The specified min address is fixed.

0–The specified min address is not fixed andcan
be changed.

Bit[1] _DEC:

1–This bridge subtractively decodes this

address (top level bridges only).

0–This bridge positively decodes this address.

Bit[0].

1–This device consumes this resource.

0–This device produces and consumes this

resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flags in this field depends on the value
of the Resource Type field (see above).

186 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-25 QWORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 6 Address space
granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded. All
bits less significant than the most significant set bit
must be set. That is, the value of the full Address Space
Granularity field (all 32 bits) must be a number (2n-1).

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address space
granularity, _GRA
bits[23:16]

Byte 9 Address space
granularity, _GRA
bits[31:24]

Byte 10 Address space
granularity, _GRA
bits[39:32]

Byte 11 Address space
granularity, _GRA
bits[47:40]

Byte 12 Address space
granularity, _GRA
bits[55:48]

Byte 13 Address space
granularity, _GRA
bits[63:56]

Byte 14 Address range minimum,
_MIN
bits[7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 15 Address range minimum,
_MIN
bits[15:8]

Byte 16 Address range minimum,
_MIN
bits[23:16]

Byte 17 Address range minimum,
_MIN
bits[31:24]

Byte 18 Address range minimum,
_MIN
bits[39:32]

Byte 19 Address range minimum,
_MIN
bits[47:40]

Configuration 187

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-25 QWORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 20 Address range minimum,
_MIN
bits[55:48]

Byte 21 Address range minimum,
_MIN
bits[63:56]

Byte 22 Address range
maximum, _MAX
bits[7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 23 Address range
maximum, _MAX
bits[15:8]

Byte 24 Address range
maximum, _MAX
bits[23:16]

Byte 25 Address range
maximum, _MAX
bits[31:24]

Byte 26 Address range
maximum, _MAX
bits[39:32]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 27 Address range
maximum, _MAX
bits[47:40]

Byte 28 Address range
maximum, _MAX
bits[55:48]

Byte 29 Address range
maximum, _MAX
bits[63:56]

Byte 30 Address Translation
offset, _TRA
bits[7:0]

For bridges that translate addresses across the bridge,
this is the offset that must be added to the address on
the secondary side to obtain the address on the primary
side. Non-bridge devices must list 0 for all Address
Translation offset bits.

Byte 31 Address Translation
offset, _TRA
bits[15:8]

Byte 32 Address Translation
offset, _TRA
bits[23:16]

Byte 33 Address Translation
offset, _TRA
bits[31:24]

188 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-25 QWORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 34 Address Translation
offset, _TRA
bits[39:32]

Byte 35 Address Translation
offset, _TRA
bits[47:40]

Byte 36 Address Translation
offset, _TRA
bits[55:48]

Byte 37 Address Translation
offset, _TRA
bits[63:56]

Byte 38 Address length, _LEN
bits[7:0]

Byte 39 Address length, _LEN,
bits[15:8]

Byte 40 Address length, _LEN
bits[23:16]

Byte 41 Address length, _LEN
bits[31:24]

Byte 42 Address length, _LEN
bits[39:32]

Byte 43 Address length, _LEN
bits[47:40]

Byte 44 Address length, _LEN
bits[55:48]

Byte 45 Address length, _LEN
bits[63:56]

Byte 46 Resource Source Index (Optional) Only present if Resource Source (below) is
present. This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.

If not present, the device consumes this resource from
its hierarchical parent.

See section 16.2.4.12, “ASL Macros for QWORD Address Space Descriptor,” for a description of the ASL
macro that creates a QWORD Address Space descriptor.

Configuration 189

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3.5.2 DWORD Address Space Descriptor (Type 1, Large Item Name
0x7)
The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like
memory and I/O).

Table 6-26 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Space
Descriptor

Value=10000111B (Type = 1, Large item name = 0x7)

Byte 1 Length, bits[7:0] Variable: Value = 23 (minimum)

Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor
describes. Defined values are:

0 Memory range
1 I/O range
2 Bus number range
3-255 Reserved

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)

Bit[3] _MAF:

 1–The specified max address is fixed.

 0–The specified max address is not fixed and
 can be changed.

Bit[2] _MIF:

 1–The specified min address is fixed.

 0–The specified min address is not fixed and
 can be changed.

Bit[1] _DEC:

 1–This bridge subtractively decodes this
 address (top level bridges only).

 0–This bridge positively decodes this
 address.

Bit[0]

 1–This device consumes this resource.

 0–This device produces and consumes this
 resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flags in this field depends on the value
of the Resource Type field (see above).

190 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-26 DWORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 6 Address space
granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded. All
bits less significant than the most significant set bit
must be set. (in other words, the value of the full
Address Space Granularity field (all 32 bits) must be a
number (2n-1).

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address space
granularity, _GRA
bits [23:16]

Byte 9 Address space
granularity, _GRA
bits [31:24]

Byte 10 Address range minimum,
_MIN
bits [7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 11 Address range minimum,
_MIN
bits [15:8]

Byte 12 Address range minimum,
_MIN
bits [23:16]

Byte 13 Address range minimum,
_MIN
bits [31:24]

Byte 14 Address range
maximum, _MAX
bits [7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 15 Address range
maximum, _MAX
bits [15:8]

Byte 16 Address range
maximum, _MAX
bits [23:16]

Byte 17 Address range
maximum, _MAX
bits [31:24]

Byte 18 Address Translation
offset, _TRA
bits [7:0]

For bridges that translate addresses across the bridge,
this is the offset that must be added to the address on
the secondary side to obtain the address on the primary
side. Non-bridge devices must list 0 for all Address
Translation offset bits.

Configuration 191

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-26 DWORD Address Space Descriptor Definition (continued)

Byte 19 Address Translation
offset, _TRA
bits [15:8]

Byte 20 Address Translation
offset, _TRA
bits [23:16]

Byte 21 Address Translation
offset, _TRA
bits [31:24]

Byte 22 Address Length, _LEN,

bits [7:0]

Byte 23 Address Length, _LEN,

bits [15:8]

Byte 24 Address Length, _LEN,

bits [23:16]

Byte 25 Address Length, _LEN,

bits [31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is
present. This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.

If not present, the device consumes this resource from
its hierarchical parent.

See section 16.2.4.13, “ASL Macro for DWORD Address Space Descriptor,” for a description of the ASL
macro that creates a DWORD Address Space descriptor.

192 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.4.3.5.3 WORD Address Space Descriptor (Type 1, Large Item Name 0x8)
The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and I/O).

Note: This descriptor is exactly the same as the DWORD descriptor specified in Table 6-23; the only
difference is that the address fields are 16 bits wide rather than 32 bits wide.

Table 6-27 WORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 WORD Address Space
Descriptor

Value=10001000B (Type = 1, Large item name = 0x8)

Byte 1 Length, bits[7:0] Variable: Value = 13 (minimum)

Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor
describes. Defined values are:

0 Memory range
1 I/O range
2 Bus number range
3-255 Reserved

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)

Bit[3] _MAF:

 1–The specified max address is fixed.

 0–The specified max address is not fixed and

 can be changed.

Bit[2] _MIF:

 1–The specified min address is fixed.

 0–The specified min address is not fixed and

 can be changed.

Bit[1] _DEC:

 1–This bridge subtractively decodes this

 address (top level bridges only).

 0–This bridge positively decodes this address.

Bit[0]

 1–This device consumes this resource.

 0–This device produces and consumes this

 resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flags in this field depends on the value
of the Resource Type field (see above).

Configuration 193

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-27 WORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 6 Address space
granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded. All
bits less significant than the most significant set bit
must be set. (in other words, the value of the full
Address Space Granularity field (all 16 bits) must be a
number (2n-1).

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address range minimum,
_MIN
bits [7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 9 Address range minimum,
_MIN
bits [15:8]

Byte 10 Address range
maximum, _MAX
bits [7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 11 Address range
maximum, _MAX
bits [15:8]

Byte 12 Address Translation
offset, _TRA
bits [7:0]

For bridges that translate addresses across the bridge,
this is the offset that must be added to the address on
the secondary side to obtain the address on the primary
side. Non-bridge devices must list 0 for all Address
Translation offset bits.

Byte 13 Address Translation
offset, _TRA
bits [15:8]

Byte 14 Address Length, _LEN,
bits [7:0]

Byte 15 Address Length, _LEN,
bits [15:8]

194 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-27 WORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is
present. This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

See section 16.2.4.14, “ASL Macro for WORD Address Descriptor,” for a description of the ASL macro
that creates a WORD address descriptor.

6.4.3.5.4 Resource Type Specific Flags
The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends on the
value of the Resource Type field in the descriptor. The flags for each resource type are defined in the
following tables:

Table 6-28 Memory Resource Flag (Resource Type = 0) Definitions

Bits Meaning

Bits[7:6] Reserved (must be 0)

Bit[5] Memory to I/O Translation, _TTP

1–TypeTranslation: This resource, which is memory on the secondary side of the
bridge, is I/O on the primary side of the bridge.

0–TypeStatic: This resource, which is memory on the secondary side of the
bridge, is also memory on the primary side of the bridge.

Bits[4:3] Memory attributes, _MTP. These bits are only defined if this memory resource
describes system RAM. For a definition of the labels described here, see section
15, “System Address Map Interfaces.”

 Value and Meaning

 0 AddressRangeMemory
 1 AddressRangeReserved
 2 AddressRangeACPI
 3 AddressRangeNVS

Configuration 195

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-28 Memory Resource Flag (Resource Type = 0) Definitions (continued)

Bits Meaning

Bits[2:1] Memory attributes, _MEM
 Value andMeaning

 0 The memory is non-cacheable.
 1 The memory is cacheable.
 2 The memory is cacheable and supports write combining.
 3 The memory is cacheable and prefetchable.

Bit[0] Write status, _RW
1–This memory range is read-write.
0–This memory range is read-only.

Table 6-29 I/O Resource Flag (Resource Type = 1) Definitions

Bits Meaning

Bits[7:6] Reserved (must be 0)

Bit[5] Sparse Translation, _TRS. This bit is only meaningful if Bit[4] is set.

1–SparseTranslation: The primary-side memory address of any specific I/O port
within the secondary-side range can be found using the following function.

 address = (((port & 0xfffc) << 10) || (port & 0xfff)) + _TRA

 In the address used to access the I/O port, bits[11:2] must be identical to
 bits[21:12], this gives four bytes of I/O ports on each 4 KB page.

0–DenseTranslation: The primary-side memory address of any specific I/O port
within the secondary-side range can be found using the following function.

 address = port + _TRA

Bit[4] I/O to Memory Translation, _TTP

1 -– TypeTranslation: This resource, which is I/O on the secondary side of the
bridge, is memory on the primary side of the bridge.

0–TypeStatic: This resource, which is I/O on the secondary side of the bridge, is
also I/O on the primary side of the bridge.

Bit[3:2] Reserved (must be 0)

196 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-29 I/O Resource Flag (Resource Type = 1) Definitions (continued)

Bits Meaning

Bit[1] _RNG
This flag is for bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor is limited to the ISA I/O
addresses that fall within the specified window. The ISA I/O ranges are: n000-
n0FF, n400-n4FF, n800-n8FF, nC00-nCFF. This bit can only be set for bridges
entirely configured through ACPI namespace.

Bit[0] _RNG
This flag is for bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor is limited to the non-ISA I/O
addresses that fall within the specified window. The non-ISA I/O ranges are:
n100-n3FF, n500-n7FF, n900-nBFF, nD00-nFFF. This bit can only be set for
bridges entirely configured through ACPI namespace.

Table 6-30 Bus Number Range Resource Flag (Resource Type = 2) Definitions

Bits Meaning

Bit[7:0] Reserved (must be 0)

6.4.3.6 Extended Interrupt Descriptor (Type 1, Large Item Name 0x9)
The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for systems
that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendors to list an array of possible interrupt
numbers, any one of which can be used.

Table 6-31 Extended Interrupt Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Interrupt
Descriptor

Value=10001001B (Type = 1, Large item name =
0x9)

Byte 1 Length, bits[7:0] Variable: Value = 6 (minimum)

Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)

Configuration 197

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-31 Extended Interrupt Descriptor Definition (continued)

Offset Field Name Definition

Byte 3 Interrupt Vector Flags Interrupt Vector Information.

Bit[7:4] Reserved (must be 0)

Bit[3] Interrupt is shareable, _SHR

Bit[2] Interrupt Polarity, _LL

 0–Active-High: This interrupt is sampled
 when the signal is high, or true.

 1–Active-Low: This interrupt is sampled
 when the signal is low, or false.

Bit[1] Interrupt Mode, _HE

 0–Level-Triggered: This interrupt is
 triggered in response to the signal being in
 either a high or low state.

 1–Edge-Triggered: This interrupt is
 triggered in response to a change in signal
 state, either high to low or low to high.

Bit[0]

 1–This device consumes this resource.

 0–This device produces and consumes
 this resource.

Byte 4 Interrupt table length Indicates the number of interrupt numbers that follow.
When this descriptor is returned from _CRS, or when
OSPM passes this descriptor to _SRS, this field must
be set to 1.

Byte 4n+5 Interrupt Number, _INT
bits [7:0]

Interrupt number

Byte 4n+6 Interrupt Number, _INT
bits [15:8]

Byte 4n+7 Interrupt Number, _INT
bits [23:16]

Byte 4n+8 Interrupt Number, _INT
bits [31:24]

… … Additional interrupt numbers

198 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-31 Extended Interrupt Descriptor Definition (continued)

Offset Field Name Definition

Byte x Resource Source Index (Optional) Only present if Resource Source (below) is
present. This field gives an index to the specific
resource descriptor that this device consumes from in
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produces by the named device object. If not present,
the device consumes its resources out of a global pool.

If not present, the device consumes this resource from
its hierarchical parent.

Note: Low true, level sensitive interrupts may be electrically shared, the process of how this might work is
beyond the scope of this specification.

If the OS is running using the 8259 interrupt model, only interrupt number values of 0-15 will be used, and
interrupt numbers greater than 15 will be ignored.

See section 16.2.4.15, “ASL Macro for Extended Interrupt Descriptor,” for a description of the ASL macro
that creates an Extended Interrupt descriptor.

6.4.3.7 Generic Register Descriptor (Type 1, Large Item Name 0x2)
The generic register descriptor describes the location of a fixed width register within any of the ACPI-
defined address spaces.

Table 6-32 Generic Register Descriptor Definition

Offset Field Name, ASL Field Name Definition

Byte 0 Generic register descriptor Value = 10000010B (Type = 1, Large item name =
0x2)

Byte 1 Length, bits[7:0] Value = 00001100B (12)

Byte 2 Length, bits[15:8] Value = 00000000B (0)

Byte 3 Address Space ID, _ASI The address space where the data structure or
register exists.
Defined values are:

0–System Memory

1–System I/O

2–PCI Configuration Space

3–Embedded Controller

4–SMBus

0x7F–Functional Fixed Hardware

Byte 4 Register Bit Width, _RBW Indicates the register width in bits.

Byte 5 Register Bit Offset, _RBO Indicates the offset to the start of the register in bits
from the Register Address.

Configuration 199

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 6-32 Generic Register Descriptor Definition (continued)

Offset Field Name, ASL Field Name Definition

Byte 6 Reserved Must be 0.

Byte 7 Register Address, _ADR
bits[7:0]

Register Address

Byte 8 Register Address, _ADR
bits[15:8]

Byte 9 Register Address, _ADR
bits[23:16]

Byte 10 Register Address, _ADR
bits[31:24]

Byte 11 Register Address, _ADR
bits[39:32]

Byte 12 Register Address, _ADR
bits[47:40]

Byte 13 Register Address, _ADR
bits[55:48]

Byte 14 Register Address, _ADR
bits[63:56]

See section 16.2.4.16, “ASL Macro for Generic Register Descriptor,” for a description of the ASL macro
that creates a Generic Register descriptor.

6.5 Other Objects and Control Methods

Table 6-33 Other Objects and Methods

Object Description

_INI Device initialization method that is run shortly after ACPI has been enabled.

_DCK Indicates that the device is a docking station.

_BDN Correlates a docking station between ACPI and legacy interfaces.

_REG Notifies AML code of a change in the availability of an operation region.

_BBN PCI bus number set up by the BIOS.

_SEG Indicates a bus segment location.

 _GLK Indicates the Global Lock must be acquired when accessing a device.

6.5.1 _INI (Init)
_INI is a device initialization object that performs device specific initialization. This control method is
located under a device object and is run only when OSPM loads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the _REG method. The
_REG method is described in section 6.5.4, “_REG (Region).” This control method is run before _ADR,
_CID, _HID, _SUN, and _UID are run.

200 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

If the _STA method indicates that the device is present, OSPM will evaluate the __INI for the device (if the
_INI method exists) and will examine each of the children of the device for _INI methods. If the _STA
method indicates that the device is not present, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the device becomes present after the table has already been
loaded, OSPM will not evaluate the _INI method, nor examine the children for _INI methods.

The _INI control method is generally used to switch devices out of a legacy operating mode. For example,
BIOSes often configure CardBus controllers in a legacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an _INI object under the _SB
namespace, if present, at the beginning of namespace initialization.

6.5.2 _DCK (Dock)
This control method is located in the device object that represents the docking station (that is, the device
object with all the _EJx control methods for the docking station). The presence of _DCK indicates to the
OS that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS to prepare for docking
before the bus is activated and devices appear on the bus.

Arguments:

 Arg0

 1–Dock (that is, remove isolation from connector)

 0–Undock (isolate from connector)

Return Code:

 1 if successful, 0 if failed.

Note: When _DCK is called with 0, OSPM will ignore the return value. The _STA object that follows the
_EJx control method will notify whether or not the portable has been ejected.

6.5.3 _BDN (BIOS Dock Name)
_BDN is used to correlate a docking station reported via ACPI and the same docking station reported via
legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

_BDN must appear under a device object that represents the dock, that is, the device object with _Ejx
methods. This object must return a DWORD that is the EISA-packed DockID returned by the Plug and
Play BIOS Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 _REG (Region)
The OS runs _REG control methods to inform AML code of a change in the availability of an operation
region. When an operation region handler is unavailable, AML cannot access data fields in that region.
(Operation region writes will be ignored and reads will return indeterminate data.).

Except for the cases shown below, control methods must assume all operation regions inaccessible until the
_REG(RegionSpace, 1) method is executed. Once _REG has been executed for a particular operation
region, indicating that the operation region handler is ready, a control method can access fields in the
operation region. Conversely, control methods must not access fields in operation regions when _REG
method execution has not indicated that the operation region handler is ready.

Configuration 201

Compaq/Intel/Microsoft/Phoenix/Toshiba

For example, until the Embedded Controller driver is ready, the control methods cannot access the
Embedded Controller. Once OSPM has run _REG(EmbeddedControl, 1), the control methods can then
access operation regions in Embedded Controller address space. Furthermore, if OSPM executes
_REG(EmbeddedControl, 0), control methods must stop accessing operation regions in the Embedded
Controller address space.

The exceptions for this rule are:
1. OSPM must guarantee that the following operation regions must always be accessible:

• PCI_Config operation regions on a PCI root bus containing a _BBN object.
• I/O operation regions.
• Memory operation regions when accessing memory returned by the System Address Map

reporting interfaces.
2. OSPM must make Embedded Controller operation regions, accessed via the Embedded

Controllers described in ECDT, available before executing any control method. These operation
regions may become inaccessible after OSPM runs _REG(EmbeddedControl, 0).

Place _REG in the same scope as operation region declarations. The OS will run the _REG in a given scope
when the operation regions declared in that scope are available for use.

For example:

 Scope(_SB.PCI0) {
 OperationRegion(OPR1, PCI_Config, ...)
 Method(_REG, 2) {...} // OSPM executes this when PCIO operation region handler

// status changes
 Device(PCI1) {
 Method(_REG, 2) {...}
 Device(ETH0) {

OperationRegion(OPR2, PCI_Config, ...)
 Method(_REG,2) {...}
 }
 }
 Device(ISA0) {
 OperationRegion(OPR3, I/O, ...)

Method(_REG, 2) {...} // OSPM executes this when ISAO operation region handler
// status changes

 Device(EC0) {
 Name(_HID, EISAID("PNP0C09"))
 OperationRegion(OPR4, EC, ...)

Method(_REG, 2) {...} // OSPM executes this when EC operation region
// handler status changes

 }
 }
 }

202 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

When the PCI0 operation region handler is ready, OSPM will run the _REG method declared in PCI0
scope to indicate that PCI Config space operation region access is available within the PCI0 scope (in other
words, OPR1 access is allowed). When the ISA0 operation handler is ready, OSPM will run the _REG
method in the ISA0 scope to indicate that the I/O space operation region access is available within that
scope (in other words, OPR3 access is allowed). Finally, when the Embedded Controller operation region
handler is ready, OSPM will run the _REG method in the EC0 scope to indicate that EC space operation
region access is available within the EC0 scope (in other words, OPR4 access is allowed). It should be
noted that PCI Config Space Operation Regions are ready as soon the host controller or bridge controller
has been programmed with a bus number. PCI1’s _REG method would not be run until the PCI-PCI bridge
has been properly configured. At the same time, the OS will also run ETH0’s _REG method since its PCI
Config Space would be also available. The OS will again run ETH0’s _REG method when the ETH0
device is started. Also, when the host controller or bridge controller is turned off or disabled, PCI Config
Space Operation Regions for child devices are no longer available. As such, ETH0’s _REG method will be
run when it is turned off and will again be run when PCI1 is turned off.

Note: The OS only runs _REG methods that appear in the same scope as operation region declarations that
use the operation region type that has just been made available. For example, _REG in the EC device
would not be run when the PCI bus driver is loaded since the operation regions declared under EC do not
use any of the operation region types made available by the PCI driver (namely, config space, I/O, and
memory).

Arguments:

 Arg0: Integer: Operation region space:

0–Memory

1–I/O

2–PCI_Config

3–Embedded Controller

4–SMBus

5–CMOS

6–PCIBARTarget

0x80-0xff–OEM region space handler

 Arg1: Integer: 1 for connecting the handler, 0 for disconnecting the handler

6.5.5 _BBN (Base Bus Number)
For multi-root PCI machines, _BBN is the PCI bus number that the BIOS assigns. This is needed to access
a PCI_Config operation region for the specific bus. The _BBN object must be unique for every host bridge
within a segment since it is the PCI bus number.

Configuration 203

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.5.6 _SEG (Segment)
The _SEG object indicates a bus segment location. _SEG is a level higher than _BBN. Each segment is
composed of up to 256 PCI Buses.

Device(ND0) { // this is a node 0
 Name(_HID, “ACPI0004”)

 // Returns the "Current Resources"
 Name(_CRS,
 ResourceTemplate() {
 …
 }
)

 Device(PCI0) {
 Name(_HID, EISAID(“PNP0A03”))
 Name(_ADR, 0x00000000)
 Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
 …
 Name(_BBN, 0)
 …
 }
 Device(PCI1) {
 …
 Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
 …
 Name(_BBN, 16)
 …
 }
 …
 }

 Device(ND1) { // this is a node 1
 Name(_HID, “ACPI0004”)

 // Returns the "Current Resources"
 Name(_CRS,
 ResourceTemplate() {
 …
 }
)

 Device(PCI0) {
 Name(_HID, EISAID(“PNP0A03”))
 Name(_ADR, 0x00000000)
 Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
 …
 Name(_BBN, 0)
 …
 }
 Device(PCI1) {
 …
 Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
 …
 Name(_BBN, 16)
 …
 }
 …
 }

204 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

6.5.7 _GLK (Global Lock)
This optional named object is located in a device object. This object returns a value that indicates to any
entity that accesses this device (in other words, OSPM or any device driver) whether the Global Lock must
be acquired when accessing the device. OS-based device accesses must be performed while in acquisition
of the Global Lock when potentially contentious accesses to device resources are performed by non-OS
code, such as System Management Mode (SMM)-based code in Intel architecture-based systems.

An example of this device resource contention is a device driver for an SMBus-based device contending
with SMM-based code for access to the Embedded Controller, SMB-HC, and SMBus target device. In this
case, the device driver must acquire and release the Global Lock when accessing the device to avoid
resource contention with SMM-based code that accesses any of the listed resources.

Return Codes:

 1 Global Lock required, 0 Global Lock not required

Power and Performance Management 205

Compaq/Intel/Microsoft/Phoenix/Toshiba

7 Power and Performance Management
This section specifies the device power management objects and system power management objects.
OSPM uses these objects to manage the platform by achieving a desirable balance between performance
and energy conservation goals.

Device performance states (Px states) are power consumption and capability states within the active (D0)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that the
states invoke different device efficiency levels as opposed to a linear scaling of performance and energy
consumption. Since performance state transitions occur in the active device states, care must be taken to
ensure that performance state transitions do not adversely impact the system.

Device performance state objects, when necessary, are defined on a per device class basis as described in
the device class specifications (See Appendix A).

The system state indicator objects are also specified in this section.

7.1 Declaring a Power Resource Object
An ASL PowerResource statement is used to declare a PowerResource object. A Power Resource object
refers to a software-controllable power plane, clock plane, or other resource upon which an integrated
ACPI power-managed device might rely. Power resource objects can appear wherever is convenient in
namespace.

The syntax of a PowerResource statement is:

PowerResource(resourcename, systemlevel, resourceorder) {NamedList}

where the systemlevel parameter is a number and the resourceorder parameter is a numeric constant (a
WORD). For a formal definition of the PowerResource statement syntax, see section 16, “ACPI Source
Language Reference.”

Systemlevel is the lowest power system sleep level OSPM must maintain to keep this power resource on (0
equates to S0, 1 equates to S1, and so on).

Each power-managed ACPI device lists the resources it requires for its supported power levels. OSPM
multiplexes this information from all devices and then enables and disables the required Power Resources
accordingly. The resourceorderl field in the Power Resource object is a unique value per Power Resource,
and it provides the system with the order in which Power Resources must be enabled or disabled. Power
Resources are enabled from low values to high values and are disabled from high values to low values. The
operating software enables or disables all affected Power Resources in any one resourceorder level at a
time before moving on to the next ordered level. Putting Power Resources in different order levels provides
power sequencing and serialization where required.

206 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A Power Resource can have named objects under its Namespace location. For a description of the ACPI-
defined named objects for a Power Resource, see section 7.2, “Device Power Management Objects.”

The following block of ASL sample code shows a use of PowerResource.

PowerResource(PIDE, 0, 0) {
 Method(_STA) {
 Return (Xor (GIO.IDEI, One, Zero)) // inverse of isolation
 }
 Method(_ON) {
 Store (One, GIO.IDEP) // assert power
 Sleep (10) // wait 10ms
 Store (One, GIO.IDER) // de-assert reset#
 Stall (10) // wait 10us
 Store (Zero, GIO.IDEI) // de-assert isolation
 }
 Method(_OFF) {
 Store (One, GIO.IDEI) // assert isolation
 Store (Zero, GIO.IDER) // assert reset#
 Store (Zero, GIO.IDEP) // de-assert power
 }
}

7.1.1 Defined Child Objects for a Power Resource
Each power resource object is required to have the following control methods to allow basic control of each
power resource. As OSPM changes the state of device objects in the system, the power resources that are
needed will also change causing OSPM to turn power resources on and off. To determine the initial power
resource settings the _STA method can be used.

Table 7-1 Power Resource Child Objects

Object Description

_OFF Set the resource off.

_ON Set the resource on.

_STA Object that evaluates to the current on or off state of the Power Resource.
0–OFF, 1–ON

7.1.2 _OFF
This power resource control method puts the power resource into the OFF state. The control method does
not complete until the power resource is off. OSPM only turns on or off one resource at a time, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result Code:
None

Power and Performance Management 207

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.1.3 _ON
This power resource control method puts the power resource into the ON state. The control method does
not complete until the power resource is on. OSPM only turns on or off one resource at a time, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result Code:
None

7.1.4 _STA (Status)
Returns the current ON or OFF status for the power resource.

Arguments:
None

Result Code:
0 indicates the power resource is currently off.
1 indicates the power resource is currently on.

7.2 Device Power Management Objects
For a device that is power-managed using ACPI, a Definition Block contains one or more of the objects
found in the table below. Power management of a device is done using two different paradigms:
• Power Resource control
• Device-specific control

Power Resources are resources that could be shared amongst multiple devices. The operating software will
automatically handle control of these devices by determining which particular Power Resources need to be
in the ON state at any given time. This determination is made by considering the state of all devices
connected to a Power Resource.

By definition, a device that is OFF does not have any power resource or system power state requirements.
Therefore, device objects do not list power resources for the OFF power state.

For OSPM to put the device in the D3 state, the following must occur:
• All Power Resources no longer referenced by any device in the system must be in the OFF state.
• If present, the _PS3 control method is executed to set the device into the D3 device state.

The only transition allowed from the D3 device state is to the D0 device state.

For many devices the Power Resource control is all that is required; however, device objects may include
their own device-specific control method.

These two types of power management controls (through Power Resources and through specific devices)
can be applied in combination or individually as required.

208 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

For systems that do not control device power states through power plane management, but whose devices
support multiple D-states, more information is required by the OS to determine the S-state to D-state
mapping for the device. The ACPI BIOS can give this information to OSPM by way of the _SxD methods.
These methods tell OSPM for S-state “x”, the highest D-state supported by the device is “y.” OSPM is
allowed to pick a lower D-state for a given S-state, but OSPM is not allowed to exceed the given D-state.

Further rules that apply to device power management objects are:
• For a given S-state, a device cannot be in a higher D-state than its parent device.
• If there exists an ACPI Object to turn on a device (either through _PSx or _PRx objects), then a

corresponding object to turn the device off must also be declared and vice versa.
• If there exists an ACPI Object that controls power (_PSx or _PRx, where x =0, 1, 2, or 3), then

methods to set the device into D0 and D3 device states must be present.
• If a mixture of _PSx and _PRx methods is declared for the device, then the device states supported

through _PSx methods must be identical to the device states supported through _PRx methods. ACPI
system firmware may enable device power state control exclusively through _PSx (or _PRx) method
declarations.

Table 7-2 Device Power Management Child Objects

Object Description

_PS0 Control method that puts the device in the D0 device state (device fully on).

_PS1 Control method that puts the device in the D1 device state.

_PS2 Control method that puts the device in the D2 device state.

_PS3 Control method that puts the device in the D3 device state (device off).

_PSC Object that evaluates to the device’s current power state.

_PR0 Object that evaluates to the device’s power requirements in the D0 device state (device fully
on).

_PR1 Object that evaluates to the device’s power requirements in the D1 device state. The only
devices that supply this level are those that can achieve the defined D1 device state according
to the related device class.

_PR2 Object that evaluates to the device’s power requirements in the D2 device state. The only
devices that supply this level are those that can achieve the defined D2 device state according
to the related device class.

_PRW Object that evaluates to the device’s power requirements in order to wake the system from a
system sleeping state.

_PSW Control method that enables or disables the device’s wake function.

_IRC Object that signifies the device has a significant inrush current draw.

_S1D Highest D-state supported by the device in the S1 state

_S2D Highest D-state supported by the device in the S2 state

_S3D Highest D-state supported by the device in the S3 state

_S4D Highest D-state supported by the device in the S4 state

Power and Performance Management 209

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.2.1 _PS0 (Power State 0)
This Control Method is used to put the specific device into its D0 state. This Control Method can only
access Operation Regions that are either always available while in a system working state or that are
available when the Power Resources references by the _PR0 object are all ON.

Arguments:
None

Result Code:
None

7.2.2 _PS1 (Power State 1)
This control method is used to put the specific device into its D1 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the _PR1 object are all ON.

Arguments:
None

Result Code:
None

7.2.3 _PS2 (Power State 2)
This control method is used to put the specific device into its D2 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the _PR2 object are all ON.

Arguments:
None

Result Code:
None

7.2.4 _PS3 (Power State 3)
This control method is used to put the specific device into its D3 state. This control method can only access
Operation Regions that are always available while in a system working state.

A device in the D3 state must no longer be using its resources (for example, its memory space and I/O ports
are available to other devices).

Arguments:
None

Result Code:
None

210 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.2.5 _PSC (Power State Current)
This control method evaluates to the current device state. This control method is not required if the device
state can be inferred by the Power Resource settings. This would be the case when the device does not
require a _PS0, _PS1, _PS2, or _PS3 control method.

Arguments:
None

Result Code:
The result codes are shown in Table 7-3.

Table 7-3 _PSC Control Method Result Codes

Result Device State

0 D0

1 D1

2 D2

3 D3

7.2.6 _PR0 (Power Resources for D0)
This object evaluates to a package of the following definition:

Table 7-4 Power Resource Requirements Package

 Object Description

1 object reference Reference to required Power Resource #0

N object reference Reference to required Power Resource #N

For OSPM to put the device in the D0 device state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS0 control method is executed to set the device into the D0 device state.
_PR0 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.7 _PR1 (Power Resources for D1)
This object evaluates to a package as defined in Table 7-3. For OSPM to put the device in the D1 device
state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS1 control method is executed to set the device into the D1 device state.
_PR1 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

Power and Performance Management 211

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.2.8 _PR2 (Power Resources for D2)
This object evaluates to a package as defined in Table 7-3. For OSPM to put the device in the D2 device
state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS2 control method is executed to set the device into the D2 device state.
_PR2 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.9 _PRW (Power Resources for Wake)
This object is only required for devices that have the ability to wake the system from a system sleeping
state. This object evaluates to a package of the following definition:

Table 7-5 Wake Power Requirements Package

 Object Type Description

0 Numeric or
package If the data type of this package element is numeric, then this

_PRW package element is the bit index in the GPEx_EN, in the
GPE blocks described in the FADT, of the enable bit that is
enabled for the wake event.

If the data type of this package element is a package, then this
_PRW package element is itself a package containing two
elements. The first is an object reference to the GPE Block
device that contains the GPE that will be triggered by the wake
event. The second element is numeric and it contains the bit
index in the GPEx_EN, in the GPE Block referenced by the
first element in the package, of the enable bit that is enabled for
the wake event.

For example, if this field is a package then it is of the form:
Package() {_SB.PCI0.ISA.GPE, 2}

1 numeric The lowest power system sleeping state that can be entered
while still providing wake functionality.

2 object reference Reference to required Power Resource #0

N object reference Reference to required Power Resource #N

For OSPM to have the defined wake capability properly enabled for the device, the following must occur:
1. All Power Resources referenced by elements 2 through N are put into the ON state.
2. If present, the _PSW control method is executed to set the device-specific registers to enable the wake

functionality of the device.

212 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Then, if the system wants to enter a sleeping state:
1. Interrupts are disabled.
2. The sleeping state being entered must be greater or equal to the power state declared in element 1 of

the _PRW object.
3. The proper general-purpose register bits are enabled.

The system sleeping state specified must be a state that the system supports (in other words, a
corresponding _Sx object must exist in the namespace).

_PRW must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.10 _PSW (Power State Wake)
In addition to _PSR, this control method can be used to enable or disable the device’s ability to wake a
sleeping system. This control method can only access Operation Regions that are either always available
while in a system working state or that are available when the Power Resources references by the _PRW
object are all ON. For example, do not put a power plane control for a bus controller within configuration
space located behind the bus.

Arguments:
0– Enable / Disable: 0 to disable the device’s wake capabilities.
 1 to enable the device’s wake capabilities.

Result Code:
None

7.2.11 _IRC (In Rush Current)
The presence of this object signifies that transitioning the device to its D0 state causes a system-significant
in-rush current load. In general, such operations need to be serialized such that multiple operations are not
attempted concurrently. Within ACPI, this type of serialization can be accomplished with the
resourceorder parameter of the device’s Power Resources; however, this does not serialize ACPI-
controlled devices with non-ACPI controlled devices. IRC is used to signify this fact outside of OSPM to
OSPM such that OSPM can serialize all devices in the system that have in-rush current serialization
requirements. OSPM can only transition one device flagged with _IRC to the D0 state at a time.

7.2.12 _S1D (S1 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S1 system sleeping state. _S1D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-2 for the result code.

7.2.13 _S2D (S2 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S2 system sleeping state. _S2D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-2 for the result code.

7.2.14 _S3D (S3 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S3 system sleeping state. _S3D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-2 for the result code.

Power and Performance Management 213

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.2.15 _S4D (S4 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S4 system sleeping state. _S4D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-2 for the result code.

7.3 OEM-Supplied System-Level Control Methods
An OEM-supplied Definition Block provides some number of controls appropriate for system-level
management. These are used by OSPM to integrate to the OEM-provided features. The following table lists
the defined OEM system controls that can be provided.

Table 7-6 BIOS-Supplied Control Methods for System-Level Functions

Object Description

_BFS Control method executed immediately following a wake event.

_PTS Control method used to prepare to sleep.

_GTS Control method executed just prior to setting the sleep enable (SLP_EN) bit.

_S0 Package that defines system _S0 state mode.

_S1 Package that defines system _S1 state mode.

_S2 Package that defines system _S2 state mode.

_S3 Package that defines system _S3 state mode.

_S4 Package that defines system _S4 state mode.

_S5 Package that defines system _S5 state mode.

_WAK Control method run once awakened.

7.3.1 _BFS (Back From Sleep)
_BFS is an optional control method. If it exists, OSPM must execute the _BFS method immediately
following wake from any sleeping state S1, S2, S3, or S4. _BFS allows ACPI system firmware to perform
any required system specific functions when returning a system sleep state. OSPM will execute the _GTS
control method before performing any other physical I/O or enabling any interrupt servicing upon returning
from a sleeping state. A value that indicates the sleeping state from which the system was awoken (in other
words, 1=S1, 2=S2, 3=S3, 4=S4) is passed as an argument to the _BFS control method.

The _BFS method must be self-contained (not call other methods). Additionally, _BFS may only access
OpRegions that are currently available (see the _REG method for details).

Arguments:

0: The value of the previous sleeping state (1 for S1, 2 for S2, and so on).

7.3.2 _PTS (Prepare To Sleep)
The _PTS control method is executed by the OS at the beginning of the sleep process for S1, S2, S3, S4,
and for orderly S5 shutdown. The sleeping state value (1, 2, 3, 4, or 5) is passed to the _PTS control
method. Before OSPM notifies native device drivers and prepares the system software for a system
sleeping state, it executes this ACPI control method. Thus, this control method can be executed a relatively
long time before actually entering the desired sleeping state. In addition, OSPM can abort the sleeping
operation without notification to OSPM, in which case another _PTS would occur some time before the
next attempt by OSPM to enter a sleeping state.

214 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The _PTS control method cannot modify the current configuration or power state of any device in the
system. For example, _PTS would simply store the sleep type in the embedded controller in sequencing the
system into a sleep state when the SLP_EN bit is set.

Arguments:
0: The value of the sleeping state (1 for S1, 2 for S2, and so on).

7.3.3 _GTS (Going To Sleep)
_GTS is an optional control method. If it exists, OSPM must execute the _GTS control method just prior to
setting the sleep enable (SLP_EN) bit in the PM1 control register when entering the S1, S2, S3, and S4
sleeping states and when entering S5 for orderly shutdown. _GTS allows ACPI system firmware to perform
any required system specific functions prior to entering a system sleep state. OSPM will set the sleep
enable (SLP_EN) bit in the PM1 control register immediately following the execution of the _GTS control
method without performing any other physical I/O or allowing any interrupt servicing. The sleeping state
value (1, 2, 3, 4, or 5) is passed as an argument to the _GTS control method. The _GTS method must not
attempt to directly place the system into a sleeping state. OSPM performs this function by setting the sleep
enable bit upon return from _GTS. In the case of entry into the S5 soft off state however, _GTS may indeed
perform operations that place the system into the S5 state as OSPM will not regain control.

The _GTS method must be self-contained (not call other methods). Additionally, _GTS may only access
OpRegions that are currently available (see the _REG method for details).

Arguments:

0: The value of the sleeping state (1 for S1, 2 for S2, and so on).

7.3.4 System _Sx states
All system states supported by the system must provide a package containing the DWORD value of the
following format in the static Definition Block. The system states, known as S0–S5, are referenced in the
namespace as _S0–_S5 and for clarity the short Sx names are used unless specifically referring to the
named _Sx object. For each Sx state, there is a defined system behavior.

Table 7-7 System State Package

Byte
Length

Byte
Offset

Description

1 0 Value for PM1a_CNT.SLP_TYP register to enter this system state.

1 1 Value for PM1b_CNT.SLP_TYP register to enter this system state. To enter any
given state, OSPM must write the PM1a_CNT.SLP_TYP register before the
PM1b_CNT.SLP_TYP register.

2 2 Reserved

States S1–S4 represent some system sleeping state. The S0 state is the system working state. Transition into
the S0 state from some other system state (such as sleeping) is automatic, and, by virtue that instructions
are being executed, OSPM assumes the system to be in the S0 state. Transition into any system sleeping
state is only accomplished by the operating software directing the hardware to enter the appropriate state,
and the operating software can only do this within the requirements defined in the Power Resource and
Bus/Device Package objects.

Power and Performance Management 215

Compaq/Intel/Microsoft/Phoenix/Toshiba

All run-time system state transitions (for example, to and from the S0 state), except S4 and S5, are done
similarly such that the code sequence to do this is the following:

/*
 Intel Architecture SetSleepingState example
*/

 ULONG
 SetSystemSleeping (
 IN ULONG NewState
)
 {
 PROCESSOR_CONTEXT Context;
 ULONG PowerSeqeunce;
 BOOLEAN FlushCaches;
 USHORT SlpTyp;

// Required environment: Executing on the system boot
// processor. All other processors stopped. Interrupts
// disabled. All Power Resources (and devices) are in
// corresponding device state to support NewState.

 // Get h/w attributes for this system state
 FlushCaches = SleepType[NewState].FlushCache;
 SlpTyp = SleepType[NewState].SlpTyp & SLP_TYP_MASK;

 _asm {
 lea eax, OsResumeContext
 push eax ; Build real mode handler the resume
 push offset sp50 ; context, with eip = sp50
 call SaveProcessorState

 mov eax, ResumeVector ; set firmware’s resume vector
 mov [eax], offset OsRealModeResumeCode

 mov edx, PM1a_STS ;Make sure wake status is clear
 mov ax, WAK_STS ; (cleared by asserting the bit
 out dx, ax ; in the status register)

 mov edx, PM1b_STS ;
 out dx, ax ;

 and eax, not SLP_TYP_MASK
 or eax, SlpTyp ; set SLP_TYP
 or ax, SLP_EN ; set SLP_EN

 cmp FlushCaches, 0
 jz short sp10 ; If needed, ensure no dirty data in

 call FlushProcessorCaches ; the caches while sleeping

sp10: mov edx, PM1a_SLP_TYP ; get address for PM1a_SLP_TYP
 out dx, ax ; start h/w sequencing
 mov edx, PM1b_SLP_TYP ; get address for PM1b_SLP_TYP
 out dx, ax ; start h/w sequencing

 mov edx, PM1a_STS ; get address for PM1x_STS
 mov ecx, PM1b_STS

sp20: in ax, dx ; wait for WAK status
 xchg edx, ecx
 test ax, WAK_STS
 jz short sp20

sp50:
}
 // Done..
 *ResumeVector = NULL;
 return 0;
 }

216 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.3.4.1 System _S0 State (Working)
While the system is in the S0 state, it is in the system working state. The behavior of this state is defined as:
• The processors are in the C0, C1, C2, or C3 states. The processor-complex context is maintained and

instructions are executed as defined by any of these processor states.
• Dynamic RAM context is maintained and is read/write by the processors.
• Devices states are individually managed by the operating software and can be in any device state (D0,

D1, D2, or D3).
• Power Resources are in a state compatible with the current device states.

Transition into the S0 state from some system sleeping state is automatic, and by virtue that instructions are
being executed OSPM, assumes the system to be in the S0 state.

7.3.4.2 System _S1 State (Sleeping with Processor Context Maintained)
While the system is in the S1 sleeping state, its behavior is the following:
• The processors are not executing instructions. The processor-complex context is maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S1 state. All Power Resources that supply a

System-Level reference of S0 are in the OFF state.
• Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the device is in the D3 (off) state10.

• Devices that are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to S0. This transition causes the processor to
continue execution where it left off.

To transition into the S1 state, the OSPM must flush all processor caches.

7.3.4.3 System _S2 State
The S2 sleeping state is logically lower than the S1 state and is assumed to conserve more power. The
behavior of this state is defined as:
• The processors are not executing instructions. The processor-complex context is not maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S2 state. All Power Resources that supply a

System-Level reference of S0 or S1 are in the OFF state.
• Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to S0. This transition causes the processor to
begin execution at its boot location. The BIOS performs initialization of core functions as needed to
exit an S2 state and passes control to the firmware resume vector. See section 9.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires that
the operating software flush all dirty cache to dynamic RAM (DRAM).

10 Or it is at least assumed to be in the D3 state by its device driver. For example, if the device doesn’t
explicitly describe how it can stay in some state non-off state while the system is in a sleeping state, the
operating software must assume that the device can lose its power and state.

Power and Performance Management 217

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.3.4.4 System _S3 State
The S3 state is logically lower than the S2 state and is assumed to conserve more power. The behavior of
this state is defined as follows:
• The processors are not executing instructions. The processor-complex context is not maintained.
• Dynamic RAM context is maintained.
• Power Resources are in a state compatible with the system S3 state. All Power Resources that supply a

System-Level reference of S0, S1, or S2 are in the OFF state.
• Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to S0. This transition causes the processor to
begin execution at its boot location. The BIOS performs initialization of core functions as necessary to
exit an S3 state and passes control to the firmware resume vector. See section 9.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

From the software viewpoint, this state is functionally the same as the S2 state. The operational difference
can be that some Power Resources that could be left ON to be in the S2 state might not be available to the
S3 state. As such, additional devices may need to be in a logically lower D0, D1, D2, or D3 state for S3
than S2. Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires that
the operating software flush all dirty cache to DRAM.

7.3.4.5 System _S4 State
While the system is in this state, it is in the system S4 sleeping state. The state is logically lower than the
S3 state and is assumed to conserve more power. The behavior of this state is defined as follows:
• The processors are not executing instructions. The processor-complex context is not maintained.
• DRAM context is not maintained.
• Power Resources are in a state compatible with the system S4 state. All Power Resources that supply a

System-Level reference of S0, S1, S2, or S3 are in the OFF state.
• Devices states are compatible with the current Power Resource states. In other words, all devices are in

the D3 state when the system state is S4.
• Devices that are enabled to wake the system and that can do so from their S4 device state can initiate a

hardware event that transitions the system state to S0. This transition causes the processor to begin
execution at its boot location.

After OSPM has executed the _PTS control method and has put the entire system state into main memory,
there are two ways that OSPM may handle the next phase of the S4 state transition; saving and restoring
main memory. The first way is to use the operating system’s drivers to access the disks and file system
structures to save a copy of memory to disk and then initiate the hardware S4 sequence by setting the
SLP_EN register bit. When the system wakes, the firmware performs a normal boot process and transfers
control to the OS via the firmware_waking_vector loader. The OS then restores the system’s memory and
resumes execution.

The alternate method for entering the S4 state is to utilize the BIOS via the S4BIOS transition. The BIOS
uses firmware to save a copy of memory to disk and then initiates the hardware S4 sequence. When the
system wakes, the firmware restores memory from disk and wakes OSPM by transferring control to the
FACS waking vector.

The S4BIOS transition is optional, but any system that supports this mechanism must support entering the
S4 state via the direct OS mechanism. Thus the preferred mechanism for S4 support is the direct OS
mechanism as it provides broader platform support. The alternate S4BIOS transition provides a way to
achieve S4 support on operating systems that do not have support for the direct method.

218 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

7.3.4.6 System _S5 State (Soft Off)
 The S5 state is similar to the S4 state except that OSPM does not save any context. The system is in the
soft off state and requires a complete boot when awakened (BIOS and OS). Software uses a different state
value to distinguish between this state and the S4 state to allow for initial boot operations within the BIOS
to distinguish whether or not the boot is going to wake from a saved memory image. OSPM will not disable
wake events before setting the SLP_EN bit when entering the S5 sleeping state. This provides support for
remote management initiatives by enabling Remote Power On (RPO) capability. This is a change from
ACPI 1.0 behavior.

An ACPI 2.0-compliant OS must provide an end user accessible mechanism for disabling all wake devices,
with the exception of the system power button, from a single point in the user interface.

7.3.5 _WAK (System Wake)
After the system wakes from a sleeping state, it will invoke the _WAK method and pass the sleeping state
value that has ended. This operation occurs asynchronously with other driver notifications in the system
and is not the first action to be taken when the system wakes. The AML code for this control method issues
device, thermal, and other notifications to ensure that OSPM checks the state of devices, thermal zones, and
so on, that could not be maintained during the system sleeping state. For example, if the system cannot
determine whether a device was inserted or removed from a bus while in the S2 state, the _WAK method
would issue a devicecheck type of notification for that bus when issued with the sleeping state value of 2
(for more information about types of notifications, see section 5.6.3, “Device Object Notifications”). Notice
that a device check notification from the _SB node will cause OSPM to re-enumerate the entire tree11.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method
must return status concerning the last sleep operation initiated by OSPM. The result codes can be used to
provide additional information to OSPM or user.

Arguments:
0 The value of the sleeping state (1 for S1, 2 for S2, and so on).

Result Code (2 DWORD package):
Status Bit field of defined conditions that occurred during sleep.
 0x00000000 Wake was signaled and was successful
 0x00000001 Wake was signaled but failed due to lack of power.
 0x00000002 Wake was signaled but failed due to thermal condition.
 Other Reserved
PSS If non-zero, the effective S-state the power supply really entered.

This value is used to detect when the targeted S-state was not entered because of too much current
being drawn from the power supply. For example, this might occur when some active device’s current
consumption pushes the system’s power requirements over the low power supply mark, thus
preventing the lower power mode from being entered as desired.

11 Only buses that support hardware-defined enumeration methods are done automatically at run-time. This
would include ACPI-enumerated devices.

Processor Control 219

Compaq/Intel/Microsoft/Phoenix/Toshiba

8 Processor Control
This section describes OSPM run-time aspects of managing the processor’s performance, power
consumption, and other controls while the system is in the working state12. The major controls over the
processors are:
• Processor power states: C0, C1, C2, C3…Cn
• Processor clock throttling
• Processor performance states: P0, P1, … Pn

These controls are used in combination by OSPM to achieve the desired balance of the following
sometimes conflicting goals:
• Performance
• Power consumption and battery life
• Thermal requirements
• Noise-level requirements

Because the goals interact with each other, the operating software needs to implement a policy as to when
and where tradeoffs between the goals are to be made13. For example, the operating software would
determine when the audible noise of the fan is undesirable and would trade off that requirement for lower
thermal requirements, which can lead to lower processing performance. Each processor control is discussed
in the following sections along with how the control interacts with the various goals.

8.1 Processor Power States
ACPI supports placing system processors into one of four power states while in the G0 working state14.
Processor power states include C0, C1, C2, and C3. The C0 power state is an active power state where the
CPU executes instructions. The C1, C2, and C3 power states are processor sleeping states where the
processor consumes less power and dissipates less heat than leaving the processor in the C0 state. While in
a sleeping state, the processor does not execute any instructions. Each processor sleeping state has a latency
associated with entering and exiting that corresponds to the power savings. In general, the longer the
entry/exit latency, the greater the power savings when in the state. To conserve power, OSPM places the
processor into one of its supported sleeping states when idle. While in the C0 state, ACPI allows the
performance of the processor to be altered through a defined “throttling” process and through transitions
into multiple performance states (P-states). A diagram of processor power states is provided below.

12 In any system sleeping state, the processors are not executing instructions (that is, they are not run-time),
and the power consumption is fixed as a property of that system state.
13 A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce
performance), but a critical thermal alert does not occur.
14 Notice that these CPU states map into the G0 working state. The state of the CPU is undefined in the G3
sleeping state, the Cx states only apply to the G0 state.

220 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Interrupt
Interrupt

HLT

P_LVL2

THT_EN=1
and

DTY=value

THT_EN=0

Performance
State Px Throttling

C1 C2 C3

P_LVL3,
ARB_DIS=1

Interrupt or
BM Access

G0
Working

C0

Figure 8-1 Processor Power States

ACPI defines logic on a per-CPU basis that OSPM uses to transition between the different processor power
states. This logic is optional, and is described through the FADT table and processor objects (contained in
the hierarchical namespace). The fields and flags within the FADT table describe the symmetrical features
of the hardware, and the processor object contains the location for the particular CPU’s clock logic
(described by the P_BLK register block and _CST objects).

The P_LVL2 and P_LVL3 registers provide optional support for placing the system processors into the C2
or C3 states. The P_LVL2 register is used to sequence the selected processor into the C2 state, and the
P_LVL3 register is used to sequence the selected processor into the C3 state. Additional support for the C3
state is provided through the bus master status and arbiter disable bits (BM_STS in the PM1_STS register
and ARB_DIS in the PM2_CNT register). System software reads the P_LVL2 or P_LVL3 registers to enter
the C2 or C3 power state. The Hardware must put the processor into the proper clock state precisely on the
read operation to the appropriate P_LVLx register.

Processor power state support is symmetric; OSPM assumes all processors in a system support the same
power states. If processors have non-symmetric power state support, then the BIOS will choose and use the
lowest common power states supported by all the processors in the system through the FADT table. For
example, if the CPU0 processor supports all power states up to and including the C3 state, but the CPU1
processor only supports the C1 power state, then OSPM will only place idle processors into the C1 power
state (CPU0 will never be put into the C2 or C3 power states). Notice that the C1 power state must be
supported. The C2 and C3 power states are optional (see the PROC_C1 flag in the FADT table description
in section 5.2.5, “System Description Table Header”).

The following sections describe processor power states in detail.

Processor Control 221

Compaq/Intel/Microsoft/Phoenix/Toshiba

8.1.1 Processor Power State C0
While the processor is in the C0 power state, it executes instructions. While in the C0 power state, OSPM
can generate a policy to run the processor at less than maximum performance. The clock throttling
mechanism provides OSPM with the functionality to perform this task in addition to thermal control. The
mechanism allows OSPM to program a value into a register that reduces the processor’s performance to a
percentage of maximum performance.

duty width

duty value
clock on time clock off time

P_CNT

duty offset duty width

duty value

Figure 8-2 Throttling Example

The FADT contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of bits used by
the duty value (which determines the granularity of the throttling logic). The performance of the processor
by the clock logic can be expressed with the following equation:

% *Performance
dutysetting

dutywidth=
2

100%

Equation 1 Duty Cycle Equation

Nominal performance is defined as “close as possible, but not below the indicated performance level.”
OSPM will use the duty offset and duty width to determine how to access the duty setting field. OSPM will
then program the duty setting based on the thermal condition and desired power of the processor object.
OSPM calculates the nominal performance of the processor using the equation expressed in Equation 1.
Notice that a dutysetting of zero is reserved.

222 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

For example, the clock logic could use the stop grant cycle to emulate a divided processor clock frequency
on an IA processor (through the use of the STPCLK# signal). This signal internally stops the processor’s
clock when asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK#
pin could be asserted as follows (to emulate the different frequency settings):

0 - Reserved Value

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
dutysetting

Duty Width (3-bits)

S
T

P
C

L
K

S

ig
n

al

CPU Clock Running
CPU Clock Stopped

Figure 8-3 Example Control for the STPCLK#

To start the throttling logic OSPM sets the desired duty setting and then sets the THT_EN bit HIGH. To
change the duty setting, OSPM will first reset the THT_EN bit LOW, then write another value to the duty
setting field while preserving the other unused fields of this register, and then set the THT_EN bit HIGH
again.

The example logic model is shown below:

-- duty width

THTL_DTY
P_CNT.x

P_LVL3
Read

P_LVL2
Read

THT_EN
P_CNT.4

Clock Logic System
Arbiter

ARB_DIS
PM2_CNT

BM_STS
PM1x_STS.4

BM_RLD
PM1x_CNT.1

Figure 8-4 ACPI Clock Logic (One per Processor)

Implementation of the ACPI processor power state controls minimally requires the support a single CPU
sleeping state (C1). All of the CPU power states occur in the G0/S0 system state; they have no meaning
when the system transitions into the sleeping state(S1-S4). ACPI defines the attributes (semantics) of the
different CPU states (defines four of them). It is up to the platform implementation to map an appropriate
low-power CPU state to the defined ACPI CPU state.

ACPI clock control is supported through the optional processor register block (P_BLK). ACPI requires that
there be a unique processor register block for each CPU in the system. Additionally, ACPI requires that the
clock logic for multiprocessor systems be symmetrical; if the P0 processor supports the C1, C2, and C3
states, but P1 only supports the C1 state, then OSPM will limit all processors to enter the C1 state when
idle.

The following sections define the different ACPI CPU sleeping states.

Processor Control 223

Compaq/Intel/Microsoft/Phoenix/Toshiba

8.1.2 Processor Power State C1
All processors must support this power state. This state is supported through a native instruction of the
processor (HLT forIA 32-bit processors), and assumes no hardware support is needed from the chipset. The
hardware latency of this state must be low enough that OSPM does not consider the latency aspect of the
state when deciding whether to use it. Aside from putting the processor in a power state, this state has no
other software-visible effects. In the C1 power state, the processor is able to maintain the context of the
system caches.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor.

8.1.3 Processor Power State C2
This processor power state is optionally supported by the system. If present, the state offers improved
power savings over the C1 state and is entered by using the P_LVL2 command register for the local
processor. The worst-case hardware latency for this state is declared in the FADT and OSPM can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting the
processor in a power state, this state has no other software-visible effects. OSPM assumes the C2 power
state has lower power and higher exit latency than the C1 power state.

The C2 power state is an optional ACPI clock state that needs chipset hardware support. This clock logic
consists of a P_LVL2 register that, when read, will cause the processor complex to precisely transition into
a C2 power state. In a C2 power state, the processor is assumed capable of keeping its caches coherent; for
example, bus master and multiprocessor activity can take place without corrupting cache context.

The C2 state puts the processor into a low-power state optimized around multiprocessor and bus master
systems. OSPM will cause an idle processor complex to enter a C2 state if there are bus masters or Multiple
processor activity (which will prevent OSPM from placing the processor complex into the C3 state). The
processor complex is able to snoop bus master or multiprocessor CPU accesses to memory while in the C2
state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to
be presented to the processor.

8.1.4 Processor Power State C3
This processor power state is optionally supported by the system. If present, the state offers improved
power savings over the C1 and C2 state and is entered by using the P_LVL3 command register for the local
processor. The worst-case hardware latency for this state is declared in the FADT, and OSPM can use this
information to determine when the C1 or C2 state should be used instead of the C3 state. While in the C3
state, the processor’s caches maintain state but the processor is not required to snoop bus master or
multiprocessor CPU accesses to memory.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain access to
memory.

OSPM is responsible for ensuring that the caches maintain coherency. In a uniprocessor environment, this
can be done by using the PM2_CNT.ARB_DIS bus master arbitration disable register to ensure bus master
cycles do not occur while in the C3 state. In a multiprocessor environment, the processors’ caches can be
flushed and invalidated such that no dynamic information remains in the caches before entering the C3
state.

224 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

There are two mechanisms for supporting the C3 power state:
• Having OSPM flush and invalidate the caches prior to entering the C3 state.
• Providing hardware mechanisms to prevent masters from writing to memory (uniprocessor-only

support).

In the first case, OSPM will flush the system caches prior to entering the C3 state. As there is normally
much latency associated with flushing processor caches, OSPM is likely to only support this in
multiprocessor platforms for idle processors. Flushing of the cache is accomplished through one of the
defined ACPI mechanisms (described below in section 8.2.4.1, “Flushing Caches”).

In uniprocessor-only platforms that provide the needed hardware functionality (defined in this section),
OSPM will attempt to place the platform into a mode that will prevent system bus masters from writing
into memory while the processor is in the C3 state. This is accomplished by disabling bus masters prior to
entering a C3 power state. Upon a bus master requesting an access, the CPU will awaken from the C3 state
and re-enable bus master accesses.

OSPM uses the BM_STS bit to determine the power state to enter when considering a transition to or from
the C2/C3 power state. The BM_STS is an optional bit that indicates when bus masters are active. OSPM
uses this bit to determine the policy between the C2 and C3 power states: alot of bus master activity
demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master activity promotes the
CPU power state to the C3 power state. OSPM keeps a running history of the BM_STS bit to determine
CPU power state policy.

The last hardware feature used in the C3 power state is the BM_RLD bit. This bit determines if the Cx
power state was exited as a result of bus master requests. If set, then the Cx power state was exited upon a
request from a bus master. If reset, the power state was not exited upon bus master requests. In the C3 state,
bus master requests need to transition the CPU back to the C0 state (as the system is capable of maintaining
cache coherency), but such a transition is not needed for the C2 state. OSPM can optionally set this bit
when using a C3 power state, and clear it when using a C1 or C2 power state.

8.1.5 Additional Processor Power States
ACPI 2.0 introduces optional processor power states beyond C3. These power states, C4… Cn, are
conveyed to OSPM through the _CST object defined in section 8.3.2, “_CST (C-States).” These additional
power states are characterized by equivalent semantics to the C1 through C3 power states, as defined in the
previous sections, but with different entry/exit latencies and power savings. See section 8.3.2, “_CST (C-
States),” for more information.

8.2 Flushing Caches
To support the C3 power state without using the ARB_DIS feature, the hardware must provide
functionality to flush and invalidate the processors’ caches (for an IA processor, this would be the
WBINVD instruction). To support the S1, S2 or S3 sleeping states, the hardware must provide functionality
to flush the platform caches. Flushing of caches is supported by one of the following mechanisms:
• Processor instruction to write back and invalidate system caches (WBINVD instruction for IA

processors).
• Processor instruction to write back but not invalidate system caches (WBINVD instruction for IA

processors and some chipsets with partial support; that is, they don’t invalidate the caches).

The ACPI specification expects all platforms to support the local CPU instruction for flushing system
caches (with support in both the CPU and chipset), and provides some limited “best effort” support for
systems that don’t currently meet this capability. The method used by the platform is indicated through the
appropriate FADT fields and flags indicated in this section.

ACPI specifies parameters in the FADT that describe the system’s cache capabilities. If the platform
properly supports the processor’s write back and invalidate instruction (WBINVD for IA processors), then
this support is indicated to OSPM by setting the WBINVD flag in the FADT.

Processor Control 225

Compaq/Intel/Microsoft/Phoenix/Toshiba

If the platform supports neither of the first two flushing options, then OSPM can attempt to manually flush
the cache if it meets the following criteria:
• A cache-enabled sequential read of contiguous physical memory of not more than 2 MB will flush the

platform caches.

There are two additional FADT fields needed to support manual flushing of the caches:
• FLUSH_SIZE, typically twice the size of the largest cache in the system.
• FLUSH_STRIDE, typically the smallest cache line size in the system.

8.3 Declaring a Processor Object
A processor object is declared for each processor in the system using an ASL Processor statement. A
processor object provides processor configuration information and points to the processor register block
(P_BLK).

ACPI 2.0 processor objects are declared under the _SB namespace. This allows OSPM to treat processors
in a device-like manner. For example, in a multiprocessor system, processors may be ejected or
dynamically inserted. ACPI 2.0-compatible systems may maintain the ACPI 1.0-defined _PR namespace
for compatibility with ACPI 1.0 operating systems. An ACPI 2.0-compatible namespace may define
Processor objects in either the _SB or _PR scope but not both.

ACPI 2.0 expands the processor object definition by defining processor-specific objects that may be
included in the processor object’s optional object list. These objects serve multiple purposes including
providing alternative definitions for the registers described by the processor register block (P_BLK) and
processor performance state control. Additionally, under ACPI 2.0, other ACPI-defined device-related
objects may be included in the processor object’s object list (for example, the unique identifier object
_UID).

With device-like characteristics attributed to processors in ACPI 2.0, it is implied that a processor device
driver will be loaded by OSPM to, at a minimum, process device notifications. OSPM will enumerate
processors in the system using the ACPI Namespace, processor-specific native identification instructions,
and optionally the _HID method.

OSPM will ignore definitions of ACPI-defined objects in an object list of a processor object declared under
the _PR namespace. Processor-specific objects are described in the following sections.

For more information on the declaration of the processor object, see section 16.2.3.3.1.16, “PowerResource
(Declare Power Resource).”

8.3.1 _PTC (Processor Throttling Control)
_PTC is an optional object used to define a processor throttling control register alternative to the I/O
address spaced-based P_BLK throttling control register (P_CNT) described in section 4, “ACPI Hardware
Specification. The processor throttling control register mechanism remains as defined in section 8.1.1, “
Processor Power State C0.”

The _PTC object contains data in the following format:

Name (_PTC, Processor_Control_Register //ResourceTemplateTerm-Generic Register Descriptor)

226 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Notice that if the _PTC object exists, the specified register is used instead of the P_CNT register specified
in the Processor term. Also notice that if the _PTC object exists and the _CST object does not exist, OSPM
will use the processor control register from the _PTC object and the P_LVLx registers from the P_BLK.

EXAMPLE
This is an example usage of the _PTC object in a Processor object list:

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{ //Object List

Name(_PTC, ResourceTemplate()

 {

Register(FFixedHW, 0, 0, 0)
 }

) //End of _PTC Object

} // End of Object List

EXAMPLE
This is an example usage of the _PTC object using the values defined in ACPI 1.0. This is an illustrative
example to demonstrate the mechanism with well-known values.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBLK system IO address
6) // PBLK Len

{ //Object List

Name(_PTC, // 32 bit wide IO space-based register at the <P_BLK> address
 ResourceTemplate()
 {

 Register(SystemIO, 32, 0, 0x120)
 }

) //End of _PTC Object

 } // End of Object List

8.3.2 _CST (C States)
_CST is an optional object that provides an alternative method to declare the supported processor power
states (C States). Values provided by the _CST object override P_LVLx values in P_BLK and
P_LVLx_LAT values in the FADT. The _CST object allows the number of processor power states to be
expanded beyond C1, C2, and C3 to an arbitrary number of power states. The entry semantics for these
expanded states, (in other words), the considerations for entering these states, are conveyed to OSPM by
the C-state_Type field and correspond to the entry semantics for C1, C2, and C3 as described in sections
8.1.2 through 8.1.4. _CST defines ascending C-states characterized by lower power and higher entry/exit
latency.

Processor Control 227

Compaq/Intel/Microsoft/Phoenix/Toshiba

The _CST object evaluates to a package that declares the available C-states as follows:

Name (_CST, Package()

{// Field Name Field Type

C States_Defined, //ByteConst

Package () // C State Definition - 0

{

C State_Register, //ResourceTemplateTerm-Generic Register Descriptor

C State_Type, // ByteConst

Latency, // WordConst

Power_Consumption // DWordConst

},

.

.

.

Package () // C State Definition - n

{

C State_Register, //ResourceTemplateTerm-Generic Register Descriptor

C State_Type, // ByteConst

Latency, // WordConst

Power_Consumption // DWordConst

}

}) // End of _CST object

The C States_Defined field indicates the number of C state entries that follow. Each C State definition
entry is a package that describes the C State. A read of the C State_Register places the CPU in the
corresponding C State. The Generic Register Descriptor format is described in section 6.4.3.7, “Generic
Register Descriptor (Type 1, Large Item Name 0x2).” The description of the remaining package fields is as
follows:
• C State_Type. The C State type (for example, 0=C0, 1=C1, and so on).This field conveys the

semantics used by OSPM when entering the C state.
• Latency. The worst-case latency in microseconds to enter and exit the C –State.
• Power Consumption. Average power consumption in milliwatts when in the C –State.

Notice that if the _CST object exists, the power states specified in the _CST object are used in lieu of
P_LVL2 and P_LVL3 registers defined in P_BLK and the P_LVLx_LAT values defined in the FADT.
Also notice that if the _CST object exists and the _PTC object does not exist, OSPM will use the processor
control register defined in P_BLK and the P_LVLx registers in the _CST object.

228 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The number or type of available C States may change dynamically. As such, ACPI 2.0 supports Notify
events on the processor object. Notify events of type 0x81 will cause OSPM to re-evaluate any _CST
objects residing under the particular processor object notified. This allows AML code to notify OSPM
when the number of supported C States may have changed as a result of an asynchronous event (AC
insertion/removal, and so on).

The fields in the processor structure remain for backward compatibility.

EXAMPLE
This is an example usage of the _CST structure in a Processor structure.

Processor (

_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{
Name(_CST, Package()
{
4, // There are four C-states defined here with three semantics
 // The third and fourth C-states defined have the same C3 entry semantics
Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x163)}, 3, 100, 250}
})

}

EXAMPLE
This is an example usage of the _CST structure using the values defined in ACPI 1.0.

Processor (

_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBLK system IO address
6) // PBLK Len

{
Name(_CST, Package()
{
2, // There are two C-states defined here – C2 and C3
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x124)}, 2, 2, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x125)}, 3, 65, 500}
})

}

The platform will issue a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate this object when the
number of available processor power states changes.

8.3.3 Processor Performance Control
Processor performance control is implemented through three optional objects whose presence indicates to
OSPM that the platform and CPU are capable of supporting multiple performance states. The platform
must supply all three objects if processor performance control is implemented. The processor performance
control objects define the supported processor performance states, allow the processor to be placed in a
specific performance state, and report the number of performance states currently available on the system.

Processor Control 229

Compaq/Intel/Microsoft/Phoenix/Toshiba

In a multiprocessing environment, all CPUs must support the same number of performance states and each
processor performance state must have identical performance and power-consumption parameters.
Performance objects must be present under each processor object in the system for OSPM to utilize this
feature.

Processor performance control objects include the ‘_PCT’ package, ‘_PSS’ package, and the ‘_PPC’
method as detailed below.

8.3.3.1 _PCT (Performance Control)
This optional object declares an interface that allows OSPM to transition the processor into a performance
state. OSPM performs processor performance transitions by writing the performance state–specific control
value to a Performance Control Register (PERF_CTRL).

OSPM may select a processor performance state as indicated by the performance state value returned by
the _PPC method, or any lower power (higher numbered) state. The control value to write is contained in
the corresponding _PSS entry’s “Control” field.

Success or failure of the processor performance transition is determined by reading a Performance Status
Register (PERF_STATUS) to determine the processor’s current performance state. If the transition was
successful, the value read from PERF_STATUS will match the “Status” field in the _PSS entry that
corresponds to the desired processor performance state.

This object evaluates to a package that declares the above-mentioned transition control and status addresses
as follows:

Name (_PCT, Package()

{

Perf_Ctrl_Register, //ResourceTemplateTerm-Generic Register Descriptor

Perf_Status_Register //ResourceTemplateTerm-Generic Register Descriptor

}) // End of _PCT

230 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

8.3.3.2 _PSS (Performance Supported States)
This optional object indicates to OSPM the number of supported processor performance states that any
given system can support. This object evaluates to a packaged list of information about available
performance states including internal CPU core frequency, typical power dissipation, control register
values needed to transition between performance states, and status register values that allow OSPM to
verify performance transition status after any OS-initiated transition change request. The list is sorted in
descending order by typical power dissipation. As a result, the zeroth entry describes the highest
performance state and the ‘nth’ entry describes the lowest performance state.

Name (_PSS, Package()

{// Field Name Field Type

Package () // Performance State 0 Definition – P0

{

CoreFreq, // DWordConst

Power, // DWordConst

TransitionLatency, // DWordConst

BusMasterLatency, // DWordConst

Control, // DWordConst

Status // DWordConst

},

.

.

.

Package () // Performance State n Definition – Pn

{

CoreFreq, // DWordConst

Power, // DWordConst

TransitionLatency, // DWordConst

BusMasterLatency, // DWordConst

Control, // DWordConst

Status // DWordConst

}

}) // End of _PSS object

Processor Control 231

Compaq/Intel/Microsoft/Phoenix/Toshiba

Each performance state entry contains six data fields as follows:
• CoreFreq. Indicates the core CPU operating frequency (in MHz).
• Power. Indicates the typical power dissipation (in milliWatts).
• TransitionLatency. Indicates the worst-case latency in microseconds that the CPU is unavailable

during a transition from any performance state to this performance state.
• BusMasterLatency. Indicates the worst-case latency in microseconds that Bus Masters are prevented

from accessing memory during a transition from any performance state to this performance state.
• Control. Indicates the value to be written to the Performance Control Register (PERF_CTRL) in order

to initiate a transition to the performance state.
• Status. Indicates the value that OSPM will compare to a value read from the Performance Status

Register (PERF_STATUS) to ensure that the transition to the performance state was successful. OSPM
may always place the CPU in the lowest power state, but additional states are only available when
indicated by the _PPC method.

8.3.3.3 _PPC (Performance Present Capabilities)
This optional object is a method that dynamically indicates to OSPM the number of performance states
currently supported by the platform. This method returns a number that indicates the _PSS entry number of
the highest performance state that OSPM can use at a given time. OSPM may choose the corresponding
state entry in the _PSS as indicated by the value returned by the _PPC method or any lower power (higher
numbered) state entry in the _PSS.

Arguments:

 None

Returned Value:

 Number of states supported (integer)

 0 – states 0 .. nth state available (all states available)

 1 – state 1 .. nth state available

 2 – state 2 .. nth state available

 …

 n – state n available only

In order to support dynamic changes of _PPC object, ACPI 2.0 supports Notify events on the processor
object. Notify events of type 0x80 will cause OSPM to reevaluate any _PPC objects residing under the
particular processor object notified. This allows AML code to notify OSPM when the number of supported
states may have changed as a result of an asynchronous event (AC insertion/removal, docked, undocked,
and so on).

8.3.3.4 Processor Performance Control Example
EXAMPLE:

This is an example of processor performance control objects in a processor object list.

In this example, a uniprocessor platform that has processor performance capabilities with support for three
performance states as follows:
1. 500 MHz (8.2W) supported at any time
2. 600 MHz (14.9W) supported only when AC powered
3. 650 MHz (21.5W) supported only when docked

232 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

It takes no more than 500 microseconds to transition from one performance state to any other performance
state.

During a performance transition, bus masters are unable to access memory for a maximum of 300
microseconds.

The PERF_CTRL and PERF_STATUS registers are implemented as Functional Fixed Hardware.

The following ASL objects are implemented within the system:

_SB.DOCK: Evaluates to 1 if system is docked, zero otherwise.

_SB.AC: Evaluates to 1 if AC is connected, zero otherwise.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen
{
Name(_PCT, Package () // Performance Control object
{
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
}) // End of _PCT object

Name (_PSS, Package()
{

 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)

}) // End of _PSS object

Method (_PPC, 0) // Performance Present Capabilities method
{
 If (_SB.DOCK)
 {
 Return(0) // All _PSS states available (650, 600, 500).
 }

 If (_SB.AC)
 {
 Return(1) // States 1 and 2 available (600, 500).
 }

 Else
 {
 Return(2) // State 2 available (500)
 }
 } // End of _PPC method

} // End of processor object list

The platform will issue a Notify(_SB.CPU0, 0x80) to inform OSPM to re-evaluate this object when the
number of available processor performance states changes.

Waking and Sleeping 233

Compaq/Intel/Microsoft/Phoenix/Toshiba

9 Waking and Sleeping
ACPI defines a mechanism to transition the system between the working state (G0) and a sleeping state
(G1) or the soft-off (G2) state. During transitions between the working and sleeping states, the context of
the user’s operating environment is maintained. ACPI defines the quality of the G1 sleeping state by
defining the system attributes of four types of ACPI sleeping states (S1, S2, S3, and S4). Each sleeping
state is defined to allow implementations that can tradeoff cost, power, and wake latencies. Additionally,
ACPI defines the sleeping states such that an ACPI platform can support multiple sleeping states, allowing
the platform to transition into a particular sleeping state for a predefined period of time and then transition
to a lower power/higher wake latency sleeping state (transitioning through the G0 state) 15.

ACPI defines a programming model that provides a mechanism for OSPM to initiate the entry into a
sleeping or soft-off state (S1-S5); this consists of a 3-bit field SLP_TYPx16 that indicates the type of sleep
state to enter, and a single control bit SLP_EN to start the sleeping process.

Note: Systems containing processors without a hardware mechanism to place the processor in a low-power
state may additionally require the execution of appropriate native instructions to place the processor in a
low-power state after OSPM sets the SLP_EN bit. The hardware may implement a number of low-power
sleeping states and then associate these states with the defined ACPI sleeping states (through the
SLP_TYPx fields). The ACPI system firmware creates a sleeping object associated with each supported
sleeping state (unsupported sleeping states are identified by the lack of the sleeping object). Each sleeping
object contains two constant 3-bit values that OSPM will program into the SLP_TYPa and SLP_TYPb
fields (in fixed register space).

ACPI also defines an alternate mechanism for entering and exiting the S4 state that passes control to the
BIOS to save and restore platform context. Context ownership is similar in definition to the S3 state, but
hardware saves and restores the context of memory to non-volatile storage (such as a disk drive), and
OSPM treats this as an S4 state with implied latency and power constraints. This alternate mechanism of
entering the S4 state is referred to as the S4BIOS transition.

Prior to entering a sleeping state (S1-S4), OSPM will execute OEM-specific AML/ASL code contained in
the _PTS (Prepare To Sleep) control method. One use of the _PTS control method is that it can indicate to
the embedded controller what sleeping state the system will enter when the SLP_EN bit is set. The
embedded controller can then respond by executing the proper power-plane sequencing upon this bit being
set.

Immediately prior to entering a system sleeping state (as well as the S5 soft-off state), OSPM will execute
the _GTS (Going To Sleep) control method. _GTS allows ACPI system firmware to perform any necessary
system specific functions prior to entering a system sleeping state.

Upon waking, OSPM will execute the _BFS (Back From Sleep) control method. This allows ACPI system
firmware to perform any necessary system specific functions prior to returning control to OSPM. The
_WAK (Wake) control method is then executed. This control method again contains OEM-specific
AML/ASL code. One use of the _WAK control method requests OSPM to check the platform for any
devices that might have been added or removed from the system while the system was asleep. For example,
a PC Card controller might have had a PC Card added or removed, and because the power to this device
was off in the sleeping state, the status change event was not generated.

15 OSPM uses the RTC wakeup feature to program in the time transition delay. Prior to sleeping, OSPM
will program the RTC alarm to the closest (in time) wakeup event: either a transition to a lower power
sleeping state, or a calendar event (to run some application).
16 Notice that there can be two fixed PM1x_CNT registers, each pointing to a different system I/O space
region. Normally a register grouping only allows a bit or bit field to reside in a single register group
instance (a or b); however, each platform can have two instances of the SLP_TYP (one for each grouping
register: a and b). The _Sx control method gives a package with two values: the first is the SLP_TYPa
value and the second is the SLP_TYPb value.

234 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

This section discusses the system initialization sequence of an ACPI-enabled platform. This includes the
boot sequence, different wake scenarios, and an example to illustrate how to use the system address map
reporting interfaces. This sequence is part of the ACPI event programming model.

For detailed information on the power management control methods described above, see section 7, “Power
and Performance Management.”

9.1 Sleeping States
The illustration below shows the transitions between the working state, the sleeping states, and the Soft Off
state.

SLP_TYPx=S1
and

SLP_EN

S1
Sleeping

S2
Sleeping

S3
Sleeping

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

S4
Sleeping

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=S2
and

SLP_EN

SLP_TYPx=S3
and

SLP_EN

SLP_TYPx=S4
and

SLP_EN

G0 (S0) -
Working

G1

S4BIOS_REQ
to

SMI_CMD

OEM S4 BIOS
Handler

SLP_TYPx=S4
and

SLP_EN

Figure 9-1 Example Sleeping States

ACPI defines distinct differences between the G0 and G1 system states.
• In the G0 state, work is being performed by the OS/application software and the hardware. The CPU or

any particular hardware device could be in any one of the defined power states (C0-C3 or D0-D3);
however, some work will be taking place in the system.

• In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state, OSPM will
place devices in a device power state compatible with the system sleeping state to be entered; if a
device is enabled to wake the system, then OSPM will place these devices into the lowest Dx state
from which the device supports wake. This is defined in the power resource description of that device
object. This definition of the G1 state implies:
• The CPUs execute no instructions in the G1 state.

Waking and Sleeping 235

Compaq/Intel/Microsoft/Phoenix/Toshiba

• Hardware devices are not operating (except possibly to generate a wake event).
• ACPI registers are affected as follows:

• Wake event bits are enabled in the corresponding fixed or general-purpose registers according
to enabled wake options.

• PM1 control register is programmed for the desired sleeping state.
• WAK_STS is set by hardware in the sleeping state.

All sleeping states have these specifications. ACPI defines additional attributes that allow an ACPI
platform to have up to four different sleeping states, each of which has different attributes. The attributes
were chosen to allow differentiation of sleeping states that vary in power, wake latency, and
implementation cost tradeoffs.

Running processors at reduced levels of performance is not an ACPI sleeping state (G1); this is a working
(G0) state–defined event.

The CPU cannot execute any instructions when in the sleeping state; OSPM relies on this fact. A platform
designer might be tempted to support a sleeping system by reducing the clock frequency of the system,
which allows the platform to maintain a low-power state while at the same time maintaining
communication sessions that require constant interaction (as with some network environments). This is
definitely a G0 activity where an OS policy decision has been made to turn off the user interface (screen)
and run the processor in a reduced performance mode. This type of reduced performance state as a sleeping
state is not defined by the ACPI specification; ACPI assumes no code execution during sleeping states.

ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Notice that S4 and S5 are very similar
from a hardware standpoint.) At least one sleeping state, S1-S4, must be implemented by an ACPI-
compatible system. Platforms can support multiple sleeping states. ACPI specifies that a 3-bit binary
number be associated with each sleeping state (these numbers are given objects within ACPI’s root
namespace: _S0, _S1, _S2, _S3, _S4 and _S5). When entering a system sleeping state, OSPM will do
the following:
1. Pick the deepest sleeping state supported by the platform and enabled waking devices.
2. Execute the _PTS control method (which passes the type of intended sleep state to OEM AML code) if

it is an S1–S4 sleeping state.
3. If OS policy decides to enter the S4 state and chooses to use the S4BIOS mechanism and S4BIOS is

supported by the platform, OSPM will pass control to the BIOS software by writing the S4BIOS_REQ
value to the SMI_CMD port.

4. If not using the S4BIOS mechanism, OSPM gets the SLP_TYPx value from the associated sleeping
object (_S1, _S2, _S3, _S4 or _S5).

5. Program the SLP_TYPx fields with the values contained in the selected sleeping object.
6. Execute the _GTS control method, passing an argument that indicates the sleeping state to be entered

(1, 2, 3, or 4 representing S1, S2, S3, and S4).
7. If entering S1, S2, or S3, flush the processor caches.
8. If not entering S4BIOS, set the SLP_EN bit to start the sleeping sequence. (This actually occurs on the

same write operation that programs the SLP_TYPx field in the PM1_CNT register.) If entering
S4BIOS, write the S4BIOS_REQ value into the SMI_CMD port.

9. On systems containing processors without a hardware mechanism to place the processor in a low-
power state, execute appropriate native instructions to place the processor in a low-power state.

The _PTS control method provides the BIOS a mechanism for performing some housekeeping, such as
writing the sleep type value to the embedded controller, before entering the system sleeping state. Control
method execution occurs “just prior” to entering the sleeping state and is not an event synchronized with
the write to the PM1_CNT register. Execution can take place several seconds prior to the system actually
entering the sleeping state. As such, no hardware power-plane sequencing takes place by execution of the
_PTS control method.

Upon waking, the _BFS control method is executed. OSPM then executes the _WAK control method. This
control method executes OEM-specific ASL/AML code that can search for any devices that have been
added or removed during the sleeping state.

The following sections describe the sleeping state attributes.

236 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

9.1.1 S1 Sleeping State
The S1 state is defined as a low wake-latency sleeping state. In this state, all system context is preserved
with the exception of CPU caches. Before setting the SLP_EN bit, OSPM will flush the system caches. If
the platform supports the WBINVD instruction (as indicated by the WBINVD and WBINVD_FLUSH
flags in the FADT), OSPM will execute the WBINVD instruction. The hardware is responsible for
maintaining all other system context, which includes the context of the CPU, memory, and chipset.

Examples of S1 sleeping state implementation alternatives follow.

9.1.1.1 Example 1: S1 Sleeping State Implementation
This example references an IA processor that supports the stop grant state through the assertion of the
STPCLK# signal. When SLP_TYPx is programmed to the S1 value (the OEM chooses a value, which is
then placed in the _S1 object) and the SLP_ENx bit is subsequently set, the hardware can implement an S1
state by asserting the STPCLK# signal to the processor, causing it to enter the stop grant state.

In this case, the system clocks (PCI and CPU) are still running. Any enabled wake event causes the
hardware to de-assert the STPCLK# signal to the processor whereby OSPM must first invalidate the CPU
caches and then transition back into the working state.

9.1.1.2 Example 2: S1 Sleeping State Implementation
When SLP_TYPx is programmed to the S1 value and the SLP_ENx bit is subsequently set, the hardware
will implement an S1 sleeping state transition by doing the following:
1. Placing the processor into the stop grant state.
2. Stopping the processor’s input clock, placing the processor into the stop clock state.
3. Placing system memory into a self-refresh or suspend-refresh state. Refresh is maintained by the

memory itself or through some other reference clock that is not stopped during the sleeping state.
4. Stopping all system clocks (asserts the standby signal to the system PLL chip). Normally the RTC will

continue running.

In this case, all clocks in the system have been stopped (except for the RTC). Hardware must reverse the
process (restarting system clocks) upon any enabled wake event whereby OSPM must first invalidate the
CPU caches and then transition back into the working state.

9.1.2 S2 Sleeping State
The S2 state is defined as a low wake latency sleep state. This state is similar to the S1 sleeping state where
any context except for system memory may be lost. Additionally, control starts from the processor’s reset
vector after the wake event. Before setting the SLP_EN bit, OSPM will flush the system caches. If the
platform supports the WBINVD instruction (as indicated by the WBINVD and WBINVD_FLUSH flags in
the FADT), OSPM will execute the WBINVD instruction. The hardware is responsible for maintaining
chip set and memory context. An example of an S2 sleeping state implementation follows.

9.1.2.1 Example: S2 Sleeping State Implementation
When the SLP_TYPx register(s) are programmed to the S2 value (found in the _S2 object) and the
SLP_EN bit is set, the hardware will implement an S2 sleeping state transition by doing the following:
1. Stopping system clocks (the only running clock is the RTC).
2. Placing system memory into a self-refresh or suspend-refresh state.
3. Powering off the CPU and cache subsystem.

In this case, the CPU is reset upon detection of the wake event; however, core logic and memory maintain
their context. Execution control starts from the CPU’s boot vector. The BIOS is required to:
• Program the initial boot configuration of the CPU (such as the CPU’s MSR and MTRR registers).
• Initialize the cache controller to its initial boot size and configuration.
• Enable the memory controller to accept memory accesses.
• Jump to the waking vector.

Waking and Sleeping 237

Compaq/Intel/Microsoft/Phoenix/Toshiba

9.1.3 S3 Sleeping State
The S3 state is defined as a low wake-latency sleep state. From the software viewpoint, this state is
functionally the same as the S2 state. The operational difference is that some Power Resources that may
have been left ON in the S2 state may not be available to the S3 state. As such, some devices may be in a
lower power state when the system is in S3 state than when the system is in the S2 state. Similarly, some
device wake events can function in S2 but not S3. An example of an S3 sleeping state implementation
follows.

9.1.3.1 Example: S3 Sleeping State Implementation
When the SLP_TYPx register(s) are programmed to the S3 value (found in the _S3 object) and the
SLP_EN bit is set, the hardware will implement an S3 sleeping state transition by doing the following:
1. Placing the memory into a low-power auto-refresh or self-refresh state.
2. Devices that are maintaining memory isolating themselves from other devices in the system.
3. Removing power from the system. At this point, only devices supporting memory are powered

(possibly partially powered). The only clock running in the system is the RTC clock.

In this case, the wake event repowers the system and resets most devices (depending on the
implementation).

Execution control starts from the CPU’s boot vector. The BIOS is required to:
1. Program the initial boot configuration of the CPU (such as the MSR and MTRR registers).
2. Initialize the cache controller to its initial boot size and configuration.
3. Enable the memory controller to accept memory accesses.
4. Jump to the waking vector.

Notice that if the configuration of cache memory controller is lost while the system is sleeping, the BIOS is
required to reconfigure it to either the pre-sleeping state or the initial boot state configuration. The BIOS
can store the configuration of the cache memory controller into the reserved memory space, where it can
then retrieve the values after waking. OSPM will call the _PTS method once per session (prior to sleeping).

The BIOS is also responsible for restoring the memory controller’s configuration. If this configuration data
is destroyed during the S3 sleeping state, then the BIOS needs to store the pre-sleeping state or initial boot
state configuration in a non-volatile memory area (as with RTC CMOS RAM) to enable it to restore the
values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will discover any devices that
have been inserted or removed, and configure devices as they are turned on.

9.1.4 S4 Sleeping State
The S4 sleeping state is the lowest-power, longest wake-latency sleeping state supported by ACPI. In order
to reduce power to a minimum, it is assumed that the hardware platform has powered off all devices.
Because this is a sleeping state, the platform context is maintained. Depending on how the transition into
the S4 sleeping state occurs, the responsibility for maintaining system context changes. S4 supports two
entry mechanisms: OS initiated and BIOS-initiated. The OSPM-initiated mechanism is similar to the entry
into the S1-S3 sleeping states; OSPM driver writes the SLP_TYPx fields and sets the SLP_EN bit. The
BIOS-initiated mechanism occurs by OSPM transferring control to the BIOS by writing the S4BIOS_REQ
value to the SMI_CMD port.

In OSPM-initiated S4 sleeping state, OSPM is responsible for saving all system context. Before entering
the S4 state, OSPM will save context of all memory with the exception of memory reported as
typeAddressRangeReserved (see section 15, “System Address Map Interfaces,” for more information).
Upon waking, OSPM will then restore the system context. When OSPM re-enumerates buses coming out of
the S4 sleeping state, it will discover any devices that have come and gone, and configure devices as they
are turned on.

238 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

In the BIOS-initiated S4 sleeping state, OSPM is responsible for the same system context as described in
the S3 sleeping state (BIOS restores the memory and some chip set context). The S4BIOS transition
transfers control to the BIOS, allowing it to save context to non-volatile memory (such as a disk partition).

9.1.4.1 Operating System-Initiated S4 Transition
If OSPM supports OSPM-initiated S4 transition, it will not generate a BIOS-initiated S4 transition.
Platforms that support the BIOS-initiated S4 transition also support OSPM-initiated S4 transition.

OSPM-initiated S4 transition is initiated by OSPM by saving system context, writing the appropriate values
to the SLP_TYPx register(s), and setting the SLP_EN bit. Upon exiting the S4 sleeping state, the BIOS
restores the chipset to its POST condition, updates the hardware signature (described later in this section),
and passes control to OSPM through a normal boot process.

When the BIOS builds the ACPI tables, it generates a hardware signature for the system. If the hardware
configuration has changed during an OS-initiated S4 transition, the BIOS updates the hardware signature in
the FACS table. A change in hardware configuration is defined to be any change in the platform hardware
that would cause the platform to fail when trying to restore the S4 context; this hardware is normally
limited to boot devices. For example, changing the graphics adapter or hard disk controller while in the S4
state should cause the hardware signature to change. On the other hand, removing or adding a PC Card
device from a PC Card slot should not cause the hardware signature to change.

9.1.4.2 The S4BIOS Transition
The BIOS-initiated S4 transition begins with OSPM writing the S4BIOS_REQ value into the SMI_CMD
port (as specified in the FADT). Once gaining control, the BIOS then saves the appropriate memory and
chip set context, and then places the platform into the S4 state (power off to all devices).

In the FACS memory table, there is the S4BIOS_F bit that indicates hardware support for the BIOS-
initiated S4 transition. If the hardware platform supports the S4BIOS state, it sets the S4BIOS_F flag
within the FACS memory structure prior to booting the OS. If the S4BIOS_F flag in the FACS table is set,
this indicates that OSPM can request the BIOS to transition the platform into the S4BIOS sleeping state by
writing the S4BIOS_REQ value (found in the FADT) to the SMI_CMD port (identified by the SMI_CMD
value in the FADT).

Upon waking the BIOS, software restores memory context and jumps to the waking vector (similar to wake
from an S3 state). Coming out of the S4BIOS state, the BIOS must only configure boot devices (so it can
read the disk partition where it saved system context). When OSPM re-enumerates buses coming out of the
S4BIOS state, it will discover any devices that have come and gone, and configure devices as they are
turned on.

9.1.5 S5 Soft Off State
The S5 soft off state is used by OSPM to turn the machine off. Notice that the S5 state is not a sleeping
state (it is a G2 state) and no context is saved by OSPM or hardware. Also notice that from a hardware
perspective, the S4 and S5 states are nearly identical. When initiated, the hardware will sequence the
system to a state similar to the off state. The hardware has no responsibility for maintaining any system
context (memory or I/O); however, it does allow power on due to a power button press or wake event
(Remote Power On event). Upon power on, the BIOS does normal power-on reset, loads the boot sector,
and executes (but not the waking vector, as all ACPI table context is lost when entering the S5 state).

Waking and Sleeping 239

Compaq/Intel/Microsoft/Phoenix/Toshiba

9.1.6 Transitioning from the Working to the Sleeping State
On a transition of the system from the working to the sleeping state, the following occurs:
1. OSPM decides (through a policy scheme) to place the system into the sleeping state.
2. OSPM examines all devices enabled to wake the system and determines the deepest possible sleeping

state the system can enter to support the enabled wake functions. The _PRW named object under each
device is examined, as well as the power resource object it points to.

3. OSPM places all device drivers into their respective Dx state. If the device is enabled for wake, it
enters the Dx state associated with the wake capability. If the device is not enabled to wake the system,
it enters the D3 state.

4. OSPM executes the _PTS control method, passing an argument that indicates the desired sleeping state
(1, 2, 3, or 4 representing S1, S2, S3, and S4).

5. OSPM saves any other processor’s context (other than the local processor) to memory.
6. OSPM writes the waking vector into the FACS table in memory.
7. OSPM executes the _GTS control method, passing an argument that indicates the sleeping state to be

entered (1, 2, 3, or 4 representing S1, S2, S3, and S4).
8. OSPM clears the WAK_STS in the PM1a_STS and PM1b_STS registers.
9. OSPM saves the local processor’s context to memory.
10. OSPM flushes caches (only if entering S1, S2 or S3).
11. OSPM sets GPE enable registers to ensure that all appropriate wake signals are armed.
12. If entering an S4 state using the S4BIOS mechanism, OSPM writes the S4BIOS_REQ value (from the

FADT) to the SMI_CMD port. This passes control to the BIOS, which then transitions the platform
into the S4BIOS state.

13. If not entering an S4BIOS state, then OSPM writes SLP_TYPa (from the associated sleeping object)
with the SLP_ENa bit set to the PM1a_CNT register.

14. OSPM writes SLP_TYPb with the SLP_EN bit set to the PM1b_CNT register.
15. On systems containing processors without a hardware mechanism to place the processor in a low-

power state, OSPM executes appropriate native instructions to place the processor in a low-power
state.

16. OSPM loops on the WAK_STS bit (in both the PM1a_CNT and PM1b_CNT registers).
17. The system enters the specified sleeping state.

Note: this is accomplished after step 14 or 15 above.

9.1.7 Transitioning from the Working to the Soft Off State
On a transition of the system from the working to the soft off state, the following occurs:
1. OSPM executes the _PTS control method, passing the argument 5.
2. OSPM prepares its components to shut down (flushing disk caches).
3. OSPM executes the _GTS control method, passing the argument 5.
4. OSPM writes SLP_TYPa (from the _S5 object) with the SLP_ENa bit set to the PM1a_CNT register.
5. OSPM writes SLP_TYPb (from the _S5 object) with the SLP_ENb bit set to the PM1b_CNT register.
6. The system enters the Soft Off state.

240 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

9.2 Flushing Caches
Before entering the S1, S2 or S3 sleeping states, OSPM is responsible for flushing the system caches. ACPI
provides a number of mechanisms to flush system caches. These include:
• Using a native instruction (for example, the IA32 WBINVD instruction) to flush and invalidate

platform caches.
WBINVD_FLUSH flag set (1) in the FADT indicates the system provides this support level.

• Using the IA32 instruction WBINVD to flush but not invalidate the platform caches.
WBINVD flag set (1) in the FADT indicates the system provides this support level.

The manual flush mechanism has two caveats:
• Largest cache is 1 MB in size (FLUSH_SIZE is a maximum value of 2 MB).
• No victim caches (for which the manual flush algorithm is unreliable).

Processors with built-in victim caches will not support the manual flush mechanism and are therefore
required to support the WBINVD mechanism to use the S2 or S3 state.

The manual cache-flushing mechanism relies on the two FADT fields:
• FLUSH_SIZE. Indicates twice the size of the largest cache in bytes.
• FLUSH_STRIDE. Indicates the smallest line size of the caches in bytes.

The cache flush size value is typically twice the size of the largest cache size, and the cache flush stride
value is typically the size of the smallest cache line size in the platform. OSPM will flush the system caches
by reading a contiguous block of memory indicated by the cache flush size.

9.3 Initialization
This section covers the initialization sequences for an ACPI platform. After a reset or wake from an S2, S3,
or S4 sleeping state (as defined by the ACPI sleeping state definitions), the CPU will start execution from
its boot vector. At this point, the initialization software has many options, depending on what the hardware
platform supports. This section describes at a high level what should be done for these different options.
Figure 9-2 illustrates the flow of the boot-up software.

Waking and Sleeping 241

Compaq/Intel/Microsoft/Phoenix/Toshiba

Boot Vector

SLP_TYP=S2
?

SLP_TYP=S3
?

Jump To
 Waking Vector

No

No

Yes

Yes

Initialize Memory
Image
 * System
 * Reserved
 * ACPI NVS
 * ACPI Reclaim
 * ACPI Tables
 * MPS Tables
 * ...

Boot OS Loader

POST

Initialize CPU
Init Memory Controller
Enable Memory
Configure Caches
Enable Caches
Initialize Chipset

Initialize CPU
Enable Memory
Configure Caches

SLP_TYP=
S4BIOS

?

No

Restore memory
Image

Yes

Figure 9-2 BIOS Initialization

242 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The processor will start executing at its power-on reset vector when waking from an S2, S3, or S4 sleeping
state, during a power-on sequence, or as a result of a hard or soft reset.

When executing from the power-on reset vector as a result of a power-on sequence, a hard or soft reset, or
waking from an S4 sleep state, the platform firmware performs complete hardware initialization; placing
the system in a boot configuration. The firmware then passes control to the operating system boot loader.

When executing from the power-on reset vector as a result of waking from an S2 or S3 sleep state, the
platform firmware performs only the hardware initialization required to restore the system to either the state
the platform was in prioir to the initial operating system boot, or to the pre-sleep configuration state. In
multiprocessor systems, non-boot processors should be placed in the same state as prior to the initial
operating system boot. The platform firmware then passes control back to OSPM system by jumping to
either the Firmware_Waking_Vector or the X_Firmware_Waking_Vector in the FACS (see table 5-11 for
more information). The contents of operating system memory contents may not be changed during the S2
or S3 sleep state.

First, the BIOS determines whether this is a wake from S2 or S3 by examining the SLP_TYP register
value, which is preserved between sleeping sessions. If this is an S2 or S3 wake, then the BIOS restores
minimum context of the system before jumping to the waking vector. This includes:
• CPU configuration. BIOS restores the pre-sleep configuration or initial boot configuration of each

CPU (MSR, MTRR, BIOS update, SMBase, and so on). Interrupts must be disabled (for IA-32
processors, disabled by CLI instruction).

• Memory controller configuration. If the configuration is lost during the sleeping state, the BIOS
initializes the memory controller to its pre-sleep configuration or initial boot configuration.

• Cache memory configuration. If the configuration is lost during the sleeping state, the BIOS
initializes the cache controller to its pre-sleep configuration or initial boot configuration.

• Functional device configuration. The BIOS doesn’t need to configure/restore context of functional
devices such as a network interface (even if it is physically included in chipset) or interrupt controller.
OSPM is responsible for restoring all context of these devices. The only requirement for the hardware
and BIOS is to ensure that interrupts are not asserted by devices when the control is passed to OS.

• ACPI registers. SCI_EN bit must be set. All event status/enable bits (PM1x_STS, PM1x_EN,
GPEx_STS and GPEx_EN) must not be changed by BIOS.

Note: The BIOS may reconfigure the CPU, memory controller and cache memory controller to either the
pre-sleeping configuration or the initial boot configuration. OSPM must accommodate both configurations.

When waking from an S4BIOS sleeping state, the BIOS initializes a minimum number of devices such as
CPU, memory, cache, chipset and boot devices. After initializing these devices, the BIOS restores memory
context from non-volatile memory such as hard disk, and jumps to waking vector.

As mentioned previously, waking from an S4 state is treated the same as a cold boot: the BIOS runs POST
and then initializes memory to contain the ACPI system description tables. After it has finished this, it can
call OSPM loader, and control is passed to OSPM.

When waking from S4 (either S4OS or S4BIOS), the BIOS may optionally set SCI_EN bit before passing
control to OSPM. In this case, interrupts must be disabled (for IA-32 processors, disabled CLI instruction)
until the control is passed to OSPM and the chipset must be configured in ACPI mode.

9.3.1 Placing the System in ACPI Mode
When a platform initializes from a cold boot (mechanical off or from an S4 or S5 state), the hardware
platform may be configured in a legacy configuration. From these states, the BIOS software initializes the
computer as it would for a legacy operating system. When control is passed to the operating system, OSPM
will check the SCI_EN bit and if it is not set will then enable ACPI mode by first finding the ACPI tables,
and then by generating a write of the ACPI_ENABLE value to the SMI_CMD port (as described in the
FADT). The hardware platform will set the SCI_EN bit to indicate to OSPM that the hardware platform is
now configured for ACPI.

Waking and Sleeping 243

Compaq/Intel/Microsoft/Phoenix/Toshiba

Note: Before SCI is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur immediately after
ACPI is on. The SCI interrupt can only be signaled after OSPM has enabled one of the GPE/PM1 enable
bits.

When the platform is waking from an S1, S2 or S3 state, OSPM assumes the hardware is already in the
ACPI mode and will not issue an ACPI_ENABLE command to the SMI_CMD port.

244 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

9.3.2 BIOS Initialization of Memory
During a power-on reset, an exit from an S4 sleeping state, or an exit from an S5 soft-off state, the BIOS
needs to initialize memory. This section explains how the BIOS should configure memory for use by a
number of features including:
• ACPI tables.
• BIOS memory that wants to be saved across S4 sleeping sessions and should be cached.
• BIOS memory that does not require saving and should be cached.

For example, the configuration of the platform’s cache controller requires an area of memory to store the
configuration data. During the wake sequence, the BIOS will re-enable the memory controller and can then
use its configuration data to reconfigure the cache controllers. To support these three items, IA-PC-based
systems contain system address map reporting interfaces that return the following memory range types:
• ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables. This memory

can be any place above 8 MB and contains the ACPI tables. When OSPM is finished using the ACPI
tables, it is free to reclaim this memory for system software use (application space).

• ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being reserved by
the BIOS for its use. OSPM is required to tag this memory as cacheable, and to save and restore its
image before entering an S4 state. Except as directed by control methods, OSPM is not allowed to use
this physical memory. OSPM will call the _PTS control method some time before entering a sleeping
state, to allow the platform’s AML code to update this memory image before entering the sleeping
state. After the system awakes from an S4 state, OSPM will restore this memory area and call the
_WAK control method to enable the BIOS to reclaim its memory image.

Note: The memory information returned from the system address map reporting interfaces should be the
same before and after an S4 sleep.

When the system is first booting, OSPM will invoke E820 interfaces on IA-PC-based legacy systems or the
GetMemoryMap() interface on EFI-enabled systems to obtain a system memory map (see section 15,
“System Address Map Interfaces,” for more information). As an example, the following memory map
represents a typical IA-PC-based legacy platform’s physical memory map.

Above 8 MB
RAM

Compatibility
Memory

0

640 KB

Compatibility
Holes

1 MB

Contiguous
RAM

8 MB

Top of Memory1

No Memory

Boot ROM
4 GB

Boot Base

Figure 9-3 Example Physical Memory Map

Waking and Sleeping 245

Compaq/Intel/Microsoft/Phoenix/Toshiba

The names and attributes of the different memory regions are listed below:
• 0–640 KB. Compatibility Memory. Application executable memory for an 8086 system.
• 640 KB–1 MB. Compatibility Holes. Holes within memory space that allow accesses to be directed to

the PC-compatible frame buffer (A0000h-BFFFFh), to adapter ROM space (C0000h-DFFFFh), and to
system BIOS space (E0000h-FFFFFh).

• 1 MB–8 MB. Contiguous RAM. An area of contiguous physical memory addresses. Operating systems
may require this memory to be contiguous in order for its loader to load the OS properly on boot up.
(No memory-mapped I/O devices should be mapped into this area.)

• 8 MB–Top of Memory1. This area contains memory to the “top of memory1” boundary. In this area,
memory-mapped I/O blocks are possible.

• Boot Base–4 GB. This area contains the bootstrap ROM.

The BIOS should decide where the different memory structures belong, and then configure the E820
handler to return the appropriate values.

For this example, the BIOS will report the system memory map by E820 as shown in Figure 9-4. Notice
that the memory range from 1 MB to top of memory is marked as system memory, and then a small range
is additionally marked as ACPI reclaim memory. A legacy OS that does not support the E820 extensions
will ignore the extended memory range calls and correctly mark that memory as system memory.

Boot ROM

No Memory

Compatibility
Memory

Compatibility
Holes

Contiguous
RAM

- ACPI NVS Memory (E820)

NVS Memory

Reserved

Above 8 Mbyte
RAM

ACPI Tables
ACPI Reclaim
Memory

ACPI NVS
Memory

Reserved
Memory

System Memory

System Memory

Reserved
Memory

Reserved
Memory

Available
Address space

Available
Address space

0

640 KByte

1 MByte

Top of Memory1

Top of Memory2

8 MBytes - ACPI Reclaim Memory (E820)
- Reserved Memory (E820)

- System Memory (E820)

Figure 9-4 Memory as Configured after Boot

Also, from the Top of Memory1 to the Top of Memory2, the BIOS has set aside some memory for its own
use and has marked as reserved both ACPI NVS Memory and Reserved Memory. A legacy OS will throw
out the ACPI NVS Memory and correctly mark this as reserved memory (thus preventing this memory
range from being allocated to any add-in device).

246 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

OSPM will call the _PTS control method prior to initiating a sleep (by programming the sleep type,
followed by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML code
interpreter or driver structure is questionable), if OSPM decides to shut the system off, it will not issue a
_PTS, but will immediately issue a SLP_TYP of “soft off” and then set the SLP_EN bit. Hence, the
hardware should not rely solely on the _PTS control method to sequence the system to the “soft off” state.
After waking from an S4 state, OSPM will restore the ACPI NVS memory image and then issue the _WAK
control method that informs BIOS that its memory image is back.

9.3.3 OS Loading
At this point, the BIOS has passed control to OSPM, either by using OSPM boot loader (a result of waking
from an S4/S5 or boot condition) or OSPM waking vector (a result of waking from an S2 or S3 state). For
the Boot OS Loader path, OSPM will get the system address map via one of the mechanisms describe in
section 15, “System Address Map Interfaces.” If OSPM is booting from an S4 state, it will then check the
NVS image file’s hardware signature with the hardware signature within the FACS table (built by BIOS) to
determine whether it has changed since entering the sleeping state (indicating that the platforms
fundamental hardware configuration has changed during the current sleeping state). If the signature has
changed, OSPM will not restore the system context and can boot from scratch (from the S4 state). Next, for
an S4 wake, OSPM will check the NVS file to see whether it is valid. If valid, then OSPM will load the
NVS image into system memory. Next, OSPM will check the SCI_EN bit and if it is not set, will write the
ACPI_ENABLE value to the SMI_CMD register to switch into the system into ACPI mode and will then
reload the memory image from the NVS file.

Waking and Sleeping 247

Compaq/Intel/Microsoft/Phoenix/Toshiba

Boot OS Loader OS
Waking Vector

Get Memory Map
(E820)
 * ACPI NVS
 * ACPI Reclaim
 * Reserved
 * System
 * Reserved

Memory Copy

NVS File
?

Yes

Load OS Images

Execute _WAK

No

Continue

Sanity Check
Compare memory and

volume SSN

Yes

No

SCI_EN set?

Execute _BFS

Turn on ACPI

No

Yes

Figure 9-5 OS Initialization

If an NVS image file did not exist, then OSPM loader will load OSPM from scratch. At this point, OSPM
will generate a _WAK call that indicates to the BIOS that its ACPI NVS memory image has been
successfully and completely updated.

248 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

9.3.4 Exiting ACPI Mode
For machines that do not boot in ACPI mode, ACPI provides a mechanism that enables the OS to disable
ACPI. The following occurs:
1. OSPM unloads all ACPI drivers (including the ACPI driver).
2. OSPM disables all ACPI events.
3. OSPM finishes using all ACPI registers.
4. OSPM issues an I/O access to the port at the address contained in the SMI_CMD field (in the FADT)

with the value contained in the ACPI_DISABLE field (in the FADT).
5. BIOS then remaps all SCI events to legacy events and resets the SCI_EN bit.
6. Upon seeing the SCI_EN bit cleared, the ACPI OS enters the legacy OS mode.

When and if the legacy OS returns control to the ACPI OS, if the legacy OS has not maintained the ACPI
tables (in reserved memory and ACPI NVS memory), the ACPI OS will reboot the system to allow the
BIOS to re-initialize the tables.

ACPI-Specific Device Objects 249

Compaq/Intel/Microsoft/Phoenix/Toshiba

10 ACPI-Specific Device Objects
This section specifies the ACPI device-specific objects. The system status indicator objects, declared under
the _SI scope in the ACPI Namespace, are also specified in this section.

The device-specific objects specified in this section are objects for the following types of devices:
• Control method battery devices (for more information about Control Method Battery devices, see

section 11.2, “Control Method Batteries”).
• Control method lid devices (for more information about control method lid devices, see section 10.3,

“Control Method Lid Device”).
• Control method power and sleep button devices (for more information about control method power and

sleep button devices, see section 4.7.2.2, “Buttons”).
• Embedded controller devices (for more information about embedded controller devices, see section 13,

“ACPI Embedded Controller Interface Specification”).
• System Management Bus (SMBus) host controller (for more information, see section 13.9, “SMBus

Host Controller Interface via Embedded Controller”).
• Fan devices (for more information about fan devices, see section 12, “Thermal Management”).
• Generic bus bridge devices.
• IDE control methods.

For a list of the ACPI Plug and Play ID values for all these devices, see section 5.6.4, “Device Class-
Specific Objects.”

10.1 _SI System Indicators
ACPI provides an interface for a variety of simple and icon-style indicators on a system. All indicator
controls are in the _SI portion of the namespace. The following table lists all defined system indicators.
(Notice that there are also per-device indicators specified for battery devices).

Table 10-1 System Indicator Control Methods

Object Description

_SST System status indicator

_MSG Messages waiting indicator

250 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.1.1 _SST (System Status)
Operating software invokes this control method to set the system status indicator as desired.

Arguments:
0 – No system state indication. Indicator off.
1–Working
2–Waking
3–Sleeping. Used to indicate system state S1, S2 or S3.
4–Sleeping with context saved to non-volatile storage.

10.1.2 _MSG (Message)
This control method sets the system’s message-waiting status indicator.

Arguments:
0 Number of messages waiting

10.2 Battery Device
A battery device is required to either have an ACPI Smart Battery Table or a Control Method Battery
interface. In the case of an ACPI Smart Battery Table, the Definition Block needs to include a Bus/Device
Package for the SMBus host controller. This will install an OS specific driver for the SMBus, which in turn
will locate the Smart Battery System Manager or Smart Battery Selector and Smart Battery Charger SMBus
devices.

The Control Method Battery interface is defined in section 11.2, “Control Method Batteries.”

10.3 Control Method Lid Device
For systems with a lid, the lid status can either be implemented using the fixed register space as defined in
section 4, “ACPI Hardware Specification,” or implemented in AML code as a control method lid device.

To implement a control method lid device, implement AML code that issues notifications for the device
whenever the lid status has changed. The _LID control method for the lid device must be implemented to
report the current state of the lid as either opened or closed.

The lid device can support _PRW and _PSW methods to select the wake functions for the lid when the lid
transitions from closed to opened.

The Plug and Play ID of an ACPI control method lid device is PNP0C0D.

Table 10-2 Control Method Lid Device

Object Description

_LID Returns the current status of the lid.

10.3.1 _LID
Evaluates to the current status of the lid.

Result Code:
Zero: The lid is closed
Non-zero: The lid is open

ACPI-Specific Device Objects 251

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.4 Control Method Power and Sleep Button Devices
The system’s power or sleep button can either be implemented using the fixed register space as defined in
section 4.7.2.2, “Buttons,” or implemented in AML code as a control method power button device. In either
case, the power button override function or similar unconditional system power or reset functionality is still
implemented in external hardware.

To implement a control method power-button or sleep-button device, implement AML code that delivers
two types of notifications concerning the device. The first is Notify(Object, 0x80) to signal that the button
was pressed while the system was in the S0 state to indicate that the user wants the machine to transition
from S0 to some sleeping state. The other notification is Notify(Object, 0x2) to signal that the button was
pressed while the system was in an S1 to S4 state and to cause the system to wake. When the button is used
to wake the system, the wake notification (Notify(Object, 0x2)) must occur after OSPM actually wakes,
and a button-pressed notification (Notify(Object, 0x80)) must not occur.

The Wake Notification indicates that the system is awake because the user pressed the button and therefore
a complete system resume should occur (for example, turn on the display immediately, and so on).

10.5 Embedded Controller Device
Operation of the embedded controller host controller register interface requires that the embedded
controller driver has ACPI-specific knowledge. Specifically, the driver needs to provide an “operational
region” of its embedded controller address space, and needs to use a general-purpose event (GPE) to
service the host controller interface. For more information about an ACPI-compatible embedded controller
device, see section 13, “ACPI Embedded Controller Interface Specification.”

The embedded controller device object provides the _HID of an ACPI-integrated embedded controller
device of PNP0C09 and the host controller register locations using the device standard methods. In
addition, the embedded controller must be declared as a named device object that includes a set of control
methods. For more information, see section 13.11, “Defining an Embedded Controller Device in ACPI
Namespace”).

10.6 Fan Device
A fan device is assumed to be in operation when it is in the D0 state. Thermal zones reference fan device(s)
as being responsible primarily for cooling within that zone. Notice that multiple fan devices can be present
for any one thermal zone. They might be actual different fans, or they might be used to implement one fan
of multiple speeds (for example, by turning both “fans” on the one fan will run full speed).

The Plug and Play ID of a fan device is PNP0C0B. For more information about fan devices, see section 12,
“Thermal Management.”

10.7 Generic ISA Bus Device
A generic ISA bus device is a bridge that does not require a special OS driver because the bridge does not
provide or require any features not described within the normal ACPI device functions. The resources the
bridge requires are specified via normal ACPI resource mechanisms. Device enumeration for child devices
is supported via ACPI namespace device enumeration and OS drivers require no other features of the bus.
Such a bridge device is identified with the Plug and Play ID of PNP0A05 or PNP0A06.

A generic bus bridge device is typically used for integrated bridges that have no other means of controlling
them and that have a set of well-known devices behind them. For example, a portable computer can have a
“generic bus bridge” known as an EIO bus that bridges to some number of Super-I/O devices. The bridged
resources are likely to be positively decoded as either a function of the bridge or the integrated devices. In
this example, a generic bus bridge device would be used to declare the bridge then child devices would be
declared below the bridge; representing the integrated Super-I/O devices.

252 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.8 IDE Controller Device
Most device drivers can save and restore the registers of their device. For IDE controllers and drives, this is
not true because there are several drive settings for which ATA does not provide mechanisms to read.
Further, there is no industry standard for setting timing information for IDE controllers. Because of this,
ACPI interface mechanisms are necessary to provide the operating system information about the current
settings for the drive and channel, and for setting the timing for the channel.

OSPM and the IDE driver will follow these steps when powering off the IDE subsystem:
1. The IDE driver will call the _GTM control method to get the current transfer timing settings for the

IDE channel. This includes information about DMA and PIO modes.
2. The IDE driver will call the standard OS services to power down the drives and channel.
3. As a result, OSPM will execute the appropriate _PS3 methods and turn off unneeded power resources.

To power on the IDE subsystem, OSPM and the IDE driver will follow these steps:
1. The IDE driver will call the standard OS services to turn on the drives and channel.
2. As a result, OSPM will execute the appropriate _PS0 methods and turn on required power resources.
3. The IDE driver will call the _STM control method passing in transfer timing settings for the channel,

as well as the ATA drive ID block for each drive on the channel. The _STM control method will
configure the IDE channel based on this information.

4. For each drive on the IDE channel, the IDE driver will run the _GTF to determine the ATA commands
required to reinitialize each drive to boot up defaults.

5. The IDE driver will finish initializing the drives by sending these ATA commands to the drives,
possibly modifying or adding commands to suit the features supported by the operating system.

The following shows the namespace for these objects:

_SB - System bus

 PCI0 - PCI bus

 IDE1 - IDE channel

_ADR - Indicates address of the channel on the PCI bus

_GTM - Control method to get current IDE channel settings

_STM - Control method to set current IDE channel settings

_PR0 - Power resources needed for D0 power state

 DRV1 - Drive 0

 _ADR - Indicates address of master IDE device

 _GTF - Control method to get task file

 DRV2 - Drive 1

 _ADR - Indicates address of slave IDE device

 _GTF - Control method to get task file

 IDE2 - Second IDE channel

_ADR - Indicates address of the channel on the PCI bus

_GTM - Control method to get current IDE channel settings

_STM - Control method to set current IDE channel settings

ACPI-Specific Device Objects 253

Compaq/Intel/Microsoft/Phoenix/Toshiba

_PR0 - Power resources needed for D0 power state

 DRV1 - Drive 0

 _ADR - Indicates address of master IDE device

 _GTF - Control method to get task file

 DRV2 - Drive 1

 _ADR - Indicates address of slave IDE device

 _GTF - Control method to get task file

The sequential order of operations is as follows:

 Powering down:

 Call _GTM.

 Power down drive (calls _PS3 method and turns off power planes).

 Powering up:

 Power up drive (calls _PS0 method if present and turns on power planes).

 Call _STM passing info from _GTM (possibly modified), with ID data from

each drive.

 Initialize the channel.

 May modify the results of _GTF.

 For each drive:

 Call _GTF.

 Execute task file (possibly modified).

Table 10-3 IDE Specific Controls

Object Description

_GTF Optional control method to get the ATA task file needed to re-initialize the drive to boot up
defaults.

_GTM Optional control method to get the IDE controller timing information.

_STM Optional control method to set the IDE controller’s transfer timing settings.

254 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.8.1 _GTF (Get Task File)
This Control Method returns a buffer containing the ATA commands used to restore the drive to boot up
defaults (that is, the state of the drive after POST). The returned buffer is an array with each element in the
array consisting of 7 8-bit register values (56 bits) corresponding to ATA task registers 1F1 thru 1F7. Each
entry in the array defines a command to the drive.

Note: ACPI 1.0b defines _GTF as evaluating to a buffer containing a header byte (1-based) that indicates
the number of commands following in the array. The de facto standard OSPM implementations supporting
the _GTF method do not support the ACPI 1.0b definition including this header byte. As such, the _GTF
definition has been updated, removing the header byte for ACPI 2.0.

ATA task file array definition:
Seven register values for command 1

Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
Seven register values for command 2

Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
Seven register values for command 3

Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)

Etc……

After powering up the drive, the OS will send these commands to the drive, in the order specified. The IDE
driver may modify some of the feature commands or append its own to better tune the drive for OSPM
features before sending the commands to the drive.

This Control Method is listed under each drive device object. _GTF must be called after calling _STM.

Arguments:
None

Result Code:
A buffer that is a byte stream of ATA commands to send to the drive.

Example of the return from _GTF:

Method(_GTF, 0x0, NotSerialized)
{
 Return(GTF0)
}
Name(GTF0, Buffer(0x1c)
{
 0x03, 0x00, 0x00, 0x00, 0x00, 0xa0, 0xef, 0x03, 0x00, 0x00, 0x00, 0x00,
 0xa0, 0xef, 0x00, 0x10, 0x00, 0x00, 0x00, 0xa0, 0xc6, 0x00, 0x00, 0x00,
 0x00, 0x00, 0xa0, 0x91
}

ACPI-Specific Device Objects 255

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.8.2 _GTM (Get Timing Mode)
This Control Method returns the current settings for the IDE channel.

This control method is listed under each channel device object.

Arguments:
None

Result Code:
A buffer with the current settings for the IDE channel:

Buffer (){
 PIO Speed 0 //DWORD
 DMA Speed 0 //DWORD
 PIO Speed 1 //DWORD
 DMA Speed 1 //DWORD
 Flags //DWORD
}

Table 10-4 _GTM Method Result Codes

Field Format Description

PIO Speed 0 DWORD The PIO bus-cycle timing for drive 0 in nanoseconds.
0xFFFFFFFF indicates that this mode is not supported by the
channel. If the chipset cannot set timing parameters
independently for each drive, this field represents the timing
for both drives.

DMA Speed 0 DWORD The DMA bus-cycle for drive 0 timing in nanoseconds. If Bit
0 of the Flags register is set, this DMA timing is for
UltraDMA mode, otherwise the timing is for multi-word
DMA mode. 0xFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing
parameters independently for each drive, this field represents
the timing for both drives.

PIO Speed 1 DWORD The PIO bus-cycle timing for drive 1 in nanoseconds.
0xFFFFFFFF indicates that this mode is not supported by the
channel. If the chipset cannot set timing parameters
independently for each drive, this field must be 0xffffffff.

DMA Speed 1 DWORD The DMA bus-cycle timing for drive 1 in nanoseconds. If Bit
0 of the Flags register is set, this DMA timing is for
UltraDMA mode, otherwise the timing is for multi-word
DMA mode. 0xFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing
parameters independently for each drive, this field must be
0xFFFFFFFF.

Flags DWORD Mode flags
Bit[0]: 1 indicates using UltraDMA on drive 0
Bit[1]: 1 indicates IOChannelReady is used on drive 0

Bit[2]: 1 indicates using UltraDMA on drive 1
Bit[3]: 1 indicates IOChannelReady is used on drive 1

Bit[4]: 1 indicates chipset can set timing independently for
each drive

Bits[5-31]: reserved (must be 0)

256 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.8.3 _STM (Set Timing Mode)
This Control Method sets the IDE channel’s transfer timings to the setting requested. The AML code is
required to convert and set the nanoseconds timing to the appropriate transfer mode settings for the IDE
controller. _STM may also make adjustments so that _GTF control methods return the correct commands
for the current channel settings.

This control method takes three arguments: Channel timing information (as described in Table 10-4), and
the ATA drive ID block for each drive on the channel. The channel timing information is not guaranteed to
be the same values as returned by _GTM; the OS may tune these values as needed.

The ATA drive ID block is the raw data returned by the Identify Drive, ATA command, which has the
command code “0ech.” The _STM control method is responsible for correcting for drives that misreport
their timing information.

Arguments:
Arg0 Buffer Channel timing information (formatted as described in table 10-4)
Arg1 Buffer ATA drive IDE block for drive 0
Arg2 Buffer ATA drive IDE block for drive 1

Result Code:
None

10.9 Floppy Controller Device Objects

10.9.1 _FDE (Floppy Disk Enumerate)
Enumerating devices attached to a floppy disk controller is a time-consuming function. In order to speed up
the process of floppy enumeration, ACPI defines an optional enumeration object that is defined directly
under the device object for the floppy disk controller. It returns a buffer of five 32-bit values. The first four
values are Boolean values indicating the presence or absence of the four floppy drives that are potentially
attached to the controller. A non-zero value indicates that the floppy device is present. The fifth value
returned indicates the presence or absence of a tape controller. Definitions of the tape presence value can be
found in Table 10-5.

Arguments:
None

Result Code:
A buffer containing values that indicate the presence or absence of floppy devices.

Buffer (){
 Floppy 0 // Boolean DWORD
 Floppy 1 // Boolean DWORD
 Floppy 2 // Boolean DWORD
 Floppy 3 // Boolean DWORD
 Tape // See table below
}

Table 10-5 Tape Presence

Value Description

0 Unknown if device is present

1 Device is present

2 Device is never present

>2 Reserved

ACPI-Specific Device Objects 257

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.9.2 _FDI (Floppy Disk Information)
This object returns information about a floppy disk drive. This information is the same as that returned by
the INT 13 Function 08H on IA-PCs.

Result Code:

Package {
 Drive Number //BYTE
 Device Type //BYTE
 Maximum Cylinder Number //WORD
 Maximum Sector Number //WORD
 Maximum Head Number //WORD
 disk_specify_1 //BYTE
 disk_specify_2 //BYTE
 disk_motor_wait //BYTE
 disk_sector_siz //BYTE
 disk_eot //BYTE
 disk_rw_gap //BYTE
 disk_dtl //BYTE
 disk_formt_gap //BYTE
 disk_fill //BYTE
 disk_head_sttl //BYTE
 disk_motor_strt //BYTE
 }

Table 10-6 ACPI Floppy Drive Information

Field Format Definition

Drive Number BYTE As reported by _INT 13 Function 08H

Device Type BYTE As reported by _INT 13 Function 08H

Maximum Cylinder
Number

WORD As reported by _INT 13 Function 08H

Maximum Sector
Number

WORD As reported by _INT 13 Function 08H

Maximum Head
Number

WORD As reported by _INT 13 Function 08H

Disk_specify_1 BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_specify_2 BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_motor_wait BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_sector_siz BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_eot BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_rw_gap BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_dtl BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_formt_gap BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_fill BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_head_sttl BYTE As reported in ES:D1 from INT 13 Function 08H

Disk_motor_strt BYTE As reported in ES:D1 from INT 13 Function 08H

258 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.9.3 _FDM (Floppy Disk Drive Mode)
This control method switches the mode (300RPM/360RPM) of all floppy disk drives attached to this
controller. If this control method is implemented, the platform must reset the mode of all drives to 300RPM
mode after a Dx to D0 transition of the controller.

Arguments:

0 – Set the mode of all drives to 300RPM mode.

1 – Set the mode of all drives to 360RPM mode.

Result Code:

None

10.10 GPE Block Device
The GPE Block device is an optional device that allows a system designer to describe GPE blocks beyond
the two that are described in the FADT. Control methods associated with the GPE pins of GPE block
devices exist as children of the GPE Block device, not within the _GPE namespace.

A GPE Block device consumes I/O or memory address space, as specified by its _PRS or _CRS child
objects. The interrupt vector used by the GPE block does not need to be the same as the SCI_INT field. The
interrupt used by the GPE block device is specified in the _CRS and _PRS methods associated with the
GPE block.

A GPE Block device must have a _HID or a _CID of “ACPI0006.”

Note: A system designer must describe the GPE block necessary to bootstrap the system in the FADT as a
GPE0/GPE1 block. GPE Block devices cannot be used to implement these GPE inputs.

To represent the GPE block associated with the FADT, the system designer needs only to include the
ACPI0006 device in the tree, and not have any _CRS, _PRS, _SRS, or other GPE-specific methods
associated with that block. Any block that does not represent the GPE block of the FADT must contain the
_Lxx, _Exx, _CRS, _PRS, or _SRS methods required to use/program that block. OSPM assumes the first
ACPI0006 device without a _CRS is the GPE device that is associated with the FADT.

// ASL example of root GPE block
Device(_SB.PCI0.GPE0) {

Name(_HID,”ACPI0006”)
Name(_UID,1)

}

// ASL example of a non-root GPE block
Device(_SB.PCI0.GPE1) {

Name(_HID,”ACPI0006”)
Name(_UID,2)
Name(_CRS,Buffer() {

IO(Decode16, FC00, FC03, 4, 4,)
IRQ(Level, ActiveHigh, Shared,) { 5 }
}

}
 Method(_L02) { … }
 Method(_E07) { … }

Notice that it is legal to replace the I/O descriptors with Memory descriptors if the register is memory
mapped.

If the system must run any GPEs to bootstrap the system (for example, when Embedded Controller events
are required), the associated block of GPEs must be described in the FADT. This register block is not
relocatable and will always be available for the life of the operating system boot.

The GPE block associated with the ACPI0006 device can be stopped, ejected, reprogrammed, and so on.
The system can also have multiple such GPE blocks.

ACPI-Specific Device Objects 259

Compaq/Intel/Microsoft/Phoenix/Toshiba

10.10.1 Matching Control Methods for General-Purpose Events in a GPE
Block Device
When a GPE Device raises an interrupt, OSPM executes a corresponding control method (as described in
section 5.6.2.2.3, “Queuing the Matching Control Method for Execution”). These control methods (of the
form _Lxx and _Exx) for GPE Devices are not within the _GPE namespace. They are children of the GPE
Block device.

For example:

Device(GPE5) {

 Name(_HID, “ACPI0006”)

 Method(_L02) { … }
 Method(_E07) { … }
}

10.11 Module Device
This optional device is a container object that acts as a bus node in a namespace. It may contain child
objects that are devices or buses. The module device is declared using the ACPI0004 hardware indentifier
(HID).

If the module device contains a _CRS object, the “bus” described by this object is assumed to have these
resources available for consumption by its child devices. Any resources not described in the module
device’s _CRS object may not be allocated to child devices.

For example, consider a Module Device containing three child memory devices. If the _CRS object for the
Module Device contains memory from 2 GB through 6 GB, then the child memory devices may only be
assigned addresses within this range.

Example:

Device(_SB.NOD0) {
 Name(_HID, "ACPI0004") // Module device
 Name(_UID, 0)
 Name(_PRS, ResourceTemplate() {
 WordIo(ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x8000) // _LEN
 DWordMemory(ResourceProducer,, // For Main Memory + PCI
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 Method(_SRS, 1) { ... }
 Method(_CRS, 0) { ... }

 Device(MEM0) { // Main Memory (256MB module)
 Name(_HID, EISAID("PNP0C80"))
 Name(_UID, 0)
 Method(_STA, 0) {
 // If memory not present --> Return(0x00)
 // Else if memory is disabled --> Return(0x0D)
 // Else --> Return(0x0F)
 }

260 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

 Name(_PRS, ResourceTemplate() {
 DWordMemory(,,,,
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x10000000) // _LEN
 })
 Method(_CRS, 0) { ... }
 Method(_SRS, 1) { ... }
 Method(_DIS, 0) { ... }
 }
 Device(MEM1) { // Main Memory (512MB module)
 Name(_HID, EISAID("PNP0C80"))
 Name(_UID, 1)
 Method(_STA, 0) {
 // If memory not present --> Return(0x00)
 // Else if memory is disabled --> Return(0x0D)
 // Else --> Return(0x0F)
 }
 Name(_PRS, ResourceTemplate() {
 DWordMemory(,,,,
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x1FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x20000000) // _LEN
 })
 Method(_CRS, 0) { ... }
 Method(_SRS, 1) { ... }
 Method(_DIS, 0) { ... }
 }
 Device(PCI0) { // PCI Root Bridge
 Name(_HID, EISAID("PNP0A03"))
 Name(_UID, 0)
 Name(_BBN, 0x00)
 Name(_PRS, ResourceTemplate() {
 WordBusNumber(ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,, // _MAF
 0x00, // _GRA
 0x00, // _MIN
 0x7F, // _MAX
 0x0, // _TRA
 0x80) // _LEN
 WordIo(ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x0CF7, // _MAX
 0x0, // _TRA
 0x0CF8) // _LEN
 WordIo(ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0D00, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x7300) // _LEN

ACPI-Specific Device Objects 261

Compaq/Intel/Microsoft/Phoenix/Toshiba

 DWordMemory(ResourceProducer,,
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 NonCacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 Method(_CRS, 0) { ... }
 Method(_SRS, 1) { ... }
 }
}

10.12 Memory Devices
Memory devices allow a platform designer to optionally describe the dynamic properties of memory. If a
platform cannot have memory added or removed while the system is active, then memory devices are not
necessary. Memory devices may describe exactly the same physical memory that the System Address Map
interfaces describe (see section 15, “System Address Map Interfaces”). They do not describe how that
memory is, or has been, used. If a region of physical memory is marked in the System Address Map
interface as AddressRangeReserved or AddressRangeNVS and it is also described in a memory device,
then it is the responsibility of the OS to guarantee that the memory device is never disabled.

It is not necessary to describe all memory in the system with memory devices if there is some memory in
the system that is static in nature. If, for instance, the memory that is used for the first 16 MB of system
RAM cannot be ejected, inserted, or disabled, that memory may only be represented by the System Address
Map interfaces. But if memory can be ejected, inserted, or disabled, it must be represented by a memory
device.

10.12.1 Address Decoding
Memory devices must provide a _CRS object that describes the physical address space that the memory
decodes. If the memory can decode alternative ranges in physical address space, the devices may also
provide _PRS, _SRS and _DIS objects. Other device objects may also apply if the device can be ejected.

10.12.2 Example: Memory Device

Scope(_SB){
 Device(MEM0) {
 Name(_HID, EISAID(“PNP0C80”))
 Name(_CRS, ResourceTemplate() {
 QwordMemory(ResourceConsumer,
 ,
 MinFixed,
 MaxFixed,
 Cacheable,
 ReadWrite,
 0xfffffff,
 0x10000000,
 0x30000000,
 0,
 ,,)
 }
 }
}

262 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Power Source Devices 263

Compaq/Intel/Microsoft/Phoenix/Toshiba

11 Power Source Devices
This section specifies the battery and AC adapter device objects OSPM uses to manage power resources.

A battery device is required to either have a Smart Battery subsystem or a Control Method Battery interface
as described in this section. OSPM is required to be able to connect and manage a battery on either of these
interfaces. This section describes these interfaces.

In the case of a compatible ACPI Smart Battery Table, the Definition Block needs to include a Bus/Device
package for the SMB-HC. This will install an OS-specific driver for the SMBus, which in turn will locate
the components of the Smart Battery subsystem. In addition to the battery or batteries, the Smart Battery
subsystem includes a charger and a manager device to handle subsystems with multiple batteries.

The Smart Battery System Manager is one implementation of a manager device that is capable of
arbitrating among the available power sources (AC power and batteries) for a system. It provides a superset
of the Smart Battery Selector functionality, such as safely responding to power events (AC versus battery
power), inserting and removing batteries and notifying the OS of all such changes. Additionally, the Smart
Battery System Manager is capable of handling configurations including simultaneous charging and
discharging of multiple batteries. Unlike the Smart Battery Selector that shares responsibility for
configuring the battery system with OSPM, the Smart Battery System Manager alone controls the safe
configuration of the battery system and simply issues status changes to OSPM when the configuration
changes. Smart Battery System Manager is the recommended solution for handling multiple-battery
systems.

11.1 Smart Battery Subsystems
The Smart Battery subsystem is defined by the:
• System Management Bus Specification (SMBS)
• Smart Battery Data Specification (SBDS)
• Smart Battery Charger Specification (SBCS)
• Smart Battery System Manager Specification (SBSM)
• Smart Battery Selector Specification (SBSS)

An ACPI-compatible Smart Battery subsystem consists of:
• An SMB-HC(CPU to SMB-HC) interface
• At least one Smart Battery
• A Smart Battery Charger
• Either a Smart Battery System Manager or a Smart Battery Selector if more than one Smart Battery is

supported

In such a subsystem, a standard way of communicating with a Smart Battery and Smart Battery Charger is
through the SMBus physical protocols. The Smart Battery System Manager or Smart Battery Selector
provides event notification (battery insertion/removal, and so on) and charger SMBus routing capability for
any Smart Battery subsystem. A typical Smart Battery subsystem is illustrated below:

264 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

SBS
Battery3

0xB

SMBus

SMBus

SMBus

SMBus

SMBus

SMBus

Host
Interface

Figure 11-1 Typical Smart Battery Subsystem (SBS)

SMBus defines a fixed 7-bit slave address per device. This means that all batteries in the system have the
same address (defined to be 0xB). The slave addresses associated with Smart Battery subsystem
components are shown in the following table.

Table 11-1 Example SMBus Device Slave Addresses

SMBus Device Description SMBus Slave Address (A0-A6)

SMBus Host Slave Interface 0x8

Smart Battery Charger/Charger
Selector or Charger System
Manager

0x9

Smart Battery System Manager or
Smart Battery Selector

0xA

Smart Battery 0xB

Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’s Command
value. SMBus devices are addressed by providing the slave address with the desired register’s Command
value. Each SMBus register can have non-linear registers; that is, command register 1 can have a 32-byte
string, while command register 2 can have a byte, and command register 3 can have a word.

The SMBus host slave interface provides a standard mechanism for the host CPU to generate SMBus
protocol commands that are required to communicate with SMBus devices (in other words, the Smart
Battery components). ACPI defines such an SMB-HCthat resides in embedded controller address space;
however, an OS can support any SMB-HCthat has a native SMB-HCdevice driver.

Power Source Devices 265

Compaq/Intel/Microsoft/Phoenix/Toshiba

The Smart Battery System Manager provides a standard programming model to control multiple Smart
Batteries in a Smart Battery subsystem. A Smart Battery System Manager provides the following types of
battery management functions:
• Event notification for battery insertion and removal
• Event notification for AC power connected or disconnected
• Status of which Smart Battery is communicating with the SMB-HC
• Status of which Smart Battery(s) are powering the system
• Status of which Smart Battery(s) are connected to the charger
• Status of which Smart Batteries are present in the system
• Event notification when the Smart Battery System Manager switches from one power source to another
• Hardware-switching to an alternate Smart Battery when the Smart Battery supplying power runs low
• Hardware switching between battery-powered and AC-powered powered operation

The Smart Battery System Manager function can reside in a standalone SMBus slave device (Smart Battery
System Manager that responds to the 0xA slave address), may be present within a smart charger device
(Smart Battery Charger that responds to the 0x9 slave address), or may be combined within the embedded
controller (that responds to the 0xA slave address). If both a Smart Battery Charger and a standalone Smart
Battery System Manager are present in the same Smart Battery subsystem, then the driver assumes that the
standalone Smart Battery System Manager is wired to the batteries.

The Smart Battery charger is an SMBus device that provides a standard programming model to control the
charging of Smart Batteries present in a Smart Battery subsystem. For single battery systems, the Smart
Battery Charger is also responsible for notifying the system of the battery and AC status.

The Smart Battery provides intelligent chemistry-independent power to the system. The Smart Battery is
capable of informing the Smart Battery charger of its charging requirements (which provides chemistry
independence) and providing battery status and alarm features needed for platform battery management.

11.1.1 ACPI Smart Battery Status Change Notification Requirements
The Smart Battery System Manager, the Smart Battery Selector, and the Smart Battery Charger each have
an optional mechanism for notifying the system that the battery configuration or AC status has changed.
ACPI requires that this interrupt mechanism be through the SMBus Alarm Notify mechanism.

For systems using an embedded controller as the SMBus host, a battery system device issues a status
change notification by either mastering the SMBus to send the notification directly to the SMBus host, or
by emulating it in the embedded controller. In either case, the process is the same. After the notification is
received or emulated, the embedded controller asserts an SCI. The source of the SCI is identified by a GPE
that indicates the SCI was caused by the embedded controller. The embedded controller’s status register
alarm bit is set, indicating that the SMBus host received an alarm message. The Alarm Address Register
contains the address of the SMBus device that originated the alarm and the Alarm Data Registers contain
the contents of that device’s status register.

266 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

11.1.1.1 Smart Battery Charger
This requires a Smart Battery Charger, on a battery or AC status change, to generate an SMBus Alarm
Notify. The contents of the Smart Battery Charger’s ChargerStatus() command register (0x13) is placed in
the embedded controller’s Alarm Data Registers, the Smart Battery Charger’s slave address17 (0x09) is
placed in the embedded controller’s Alarm Address Register and the EC’s Status Register’s Alarm bit is
set. The embedded controller then asserts an SCI.

11.1.1.2 Smart Battery Charger with optional System Manager or Selector
A Smart Battery Charger that contains the optional System Manager or Selector function (as indicated by
the ChargerSpecInfo() command register, 0x11, bit 4) is required to generate an SMBus Alarm Notify on a
battery or AC status change. The content of the Smart Battery Charger with an optional System Manager,
the BatterySystemState() command register (0x21) (or in the case of an optional Selector, the
SelectorState() (0x01)), is placed in the EC’s Alarm Data Registers, the Smart Battery Charger’s slave
address (0x09) is placed in the embedded controller’s Alarm Address Register, and the embedded
controller’s Status Register’s Alarm bit is set. The embedded controller then asserts an SCI.

11.1.1.3 Smart Battery System Manager
The Smart Battery System Manager is required to generate an SMBus Alarm Notify on a battery or AC
status change. The content of the Smart Battery System Manager’s BatterySystemState() command register
(0x01) is placed in the EC’s Alarm Data Registers, the Smart Battery System Manager’s slave address
(0x0A) is placed in the EC’s Alarm Address Register, and the embedded controller’s Status Register’s
Alarm bit is set. The embedded controller then asserts an SCI.

11.1.1.4 Smart Battery Selector
The requirements for the Smart Battery Selector are the same as the requirements for the Smart Battery
System Manager, with the exception that the contents of the SelectorState() command register (0x01) are
used instead of BatterySystemState(). The Smart Battery Selector is a subset of the Smart Battery System
Manager and does not have the added support for simultaneous charge/discharge of multiple batteries. The
System Manager is the preferred implementation.

17 Notice that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address”
written into the command field of the host controller. In this case, the slave address is actually the
combination of the 7-bit slave address and the Write protocol bit. Therefore, bit 0 of the initiating device’s
slave address is aligned to bit 1 of the host controller’s slave command register, bit 1 of the slave address is
aligned to bit 2 of the controller’s slave command register, and so on.

Power Source Devices 267

Compaq/Intel/Microsoft/Phoenix/Toshiba

11.1.2 Smart Battery Objects
The Smart Battery subsystem requires a number of objects to define its interface. These are summarized
below:

Table 11-2 Smart Battery Objects

Object Description

_HID This is the hardware ID named object that contains a string. For Smart Battery subsystems, this
object returns the value of “ACPI0002.” This identifies the Smart Battery subsystem to the
Smart Battery driver.

_SBS This is the Smart Battery named object that contains a DWORD. This named object returns the
configuration of the Smart Battery subsystem and is encoded as follows:

0 – Maximum of one Smart Battery and no Smart Battery System Manager or Smart Battery
Selector.

1 – Maximum of one Smart Battery and a Smart Battery System Manager or Smart Battery
Selector.

2 – Maximum of two Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

3 – Maximum of three Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

4 – Maximum of four Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

The maximum number of batteries is for the system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then this field
should return 4. Notice that a value of 0 indicates a maximum support of one battery and there
is no Smart Battery System Manager or Smart Battery Selector present in the system.

268 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

11.1.3 Smart Battery Subsystem Control Methods
As the SMBus is not an enumerable bus, all devices on the bus must be declared in the ACPI name space.
As the Smart Battery driver understands Smart Battery, Smart Battery Charger, and Smart Battery System
Manager or Smart Battery Selector; only a single device needs to be declared per Smart Battery subsystem.
The driver gets information about the subsystem through the hardware ID (which defines a Smart Battery
subsystem) and the number of Smart Batteries supported on this subsystem (_SBS named object). The
ACPI Smart Battery table indicates the energy levels of the platform at which the system should warn the
user and then enter a sleeping state. The Smart Battery driver then reflects these as threshold alarms for the
Smart Batteries.

The _SBS control method returns the configuration of the Smart Battery subsystem. This named object
returns a DWORD value with a number from 0 to 4. If the number of batteries is greater than 0, then the
Smart Battery driver assumes that a Smart Battery System Manager or Smart Battery Selector is present. If
0, then the Smart Battery driver assumes a single Smart Battery and neither a Smart Battery System
Manager nor Smart Battery Selector is present.

A Smart Battery device declaration in the ACPI name space requires the _GLK object if potentially
contentious accesses to device resources are performed by non-OS code. See section 6.5.7, “_GLK (Global
Lock),” for details about the _GLK object.

11.1.3.1 Example: Single Smart Battery Subsystem
This section illustrates how to define a Smart Battery subsystem containing a single Smart Battery and
charger. The platform implementation is illustrated below:

Embedded
Controller

Ports: 0x62, 0x66
Offset: 0x80
Query: 0x30

SMBus
Host

Controller
(0x8) SBS

Charger
0x9

SBS
Battery

0xB

SMBus
Host

Interface

Figure 11-2 Single Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HCinterface. The embedded controller
interface sits at system I/O port addresses 0x62 and 0x66. The SMB-HCis at base address 0x80 within
embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value 0x30.

Power Source Devices 269

Compaq/Intel/Microsoft/Phoenix/Toshiba

In this example the Smart Battery subsystem only supports a single Smart Battery. The ASL code for
describing this interface is shown below:

Device(EC0) {
 Name(_HID, EISAID("PNP0C09"))
 Name(_CRS,
 ResourceTemplate(){ // port 0x62 and 0x66
 IO(Decode16, 0x62, 0x62, 0, 1),
 IO(Decode16, 0x66, 0x66, 0, 1)
 }
)
 Name(_GPE, 0)
 Device (SMB0) {
 Name(_HID, "ACPI0001") // Smart Battery Host Controller
 Name(_EC, 0x8030) // EC offset (0x80), Query (0x30)
 Device(SBS0){ // Smart Battery Subsystem
 Name(_HID, "ACPI0002") // Smart Battery Subsystem ID
 Name(_SBS, 0x1) // Indicates support for one battery
 } // end of SBS0
 } // end of SMB0
 } // end of EC

11.1.3.2 Multiple Smart Battery Subsystem: Example
This section illustrates how to define a Smart Battery subsystem that contains three Smart Batteries, a
Smart Battery System Manager, and a Smart Battery Charger. The platform implementation is illustrated
below:

Embedded Controller
Ports: 0x100, 0x101
Offset: 0x90
Query: 0x31

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

Virtual
SMBus

Virtual
SMBus

SMBus

SMBus

SMBus

Host
Interface

Figure 11-3 Smart Battery Subsystem

In this example, the platform is using an SMB-HCthat resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HCinterface. The embedded controller
interface sits at system I/O port addresses 0x100 and 0x101. The SMB-HCresides at base address 0x90
within embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value 0x31.

In this example the Smart Battery subsystem supports three Smart Batteries. The Smart Battery Charger
and Smart Battery System Manager reside within the embedded controller, meet the Smart Battery System
Manager and Smart Battery Charger interface specification, and respond to their 7-bit addresses (0xA and
0x9 respectively). The ASL code for describing this interface is shown below:

270 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Device(EC1) {
 Name(_HID, EISAID("PNP0C09"))
 Name(_CRS,
 ResourceTemplate(){ // port 0x100 and 0x101
 IO(Decode16, 0x100, 0x100, 0, 2)
 }
)
 Name(_GPE, 1)
 Device (SMB1) {
 Name(_HID, "ACPI0001") // Smart Battery Host Controller
 Name(_EC, 0x9031) // EC offset (0x90), Query (0x31)
 Device(SBS1){ // Smart Battery Subsystem
 Name(_HID, "ACPI0002") // Smart Battery Subsystem ID
 Name(_SBS, 0x3) // Indicates support for three batteries
 } // end of SBS1
 } // end of SMB1
 } // end of EC

11.2 Control Method Batteries
The following section illustrates the operation and definition of the Control Method Battery.

11.2.1 Battery Events
The AML code handling an SCI for a battery event notifies the system of which battery’s status may have
changed. The OS uses the _BST control method to determine the current status of the batteries and what
action, if any, should be taken (for more information about the _BST control method, see section 11.2.2,
“Battery Control Methods”). The typical action is to notify applications monitoring the battery status to
provide the user with an up-to-date display of the system battery state. But in some cases, the action may
involve generating an alert or even forcing a system into a sleeping state. In any case, any changes in
battery status should generate an SCI in a timely manner to keep the system power state UI consistent with
the actual state of the system battery (or batteries).

Unlike most other devices, when a battery is inserted or removed from the system, the device itself (the
battery bay) is still considered to be present in the system. For most systems, the _STA for this device will
always return a value with bits 0-3 set and will toggle bit 4 to indicate the actual presence of a battery (see
section 6.3.6, “_STA [Status]”). When this insertion or removal occurs, the AML code handler for this
event should issue a Notify(battery_device, 0x81) to indicate that the static battery information has
changed. For systems that have battery slots in a docking station or batteries that cannot be surprise-
removed, it may be beneficial or necessary to indicate that the entire device has been removed. In this case,
the standard methods and notifications described in section 6.3, “Device Insertion and Removal Objects,”
should be used.

When the present state of the battery has changed or when the trip point set by the _BTP control method is
reached or crossed, the hardware will assert a general purpose event. The AML code handler for this event
issues a Notify(battery_device, 0x80) on the battery device.

In the case where the remaining battery capacity becomes critically low, the AML code handler issues a
Notify(battery_device, 0x80) and reports the battery critical flag in the _BST object. The OS performs an
emergency shutdown. For a full description of the critical battery state, see section 3.9.4, “Low Battery
Levels.”

Sometimes the value to be returned from _BST or _BIF will be temporarily unknown. In this case, the
method may return the value 0xFFFFFFFF as a placeholder. When the value becomes known, the
appropriate notification (0x80 for _BST or 0x81 for BIF) should be issued, in like manner to any other
change in the data returned by these methods. This will cause OSPM to re-evaluate the method—obtaining
the correct data value.

Power Source Devices 271

Compaq/Intel/Microsoft/Phoenix/Toshiba

11.2.2 Battery Control Methods
The Control Method Battery is a battery with an AML code interface between the battery and the host PC.
The battery interface is completely accessed by AML code control methods, allowing the OEM to use any
type of battery and any kind of communication interface supported by ACPI. OSPM requires accurate
battery data to perform optimal power management policy and to provide the end user with a meaningful
estimation of remaining battery life. As such, control methods that return battery information should
calculate this information rather than return hard coded data.

A Control Method Battery is described as a device object. Each device object supporting the Control
Method Battery interface contains the following additional control methods. When there are two or more
batteries in the system, each battery will have an independent device object in the name space.

Table 11-3 Battery Control Methods

Object Description

_BIF Returns static information about a battery (in other words, model number, serial number,
design voltage, and so on).

_BST Returns the current battery status (in other words, dynamic information about the battery, such
as whether the battery is currently charging or discharging, an estimate of the remaining
battery capacity, and so on).

_BTP Sets the Battery Trip point, which generates an SCI when batterycapacity reaches the specified
point.

_PCL List of pointers to the device objects representing devices powered by the battery.

_STA Returns general status of the battery (for a description of the _STA control method, see section
6.3.6, “_STA [Status]”).

A Control Method Battery device declaration in the ACPI name space requires the _GLK object if
potentially contentious accesses to device resources are performed by non-OS code. See section 6.5.7,
“_GLK (Global Lock),” for details about the _GLK object.

11.2.2.1 BIF (Battery Information)
This object returns the static portion of the Control Method Battery information. This information remains
constant until the battery is changed.

Arguments:
None

Result Code:

Package {
// ASCIIZ is ASCII character string terminated with
// a 0x00.
 Power Unit //DWORD
 Design Capacity //DWORD
 Last Full Charge Capacity //DWORD
 Battery Technology //DWORD
 Design Voltage //DWORD
 Design Capacity of Warning //DWORD
 Design Capacity of Low //DWORD
 Battery Capacity Granularity 1 //DWORD
 Battery Capacity Granularity 2 //DWORD
 Model Number //ASCIIZ
 Serial Number //ASCIIZ
 Battery Type //ASCIIZ
 OEM Information //ASCIIZ
}

272 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 11-4 _BIF Method Result Codes

Field Format Description

Power Unit DWORD Indicates the units used by the battery to report its capacity
and charge/discharge rate information to the OS.

0x00000000 – Capacity information is reported in [mWh] and
charge/discharge rate information in [mW].

0x00000001 – Capacity information is reported in [mAh] and
charge/discharge rate information in [mA].

Design Capacity DWORD Battery’s design capacity. Design Capacity is the nominal
capacity of a new battery. The Design Capacity value is
expressed as power [mWh] or current [mAh] depending on
the Power Unit value.

0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown design capacity

Last Full Charge
Capacity

DWORD Predicted battery capacity when fully charged. The Last Full
Charge Capacity value is expressed as power (mWh) or
current (mAh) depending on the Power Unit value.

0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

DWORD 0x00000000 – Primary (for example, non-rechargeable)
0x00000001 – Secondary (for example, rechargeable)

Design Voltage DWORD Nominal voltage of a new battery.

0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown design voltage

Design capacity
of Warning

DWORD OEM-designed battery warning capacity. See section 3.9.4,
“Low Battery Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity
of Low

DWORD OEM-designed low battery capacity. See section 3.9.4, “Low
Battery Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Battery Capacity
Granularity 1

DWORD Battery capacity granularity between low and warning in
[mAh] or [mWh].

Battery Capacity
Granularity 2

DWORD Battery capacity granularity between warning and Full in
[mAh] or [mWh].

Model Number ASCIIZ OEM-specific Control Method Battery model number

Serial Number ASCIIZ OEM-specific Control Method Battery serial number

Battery Type ASCIIZ The OEM-specific Control Method Battery type

OEM Information ASCIIZ OEM-specific information for the battery that the
UI uses to display the OEM information about the Battery. If
the OEM does not support this information, this should be
reserved as 0x00.

Power Source Devices 273

Compaq/Intel/Microsoft/Phoenix/Toshiba

Notes: A secondary-type battery should report the corresponding capacity (except for Unknown).

 On a multiple-battery system, all batteries in the system should return the same granularity.

 Operating systems prefer these control methods to report data in terms of power (watts).

11.2.2.2 BST (Battery Status)
This object returns the present battery status. Whenever the Battery State value changes, the system will
generate an SCI to notify the OS.

Arguments:
None

Result Code:

Package{
 Battery State //DWORD
 Battery Present Rate //DWORD
 Battery Remaining Capacity //DWORD
 Battery Present Voltage //DWORD
}

Table 11-5 _BST Method Result Codes

Field Format Description

Battery State DWORD Bit values. Notice that the Charging bit and the Discharging
bit are mutually exclusive and must not both be set at the
same time. Even in critical state, hardware should report the
corresponding charging/discharging state.

Bit0 – 1 indicates the battery is discharging.
Bit1 – 1 indicates the battery is charging.
Bit2 – 1 indicates the battery is in the critical energy state (see
section 3.9.3, “Low Battery Levels”). This does not mean
battery failure.

Battery Present
Rate

DWORD Returns the power or current being supplied or accepted
through the battery’s terminals (direction depends on the
Battery State value). The Battery Present Rate value is
expressed as power [mWh] or current [mAh] depending on
the Power Unit value.

Batteries that are rechargeable and are in the discharging state
are required to return a valid Battery Present Rate value.

0x00000000 – 0x7FFFFFFF in [mW] or [mA]
0xFFFFFFFF – Unknown rate

274 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 11-5 _BST Method Result Codes (continued)

Field Format Description

Battery
Remaining
Capacity

DWORD Returns the estimated remaining battery capacity. The Battery
Remaining Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.

Batteries that are rechargeable are required to return a valid
Battery Remaining Capacity value.

0x00000000 – 0x7FFFFFFF in [mWh] or [mAh]
0xFFFFFFFF – Unknown capacity

Battery Present
Voltage

DWORD Returns the voltage across the battery’s terminals.

Batteries that are rechargeable must report Battery Present
Voltage.

0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown voltage

Note: Only a primary battery can report unknown voltage.

Notice that when the battery is a primary battery (a non-rechargeable battery such as an Alkaline-
Manganese battery) and cannot provide accurate information about the battery to use in the calculation of
the remaining battery life, the Control Method Battery can report the percentage directly to OS. It does so
by reporting the Last Full Charged Capacity =100 and BatteryPresentRate=0xFFFFFFFF. This means that
Battery Remaining Capacity directly reports the battery’s remaining capacity [%] as a value in the range 0
through 100 as follows:

Remaining Battery Percentage[%] =
Battery Remaining Capacity [=0 ~ 100]

Last Full Charged Capacity [=100]
* 100

Remaining Battery Life [h] =
Battery Remaining Capacity [mAh/mWh]

Battery Present Rate [=0xFFFFFFFF]
= unknown

11.2.2.3 BTP (Battery Trip Point)
This object is used to set a trip point to generate an SCI whenever the Battery Remaining Capacity reaches
or crosses the value specified in the _BTP object. Specifically, if Battery Remaining Capacity is less than
the last argument passed to _BTP, a notification must be issued when the value of Battery Remaining
Capacity rises to be greater than or equal to this trip-point value. Similarly, if Battery Remaining Capacity
is greater than the last argument passed to _BTP, a notification must be issued when the value of Battery
Remaining Capacity falls to be less than or equal to this trip-point value. The last argument passed to _BTP
will be kept by the system.

Power Source Devices 275

Compaq/Intel/Microsoft/Phoenix/Toshiba

If the battery does not support this function, the _BTP control method is not located in the name space. In
this case, the OS must poll the Battery Remaining Capacity value.

Arguments:
Level at which to set the trip point:

0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending on the Power Units value)
0x00000000 – Clear the trip point

Result Code:
None

11.3 AC Adapters and Power Source Objects
The Power Source objects describe the power source used to run the system.

Table 11-6 Power Source Control Methods

Object Description

_PSR Returns present power source device.

_PCL List of pointers to powered devices.

11.3.1 PSR (Power Source)
Returns the current power source devices. Used for the AC adapter and is located under the AC adapter
object in name space. Used to determine if system is running off the AC adapter.

Arguments:
None

Result Code:
0x00000000 – Off-line
0x00000001 – On-line

11.3.2 PCL (Power Consumer List)
This object evaluates to a list of pointers, each pointing to a device or a bus powered by the power source
device. Pointing to a bus indicates that all devices under the bus are powered by the power source device.

276 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

11.4 Example: Power Source Name Space
The ACPI name space for a computer with an AC adapter and two batteries associated with a docking
station that has an AC adapter and a battery is shown in Figure 11.4.

Root

System Bus
AC Adapter1

_SB
ADP1d

BAT1d Battery 1

Status of the BAT1 Object_STA
Battery1 Information_BIF
Battery1 Status_BST

_PSR

BAT2d Battery 2

Status of the BAT2 Object_STA
Battery2 Information_BIF

Battery2 Trip Point_BTP

PCI0

DOCKd

ADP2d

_PSR

Power Source Type

Power Source Type

_BTP Battery1 Trip Point

Power Class List_PCL

_BST Battery2 Status

_PCL Power Class List

Power Class List_PCL

Power Class List_PCL

Plug and Play ID for the BAT1_HID

Plug and Play ID for the BAT2_HID

AC Adapter 2

Figure 11-4 Power Source Name Space Example that Includes a Docking Station

Thermal Management 277

Compaq/Intel/Microsoft/Phoenix/Toshiba

12 Thermal Management
This section specifies the objects OSPM uses for thermal management of a platform.

12.1 Thermal Control
ACPI allows OSPM to be proactive in its system cooling policies. With OSPM in control of the operating
environment, cooling decisions can be made based on the application load on the CPU and the thermal
heuristics of the system. Graceful shutdown of the OS at critical heat levels becomes possible as well. The
following sections describe the thermal objects available to OSPM to control platform temperature. ACPI
expects all temperatures to be given in tenths of degrees Kelvin.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several thermal zones if necessary.

12.1.1 Active, Passive, and Critical Policies
There are three cooling policies that OSPM uses to control the thermal state of the hardware. The policies
are active, passive and critical.
• Active Cooling. OSPM takes a direct action such as turning on a fan. Active cooling devices typically

consume power and produce some amount of noise when enabled (_ON), but are able to cool a thermal
zone without limiting system performance. The _ACx objects declare the temperature thresholds
OSPM uses to decide when to start or stop different active cooling devices.

• Passive Cooling. OSPM reduces the power consumption of devices to reduce the temperature of a
thermal zone, such as slowing (throttling) the processor clock. Passive cooling devices typically
produce no user-noticeable noise. The _PSV control method specifies the temperature threshold where
OSPM will start or stop passive cooling.

• Critical Trip Points. These are threshold temperatures at which OSPM performs an orderly, but
critical, shutdown of the system. The _HOT object declares the critical temperature at which OSPM
may choose to transition the system into the S4 sleeping state, if supported, The _CRT object declares
the critical temperature at which OSPM must perform a critical shutdown.

When a thermal zone appears, OSPM runs control methods in the thermal zone to retrieve the temperature
thresholds (trip points) at which it executes a cooling policy. When OSPM receives a temperature change
notification it will run the _TMP control method, which returns the current temperature of the thermal
zone. OSPM checks the current temperature against the temperature thresholds. If _TMP is greater than or
equal to _ACx then OSPM will turn on the associated active cooling device(s). If _TMP is greater than or
equal to _PSV then OSPM will perform passive cooling. If _TMP is greater than or equal to _HOT then
OSPM may choose to transition the system into the S4 sleeping state, if supported. Finally, if _TMP is
greater than or equal to _CRT then OSPM will shut the system down. OSPM must also evaluate _TMP
when any thermal zone appears in the namespace (for example, during system initialization) and must
initiate a cooling policy as warranted independent of receipt of a temperature change notification. This
allows OSPM to cool systems containing a thermal zone whose temperature has already exceeded
temperature thresholds at initialization time.

An optimally designed system that uses several thresholds can notify OSPM of thermal increase or
decrease by raising an SCI every several degrees. This enables OSPM to anticipate thermal trends and
incorporate heuristics to better manage the system’s temperature.

The OS can also request that the platform change the priority of active cooling (performance) versus
passive cooling (energy conservation/silence) by invoking the _SCP (Set Cooling Policy) method.

278 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.1.2 Dynamically Changing Cooling Temperatures
An OEM can reset _ACx and _PSV and notify OSPM to reevaluate the control methods to retrieve the new
policy threshold settings. The following are the primary uses for this type of thermal notification:

• When OSPM changes the platform’s cooling policy from one cooling mode to the other.
• When a swappable bay device is inserted or removed. A swappable bay is a slot that can accommodate

several different devices that have identical form factors, such as a CD-ROM drive, disk drive, and so
on. Many mobile PCs have this concept already in place.

• When the temperature reaches an _ACx or _PSV policy threshold to implement hysteresis.

In each situation, the OEM-provided AML code must execute a Notify(thermal_zone, 0x81) statement to
request OSPM to re-evaluate the policy thresholds by obtaining the current values for the _ACx and _PSV
objects.

12.1.2.1 OSPM Change of Cooling Policy
When OSPM changes the platform’s cooling policy from one cooling mode to the other, the following
occurs:

1. OSPM notifies the platform of the new cooling mode by running the Set Cooling Policy (_SCP)
control method in all thermal zones.

2. Thresholds are updated in the hardware and OSPM is notified of the change.
3. OSPM re-evaluates _ACx and _PSV to obtain the new temperature thresholds.

12.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion
or Removal
The platform can adjust the thermal zone temperature to accommodate the maximum operating temperature
of a bay device as necessary. For example:

1. Hardware detects that a device was inserted into or removed from the bay, updates the temperature
thresholds, and then notifies OSPM of the thermal policy change and device insertion events.

2. OSPM re-enumerates the devices and reevaluates _ACx and _PSV.

12.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis
An OEM can build hysteresis into platform thermal design by dynamically resetting cooling temperature
thresholds. For example:

1. When the temperature increases to the designated threshold, OSPM will turn on the associated active
cooling device or perform passive cooling.

2. The platform resets the threshold value to a lower temperature (to implement hysteresis) and notifies
OSPM of the change. Because of this new threshold value, the fan will be turned off at a lower
temperature than when it was turned on (therefore implementing a negative hysteresis).

3. When the temperature hits the lower threshold value, OSPM will turn off the associated active cooling
device or cease passive cooling. The hardware will reset _ACx to its original value and notify OSPM
that the trip points have once again been altered.

12.1.3 Detecting Temperature Changes
The ability of hardware to asynchronously notify an ACPI-compatible OS of meaningful changes in the
thermal zone’s temperature is a highly desirable capability that relieves OSPM from implementing a poll-
based policy and generally results in a much more responsive and accurate environment. Each notification
instructs OSPM to evaluate whether a trip point has been crossed and allows OSPM to anticipate
temperature trends for the thermal zone.

Thermal Management 279

Compaq/Intel/Microsoft/Phoenix/Toshiba

It is recognized that much of the hardware used to implement thermal zone functionality today is not
capable of generating ACPI-visible notifications (SCIs) or only can do so with wide granularity (for
example, only when the temperature crosses the critical threshold). In these environments, OSPM must poll
the thermal zone’s temperature periodically to implement an effective policy.

While ACPI specifies a mechanism that enables OSPM to poll thermal zone temperature, platform reliance
on thermal zone polling is strongly discouraged by this specification. OEMs should design systems that
asynchronously notify OSPM whenever a meaningful change in the zone’s temperature occurs – relieving
the OS of the overhead associated with polling. In some cases, embedded controller firmware can
overcome limitations of existing thermal sensor capabilities to provide the desired asynchronous
notification.

Notice that the _TZP (thermal zone polling) object is used to indicate whether a thermal zone must be
polled by OSPM, and if so, a recommended polling frequency. See section 12.3.13, “_TZP,” for more
information.

12.1.3.1 Hardware Notifications
Hardware that supports asynchronous temperature change notifications does so using an SCI. The OEM-
provided AML that responds to this SCI must execute a Notify(thermal_zone, 0x80) statement to inform
OSPM that a meaningful change in temperature has occurred. When OSPM receives this thermal event, it
will run the _TMP control method to evaluate the current temperature. OSPM will then compare the value
to the cooling policy temperatures. If the temperature has crossed over any of the policy thresholds, then
OSPM will actively or passively cool (or stop cooling) the system, or shut the system down entirely.

Both the number and granularity of thermal zone trip points are OEM-specific. However, it is important to
notice that since OSPM can use heuristic knowledge to help cool the system, the more events OSPM
receives the better understanding it will have of the system’s thermal characteristic.

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Temperature Change
Events (SCIs)

_CRT: Critical shutdown threshold

_AC0: Fan high speed threshold

_AC1: Fan low speed threshold

_PSV: Passive cooling threshold

Figure 12-1 SCI Events

For example, the thermal zone illustrated above includes hardware that will generate a temperature change
notification using a 5° Celsius granularity. All thresholds (_PSV, _AC1, _AC0, and _CRT) exist within the
monitored range and fall on 5° boundaries. This granularity is appropriate for this system as it provides
sufficient opportunity for OSPM to detect when a threshold is crossed as well as to understand the thermal
zone’s basic characteristics (temperature trends).

Note: The ACPI specification defines Kelvin as the standard unit for temperature. All thermal zone objects
must report temperatures in Kelvin. All figures and examples in this section of the specification use Celsius
for reasons of clarity. ACPI allows Kelvin to be declared in precision of 1/10th of a degree (for example,
310.5). Kelvin is expressed as θ/K = T/°C + 273.2.

280 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.1.3.2 Polling
Platforms that are not capable of generating SCIs for thermal change events or that can only do so for a few
thresholds should inform OSPM to implement a poll-based policy. OSPM does this to ensure that
temperature changes across threshold boundaries are always detectable.

Polling can be done in conjunction with hardware notifications. For example, thermal zone hardware that
only supports a single threshold might be configured to use this threshold as the critical temperature trip
point. Assuming that hardware monitors the temperature at a finer granularity than OSPM would, this
environment has the benefit of being more responsive when the system is overheating.

A thermal zone advertises the need to be polled by OSPM via the _TZP object. The absence of this control
method informs OSPM to implement polling using an OS-provided default frequency. See section 12.3.13,
“_TZP,” for more information.

12.1.4 Active Cooling
Active cooling devices typically consume power and produce some amount of noise when enabled (_ON).
These devices are able to cool a thermal zone without limiting the performance of a device.

The active cooling methods (_ACx) in conjunction with the active cooling lists (_ALx) allow an OEM to
use a device that offers varying degrees of cooling capability or multiple cooling devices. The _ACx
method designates the temperature where Active cooling is engaged or disengaged (depending upon the
direction in which the temperature is changing). The _ALx object evaluates to a list of devices that actively
cool the zone. For example:

• If a standard single-speed fan is the Active cooling device, then _AC0 evaluates to the temperature
where active cooling is engaged and the fan is listed in _AL0.

• If the zone uses two independently controlled single-speed fans to regulate the temperature, then _AC0
will evaluate to the maximum cooling temperature using two fans, and _AC1 will evaluate to the
standard cooling temperature using one fan.

• If a zone has a single fan with a low speed and a high speed, the _AC0 will evaluate to the temperature
associated with running the fan at high-speed, and _AC1 will evaluate to the temperature associated
with running the fan at low speed. _AL0 and _AL1 will both point to different device objects
associated with the same physical fan, but control the fan at different speeds.

For ASL coding examples that illustrate these points, see sections 12.4, “Thermal Zone Object
Requirements,” and 12.5, “Thermal Zone Examples.”

12.1.5 Passive Cooling
Passive cooling devices are able to cool a thermal zone without creating noise and without consuming
additional power (actually saving power), but do so by lowering the performance of the system.

12.1.5.1 Processor Clock Throttling
The processor passive cooling threshold (_PSV) in conjunction with the processor list (_PSL) allows an
OEM to indicate the temperature at which clock throttling will be applied to the processor(s) residing in a
given thermal zone. Unlike other cooling policies, during passive cooling of processors OSPM takes the
initiative to actively monitor the temperature in order to cool the platform.

On an ACPI-compatible platform that properly implements CPU throttling, the temperature transitions will
be similar to the following figure.

Thermal Management 281

Compaq/Intel/Microsoft/Phoenix/Toshiba

C
P

U
 P

e
rfo

rm
a

n
ce

Time

T
e

m
p

e
ra

tu
re

∆P

_TSP (Sampling period)

100%

50%

Tt

Tn - 1

Tn

Figure 12-2 Temperature and CPU Performance Versus Time

The following equation should be used by OSPM to assess the optimum CPU performance change
necessary to lower the thermal zone’s temperature:

Equation #1: ∆P [%] = _TC1 * (Tn - Tn-1) + _TC2 * (Tn - Tt)
Where:

Tn = current temperature

Tt = target temperature (_PSV)

The two coefficients _TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants the
OEM must supply to OSPM (for more information, see section 12.3, “Thermal Objects”). The object _TSP
contains a time interval that OSPM uses to poll the hardware to sample the temperature. Whenever _TSP
time has elapsed, OSPM will run _TMP to sample the current temperature (shown as Tn in the above
equation). Then OSPM will use the sampled temperature and _PSV (which is the target temperature Tt) to
evaluate the equation for ∆P. The granularity of ∆P is determined by the CPU duty width of the system.

Note: Equation #1 has an implied formula.

Equation #2: Pn = Pn-1 + HW[- ∆P] where 0% <= Pn <= 100%

For Equation #2, whenever Pn-1 + ∆P lies outside the range 0-100%, then Pn will be truncated to 0-100%.
For hardware that cannot assume all possible values of Pn between 0 and 100%, a hardware-specific
mapping function HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as follows:
1. If the right hand side of Equation #1 is negative, HW[∆P] is rounded to the next available higher

setting of frequency.
2. If the right hand side of Equation #1 is positive, HW[∆P] is rounded to the next available lower setting

of frequency.

The calculated Pn becomes Pn-1 during the next sampling period.

For more information about CPU throttling, see section 8.1.1, Processor Power State C0.” A detailed
explanation of this thermal feedback equation is beyond the scope of this specification.

282 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.1.6 Critical Shutdown
When the thermal zone temperature reaches the threshold indicated by _CRT, OSPM must immediately
shut the system down. The system must disable the power either after the temperature reaches some
hardware-determined level above _CRT or after a predetermined time has passed. Before disabling power,
platform designers should incorporate some time that allows OSPM to run its critical shutdown operation.
There is no requirement for a minimum shutdown operation window that commences immediately after the
temperature reaches _CRT. This is because:
• Temperature might rise rapidly in some systems and slowly on others, depending on casing design and

environmental factors.
• Shutdown can take several minutes on a server and only a few short seconds on a hand-held device.
Because of this indistinct discrepancy and the fact that a critical heat situation is a remarkably rare
occurrence, ACPI does not specify a target window for a safe shutdown. It is entirely up to the OEM to
build in a safe buffer that it sees fit for the target platform.

12.2 Cooling Preferences
A robust OSPM implementation provides the means for the end user to convey a preference (or a level of
preference) for either performance or energy conservation to OSPM. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance. For example, if a user is taking
notes on her PC in a quiet environment, such as a library or a corporate meeting, she may want the system
to emphasize passive cooling so that the system operates quietly, even at the cost of system performance.
A user preference towards performance corresponds to the Active cooling mode while a user’s preference
towards energy conservation or quiet corresponds to the Passive cooling mode. ACPI defines an interface
to convey the cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal
policy intervention. For example, the platform indicates through thermal zone parameters that crossing a
thermal trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to
manipulate device interfaces that reduce performance to reduce thermal zone temperature.
Either cooling mode will be activated only when the thermal condition requires it. When the thermal zone
is at an optimal temperature level where it does not warrant any cooling, both modes result in a system
operating at its maximum potential with all fans turned off.
Thermal zones supporting the _SCP control method allow the user to switch the system’s cooling mode
emphasis. See section 12.3.7, “_SCP,” for more information.

Active Cooling Thresholds (_ACx) Passive Cooling Threshold (_PSV)

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Figure 12-3 Active and Passive Threshold Values

Thermal Management 283

Compaq/Intel/Microsoft/Phoenix/Toshiba

As illustrated in Figure 12-3, OEMs must choose the value for each threshold to instruct OSPM to initiate
the cooling policies at the desired target temperatures. OEMs can emphasize active or passive cooling
modes by assigning different threshold values. Generally, if _ACx is set lower than _PSV, then the system
emphasizes active cooling. Conversely, if _PSV is set lower than _ACx, then the emphasis is placed on
passive cooling.

For example, a thermal zone that includes a processor and one single-speed fan may use _PSV to indicate
the temperature value at which OSPM would enable passive cooling and _AC0 to indicate the temperature
at which the fan would be turned on. If the value of _PSV is less than _AC0 then the system will favor
passive cooling (for example, CPU clock throttling). On the other hand, if _AC0 is less than _PSV the
system will favor active cooling (in other words, using the fan). See Figure 12-4 below.

_CRT

_PSV

_AC0

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Active Cooling
Preference

_CRT

_AC0

_PSV

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Passive Cooling
Preference

Figure 12-4 Cooling Preferences

The example on the left enables active cooling (for example, turn on a fan) when OSPM detects the
temperature has risen above 50°. If for some reason the fan does not reduce the system temperature, then at
75° OSPM will initiate passive cooling (for example, CPU throttling) while still running the fan. If the
temperature continues to climb, OSPM will quickly shut the system down when the temperature reaches
90°C. The example on the right is similar but the _AC0 and _PSV threshold values have been swapped to
emphasize passive cooling.

The ACPI thermal model allows flexibility in the thermal zone design. An OEM that needs a less elaborate
thermal implementation may consider using only a single threshold (for example, _CRT). Complex thermal
implementations can be modeled using multiple active cooling thresholds and devices, or through the use
of additional thermal zones.

12.2.1 Evaluating Thermal Device Lists
The Notify(thermal_zone, 0x82) statement can be used to inform OSPM that a change has been made to
the thermal zone device lists. This thermal event instructs OSPM to re-evaluate the _ALx, _PSL, and _TZD
objects.

For example, a system that supports the dynamic insertions of processors might issue this notification to
inform OSPM of changes to _PSL following the insertion or removal of a processor. OSPM would re-
evaluate all thermal device lists and adjust its policy accordingly.

Notice that this notification can be used with the Notify(thermal_zone, 0x81) statement to inform OSPM to
both re-evaluate all device lists and all thresholds.

284 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.3 Thermal Objects
Control methods and objects related to thermal management are listed in Table 12-1.

Table 12-1 Thermal Control Methods

Object Description

_ACx Returns active cooling policy threshold values in tenths of degrees Kelvin.

_ALx List of active cooling device objects.

_CRT Returns critical trip point in tenths of degrees Kelvin where OSPM must perform a critical
shutdown.

_HOT Returns critical trip point in tenths of degrees Kelvin where OSPM may choose to transition the
system into S4.

_PSL List of processor device objects for clock throttling.

_PSV Returns the passive cooling policy threshold value in tenths of degrees Kelvin.

_SCP Sets platform cooling policy (active or passive).

_TC1 Thermal constant for passive cooling.

_TC2 Thermal constant for passive cooling.

_TMP Returns the thermal zone’s current temperature in tenths of degrees Kelvin.

_TSP Thermal sampling period for Passive cooling in tenths of seconds.

_TZD List of devices whose temperature is measured by this thermal zone.

_TZP Thermal zone polling frequency in tenths of seconds.

12.3.1 ACx (Active Cooling)
This object returns the temperature at which OSPM must start or stop Active cooling, where x is a value
between 0 and 9 that designates multiple active cooling levels of the thermal zone. If the Active cooling
device has one cooling level (that is, “on”) then that cooling level is named _AC0. If the cooling device has
two levels of capability, such as a high fan speed and a low fan speed, then they are named _AC0 and
_AC1 respectively. The smaller the value of x, the greater the cooling strength _ACx represents. In the
above example, _AC0 represents the greater level of cooling (the faster fan speed) and _AC1 represents the
lesser level of cooling (the slower fan speed). For every ACx method, there must be a matching ALx object.

Arguments:
None

Result Code:
Active cooling temperature threshold in tenths of degrees Kelvin.

The result code is an integer value that represents tenths of degrees Kelvin. For example, 300.0K is
represented by the integer 3000.

Thermal Management 285

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.3.2 ALx (Active List)
This object evaluates to a list of Active cooling devices to be turned on when the associated _ACx
temperature threshold is exceeded. For example, these devices could be fans.

Arguments:

None

Result Code:

A package consisting of references to all active cooling devices that should be engaged when the
associated active cooling threshold (_ACx) is exceeded.

12.3.3 CRT (Critical Temperature)
This object returns the critical temperature at which OSPM must shutdown the system.

Arguments:

None

Result Code:

Critical temperature threshold in tenths of degrees Kelvin.

The result is an integer value that represents tenths of degrees Kelvin. For example, 300.0K is represented
by the integer 3000.

12.3.4 HOT (Hot Temperature)
This object returns the critical temperature at which OSPM may choose to transition the system into the S4
sleeping state. The platform vendor should define _HOT to be far enough below _CRT so as to allow
OSPM enough time to transition the system into the S4 sleeping state. While dependent on the amount of
installed memory, on typical platforms OSPM implementations can transition the system into the S4
sleeping state in tens of seconds.

Arguments:

None

Result Code:

Critical temperature threshold in tenths of degrees Kelvin.

The result is an integer value that represents tenths of degrees Kelvin. For example, 300.0K is represented
by the integer 3000.

12.3.5 PSL (Passive List)
This object evaluates to a list of processor objects to be used for passive cooling.

Arguments:

None

Result Code:

A package consisting of references to all processor objects that will be used for passive cooling when
the passive cooling threshold (_PSV) is exceeded.

286 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.3.6 PSV (Passive)
This object returns the temperature at which OSPM must activate passive cooling policy.

Arguments:

None

Result Code:

Passive cooling temperature threshold in tenths of degrees Kelvin.

The result code is an integer value that represents tenths of degrees Kelvin. For example, 300.0 Kelvin is
represented by 3000.

12.3.7 SCP (Set Cooling Policy)
This control method sets the platform’s cooling mode policy setting. The hardware can use this as a trigger
to reassign _ACx and _PSV temperatures. The OS will automatically evaluate _ACx and _PSV objects
after executing _SCP.

Arguments:

0 – Active

1 – Passive

Result Code:

None

12.3.8 TC1 (Thermal Constant 1)
This object evaluates to the constant _TC1 for use in the Passive cooling formula:

∆Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 * (Tn. - Tt)

Arguments:

None

Result Code:

Integer value of thermal constant #1.

12.3.9 TC2 (Thermal Constant 2)
This object evaluates to the constant _TC2 for use in the Passive cooling formula:

∆Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 *(Tn - Tt)

Arguments:

None

Result Code:

Integer value of thermal constant #2.

Thermal Management 287

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.3.10 TMP (Temperature)
This control method returns the thermal zone’s current operating temperature in Kelvin.

Arguments:

None

Result Code:

The current temperature of the thermal zone in tenths of degrees Kelvin. For example, 300.0K is
represented by the integer 3000.

12.3.11 TSP (Thermal Sampling Period)
This object evaluates to a thermal sampling period (in tenths of seconds) used by OSPM to implement the
Passive cooling equation. This value, along with _TC1 and _TC2, will enable OSPM to provide the proper
hysteresis required by the system to accomplish an effective passive cooling policy. The granularity of the
sampling period is 0.1 seconds. For example, if the sampling period is 30.0 seconds, then _TSP needs to
report 300; if the sampling period is 0.5 seconds, then it will report 5. OSPM can normalize the sampling
over a longer period if necessary.

Arguments:

None

Result Code:

Thermal sampling period for passive cooling, in tenths of seconds.

12.3.12 TZD (Thermal Zone Devices)
This optional object evaluates to a package of device names. Each name corresponds to a device in the
ACPI namespace that is associated with the thermal zone. The temperature reported by the thermal zone is
roughly correspondent to that of each of the devices.

The list of devices returned by the control method need not be a complete and absolute list of devices
affected by the thermal zone. However, the package should at least contain the devices that would uniquely
identify where this thermal zone is located in the machine. For example, a thermal zone in a docking station
should include a device in the docking station, a thermal zone for the CD-ROM bay, should include the
CD-ROM.

Arguments:

None

Result Code:

A package consisting of references to devices associated with the thermal zone.

12.3.13 TZP (Thermal Zone Polling)
This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this thermal
zone. A value of zero indicates that OSPM does not need to poll the temperature of this thermal zone in
order to detect temperature changes (the hardware is capable of generating asynchronous notifications).
Notice that the absence of _TZP informs OSPM to implement polling using an OS-provided default
frequency.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in the zone’s temperature occurs—
relieving the OS of the overhead associated with polling. See section 12.1.3, “Detecting Temperature
Changes,” for more information.

288 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

This value is specified as tenths of seconds with a 1 second granularity. A minimum value of 30 seconds
(_TZP evaluates to 300) and a maximum value of 300 seconds (in other words, 5 minutes) (_TZP evaluates
to 3000) may be specified. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

Arguments:

None

Result Code:

The recommended polling frequency, in tenths of seconds. A value of zero indicates that polling is not
necessary.

12.4 Thermal Zone Object Requirements
While not all thermal zone objects are required to be present in each thermal zone defined in the
namespace, OSPM levies conditional requirements for the presence of specific thermal zone objects based
on the definition of other related thermal zone objects. These requirements are outlined below:
• All thermal zones must contain the _TMP object.
• A thermal zone must define at least one trip point: _CRT, _HOT, _ACx, or _PSV.
• If _ACx is defined then an associated _ALx must be defined (e.g. defining _AC0 requires _AL0 also

be defined).
• If _PSV is defined then either _PSL or _TZD must be defined. _PSL and _TZD may both be defined.
• If _PSL is defined then:
If a performance control register is defined (via either P_BLK or _PTC) for a processor defined in _PSL
then _TC1, _TC2, and _TSP must be defined.
If a performance control register is not defined (via either P_BLK or _PTC) for a processor defined in
_PSL then the processor must support processor performance states (in other words, the processor’s
processor object must include _PCT, _PSS, and _PPC).
• If _PSV is defined and _PSL is not defined (in other words, only _TZD is defined) then at least one

device in the _TZD device list must support device performance states.
• _SCP is optional.
• _TZD is optional outside of the _PSV requirement outlined above.
• If _HOT is defined then the system must support the S4 sleeping state.

12.5 Thermal Zone Examples

12.5.1 Example: The Basic Thermal Zone
The following ASL describes a basic configuration where the entire system is treated as a single thermal
zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan. This is an
example only.

Notice that this thermal zone object (TZ0) is defined in the _SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For example, a
thermal zone that is isolated to a docking station should be defined within the scope of the docking station
device. Besides providing for a well-organized namespace, this configuration allows OSPM to dynamically
adjust its thermal policy as devices are added or removed from the system.

Scope(_SB) {
 Processor(
 CPU0,
 1, // unique number for this processor
 0x110, // system IO address of Pblk Registers
 0x06 // length in bytes of PBlk
) {}

Thermal Management 289

Compaq/Intel/Microsoft/Phoenix/Toshiba

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for this EC
 Name(_CRS,
 ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC

 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN, 1, // fan power (on/off)
 , 6, // reserved
 TMP, 8, // current temp
 AC0, 8, // active cooling temp (fan high)
 , 8, // reserved
 PSV, 8, // passive cooling temp
 HOT 8, // critical S4 temp
 CRT, 8 // critical temp
 }

 // following is a method that OSPM will schedule after
 // it receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } // end of Notify method

 // fan cooling on/off - engaged at AC0 temp
 PowerResource(PFAN, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN) } // turn on fan
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN) } // turn off fan
 }

 // Create FAN device object
 Device (FAN) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 // list power resource for the fan
 Name(_PR0, Package(){PFAN})
 }

 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
 Name(_AL0, Package(){_SB.PCI0.ISA0.EC0.FAN}) // fan is act cool dev
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
 Name(_PSL, Package (){_SB.CPU0}) // passive cooling devices
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get critical temp
 Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TC1, 4) // bogus example constant
 Name(_TC2, 3) // bogus example constant
 Name(_TSP, 150) // passive sampling = 15 sec
 Name(_TZP, 0) // polling not required

 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope-

} // end of _SB scope

290 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

12.5.2 Example: Multiple-Speed Fans
The following ASL describes a thermal zone consisting of a processor and one dual-speed fan. As with the
previous example, this thermal zone object (TZ0) is defined in the _SB scope and represents the entire
system. This is an example only.

Scope(_SB) {
 Processor(
 CPU0,
 1, // unique number for this processor
 0x110, // system IO address of Pblk Registers
 0x06 // length in bytes of PBlk
) {}

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for this EC
 Name(_CRS,
 ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC

 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN0, 1, // fan strength high/off
 FAN1, 1, // fan strength low/off
 , 5, // reserved
 TMP, 8, // current temp
 AC0, 8, // active cooling temp (high)
 AC1, 8, // active cooling temp (low)
 PSV, 8, // passive cooling temp
 HOT 8, // critical S4 temp
 CRT, 8 // critical temp
 }

 // following is a method that OSPM will schedule after it
 // receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } end of Notify method

 // fan cooling mode high/off - engaged at AC0 temp
 PowerResource(FN10, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) }// turn off fan
 }

 // fan cooling mode low/off - engaged at AC1 temp
 PowerResource(FN11, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN1) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN1) } // turn on fan at low
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN1) }// turn off fan
 }

Thermal Management 291

Compaq/Intel/Microsoft/Phoenix/Toshiba

 // Following is a single fan with two speeds. This is represented
 // by creating two logical fan devices. When FN2 is turned on then
 // the fan is at a low speed. When FN1 and FN2 are both on then
 // the fan is at high speed.
 //
 // Create FAN device object FN1
 Device (FN1) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 0)
 Name(_PR0, Package(){FN10, FN11})
 }

 // Create FAN device object FN2
 Device (FN2) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 1)
 Name(_PR0, Package(){FN10})
 }

 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
 Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan low temp
 Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling (high)
 Name(_AL1, Package() {_SB.PCI0.ISA0.EC0.FN2}) // active cooling (low)
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
 Name(_PSL, Package() {_SB.CPU0}) // passive cooling devices
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
 Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TC1, 4) // bogus example constant
 Name(_TC2, 3) // bogus example constant
 Name(_TSP, 150) // passive sampling = 15 sec
 Name(_TZP, 0) // polling not required

 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope

} // end of _SB scope

292 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 293

Compaq/Intel/Microsoft/Phoenix/Toshiba

13 ACPI Embedded Controller Interface Specification
ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers. This in turn enables the OEM to provide platform
features that the OS OSPM and applications can take advantage of.

ACPI also defines a standard hardware and software communications interface between an OS driver and
an Embedded Controller-based SMB-HC (EC-SMB-HC).

The ACPI standard supports multiple embedded controllers in a system, each with its own resources. Each
embedded controller has a flat byte-addressable I/O space, currently defined as 256 bytes. Features
implemented in the embedded controller have an event “query” mechanism that allows feature hardware
implemented by the embedded controller to gain the attention of an OS driver or ASL/AML code handler.
The interface has been specified to work on the most popular embedded controllers on the market today,
only requiring changes in the way the embedded controller is “wired” to the host interface.

Two interfaces are specified:
• A private interface, exclusively owned by the embedded controller driver.
• A shared interface, used by the embedded controller driver and some other driver.

This interface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller as the
keyboard controller function, but the ECI requires its own unique host resources (interrupt event and access
registers).

This interface does support sharing the ECI with an inter-environment interface (such as SMI) and relies on
the ACPI-defined “Global Lock” protocol. For information about the Global Lock interface, see section
5.2.9.1, “Global Lock.” Both the shared and private EC interfaces are described in the following sections.

The ECI has been designed such that a platform can use it in either the legacy or ACPI modes with minimal
changes between the two operating environments. This is to encourage standardization for this interface to
enable faster development of platforms as well as opening up features within these controllers to higher
levels of software.

13.1 Embedded Controller Interface Description
Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations. The ACPI specification supports embedded controllers in any platform design, as long as
the microcontroller conforms to one of the models described in this section. The embedded controller is a
unique feature in that it can perform complex low-level functions through a simple interface to the host
microprocessor(s).

Although there is a large variety of microcontrollers in the market today, the most commonly used
embedded controllers include a host interface that connects the embedded controller to the host data bus,
allowing bi-directional communications. A bi-directional interrupt scheme reduces the host processor
latency in communicating with the embedded controller.

294 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Currently, the most common host interface architecture incorporated into microcontrollers is modeled after
the standard IA-PC architecture keyboard controller. This keyboard controller is accessed at 0x60 and 0x64
in system I/O space. Port 0x60 is termed the data register, and allows bi-directional data transfers to and
from the host and embedded controller. Port 0x64 is termed the command/status register; it returns port
status information upon a read, and generates a command sequence to the embedded controller upon a
write. This same class of controllers also includes a second decode range that shares the same properties as
the keyboard interface by having a command/status register and a data register. The following diagram
graphically depicts this interface.

EC STATUS
REGISTER

EC OUTPUT
BUFFER

EC INPUT
BUFFER

INTERFACE
ARBITRATION

CODE

SMI
INTERFACE

CODE

SCI
INTERFACE

CODE

COMMAND WRITE (SMI/SCI)

DATA WRITE (SMI/SCI)

DATA READ (SMI/SCI)

STATUS READ (SMI/SCI)

EC_SCI_EN

EC_SMI_EN

EC_SMI_STS

EC_SCI_STS

EC_SMI

EC_SCI

I/O
MAIN

FIRMWARE

Figure 13-1 Shared Interface

The diagram above depicts the general register model supported by the ACPI Embedded Controller
Interface.

ACPI Embedded Controller Interface Specification 295

Compaq/Intel/Microsoft/Phoenix/Toshiba

The first method uses an embedded controller interface shared between OSPM and the system management
code, which requires the Global Lock semaphore overhead to arbitrate ownership. The second method is a
dedicated embedded controller decode range for sole use by OSPM driver. The following diagram
illustrates the embedded controller architecture that includes a dedicated ACPI interface.

SCI
INTERFACE

CODE

I/O

EC_SCI_EN

EC_SCI_STS

EC_SCI

SCI STATUS
REGISTER

SCI OUTPUT
BUFFER

SCI INPUT
BUFFER

COMMAND WRITE (SCI)

DATA WRITE (SCI)

DATA READ (SCI)

STATUS READ (SCI)

SMI STATUS
REGISTER

SMI OUTPUT
BUFFER

SMI INPUT
BUFFER

SMI
INTERFACE

CODE

COMMAND WRITE (SMI)

DATA WRITE (SMI)

DATA READ (SMI)

STATUS READ (SMI)

EC_SMI_EN

EC_SMI_STS

EC_SMI

MAIN
FIRMWARE

Figure 13-2 Private Interface

296 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The private interface allows OSPM to communicate with the embedded controller without the additional
software overhead associated with using the Global Lock. Several common system configurations can
provide the additional embedded controller interfaces:
• Non-shared embedded controller. This will be the most common case where there is no need for the

system management handler to communicate with the embedded controller when the system transitions
to ACPI mode. OSPM processes all normal types of system management events, and the system
management handler does not need to take any actions.

• Integrated keyboard controller and embedded controller. This provides three host interfaces as
described earlier by including the standard keyboard controller in an existing component (chip set, I/O
controller) and adding a discrete, standard embedded controller with two interfaces for system
management activities.

• Standard keyboard controller and embedded controller.This provides three host interfaces by providing
a keyboard controller as a distinct component, and two host interfaces are provided in the embedded
controller for system management activities.

• Two embedded controllers. This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host interfaces, and
one controller for keyboard controller functions providing up to two host interfaces.

• Embedded controller and no keyboard controller. Future platforms might provide keyboard
functionality through an entirely different mechanism, which would allow for two host interfaces in an
embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a method
is available to make the embedded controller a shareable resource between multiple tasks running under the
operating system’s control and the system management interrupt handler. This method, as described in this
section, requires several changes:
• Additional external hardware
• Embedded controller firmware changes
• System management interrupt handler firmware changes
• Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between the
operating system’s use of the interface and the system management handler’s use of the interface. This is
done using the Global Lock as described in section 5.2.9.1, “Global Lock.”

This interface sharing protocol also requires embedded controller firmware changes, in order to ensure that
collisions do not occur at the interface. A collision could occur if a byte is placed in the system output
buffer and an interrupt is then generated. There is a small window of time when the incorrect recipient
could receive the data. This problem is resolved by ensuring that the firmware in the embedded controller
does not place any data in the output buffer until it is requested by OSPM or the system management
handler.

More detailed algorithms and descriptions are provided in the following sections.

13.2 Embedded Controller Register Descriptions
The embedded controller contains three registers at two address locations: EC_SC and EC_DATA. The
EC_SC, or Embedded Controller Status/Command register, acts as two registers: a status register for reads
to this port and a command register for writes to this port. The EC_DATA (Embedded Controller Data
register) acts as a port for transferring data between the host CPU and the embedded controller.

ACPI Embedded Controller Interface Specification 297

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.2.1 Embedded Controller Status, EC_SC (R)
This is a read-only register that indicates the current status of the embedded controller interface.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IGN SMI_EVT SCI_EVT BURST CMD IGN IBF OBF

Where:

IGN: Ignored

SMI_EVT: 1 – Indicates SMI event is pending (requesting SMI query).

 0 – No SMI events are pending.

SCI_EVT: 1 – Indicates SCI event is pending (requesting SCI query).

 0 – No SCI events are pending.

BURST: 1 – Controller is in burst mode for polled command processing.

 0 – Controller is in normal mode for interrupt-driven command processing.

CMD: 1 – Byte in data register is a command byte (only used by controller).

 0 – Byte in data register is a data byte (only used by controller).

IBF: 1 – Input buffer is full (data ready for embedded controller).

 0 – Input buffer is empty.

OBF: 1 – Output buffer is full (data ready for host).

 0 – Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of data into the
command or data port but the host has not yet read it. After the host reads the status byte and sees the OBF
flag set, the host reads the data port to get the byte of data that the embedded controller has written. After
the host reads the data byte, the OBF flag is cleared automatically by hardware. This signals the embedded
controller that the data has been read by the host and the embedded controller is free to write more data to
the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or data port,
but the embedded controller has not yet read it. After the embedded controller reads the status byte and sees
the IBF flag set, the embedded controller reads the data port to get the byte of data that the host has written.
After the embedded controller reads the data byte, the IBF flag is automatically cleared by hardware. This
is the signal to the host that the data has been read by the embedded controller and that the host is free to
write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event that
requires the operating system’s attention. The embedded controller sets this bit in the status register, and
generates an SCI to OSPM. OSPM needs this bit to differentiate command-complete SCIs from notification
SCIs. OSPM uses the query command to request the cause of the SCI_EVT and take action. For more
information, see section 13.3, “Embedded Controller Command Set.”)

298 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event that
requires the system management interrupt handler’s attention. The embedded controller sets this bit in the
status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable command
from the host, has halted normal processing, and is waiting for a series of commands to be sent from the
host. This allows OSPM or system management handler to quickly read and write several bytes of data at a
time without the overhead of SCIs between the commands.

13.2.2 Embedded Controller Command, EC_SC (W)
This is a write-only register that allows commands to be issued to the embedded controller. Writes to this
port are latched in the input data register and the input buffer full flag is set in the status register. Writes to
this location also cause the command bit to be set in the status register. This allows the embedded controller
to differentiate the start of a command sequence from a data byte write operation.

13.2.3 Embedded Controller Data, EC_DATA (R/W)
This is a read/write register that allows additional command bytes to be issued to the embedded controller,
and allows OSPM to read data returned by the embedded controller. Writes to this port by the host are
latched in the input data register, and the input buffer full flag is set in the status register. Reads from this
register return data from the output data register and clear the output buffer full flag in the status register.

13.3 Embedded Controller Command Set
The embedded controller command set allows OSPM to communicate with the embedded controllers.
ACPI defines the commands and their byte encodings for use with the embedded controller that are shown
in the following table.

Table 13-1 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding

Read Embedded Controller (RD_EC) 0x80

Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller (BE_EC) 0x82

Burst Disable Embedded Controller (BD_EC) 0x83

Query Embedded Controller (QR_EC) 0x84

13.3.1 Read Embedded Controller, RD_EC (0x80)
This command byte allows OSPM to read a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command consists of a command byte written to the Embedded Controller
Command register (EC_SC), followed by an address byte written to the Embedded Controller Data register
(EC_DATA). The embedded controller then returns the byte at the addressed location. The data is read at
the data port after the OBF flag is set.

ACPI Embedded Controller Interface Specification 299

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.3.2 Write Embedded Controller, WR_EC (0x81)
This command byte allows OSPM to write a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command allows OSPM to write a byte in the address space of the embedded
controller. It consists of a command byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register (EC_DATA), followed by a
data byte written to the Embedded Controller Data Register (EC_DATA); this is the data byte written at the
addressed location.

13.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
This command byte allows OSPM to request dedicated attention from the embedded controller and (except
for critical events) prevents the embedded controller from doing tasks other than receiving command and
data from the host processor (either the system management interrupt handler or OSPM). This command is
an optimization that allows the host processor to issue several commands back to back, in order to reduce
latency at the embedded controller interface. When the controller is in the burst mode, it should transition
to the burst disable state if the host does not issue a command within the following guidelines:
• First Access – 400 microseconds
• Subsequent Accesses – 50 microseconds each
• Total Burst Time – 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process a critical event. If
the embedded controller disables burst mode for any reason other than the burst disable command, it should
generate an SCI to OSPM to indicate the change.

While in burst mode, the embedded controller follows these guidelines for OSPM driver:

SCIs are generated as normal, including IBF=0 and OBF=1.

Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

OSPM driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then the
Embedded Controller will prepare to enter the Burst mode. This includes processing any routine activities
such that it should be able to remain dedicated to OSPM interface for ~ 1 microsecond.

The Embedded Controller sets the Burst bit of the Embedded Controller Status Register, puts the Burst
Acknowledge byte (0x90) into the SCI output buffer, sets the OBF bit, and generates an SCI to signal
OSPM that it is in Burst mode.

Burst mode is exited the following manner:

OSPM driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and then the
Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded Controller Status
register and generating an SCI signal (due to IBF=0).

The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

13.3.4 Burst Disable Embedded Controller, BD_EC (0x83)
This command byte releases the embedded controller from a previous burst enable command and allows it
to resume normal processing. This command is sent by OSPM or system management interrupt handler
after it has completed its entire queued command sequence to the embedded controller.

300 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.3.5 Query Embedded Controller, QR_EC (0x84)
OSPM driver sends this command when the SCI_EVT flag in the EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to OSPM, it first sets the
SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for OSPM to send the query
(QR_EC) command. OSPM detects the embedded controller SCI, sees the SCI_EVT flag set, and sends the
query command to the embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a notification byte with a value between 0-255, indicating the cause of the notification.
The notification byte indicates which interrupt handler operation should be executed by OSPM to process
the embedded controller SCI. The query value of zero is reserved for a spurious query result and indicates
“no outstanding event.”

13.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT
This query command notification header is the special return code that indicates events with an SMBus
controller implemented within an embedded controller. These events include:
• Command completion
• Command error
• Alarm reception

The actual notification value is declared in the EC-SMB-HC device object in the ACPI Namespace.

13.5 Embedded Controller Firmware
The embedded controller firmware must obey the following rules in order to be ACPI-compatible:
• SMI Processing. Although it is not explicitly stated in the command specification section, a shared

embedded controller interface has a separate command set for communicating with each environment
it plans to support. In other words, the embedded controller knows which environment is generating
the command request, as well as which environment is to be notified upon event detection, and can
then generate the correct interrupts and notification values. This implies that a system management
handler uses commands that parallel the functionality of all the commands for ACPI including query,
read, write, and any other implemented specific commands.

• SCI/SMI Task Queuing. If the system design is sharing the interface between both a system
management interrupt handler and OSPM, the embedded controller should always be prepared to
queue a notification if it receives a command. The embedded controller only sets the appropriate event
flag in the status (EC_SC) register if the controller has detected an event that should be communicated
to the OS or system management handler. The embedded controller must be able to field commands
from either environment without loss of the notification event. At some later time, the OS or system
management handler issues a query command to the embedded controller to request the cause of the
notification event.

• Notification Management. The use of the embedded controller means using the query (QR_EC)
command to notify OSPM of system events requiring action. If the embedded controller is shared with
the operating system, the SMI handler uses the SMI_EVT flag and an SMI query command (not
defined in this document) to receive the event notifications. The embedded controller doesn’t place
event notifications into the output buffer of a shared interface unless it receives a query command from
OSPM or the system management interrupt handler.

ACPI Embedded Controller Interface Specification 301

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.6 Interrupt Model
The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt is firmware
generated using an EC general-purpose output and has the waveform shown in Figure 13-3. The embedded
controller SCI is always wired directly to a GPE input, and OSPM driver treats this as an edge event (the
EC SCI GPE cannot be shared).

T
HOLD

Interrupt detected

Interrupt serviced
and cleared

Figure 13-3 EC Interrupt Waveform

13.6.1 Event Interrupt Model
The embedded controller must generate SCIs for the events listed in the following table.

Table 13-2 Events for Which Embedded Controller Must Generate SCIs

Event Description

IBF=0 Signals that the embedded controller has read the last command or data from the
input buffer and the host is free to send more data.

OBF=1 Signals that the embedded controller has written a byte of data into the output
buffer and the host is free to read the returned data.

SCI_EVT=1 Signals that the embedded controller has detected an event that requires OS
attention. OSPM should issue a query (QR_EC) command to find the cause of
the event.

13.6.2 Command Interrupt Model
The embedded controller must generate SCIs for commands as follows:

• Read Command (3 Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to read) No Interrupt

Byte #3 (Data read to host) Interrupt on OBF=1

• Write Command (3 Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to write) Interrupt on IBF=0

Byte #3 (Data to read) Interrupt on IBF=0

302 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

• Query Command (2 Bytes)

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Query value to host) Interrupt on OBF=1

• Burst Enable Command (2 Bytes)

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Burst acknowledge byte) Interrupt on OBF=1

• Burst Disable Command (1 Byte)

Byte #1 (Command byte Header) Interrupt on IBF=0

13.7 Embedded Controller Interfacing Algorithms
To initiate communications with the embedded controller, OSPM or system management handler acquires
ownership of the interface. This ownership is acquired through the use of the Global Lock (described in
section 5.2.9.1, “Global Lock”), or is owned by default by OSPM as a non-shared resource (and the Global
Lock is not required for accessibility).

After ownership is acquired, the protocol always consists of the passing of a command byte. The command
byte will indicate the type of action to be taken. Following the command byte, zero or more data bytes can
be exchanged in either direction. The data bytes are defined according to the command byte that is
transferred.

The embedded controller also has two status bits that indicate whether the registers have been read. This is
used to ensure that the host or embedded controller has received data from the embedded controller or host.
When the host writes data to the command or data register of the embedded controller, the input buffer flag
(IBF) in the status register is set within 1 microsecond. When the embedded controller reads this data from
the input buffer, the input buffer flag is reset. When the embedded controller writes data into the output
buffer, the output buffer flag (OBF) in the status register is set. When the host processor reads this data
from the output buffer, the output buffer flag is reset.

13.8 Embedded Controller Description Information
Certain aspects of the embedded controller’s operation have OEM-definable values associated with them.
The following is a list of values that are defined in the software layers of the ACPI specification:
• Status flag indicating whether the interface requires the use of the Global Lock.
• Bit position of embedded controller interrupt in general-purpose status register.
• Decode address for command/status register.
• Decode address for data register.
• Base address and query value of any EC-SMBus controller.

For implementation details of the above listed information, see sections 13.11, “Defining an Embedded
Controller Device in ACPI Namespace,” and 13.12, “Defining an Embedded Controller SMBus Host
Controller in ACPI Namespace.”

An embedded controller will require the inclusion of the GLK method in its ACPI namespace if potentially
contentious accesses to device resources are performed by non-OS code. See section 6.5.7, “_GLK (Global
Lock)” for details about the _GLK method.

ACPI Embedded Controller Interface Specification 303

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9 SMBus Host Controller Interface via Embedded Controller
This section specifies a standard interface that an ACPI-compatible OS can use to communicate with
embedded controller-based SMBus host controllers (EC-SMB-HC). This interface allows the host
processor (under control of OSPM) to manage devices on the SMBus. Typical devices residing on the
SMBus include Smart Batteries, Smart Battery Chargers, contrast/backlight control, and temperature
sensors.

The EC-SMB-HC interface consists of a block of registers that reside in embedded controller space. These
registers are used by software to initiate SMBus transactions and receive SMBus notifications. By using a
well-defined register set, OS software can be written to operate with any vendor’s embedded controller
hardware.

Certain SMBus segments have special requirements that the host controller filters certain SMBus
commands (for example, to prevent an errant application or virus from potentially damaging the battery
subsystem). This is most easily accomplished by implementing the host interface controller through an
embedded controller—as embedded controller can easily filter out potentially problematic commands.

Notice that an EC-SMB-HC interface will require the inclusion of the GLK method in its ACPI namespace
if potentially contentious accesses to device resources are performed by non-OS code. See section6.5.7,
“_GLK (Global Lock” for details on using the _GLK method.

13.9.1 Register Description
The EC-SMBus host interface is a flat array of registers that are arranged sequentially in the embedded
controller address space.

13.9.1.1 Status Register, SMB_STS
This register indicates general status on the SMBus. This includes SMB-HC command completion status,
alarm received status, and error detection status (the error codes are defined later in this section). This
register is cleared to zeroes (except for the ALRM bit) whenever a new command is issued using a write to
the protocol (SMB_PRTCL) register. This register is always written with the error code before clearing the
protocol register. The SMB-HCquery event (that is, an SMB-HCinterrupt) is raised after the clearing of the
protocol register.

Note: OSPM must ensure the ALRM bit is cleared after it has been serviced by writing ‘00’ to the
SMB_STS register.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DONE ALRM RES STATUS

Where:

DONE: Indicates the last command has completed and no error.

ALRM: Indicates an SMBus alarm message has been received.

RES: Reserved

STATUS: Indicates SMBus communication status for one of the reasons listed in the following
table.

304 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 13-3 SMBus Status Codes

Status
Code Name Description

00h SMBus OK Indicates the transaction has been successfully completed.

07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.

10h SMBus Device Address Not
Acknowledged

Indicates the transaction failed because the slave device
address was not acknowledged.

11h SMBus Device Error
Detected

Indicates the transaction failed because the slave device
signaled an error condition.

12h SMBus Device Command
Access Denied

Indicates the transaction failed because the SMBus host does
not allow the specific command for the device being
addressed. For example, the SMBus host might not allow a
caller to adjust the Smart Battery Charger’s output.

13h SMBus Unknown Error Indicates the transaction failed because the SMBus host
encountered an unknown error.

17h SMBus Device Access
Denied

Indicates the transaction failed because the SMBus host does
not allow access to the device addressed. For example, the
SMBus host might not allow a caller to directly
communicate with an SMBus device that controls the
system’s power planes.

18h SMBus Timeout Indicates the transaction failed because the SMBus host
detected a timeout on the bus.

19h SMBus Host Unsupported
Protocol

Indicates the transaction failed because the SMBus host does
not support the requested protocol.

1Ah SMBus Busy Indicates that the transaction failed because the SMBus host
reports that the SMBus is presently busy with some other
transaction. For example, the Smart Battery might be
sending charging information to the Smart Battery Charger.

1Fh SMBus PEC (CRC-8) Error Indicates that a Packet Error Checking (PEC) error occurred
during the last transaction.

All other error codes are reserved.

13.9.1.2 Protocol Register, SMB_PRTCL

This register determines the type of SMBus transaction generated on the SMBus. In addition to indicating
the protocol type to the SMB-HC, a write to this register initiates the transaction on the SMBus. Notice that
bit 7 of the protocol value is used to indicate whether packet error checking should be employed. A value
of 1 (one) in this bit indicates that PEC format should be used for the specified protocol, and a value of 0
(zero) indicates the standard (non-PEC) format should be used.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PEC PROTOCOL

ACPI Embedded Controller Interface Specification 305

Compaq/Intel/Microsoft/Phoenix/Toshiba

Where:

PROTOCOL: 0x00 – Controller Not In Use

 0x01 – Reserved

 0x02 – Write Quick Command

 0x03 – Read Quick Command

 0x04 – Send Byte

 0x05 – Receive Byte

 0x06 – Write Byte

 0x07 – Read Byte

 0x08 – Write Word

 0x09 – Read Word

 0x0A – Write Block

 0x0B – Read Block

 0x0C – Process Call

 0x0D – Block Write-Block Read Process Call

For example, the protocol value of 0x09 would be used to communicate to a device that supported the
standard read word protocol. If this device also supported packet error checking for this protocol, a value of
0x89 (read word with PEC) could optionally be used. See the SMBus specification for more information on
packet error checking.

When OSPM initiates a new command such as write to the SMB_PRTCL register, the SMBus controller
first updates the SMB_STS register and then clears the SMB_PRTCL register. After the SMB_PRTCL
register is cleared, the host controller query value is raised.

All other protocol values are reserved.

13.9.1.3 Address Register, SMB_ADDR
This register contains the 7-bit address to be generated on the SMBus. This is the first byte to be sent on the
SMBus for all of the different protocols.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

Where:

RES: Reserved

ADDRESS: 7-bit SMBus address. This address is not zero aligned (in other words, it is only a 7-
bit address (A6:A0) that is aligned from bit 1-7).

306 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9.1.4 Command Register, SMB_CMD
This register contains the command byte that will be sent to the target device on the SMBus and is used for
the following protocols: send byte, write byte, write word, read byte, read word, process call, block read
and block write. It is not used for the quick commands or the receive byte protocol, and as such, its value is
a “don’t care” for those commands.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

COMMAND

Where:

COMMAND: Command byte to be sent to SMBus device.

13.9.1.5 Data Register Array, SMB_DATA[i], i=0-31
This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA

Where:

DATA: One byte of data to be sent or received (depending upon protocol).

13.9.1.6 Block Count Register, SMB_BCNT
This register contains the number of bytes of data present in the SMB_DATA[i] registers preceding any
write block and following any read block transaction. The data size is defined on a per protocol basis.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

RES BCNT

13.9.1.7 Alarm Address Register, SMB_ALRM_ADDR
This register contains the address of an alarm message received by the host controller, at slave address 0x8,
from the SMBus master that initiated the alarm. The address indicates the slave address of the device on the
SMBus that initiated the alarm message. The status of the alarm message is contained in the
SMB_ALRM_DATAx registers. Once an alarm message has been received, the SMB-HC will not receive
additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

Where:

RES: Reserved

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.

ACPI Embedded Controller Interface Specification 307

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0],
SMB_ALRM_DATA[1]
These registers contain the two data bytes of an alarm message received by the host controller, at slave
address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the specific reason
for the alarm message, such that OSPM can take actions. Once an alarm message has been received, the
SMB-HCwill not receive additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA (D7:D0)

Where:

DATA: Data byte received in alarm message.

The alarm address and alarm data registers are not read by OSPM until the alarm status bit is set. OSPM
driver then reads the 3 bytes, and clears the alarm status bit to indicate that the alarm registers are now
available for the next event.

13.9.2 Protocol Description
This section describes how to initiate the different protocols on the SMBus through the interface described
in section 13.9.1, “Register Descriptions.” The registers should all be written with the appropriate values
before writing the protocol value that starts the SMBus transaction. All transactions can be completed in
one pass.

13.9.2.1 Write Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x02 to initiate the write quick protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.2 Read Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x03 to initiate the read quick protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

308 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9.2.3 Send Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x04 to initiate the send byte protocol, or 0x84 to initiate the send byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.4 Receive Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x05 to initiate the receive byte protocol, or 0x85 to initiate the receive byte
protocol with PEC.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.5 Write Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Data byte to be sent.

SMB_PRTCL: Write 0x06 to initiate the write byte protocol, or 0x86 to initiate the write byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

ACPI Embedded Controller Interface Specification 309

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9.2.6 Read Byte
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x07 to initiate the read byte protocol, or 0x87 to initiate the read byte
protocol with PEC.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.7 Write Word
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x08 to initiate the write word protocol, or 0x88 to initiate the write word
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.8 Read Word

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x09 to initiate the read word protocol, or 0x89 to initiate the read word
protocol with PEC.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

310 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9.2.9 Write Block
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-32).

SMB_BCNT: Number of data bytes (1-32) to be sent.

SMB_PRTCL: Write 0x0A to initiate the write block protocol, or 0x8A to initiate the write block
protocol with PEC.

Data Returned:

SMB_PRTCL: 0x00 to indicate command completion.

SMB_STS: Status code for transaction.

13.9.2.10 Read Block
 Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x0B to initiate the read block protocol, or 0x8B to initiate the read block
protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-32) received.

SMB_DATA[0-31]: Data bytes received (1-32).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.11 Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x0C to initiate the process call protocol, or 0x8C to initiate the process call
protocol with PEC.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

ACPI Embedded Controller Interface Specification 311

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.9.2.12 Block Write-Block Read Process Call
Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-31).

SMB_BCNT: Number of data bytes (1-31) to be sent.

SMB_PRTCL: Write 0x0D to initiate the write block-read block process call protocol, or 0x8D to
initiate the write block-read block process call protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-31) received.

SMB_DATA[0-31]: Data bytes received (1-31).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

Note: The following restrictions apply: The aggregate data length of the write and read blocks must not
exceed 32 bytes and each block (write and read) must contain at least 1 byte of data.

13.9.3 SMBus Register Set
The register set for the SMB-HChas the following format. All registers are 8 bit.

Table 13-4 SMB EC Interface

LOCATION REGISTER NAME DESCRIPTION

BASE+0 SMB_PRTCL Protocol register

BASE+1 SMB_STS Status register

BASE+2 SMB_ADDR Address register

BASE+3 SMB_CMD Command register

BASE+4 SMB_DATA[0] Data register zero

BASE+5 SMB_DATA[1] Data register one

BASE+6 SMB_DATA[2] Data register two

BASE+7 SMB_DATA[3] Data register three

BASE+8 SMB_DATA[4] Data register four

BASE+9 SMB_DATA[5] Data register five

BASE+10 SMB_DATA[6] Data register six

BASE+11 SMB_DATA[7] Data register seven

BASE+12 SMB_DATA[8] Data register eight

BASE+13 SMB_DATA[9] Data register nine

BASE+14 SMB_DATA[10] Data register ten

BASE+15 SMB_DATA[11] Data register eleven

312 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 13-4 SMB EC Interface (continued)

BASE+16 SMB_DATA[12] Data register twelve

BASE+17 SMB_DATA[13] Data register thirteen

BASE+18 SMB_DATA[14] Data register fourteen

BASE+19 SMB_DATA[15] Data register fifteen

BASE+20 SMB_DATA[16] Data register sixteen

BASE+21 SMB_DATA[17] Data register seventeen

BASE+22 SMB_DATA[18] Data register eighteen

BASE+23 SMB_DATA[19] Data register nineteen

BASE+24 SMB_DATA[20] Data register twenty

BASE+25 SMB_DATA[21] Data register twenty-one

BASE+26 SMB_DATA[22] Data register twenty-two

BASE+27 SMB_DATA[23] Data register twenty-three

BASE+28 SMB_DATA[24] Data register twenty-four

BASE+29 SMB_DATA[25] Data register twenty-five

BASE+30 SMB_DATA[26] Data register twenty-six

BASE+31 SMB_DATA[27] Data register twenty-seven

BASE+32 SMB_DATA[28] Data register twenty-eight

BASE+33 SMB_DATA[29] Data register twenty-nine

BASE+34 SMB_DATA[30] Data register thirty

BASE+35 SMB_DATA[31] Data register thirty-one

BASE+36 SMB_BCNT Block Count Register

BASE+37 SMB_ALRM_ADDR Alarm address

BASE+38 SMB_ALRM_DATA[0] Alarm data register zero

BASE+39 SMB_ALRM_DATA[1] Alarm data register one

13.10 SMBus Devices
The embedded controller interface provides the system with a standard method to access devices on the
SMBus. It does not define the data and/or access protocol(s) used by any particular SMBus device. Further,
the embedded controller can (and probably will) serve as a gatekeeper to prevent accidental or malicious
access to devices on the SMBus.

Some SMBus devices are defined by their address and a specification that describes the data and the
protocol used to access that data. For example, the Smart Battery System devices are defined by a series of
specifications including:
• Smart Battery Data specification
• Smart Battery Charger specification
• Smart Battery Selector specification
• Smart Battery System Manager specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

ACPI Embedded Controller Interface Specification 313

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.10.1 SMBus Device Access Restrictions
In some cases, the embedded controller interface will not allow access to a particular SMBus device. Some
SMBus devices can and do communicate directly between themselves. Unexpected accesses can interfere
with their normal operation and cause unpredictable results.

13.10.2 SMBus Device Command Access Restriction
There are cases where part of an SMBus device’s commands are public while others are private. Extraneous
attempts to access these commands might cause interference with the SMBus device’s normal operation.

The Smart Battery and the Smart Battery Charger are good examples of devices that should not have their
entire command set exposed. The Smart Battery commands the Smart Battery Charger to supply a specific
charging voltage and charging current. Attempts by anyone to alter these values can cause damage to the
battery or the mobile system. To protect the system’s integrity, the embedded controller interface can
restrict access to these commands by returning one of the following error codes: Device Command Access
Denied (0x12) or Device Access Denied (0x17).

13.11 Defining an Embedded Controller Device in ACPI Namespace
An embedded controller device is created using the named device object. The embedded controller’s device
object requires the following elements:

Table 13-5 Embedded Controller Device Object Control Methods

Object Description

_CRS Named object that returns the Embedded Controller’s current resource settings. Embedded
Controllers are considered static resources; hence only return their defined resources. The
embedded controller resides only in system I/O or memory space. The first address region
returned is the data port, and the second address region returned is the status/command port for
the embedded controller. CRS is a standard device configuration control method defined in
section 6.2.1, “_CRS (Current Resource Settings.”

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. This value is
set to PNP0C09. _HID is a standard device configuration control method defined in section
6.1.4, “_HID (Hardware ID).”

_GPE Named Object that evaluates to either an integer or a package. If _GPE evaluates to an integer,
the value is the bit assignment of the SCI interrupt within the GPEx_STS register of a GPE
block described in the FADT that the embedded controller will trigger.

If _GPE evaluates to a package, then that package contains two elements. The first is an object
reference to the GPE Block device that contains the GPE register that will be triggered by the
embedded controller. The second element is numeric (integer) that specifies the bit assignment
of the SCI interrupt within the GPEx_STS register of the GPE Block device referenced by the
first element in the package. This control method is specific to the embedded controller.

314 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.11.1 Example: EC Definition ASL Code
Example ASL code that defines an embedded controller device is shown below:

Device(EC0) {
 // PnP ID
 Name(_HID, EISAID(“PNP0C09”))
 // Returns the “Current Resources” of EC
 Name(_CRS,
 ResourceTemplate(){ // port 0x62 and 0x66
 IO(Decode16, 0x62, 0x62, 0, 1),
 IO(Decode16, 0x66, 0x66, 0, 1)
 }
)

// Define that the EC SCI is bit 0 of the GP_STS register
 Name(_GPE, 0)

 OperationRegion(ECOR, EmbeddedControl, 0, 0xFF)
 Field(ECOR, ByteAcc, Lock, Preserve) {
 // Field definitions go here
 }
 }

13.12 Defining an EC SMBus Host Controller in ACPI Namespace
An EC-SMB-HC device is defined using the named device object. The EC-SMB- HC’s device object
requires the following elements:

Table 13-6 EC SMBus HC Device Objects

Object Description

_HID Named object that provides the EC-SMB- HC’s Plug and Play identifier. This value is be set to
ACPI0001. _HID is a standard device configuration control method defined in section 6.1.4,
“_HID (Hardware ID).”

_EC Named object that evaluates to a WORD that defines the SMBus attributes needed by the
SMBus driver. _EC is the Embedded Controller Offset Query Control Method. The most
significant byte is the address offset in embedded controller space of the SMBus controller; the
least significant byte is the query value for all SMBus events.

ACPI Embedded Controller Interface Specification 315

Compaq/Intel/Microsoft/Phoenix/Toshiba

13.12.1Example: EC SMBus Host Controller ASL-Code
Example ASL code that defines an SMB-HC from within an embedded controller device is shown below:

Device(EC0)
{
 Name(_HID, EISAID("PNP0C09"))
 Name(_CRS, ResourceTemplate()
 {
 IO(Decode16, 0x62, 0x62, 0, 1), // Status port
 IO(Decode16, 0x66, 0x66, 0, 1) // command port
 })
 Name(_GPE, 0)

 Device (SMB0)
 {
 Name(_HID, "ACPI0001") // EC-SMB-HC
 Name(_UID, 0) // Unique device identifier
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
 }

 Device (SMB1)
 {
 Name(_HID, "ACPI0001") // EC-SMB-HC
 Name(_UID, 1) // Unique device identifier
 Name(_EC, 0x8031) // EC offset 0x80, query bit 0x31
 :
 }
} // end of EC0

316 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 317

Compaq/Intel/Microsoft/Phoenix/Toshiba

14 ACPI System Management Bus Interface Specification
This section describes the System Management Bus (SMBus) generic address space and the use of this
address space to access SMBus devices from AML.

Unlike other address spaces, SMBus operation regions are inherently non-linear, where each offset within
an SMBus address space represents a variable-sized (from 0 to 32 bytes) field. Given this uniqueness,
SMBus operation regions include restrictions on their field definitions and require the use of an SMBus-
specific data buffer for all transactions.

The SMBus interface presented in this section is intended for use with any hardware implementation
compatible with the SMBus specification. SMBus hardware is broadly classified as either non-EC–based or
EC-based. EC-based SMBus implementations comply with the standard register set defined in section 13,
ACPI Embedded Controller Interface Specification.”

Non-EC SMBus implementations can employ any hardware interface and are typically used for their cost
savings when SMBus security is not required. Non–EC-based SMBus implementations require the
development of hardware specific drivers for each OS implementation. See section 14.2, “Declaring
SMBus Host Controller Objects,” for more information.

Support of the SMBus generic address space by ACPI-compatible operating systems is optional. As such,
the Smart Battery System Implementer’s Forum (SBS-IF) has defined an SMBus interface based on a
standard set of control methods. This interface is documented in the SMBus Control Method Interface
Specification, available from the SBS-IF Web site at: http://www.sbs-forum.org/.

14.1 SMBus Overview
SMBus is a two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration. For more information, refer to the complete set
of SMBus specifications published by the SBS-IF.

14.1.1 SMBus Slave Addresses
Slave addresses are specified using a 7-bit non-shifted notation. For example, the slave address of the
Smart Battery Selector device would be specified as 0x0A (1010b), not 0x14 (10100b) as might be found in
other documents. These two different forms of addresses result from the format in which addresses are
transmitted on the SMBus.

During transmission over the physical SMBus, the slave address is formatted in an 8-bit block with bits 7-1
containing the address and bit 0 containing the read/write bit. ASL code, on the other hand, presents the
slave address simply as a 7-bit value making it the responsibility of the OS (driver) to shift the value if
needed. For example, the ASL value would have to be shifted left 1 bit before being written to the
SMB_ADDR register in the EC based SMBus as described in section 13.9.1.3, “Address Register,
SMB_ADDR.”

14.1.2 SMBus Protocols
There are six possible command protocols for any given SMBus slave device, and a device may use any or
all of the protocols to communicate. The protocols and associated access type indicators are listed below.
Notice that the protocols values are similar to those defined for the EC-based SMBus in section 13.9.1.2,
“Protocol Register, SMB_PRTCL,” except that protocol pairs (for example, Read Byte, Write Byte) have
been joined.

318 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 14-1 SMBus Protocol Types

Value Type Description

0x02 SMBQuick SMBus Read/Write Quick Protocol

0x04 SMBSendReceive SMBus Send/Receive Byte Protocol

0x06 SMBByte SMBus Read/Write Byte Protocol

0x08 SMBWord SMBus Read/Write Word Protocol

0x0A SMBBlock SMBus Read/Write Block Protocol

0x0C SMBProcessCall SMBus Process Call Protocol

0x0D SMBBlockProcessCall SMBus Write Block-Read Block
Process Call Protocol

All other protocol values are reserved.

Notice that bit 7 of the protocol value is used by this interface to indicate to the SMB-HC whether or not
packet error checking (PEC) should be employed for a transaction. Packet error checking is described in
section 7.4 of the System Management Bus Specification, Version 1.1. This highly desirable capability
improves the reliability and robustness of SMBus communications.

The bit encoding of the protocol value is shown below. For example, the value 0x86 would be used to
specify the PEC version of the SMBus Read/Write Byte protocol.

Bit 7 = Packet Error Checking

Bits 6:0 = Protocol

45 12367 0

Figure 14-1 Bit Encoding Example

Notice that bit 0 of the protocol value is always zero (even number hexadecimal values). In a manner
similar to the slave address, software that implements the SMBus interface is responsible for setting this bit
to indicate whether the transaction is a read (for example, Read Byte) or write (for example, Write Byte)
operation.

For example, software implanting this interface for EC-SMBus segments would set bit 0 for read
transactions. For the SMBByte protocol (0x06), this would result in the value 0x07 being placed into the
SMB_PRTCL register (or 0x87 if PEC is requested).

14.1.3 SMBus Status Codes
The use of status codes helps AML determine whether an SMBus transaction was successful. In general, a
status code of zero indicates success, while a non-zero value indicates failure. The SMBus interface uses
the same status codes defined for the EC-SMBus (see section 13.9.1.1, “Status Register, SMB_STS”).

14.1.4 SMBus Command Values
SMBus devices may optionally support up to 256 device-specific commands. For these devices, each
command value supported by the device is modeled by this interface as a separate virtual register.
Protocols that do not transmit a command value (for example, Read/Write Quick and Send/Receive Byte)
are modeled using a single virtual register (with a command value = 0x00).

ACPI System Management Bus Interface Specification 319

Compaq/Intel/Microsoft/Phoenix/Toshiba

14.2 Declaring SMBus Host Controller Objects
EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in section
13.12, “Defining an Embedded Controller SMBus Host Controller in ACPI Namespace.” An example
definition is given below. Using the HID value “ACPI0001” identifies that this SMB-HC is implemented
on an embedded controller using the standard SMBus register set defined in section 13.9, SMBus Host
Controller Interface via Embedded Controller.”

Device (SMB0)
{
 Name(_HID, "ACPI0001") // EC-based SMBus 1.0 compatible Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
}

EC-based SMBus 2.0-compatible host controllers should be defined similarly in the name space as follows:

Device (SMB0)
{
 Name(_HID, "ACPI0005") // EC-based SMBus 2.0 compatible Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
}

Non–EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An
example definition is given below. These devices use a vendor-specific hardware identifier (HID) to
specify the type of SMB-HC (do not use “ACPI0001” or “ACPI0005”). Using a vendor-specific HID
allows the correct software to be loaded to service this segment’s SMBus address space.

Device(SMB0)
{
 Name(_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
 :
}

Regardless of the type of hardware, some OS software element (for example, the SMBus HC driver) must
register with OSPM to support all SMBus operation regions defined for the segment. This software allows
the generic SMBus interface defined in this section to be used on a specific hardware implementation by
translating between the conceptual (for example, SMBus address space) and physical (for example, process
of writing/reading registers) models. Because of this linkage, SMBus operation regions must be defined
immediately within the scope of the corresponding SMBus device.

14.3 Declaring SMBus Devices
The SMBus, as defined by the SMBus 1.0 Specification, is not an enumerable bus. As a result, an SMBus
1.0-compatible SMB-HCdriver cannot discover child devices on the SMBus and load the appropriate
corresponding device drivers. As such, SMBus 1.0-compatible devices are declared in the ACPI
namespace, in like manner to other motherboard devices, and enumerated by OSPM.

The SMBus 2.0 specification adds mechanisms enabling device enumeration on the bus while providing
compatibility with existing devices. ACPI 2.0 defines and associates the “ACPI0005” HID value with an
EC-based SMBus 2.0-compatible host controller. OSPM will enumerate SMBus 1.0-compatible devices
when declared in the namespace under an SMBus 2.0-compatible host controller.

The responsibility for the definition of ACPI namespace objects, required by an SMBus 2.0-compatible
host controller driver to enumerate non–bus-enumerable devices, is relegated to the SBS-IF in ACPI 2.0.
The definition of these objects is documented in the SMBus ACPI Namespace Device Definition
Specification, available from the SBS-IF Web site at: http://www.sbs-forum.org/.

ACPI 2.0 uses _ADR to associate SMBus devices with their lowest SMBus slave address.

320 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

14.4 Declaring SMBus Operation Regions
Each SMBus operation region definition identifies a single SMBus slave address. Operation regions are
defined only for those SMBus devices that need to be accessed from AML. As with other regions, SMBus
operation regions are only accessible via the Field term (see section 14.5, “Declaring SMBus Fields”).

This interface models each SMBus device as having a 256-byte linear address range. Each byte offset
within this range corresponds to a single command value (for example, byte offset 0x12 equates to
command value 0x12), with a maximum of 256 command values. By doing this, SMBus address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from section 16.2.3.3.1.14, “OperationRegion [Declare
Operation Region]”) is described below.

OperationRegion(
 RegionName, //NameString
 RegionSpace, //RegionSpaceKeyword
 Offset, //TermArg=>Integer
 Length //TermArg=>Integer
)

Where:
• RegionName specifies a name for this slave device (for example, “SBD0”).
• RegionSpace must be set to SMBus (operation region type value 0x04).
• Offset is a word-sized value specifying the slave address and initial command value offset for the target

device. The slave address is stored in the high byte and the command value offset is stored in the low
byte. For example, the value 0x4200 would be used for an SMBus device residing at slave address
0x42 with an initial command value offset of zero (0).

• Length is set to the 0x100 (256), representing the maximum number of possible command values, for
regions with an initial command value offset of zero (0). The difference of these two values is used for
regions with non-zero offsets. For example, a region with an Offset value of 0x4210 would have a
corresponding Length of 0xF0 (0x100 minus 0x10).

For example, the Smart Battery Subsystem (illustrated below) consists of the Smart Battery Charger at
slave address 0x09, the Smart Battery System Manager at slave address 0x0A, and one or more batteries
(multiplexed) at slave address 0x0B. (Notice that Figure 14-1 represents the logical connection of a Smart
Battery Subsystem. The actual physical connections of the Smart Battery(s) and the Smart Battery Charger
are made through the Smart Battery System Manager.) All devices support the Read/Write Word protocol.
Batteries also support the Read/Write Block protocol.

EC

'SMB0'

Smart Battery
System Manager

[0x0A]

[0x0B]
Smart Battery

Device(s)

[0x09]
Smart Battery

Charger

Figure 14-2 Smart Battery Subsystem Devices

ACPI System Management Bus Interface Specification 321

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following ASL code shows the use of the OperationRegion term to describe these SMBus devices:

Device (SMB0)
{
 Name(_HID, "ACPI0001") // EC-SMBus Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30

OperationRegion(SBC0, SMBus, 0x0900, 0x100) // Smart Battery Charger
OperationRegion(SBS0, SMBus, 0x0A00, 0x100) // Smart Battery Selector
OperationRegion(SBD0, SMBus, 0x0B00, 0x100) // Smart Battery Device(s)

 :
}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ EC-SMBus device. Each definition corresponds to a separate slave address (device), and happens
to use an initial command value offset of zero (0).

14.5 Declaring SMBus Fields
As with other regions, SMBus operation regions are only accessible via the Field term. Each field element
is assigned a unique command value and represents a virtual register on the targeted SMBus device.

The syntax for the Field term (from section 16.2.3.3.1.10, “Event [Declare Event Synchronization
Object]”) is described below.

Field(
 RegionName, //NameString=>OperationRegion
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:
• RegionName specifies the operation region name previously defined for the device.
• AccessType must be set to BufferAcc. This indicates that access to field elements will be done using a

region-specific data buffer. For this access type, the field handler is not aware of the data buffer’s
contents which may be of any size. When a field of this type is used as the source argument in an
operation it simply evaluates to a buffer. When used as the destination, however, the buffer is passed
bi-directionally to allow data to be returned fromwrite operations. The modified buffer then becomes
the execution result of that operation. This is slightly different than the normal case in which the
execution result is the same as the value written to the destination. Note that the source is never
changed, since it could be a read only object (see section 14.6, “Declaring an SMBus Data Buffer” and
section 16.2.3.4, “Opcode Terms”).

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the SMBus,
and NoLock otherwise.

• UpdateRule is not applicable to SMBus operation regions since each virtual register is accessed in its
entirety. This field is ignored for all SMBus field definitions.

SMBus operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation is
imposed both to simplify the SMBus interface and to maintain consistency with the physical model defined
by the SMBus specification.

SMBus protocols are assigned to field elements using the AccessAs term within the field definition. The
syntax for this term (from section 16.1.3, “ASL Language and Terms”) is described below.

322 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

AccessAs(
 AccessType, //AccessTypeKeyword
 AccessAttribute //Nothing | ByteConst | AccessAttribKeyword
)

Where:
• AccessType must be set to BufferAcc.
• AccessAttribute indicates the SMBus protocol to assign to command values that follow this term. See

section 14.1.2, “SMBus Protocols,” for a listing of the SMBus protocol types and values.

An AccessAs term must appear as the first entry in a field definition to set the initial SMBus protocol for
the field elements that follow. A maximum of one SMBus protocol may be defined for each field element.
Devices supporting multiple protocols for a single command value can be modeled by specifying multiple
field elements with the same offset (command value), where each field element is preceded by an AccessAs
term specifying an alternate protocol.

For example, the register at command value 0x08 for a Smart Battery device (illustrated below) represents
a word value specifying the battery temperature (in degrees Kelvin), while the register at command value
0x20 represents a variable-length (0 to 32 bytes) character string specifying the name of the company that
manufactured the battery.

RemainingCapacityAlarm()

Smart Battery Device

0x00 (Word)

0x01 (Word)

0x08 (Word)

0x20 (Block)

0x21 (Block)

:

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 ... Byte 31

Byte 0 ... Byte 31

:

Command Value Register

ManufacturerAccess()

Temperature()

ManufacturerName()

DeviceName()

:

Figure 14-3 Smart Battery Device Virtual Registers

The following ASL code shows the use of the OperationRegion, Field, AccessAs, and Offset terms to
represent these Smart Battery device virtual registers:

 OperationRegion(SBD0, SMBus, 0x0B00, 0x0100)

Field(SBD0, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBWord) // Use the SMBWord protocol for the following…
 MFGA, 8, // ManufacturerAccess() [command value 0x00]
 RCAP, 8, // RemainingCapacityAlarm() [command value 0x01]
 Offset(0x08) // Skip to command value 0x08…
 BTMP, 8, // Temperature() [command value 0x08]
 Offset(0x20) // Skip to command value 0x20…
 AccessAs(BufferAcc, SMBBlock) // Use the SMBBlock protocol for the following…
 MFGN, 8, // ManufacturerName() [command value 0x20]
 DEVN, 8 // DeviceName() [command value 0x21]
}

Notice that command values are equivalent to the field element’s byte offset (for example, MFGA=0,
RCAP=1, BTMP=8). The AccessAs term indicates which SMBus protocol to use for each command value.

ACPI System Management Bus Interface Specification 323

Compaq/Intel/Microsoft/Phoenix/Toshiba

14.6 Declaring and Using an SMBus Data Buffer
The use of a data buffer for SMBus transactions allows AML to receive status and data length values, as
well as making it possible to implement the Process Call protocol. As previously mentioned, the BufferAcc
access type is used to indicate to the field handler that a region-specific data buffer will be used.

For SMBus operation regions, this data buffer is defined as a fixed-length 34-byte buffer that, if
represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{
 BYTE Status; // Byte 0 of the data buffer
 BYTE Length; // Byte 1 of the data buffer
 BYTE[32] Data; // Bytes 2 through 33 of the data buffer
}

Where:
• Status (byte 0) indicates the status code of a given SMBus transaction. See section 14.1.3, “SMBus

Status Code,” for more information.
• Length (byte 1) specifies the number of bytes of valid data that exists in the data bufferUse of this field

is only defined for the Read/Write Block protocol, where valid Length values are 0 through 32. For
other protocols—where the data length is implied by the protocol—this field is reserved.

• Data (bytes 2-33) represents a 32-byte buffer, and is the location where actual data is stored.

For example, the following ASL shows the use of the SMBus data buffer for performing transactions to a
Smart Battery device. This code is based on the example ASL presented in section 14.5, “Declaring SMBus
Fields,” which lists the operation region and field definitions for the Smart Battery device.

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)
CreateByteField(BUFF, 0x01, OB2) // OB2 = Length (Byte)
CreateWordField(BUFF, 0x02, OB3) // OB3 = Data (Word – Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, OB4) // OB4 = Data (Block – Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual(OB1, 0x00)) // Successful?
{
 // OB3 = Battery temperature in 1/10th degrees Kelvin
}

/* Read the battery manufacturer name */
Store(MFGN, BUFF) // Invoke Read Block transaction
If(LEqual(OB1, 0x00)) // Successful?
{
 // OB2 = Length of the manufacturer name
 // OB4 = Manufacturer name (as a counted string)
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 2-33) is ‘typecast’ as both word (OB3) and block (OB4) data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction to
obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in a 34-byte
buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an additional
Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual(OB1, 0x00)) {…} // Transaction successful?

324 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is the
nature of BufferAcc’s bi-directionality described in section 14.5, “Declaring SMBus Fields” It should be
noted that storing (or parsing) the result of an SMBus Write transaction is not required although useful for
ascertaining the outcome of a transaction.

SMBus Process Call protocols require similar semantics due to the fact that only destination operands are
passed bi-directionally. These transactions require the use of the double-Store() semantics to properly
capture the return results.

14.7 Using the SMBus Protocols
This section provides information and examples on how each of the SMBus protocols can be used to access
SMBus devices from AML.

14.7.1 Read/Write Quick (SMBQuick)
The SMBus Read/Write Quick protocol (SMBQuick) is typically used to control simple devices using a
device-specific binary command (for example, ON and OFF). Command values are not used by this
protocol and thus only a single element (at offset 0) can be specified in the field definition. This protocol
transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBQuick) // Use the SMBus Read/Write Quick protocol
 FLD0, 8 // Virtual register at command value 0.
}

/* Create the SMBus data buffer */

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)

/* Signal device (e.g. OFF) */
Store(FLD0, BUFF) // Invoke Read Quick transaction
If(LEqual(OB1, 0x00)) {…} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLD0) // Invoke Write Quick transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s read/write
bit. Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field results in a
Read Quick, and writing to the field results in a Write Quick. In either case data is not transferred—access
to the register is simply used as a mechanism to invoke the transaction.

14.7.2 Send/Receive Byte (SMBSendReceive)
The SMBus Send/Receive Byte protocol (SMBSendReceive) transfers a single byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only a single element (at offset
0) can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBSendReceive) // Use the SMBus Send/Receive Byte protocol
 FLD0, 8 // Virtual register at command value 0.
}

ACPI System Management Bus Interface Specification 325

Compaq/Intel/Microsoft/Phoenix/Toshiba

/* Create the SMBus data buffer */

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

/* Receive a byte of data from the device */
Store(FLD0, BUFF) // Invoke a Receive Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Received byte…
}

/* Send the byte ‘0x16’ to the device */
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD0) // Invoke a Send Byte transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s data byte.
Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field results in a
Receive Byte, and writing to the field results in a Send Byte.

14.7.3 Read/Write Byte (SMBByte)
The SMBus Read/Write Byte protocol (SMBByte) also transfers a single byte of data. But unlike
Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBByte) // Use the SMBus Read/Write Byte protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

/* Read a byte of data from the device using command value 1 */
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Byte read from FLD1…
}

/* Write the byte ‘0x16’ to the device using command value 2 */
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Byte with a command value of 1, and writing to FLD2
results in a Write Byte with command value 2.

14.7.4 Read/Write Word (SMBWord)
The SMBus Read/Write Word protocol (SMBWord) transfers 2 bytes of data. This protocol also uses a
command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should be
accessed:

326 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBWord) // Use the SMBus Read/Write Word protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

/* Read two bytes of data from the device using command value 1 */
Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word read from FLD1…
}
/* Write the word ‘0x5416’ to the device using command value 2 */
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Word with a command value of 1, and writing to
FLD2 results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are listed as
8 bits each. The actual data size is determined by the protocol. Every field element is declared with a length
of 8 bits so that command values and byte offsets are equivalent.

14.7.5 Read/Write Block (SMBBlock)
The SMBus Read/Write Block protocol (SMBBlock) transfers variable-sized (0-32 bytes) data. This
protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Block protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBBlock) // Use the SMBus Read/Write Block protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // DATA = Data (Block)

/* Read block data from the device using command value 1 */
Store(FLD1, BUFF) // Invoke a Read Block transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // SIZE = Size (number of bytes) of the block data read from FLD1…
 // DATA = Block data read from FLD1…
}

/* Write the block ‘TEST’ to the device using command value 2 */
Store(“TEST”, DATA) // Save “TEST” into the data buffer
Store(4, SIZE) // Length of valid data in the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

ACPI System Management Bus Interface Specification 327

Compaq/Intel/Microsoft/Phoenix/Toshiba

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Block with a command value of 1, and writing to
FLD2 results in a Write Block with command value 2.

14.7.6 Word Process Call (SMBProcessCall)
The SMBus Process Call protocol (SMBProcessCall) transfers 2 bytes of data bi-directionally (performs a
Write Word followed by a Read Word as an atomic transaction). This protocol uses a command value to
reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBProcessCall) // Use the SMBus Process Call protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

/* Process Call with input value ‘0x5416’ to the device using command value 1 */
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word returned from FLD1…
}

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading or writing FLD1 results in a Process Call with a command value of 1. Notice
that unlike other protocols, Process Call involves both a write and read operation in a single atomic
transaction. This means that the Data element of the SMBus data buffer is set with an input value before
the transaction is invoked, and holds the output value following the successful completion of the
transaction.

14.7.7 Block Process Call (SMBBlockProcessCall)
The SMBus Block Write-Read Block Process Call protocol (SMBBlockProcessCall) transfers a block of
data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction). The
maximum aggregate amount of data that may be transferred is limited to 32 bytes. This protocol uses a
command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

328 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMbus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBBlockProcessCall) // Use the Block Process Call protocol
 FLD0, 8, // Virtual register representing a command value of 0
 FLD1, 8 // Virtual register representing a command value of 1
}

/* Create the SMBus data buffer as BUFF */
Name(BUFF, Buffer(34)()) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

/* Process Call with input value "ACPI 2.0" to the device using command value 1 */

Store("ACPI 2.0", DATA) // Fill in outgoing data
Store(8, SIZE) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{
 /* BUFF now contains information returned from PC */
 /* SIZE now equals size of data returned */
}

System Address Map Interfaces 329

Compaq/Intel/Microsoft/Phoenix/Toshiba

15 System Address Map Interfaces
This section explains how an ACPI-compatible system conveys its memory resources/type mappings to
OSPM. There are three ways for the system to convey memory resources /mappings to OSPM. The first is
an INT 15 BIOS interface that is used in IA-PC–based systems to convey the system’s initial memory map.
EFI enabled systems use the EFI defined GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM. See the EFI
specification for more information on EFI services.

Lastly, if memory resources may be added or removed dynamically, memory devices are defined in the
ACPI Namespace conveying the resource information described by the memory device (see section 10.12,
“Memory Devices”).

ACPI defines four address range types; AddressRangeMemory, AddressRangeACPI, AddressRangeNVS,
and AddressRangeReserved as described in the table below:

Table 15-1 Address Range Types

Value Mnemonic Description

1 AddressRangeMemory This range is available RAM usable by the operating system.

2 AddressRangeReserved This range of addresses is in use or reserved by the system and
must not be used by the operating system.

3 AddressRangeACPI ACPI Reclaim Memory. This range is available RAM usable by the
OS after it reads the ACPI tables.

4 AddressRangeNVS ACPI NVS Memory. This range of addresses is in use or reserve by
the system and must not be used by the operating system. This
range is required to be saved and restored across an NVS sleep.

Other Undefined Undefined. Reserved for future use. OSPM must treat any range of
this type as if the type returned was AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various addresses as not
suitable for use by a programmable device. Some of the reasons a BIOS would do this are:
• The address range contains system ROM.
• The address range contains RAM in use by the ROM.
• The address range is in use by a memory-mapped system device.
• The address range is, for whatever reason, unsuitable for a standard device to use as a device memory

space.

Note: OSPM will not save or restore memory reported as AddressRangeReserved when transitioning to or
from the S4 sleeping state.

15.1 INT 15H, E820H - Query System Address Map
This interface is used in real mode only on IA-PC-based systems and provides a memory map for all of the
installed RAM, and of physical memory ranges reserved by the BIOS. The address map is returned through
successive invocations of this interface; each returning information on a single range of physical addresses.
Each range includes a type that indicates how the range of physical addresses is to be treated by the OSPM.

If the information returned from E820 in some way differs from INT-15 88 or INT-15 E801, the
information returned from E820 supersedes the information returned from INT-15 88 or INT-15 E801. This
replacement allows the BIOS to return any information that it requires from INT-15 88 or INT-15 E801 for
compatibility reasons. For compatibility reasons, if E820 returns any AddressRangeACPI or
AddressRangeNVS memory ranges below 16 MB, the INT-15 88 and INT-15 E801 functions must return
the top of memory below the AddressRangeACPI and AddressRangeNVS memory ranges.

330 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The memory map conveyed by this interface is not required to reflect any changes in available physical
memory that have occurred after the BIOS has initially passed control to the operating system. For
example, if memory is added dynamically, this interface is not required to reflect the new system memory
configuration.

Table 15-2 Input

EAX Function Code E820h

EBX Continuation Contains the continuation value to get the next range of physical memory.
This is the value returned by a previous call to this routine. If this is the first
call, EBX must contain zero.

ES:DI Buffer Pointer Pointer to an Address Range Descriptor structure that the BIOS fills in.

ECX Buffer Size The length in bytes of the structure passed to the BIOS. The BIOS fills in the
number of bytes of the structure indicated in the ECX register, maximum, or
whatever amount of the structure the BIOS implements. The minimum size
that must be supported by both the BIOS and the caller is 20 bytes. Future
implementations might extend this structure.

EDX Signature ‘SMAP’ Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.

Table 15-3 Output

CF Carry Flag Non-Carry – Indicates No Error

EAX Signature ‘SMAP.’ Signature to verify correct BIOS revision.

ES:DI Buffer Pointer Returned Address Range Descriptor pointer. Same value as on input.

ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor. The
minimum size structure returned by the BIOS is 20 bytes.

EBX Continuation Contains the continuation value to get the next address range descriptor. The
actual significance of the continuation value is up to the discretion of the
BIOS. The caller must pass the continuation value unchanged as input to the
next iteration of the E820 call in order to get the next Address Range
Descriptor. A return value of zero means that this is the last descriptor.

Note: the BIOS can also indicate that the last descriptor has already been
returned during previous iterations by returning the carry flag set. The caller
will ignore any other information returned by the BIOS when the carry flag
is set.

Table 15-4 Address Range Descriptor Structure

Offset in Bytes Name Description

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

8 LengthLow Low 32 Bits of Length in Bytes

12 LengthHigh High 32 Bits of Length in Bytes

16 Type Address type of this range

System Address Map Interfaces 331

Compaq/Intel/Microsoft/Phoenix/Toshiba

The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of this range. The base address
is the physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of this range. The length is the physical
contiguous length in bytes of a range being specified.

The Type field describes the usage of the described address range as defined in Table 15-1.

15.2 E820 Assumptions and Limitations

• The BIOS returns address ranges describing baseboard memory.
• The BIOS does not return a range description for the memory mapping of PCI devices, ISA Option

ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect them.
• The BIOS returns chip set-defined address holes that are not being used by devices as reserved.
• Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are returned as

reserved.
• All occurrences of the system BIOS are mapped as reserved, including the areas below 1 MB, at 16

MB (if present), and at end of the 4-GB address space.
• Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF physical

addresses are not described by this function. The range from E0000 to EFFFF is specific to the
baseboard and is reported as it applies to that baseboard.

• All of lower memory is reported as normal memory. The OS must handle standard RAM locations that
are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS data area (40:0).

15.3 EFI GetMemoryMap() Boot Services Function
EFI enabled systems use the EFI defined GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM.

The GetMemoryMap interface is only available at boot services time. It is not available as a run-time
service after OSPM is loaded. The OS or its loader initiates the transition from boot services to run-time
services by calling ExitBootServices(). After the call to ExitBootServices() all system memory map
information must be derived from objects in the ACPI Namespace.

The GetMemoryMap() interface returns an array of EFI memory descriptors. These memory descriptors
define a system memory map of all the installed RAM, and of physical memory ranges reserved by the
firmware. Each descriptor contains a type field that dictates how the physical address range is to be treated
by the operating system. Table 15-4 below describes the memory types returned by the EFI
GetMemoryMap() interface along with a mapping from EFI memory type to ACPI address range types. See
the EFI specification for more information on EFI memory types.

Table 15-5 EFI Memory Types and mapping to ACPI address range types

Type Mnemonic Description ACPI Address Range Type

0 EfiReservedMemoryType Not used. AddressRangeReserved

1 EfiLoaderCode The Loader and/or OS may use this
memory as they see fit.

Note: the OS loader that called
ExitBootServices() is executing
out of one or more EfiLoaderCode
sections.

AddressRangeMemory

332 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 15-5 EFI Memory Types and mapping to ACPI address range types (continued)

Type Mnemonic Description ACPI Address Range Type

2 EfiLoaderData The Loader and/or OS may use this
memory as they see fit.

Note: the OS loader that called
ExitBootServices() is utilizing out
of one or more EfiLoaderData
sections.

AddressRangeMemory

3 EfiBootServicesCode Memory available for general use. AddressRangeMemory

4 EfiBootServicesData Memory available for general use. AddressRangeMemory

5 EfiRuntimeServiceCode The OS and loader must preserve
this memory range in the working
and ACPI S1–S3 states.

AddressRangeReserved

6 EfiRuntimeServicesData The OS and loader must preserve
this memory range in the working
and ACPI S1–S3 states.

AddressRangeReserved

7 EfiConventionalMemory Memory available for general use. AddressRangeMemory

8 EfiACPIReclainMemory The memory is to be preserved by
the loader and OS until ACPI in
enabled. Once ACPI is enabled,
the memory in this range is
available for general use.

AddressRangeACPI

9 EfiACPIMemoryNVS The OS and loader must preserve
this memory range in the working
and ACPI S1–S3 states.

AddressRangeNVS

10 EfiMemoryMappedIO The OS does not use this memory.
All system memory-mapped I/O
port space information should
come from ACPI tables.

AddressRangeReserved

11 EfiMemoryMappedIOPor
tSpace

The OS does not use this memory.
All system memory-mapped I/O
port space information should
come from ACPI tables.

AddressRangeReserved

12 EfiPalCode The OS and loader must preserve
this memory range in the working
and ACPI S1–S3 states.

AddressRangeReserved

13 EfiFirmwareReserved Memory reserved by system
firmware.

AddressRangeReserved

System Address Map Interfaces 333

Compaq/Intel/Microsoft/Phoenix/Toshiba

15.4 EFI Assumptions and Limitations

• The firmware returns address ranges describing the current system memory configuration.
• The firmware does not return a range description for the memory mapping of PCI devices, ISA Option

ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect them.
• The firmware returns chip set-defined address holes that are not being used by devices as reserved.
• Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are returned as

reserved.
• All occurrences of the system firmware are mapped as reserved, including the areas below 1 MB, at 16

MB (if present), and at end of the 4-GB address space. This can include PAL code on ItaniumTM-
based systems.

• Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF physical
addresses are not described by this function. The range from E0000 to EFFFF is specific to the
baseboard and is reported as it applies to that baseboard.

• All of lower memory is reported as normal memory. The OS must handle standard RAM locations that
are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS data area (40:0).

• EFI contains descriptors for memory mapped I/O and memory mapped I/O port space to allow for
virtual mode calls to EFI run-time functions. The OS must never use these regions.

15.5 Example Address Map
This sample address map (for an Intel processor-based system) describes a machine that has 128 MB of
RAM, 640 KB of base memory and 127 MB of extended memory. The base memory has 639 KB available
for the user and 1 KB for an extended BIOS data area. A 4-MB Linear Frame Buffer (LFB) is based at 12
MB. The memory hole created by the chip set is from 8 MB to 16 MB. Memory-mapped APIC devices are
in the system. The I/O Unit is at FEC00000 and the Local Unit is at FEE00000. The system BIOS is
remapped to 1 GB–64 KB.

The 639-KB endpoint of the first memory range is also the base memory size reported in the BIOS data
segment at 40:13. The following table shows the memory map of a typical system.

Table 15-6 Sample Memory Map

Base (Hex) Length Type Description

0000 0000 639 KB AddressRangeMemory Available Base memory. Typically the same value
as is returned using the INT 12 function.

0009 FC00 1 KB AddressRangeReserved Memory reserved for use by the BIOS(s). This
area typically includes the Extended BIOS data
area.

000F 0000 64 KB AddressRangeReserved System BIOS

0010 0000 7 MB AddressRangeMemory Extended memory, which is not limited to the
64-MB address range.

0080 0000 4 MB AddressRangeReserved Chip set memory hole required to support the
LFB mapping at 12 MB.

0100 0000 120 MB AddressRangeMemory Baseboard RAM relocated above a chip set
memory hole.

FEC0 0000 4 KB AddressRangeReserved I/O APIC memory mapped I/O at FEC00000.

FEE0 0000 4 KB AddressRangeReserved Local APIC memory mapped I/O at FEE00000.

FFFF 0000 64 KB AddressRangeReserved Remapped System BIOS at end of address space.

334 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

15.6 Example: Operating System Usage
The following code segment illustrates the algorithm to be used when calling the Query System Address
Map function. It is an implementation example and uses non-standard mechanisms.

E820Present = FALSE;
 Reg.ebx = 0;
 do {
 Reg.eax = 0xE820;
 Reg.es = SEGMENT (&Descriptor);
 Reg.di = OFFSET (&Descriptor);
 Reg.ecx = sizeof (Descriptor);
 Reg.edx = 'SMAP';

 _int(15, regs);

 if ((Regs.eflags & EFLAG_CARRY) || Regs.eax != 'SMAP') {
 break;
 }

 if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {
 // bug in bios - all returned descriptors must be
 // at least 20 bytes long, and cannot be larger then
 // the input buffer.

 break;
 }

 E820Present = TRUE;
 .
 .
 .
 Add address range Descriptor.BaseAddress through
 Descriptor.BaseAddress + Descriptor.Length
 as type Descriptor.Type
 .
 .
 .

 } while (Regs.ebx != 0);

 if (!E820Present) {
 .
 .
 .
 call INT-15 88 and/or INT-15 E801 to obtain old style
 memory information
 .
 .
 .
 }

ACPI Source Language (ASL) Reference 335

Compaq/Intel/Microsoft/Phoenix/Toshiba

16 ACPI Source Language (ASL) Reference
This section formally defines the ACPI Source Language (ASL). ASL is a source language for defining
ACPI objects including writing ACPI control methods. OEMs and BIOS developers define objects and
write control methods in ASL and then use a translator tool (compiler) to generate ACPI Machine
Language (AML) versions of the control methods. For a formal definition of AML, see the ACPI Machine
Language (AML) Specification, section 17, “ACPI Machine Language Specification.”

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OS must support AML. A given user can define some arbitrary source language
(to replace ASL) and write a tool to translate it to AML.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging. (Debuggers
and similar tools are expected to be AML-level tools, not source-level tools.) An ASL translator
implementer must understand how to read ASL and generate AML. An AML interpreter author must
understand how to execute AML.

This section has two parts:
• The ASL grammar, which is the formal ASL specification and also serves as a quick reference.
• A full ASL reference, which repeats the ASL term syntax and adds information about the

semantics of the language.

16.1 ASL Language Grammar
The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an
ASL compiler.

ASL statements declare objects. Each object has three parts, two of which might not be present.

Object := ObjectType FixedList VariableList

FixedList refers to a list, of known length, that supplies data that all instances of a given ObjectType must
have. A fixed list is written as (a , b , c , …) where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a
FixedList can have default values, in which case they can be skipped. Thus, (a,,c) will cause the default
value for the second argument to be used. Some ObjectTypes can have a null FixedList, which is simply
omitted. Trailing arguments of some object types can be left out of a fixed list, in which case the default
value is used.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as { x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes may have a null variable list, which is
simply omitted.

Other rules for writing ASL statements are the following:
• Multiple blanks are the same as one. Blank, (,), ‘,’ and newline are all token separators.
• // marks the beginning of a comment, which continues from the // to the end of the line.
• /* marks the beginning of a comment, which continues from the /* to the next */.
• “” surround an ASCII string.

• Numeric constants can be written in three ways: ordinary decimal, octal (using 0ddd) or

hexadecimal, using the notation 0xdd.
• Nothing indicates an empty item. For example, { Nothing } is equivalent to {}.

16.1.1 ASL Grammar Notation
The notation used to express the ASL grammar is specified in the following table.

336 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-1 ASL Grammar Notation

Notation Convention Description Example

Term := Term Term
…

The term to the left of := can be
expanded into the sequence of terms
on the right.

aterm := bterm cterm means that aterm can
be expanded into the two-term sequence of
bterm followed by cterm.

Angle brackets (< >) Used to group items. <a b> | <c d> means either

a b or c d.

Arrow (=>)) Indicates required run-time
reduction of an ASL argument to an
AML data type. Means “reduces
to” or “evaluates to” at run-time.

TermArg=>Integer means that the
argument must be an ASL TermArg that
must resolve to an Integer data type when
it is evaluated by an AML interpreter.

Bar symbol (|) Separates alternatives. aterm := bterm | <cterm dterm> means the
following constructs are possible:

 bterm
 cterm dterm

aterm := <bterm | cterm> dterm means the
following constructs are possible:

 bterm dterm
 cterm dterm

Term Term Term Terms separated from each other by
spaces form an ordered list.

N/A

Word in bold. Denotes the name of a term in the
ASL grammar, representing any
instance of such a term. ASL terms
are not case-sensitive.

In the following ASL term definition:

ThermalZone (ZoneName)
 {ObjectList}

the item in bold is the name of the term.

Word in italics Names of arguments to objects that
are replaced for a given instance.

In the following ASL term definition:

ThermalZone (ZoneName)
 {ObjectList}

the italicized item is an argument. The item
that is not bolded or italicized is defined
elsewhere in the ASL grammar.

Single quotes (‘ ’) Indicate constant characters. ‘A’

0xdd Refers to a byte value expressed as
2two hexadecimal digits.

0x21 means a value of hexadecimal 21, or
decimal 37. Notice that a value expressed in
hexadecimal must start with a leading zero
(0).

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to 9
inclusive.

ACPI Source Language (ASL) Reference 337

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.1.2 ASL Names
LeadNameChar := ‘A’-‘Z’ | ‘a’-‘z’ | ‘_’
DigitChar := ‘0’-‘9’
NameChar := DigitChar | LeadNameChar
RootChar := ‘\’
NameSeg := <LeadNameChar NameChar NameChar NameChar> |

<LeadNameChar NameChar NameChar> |
<LeadNameChar NameChar> |
<LeadNameChar>

NameString := <RootChar NamePath> | <‘^’ PrefixPath NamePath> |
NonEmptyNamePath

PrefixPath := Nothing | <‘^’ PrefixPath>
NamePath := Nothing | <NameSeg NamePathTail>
NonEmptyNamePath := NameSeg | <NameSeg NamePathTail>
NamePathTail := Nothing | <‘.’ NameSeg NamePathTail>

16.1.3 ASL Language and Terms
ASLCode := DefinitionBlockTerm

DefinitionBlockTerm := DefinitionBlock(

 AMLFileName, //StringData
 TableSignature, //StringData
 ComplianceRevision, //ByteConst
 OEMID, //StringData
 TableID, //StringData
 OEMRevision //DWordConst
) {ObjectList}

ObjectList := Nothing | <Object ObjectList>
Object := CompilerDirective | NamedObject | NameSpaceModifier

DataObject := BufferData | PackageData | IntegerData | StringData
DataRefObject := DataObject | ObjectReference | DDBHandle

ComputationalData := BufferData | IntegerData | StringData
BufferData := Type5Opcode | BufferTerm
PackageData := PackageTerm
IntegerData := Type3Opcode | Integer | ConstTerm
StringData := Type4Opcode | String

NamedObject := BankFieldTerm | CreateBitFieldTerm | CreateByteFieldTerm

| CreateDWordFieldTerm | CreateFieldTerm |
CreateQWordFieldTerm | CreateWordFieldTerm |
DataRegionTerm | DeviceTerm | EventTerm | FieldTerm |
IndexFieldTerm | MethodTerm | MutexTerm | OpRegionTerm |
PowerResTerm | ProcessorTerm | ThermalZoneTerm

NameSpaceModifier := AliasTerm | NameTerm | ScopeTerm

TermList := Nothing | <Term TermList>
Term := Object | Type1Opcode | Type2Opcode

CompilerDirective := IncludeTerm | ExternalTerm

UserTerm := NameString(//NameString=>Method

 ArgList
) => Nothing | DataRefObject

ArgList := Nothing | <TermArg ArgListTail>
ArgListTail := Nothing | <’,’ TermArg ArgListTail>
TermArg := Type2Opcode | DataObject | ArgTerm | LocalTerm |

NameString
Target := Nothing | SuperName

338 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Type1Opcode := BreakTerm | BreakPointTerm | ContinueTerm | FatalTerm |
IfElseTerm | LoadTerm | NoOpTerm | NotifyTerm |
ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
SleepTerm | StallTerm | SwitchTerm | UnloadTerm |
WhileTerm

 A Type 1 opcode term does not return a value and can only be used standalone on a

line of ASL code. Since these opcodes do not return a value they cannot be used
as a term in an expression.

Type2Opcode := AcquireTerm | AddTerm | AndTerm | ConcatTerm |

ConcatResTerm | CondRefOfTerm | CopyObjectTerm |
DecTerm | DerefOfTerm | DivideTerm |FindSetLeftBitTerm |
FindSetRightBitTerm | FromBCDTerm | IncTerm |
IndexTerm | LAndTerm | LEqualTerm | LGreaterTerm |
LGreaterEqualTerm | LLessTerm | LLessEqualTerm |
LNotTerm | LNotEqualTerm | LoadTableTerm | LOrTerm |
MatchTerm | MidTerm |ModTerm | MultiplyTerm | NAndTerm |
NOrTerm | NotTerm | ObjectTypeTerm | OrTerm |
RefOfTerm | ShiftLeftTerm | ShiftRightTerm |
SizeOfTerm | StoreTerm | SubtractTerm | ToBCDTerm |
ToBufferTerm | ToDecimalStringTerm | ToHexStringTerm |
ToIntegerTerm | ToStringTerm | WaitTerm | XorTerm |
UserTerm

 A Type 2 opcode returns a value and can be used in an expression.

Type3Opcode := AddTerm | AndTerm | DecTerm | DivideTerm | EISAIDTerm |

FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm |
IncTerm | IndexTerm | LAndTerm | LEqualTerm |
LGreaterTerm | LGreaterEqualTerm | LLessTerm |
LLessEqualTerm | LNotTerm | LNotEqualTerm | LOrTerm |
MatchTerm | ModTerm | MultiplyTerm | NAndTerm |
NOrTerm | NotTerm | OrTerm | ShiftLeftTerm |
ShiftRightTerm | SubtractTerm | ToBCDTerm |
ToIntegerTerm | XorTerm

 The Type 3 opcodes are a subset of Type 2 opcodes that return an Integer value and

can be used in a expression that evaluates to a constant. These opcodes may be
evaluated at ASL compile-time. To ensure that these opcodes will evaluate to a
constant, the following rules apply: The term cannot have a destination (target)
operand, and must have either a Type3Opcode, Type4Opcode, Type5Opcode,
ConstExprTerm, Integer, BufferTerm, Package, or String for all arguments.

Type4Opcode := ConcatTerm | MidTerm | ToDecimalStringTerm |

ToHexStringTerm | ToStringTerm

 The Type 4 opcodes are a subset of Type 2 opcodes that return an String value and

can be used in a expression that evaluates to a constant. These opcodes may be
evaluated at ASL compile-time. To ensure that these opcodes will evaluate to a
constant, the following rules apply: The term cannot have a destination (target)
operand, and must have either a Type3Opcode, Type4Opcode, Type5Opcode,
ConstExprTerm, Integer, BufferTerm, Package, or String for all arguments.

Type5Opcode := ConcatTerm | ConcatResTerm | MidTerm |

ResourceTemplateTerm | ToBufferTerm | UnicodeTerm

 The Type 5 opcodes are a subset of Type 2 opcodes that return a Buffer value and

can be used in a expression that evaluates to a constant. These opcodes may be
evaluated at ASL compile-time. To ensure that these opcodes will evaluate to a
constant, the following rules apply: The term cannot have a destination (target)
operand, and must have either a Type3Opcode, Type4Opcode, Type5Opcode,
ConstExprTerm, Integer, BufferTerm, Package, or String for all arguments.

Type6Opcode := RefOfTerm | DerefOfTerm | IndexTerm | UserTerm

IncludeTerm := Include(

 IncFilePathName //StringData
)

 The file must contain elements that are grammatically correct in the current scope

ACPI Source Language (ASL) Reference 339

Compaq/Intel/Microsoft/Phoenix/Toshiba

ExternalTerm := External(
 ObjName, //NameString
 ObjType //Nothing | ObjectTypeKeyword
)

BankFieldTerm := BankField(

 RegionName, //NameString=>OperationRegion
 BankName, //NameString=>FieldUnit
 BankValue, //TermArg=>Integer
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

FieldUnitList := Nothing | <FieldUnit FieldUnitListTail>
FieldUnitListTail := Nothing | <‘,’ FieldUnit FieldUnitListTail>

FieldUnit := FieldUnitEntry | OffsetTerm | AccessAsTerm
FieldUnitEntry := <Nothing | NameSeg> ‘,’ Integer

OffsetTerm := Offset(

 ByteOffset //IntegerData
)

AccessAsTerm := AccessAs(

 AccessType, //AccessTypeKeyword
 AccessAttribute //Nothing | ByteConstExpr |
 //AccessAttribKeyword
)

CreateBitFieldTerm := CreateBitField(

 SourceBuffer, //TermArg=>Buffer
 BitIndex, //TermArg=>Integer
 BitFieldName //NameString
)

CreateByteFieldTerm := CreateByteField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 ByteFieldName //NameString
)

CreateDWordFieldTerm := CreateDWordField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 DWordFieldName //NameString
)

CreateFieldTerm := CreateField(

 SourceBuffer, //TermArg=>Buffer
 BitIndex, //TermArg=>Integer
 NumBits, //TermArg=>Integer
 FieldName //NameString
)

CreateQWordFieldTerm := CreateQWordField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 QWordFieldName //NameString
)

CreateWordFieldTerm := CreateWordField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 WordFieldName //NameString
)

DataRegionTerm := DataTableRegion(

 RegionName, // NameString
 SignatureString, // TermArg=>String

 OemIDString, // TermArg=>String

340 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

 OemTableIDString // TermArg=>String
)

DeviceTerm := Device(

 DeviceName //NameString
) {ObjectList}

EventTerm := Event(

 EventName //NameString
)

FieldTerm := Field(

 RegionName, //NameString=>OperationRegion
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

IndexFieldTerm := IndexField(

 IndexName, //NameString=>FieldUnit
 DataName, //NameString=>FieldUnit
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

MethodTerm := Method(

 MethodName, //NameString
 NumArgs, //Nothing | ByteConstExpr
 SerializeRule, //Nothing |
 //SerializeRuleKeyword
 SyncLevel //Nothing | ByteConstExpr
) {TermList}

MutexTerm := Mutex(

 MutexName, //NameString
 SyncLevel //ByteConstExpr
)

OpRegionTerm := OperationRegion(

 RegionName, //NameString
 RegionSpace, //RegionSpaceKeyword
 Offset, //TermArg=>Integer
 Length //TermArg=>Integer
)

PowerResTerm := PowerResource(

 ResourceName, //NameString
 SystemLevel, //ByteConstExpr
 ResourceOrder //WordConstExpr
) {ObjectList}

ProcessorTerm := Processor(

 ProcessorName, //NameString
 ProcessorID, //ByteConstExpr
 PBlockAddress, //DWordConstExpr|Nothing (=0)
 PblockLength //ByteConstExpr|Nothing (=0)
) {ObjectList}

ThermalZoneTerm := ThermalZone(

 ThermalZoneName //NameString
) {ObjectList}

AliasTerm := Alias(

 SourceObject, //NameString
 AliasObject //NameString
)

ACPI Source Language (ASL) Reference 341

Compaq/Intel/Microsoft/Phoenix/Toshiba

NameTerm := Name(
 ObjectName, //NameString
 Object //DataObject
)

ScopeTerm := Scope(

 Location //NameString
) {ObjectList}

BreakTerm := Break

BreakPointTerm := BreakPoint

ContinueTerm := Continue

FatalTerm := Fatal(

 Type, //ByteConstExpr
 Code, //DWordConstExpr
 Arg //TermArg=>Integer
)

IfElseTerm := IfTerm ElseTerm

IfTerm := If(

 Predicate //TermArg=>Integer
) {TermList}

ElseTerm := Nothing | <Else {TermList}> | <ElseIf (

 Predicate //TermArg=>Integer
) {TermList} ElseTerm>

LoadTerm := Load(

 Object, //NameString
 DDBHandle //SuperName
)

NoOpTerm := Noop

NotifyTerm := Notify(

 Object, //SuperName=>ThermalZone |
 // Processor | Device

 NotificationValue //TermArg=>Integer
)

ReleaseTerm := Release(

 SyncObject //SuperName
)

ResetTerm := Reset(

 SyncObject //SuperName
)

ReturnTerm := Return(

 Arg //Nothing |
 // TermArg=>DataRefObject

)

SignalTerm := Signal(

 SyncObject //SuperName
)

SleepTerm := Sleep(

 MilliSecs //TermArg=>Integer
)

StallTerm := Stall(

 MicroSecs //TermArg=>Integer
)

SwitchTerm := Switch(
 Predicate //TermArg=>ComputationalData

342 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

) {CaseTermList}

CaseTermList := Nothing | CaseTerm | DefaultTerm DefaultTermList |

CaseTerm CaseTermList

DefaultTermList := Nothing | CaseTerm | CaseTerm DefaultTermList

CaseTerm := Case(

 Value //DataObject
) {TermList}
DefaultTerm := Default {TermList}

UnloadTerm := Unload(

 DDBHandle //SuperName
)

WhileTerm := While(

 Predicate //TermArg=>Integer
) {TermList}

AcquireTerm := Acquire(

 SyncObject, //SuperName=>Mutex
 TimeoutValue //WordConstExpr
) => Boolean // True means timed-out

AddTerm := Add(

 Addend1, //TermArg=>Integer
 Addend2, //TermArg=>Integer
 Result //Target
) => Integer

AndTerm := And(

 Source1, //TermArg=>Integer
 Source2, //TermArg=>Integer
 Result //Target
) => Integer

ConcatTerm := Concatenate(

 Source1, //TermArg=>ComputationalData
 Source2, //TermArg=>ComputationalData
 Result //Target
) => ComputationalData

ConcatResTerm := ConcatenateResTemplate(

 Source1, //TermArg=>Buffer
 Source2, //TermArg=>Buffer
 Result //Target

) => Buffer

CondRefOfTerm := CondRefOf(

 Source, //SuperName
 Destination //Target
) => Boolean

CopyObjectTerm := CopyObject(

 Source, //TermArg=>DataRefObject
 Result, //NameString | LocalTerm |

 // ArgTerm
) => DataRefObject

DecTerm := Decrement(

 Addend //SuperName
) => Integer

DerefOfTerm := DerefOf(

 Source //TermArg=>ObjectReference
 //ObjectReference is an
 //object produced by terms
 //such as Index, RefOf or
 //CondRefOf.
) => DataRefObject

ACPI Source Language (ASL) Reference 343

Compaq/Intel/Microsoft/Phoenix/Toshiba

DivideTerm := Divide(

 Dividend, //TermArg=>Integer
 Divisor, //TermArg=>Integer
 Remainder, //Target
 Result //Target
) => Integer //returns Result

FindSetLeftBitTerm := FindSetLeftBit(

 Source, //TermArg=>Integer
 Result //Target
) => Integer

FindSetRightBitTerm := FindSetRightBit(

 Source, //TermArg=>Integer
 Result //Target
) => Integer

FromBCDTerm := FromBCD(

 BCDValue, //TermArg=>Integer
 Result //Target
) => Integer

IncTerm := Increment(

 Addend //SuperName
) => Integer

IndexTerm := Index(

 Source, //TermArg=>
 // <String | Buffer |

 // PackageTerm>
 Index, //TermArg=>Integer
 Destination //Target
) => ObjectReference

LAndTerm := LAnd(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
) => Boolean

LEqualTerm := LEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

LGreaterTerm := LGreater(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

LGreaterEqualTerm := LGreaterEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

LLessTerm := LLess(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

LLessEqualTerm := LLessEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

LNotTerm := LNot(

 Source, //TermArg=>ComputationalData
) => Boolean

344 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

LNotEqualTerm := LNotEqual(
 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

LoadTableTerm := LoadTable(

 SignatureString, //TermArg=>String
 OemIDString, //TermArg=>String
 OemTableIDString, //TermArg=>String
 RootPathString, //Nothing | TermArg=>String
 ParameterPathString, //Nothing | TermArg=>String
 ParameterData //Nothing |
 // TermArg=>DataRefObject
) => DDBHandle

LOrTerm := LOr(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

MatchTerm := Match(

 SearchPackage, //TermArg=>Package
 Op1, //MatchOpKeyword
 MatchObject1, //TermArg=>Integer
 Op2, //MatchOpKeyword
 MatchObject2, //TermArg=>Integer
 StartIndex //TermArg=>Integer
) => Ones | Integer

MidTerm := Mid(

 Source, //TermArg=>Buffer|String
 Index, //TermArg=>Integer

 Length, //TermArg=>Integer
 Result //Target
) => Buffer|String

ModTerm := Mod(

 Dividend, //TermArg=>Integer
 Divisor, //TermArg=>Integer
 Result //Target
) => Integer //returns Result

MultiplyTerm := Multiply(

 Multiplicand, //TermArg=>Integer
 Multiplier, //TermArg=>Integer
 Result //Target
) => Integer

NAndTerm := NAnd(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

NOrTerm := NOr(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

NotTerm := Not(

 Source, //TermArg=>Integer
 Result //Target
) => Integer

ObjectTypeTerm := ObjectType(

 Object //SuperName
) => Integer

ACPI Source Language (ASL) Reference 345

Compaq/Intel/Microsoft/Phoenix/Toshiba

OrTerm := Or(
 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

RefOfTerm := RefOf(

 Object //SuperName
) => ObjectReference

ShiftLeftTerm := ShiftLeft(

 Source, //TermArg=>Integer
 ShiftCount //TermArg=>Integer
 Result //Target
) => Integer

ShiftRightTerm := ShiftRight(

 Source, //TermArg=>Integer
 ShiftCount //TermArg=>Integer
 Result //Target
) => Integer

SizeOfTerm := SizeOf(

 DataObject //SuperName=>
 // String | Buffer | Package

) => Integer

StoreTerm := Store(

 Source, //TermArg=>DataRefObject
 Destination //SuperName
) => DataRefObject

SubtractTerm := Subtract(

 Addend1, //TermArg=>Integer
 Addend2, //TermArg=>Integer
 Result //Target
) => Integer

ToBCDTerm := ToBCD(

 Value, //TermArg=>Integer
 Result //Target
) => Integer

ToBufferTerm := ToBuffer(

 Data, //TermArg=>ComputationalData
 Result //Target
) => ComputationalData

ToDecimalStringTerm := ToDecimalString(

 Data, //TermArg=>ComputationalData
 Result //Target
) => String

ToHexStringTerm := ToHexString(

 Data, //TermArg=>ComputationalData
 Result //Target
) => String

ToIntegerTerm := ToInteger(

 Data, //TermArg=>ComputationalData
 Result //Target
) => Integer

ToStringTerm := ToString(
 Source, //TermArg=>Buffer
 Length, //Nothing | TermArg=>Integer
 Result //Target
) => String

346 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

WaitTerm := Wait(
 SyncObject, //SuperName=>Event
 TimeoutValue //TermArg=>Integer
) => Boolean // True means timed-out

XOrTerm := XOr(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

ObjectTypeKeyword := UnknownObj | IntObj | StrObj | BuffObj | PkgObj |

FieldUnitObj | DeviceObj | EventObj | MethodObj |
MutexObj | OpRegionObj | PowerResObj | ThermalZoneObj |
BuffFieldObj | DDBHandleObj

AccessTypeKeyword := AnyAcc | ByteAcc | WordAcc | DWordAcc | QWordAcc |

BufferAcc
AccessAttribKeyword := SMBQuick | SMBSendReceive | SMBByte | SMBWord | SMBBlock

| SMBProcessCall | SMBBlockProcessCall
 // Note: AccessAttribKeywords are for
 // SMBus BufferAcc only.

LockRuleKeyword := Lock | NoLock
UpdateRuleKeyword := Preserve | WriteAsOnes | WriteAsZeros

RegionSpaceKeyword := UserDefRegionSpace | SystemIO | SystemMemory |

PCI_Config | EmbeddedControl | SMBus | SystemCMOS |
PciBarTarget

AddressSpaceKeyword := RegionSpaceKeyword | FFixedHW
UserDefRegionSpace := IntegerData => 0x80-0xff

SerializeRuleKeyword := Serialized | NotSerialized

MatchOpKeyword := MTR | MEQ | MLE | MLT | MGE | MGT

DMATypeKeyword := Compatibility | TypeA | TypeB | TypeF
BusMasterKeyword := BusMaster | NotBusMaster
XferTypeKeyword := Transfer8 | Transfer16 | Transfer8_16

ResourceTypeKeyword := ResourceConsumer | ResourceProducer
MinKeyword := MinFixed | MinNotFixed
MaxKeyword := MaxFixed | MaxNotFixed
DecodeKeyword := SubDecode | PosDecode
RangeTypeKeyword := ISAOnlyRanges | NonISAOnlyRanges | EntireRange
MemTypeKeyword := Cacheable | WriteCombining | Prefetchable | NonCacheable
ReadWriteKeyword := ReadWrite | ReadOnly
InterruptTypeKeyword := Edge | Level
InterruptLevel := ActiveHigh | ActiveLow
ShareTypeKeyword := Shared | Exclusive
IODecodeKeyword := Decode16 | Decode10
TypeKeyword := TypeTranslation | TypeStatic
TranslationKeyword := SparseTranslation | DenseTranslation
AddressKeyword := AddressRangeMemory | AddressRangeReserved |

AddressRangeNVS | AddressRangeACPI

SuperName := NameString | ArgTerm | LocalTerm | DebugTerm |

Type6Opcode | UserTerm
ArgTerm := Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6
LocalTerm := Local0 | Local1 | Local2 | Local3 | Local4 | Local5 |

Local6 | Local7
DebugTerm := Debug

LeadDigitChar := ‘1’-‘9’
OctalDigitChar := ‘0’-‘7’
HexDigitChar := DigitChar | ‘A’-‘F’ | ‘a’-‘f’

Integer := DecimalConst | OctalConst | HexConst
DecimalConst := LeadDigitChar | <DecimalConst DigitChar>
OctalConst := ‘0’ | <OctalConst OctalDigitChar>

ACPI Source Language (ASL) Reference 347

Compaq/Intel/Microsoft/Phoenix/Toshiba

HexConst := <0x HexDigitChar> | <0X HexDigitChar> | <HexConst
HexDigitChar>

ByteConst := Integer => 0x00-0xFF
WordConst := Integer => 0x0000-0xFFFF
DWordConst := Integer => 0x00000000-0xFFFFFFFF
QWordConst := Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

DDBHandle := Integer
ObjectReference := Integer
String := ‘”’ AsciiCharList ‘”’
AsciiCharList := Nothing | <EscapeSeq AsciiCharList> | <AsciiChar

AsciiCharList>
AsciiChar := 0x01-0x21 | 0x23-0x5B | 0x5D-0x7F
EscapeSeq := SimpleEscapeSeq | OctalEscapeSeq | HexEscapeSeq
SimpleEscapeSeq := \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSeq := \ OctalDigit |
 \ OctalDigit OctalDigit |
 \ OctalDigit OctalDigit OctalDigit
OctalDigitChar := ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’
HexEscapeSeq := \x HexDigitChar |
 \x HexDigitChar HexDigitChar
NullChar := 0x00
ConstTerm := Zero | One | Ones | Revision
Boolean := True | False
True := Ones
False := Zero

ByteConstExpr := <Type3Opcode | ConstExprTerm | Integer> => ByteConst
WordConstExpr := <Type3Opcode | ConstExprTerm | Integer> => WordConst
DwordConstExpr := <Type3Opcode | ConstExprTerm | Integer> => DWordConst
QwordConstExpr := <Type3Opcode | ConstExprTerm | Integer> => QWordConst
ConstExprTerm := Zero | One | Ones

BufferTerm := Buffer(

 BuffSize //Nothing |
 //TermArg=>Integer
) {StringData | ByteList} => Buffer

ByteList := Nothing | <ByteConstExpr ByteListTail>
ByteListTail := Nothing | <‘,’ ByteConstExpr ByteListTail>

DWordList := Nothing | <DWordConstExpr DWordListTail>
DWordListTail := Nothing | <‘,’ DWordConstExpr DWordListTail>

PackageTerm := Package(

 NumElements //Nothing |
 //ByteConstExpr |

 //TermArg=>Integer
) {PackageList} => Package

PackageList := Nothing | <PackageElement PackageListTail>
PackageListTail := Nothing | <‘,’ PackageElement PackageListTail>
PackageElement := DataObject | NameString

EISAIDTerm := EISAID(

 EISAIDString //StringData
) => DWordConst

ResourceTemplateTerm := ResourceTemplate() {ResourceMacroList} => Buffer

UnicodeTerm := Unicode(

 ASCIIString //StringData
) => Buffer

ResourceMacroList := Nothing | <ResourceMacroTerm ResourceMacroList>

348 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ResourceMacroTerm := DMATerm | DWordIOTerm | DWordMemoryTerm |
EndDependentFnTerm | FixedIOTerm | InterruptTerm |
IOTerm | IRQNoFlagsTerm | IRQTerm | Memory24Term |
Memory32FixedTerm | Memory32Term | QWordIOTerm |
QWordMemoryTerm | RegisterTerm | StartDependentFnTerm |
StartDependentFnNoPriTerm | VendorLongTerm |
VendorShortTerm | WordBusNumberTerm | WordIOTerm

DMATerm := DMA(

 DMAType, //DMATypeKeyword (_TYP)
 BusMaster, //BusMasterKeyword (_BM)
 XferType, //XferTypeKeyword (_SIZ)
 ResourceTag //Nothing | NameString
) {ByteList} //List of channels (0-7)

DWordIOTerm := DWordIO(

 ResourceType, //Nothing (ResourceConsumer)|
 // ResourceTypeKeyword
 MinType, //Nothing (MinNotFixed) |
 // MinKeyword (_MIF)
 MaxType, //Nothing (MaxNotFixed) |
 // MaxKeyword (_MAF)
 Decode, //Nothing (PosDecode) |
 // DecodeKeyword (_DEC)
 RangeType, //Nothing (EntireRange) |
 // RangeTypeKeyword (_RNG)
 AddressGranularity, //DWordConstExpr (_GRA)
 MinAddress, //DWordConstExpr (_MIN)
 MaxAddress, //DWordConstExpr (_MAX)
 Translation, //DWordConstExpr (_TRA)
 AddressLen, //DWordConstExpr (_LEN)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString

 Type //Nothing | TypeKeyword
 TranslationType //Nothing |
 // TranslationKeyword
)

DWordMemoryTerm := DWordMemory(

 ResourceType, //Nothing (ResourceConsumer)|
 // ResourceTypeKeyword
 Decode, //Nothing (PosDecode) |
 // DecodeKeyword (_DEC)
 MinType, //Nothing (MinNotFixed) |
 // MinKeyword (_MIF)
 MaxType, //Nothing (MaxNotFixed) |
 // MaxKeyword (_MAF)
 MemType, //Nothing (NonCacheable) |
 // MemTypeKeyword (_MEM)
 ReadWriteType, //ReadWriteKeyword (_RW)
 AddressGranularity, //DWordConstExpr (_GRA)
 MinAddress, //DWordConstExpr (_MIN)
 MaxAddress, //DWordConstExpr (_MAX)
 Translation, //DWordConstExpr (_TRA)
 AddressLen, //DWordConstExpr (_LEN)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString

 AddressRange //Nothing | AddressKeyword
 // (_MTP)

 Type //Nothing | TypeKeyword
 // (_TTP)
)

EndDependentFnTerm := EndDependentFn()

ACPI Source Language (ASL) Reference 349

Compaq/Intel/Microsoft/Phoenix/Toshiba

FixedIOTerm := FixedIO(
 AddressBase, //WordConstExpr (_BAS)
 RangeLen, //ByteConstExpr (_LEN)
 ResourceTag //Nothing | NameString
)

InterruptTerm := Interrupt(

 ResourceType, //Nothing (ResourceConsumer)|
 //ResourceTypeKeyword
 InterruptType, //InterruptTypeKeyword
 // (_LL, _HE)
 InterruptLevel, //InterruptLevelKeyword
 // (_LL, _HE)
 ShareType, //Nothing (Exclusive)
 //ShareTypeKeyword (_SHR)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString
) {DWordList} //list of interrupts (_INT)

IOTerm := IO(

 IODecode, //IODecodeKeyword (_DEC)
 MinAddress, //WordConstExpr (_MIN)
 MaxAddress, //WordConstExpr (_MAX)
 Alignment, //ByteConstExpr (_ALN)
 RangeLen, //ByteConstExpr (_LEN)
 ResourceTag //Nothing | NameString
)

IRQNoFlagsTerm := IRQNoFlags(

 ResourceTag //Nothing | NameString
) {ByteList} //list of interrupts (0-15)

IRQTerm := IRQ(

 InterruptType, //InterruptTypeKeyword
 // (_LL, _HE)
 InterruptLevel, //InterruptLevelKeyword
 // (_LL, _HE)
 ShareType, //Nothing (Exclusive)
 //ShareTypeKeyword (_SHR)
 ResourceTag //Nothing | NameString
) {ByteList} //list of interrupts (0-15)

Memory24Term := Memory24(

 ReadWriteType, //ReadWriteKeyword (_RW)
 MinAddress[23:8], //WordConstExpr (_MIN)
 MaxAddress[23:8], //WordConstExpr (_MAX)
 Alignment, //WordConstExpr (_ALN)
 RangeLen, //WordConstExpr (_LEN)
 ResourceTag //Nothing | NameString
)

Memory32FixedTerm := Memory32Fixed(

 ReadWriteType, //ReadWriteKeyword (_RW)
 AddressBase, //DWordConstExpr (_BAS)
 RangeLen, //DWordConstExpr (_LEN)
 ResourceTag //Nothing | NameString
)

Memory32Term := Memory32(

 ReadWriteType, //ReadWriteKeyword (_RW)
 MinAddress, //DWordConstExpr (_MIN)
 MaxAddress, //DWordConstExpr (_MAX)
 Alignment, //DWordConstExpr (_ALN)
 RangeLen, //DWordConstExpr (_LEN)
 ResourceTag //Nothing | NameString
)

350 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

QWordIOTerm := QWordIO(
 ResourceType, //Nothing (ResourceConsumer)|
 // ResourceTypeKeyword
 MinType, //Nothing (MinNotFixed) |
 // MinKeyword (_MIF)
 MaxType, //Nothing (MaxNotFixed) |
 // MaxKeyword (_MAF)
 Decode, //Nothing (PosDecode) |
 // DecodeKeyword (_DEC)
 RangeType, //Nothing (EntireRange) |
 // RangeTypeKeyword (_RNG)
 AddressGranularity, //QWordConstExpr (_GRA)
 MinAddress, //QWordConstExpr (_MIN)
 MaxAddress, //QWordConstExpr (_MAX)
 Translation, //QWordConstExpr (_TRA)
 AddressLen, //QWordConstExpr (_LEN)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString

 Type //Nothing | TypeKeyword
 TranslationType //Nothing |
 // TranslationKeyword)
)

QWordMemoryTerm := QWordMemory(

 ResourceType, //Nothing (ResourceConsumer)|
 // ResourceTypeKeyword
 Decode, //Nothing (PosDecode) |
 // DecodeKeyword (_DEC)
 MinType, //Nothing (MinNotFixed) |
 // MinKeyword (_MIF)
 MaxType, //Nothing (MaxNotFixed) |
 // MaxKeyword (_MAF)
 MemType, //Nothing (NonCacheable) |
 // MemTypeKeyword (_MEM)
 ReadWriteType, //ReadWriteKeyword (_RW)
 AddressGranularity, //QWordConstExpr (_GRA)
 MinAddress, //QWordConstExpr (_MIN)
 MaxAddress, //QWordConstExpr (_MAX)
 Translation, //QWordConstExpr (_TRA)
 AddressLen, //QWordConstExpr (_LEN)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString

 AddressRange //Nothing | AddressKeyword
 // (_MTP)
 Type //Nothing | TypeKeyword
 // (_TTP)
)

RegisterTerm := Register(

 AddressSpaceID, //AddressSpaceKeyword (_ASI)
 RegisterBitWidth, //ByteConstExpr (_RBW)
 RegisterOffset, //ByteConstExpr (_RBO)
 RegisterAddress, //QWordConstExpr (_ADR)

)

StartDependentFnTerm := StartDependentFn(

 CompatPriority, //ByteConstExpr (0-2)
 PerfRobustPriority //ByteConstExpr (0-2)
) {ResourceMacroList}

StartDependentFnNoPriTerm := StartDependentFnNoPri() {ResourceMacroList}

VendorLongTerm := VendorLong(

 ResourceTag //Nothing | NameString
) {ByteList}

VendorShortTerm := VendorShort(

 ResourceTag //Nothing | NameString
) {ByteList} //up to 7 bytes

ACPI Source Language (ASL) Reference 351

Compaq/Intel/Microsoft/Phoenix/Toshiba

WordBusNumberTerm := WordBusNumber(

 ResourceType, //Nothing (ResourceConsumer)|
 // ResourceTypeKeyword
 MinType, //Nothing (MinNotFixed) |
 // MinKeyword (_MIF)
 MaxType, //Nothing (MaxNotFixed) |
 // MaxKeyword (_MAF)
 Decode, //Nothing (PosDecode) |
 // DecodeKeyword (_DEC)
 AddressGranularity, //WordConstExpr (_GRA)
 MinAddress, //WordConstExpr (_MIN)
 MaxAddress, //WordConstExpr (_MAX)
 Translation, //WordConstExpr (_TRA)
 AddressLen, //WordConstExpr (_LEN)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString
)

WordIOTerm := WordIO(

 ResourceType, //Nothing (ResourceConsumer)|
 // ResourceTypeKeyword
 MinType, //Nothing (MinNotFixed) |
 // MinKeyword (_MIF)
 MaxType, //Nothing (MaxNotFixed) |
 // MaxKeyword (_MAF)
 Decode, //Nothing (PosDecode) |
 // DecodeKeyword (_DEC)
 RangeType, //Nothing (EntireRange) |
 // RangeTypeKeyword (_RNG)
 AddressGranularity, //WordConstExpr _GRA)
 MinAddress, //WordConstExpr (_MIN)
 MaxAddress, //WordConstExpr (_MAX)
 Translation, //WordConstExpr (_TRA)
 AddressLen, //WordConstExpr (_LEN)
 ResSourceIndex, //Nothing | ByteConstExpr
 ResSource, //Nothing | StringData
 ResourceTag //Nothing | NameString

 Type //Nothing | TypeKeyword
 TranslationType //Nothing |

// TranslationKeyword
)

16.2 Full ASL Reference
This reference section is for developers who are writing ASL code while developing definition blocks for
platforms.

16.2.1 ASL Names
This section describes how to encode object names using ASL.

The following table lists the characters legal in any position in an ASL object name. ASL names are not
case-sensitive and will be converted to upper case.

Table 16-2 Named Object Reference Encodings

Value Description “Title”

0x41-0x5A, 0x5F,
0x61-0x7A

Lead character of name (‘A’–‘Z’, ‘_’ ,
‘a’–‘z’)

LeadNameChar

0x30-0x39, 0x41-0x5A,
0x5F, 0x61-0x7A

Non-lead (trailing) character of name
(‘A’–‘Z’, ‘_’, ‘a’–‘z’, ’0–9’)

NameChar

The following table lists the name modifiers that can be prefixed to an ASL name.

352 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-3 Definition Block Name Modifier Encodings

 Description NamePrefix := Followed by …

5C Namespace root (‘\’) RootPrefix Name

5E Parent namespace (‘^’) ParentPrefix ParentPrefix or Name

16.2.1.1 _T_x Reserved Object Names
The ACPI specification reserves object names with the prefix _T_ for internal use by the ASL compiler.
The ASL compiler may, for example, use these objects to store temporary values when implementing
translating complicated control structures into AML. The ASL compiler must declare _T_x objects
normally (using Name) and must not define them more than once within the same scope.

16.2.2 ASL Data Types
ASL provides a wide variety of data types and operators that manipulate data. It also provides mechanisms
for both explicit and implicit conversion between the data types when used with ASL operators.

The table below describes each of the available data types.

Table 16-4 Summary of ASL Data Types

ASL Data Type Description

[Uninitialized] No assigned type or value. This is the type of all control method LocalX variables
and unused ArgX variables at the beginning of method execution, as well as all
uninitialized Package elements. Uninitialized objects must be initialized (via Store
or CopyObject) before they may be used as source operands in ASL expressions.

Buffer An array of bytes. Uninitialized elements are zero by default.

Buffer Field Portion of a buffer created using CreateBitField, CreateByteField,
CreateWordField, CreateQWordField, CreateField, or returned by the Index
operator.

DDB Handle Definition block handle returned by the Load operator

Debug Object Debug output object. Formats an object and prints it to the system debug port. Has
no effect if debugging is not active.

Device Device or bus object

Event Event synchronization object

Field Unit (within an
Operation Region)

Portion of an address space, bit-aligned and of one-bit granularity. Created using
Field, BankField, or IndexField.

Integer An n-bit little-endian unsigned integer. In ACPI 1.0 this was at least 32-bits. In
ACPI 2.0 this is at least 64.bits.

Integer Constant Created by the ASL terms “Zero”, “One”, “Ones”, and “Revision”.

Method Control Method (Executable AML function)

Mutex Mutex synchronization object

Object Reference Reference to an object created using the RefOf operator

Operation Region Operation Region (A region within an Address Space)

Package Collection of ASL objects with a fixed number of elements (up to 255).

Power Resource Power Resource description object

Processor Processor description object

ACPI Source Language (ASL) Reference 353

Compaq/Intel/Microsoft/Phoenix/Toshiba

ASL Data Type Description

String Null-terminated ASCII string with up to 200 characters.

Thermal Zone Thermal Zone description object

Compatibility Note: The ability to store and manipulate object references is new in ACPI 2.0. In ACPI 1.0
references could not be stored in variables, passed as parameters or returned from functions.

16.2.2.1 Data Type Conversion Overview
ASL provides two mechanisms to convert objects from one data type to another data type at run-time
(during execution of the AML interpreter). The first mechanism, Explicit Data Type Conversion, allows
the use of explicit ASL operators to convert an object to a different data type. The second mechanism,
Implicit Data Type Conversion, is invoked by the AML interpreter when it is necessary to convert a data
object to an expected data type before it is used or stored.

The following general rules apply to data type conversions:

• Input parameters are always subject to implicit data type conversion (also known as implicit source
operand conversion) whenever the operand type does not match the expected input type.

• Output (target) parameters for all operators except the explicit data conversion operators are subject to
implicit data type conversion (also known as implicit result object conversion) whenever the target is
an existing named object or named field that is of a different type than the object to be stored.

• Output parameters for the explicit data conversion operators, as well as output parameters that refer to
a method local or argument (LocalX or ArgX) are not subject to implicit type conversion.

Both of these mechanisms (explicit and implicit conversion) are described in detail in the sections that
follow.

16.2.2.2 Explicit Data Type Conversions
The following ASL operators are provided to explicitly convert an object from one data type to another:

• FromBCD — Convert an Integer to a BCD Integer

• ToBCD — Convert a BCD Integer to a standard binary Integer.
• ToBuffer — Convert an Integer, String, or Buffer to an object of type Buffer

• ToDecimalString — Convert an Integer, String, or Buffer to an object of type String. The string
contains the ASCII representation of the decimal value of the source operand.

• ToHexString — Convert an Integer, String, or Buffer to an object of type String. The string contains
the ASCII representation of the hexadecimal value of the source operand.

• ToInteger — Convert an Integer, String, or Buffer to an object of type Integer.

• ToString — Copy directly and convert a Buffer to an object of type String.

The following ASL operators are provided to copy and transfer objects:

• CopyObject — Explicitly store a copy of the operand object to the target name. No implicit type
conversion is performed. (This operator is used to avoid the implicit conversion inherent in the ASL
Store operator.)

• Store — Store a copy of the operand object to the target name. Implicit conversion is performed if the
target name is of a fixed data type (see below). However, Stores to method locals and arguments do
not perform implicit conversion and are therefore the same as using CopyObject.

354 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.2.3 Implicit Data Type Conversions
Automatic or Implicit type conversions can take place at two different times during the execution of an
ASL operator. First, it may be necessary to convert one or more of the source operands to the data type(s)
expected by the ASL operator. Second, the result of the operation may require conversion before it is stored
into the destination. (Many of the ASL operators can store their result optionally into an object specified
by the last parameter. In these operators, if the destination is specified, the action is exactly as if a Store
operator had been used to place the result in the destination.)

Such data conversions are performed by an AML interpreter during execution of AML code and are known
collectively as Implicit Operand Conversions. As described briefly above, there are two different types of
implicit operand conversion:

1. Conversion of a source operand from a mismatched data type to the correct data type required by an
ASL operator, called Implicit Source Conversion. This conversion occurs when a source operand
must be converted to the operand type expected by the operator. Any or all of the source operands
may be converted in this manner before the execution of the ASL operator can proceed.

2. Conversion of the result of an operation to the existing type of a target operand before it is stored into
the target operand, called Implicit Result Conversion. This conversion occurs when the target is a
fixed type such as a named object or a field. When storing to a method Local or Arg, no conversion is
required because these data types are of variable type (the store simply overwrites any existing object
and the existing type).

16.2.2.3.1 Implicit Source Operand Conversion
During the execution of an ASL operator, each source operand is processed by the AML interpreter as
follows:

• If the operand is of the type expected by the operator, no conversion is necessary.

• If the operand type is incorrect, attempt to convert it to the proper type.
• For the Concatenate operator, the data type of the first operand dictates both the required type of the

second operand and the type of the result object. (The second operator is converted, if necessary, to
match the type of the first operand.)

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit source conversion will be attempted anytime a source operand contains a data type that is
different that the type expected by the operator. For example:

Store (“5678”, Local1)
Add (0x1234, Local1, BUF1)

In the Add statement above, Local1 contains a String object and must undergo conversion to an Integer
object before the Add operation can proceed.

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. Table 16-4 describes
the source operand conversions available. For example:

Store (Buffer(1){}, Local0)
Name (ABCD, Buffer(10){1,2,3,4,5,6,7,8,9,0})
CreateDWordField (ABCD, 2, XYZ)
Name (MNOP, ”1234”)
Concatenate (XYZ, MNOP, Local0)

The Concatenate operator can take an Integer, Buffer or String for its first two parameters and the type of
the first parameter determines how the second parameter will be converted. In this example, the first
parameter is of type Buffer Field (from the CreateDWordField operator). What should it be converted to:
Integer, Buffer or String? According to Table 16-4, the highest priority conversion is to Integer. Therefore,
both of the following objects will be converted to Integers:

ACPI Source Language (ASL) Reference 355

Compaq/Intel/Microsoft/Phoenix/Toshiba

XYZ (0x05040302)
MNOP (0x31, 0x32, 0x33, 0x34)

And will then joined together and the resulting type and value will be:
Buffer (0x02, 0x03 ,0x04, 0x05, 0x31, 0x32, 0x33, 0x34).

16.2.2.3.2 Implicit Result Object Conversion
For all ASL operators that generate and store a result value (including the Store operator), the result object
is processed and stored by the AML interpreter as follows:

• If the ASL operator is one of the explicit conversion operators (ToString, ToInteger, etc., and the
CopyObject operator), no conversion is performed. (In other words, the result object is stored directly
to the target and completely overwrites any existing object already stored at the target.)

• If the target is a method local or argument (LocalX or ArgX), no conversion is performed and the
result is stored directly to the target.

• If the target is a fixed type such as a named object or field object, an attempt is made to convert the
source to the existing target type before storing.

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit result conversion can occur anytime the result of an operator is stored into an object that is of a
fixed type. For example:

Name (BUF1, Buffer(10))
Add (0x1234, 0x789A, BUF1)

Since BUF1 is a named object of fixed type Buffer, the Integer result of the Add operation must be
converted to a Buffer before it is stored into BUF1.

16.2.2.4 Data Types and Type Conversions
The following table lists the available ASL data types and the available data type conversions (if any) for
each. The entry for each data type is fully cross-referenced, showing both the types to which the object
may be converted as well as all other types that may be converted to the data type.

The allowable conversions apply to both explicit and implicit conversions.

Table 16-4a Data Types and Type Conversions

ASL Data Type
Can be implicitly or explicitly converted
to these Data Types: (In priority order)

Can be implicitly or explicitly
converted from these Data Types:

[Uninitialized] None. Causes a fatal error when used as a
source operand in any ASL statement.

Integer, String, Buffer, Package,
DDB Handle, Object Reference

Buffer Integer, String, Debug Object Integer, String

Buffer Field Integer, Buffer, String, Debug Object Integer, Buffer, String

DDB Handle Integer, Debug Object Integer

Debug Object None. Causes a fatal error when used as a
source operand in any ASL statement.

Integer, String, Buffer, Package,
Field Unit, Buffer Field, DDB
Handle

Device None None

Event None None

Field Unit (within an
Operation Region)

Integer, Buffer, String, Debug Object Integer, Buffer, String

356 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ASL Data Type
Can be implicitly or explicitly converted
to these Data Types: (In priority order)

Can be implicitly or explicitly
converted from these Data Types:

Integer Buffer, Buffer Field, DDB Handle, Field
Unit, String, Debug Object

Buffer, String

Integer Constant Integer, Debug Object None. Also, storing any object to a
constant is a no-op, not an error.

Method None None

Mutex None None

Object Reference None None

Operation Region None None

Package Debug Object None

String Integer, Buffer, Debug Object Integer, Buffer

Power Resource None None

Processor None None

Thermal Zone None None

16.2.2.5 Data Type Conversion Rules
The following table presents the detailed data conversion rules for each of the allowable data type
conversions. These conversion rules are implemented by the AML Interpreter and apply to all conversion
types — explicit conversions, implicit source conversions, and implicit result conversions.

ACPI Source Language (ASL) Reference 357

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-4b Object Conversion Rules

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Buffer Field The contents of the buffer are copied to the Buffer Field. If the buffer is
smaller than the size of the buffer field, it is zero extended. If the buffer
is larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object Each buffer byte is displayed as hexadecimal integer, delimited by
spaces and/or commas.

Field Unit The entire contents of the buffer are copied to the Field Unit. If the
buffer is larger (in bits) than the size of the Field Unit, it is broken into
pieces and completely written to the Field Unit, lower chunks first. If the
integer (or the last piece of the integer, if broken up) is smaller or equal
in size to the Field Unit, then it is zero extended before being written.

Integer The contents of the buffer are copied to the Integer, starting with the
least-significant bit and continuing until the buffer has been completely
copied — up to the maximum number of bits in an Integer (64 in ACPI
2.0).

Buffer

String The entire contents of the buffer are converted to a string of two-
character hexadecimal numbers, each separated by a space. A fatal error
is generated if greater than two hundred ASCII characters are created.

[See Rule] If the Buffer Field is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. Otherwise, it will be treated as a
Buffer. (See the conversion rules for the Integer and Buffer data types.)

Buffer Field

Debug Object Each byte is displayed as hexadecimal integer , delimited by spaces
and/or commas

DDB Handle [See Rule] The object is treated as an Integer (See conversion rules for the Integer
data type.)

[See Rule] If the Field Unit is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. If the Field Unit is larger than the
size of an Integer, it will be treated as a Buffer. The size of an Integer is
indicated by the Definition Block table header’s Revision field. A
Revision field value less than 2 indicates that the size of an Integer is
32-bits. A value greater than or equal to 2 signifies that the size of an
Integer is 64-bits. (See the conversion rules for the Integer and Buffer
data types.)

Field Unit

Debug Object Each byte is displayed as hexadecimal integer , delimited by spaces
and/or commas

358 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Buffer The Integer overwrites the entire Buffer object. If the integer requires
more bits than the size of the Buffer, then the integer is truncated before
being copied to the Buffer. If the integer contains fewer bits than the
size of the buffer, the Integer is zero-extended to fill the entire buffer

Buffer Field The Integer overwrites the entire Buffer Field. If the integer is smaller
than the size of the buffer field, it is zero-extended. If the integer is
larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object Displayed as a hexadecimal integer.

Field Unit The Integer overwrites the entire Field Unit. If the integer is smaller
than the size of the buffer field, it is zero-extended. If the integer is
larger than the size of the buffer field, the upper bits are truncated.

Integer

String Creates an ASCII hexadecimal string.

Package All existing contents (if any) of the target package are deleted, and the
contents of the source package are copied into the target package. (In
other words, overwrites the same as any other object.)

Package

Debug Object Each element of the package is displayed based on its type.

Buffer The string is treated as a Buffer, with each ASCII character copied to
one Buffer byte. If the string is longer than the buffer, it is truncated. If
the string is shorter than the buffer, the buffer size is reduced

Buffer Field The string is treated as a buffer. If this buffer is smaller than the size of
the buffer field, it is zero extended. If the buffer is larger than the size of
the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object Each byte displayed as an ASCII character

Field Unit Each character of the string is written, starting with the first, to the Field
Unit. If the Field Unit is less than eight bits, then the upper bits of each
character are lost. If the Field Unit is greater than eight bits, then the
additional bits are zeroed.

String

Integer The ASCII string is interpreted as a hexadecimal constant. Starts with
the first hexadecimal ASCII character (‘0’-‘9’, ‘A’-‘F’, ‘a’, ‘f’) and ends
with the first non-hexadecimal character.

16.2.2.6 Rules for Storing and Copying Objects

The table below lists the actions performed when storing objects to different types of named targets. ASL
provides the following types of “store” operations:

• The Store operator is used to explicitly store an object to a location, with implicit conversion support
of the source object.

ACPI Source Language (ASL) Reference 359

Compaq/Intel/Microsoft/Phoenix/Toshiba

• Many of the ASL operators can store their result optionally into an object specified by the last
parameter. In these operators, if the destination is specified, the action is exactly as if a Store operator
had been used to place the result in the destination.

• The CopyObject operator is used to explicitly store a copy of an object to a location, with no implicit
conversion support.

Table 16-4c Object Storing and Copying Rules

When Storing an
object of any data
type to this type of
Target location

This action is performed by the
Store operator or any ASL
operator with a Target operand:

This action is performed by the
CopyObject operator:

Method ArgX
variable

The object is copied to the destination with no conversion applied, with one
exception. If the ArgX contains an Object Reference, an automatic de-reference
occurs and the object is copied to the target of the Object Reference instead of
overwriting the contents of ArgX

Method LocalX
variable

The object is copied to the destination with no conversion applied. Even if
LocalX contains an Object Reference, it is overwritten.

Field Unit or Buffer
Field

The object is copied to the
destination after implicit result
conversion is applied

Fields permanently retain their type and
cannot be changed. Therefore,
CopyObject can only be used to copy an
object of type Integer or Buffer to fields.

 Named data object The object is copied to the
destination after implicit result
conversion is applied to match the
existing type of the named location

The object and type are copied to the
named location.

16.2.3 ASL Terms
This section describes all the ASL terms and provides sample ASL code that uses the terms.

The ASL terms are grouped into the following categories:
• Definition block terms
• Compiler directive terms
• Object terms
• Opcode terms
• User terms
• Data objects
• Miscellaneous objects

360 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.1 Definition Block Term

DefinitionBlockTerm := DefinitionBlock(

 AMLFileName, //String
 TableSignature, //String
 ComplianceRevision, //ByteConstExpr
 OEMID, //String
 TableID, //String
 OEMRevision //DWordConstExpr
) {TermList}

The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an additional Definition Block. This unit of data and/or AML
code describes either the base system or some large extension (such as a docking station). The entire
DefinitionBlock will be loaded and compiled by the OS as a single unit, and can be unloaded by the OS as
a single unit.

16.2.3.2 Compiler Directive Terms
The compiler directives are:
• Include term
• External term

16.2.3.2.1 Include (Include Another ASL File)

IncludeTerm := Include(

 IncFilePathName //String
)

IncFilePathname is the full OS file system path to another file that contains ASL terms to be included in the
current file of ASL terms.

16.2.3.2.2 External (Declare External Objects)

ExternalTerm := External(

 ObjName, //NameString
 ObjType //Nothing | ObjectTypeKeyword
)

The External compiler directive is to let the assembler know that the object is declared external to this table
so that the assembler will not complain about the undeclared object. During compiling, the assembler will
create the external object at the specified place in the namespace (if a full path of the object is specified), or
the object will be created at the current scope of the External term. ObjType is optional. If not specified,
“UnknownObj” type is assumed.

16.2.3.3 Object Terms
Object terms include: Named Object terms and Namespace Modifiers.

ACPI Source Language (ASL) Reference 361

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.1 Named Object Terms
The ASL terms that can be used to create named objects in a definition block are listed in the following
table.

Table 16-5 Named Object Terms

ASL Statement Description

BankField Declares fields in a banked configuration object.

CreateBitField Declare a bit field object of a buffer object.

CreateByteField Declares a byte field object of a buffer object.

CreateDWordField Declares a DWord field object of a buffer object.

CreateField Declares a field object of any bit length of a buffer object.

CreateQWordField Declares a QWord field object of a buffer object.

CreateWordField Declares a Word field object of a buffer object.

DataTableRegion Declares a Data Table Region.

Device Declares a bus/device object.

Event Declares an event synchronization object.

Field Declares fields of an operation region object.

IndexField Declares fields in an index/data configuration object.

Method Declares a control method.

Mutex Declares a mutex synchronization object.

OperationRegion Declares an operational region.

PowerResource Declares a power resource object.

Processor Declares a processor package.

ThermalZone Declares a thermal zone package.

16.2.3.3.1.1 BankField (Declare Bank/Data Field)

BankFieldTerm := BankField(

 RegionName, //NameString=>OperationRegion
 BankName, //NameString=>FieldUnit
 BankValue, //TermArg=>Integer
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

This statement creates data field objects. The contents of the created objects are obtained by a reference to a
bank selection register.

This encoding is used to define named data field objects whose data values are fields within a larger object
selected by a bank-selected register. Accessing the contents of a banked field data object will occur
automatically through the proper bank setting, with synchronization occurring on the operation region that
contains the BankName data variable, and on the Global Lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

362 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following is a block of ASL sample code using BankField:
• Creates a 4-bit bank-selected register in system I/O space.
• Creates overlapping fields in the same system I/O space that are selected via the bank register.

 // define 256-byte operational region in SystemIO space
 // and name it GIO0
 OperationRegion (GIO0, SystemIO, 0x125, 0x100)

 // create some field in GIO including a 4-bit bank select register
 Field (GIO0, ByteAcc, NoLock, Preserve) {
 GLB1, 1,
 GLB2, 1,
 Offset(1), // move to offset for byte 1
 BNK1, 4
 }

 // Create FET0 & FET1 in bank 0 at byte offset 0x30
 BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {
 Offset (0x30),
 FET0, 1,
 FET1, 1
 }

 // Create BLVL & BAC in bank 1 at the same offset
 BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {
 Offset (0x30),
 BLVL, 7,
 BAC, 1
 }

16.2.3.3.1.2 CreateBitField

CreateBitFieldTerm := CreateBitField(

 SourceBuffer, //TermArg=>Buffer
 BitIndex, //TermArg=>Integer
 BitFieldName //NameString
)

SourceBuffer is evaluated as a buffer. BitIndex is evaluated as an integer. A new buffer field object
BitFieldName is created for the bit of SourceBuffer at the bit index of BitIndex. The bit-defined field within
SourceBuffer must exist.

16.2.3.3.1.3 CreateByteField

CreateByteFieldTerm := CreateByteField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 ByteFieldName //NameString
)

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new buffer field object
ByteFieldName is created for the byte of SourceBuffer at the byte index of ByteIndex. The byte-defined
field within SourceBuffer must exist.

16.2.3.3.1.4 CreateDWordField

CreateDWordFieldTerm := CreateDWordField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 DWordFieldName //NameString
)

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new buffer field object
DWordFieldName is created for the DWord of SourceBuffer at the byte index of ByteIndex. The DWord-
defined field within SourceBuffer must exist.

ACPI Source Language (ASL) Reference 363

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.1.5 CreateField (Field)

CreateFieldTerm := CreateField(

 SourceBuffer, //TermArg=>Buffer
 BitIndex, //TermArg=>Integer
 NumBits, //TermArg=>Integer
 FieldName //NameString
)

SourceBuffer is evaluated as a buffer. BitIndex and NumBits are evaluated as integers. A new buffer field
object FieldName is created for the bits of SourceBuffer at BitIndex for NumBits. The entire bit range of the
defined field within SourceBuffer must exist.

16.2.3.3.1.6 CreateQWordField

CreateQWordFieldTerm := CreateQWordField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 QWordFieldName //NameString
)

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new buffer field object
QWordFieldName is created for the QWord of SourceBuffer at the byte index of ByteIndex. The QWord-
defined field within SourceBuffer must exist.

16.2.3.3.1.7 CreateWordField

CreateWordFieldTerm := CreateWordField(

 SourceBuffer, //TermArg=>Buffer
 ByteIndex, //TermArg=>Integer
 WordFieldName //NameString
)

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. A new bufferfield object
WordFieldName is created for the word of SourceBuffer at the byte index of ByteIndex. The word-defined
field within SourceBuffer must exist.

16.2.3.3.1.8 DataTableRegion

DataRegionTerm := DataTableRegion(
 RegionName, //NameString

 SignatureString, //TermArg=>String
 OemIDString, //TermArg=>String
 OemTableIDString //TermArg=>String
)

A Data Table Region is a special Operation Region. Its region space is always memory. The memory
referred to by the Data Table Region is the memory that is occupied by the table referenced in XSDT that is
identified by SignatureString, OemIDString and OemTableIDString. Any Field object can reference
RegionName

The base address of a Data Table region is the address of the first byte of the header of the table identified
by SignatureString, OemIDString and OemTableIDString. The length of the region is the length of the
table.

Any table referenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNVS.

364 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.1.9 Device (Declare Bus/Device Package)

DeviceTerm := Device(

 DeviceName //NameString
) {ObjectList}

Creates a Device object, which represents either a bus or a device or any other such entity of use. Device
opens a name scope.

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devices in the system to the operating software. Each Bus/Device Package is defined somewhere in the
hierarchical namespace corresponding to that device’s location in the system. Within the namespace of the
device are other names that provide information and control of the device, along with any sub-devices that
in turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware standard
manner. This type of value-added function is expressible in the ACPI Definition Block such that operating
software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside
the device’s normal capabilities and for any Device Object required to fill in the tree for such a device. For
example, if the system includes a PCI device (integrated or otherwise) with no additional functions such as
power management, the BIOS would not report such a device; however, if the system included an
integrated ISA device below the integrated PCI device (device is an ISA bridge), then the system would
include a Device Package for the ISA device with the minimum feature being added being the ISA device’s
ID and configuration information and the parent PCI device, because it is required to get the ISA Device
Package placement in the namespace correct.

The following block of ASL sample code shows a nested use of Device objects to describe an IDE
controller connected to the root PCI bus.

 Device (IDE0) { // primary controller
 Name(_ADR, 0) // put PCI Address (device/function) here

 // define region for IDE mode register
 OperationRegion (PCIC, PCI_Config, 0x50, 0x10)
 Field (PCIC, AnyAcc, NoLock, Preserve) {
 …
 }
 Device(PRIM) { //Primary adapter
 Name(_ADR, 0) //Primary adapter = 0
 …
 Method(_STM, 2){
 …
 }
 Method(_GTM){
 …
 }
 Device(MSTR) { // master channel
 Name(_ADR, 0)
 Name(_PR0, Package(){0, PIDE})

 Name(_GTF){
 …
 }
 }

 Device(SLAV) {
 Name(_ADR, 1)
 Name(_PR0, Package(){0, PIDE})
 Name(_GTF){
 …
 }
 }
 }
 }

ACPI Source Language (ASL) Reference 365

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.1.10 Event (Declare Event Synchronization Object)

EventTerm := Event(

 EventName //NameString
)

Creates an event synchronization object named EventName.

For more information about the uses of an event synchronization object, see the ASL definitions for the
Wait, Signal, and Reset function operators.

16.2.3.3.1.11 Field (Declare Field Objects)

FieldTerm := Field(

 RegionName, //NameString=>OperationRegion
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

Declares a series of named data objects whose data values are fields within a larger object. The fields are
parts of the object named by RegionName, but their names appear in the same scope as the Field term.

For example, the field operator allows a larger operation region that represents a hardware register to be
broken down into individual bit fields that can then be accessed by the bit field names. Extracting and
combining the component field from its parent is done automatically when the field is accessed.

Accessing the contents of a field data object provides access to the corresponding field within the parent
object. If the parent object supports Mutex synchronization, accesses to modify the component data objects
will acquire and release ownership of the parent object around the modification.

In general, accesses within the parent object are performed naturally aligned. If desired, AccessType set to a
value other than AnyAcc can be used to force minimum access width. Notice that the parent object must be
able to accommodate the AccessType width. For example, an access type of WordAcc cannot read the last
byte of an odd-length operation region. The exceptions to natural alignment are the access types used for a
non-linear SMBus device. These will be discussed in detail below. Not all access types are meaningful for
every type of operational region.

The following table relates region types declared with an OperationRegion term to the different access
types supported for each region.

366 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-6 OperationRegion Region Types and Access Types

Region Types Access Type Description

SystemMemory ByteAcc

 WordAcc

 DWordAcc

 QWordAcc

 AnyAcc Read/Write Byte, Word, DWord, QWord
access

SystemIO ByteAcc

 WordAcc

 DWordAcc

 QWordAcc

 AnyAcc Read/Write Byte, Word, DWord, QWord
access

PCI_Config ByteAcc

 WordAcc

 DWordAcc

 QWordAcc

 AnyAcc Read/Write Byte, Word, DWord, QWord
access

EmbeddedControl ByteAcc

SMBus BufferAcc Reads and writes to this operation region
involve the use of a region specific data
buffer. See section 14, “ACPI System
Management Bus Interface Specification,” for
more information.

CMOS ByteAcc

PciBarTarget ByteAcc

 WordAcc

 DWordAcc

 QWordAcc

 AnyAcc Read/Write Byte, Word, DWord, QWord
access

ACPI Source Language (ASL) Reference 367

Compaq/Intel/Microsoft/Phoenix/Toshiba

If LockRule is set to Lock, accesses to modify the component data objects will acquire and release the
Global Lock. If both types of locking occur, the Global Lock is acquired after the parent object Mutex.

UpdateRule is used to specify how the unmodified bits of a field are treated. For example, if a field defines
a component data object of 4 bits in the middle of a WordAcc region, when those 4 bits are modified the
UpdateRule specifies how the other 12 bits are treated.

The named data objects are provided in FieldList as a series of names and bit widths. Bits assigned no
name (or NULL) are skipped. The ASL compiler supports an Offset(ByteOffset) macro within a FieldList
to skip to the bit position of the supplied byte offset.

SMBus regions are inherently non-linear, where each offset within an SMBus address space represents a
variable sized (0 to 32 bytes) field. Given this uniqueness, SMBus operation regions include restrictions on
their field definitions and require the use of an SMBus-specific data buffer when initiating transactions. See
section 14, “ACPI System Management Bus Interface Specification,” for more information.

16.2.3.3.1.11.1 CMOS Protocols
This section describes how CMOS can be accessed from ASL. Most computers contain an RTC/CMOS
device that can be represented as a linear array of bytes of non-volatile memory. There is a standard
mechanism for accessing the first 64 bytes of non-volatile RAM in devices that are compatible with the
Motorola RTC/CMOS device that was in the IBM PC/AT. But today’s RTC/CMOS devices usually contain
more than 64 bytes of non-volatile RAM, and there is no standard for access to these extensions. To solve
this problem, new PnP IDs are presented here for each type of extension.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

16.2.3.3.1.11.1.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)
The standard PC/AT-compatible RTC/CMOS device is denoted by the PnP ID PNP0B00. If an ACPI
platform uses a device that is compatible with this device, it may describe this in its ACPI namespace. ASL
may then read and write this as a linear 64-byte array. If PNP0B00 is used, ASL and ACPI operating
systems may not assume that any extensions to the CMOS exist.

Note: This means that the CENTURY field in the Fixed ACPI Description Table may only contain values
between 0 and 63.

This is an example of how this device could be described:

 Device (RTC0) {
 Name(_HID, EISAID("PNP0B00"))

Name(_CRS, ResourceTemplate() {
 IO(Decode16, 0x70, 0x70, 0x1, 0x2)
}

 OperationRegion(CMS1, CMOS, 0, 0x40)

 Field(CMS1, ByteAcc, NoLock, Preserve) {
 AccessAs(ByteAcc, 0),
 CM00, 8,
 ,256,
 CM01, 8,
 CM02, 16,
 , 216,
 CM03, 8
 }

16.2.3.3.1.11.1.2 Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)
The Intel PIIX4 contains an RTC/CMOS device that is compatible with the one in the PC/AT. But it
contains 256 bytes of non-volatile RAM. The first 64 bytes are accessed via the same mechanism as the 64

368 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

bytes in the PC/AT. The upper 192 bytes are accessed through an interface that is only used on Intel chips.
(See 82371AB PCI-TO-ISA / IDEXCELERATOR (PIIX4) for details.)

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B01. This
will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the programming
interface of the PIIX4. Thus, the array of bytes that ASL can read and write with this device is 256 bytes
long.

Note: This also means that the CENTURY field in the Fixed ACPI Description Table may contain values
between 0 and 255.

This is an example of how this device could be described:

 Device (RTC0) {
 Name(_HID, EISAID("PNP0B01"))

 Name(_CRS, ResourceTemplate() {
 IO(Decode16, 0x70, 0x70, 0x1, 0x2)
 IO(Decode16, 0x72, 0x72, 0x1, 0x2)
 }

 OperationRegion(CMS1, CMOS, 0, 0x100)

 Field(CMS1, ByteAcc, NoLock, Preserve) {
 AccessAs(ByteAcc, 0),
 CM00, 8,
 ,256,
 CM01, 8,
 CM02, 16,
 , 224,
 CM03, 8,
 , 184,
 CENT, 8
 }

16.2.3.3.1.11.1.3 Dallas Semiconductor-compatible RTC/CMOS Devices
(PNP0B02)
Dallas Semiconductor RTC/CMOS devices are compatible with the one in the PC/AT, but they contain 256
bytes of non-volatile RAM or more. The first 64 bytes are accessed via the same mechanism as the 64 bytes
in the PC/AT. The upper bytes are accessed through an interface that is only used on Dallas Semiconductor
chips.

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B02. This
will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the Dallas Semiconductor
programming interface. Thus, the array of bytes that ASL can read and write with this device is 256 bytes
long.

Description of these devices is similar to the PIIX4 example above, and the CENTURY field of the FADT
may also contain values between 0 and 255.

16.2.3.3.1.11.2 PCI Device BAR Target Protocols
This section describes how PCI devices’ control registers can be accessed from ASL. PCI devices each
have an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many as six Base Address Registers, (BARs). These BARs contain the base address of a
series of control registers (in I/O or Memory space) for the PCI device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically using
I/O or Memory operation regions. Furthermore, a Plug and Play Play OS will automatically assign
ownership of the I/O and Memory regions associated with these BARs to a device driver associated with
the PCI device. An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to
read and write regions that are owned by native device drivers.

ACPI Source Language (ASL) Reference 369

Compaq/Intel/Microsoft/Phoenix/Toshiba

If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device driver for
the associated PCI function. For example, if any of the BARs in a PCI function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCI function is to be entirely under the
control of the ACPI BIOS. No driver will be loaded. Thus, a PCI function can be used as a platform
controller for some task (hot-plug PCI, and so on) that the ACPI BIOS performs.

16.2.3.3.1.11.2.1 Declaring a PCI BAR Target Operation Region
PCI BARs contain the base address of an I/O or Memory region that a PCI device’s control registers lie
within. Each BAR implements a protocol for determining whether those control registers are within I/O or
Memory space and how much address space the PCI device decodes. (See the PCI Specification for more
details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI device’s
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/O or Memory cycle, not by the declaration of the operation region. The length of the region is similarly
implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the BAR
within the configuration space of the device. This would be an example of an operation region that uses the
first BAR in the device.

16.2.3.3.1.11.2.2 PCI Header Types and PCI BAR Target Operation Regions
PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI
Header Type of 0. PCI devices with other header types are bridges. The control of PCI bridges is beyond
the scope of ASL.

16.2.3.3.1.12 IndexField (Declare Index/Data Fields)

IndexFieldTerm := IndexField(

 IndexName, //NameString=>FieldUnit
 DataName, //NameString=>FieldUnit
 AccessType, //AccessTypeKeyword
 LockRule, //LockRuleKeyword
 UpdateRule //UpdateRuleKeyword
) {FieldUnitList}

Creates a series of named data objects whose data values are fields within a larger object accessed by an
index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data
register pair. This provides a simple way to declare register variables that occur behind a typical index and
data register pair.

Accessing the contents of an indexed field data object will automatically occur through the DataName
object by using an IndexName object aligned on an AccessType boundary, with synchronization occurring
on the operation region that contains the index data variable, and on the Global Lock if specified by
LockRule.

AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field term.

370 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following is a block of ASL sample code using IndexField:

Creates an index/data register in system I/O space made up of 8-bit registers.
• Creates a FET0 field within the indexed range.

Method(EX1){
 // define 256-byte operational region in SystemIO space
 // and name it GIO0
 OperationRegion (GIO0, 1, 0x125, 0x100)
 // create field named Preserve structured as a sequence
 // of index and data bytes
 Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {
 IDX0, 8,
 DAT0, 8,
 .
 .
 .
 }
 // Create an IndexField within IDX0 & DAT0 which has
 // FETs in the first two bits of indexed offset 0,
 // and another 2 FETs in the high bit on indexed
 // 2f and the low bit of indexed offset 30
 IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {
 FET0, 1,
 FET1, 1,
 Offset(0x2f), // skip to byte offset 2f
 , 7, // skip another 7 bits
 FET3, 1,
 FET4, 1
 }
 // Clear FET3 (index 2f, bit 7)
 Store (Zero, FET3)
} // End EX1

16.2.3.3.1.13 Method (Declare Control Method)

MethodTerm := Method(

 MethodName, //NameString
 NumArgs, //Nothing | ByteConstExpr
 SerializeRule, //Nothing |
 // SerializeRuleKeyword
 SyncLevel //Nothing |
 // ByteConstExpr
) {TermList}

Declares a named package containing a series of object references that collectively represent a control
method, which is a procedure that can be invoked to perform computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on control method execution, see section 5.5.3, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

If a method is declared as Serialized, an implicit mutex associated with the method object is acquired at the
specified SyncLevel. If no SyncLevel is specified, SyncLevel 0 is assumed. The serialize rule can be used to
prevent reentering of a method. This is especially useful if the method creates namespace objects. Without
the serialize rule, the reentering of a method will fail when it attempts to create the same namespace object.

Also notice that all namespace objects created by a method have temporary lifetime. When method
execution exits, the created objects will be destroyed.

ACPI Source Language (ASL) Reference 371

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following block of ASL sample code shows a use of Method for defining a control method that turns
on a power resource.

Method(_ON) {
 Store (One, GIO.IDEP) // assert power
 Sleep (10) // wait 10ms
 Store (One, GIO.IDER) // de-assert reset#
 Stall (10) // wait 10us
 Store (Zero, GIO.IDEI) // de-assert isolation
}

16.2.3.3.1.14 Mutex (Declare Synchronization/Mutex Object)

MutexTerm := Mutex(

 MutexName, //NameString
 SyncLevel //ByteConstExpr
)

Creates a data mutex synchronization object named MutexName, with level from 0 to 15 specified by
SyncLevel.

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired. The SyncLevel
parameter declares the logical nesting level of the synchronization object. All Acquire terms must refer to a
synchronization object with an equal or greater SyncLevel to current level, and all Release terms must refer
to a synchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation. For example, the top-level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested.

The SyncLevel of a thread before acquiring any mutexes is zero. The SyncLevel of the Global Lock (_GL)
is zero.

16.2.3.3.1.15 OperationRegion (Declare Operation Region)

OpRegionTerm := OperationRegion(

 RegionName, //NameString
 RegionSpace, //RegionSpaceKeyword
 Offset, //TermArg=>Integer
 Length //TermArg=>Integer
)

Declares an operation region. Offset is the offset within the selected RegionSpace at which the region starts
(byte-granular), and Length is the length of the region in bytes.

An Operation Region is a type of data object where read or write operations to the data object are
performed in some hardware space. For example, the Definition Block can define an Operation Region
within a bus, or system I/O space. Any reads or writes to the named object will result in accesses to the I/O
space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI
control methods. In general, no hardware register (at least byte-granular) within the operation region
accessed by an ACPI control method can be shared with any accesses from any other source, with the
exception of using the Global Lock to share a region with the firmware. The entire Operation Region can
be allocated for exclusive use to the ACPI subsystem in the host OS.

372 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Operation Regions that are defined within the scope of a method are the exception to this rule. These
Operation Regions are known as “Dynamic” since the OS has no idea that they exist or what registers they
use until the control method is executed. Using a Dynamic SystemIO or SystemMemory Operation Region
is not recommended since the OS cannot guarantee exclusive access. All other types of Operation Regions
may be Dynamic.

Operation Regions have “virtual content” and are only accessible via Field objects Operation Region
objects may be defined down to actual bit controls using Field data object definitions. The actual bit
content of a Field is comprised of bits from within a larger Buffer that are normalized for that field (in
other words, shifted down and masked to the proper length), and as such the data type of a Field is Buffer.
Therefore fields that are 32 bits or less in size may be read and stored as Integers.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field
data object for the region, will automatically synchronize on the Operation Region object; however, a
control method may also explicitly synchronize to a region to prevent other accesses to the region (from
other control methods). Notice that, according to the control method execution model, control method
execution is non-preemptive. Because of this, explicit synchronization to an Operation Region needs to be
done only in cases where a control method blocks or yields execution and where the type of register usage
requires such synchronization.

There are seven predefined Operation Region types specified in ACPI:

0 – SystemMemory

1 – SystemIO

2 – PCI_Config

3 – EmbeddedControl

4 – SMBus

5 – CMOS

6 – PCIBARTarget

In addition, OEMs may define Operation Regions types 0x80 to 0xFF.

The following example ASL code shows the use of OperationRegion combined with Field to describe
IDE 0 and 1 controlled through general I/O space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)
Field (GIO, ByteAcc, NoLock, Preserve) {
 IDEI, 1, // IDEISO_EN - isolation buffer
 IDEP, 1, // IDE_PWR_EN - power
 IDER, 1 // IDERST#_EN - reset#
}

16.2.3.3.1.16 PowerResource (Declare Power Resource)

PowerResTerm := PowerResource(

 ResourceName, //NameString
 SystemLevel, //ByteConstExpr
 ResourceOrder //WordConstExpr
) {ObjectList}

Declares a power resource. PowerResource opens a name scope.

For a definition of the PowerResource term, see section 7.1, “Declaring a Power Resource Object.”

ACPI Source Language (ASL) Reference 373

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.1.17 Processor (Declare Processor)

ProcessorTerm := Processor(

 ProcessorName, //NameString
 ProcessorID, //ByteConstExpr
 PBlockAddress, //DWordConstExpr
 PblockLength //ByteConstExpr
) {ObjectList}

Declares a named processor object. Processor opens a name scope. Each processor is required to have a
unique ProcessorID value that is unique from any other ProcessorID value.

For each processor in the system, the ACPI BIOS declares one processor object in the namespace anywhere
within the _SB scope. For compatibility with operating systems implementing ACPI 1.0, the processor
object may also be declared under the _PR scope. An ACPI 2.0-compatible namespace may define
Processor objects in either the _SB or _PR scope but not both.

PBlockAddress provides the system I/O address for the processors register block. Each processor can
supply a different such address. PBlockLength is the length of the processor register block, in bytes and is
either 0 (for no P_BLK) or 6. With one exception, all processors are required to have the same
PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength when all other
processors have a zero PBlockLength.

The following block of ASL sample code shows a use of the Processor term.

 Processor(
 _PR.CPU0, // namespace name
 1,
 0x120, // PBlk system IO address

 6 // PBlkLen
)
 {ObjectList}

The ObjectList is an optional list that may contain an arbitrary number of ASL Objects. Processor-specific
objects that may be included in the ObjectList include _PTC, _CST, _PCT, _PSS, and _PPC. These
processor-specific objects can only be specified when the processor object is declared within the _SB
scope. For a full definition of these objects, see section 8, “Processor Control.”

16.2.3.3.1.18 ThermalZone (Declare Thermal Zone)

ThermalZoneTerm := ThermalZone(

 ThermalZoneName //NameString
) {ObjectList}

Declares a named Thermal Zone object. ThermalZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system
is required to have a unique ThermalZoneName.

A thermal zone may be declared in the namespace anywhere within the _SB scope. For compatibility with
operating systems implementing ACPI 1.0, a thermal zone may also be declared under the _TZ scope. An
ACPI 2.0-compatible namespace may define Thermal Zone objects in either the _SB or _TZ scope but not
both.

For sample ASL code that uses a ThermalZone statement, see section 12, “Thermal Management.”

374 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.2 Namespace Modifiers
The namespace modifiers are as follows:

Table 16-7 Namespace Modifiers

ASL Statement Description

Alias Defines a name alias.

Name Defines a global name and attaches a buffer, literal data item, or
package to it.

Scope Declares the placement of one or more object names in the ACPI
namespace when the definition block that contains the Scope
statement is loaded.

16.2.3.3.2.1 Alias (Declare Name Alias)

AliasTerm := Alias(

 SourceObject, //NameString
 AliasObject //NameString
)

Creates a new name, AliasObject, which refers to and acts exactly the same as SourceObject.

AliasObject is created as an alias of SourceObject in the namespace. The SourceObject name must already
exist in the namespace. If the alias is to a name within the same definition block, the SourceObject name
must be logically ahead of this definition in the block. The following example shows use of an Alias term:

Alias(\SUS.SET.EVEN, SSE)

16.2.3.3.2.2 Name (Declare Named Object)

NameTerm := Name(

 ObjectName, //NameString
 Object //DataObject
)

Attaches Object to ObjectName in the Global ACPI namespace.

This encoding is to create ObjectName in the namespace, which references the Object.

The following example creates the name PTTX in the root of the namespace that references a package.

Name(\PTTX, // Port to Port Translate Table
 Package() { Package() { 0x43, 0x59 }, Package() { 0x90, 0xff }}
)

The following example creates the name CNT in the root of the namespace that references an integer data
object with the value 5.

Name(\CNT, 5)

ACPI Source Language (ASL) Reference 375

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.3.2.3 Scope (Open Named Scope)

ScopeTerm := Scope(

 Location //NameString
) {ObjectList}

Opens and assigns a base namespace scope to a collection of objects. All object names defined within the
scope act relative to Location. Notice that Location does not have to be below the surrounding scope, but
can refer to any location within the namespace. The Scope term itself does not create objects, but only
locates objects in the namespace; the located objects are created by other ASL terms.

The object referred to by Location must already exist in the namespace and be one of the following object
types that has a namespace scope associated with it:

 Predefined scope such as: \ (root), _SB, \GPE, _PR, _TZ, _SI, etc.
 Device
 Processor
 Thermal Zone
 Power Resource

The Scope term alters the current namespace location to the existing Location. This causes the defined
objects within ObjectList to occur relative to this new location in the namespace.

The following example ASL code places the defined objects in the ACPI namespace as shown:

Scope(\PCI0) {
 Name(X, 3)
 Scope(\) {
 Method(RQ) { Return(0) }
 }
 Name(^Y, 4)
}

places the defined objects in the ACPI namespace as shown:

\PCI0.X
\RQ
\Y

16.2.3.4 Opcode Terms
There are two types of ASL opcode terms: Type 1 opcodes and Type 2 opcodes.

A Type1 opcode term can only be used standing alone on a line of ASL code; because these types of terms
do not return a value, they cannot be used as a term in an expression.

A Type2 opcode term can be used in an expression because these types of terms return a value. When used
in an expression, the argument that names the object in which to store the result is optional.

Notice that in the opcode definitions below, when the definition says “result is stored in” this literally
means that the Store operator is assumed and the “execution result” is the Source operand to the Store
opcode. If the optional argument in which the result is to be stored is an operation region field with an
AccessType of BufferAcc, the execution result of the entire opcode (the execution result of the implied
Store) may be different than the data written to the Destination of the implied Store, just as it would be in
an explicit Store operation. See section 16.2.3.4.2.43 “Store (Store)”.

16.2.3.4.1 Type 1 Opcodes

Type1Opcode := BreakTerm | BreakPointTerm | ContinueTerm | FatalTerm |

IfElseTerm | LoadTerm | NoOpTerm | NotifyTerm |
ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
SleepTerm | StallTerm | SwitchTerm | UnloadTerm |
WhileTerm

376 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The Type 1 opcodes are listed in the following table.

Table 16-8 Type 1 Opcodes

ASL Statement Description

Break Continue immediately following the innermost enclosing While scope

BreakPoint Used for debugging. Stops execution in the debugger.

Continue Continue innermost enclosing While loop where condition is evaluated

Else Else

ElseIf ElseIf

Fatal Fatal check

If If

Load Load differentiating definition block

Noop No operation

Notify Notify the OS that the specified notification event occurred for the
specified object.

Release Release a synchronization object

Reset Reset a synchronization object

Return Return from a control method, optionally setting a return value

Signal Signal a synchronization object

Sleep Sleep n milliseconds (yields the processor)

Stall Delay n microseconds (does not yield the processor)

Switch Select code to execute based on expression value

Unload Unload definition block

While While

16.2.3.4.1.1 Break (Break)

BreakTerm := Break

Break causes execution to continue immediately following the innermost enclosing While scope, in the
current Method. If there is no enclosing While within the current Method, a fatal error is generated.

Compatibility Note: In ACPI 1.0, the Break command continued immediately following the innermost
“code package.” In ACPI 2.0, the Break command has been changed to exit the innermost “While”
package. This should have no impact on existing code, since the ACPI 1.0 definition was, in practice,
useless.

16.2.3.4.1.2 BreakPoint (BreakPoint)

BreakPointTerm := BreakPoint

Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In the retail
version of the interpreter, BreakPoint is equivalent to Noop.

ACPI Source Language (ASL) Reference 377

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.1.3 Continue – Continue Innermost Enclosing While

ContinueTerm := Continue

Continue causes execution to continue at the start of the innermost enclosing While scope, in the current
Method, at the point where the condition is evaluated. If there is no enclosing While within the current
Method, a fatal error is generated.

16.2.3.4.1.4 Else/ElseIf (Else Operator)

ElseTerm := Nothing | <Else {TermList}>|
 <ElseIf (predicate) {TermList} ElseTerm

If Predicate evaluates to 0 in an If statement, then control is transferred to the Else portion, which can
consist of zero or more ElseIf statements followed by zero or one Else statements. If the Predicate of any
ElseIf statement evaluates to non-zero, the statements in its term list are executed and then control is
transferred past the end of the final Else term. If no Predicate evaluates to non-zero, then the statements in
the Else term list are executed.

The following example checks Local0 to be zero or non-zero. On non-zero, CNT is incremented;
otherwise, CNT is decremented.

If (LGreater(Local0,5) {
 Increment (CNT)
} Else If (Local0) {
 Add(CNT,5,CNT)
}
Else {
 Decrement (CNT)
}

Compatibility Note: The ElseIf operator is new in ACPI 2.0, but is backward compatible with the ACPI
1.0 specification. The ACPI 2.0 compiler must synthesize ElseIf from the If..Else opcodes available in 1.0.
For example:

If (predicate1) {
 …statements1…
}
ElseIf (predicate2) {
 …statements2…
}
Else {
 …statements3…
}

is translated to the following:

If(predicate1) {
 …statements1…
}
Else {
 If (predicate2) {
 …statements2…
 }
 Else {
 …statements3…
 }
}

378 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.1.5 Fatal (Fatal Check)

FatalTerm := Fatal(

 Type, //ByteConstExpr
 Code, //DWordConstExpr
 Arg //TermArg=>Integer
)

This operation is used to inform the OS that there has been an OEM-defined fatal error. In response, the OS
must log the fatal event and perform a controlled OS shutdown in a timely fashion.

16.2.3.4.1.6 If (If Operator)

IfTerm := If(

 Predicate //TermArg=>Integer
) {TermList}

Predicate is evaluated as an integer. If the integer is non-zero, the term list of the If term is executed.

The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1
If (And(Local0, 4)) {
 XOr (Local0, 4, Local0)
}
// example 2
Store(4, Local2)
If (And(Local0, Local2)) {
 XOr (Local0, Local2, Local0)
}

16.2.3.4.1.7 Load (Load Definition Block)

LoadTerm := Load(

 Object, //NameString
 DDBHandle //SuperName
)

Performs a run-time load of a Definition Block. The Object parameter can either refer to an operation
region field or an operation region directly. If the object is an operation region, the operation region must
be in SystemMemory space. The Definition Block should contain a DESCRIPTION_HEADER of type
SSDT. The Definition Block must be totally contained within the supplied operation region or operation
region field. OSPM reads this table into memory, the checksum is verified, and then it is loaded into the
ACPI namespace. The DDBHandle parameter is the handle to the Definition Block that can be used to
unload the Definition Block at a future time.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the current namespace. The new
Definition Block can override this by specifying absolute names or by adjusting the namespace location
using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

16.2.3.4.1.8 Noop Code (No Operation)

NoOpTerm := Noop

This operation has no effect.

ACPI Source Language (ASL) Reference 379

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.1.9 Notify (Notify)

NotifyTerm := Notify(

 Object, //SuperName=>ThermalZone |
 // Processor | Device

 NotificationValue //TermArg=>ByteConstExpr
)

Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to a
device, processor, or thermal zone object.

Object type determines the notification values. For example, the notification values for a thermal zone
object are different from the notification values used for a device object. Undefined notification values are
treated as reserved and are ignored by the OS.

For lists of defined Notification values, see section 5.6.3, “Device Object Notifications.”

16.2.3.4.1.10 Release (Release a Mutex Synchronization Object)

ReleaseTerm := Release(

 SyncObject //SuperName=>Mutex
)

SynchObject must be a mutex synchronization object. If the mutex object is owned by the current
invocation, ownership for the Mutex is released once. It is fatal to release ownership on a Mutex unless it is
currently owned. A Mutex must be totally released before an invocation completes.

16.2.3.4.1.11 Reset (Reset an Event Synchronization Object)

ResetTerm := Reset(

 SyncObject //SuperName=>Event
)

SynchObject must be an Event synchronization object. This encoding is used to reset an event
synchronization object to a non-signaled state. See also the Wait and Signal function operator definitions.

16.2.3.4.1.12 Return (Return)

ReturnTerm := Return(

 Arg //Nothing |
 // TermArg=>DataRefObject

)

Returns control to the invoking control method, optionally returning a copy of the object named in Arg.

16.2.3.4.1.13 Signal (Signal a Synchronization Event)

SignalTerm := Signal(

 SyncObject //SuperName=>Event
)

SynchObject must be an Event synchronization object. The Event object is signaled once, allowing one
invocation to acquire the event.

16.2.3.4.1.14 Sleep (Sleep)

SleepTerm := Sleep(

 MilliSecs //TermArg=>Integer
)

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds. The implementation of Sleep is to round the request up to the closest
sleep time supported by the OS and relinquish the processor.

380 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.1.15 Stall (Stall for a Short Time)

StallTerm := Stall(

 MicroSecs //TermArg=>Integer
)

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the
required number of microseconds. The implementation of Stall is OS-specific, but must not relinquish
control of the processor. Because of this, delays longer than 100 microseconds must use Sleep instead of
Stall.

16.2.3.4.1.16 Switch – Select Code To Execute Based On Expression

SwitchTerm := Switch(

 Predicate // TermArg=>ComputationalData
) {CaseTermList}

DefaultTermList := Nothing | CaseTerm | CaseTerm DefaultTermList

CaseTermList := Nothing | CaseTerm | DefaultTerm DefaultTermList |

CaseTerm CaseTermList

CaseTerm := Case(DataObject) {TermList}
DefaultTerm := Default {TermList}

The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within its body.

If the Case value is an Integer, Buffer or String, then control passes to the statement that matches the value
of Switch(Predicate). If the Case value is a Package, then control passes if any member of the package
matches the Switch(Predicate). The Switch CaseTermList can include any number of Case instances, but
no two Case values (or members of a value, if value is a Package) within the same Switch statement can
contain the same value.

 Execution of the statement body begins at the selected statement’s TermList and proceeds until the end of
the body or until an ExitSwitch (or other valid Exitx) statement transfers control out of the body.

Use of the Switch statement usually looks something like this:

Switch (expression)
{
 Case (value) {
 Statements executed if Lequal(expression, value)

 }
 Case (Package() {value,value,value}) {
 Statements executed if Lequal(expression, any value in package)
 Default {

statements executed if expression does not equal
any case constant-expression

}
}

The Default statement is executed if no Case value matches the value of switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body are
executed. There can be at most one Default statement. The Default statement need not come at the end; it
can appear anywhere in the body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.

Compatibility Note: The Switch, Case, and Default terms are new to ACPI 2.0. However, their
implementation is backward compatible with ACPI 1.0 AML interpreters.

ACPI Source Language (ASL) Reference 381

Compaq/Intel/Microsoft/Phoenix/Toshiba

Compiler Note: The following example demonstrates how the Switch statement should be translated into
ACPI 1.0-compatible AML:

Switch (Add(ABCD(),1)
{
 Case(1) {
 …statements1…
 }
 Case(Package() {4,5,6}) {
 …statements2…
 }
 Default {
 …statements3…
 }
}

is translated as:

While(One)
{
 Name(_T_I,0) // Create Integer temporary variable for result
 Store(Add(ABCD(),1),_T_I)
 If (LEqual(_T_I,1)) {
 …statements1…
 }
 Else {
 If (LNotEqual(Match(Package() {4,5,6},MEQ,_T_I,MTR,0,0),Ones)) {
 …statements2…
 }
 Else {
 …statements3…
 }
 }
 Break
}

Note: If the compiler is unable to determine the type of the expression, then it should generate a warning
and assume integer type. The warning should indicate that the ASL should use one of the type conversion
operators (ToInteger, ToBuffer, ToDecimalString or ToHexString). For example:

Switch(ABCD()) // Can’t determine the type because methods can return anything.
{
 …case statements…
}

will generate a warning and the following code:

Name(_T_I,0)
Store(ABCD(),_T_I)

To remove the warning, the code should be:

Switch(Int(ABCD()))
{
 …case statements…
}

16.2.3.4.1.17 Unload (Unload Definition Block)

UnloadTerm := Unload(

 DDBHandle //TermArg=>DDBHandle
)

Performs a run-time unload of a Definition Block that was loaded using a Load term. Loading or unloading
a Definition Block is a synchronous operation, and no control method execution occurs during the function.
On completion of the Unload operation, the Definition Block has been unloaded (all the namespace objects
created as a result of the corresponding Load operation will be removed from the namespace).

382 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.1.18 While (While)

WhileTerm := While(

 Predicate //TermArg=>Integer
) {TermList}

Predicate is evaluated as an integer. If the integer is non-zero, the list of terms in TermList is executed. The
operation repeats until the Predicate evaluates to zero.

16.2.3.4.2 Type 2 Opcodes

Type2Opcode := AcquireTerm | AddTerm | AndTerm | ConcatTerm |

ConcateResTerm | CondRefOfTerm | DecTerm | DerefOfTerm |
DivideTerm | FindSetLeftBitTerm | FindSetRightBitTerm |
FromBCDTerm | IncTerm | IndexTerm | LAndTerm |
LEqualTerm | LGreaterTerm | LGreaterEqualTerm |
LLessTerm | LLessEqualTerm | LNotTerm | LNotEqualTerm |
LoadTableTerm | LOrTerm | MatchTerm | MidTerm |

 ModTerm | MultiplyTerm | NAndTerm | NOrTerm | NotTerm |
ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm |
ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm |
ToBCDTerm | ToBufferTerm | ToDecimalStringTerm |
ToHexStringTerm | ToIntegerTerm | ToStringTerm |
WaitTerm | XorTerm | UserTerm

The ASL terms for Type 2 Opcodes are listed in the following table.

Table 16-9 Type 2 Opcodes

ASL Statement Description

Acquire Acquire a mutex

Add Add two values

And Bitwise And

Concatenate Concatenate two strings, integers or buffers

ConcatenateResTemplate Concatenate two resource templates

CondRefOf Conditional reference to an object

Decrement Decrement a value

DerefOf Dereference an object reference

Divide Divide

FindSetLeftBit Index of first least significant bit set

FindSetRightBit Index of first most significant bit set

FromBCD Convert from BCD to numeric

Increment Increment a value

Index Reference the nth element/byte/character of a package, buffer or string

LAnd Logical And

ACPI Source Language (ASL) Reference 383

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-9 Type 2 Opcodes (continued)

ASL Statement Description

LEqual Logical Equal

LGreater Logical Greater

LGreaterEqual Logical Not less

LLess Logical Less

LLessEqual Logical Not greater

LNot Logical Not

LNotEqual Logical Not equal

LoadTable Load Table from RSDT/XSDT

LOr Logical Or

Match Search for match in package array

Mid Returns a portion of buffer or string

Mod Modulo

Multiply Multiply

NAnd Bitwise Nand

NOr Bitwise Nor

Not Bitwise Not

ObjectType Type of object

Or Bitwise Or

RefOf Reference to an object

ShiftLeft Shift value left

ShiftRight Shift value right

SizeOf Get the size of a buffer, string, or package

Store Store value

Subtract Subtract values

ToBCD Convert numeric to BCD

ToBuffer Convert data type to buffer

ToDecimalString Convert data type to decimal string

ToHexString Convert data type to hexadecimal string

ToInteger Convert data type to integer

ToString Copy ASCII string from buffer

Wait Wait

Xor Bitwise Xor

384 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.1 Acquire (Acquire a Mutex)

AcquireTerm := Acquire(

 SyncObject, //SuperName=>Mutex
 TimeoutValue //WordConstExpr
) => Boolean //True means timed-out

SynchObject must be a mutex synchronization object. It refers to the mutex to be acquired.

Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the processor
is relinquished until the owner of the Mutex releases it or until at least TimeoutValue milliseconds have
elapsed. A Mutex can be acquired more than once by the same invocation.

This operation returns True if a timeout occurred and the mutex ownership was not acquired. A
TimeoutValue of 0xFFFF indicates that there is no time out and the operation will wait indefinitely.

16.2.3.4.2.2 Add (Add)

AddTerm := Add(

 Addend1, //TermArg=>Integer
 Addend2, //TermArg=>Integer
 Result //Target
) => Integer

Addend1 and Addend2 are evaluated as integer data types and are added, and the result is optionally stored
into Result. Overflow conditions are ignored and the result of overflows simply loses the most significant
bits.

16.2.3.4.2.3 And (Bitwise And)

AndTerm := And(

 Source1, //TermArg=>Integer
 Source2, //TermArg=>Integer
 Result //Target
) => Integer

Source1 and Source2 are evaluated as integer data types, a bitwise AND is performed, and the result is
optionally stored into Result.

16.2.3.4.2.4 ToBuffer (Convert Data Type to Buffer)

ToBufferTerm := ToBuffer(

 Data, //TermArg=>ComputationalData
 Result //Target
) => Buffer

Data must be evaluated to integer, string, or buffer. Data is then converted to buffer type and the result is
optionally stored into Result. If Data was an integer, it is converted into n bytes of buffer (where n is 4 if
the definition block has defined integers as 32-bits or 8 if the definition block has defined integers as 64-
bits as indicated by the Definition Block table header’s Revision field), taking the least significant byte of
integer as the first byte of buffer. If Data is a buffer, no conversion is performed.

16.2.3.4.2.5 Concatenate (Concatenate)

ConcatTerm := Concatenate(

 Source1, //TermArg=>ComputationalData
 Source2, //TermArg=>ComputationalData
 Result //Target
) => ComputationalData

Source1 and Source2 are evaluated. Source1 and Source2 must be of the same data type (that is, both
integers, both strings, or both buffers). Source2 is concatenated to Source1 and the result data is optionally
stored into Result.

ACPI Source Language (ASL) Reference 385

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 16-10 Concatenate Data Types

Source1 Data Type Source2 Data Type Result Data Type

Integer Integer Buffer

String String String

Buffer Buffer Buffer

16.2.3.4.2.6 ConcatenateResTemplate (Concatenate Resource Templates)

ConcatResTerm := ConcatenateResTemplate(
 Source1, //TermArg=>Buffer
 Source2, //TermArg=>Buffer
 Result //Target
) => Buffer

Source1 and Source2 are evaluated as resource template buffers. The resource descriptors from Source2 are
appended to the resource descriptors from Source1. Then a new end tag and checksum are appended and
the result is stored in Result, if specified. If either Source1 or Source2 is exactly 1 byte in length, a run-time
error occurs. An empty buffer is treated as a resource template with only an end tag.

16.2.3.4.2.7 CondRefOf (Conditional Reference Of)

CondRefOfTerm := CondRefOf(

 Source, //SuperName
 Destination // Target
) => Boolean

Attempts to set Destination to refer to Source. The Source of this operation can be any object type (for
example, data package, device object, and so on). On success, the Destination object is set to refer to
Source and the execution result of this operation is the value True. On failure, Destination is unchanged
and the execution result of this operation is the value False. This can be used to reference items in the
namespace that may appear dynamically (for example, from a dynamically loaded differentiation definition
block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for RefOf but
not for CondRefOf.

16.2.3.4.2.8 CopyObject (Copy Object)

CopyObjectTerm := CopyObject(
 Source, //SuperName=>DataRefObject
 Destination //NameString | LocalTerm |
 // ArgTerm
) => DataRefObject

Converts the contents of the Source to a DataRefObject using the conversion rules in 16.2.2 and then copies
the results without conversion to the object referred to by Destination. If Destination is already an
initialized object of type DataRefObject, the original contents of Destination are discarded and replaced
with Source. Otherwise, a fatal error is generated.

Compatibility Note: The CopyObject operator is new in ACPI 2.0.

386 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.9 Decrement (Decrement)

DecTerm := Decrement(

 Addend //SuperName
) => Integer

This operation decrements the Addend by one and the result is stored back to Addend. Equivalent to
Subtract(Addend,1,Addend). Underflow conditions are ignored and the result is 1s.

16.2.3.4.2.10 ToDecimalString (Convert Data Type to Decimal String)

ToDecimalStringTerm := ToDecimalString(

 Data, //TermArg=>ComputationalData
 Result //Target
) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a decimal string, and the
result is optionally stored into Result. If Data is already a string, no action is performed. If Data is a buffer,
it is converted to a string of decimal values separated by commas. (Each byte of the buffer is converted to a
single decimal value.)

16.2.3.4.2.11 DerefOf (Dereference Of Operator)

DerefOfTerm := DerefOf(

 Source //TermArg=>ObjectReference |
 // String

) => Object

Returns the object referred by the Source object reference. If the Source evaluates to an object reference,
the actual contents of the object referred to are returned. If the Source evaluates to a string, the string is
evaluated as an ASL name (relative to the current scope) and the contents of that object are returned. If the
object specified by Source does not exist then a fatal error is generated.

Compatibility Note: The use of a String with DerefOf is new in ACPI 2.0.

16.2.3.4.2.12 Divide (Divide)

DivideTerm := Divide(

 Dividend, //TermArg=>Integer
 Divisor, //TermArg=>Integer
 Remainder, //Target
 Result //Target
) => Integer //returns Result

Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting
remainder is optionally stored into Remainder and the resulting quotient is optionally stored into Result.
Divide-by-zero exceptions are fatal.

16.2.3.4.2.13 FindSetLeftBit (Find Set Left Bit)

FindSetLeftBitTerm := FindSetLeftBit(

 Source, //TermArg=>Integer
 Result //Target
) => Integer

Source is evaluated as integer data type, and the one-based bit location of the first MSb (most significant
set bit) is optionally stored into Result. The result of 0 means no bit was set, 1 means the left-most bit set is
the first bit, 2 means the left-most bit set is the second bit, and so on.

ACPI Source Language (ASL) Reference 387

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.14 FindSetRightBit (Find Set Right Bit)

FindSetRightBitTerm := FindSetRightBit(

 Source, //TermArg=>Integer
 Result //Target
) => Integer

Source is evaluated as integer data type, and the one-based bit location of the most LSb (least significant
set bit) is optionally stored in Result. The result of 0 means no bit was set, 32 means the first bit set is the
thirty-second bit, 31 means the first bit set is the thirty-first bit, and so on.

16.2.3.4.2.15 FromBCD (Convert from BCD)

FromBCDTerm := FromBCD(

 BCDValue, //TermArg=>Integer
 Result //Target
) => Integer

The FromBCD operation is used to convert BCDValue to a numeric format and store the numeric value
into Result.

16.2.3.4.2.16 ToHexString (Convert Data Type to Hexadecimal String)

ToHexStringTerm := ToHexString(

 Data, //TermArg=>ComputationalData
 Result //Target
) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a hexadecimal string, and the
result is optionally stored into Result. If Data is already a string, no action is performed. If Data is a buffer,
it is converted to a string of hexadecimal values separated by commas.

16.2.3.4.2.17 Increment (Increment)

IncTerm := Increment(

 Addend //SuperName
) => Integer

Add one to the Addend and place the result back in Addend. Equivalent to Add(Addend, 1, Addend).
Overflow conditions are ignored and the result of an overflow is zero.

16.2.3.4.2.18 Index (Index)

IndexTerm := Index(

 Source, //TermArg= Buffer |
 // String | Package>

 Index, //TermArg=>Integer
 Destination //Target
) => ObjectReference

Source is evaluated to a buffer, string, or package data type. Index is evaluated to an integer. The reference
to the nth object (where n = Index) within Source is optionally stored as a reference into Destination. When
Source evaluates to a Buffer, Index returns a reference to a Buffer Field containing the nth byte in the
buffer. When Source evaluates to a String, Index returns a reference to a Buffer Field containing the nth
character in the string. When Source evaluates to a Package, Index returns a reference to the nth object in
the package.

388 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.18.1 Index with Packages
The following example ASL code shows a way to use the Index term to store into a local variable the sixth
element of the first package of a set of nested packages:

 Name(IO0D, Package() {
 Package() {
 0x01, 0x03F8, 0x03F8, 0x01, 0x08, 0x01,
 0x25, 0xFF, 0xFE, 0x00, 0x00
 },
 Package() {
 0x01, 0x02F8, 0x02F8, 0x01, 0x08, 0x01,
 0x25, 0xFF, 0xBE, 0x00, 0x00
 },
 Package() {
 0x01, 0x03E8, 0x03E8, 0x01, 0x08, 0x01,
 0x25, 0xFF, 0xFA, 0x00, 0x00
 },
 Package() {
 0x01, 0x02E8, 0x02E8, 0x01, 0x08, 0x01,
 0x25, 0xFF, 0xBA, 0x00, 0x00
 },
 Package() {
 0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02,
 0x25, 0x20, 0x7F, 0x00, 0x00,
 }
 })

 //Get the 6th element of the first package
 Store(DeRefOf(Index(DeRefOf(Index(IO0D, 0)), 5)), Local0)

Note: DeRefOf is necessary in the first operand of the Store command in order to get the actual object,
rather than just a reference to the object. If DeRefOf were not used, then Local0 would contain an object
reference to the sixth element in the first package rather than the number 1.

16.2.3.4.2.18.2 Index with Buffers
The following example ASL code shows a way to store into the third byte of a buffer:

 Name(BUFF, Buffer() {0x01, 0x02, 0x03, 0x04, 0x05})

 //Store 0x55 into the third byte of the buffer
 Store(0x55, Index(BUFF, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

If Source is evaluated to a buffer data type, the ObjectReference refers to the byte at Index within Source. If
Source is evaluated to a buffer data type, a Store operation will only change the byte at Index within
Source.

The following example ASL code shows the results of a series of Store operations:

Name(SRCB, Buffer() {0x10, 0x20, 0x30, 0x40})

 Name(BUFF, Buffer() {0x1, 0x2, 0x3, 0x4})

The following will store 0x78 into the 3rd byte of the destination buffer:

Store (0x12345678, Index(BUFF, 2))

The following will store 0x10 into the 2nd byte of the destination buffer:

Store (SRCB, Index(BUFF, 1))

ACPI Source Language (ASL) Reference 389

Compaq/Intel/Microsoft/Phoenix/Toshiba

The following will store 0x41 (an ‘A’) into the 4th byte of the destination buffer:

Store(“ABCDEFGH”, Index(BUFF, 3))

Compatibility Note: New in ACPI 2.0. In ACPI 1.0, the behavior of storing data larger than 8-bits into a
buffer using Index was undefined.

16.2.3.4.2.18.3 Index with Strings
The following example ASL code shows a way to store into the 3rd character in a string:

 Name(STR, “ABCDEFGHIJKL”)

 // Store ‘H’ (0x48) into the third character to the string
 Store(“H”, Index(STR,2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

Compatibility Note: New in ACPI 2.0.

16.2.3.4.2.19 ToInteger (Convert Data Type to Integer)

ToIntegerTerm := ToInteger(

 Data, //TermArg=>ComputationalData
 Result //Target
) => Integer

Data must be evaluated to integer, string, or buffer. Data is then converted to integer type and the result is
optionally stored into Result. If Data was a string, it must be either a decimal or hexadecimal numeric
string (in other words, prefixed by “0x”) and the value must not exceed the maximum of an integer value. If
the value is exceeding the maximum, the result of the conversion is unpredictable. If Data was a Buffer, the
first 8 bytes of the buffer are converted to an integer, taking the first byte as the least significant byte of the
integer. If Data was an integer, no action is performed.

16.2.3.4.2.20 LAnd (Logical And)

LAndTerm := LAnd(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
) => Boolean

Source1 and source2 are evaluated as integers. If both values are non-zero, True is returned: otherwise,
False is returned.

16.2.3.4.2.21 LEqual (Logical Equal)

LEqualTerm := LEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

Source1 and Source2 must be evaluated to the same data type as integers, strings, or buffers. If the values
are equal, True is returned; otherwise, False is returned.

16.2.3.4.2.22 LGreater (Logical Greater)

LGreaterTerm := LGreater(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

Source1 and Source2 must be evaluated to the same data type as integers, strings, or buffers. If Source1 is
greater than Source2, True is returned; otherwise, False is returned.

390 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.23 LGreaterEqual (Logical Greater Than Or Equal)

LGreaterEqualTerm := LGreaterEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

Source1 and Source2 must be evaluated to the same data type as integers, strings, or buffers. If Source1 is
greater than or equal to Source2, True is returned; otherwise, False is returned.

16.2.3.4.2.24 LLess (Logical Less)

LLessTerm := LLess(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

Source1 and Source2 must be evaluated to the same data type as integers, strings, or buffers. If Source1 is
less than Source2, True is returned; otherwise, False is returned.

16.2.3.4.2.25 LLessEqual (Logical Less Than Or Equal)

LLessEqualTerm := LLessEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

Source1 and Source2 must be evaluated to the same data type as integers, strings, or buffers. If Source1 is
less than or equal to Source2, True is returned; otherwise, False is returned.

16.2.3.4.2.26 LNot (Logical Not)

LNotTerm := LNot(

 Source, //TermArg=>Integer
) => Boolean

Source1 is evaluated as an integer. If the value is zero True is returned; otherwise, False is returned.

16.2.3.4.2.27 LNotEqual (Logical Not Equal)

LNotEqualTerm := LNotEqual(

 Source1, //TermArg=>ComputationalData
 Source2 //TermArg=>ComputationalData
) => Boolean

Source1 and Source2 must be evaluated to the same data type as integers, strings, or buffers. If Source1 is
not equal to Source2, True is returned; otherwise, False is returned.

16.2.3.4.2.28 LoadTable (Load Definition Block From XSDT)

LoadTableTerm := LoadTable(
 SignatureString, //TermArg=>String
 OEMIDString, //TermArg=>String
 OEMTableIDString, //TermArg=>String

RootPathString, //Nothing | TermArg=>String
 ParameterPathString, //Nothing | TermArg=>String
 ParameterData, //Nothing |
 //TermArg=>DataRefObject
) => DDBHandle

ACPI Source Language (ASL) Reference 391

Compaq/Intel/Microsoft/Phoenix/Toshiba

Performs a run-time load of a Definition Block from the XSDT. The XSDT is searched for a table where
the Signature field matches SignatureString, the OEM ID field matches OEMIDString, and the OEM Table
ID matches OEMTableIDString. All comparisons are case sensitive. If the SignatureString is greater than
four characters, the OEMIDString is greater than six characters, or the OEMTableID is greater than eight
characters, a run-time error is generated. The OS can also check the OEM Table ID and Revision ID
against a database for a newer revision Definition Block of the same OEM Table ID and load it instead.

The RootPathString specifies the root of the Definition Block. It is evaluated using normal scoping rules,
assuming that the scope of the LoadTable instruction is the current scope. The new Definition Block can
override this by specifying absolute names or by adjusting the namespace location using the Scope
operator. If RootPathString is not specified, “\” is assumed

If ParameterPathString and ParameterData are specified, the data object specified by ParameterData is
stored into the object specified by ParameterPathString after the table has been added into the namespace.
If the first character of ParameterPathString is a backslash (‘\’) or caret (‘^’) character, then the path of the
object is ParameterPathString. Otherwise, it is RootPathString.ParameterPathString. If the specified
object does not exist, a run-time error is generated.

The handle of the loaded table is returned. If no table matches the specified signature, then 0 is returned.

Any table referenced by Load Table must be in memory marked by AddressRangeReserved or
AddressRangeNVS.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

For example:

 Store(LoadTable(“OEM1”, ”MYOEM”, ”TABLE1”, ”_SB.PCI0”,”MYD”,
 Package(){0,”_SB.PCI0”}),
 Local0)

This command would search through the RSDT or XSDT for a table with the signature “OEM1,” the OEM
ID of “MYOEM,” and the table ID of “TABLE1.” If not found, it would store Zero in Local0. Otherwise,
it will store a package containing 0 and “_SB.PCI0” into the variable at _SB.PCI0.MYD.

16.2.3.4.2.29 LOr (Logical Or)

LOrTerm := LOr(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
) => Boolean

Source1 and Source2 are evaluated as integers. If either value is non-zero, True is returned; otherwise,
False is returned.

16.2.3.4.2.30 Match (Find Object Match)

MatchTerm := Match(

 SearchPackage, //TermArg=>Package
 Op1, //MatchOpKeyword
 MatchObject1, //TermArg=>Integer
 Op2, //MatchOpKeyword
 MatchObject2, //TermArg=>Integer
 StartIndex //TermArg=>Integer
) => Ones | Integer

SearchPackage is evaluated to a package object and is treated as a one-dimension array. A comparison is
performed for each element of the package, starting with the index value indicated by StartIndex (0 is the
first element). If the element of SearchPackage being compared against is called P[i], then the comparison
is:

 if (P[i] Op1 MatchObject1) and (P[i] Op2 MatchObject2) then Match => i is returned.

392 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant
object ONES is returned.

Op1 and Op2 have the values and meanings listed in the Table 16-13.

Table 16-11 Match Term Operator Meanings

Operator Encoding Macro

TRUE – A don’t care, always returns TRUE 0 MTR

EQ – Returns TRUE if P[i] == MatchObject 1 MEQ

LE – Returns TRUE if P[i] <= MatchObject 2 MLE

LT – Returns TRUE if P[i] < MatchObject 3 MLT

GE – Returns TRUE if P[i] >= MatchObject 4 MGE

GT – Returns TRUE if P[i] > MatchObject 5 MGT

Following are some example uses of Match:

Name(P1,

 Package() {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

// match 1993 == P1[i]
Match(P1, MEQ, 1993, MTR, 0, 0) // -> 7, since P1[7] == 1993

// match 1984 == P1[i]
Match(P1, MEQ, 1984, MTR, 0, 0) // -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000
Match(P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3rd element
Match(P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

16.2.3.4.2.31 Mid (Retrieve Portion of Buffer or String)

MidTerm := Mid(

 Source, //TermArg=>Buffer|String
 Index, //TermArg=>Integer

 Length, //TermArg=>Integer
 Result //Target
) => Buffer|String

Source is evaluated as either a Buffer or String.

If Source is a buffer, then Length bytes, starting with the Indexth byte (zero-based) are optionally copied
into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty buffer.
Otherwise, if Index + Length is greater than or equal to the length of the buffer, then only bytes up to an
including the last byte are included in the result.

If Source is a string, then Length characters, starting with the Indexth character (zero-based) are optionally
copied into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty
string. Otherwise, if Index + Length is greater than or equal to the length of the string, then only bytes up to
an including the last character are included in the result.

ACPI Source Language (ASL) Reference 393

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.32 Mod (Modulo)

ModTerm := Mod(

 Dividend, //TermArg=>Integer
 Divisor, //TermArg=>Integer
 Result //Target
) => Integer //returns Result

Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting
remainder is optionally stored into Result. If Divisor evaluates to zero, a fatal exception is generated.

16.2.3.4.2.33 Multiply (Multiply)

MultiplyTerm := Multiply(

 Multiplicand, //TermArg=>Integer
 Multiplier, //TermArg=>Integer
 Result //Target
) => Integer

Multiplicand and Multiplier are evaluated as integer data types. Multiplicand is multiplied by Multiplier
and the result is optionally stored into Result. Overflow conditions are ignored and results are undefined.

16.2.3.4.2.34 NAnd (Bitwise Nand)

NAndTerm := NAnd(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

Source1 and Source2 are evaluated as integer data types, a bitwise NAND is performed, and the result is
optionally stored in Result.

16.2.3.4.2.35 NOr (Bitwise Nor)

NOrTerm := NOr(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

Source1 and Source2 are evaluated as integer data types, a bitwise NOR is performed, and the result is
optionally stored in Result.

16.2.3.4.2.36 Not (Not)

NotTerm := Not(

 Source, //TermArg=>Integer
 Result //Target
) => Integer

Source1 is evaluated as an integer data type, a bitwise NOT is performed, and the result is optionally stored
in Result.

394 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.37 ObjectType (Object Type)

ObjectTypeTerm := ObjectType(

 Object //SuperName
) => Integer

The execution result of this operation is an integer that has the numeric value of the object type for Object.
The object type codes are listed in Table 16-12. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base object
is returned. For typeless objects such as pre-defined scope names (in other words, _SB, _GPE, and so on),
the type value 0 (Uninitialized) is returned.

Table 16-12 Values Returned By the ObjectType Operator

Value Meaning

0 Uninitialized

1 Integer

2 String

3 Buffer

4 Package

5 Field Unit

6 Device

7 Event

8 Method

9 Mutex

10 Operation Region

11 Power Resource

12 Processor

13 Thermal Zone

14 Buffer Field

15 DDB Handle

16 Debug Object

>16 Reserved

16.2.3.4.2.38 Or (Bit-wise Or)

OrTerm := Or(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

Source1 and Source2 are evaluated as integer data types, a bitwise OR is performed, and the result is
optionally stored in Result.

ACPI Source Language (ASL) Reference 395

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.39 RefOf (Reference Of)

RefOfTerm := RefOf(

 Object //SuperName
) => ObjectReference

Returns an object reference to Object. Object can be any object type (for example, a package, a device
object, and so on).

If the Object does not exist, the result of a RefOf operation is fatal. Use the CondRefOf term in cases
where the Object might not exist.

The primary purpose of RefOf() is to allow an object to be passed to a method as an argument to the
method without the object being evaluated at the time the method was loaded.

16.2.3.4.2.40 ShiftLeft (Shift Left)

ShiftLeftTerm := ShiftLeft(

 Source, //TermArg=>Integer
 ShiftCount //TermArg=>Integer
 Result //Target
) => Integer

Source and ShiftCount are evaluated as integer data types. Source is shifted left with the least significant bit
zeroed ShiftCount times. The result is optionally stored into Result.

16.2.3.4.2.41 ShiftRight (Shift Right)

ShiftRightTerm := ShiftRight(

 Source, //TermArg=>Integer
 ShiftCount //TermArg=>Integer
 Result //Target
) => Integer

Source and ShiftCount are evaluated as integer data types. Source is shifted right with the most significant
bit zeroed ShiftCount times. The result is optionally stored into Result.

16.2.3.4.2.42 SizeOf (SizeOf Data Object)

SizeOfTerm := SizeOf(

 Object //SuperName=>
 //Buffer|String|Package

) => Integer

Returns the size of a buffer, string, or package data object. For a buffer, it returns the size in bytes of the
data. For a string, it returns the size in bytes of the string, not counting the trailing NULL. For a package, it
returns the number of elements. For an object reference, the size of the referenced object is returned. Other
data types cause a fatal run-time error.

16.2.3.4.2.43 Store (Store)

StoreTerm := Store(

 Source, //TermArg=>DataRefObject
 Destination //SuperName=>ObjectReference
) => DataRefObject

This operation evaluates Source converts to the data type of Destination and writes the results into
Destination. For information on automatic data-type conversion, see section 16.2.2, “ASL Data Types.”
Stores to Operational Region Field data types may relinquish the processor depending on the region type.

All stores (of any type) to the constant Zero, constant One, or constant Ones object are not allowed. Stores
to read-only objects are fatal. The execution result of the operation depends on the type of Destination. For
any type other than an operation region field, the execution result is the same as the data written to

396 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Destination. For operation region fields with an AccessType of ByteAcc, WordAcc, DWordAcc,
QWordAcc or AnyAcc, the execution result is the same as the data written to Destination as in the normal
case, but when the AccessType is BufferAcc, the operation region handler may modify the data when it is
written to the Destination so that the execution result contains modified data.

The following example creates the name CNT that references an integer data object with the value 5 and
then stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Name(CNT, 5)
Store(CNT, Local0)

16.2.3.4.2.44 ToString (Create ASCII String From Buffer)

ToStringTerm := ToString(
 Source, //TermArg=>Buffer
 Length, //Nothing | TermArg=>Integer
 Result //Target
) => String

Source is evaluated as a buffer. Starting with the first byte, the contents of the buffer are copied into the
string until the number of characters specified by Length is reached or a null (0) character is found. If
Length is not specified or is Ones, then the contents of the buffer are copied until a null (0) character is
found. In any case, a fatal error will be generated if the number of characters copied exceeds 200 (not
including the terminating null). If the source buffer has a length of zero, a zero length (null terminator only)
string will be created. The result is copied into the Result.

16.2.3.4.2.45 Subtract (Subtract)

SubtractTerm := Subtract(

 Addend1, //TermArg=>Integer
 Addend2, //TermArg=>Integer
 Result //Target
) => Integer

Addend1 and Addend2 are evaluated as integer data types. Addend2 is subtracted from Addend1, and the
result is optionally stored into Result. Underflow conditions are ignored and the result simply loses the
most significant bits.

16.2.3.4.2.46 ToBCD (Convert to BCD)

ToBCDTerm := ToBCD(

 Value, //TermArg=>Integer
 Result //Target
) => Integer

The ToBCD operation is used to convert Value from a numeric format to a BCD format and optionally
store the numeric value into Result.

16.2.3.4.2.47 Wait (Wait for a Synchronization Event)

WaitTerm := Wait(

 SyncObject, //SuperName=>Event
 TimeoutValue //TermArg=>Integer
) => Boolean

SynchObject must be an event synchronization object. The calling method blocks waiting for the event to
be signaled.

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished
until a signal count is posted to the Event or until at least TimeoutValue milliseconds have elapsed.

This operation returns a non-zero value if a timeout occurred and a signal was not acquired. A
TimeoutValue of 0xFFFF indicates that there is no time out and the operation will wait indefinitely.

ACPI Source Language (ASL) Reference 397

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.4.2.48 XOr (Bitwise Xor)

XOrTerm := XOr(

 Source1, //TermArg=>Integer
 Source2 //TermArg=>Integer
 Result //Target
) => Integer

Source1 and Source2 are evaluated as integer data types, a bitwise XOR is performed, and the result is
optionally stored into Result.

16.2.3.5 User Terms

UserTerm := NameString(//NameString=>Method

 ArgList
) => Nothing | DataRefObject

NameString must refer to an existing Method in the namespace. If the Method is not present, a fatal error is
generated. It can either be an absolute namespace path or else it must be accessible at the current scope of
invocation. The number of arguments in ArgList must match the number of arguments declared in the
method object.

16.2.3.6 Data Objects
There are four different types of data objects:
• Buffer terms
• Package terms
• Literal data terms
• Data macros

16.2.3.6.1 Buffer (Declare Buffer Object)

BufferTerm := Buffer(

 BuffSize //Nothing |
 // TermArg=>Integer
) {String | ByteList} => Buffer

Declares a Buffer, of size BuffSize and initial value of Initializer (ByteList).

The optional BuffSize parameter specifies the size of the buffer and the initial value is specified in
Initializer ByteList. If BuffSize is not specified, it defaults to the size of initializer. If the count is too small
to hold the value specified by initializer, initializer size is used. For example, all four of the following
examples generate the same data in namespace, although they have different ASL encodings:

Buffer(10) {“P00.00A”}
Buffer(Arg0) {0x50 0x30 0x30 0x2e 0x30 0x30 0x41}
Buffer(10) {0x50 0x30 0x30 0x2e 0x30 0x30 0x41 0x00 0x00 0x00}
Buffer() {0x50 0x30 0x30 0x2e 0x30 0x30 0x41 0x00 0x00 0x00}

16.2.3.6.2 Package (Declare Package Object)

PackageTerm := Package(

 NumElements //Nothing |
 // ByteConstExpr |

 // TermArg=>Integer
) {PackageList} => Package

398 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Declares an unnamed aggregation of data items, constants, and/or references to control methods. The size
of the package is NumElements. PackageList contains the list data items, constants, and/or control method
references used to initialize the package. If NumElements is absent, it is set to match the number of
elements in the PackageList. If NumElements is present and greater than the number of elements in the
PackageList, the default entry of type Uninitialized (see ObjectType) is used to initialize the package
elements beyond those initialized from the PackageList. Evaluating an undefined element will yield an
error, but elements can be assigned values to make them defined. It is an error for NumElements to be less
than the number of elements in the PackageList. It is an error for NumElements to exceed 255.

There are two types of package elements in the PackageList: data objects and references to control
methods.

Note: If non-method code-package objects are implemented in an ASL compiler, evaluations of these
objects are performed within the scope of the invoking method, and are performed when the containing
definition block is loaded. This means that the targets of all stores, loads, and references to the locals,
arguments, or constant terms are in the same name scope as the invoking method.

Example 1: Note

Package () {
 3,
 9,
 “ACPI 1.0 COMPLIANT”,
 Package () {
 “CheckSum=>”,
 Package () {
 7,
 9
 }
 },
 0
}

Example 2: This example defines and initializes a two-dimensional array.

Package () {
 Package () {11, 12, 13},

 Package () {21, 22, 23}
}

Example 3: This example is a legal encoding, but of no apparent use.

Package (){}

Example 4: This encoding allocates space for ten things to be defined later (see the Name and Index term
definitions).

Package (10) {}

Note: The ability to create variable-sized packages is new in ACPI 2.0. ACPI 1.0 only allowed fixed-size
packages with up to 255 elements.

16.2.3.6.3 Literal Data Terms
Literal Data terms include:
• Integers
• Strings
• Constant data terms

ACPI Source Language (ASL) Reference 399

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.6.3.1 Integers

LeadDigitChar := ‘1’-‘9’
OctalDigitChar := ‘0’-‘7’
HexDigitChar := DigitChar | ‘A’-‘F’ | ‘a’-‘f’

Integer := DecimalConst | OctalConst | HexConst
DecimalConst := LeadDigitChar | <DecimalConst DigitChar>
OctalConst := ‘0’ | <OctalConst OctalDigitChar>
HexConst := <0x HexDigitChar> | <0X HexDigitChar> | <HexConst

HexDigitChar>
ByteConst := Integer=>0x00-0xff
WordConst := Integer=>0x0000-0xffff
DWordConst := Integer=>0x00000000-0xffffffff
QWordConst := Integer=>0x0000000000000000-0xffffffffffffffff

Numeric constants can be specified in decimal, octal, or hexadecimal. Octal constants are preceded by a
leading zero (0), and hexadecimal constants are preceded by a leading zero and either a lower or upper case
‘x’. In some cases, the grammar specifies that the number must evaluate to an integer within a limited
range, such as 0x00–0xFF, and so on.

16.2.3.6.3.2 Strings

String := ‘”’ AsciiCharList ‘”’
AsciiCharList := Nothing | <EscapeSequence AsciiCharList> | <AsciiChar

AsciiCharList>
AsciiChar := 0x01-0x21 | 0x23-0x5B | 0x5D-0x7F
EscapeSeq := SimpleEscapeSeq | OctalEscapeSeq | HexEscapeSeq
SimpleEscapeSeq := \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSeq := \ OctalDigit |
 \ OctalDigit OctalDigit |
 \ OctalDigit OctalDigit OctalDigit
HexEscapeSeq := \x HexDigit |
 \x HexDigit HexDigit
NullChar := 0x00

String literals consist of zero or more ASCII characters surrounded by double quotation marks ("). A String
may not exceed 200 characters. A string literal represents a sequence of characters that, taken together,
form a null-terminated string. After all adjacent strings in the constant have been concatenated, NullChar is
appended.

Since String Literals are defined to contain only non-null ASCII values, both Hex and Octal escape
sequence values must be non-null values in the ASCII range 0x01 through 0x7F. For arbitrary byte data
(outside the range of ASCII values), the Buffer object should be used instead.

Since the backslash is used as the escape character and also the namespace root prefix, any string literals
that are to contain a fully qualified namepath from the root of the namespace must use the double backslash
to indicate this:

 Name(_EJD,”_SB.PCI0.DOCK1”)

The double backslash is only required within quoted string literals.

Since double quotation marks are used close a string, a special escape sequence (\") is used to allow
quotation marks within strings. Other escape sequences are listed in the table below:

Escape Sequence ASCII Character

\a 0x07 (BEL)

\b 0x08 (BS)

\f 0x0C (FF)

400 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Escape Sequence ASCII Character

\n 0x0A (LF)

\r 0x0D (CR)

\t 0x09 (TAB)

\v 0x0B (VT)

\" 0x22 (")

\' 0x27 (')

\\ 0x5C (\)

Since literal strings are read-only constants, the following ASL statement (for example) is not supported:

 Store(“ABC”, ”DEF”)

However, the following sequence of statements is supported:

Name(STR, ”DEF”)
...

Store(“ABC”, STR)

16.2.3.6.3.3 Constant Data Terms

ConstTerm := Zero | One | Ones | Revision

The constant declaration terms are Zero, One, Ones, and Revision.

16.2.3.6.3.3.1 Zero (Constant Zero Object)
The constant Zero object is an object of type Integer that will always read as all bits clear. Writes to this
object are not allowed.

16.2.3.6.3.3.2 One (Constant One Object)
The constant One object is an object of type Integer that will always read the LSB as set and all other bits
as clear (that is, the value of 1). Writes to this object are not allowed.

16.2.3.6.3.3.3 Ones (Constant Ones Object)
The constant Ones object is an object of type Integer that will always read as all bits set. Writes to this
object are not allowed.

16.2.3.6.3.3.4 Revision (Constant Revision Object)
The constant Revision object is an object of type Integer that will always read as the revision of the AML
interpreter.

16.2.3.6.4 Data Macros
The data macros are:

EISAID terms

ResourceTemplate terms

Unicode term

ACPI Source Language (ASL) Reference 401

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.3.6.4.1 EISAID Macro (Convert EISA ID String To Integer)

EISAIDTerm := EISAID(

 EISAIDString //String
) => DWordConst

Converts EISAIDString, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID
encoding. It can be used when declaring IDs for devices that have EISA IDs. The EISAIDString must be of
the form “UUUNNNN”, where “U” is an uppercase letter and “N” is a hexadecimal digit. No asterisks or
other characters are allowed in the string. For example, EISAID(“PNP0C09”) is a valid invocation of the
macro.

16.2.3.6.4.2 ResourceTemplate Macro (Convert Resource To Buffer)

ResourceTemplateTerm := ResourceTemplate() {ResourceMacroList} => Buffer

For a full definition of the ResourceTemplateTerm macro, see section 6.4.1, “ASL Macros for Resource
Descriptors.”

16.2.3.6.4.3 Unicode Macro (Convert Ascii String To Unicode)

UnicodeTerm := Unicode(

 ASCIIString //String
) => Buffer

This macro will convert an ASCII string to a Unicode string contained in a buffer. The format of the
Unicode string is 16 bits per character, with a 16-bit null terminator.

16.2.3.7 Miscellaneous Objects
Miscellaneous objects include:
• Debug objects
• ArgX objects
• LocalX objects

16.2.3.7.1 Debug Data Object

DebugTerm := Debug

The debug data object is a virtual data object. Writes to this object provide debugging information. On at
least debug versions of the interpreter, any writes into this object are appropriately displayed on the
system’s native kernel debugger. All writes to the debug object are otherwise benign. If the system is in use
without a kernel debugger, then writes to the debug object are ignored. The following table relates the ASL
term types that can be written to the Debug object to the format of the information on the kernel debugger
display.

Table 16-13 Debug Object Display Formats

ASL Term Type Display Format

Numeric data object All digits displayed in hexadecimal format.

String data object String is displayed.

Object reference Information about the object is displayed (for example, object type and object
name), but the object is not evaluated.

The Debug object is a write-only object; attempting to read from the debug object is not supported.

16.2.3.7.2 Argx (Method Argument Data Objects)

402 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ArgTerm = Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

Up to 7 argument-object references can be passed to a control method. On entry to a control method, only
the argument objects that are passed are usable.

16.2.3.7.3 Localx (Method Local Data Objects)

LocalTerm := Local0 | Local1 | Local2 | Local3 | Local4 | Local5 |

Local6 | Local7

Up to 8 local objects can be referenced in a control method. On entry to a control method, these objects are
uninitialized and cannot be used until some value or reference is stored into the object. Once initialized,
these objects are preserved in the scope of execution for that control method.

ACPI Source Language (ASL) Reference 403

Compaq/Intel/Microsoft/Phoenix/Toshiba

16.2.4 ASL Macros for Resource Descriptors
ASL includes some macros for creating resource descriptors. The ResourceTemplate macro creates a
Buffer in which resource descriptor macros can be listed. The ResourceTemplate macro automatically
generates an End descriptor and calculates the checksum for the resource template. The format for the
ResourceTemplate macro is as follows:

 ResourceTemplate()
 {
 // List of resource macros
 }

The following is an example of how these macros can be used to create a resource template that can be
returned from a _PRS control method:

 Name (PRS0, ResourceTemplate()
 {
 StartDependentFn(1,1)
 {
 IRQ(Level, ActiveLow, Shared){10, 11}
 DMA(TypeF, NotBusMaster, Transfer16){4}
 IO(Decode16, 0x1000, 0x2000, 0, 0x100)
 IO(Decode16, 0x5000, 0x6000, 0, 0x100, IO1)
 }
 StartDependentFn(1,1)
 {
 IRQ(Level, ActiveLow, Shared){}
 DMA(TypeF, NotBusMaster, Transfer16){5}
 IO(Decode16, 0x3000, 0x4000, 0, 0x100)
 IO(Decode16, 0x5000, 0x6000, 0, 0x100, IO2)
 }
 EndDependentFn()
 })

Occasionally, it is necessary to change a parameter of a descriptor in an existing resource template. To
facilitate this, the descriptor macros optionally include a name declaration that can be used later to refer to
the descriptor. When a name is declared with a descriptor, the ASL compiler will automatically create field
names under the given name to refer to individual fields in the descriptor.

The offset returned by a reference to a resource descriptor field name is either in units of bytes (for 8-, 16-,
32-, and 64-bit field widths) or in bits (for all other field widths). In all cases, the returned offset is the
integer offset (in either bytes or bits) of the name from the first byte (offset 0) of the parent resource
template.

For example, given the above resource template, the following code changes the minimum and maximum
addresses for the I/O descriptor named IO2:

 CreateWordField (PRS0, IO2._MIN, IMIN)
 Store (0xA000, IMIN)

 CreateWordField (PRS0, IO2._MAX, IMAX)
 Store (0xB000, IMAX)

The resource template macros for each of the resource descriptors are listed below, after the table that
defines the resource descriptor. The resource template macros are formally defined in section 15,
“Memory.”

The reserved names (such as _MIN and _MAX) for the fields of each resource descriptor are defined in the
appropriate table entry of the table that defines that resource descriptor.

16.2.4.1 ASL Macro for IRQ Descriptor
The following macro generates a short IRQ descriptor with optional IRQ Information byte:

404 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

IRQ(
 Edge | Level, // _LL, _HE
 ActiveHigh | ActiveLow, // _LL, _HE
 Shared | Exclusive | Nothing, // _SHR, Nothing defaults to Exclusive
 NameString | Nothing // A name to refer back to this resource
)
 {
 ByteConstExpr [, ByteConstExpr ...] // List of IRQ numbers (valid values: 0-15)
 }

The following macro generates a short IRQ descriptor without optional IRQ Information byte:

IRQNoFlags(
 NameString | Nothing // A name to refer back to this resource
)
 {
 ByteConstExpr [, ByteConstExpr ...] // list of IRQ numbers (valid values: 0-15)
 }

16.2.4.2 ASL Macro for DMA Descriptor
The following macro generates a short DMA descriptor.

DMA(
 Compatibility | TypeA | TypeB | TypeF, // _TYP, DMA channel speed
 BusMaster | NotBusMaster, // _BM, Nothing defaults to BusMaster
 Transfer8 | Transfer16 | Transfer8_16 // _SIZ, Transfer size
 NameString | Nothing // A name to refer back to this resource
)
 {
 ByteConstExpr [, ByteConstExpr ...] // List of channel numbers
 //(valid values: 0-7)
 }

16.2.4.3 ASL Macro for Start-Dependent Function Descriptor
The following macro generates a Start-Dependent Function descriptor with the optional Priority byte:

StartDependentFn(
 ByteConstExpr, // Compatibility priority (valid values: 0-2)
 ByteConstExpr // Performance/Robustness priority (valid values: 0-2)
)
 {
 // List of descriptors for this dependent function
 }

The following macros generates a Start Dependent Function descriptor without the optional Priority byte:

StartDependentFnNoPri(
)
 {
 Descriptors
)

16.2.4.4 ASL Macro for End-Dependent Functions descriptor
The following macro generates an End-Dependent Functions descriptor:

EndDependentFn(
)

16.2.4.5 ASL Macro for I/O Port Descriptor
The following macro generates a short I/O descriptor:

ACPI Source Language (ASL) Reference 405

Compaq/Intel/Microsoft/Phoenix/Toshiba

IO(
 Decode16 | Decode10, // _DEC
 WordConstExpr, // _MIN, Address minimum
 WordConstExpr, // _MAX, Address max
 ByteConstExpr, // _ALN, Base alignment
 ByteConstExpr // _LEN, Range length
 NameString | Nothing // A name to refer back to this resource
)

16.2.4.6 ASL Macro for Fixed I/O Port Descriptor
The following macro generates a short Fixed I/O descriptor:

FixedIO(
 WordConstExpr, // _BAS, Address base
 ByteConstExpr // _LEN, Range length
 NameString | Nothing // A name to refer back to this resource
)

16.2.4.7 ASL Macro for Short Vendor-Defined Descriptor
The following macro generates a short Vendor-Defined descriptor:

VendorShort(
 NameString | Nothing // A name to refer back to this resource
)
 {
 ByteConstExpr [, ByteConstExpr ...] // List of bytes, up to 7 bytes
 }

16.2.4.8 ASL Macro for 24-bit Memory Descriptor
The following macro generates a long 24-bit Memory descriptor:

Memory24(
 ReadWrite | ReadOnly, // _RW
 WordConstExpr, // _MIN, Minimum base memory address [23:8]
 WordConstExpr, // _MAX, Maximum base memory address [23:8]
 WordConstExpr, // _ALN, Base alignment
 WordConstExpr // _LEN, Range length
 NameString | Nothing // A name to refer back to this resource
)

16.2.4.9 ASL Macro for Long Vendor-Defined Descriptor
The following macro generates a long Vendor-Defined descriptor:

VendorLong(

NameString | Nothing // A name to refer back to this resource
)
{
ByteConstExpr [, ByteConstExpr ...] // List of bytes
}

16.2.4.10 ASL Macro for 32-Bit Memory Descriptor
The following macro generates a long 32-bit Memory descriptor:

406 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Memory32(
 ReadWrite | ReadOnly, // _RW
 DWordConstExpr, // _MIN, Minimum base memory address
 DWordConstExpr, // _MAX, Maximum base memory address
 DWordConstExpr, // _ALN, Base alignment
 DWordConstExpr // _LEN, Range length
 NameString | Nothing // A name to refer back to this resource
)

16.2.4.11 ASL Macro for 32-bit Fixed Memory Descriptor
The following macro generates a long 32-bit Fixed Memory descriptor:

Memory32Fixed(
 ReadWrite | ReadOnly, // _RW
 DWordConstExpr, // _BAS, Range base
 DWordConstExpr // _LEN, Range length
 NameString | Nothing // A name to refer back to this resource
)

16.2.4.12 ASL Macros for QWORD Address Space Descriptor
The following macro generates a QWORD Address descriptor with ResourceType = Memory:

QWordMemory(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
 SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
 MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
 MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
 Cacheable | WriteCombining | Prefetchable |
 NonCacheable | Nothing, // _MEM, Nothing=>NonCacheable
 ReadWrite | ReadOnly, // _RW, Nothing == ReadWrite
 QWordConstExpr, // _GRA, Address granularity
 QWordConstExpr, // _MIN, Address range minimum
 QWordConstExpr, // _MAX, Address range max
 QWordConstExpr, // _TRA, Translation
 QWordConstExpr, // _LEN, Address range length
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back
 // to this resource
 AddressRangeMemory | AddressRangeReserved |
 AddressRangeACPI | AddressRangeNVS | Nothing, // _MTP, Nothing=>AddressRangeMemory
 TypeTranslation | TypeStatic | Nothing, // _TTP, Nothing=>TypeStatic
)

The following generates a QWORD Address descriptor with ResourceType = I/O:

ACPI Source Language (ASL) Reference 407

Compaq/Intel/Microsoft/Phoenix/Toshiba

QWORDIO(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing == ResourceConsumer
 MinFixed | MinNotFixed | Nothing, // _MIF, Nothing => MinNotFixed
 MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing => MaxNotFixed
 SubDecode | PosDecode | Nothing, // _DEC, Nothing => PosDecode
 ISAOnlyRanges | NonISAOnlyRanges |
 EntireRange | Nothing, // _RNG, Nothing => EntireRange
 QWordConstExpr, // _GRA: Address granularity
 QWordConstExpr, // _MIN: Address range minimum
 QWordConstExpr, // _MAX: Address range max
 QWordConstExpr, // _TRA: Translation
 QWordConstExpr, // _LEN, Address range length
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back to this
 // resource
 TypeTranslation | TypeStatic | Nothing, // _TTP, Nothing=>TypeStatic
 SparseTranslation | DenseTranslation | Nothing // _TRS, Nothing=>DenseTranslation
)

16.2.4.13 ASL Macros for DWORD Address Space Descriptor
The following macro generates a DWORD Address descriptor with ResourceType = Memory:

DWordMemory(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
 SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
 MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
 MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
 Cacheable | WriteCombining | Prefetchable |
 NonCacheable | Nothing, // _MEM, Nothing=>NonCacheable
 ReadWrite | ReadOnly, // _RW, Nothing == ReadWrite
 DWordConstExpr, // _GRA, Address granularity
 DWordConstExpr, // _MIN, Address range minimum
 DWordConstExpr, // _MAX, Address range max
 DWordConstExpr, // _TRA, Translation
 DWordConstExpr, // _LEN, Address range length
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back
 // to this resource
 AddressRangeMemory | AddressRangeReserved |
 AddressRangeACPI | AddressRangeNVS | Nothing, // _MTP, Nothing=>AddressRangeMemory
 TypeTranslation | TypeStatic | Nothing, // _TTP, Nothing=>TypeStatic
)

The following generates a DWORD Address descriptor with ResourceType = I/O:

408 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

DWordIO(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing == ResourceConsumer
 MinFixed | MinNotFixed | Nothing, // _MIF, Nothing => MinNotFixed
 MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing => MaxNotFixed
 SubDecode | PosDecode | Nothing, // _DEC, Nothing => PosDecode
 ISAOnlyRanges | NonISAOnlyRanges |
 EntireRange | Nothing, // _RNG, Nothing => EntireRange
 DWordConstExpr, // _GRA: Address granularity
 DWordConstExpr, // _MIN: Address range minimum
 DWordConstExpr, // _MAX: Address range max
 DWordConstExpr, // _TRA: Translation
 DWordConstExpr, // _LEN, Address range length
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back to this
 // resource
 TypeTranslation | TypeStatic | Nothing, // _TTP, Nothing=>TypeStatic
 SparseTranslation | DenseTranslation | Nothing // _TRS, Nothing=>DenseTranslation
)

16.2.4.14 ASL Macros for WORD Address Descriptor
The following macro generates a WORD Address descriptor with ResourceType = I/O

WORDIO(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
 MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
 MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
 SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
 ISAOnlyRanges | NonISAOnlyRanges | EntireRange, // _RNG
 WordConstExpr, // _GRA: Address granularity
 WordConstExpr, // _MIN: Address range minimum
 WordConstExpr, // _MAX: Address range max
 WordConstExpr, // _TRA: Translation
 WordConstExpr, // _LEN, Address range length
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back
 // to this resource
 TypeTranslation | TypeStatic | Nothing, // _TTP, Nothing=>TypeStatic
 SparseTranslation | DenseTranslation | Nothing // _TRS,
 // Nothing=>DenseTranslation
)

The following macros generates a WORD Address descriptor with ResourceType = BusNumber:

ACPI Source Language (ASL) Reference 409

Compaq/Intel/Microsoft/Phoenix/Toshiba

WordBusNumber(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
 MinFixed | MinNotFixed | Nothing, // _MIF, Nothing=>MinNotFixed
 MaxFixed | MaxNotFixed | Nothing, // _MAF, Nothing=>MaxNotFixed
 SubDecode | PosDecode | Nothing, // _DEC, Nothing=>PosDecode
 WordConstExpr, // _GRA, Address granularity
 WordConstExpr, // _MIN, Address range minimum
 WordConstExpr, // _MAX, Address range max
 WordConstExpr, // _TRA: Translation
 WordConstExpr, // _LEN, Address range length
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back
 // to this resource
)

16.2.4.15 ASL Macro for Extended Interrupt Descriptor
The following macro generates an Extended Interrupt descriptor:

Interrupt(
 ResourceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsumer
 Edge | Level, // _HE
 ActiveHigh | ActiveLow , // __LL
 Shared | Exclusive | Nothing, // _SHR: Nothing=>Exclusive
 ByteConstExpr | Nothing, // Resource Source Index;
 // if Nothing, not generated
 StringData | Nothing // Resource Source;
 // if Nothing, not generated
 NameString | Nothing // A name to refer back
 // to this resource
)
 {
 DWordConstExpr [, DWordConstExpr ...] // _INT, list of interrupt numbers
 }

16.2.4.16 ASL Macro for Generic Register Descriptor
The following macro generates a Generic Register descriptor:

Register(
 AddressSpaceKeyword, // _ASI, Address Space ID
 ByteConstExpr, // _RBW, Register Bit Width
 ByteConstExpr, // _RBO, Register Bit Offset
 QWordConstExpr // _ADR, Register Address
)

410 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 411

Compaq/Intel/Microsoft/Phoenix/Toshiba

17 ACPI Machine Language (AML) Specification
This section formally defines the ACPI Control Method Machine Language (AML) language. AML is the
ACPI Control Method virtual machine language, machine code for a virtual machine that is supported by
an ACPI-compatible OS. ACPI control methods can be written in AML, but humans ordinarily write
control methods in ASL.

AML is the language processed by the ACPI AML interpreter. It is primarily a declarative language. It’s
best not to think of it as a stream of code, but rather as a set of declarations that the ACPI AML interpreter
will compile into the ACPI Namespace at definition block load time. For example, notice that DefByte
allocates an anonymous integer variable with a byte-size initial value in ACPI namespace, and passes in an
initial value. The byte in the AML stream that defines the initial value is not the address of the variable’s
storage location.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging. (Debuggers
and other ACPI control method language tools are expected to be AML-level tools, not source-level tools.)
An ASL translator implementer must understand how to read ASL and generate AML. An AML interpreter
author must understand how to execute AML.

AML and ASL are different languages though they are closely related.

All ACPI-compatible operating systems must support AML. A given user can define some arbitrary source
language (to replace ASL) and write a tool to translate it to AML. However, the ACPI group will support a
single translator for a single language, ASL.

17.1 Notation Conventions
The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 17-1 AML Grammar Notation Conventions

Notation Convention Description Example

0xdd Refers to a byte
value expressed as
2 hexadecimal
digits.

0x21

Number in bold. Denotes the
encoding of the
AML term.

Term => Evaluated Type Shows the resulting
type of the
evaluation of Term.

Single quotes (‘ ’) Indicate constant
characters.

‘A’ => 0x41

Term := Term Term … The term to the left
of := can be
expanded into the
sequence of terms
on the right.

aterm := bterm cterm means that aterm can be expanded
into the two-term sequence of bterm followed by cterm.

Term Term Term … Terms separated
from each other by
spaces form an
ordered list.

412 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-1 AML Grammar Notation Conventions (continued)

Notation Convention Description Example

Angle brackets (< >) Used to group
items.

<a b> | <c d> means either

a b or c d.

Bar symbol (|) Separates
alternatives.

aterm := bterm | [cterm dterm]
means the following constructs are possible:

 bterm
 cterm dterm

aterm := [bterm | cterm] dterm
means the following constructs are possible:

 bterm dterm
 cterm dterm

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to 9 inclusive.

Parenthesized term following
another term.

The parenthesized
term is the repeat
count of the
previous term.

aterm(3) means aterm aterm aterm.

bterm(n) means n number of bterms.

17.2 AML Grammar Definition
This section defines the byte values that make up an AML byte stream.

AMLCode := DefBlockHdr TermList
DefBlockHdr := TableSig TableLen SpecCompliance CheckSum OemID

OemTableID OemRev CreatorID CreatorRev
TableSig := DWordConst

//As defined in section 5.2.3.
TableLen := DwordConst

//Length of the table in bytes including the block
//header.

SpecCompliance := ByteConst
//The revision of the structure.

CheckSum := ByteConst
//Byte checksum of the entire table.

OemID := ByteConst(6)
//OEM ID of up to 6 characters. If the OEM ID is
//shorter than 6 characters, it can be terminated
//with a NULL character.

OemTableID := ByteConst(8)
//OEM Table ID of up to 8 characters. If the OEM
//Table ID is shorter than 8 characters, it can be
//terminated with a NULL character.

OemRev := DWordConst
//OEM Table Revision.

CreatorID := DWordConst
//Vendor ID of the ASL compiler.

CreatorRev := DWordConst
//Revision of the ASL compiler.

ACPI Machine Language (AML) Specification 413

Compaq/Intel/Microsoft/Phoenix/Toshiba

The AML encoding can be categorized in the following groups:
• Name objects encoding
• Data objects encoding
• Package length encoding
• Term objects encoding
• Miscellaneous objects encoding

17.2.1 Name Objects Encoding

LeadNameChar := ‘A’-‘Z’ | ‘_’
DigitChar := ‘0’-‘9’
NameChar := DigitChar | LeadNameChar
RootChar := ‘\’
ParentPrefixChar := ‘^’

‘A’-‘Z’ := 0x41-0x5a
‘_’ := 0x5f
‘0’-‘9’ := 0x30-0x39
‘\’ := 0x5c
‘^’ := 0x5e

NameSeg := <LeadNameChar NameChar NameChar NameChar>

// Notice that NameSegs shorter than 4 characters are
// filled with trailing ‘_’s.

NameString := <RootChar NamePath> | <PrefixPath NamePath>
PrefixPath := Nothing | <‘^’ PrefixPath>
NamePath := NameSeg | DualNamePath | MultiNamePath | NullName

DualNamePath := DualNamePrefix NameSeg NameSeg
DualNamePrefix := 0x2e
MultiNamePath := MultiNamePrefix SegCount NameSeg(SegCount)
MultiNamePrefix := 0x2f
SegCount := ByteData

// SegCount can be from 1 to 255.
// MultiNamePrefix(35) => 0x2f 0x23
// and following by 35 NameSegs.
// So, the total encoding length
// will be 1 + 1 + 35*4 = 142.
// Notice that:
// DualNamePrefix NameSeg NameSeg
// has a smaller encoding than the
// equivalent encoding of:
// MultiNamePrefix(2) NameSeg NameSeg

SimpleName := NameString | ArgObj | LocalObj
SuperName := SimpleName | DebugObj | Type6Opcode
NullName := 0x00
Target := SuperName | NullName

414 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

17.2.2 Data Objects Encoding

ComputationalData := ByteConst | WordConst | DwordConst | QwordConst | String

| ConstObj | RevisionOp | DefBuffer
DataObject := ComputationalData | DefPackage | DefVarPackage
DataRefObject := DataObject | ObjectReference | DDBHandle

ByteConst := BytePrefix ByteData
BytePrefix := 0x0a
WordConst := WordPrefix WordData
WordPrefix := 0x0b
DWordConst := DWordPrefix DWordData
DWordPrefix := 0x0c
QWordConst := QWordPrefix QWordData
QWordPrefix := 0x0e
String := StringPrefix AsciiCharList NullChar
StringPrefix := 0x0d
ConstObj := ZeroOp | OneOp | OnesOp
ByteList := Nothing | <ByteData ByteList>
ByteData := 0x00-0xff
WordData := ByteData[0:7] ByteData[8:15]

// 0x0000-0xffff
DWordData := WordData[0:15] WordData[16:31]

// 0x00000000-0xffffffff
QWordData := DwordData[0:31] DwordData[32:63]

// 0x0000000000000000-0xffffffffffffffff
AsciiCharList := Nothing | <AsciiChar AsciiCharList>
AsciiChar := 0x01-0x7f
NullChar := 0x00
ZeroOp := 0x00
OneOp := 0x01
OnesOp := 0xff
RevisionOp := ExtOpPrefix 0x30
ExtOpPrefix := 0x5b

17.2.3 Package Length Encoding

PkgLength := PkgLeadByte |

<PkgLeadByte ByteData> |
<PkgLeadByte ByteData ByteData> |
<PkgLeadByte ByteData ByteData ByteData>

PkgLeadByte := <bit 7-6: follow ByteData count>
<bit 5-4: reserved>
<bit 3-0: least significant package length byte>
// Note: The high 2 bits of the first byte reveal how
// many follow bytes are in the PkgLength. If the
// PkgLength has only one byte, bit 0 through 5 are
// used to encode the package length (in other words,
// values 0-63).
// If the package length value is more than
// 63, more than one byte must be used for the
// encoding in which case bit 5 and 4 of the
// PkgLeadByte are reserved and must be zero. If
// multiple bytes encoding is used, bits 3-0 of the
// PkgLeadByte become the least significant 4 bits
// of the resulting package length value. The next
// ByteData will become the next least significant
// 8 bits of the resulting value and so on.

ACPI Machine Language (AML) Specification 415

Compaq/Intel/Microsoft/Phoenix/Toshiba

17.2.4 Term Objects Encoding

TermObj := NameSpaceModifierObj | NamedObj | Type1Opcode |

Type2Opcode
TermList := Nothing | <TermObj TermList>

TermArg := Type2Opcode | DataObject | ArgObj | LocalObj
UserTermObj := NameString TermArgList
TermArgList := Nothing | <TermArg TermArgList>

ObjectList := Nothing | <Object ObjectList>
Object := NameSpaceModifierObj | NamedObj

17.2.4.1 Namespace Modifier Objects Encoding

NameSpaceModifierObj := DefAlias | DefName | DefScope

DefAlias := AliasOp NameString NameString
AliasOp := 0x06

DefName := NameOp NameString DataRefObject
NameOp := 0x08

DefScope := ScopeOp PkgLength NameString TermList
ScopeOp := 0x10

17.2.4.2 Named Objects Encoding

NamedObj := DefBankField | DefCreateBitField | DefCreateByteField |

DefCreateDWordField | DefCreateField |
DefCreateQWordField | DefCreateWordField |
DefDataRegion | DefDevice | DefEvent | DefField |
DefIndexField | DefMethod | DefMutex | DefOpRegion |
DefPowerRes | DefProcessor | DefThermalZone

DefBankField := BankFieldOp PkgLength NameString NameString BankValue

FieldFlags FieldList
BankFieldOp := ExtOpPrefix 0x87
BankValue := TermArg=>Integer
FieldFlags := ByteData

// bit 0-3: AccessType
// 0: AnyAcc
// 1: ByteAcc
// 2: WordAcc
// 3: DWordAcc
// 4: QWordAcc
// 5: BufferAcc
// 6: Reserved
// 7-15: Reserved
// bit 4: LockRule
// 0: NoLock
// 1: Lock
// bit 5-6: UpdateRule
// 0: Preserve
// 1: WriteAsOnes
// 2: WriteAsZeros
// bit 7: reserved (must be 0)

FieldList := Nothing | <FieldElement FieldList>
FieldElement := NamedField | ReservedField | AccessField
NamedField := NameSeg PkgLength
ReservedField := 0x00 PkgLength
AccessField := 0x01 AccessType AccessAttrib
AccessType := ByteData

// Same as AccessType bits of FieldFlags

416 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

AccessAttrib := ByteData
// If AccessType is BufferAcc for the SMB OpRegion,
// AccessAttrib can be one of the following values:
// 0x02 – SMBQuick
// 0x04 – SMBSendReceive
// 0x06 – SMBByte
// 0x08 – SMBWord
// 0x0a – SMBBlock
// 0x0c – SMBProcessCall

 // 0x0d - SMBBlockProcessCall

DefCreateBitField := CreateBitFieldOp SourceBuff BitIndex NameString
CreateBitFieldOp := 0x8d
SourceBuff := TermArg=>Buffer
BitIndex := TermArg=>Integer

DefCreateByteField := CreateByteFieldOp SourceBuff ByteIndex NameString
CreateByteFieldOp := 0x8c
ByteIndex := TermArg=>Integer

DefCreateDWordField := CreateDWordFieldOp SourceBuff ByteIndex NameString
CreateDWordFieldOp := 0x8a

DefCreateField := CreateFieldOp SourceBuff BitIndex NumBits NameString
CreateFieldOp := ExtOpPrefix 0x13
NumBits := TermArg=>Integer

DefCreateQWordField := CreateQWordFieldOp SourceBuff ByteIndex NameString
CreateQWordFieldOp := 0x8f

DefCreateWordField := CreateWordFieldOp SourceBuff ByteIndex NameString
CreateWordFieldOp := 0x8b

DefDataRegion := DataRegionOp NameString TermArg TermArg TermArg
DataRegionOp := ExOpPrefix 0x88

DefDevice := DeviceOp PkgLength NameString ObjectList
DeviceOp := ExtOpPrefix 0x82

DefEvent := EventOp NameString
EventOp := ExtOpPrefix 0x02

DefField := FieldOp PkgLength NameString FieldFlags FieldList
FieldOp := ExtOpPrefix 0x81

DefIndexField := IndexFieldOp PkgLength NameString NameString FieldFlags

FieldList
IndexFieldOp := ExtOpPrefix 0x86

DefMethod := MethodOp PkgLength NameString MethodFlags TermList
MethodOp := 0x14
MethodFlags := ByteData

// bit 0-2: ArgCount (0-7)
// bit 3: SerializeFlag
// 0: NotSerialized
// 1: Serialized
// bit 4-7: SyncLevel (0x00-0x0f)

DefMutex := MutexOp NameString SyncFlags
MutexOp := ExtOpPrefix 0x01
SyncFlags := ByteData

// bit 0-3: SyncLevel (0x00-0x0f)
// bit 4-7: reserved (must be 0)

ACPI Machine Language (AML) Specification 417

Compaq/Intel/Microsoft/Phoenix/Toshiba

DefOpRegion := OpRegionOp NameString RegionSpace RegionOffset RegionLen
OpRegionOp := ExtOpPrefix 0x80
RegionSpace := ByteData

// 0x00: SystemMemory
// 0x01: SystemIO
// 0x02: PCI_Config
// 0x03: EmbeddedControl
// 0x04: SMBus

 // 0x05: CMOS
 // 0x06: PciBarTarget
 // 0x80-0xff: user defined
RegionOffset := TermArg=>Integer
RegionLen := TermArg=>Integer

DefPowerRes := PowerResOp PkgLength NameString SystemLevel

ResourceOrder ObjectList
PowerResOp := ExtOpPrefix 0x84
SystemLevel := ByteData
ResourceOrder := WordData

DefProcessor := ProcessorOp PkgLength NameString ProcID PblkAddr PblkLen

ObjectList
ProcessorOp := ExtOpPrefix 0x83
ProcID := ByteData
PblkAddr := DwordData
PblkLen := ByteData

DefThermalZone := ThermalZoneOp PkgLength NameString ObjectList
ThermalZoneOp := ExtOpPrefix 0x85

17.2.4.3 Type 1 Opcodes Encoding

Type1Opcode := DefBreak | DefBreakPoint | DefContinue | DefFatal |

DefIfElse | DefLoad | DefNoop | DefNotify | DefRelease |
DefReset | DefReturn | DefSignal | DefSleep | DefStall |
DefUnload | DefWhile

DefBreak := BreakOp
BreakOp := 0xa5

DefBreakPoint := BreakPointOp
BreakPointOp := 0xcc

DefContinue := ContinueOp
ContinueOp := 0x9f

DefElse := Nothing | <ElseOp PkgLength TermList>
ElseOp := 0xa1

DefFatal := FatalOp FatalType FatalCode FatalArg
FatalOp := ExtOpPrefix 0x32
FatalType := ByteData
FatalCode := DwordData
FatalArg := TermArg=>Integer

DefIfElse := IfOp PkgLength Predicate TermList DefElse
IfOp := 0xa0
Predicate := TermArg=>Integer

DefLoad := LoadOp NameString DDBHandleObject
LoadOp := ExtOpPrefix 0x20
DDBHandleObject := SuperName

DefNoop := NoopOp
NoopOp := 0xa3

DefNotify := NotifyOp NotifyObject NotifyValue
NotifyOp := 0x86
NotifyObject := SuperName=>ThermalZone|Processor|Device
NotifyValue := TermArg=>Integer

418 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

DefRelease := ReleaseOp MutexObject
ReleaseOp := ExtOpPrefix 0x27
MutexObject := SuperName

DefReset := ResetOp EventObject
ResetOp := ExtOpPrefix 0x26
EventObject := SuperName

DefReturn := ReturnOp ArgObject
ReturnOp := 0xa4
ArgObject := TermArg=>DataRefObject

DefSignal := SignalOp EventObject
SignalOp := ExtOpPrefix 0x24

DefSleep := SleepOp MsecTime
SleepOp := ExtOpPrefix 0x22
MsecTime := TermArg=>Integer

DefStall := StallOp UsecTime
StallOp := ExtOpPrefix 0x21
UsecTime := TermArg=>ByteData

DefUnload := UnloadOp DDBHandleObject
UnloadOp := ExtOpPrefix 0x2a

DefWhile := WhileOp PkgLength Predicate TermList
WhileOp := 0xa2

17.2.4.4 Type 2 Opcodes Encoding

Type2Opcode := DefAcquire | DefAdd | DefAnd | DefBuffer | DefConcat |

DefConcatRes | DefCondRefOf | DefCopyObject |
DefDecrement | DefDerefOf | DefDivide |
DefFindSetLeftBit | DefFindSetRightBit | DefFromBCD |
DefIncrement | DefIndex | DefLAnd | DefLEqual |
DefLGreater | DefLGreaterEqual | DefLLess |
DefLLessEqual | DefMid | DefLNot | DefLNotEqual |
DefLoadTable | DefLOr | DefMatch | DefMod |

 DefMultiply | DefNAnd | DefNOr | DefNot |
 DefObjectType | DefOr | DefPackage | DefVarPackage |

DefRefOf | DefShiftLeft | DefShiftRight | DefSizeOf |
DefStore | DefSubtract | DefToBCD | DefToBuffer |
DefToDecimalString | DefToHexString | DefToInteger |
DefToString | DefWait | DefXOr | UserTermObj

Type6Opcode := DefRefOf | DefDerefOf | DefIndex | UserTermObj

DefAcquire := AcquireOp MutexObject Timeout
AcquireOp := ExtOpPrefix 0x23
Timeout := WordData

DefAdd := AddOp Operand Operand Target
AddOp := 0x72
Operand := TermArg=>Integer

DefAnd := AndOp Operand Operand Target
AndOp := 0x7b

DefBuffer := BufferOp PkgLength BufferSize ByteList
BufferOp := 0x11
BufferSize := TermArg=>Integer

DefConcat := ConcatOp Data Data Target
ConcatOp := 0x73
Data := TermArg=>ComputationalData

ACPI Machine Language (AML) Specification 419

Compaq/Intel/Microsoft/Phoenix/Toshiba

DefConcatRes := ConcatResOp BufData BufData Target
ConcatResOp := 0x84
BufData := TermArg=>Buffer

DefCondRefOf := CondRefOfOp SuperName Target
CondRefOfOp := ExtOpPrefix 0x12

DefCopyObject := CopyObjectOp TermArg SimpleName
CopyObjectOp := 0x9d

DefDecrement := DecrementOp SuperName
DecrementOp := 0x76

DefDerefOf := DerefOfOp ObjReference
DerefOfOp := 0x83
ObjReference := TermArg=>ObjectReference|String

//ObjectReference is an object produced by terms
//such as Index, RefOf or CondRefOf.

DefDivide := DivideOp Dividend Divisor Remainder Quotient
DivideOp := 0x78
Dividend := TermArg=>Integer
Divisor := TermArg=>Integer
Remainder := Target
Quotient := Target

DefFindSetLeftBit := FindSetLeftBitOp Operand Target
FindSetLeftBitOp := 0x81

DefFindSetRightBit := FindSetRightBitOp Operand Target
FindSetRightBitOp := 0x82

DefFromBCD := FromBCDOp BCDValue Target
FromBCDOp := ExtOpPrefix 0x28
BCDValue := TermArg=>Integer

DefIncrement := IncrementOp SuperName
IncrementOp := 0x75

DefIndex := IndexOp BuffPkgStrObj IndexValue Target
IndexOp := 0x88
BuffPkgStrObj := TermArg=>Buffer, Package or String
IndexValue := TermArg=>Integer

DefLAnd := LandOp Operand Operand
LandOp := 0x90

DefLEqual := LequalOp Operand Operand
LequalOp := 0x93

DefLGreater := LgreaterOp Operand Operand
LgreaterOp := 0x94

DefLGreaterEqual := LgreaterEqualOp Operand Operand
LgreaterEqualOp := LnotOp LlessOp

DefLLess := LlessOp Operand Operand
LlessOp := 0x95

DefLLessEqual := LlessEqualOp Operand Operand
LlessEqualOp := LnotOp LgreaterOp

420 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

DefLNot := LnotOp Operand
LnotOp := 0x92

DefLNotEqual := LnotEqualOp Operand Operand
LnotEqualOp := LnotOp LequalOp

DefLoadTable := LoadTableOp TermArg TermArg TermArg TermArg TermArg

TermArg
LoadTableOp := ExtOpPrefix 0x1F

DefLOr := LorOp Operand Operand
LorOp := 0x91

DefMatch := MatchOp SearchPkg MatchOpcode Operand MatchOpcode

Operand StartIndex
MatchOp := 0x89
SearchPkg := TermArg=>Package
MatchOpcode := ByteData

// 0: MTR
// 1: MEQ
// 2: MLE
// 3: MLT
// 4: MGE
// 5: MGT

StartIndex := TermArg=>Integer

DefMid := MidOp MidObj TermArg TermArg Target
MidOp := 0x9E
MidObj := TermArg=>Buffer|String

DefMod := ModOp Dividend Divisor Target
ModOp := 0x85

DefMultiply := MultiplyOp Operand Operand Target
MultiplyOp := 0x77

DefNAnd := NandOp Operand Operand Target
NandOp := 0x7c

DefNOr := NorOp Operand Operand Target
NorOp := 0x7e

DefNot := NotOp Operand Target
NotOp := 0x80

DefObjectType := ObjectTypeOp SuperName
ObjectTypeOp := 0x8e

DefOr := OrOp Operand Operand Target
OrOp := 0x7d

DefPackage := PackageOp PkgLength NumElements PackageElementList
PackageOp := 0x12
DefVarPackage := VarPackageOp PkgLength VarNumElements PackageElementList
VarPackageOp := 0x13
NumElements := ByteData
VarNumElements := TermArg=>Integer
PackageElementList := Nothing | <PackageElement PackageElementList>
PackageElement := DataRefObject | NameString

DefRefOf := RefOfOp SuperName
RefOfOp := 0x71

DefShiftLeft := ShiftLeftOp Operand ShiftCount Target
ShiftLeftOp := 0x79
ShiftCount := TermArg=>Integer

DefShiftRight := ShiftRightOp Operand ShiftCount Target
ShiftRightOp := 0x7a

ACPI Machine Language (AML) Specification 421

Compaq/Intel/Microsoft/Phoenix/Toshiba

DefSizeOf := SizeOfOp SuperName
SizeOfOp := 0x87

DefStore := StoreOp TermArg SuperName
StoreOp := 0x70

DefSubtract := SubtractOp Operand Operand Target
SubtractOp := 0x74

DefToBCD := ToBCDOp Operand Target
ToBCDOp := ExtOpPrefix 0x29

DefToBuffer := ToBufferOp Operand Target
ToBufferOp := 0x96

DefToDecimalString := ToDecimalStringOp Operand Target
ToDecimalStringOp := 0x97

DefToHexString := ToHexStringOp Operand Target
ToHexStringOp := 0x98

DefToInteger := ToIntegerOp Operand Target
ToIntegerOp := 0x99

DefToString := ToStringOp TermArg LengthArg Target
LengthArg := TermArg=>Integer
ToStringOp := 0x9c

DefWait := WaitOp EventObject Operand
WaitOp := ExtOpPrefix 0x25

DefXOr := XorOp Operand Operand Target
XorOp := 0x7f

17.2.5 Miscellaneous Objects Encoding
Miscellaneous objects include:

• Arg objects
• Local objects
• Debug objects

17.2.5.1 Arg Objects Encoding

ArgObj := Arg0Op | Arg1Op | Arg2Op | Arg3Op | Arg4Op | Arg5Op |

Arg6Op
Arg0Op := 0x68
Arg1Op := 0x69
Arg2Op := 0x6a
Arg3Op := 0x6b
Arg4Op := 0x6c
Arg5Op := 0x6d
Arg6Op := 0x6e

17.2.5.2 Local Objects Encoding

LocalObj := Local0Op | Local1Op | Local2Op | Local3Op | Local4Op |

Local5Op | Local6Op | Local7Op
Local0Op := 0x60
Local1Op := 0x61
Local2Op := 0x62
Local3Op := 0x63
Local4Op := 0x64
Local5Op := 0x65
Local6Op := 0x66
Local7Op := 0x67

422 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

17.2.5.3 Debug Objects Encoding

DebugObj := DebugOp
DebugOp := ExtOpPrefix 0x31

17.3 AML Byte Stream Byte Values
The following table lists all the byte values that can be found in an AML byte stream and the meaning of
each byte value. This table is useful for debugging AML code.

ACPI Machine Language (AML) Specification 423

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x00 ZeroOp Data
Object

— —

0x01 OneOp Data
Object

— —

0x02-0x05 — — — —

0x06 AliasOp Term
Object

NameString NameString —

0x07 — — — —

0x08 NameOp Term
Object

NameString
DataRefObject

—

0x09 — — — —

0x0A BytePrefix Data
Object

ByteData —

0x0B WordPrefix Data
Object

WordData —

0x0C DWordPrefix Data
Object

DWordData —

0x0D StringPrefix Data
Object

AsciiCharList NullChar —

0x0E QWordPrefix Data
Object

QWordData —

0x0F — — — —

0x10 ScopeOp Term
Object

NameString TermList

0x11 BufferOp Term
Object

TermArg ByteList

0x12 PackageOp Term
Object

ByteData PackageTermList

0x13 VarPackageOp Term
Object

TermArg PackageTermList

0x14 MethodOp Term
Object

NameString ByteData TermList

0x15-0x2D — — — —

0x2E (‘.’) DualNamePrefix Name
Object

NameSeg NameSeg —

0x2F (‘/’) MultiNamePrefix Name
Object

ByteData NameSeg(N) —

0x30-0x40 — — — —

424 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values (continued)

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x41-0x5A
(‘A’-‘Z’)

NameChar Name
Object

— —

0x5B (‘[’) ExtOpPrefix — ByteData —

0x5B 0x01 MutexOp Term
Object

NameString ByteData —

0x5B 0x02 EventOp Term
Object

NameString —

0x5B 0x12 CondRefOfOp Term
Object

SuperName SuperName —

0x5B 0x13 CreateFieldOp Term
Object

TermArg TermArg
TermArg NameString

—

0x5B 0x1F LoadTableOp Term
Object

TermArg TermArg
TermArg TermArg
TermArg TermArg

—

0x5B 0x20 LoadOp Term
Object

NameString SuperName —

0x5B 0x21 StallOp Term
Object

TermArg —

0x5B 0x22 SleepOp Term
Object

TermArg —

0x5B 0x23 AcquireOp Term
Object

SuperName WordData —

0x5B 0x24 SignalOp Term
Object

SuperName —

0x5B 0x25 WaitOp Term
Object

SuperName TermArg —

0x5B 0x26 ResetOp Term
Object

SuperName —

0x5B 0x27 ReleaseOp Term
Object

SuperName —

0x5B 0x28 FromBCDOp Term
Object

TermArg Target —

0x5B 0x29 ToBCD Term
Object

TermArg Target —

0x5B 0x2A UnloadOp Term
Object

SuperName —

0x5B 0x30 RevisionOp Data
Object

— —

ACPI Machine Language (AML) Specification 425

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values (continued)

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x5B 0x31 DebugOp Debug
Object

— —

0x5B 0x32 FatalOp Term
Object

ByteData DWordData
TermArg

—

0x5B 0x80 OpRegionOp Term
Object

NameString ByteData
TermArg TermArg

—

0x5B 0x81 FieldOp Term
Object

NameString ByteData FieldList

0x5B 0x82 DeviceOp Term
Object

NameString ObjectList

0x5B 0x83 ProcessorOp Term
Object

NameString ByteData
DWordData ByteData

ObjectList

0x5B 0x84 PowerResOp Term
Object

NameString ByteData
WordData

ObjectList

0x5B 0x85 ThermalZoneOp Term
Object

NameString ObjectList

0x5B 0x86 IndexFieldOp Term
Object

NameString NameString
ByteData

FieldList

0x5B 0x87 BankFieldOp Term
Object

NameString NameString
TermArg ByteData

FieldList

0x5B 0x88 DataRegionOp Term
Object

NameString TermArg
TermArg TermArg

—

0x5C (‘\’) RootChar Name
Object

— —

0x5D — — — —

0x5E (‘^’) ParentPrefixChar Name
Object

— —

0x5F(‘_’) NameChar— Name
Object

— —

0x60 (‘`’) Local0Op Local
Object

— —

0x61 (‘a’) Local1Op Local
Object

— —

0x62 (‘b’) Local2Op Local
Object

— —

0x63 (‘c’) Local3Op Local
Object

— —

0x64 (‘d’) Local4Op Local
Object

— —

426 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values (continued)

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x65 (‘e’) Local5Op Local
Object

— —

0x66 (‘f’) Local6Op Local
Object

— —

0x67 (‘g’) Local7Op Local
Object

— —

0x68 (‘h’) Arg0Op Arg Object — —

0x69 (‘i’) Arg1Op Arg Object — —

0x6A (‘j’) Arg2Op Arg Object — —

0x6B (‘k’) Arg3Op Arg Object — —

0x6C (‘l’) Arg4Op Arg Object — —

0x6D (‘m’) Arg5Op Arg Object — —

0x6E (‘n’) Arg6Op Arg Object — —

0x6F — — — —

0x70 StoreOp Term
Object

TermArg SuperName —

0x71 RefOfOp Term
Object

SuperName —

0x72 AddOp Term
Object

TermArg TermArg Target —

0x73 ConcatOp Term
Object

TermArg TermArg Target —

0x74 SubtractOp Term
Object

TermArg TermArg Target —

0x75 IncrementOp Term
Object

SuperName —

0x76 DecrementOp Term
Object

SuperName —

0x77 MultiplyOp Term
Object

TermArg TermArg Target —

0x78 DivideOp Term
Object

TermArg TermArg Target
Target

—

0x79 ShiftLeftOp Term
Object

TermArg TermArg Target —

0x7A ShiftRightOp Term
Object

TermArg TermArg Target —

0x7B AndOp Term
Object

TermArg TermArg Target —

ACPI Machine Language (AML) Specification 427

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values (continued)

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x7C NandOp Term
Object

TermArg TermArg Target —

0x7D OrOp Term
Object

TermArg TermArg Target —

0x7E NorOp Term
Object

TermArg TermArg Target —

0x7F XorOp Term
Object

TermArg TermArg Target —

0x80 NotOp Term
Object

TermArg Target —

0x81 FindSetLeftBitOp Term
Object

TermArg Target —

0x82 FindSetRightBitOp Term
Object

TermArg Target —

0x83 DerefOfOp Term
Object

TermArg —

0x84 ConcatResOp Term
Object

TermArg TermArg Target —

0x85 ModOp Term
Object

TermArg TermArg Target —

0x86 NotifyOp Term
Object

SuperName TermArg —

0x87 SizeOfOp Term
Object

SuperName —

0x88 IndexOp Term
Object

TermArg TermArg Target —

0x89 MatchOp Term
Object

TermArg ByteData
TermArg ByteData
TermArg TermArg

—

0x8A CreateDWordFieldOp Term
Object

TermArg TermArg
NameString

—

0x8B CreateWordFieldOp Term
Object

TermArg TermArg
NameString

—

0x8C CreateByteFieldOp Term
Object

TermArg TermArg
NameString

—

0x8D CreateBitFieldOp Term
Object

TermArg TermArg
NameString

—

0x8E ObjectTypeOp Term
Object

SuperName —

428 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values (continued)

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x8F CreateQWordFieldOp Term
Object

TermArg TermArg
NameString

—

0x90 LandOp Term
Object

TermArg TermArg —

0x91 LorOp Term
Object

TermArg TermArg —

0x92 LnotOp Term
Object

TermArg —

0x92 0x93 LNotEqualOp Term
Object

TermArg TermArg —

0x92 0x94 LLessEqualOp Term
Object

TermArg TermArg —

0x92 0x95 LGreaterEqualOp Term
Object

TermArg TermArg —

0x93 LEqualOp Term
Object

TermArg TermArg —

0x94 LGreaterOp Term
Object

TermArg TermArg —

0x95 LLessOp Term
Object

TermArg TermArg —

0x96 ToBufferOp Term
Object

TermArg Target —

0x97 ToDecimalStringOp Term
Object

TermArg Target —

0x98 ToHexStringOp Term
Object

TermArg Target —

0x99 ToIntegerOp Term
Object

TermArg Target —

0x9A-0x9B — — — —

0x9C ToStringOp Term
Object

TermArg TermArg Target —

0x9D CopyObjectOp Term
Object

TermArg SimpleName —

0x9E MidOp Term
Object

TermArg TermArg
TermArg Target

—

0x9F ContinueOp Term
Object

— —

0xA0 IfOp Term
Object

TermArg TermList

ACPI Machine Language (AML) Specification 429

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table 17-2 AML Byte Stream Byte Values (continued)

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0xA1 ElseOp Term
Object

— TermList

0xA2 WhileOp Term
Object

TermArg TermList

0xA3 NoopOp Term
Object

— —

0xA4 ReturnOp Term
Object

TermArg —

0xA5 BreakOp Term
Object

— —

0xA6-
0xCB

— — — —

0xCC BreakPointOp Term
Object

— —

0xCD-
0xFE

— — — —

0xFF OnesOp Data
Object

— —

17.4 AML Encoding of Names in the Namespace
Assume the following namespace exists:

\
 S0
 MEM
 SET
 GET
 S1
 MEM
 SET
 GET
 CPU
 SET
 GET

430 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and loads a block using
it as a root. Assume the loaded block contains the following names:

 STP1
 ^GET
 ^^PCI0
 ^^PCI0.SBS
 \S2
 \S2.ISA.COM1
 ^^^S3
 ^^^S2.MEM
 ^^^S2.MEM.SET
 Scope(\S0.CPU.SET.STP1) {
 XYZ
 ^ABC
 ^ABC.DEF
 }

This will be encoded in AML as:

'STP1'
ParentPrefixChar 'GET_'
ParentPrefixChar ParentPrefixChar 'PCI0'
ParentPrefixChar ParentPrefixChar DualNamePrefix 'PCI0' 'SBS_'
RootChar 'S2__'
RootChar MultiNamePrefix 3 'S2__' 'ISA_' 'COM1'
ParentPrefixChar ParentPrefixChar ParentPrefixChar 'S3__'
ParentPrefixChar ParentPrefixChar ParentPrefixChar DualNamePrefix 'S2__' 'MEM_'
ParentPrefixChar ParentPrefixChar ParentPrefixChar MultiNamePrefix 3 'S2__' 'MEM_'
'SET_'

After the block is loaded, the namespace will look like this (names added to the namespace by the loading
operation are shown in bold):

 \
 S0
 MEM
 SET
 GET
 CPU
 SET
 STP1
 XYZ
 ABC
 DEF
 GET
 PCI0
 SBS
 S1
 MEM
 SET
 GET
 CPU
 SET
 GET
 S2
 ISA
 COM1
 MEM
 SET
 S3

A Device Class PM Specifications 431

Compaq/Intel/Microsoft/Phoenix/Toshiba

APPENDIX A: Device Class Specifications

A Device Class PM Specifications
This section defines the behavior of devices as that behavior relates to power management and, specifically,
to the four device power states defined by ACPI. The goal is enabling device vendors to design power-
manageable products that meet the basic needs of OSPM and can be utilized by any ACPI-compatible
operating system.

A.1 Overview
The power management of individual devices is the responsibility of a policy owner in the operating
system. This software element will implement a power management policy that is appropriate for the type
(or class) of device being managed. Device power management policy typically operates in conjunction
with a global system power policy implemented in the operating system.

In general, the device-class power management policy strives to reduce power consumption while the
system is working by transitioning among various available power states according to device usage. The
challenge facing policy owners is to minimize power consumption without adversely impacting the
system’s usability. This balanced approach provides the user with both power savings and good
performance.

Because the policy owner has very specific knowledge about when a device is in use or potentially in use,
there is no need for hardware timers or such to determine when to make these transitions. Similarly, this
level of understanding of device usage makes it possible to use fewer device power states. Generally,
intermediate states attempt to draw a compromise between latency and consumption because of the
uncertainty of actual device usage. With the increased knowledge in the OS, good decisions can be made
about whether the device is needed at all. With this ability to turn devices off more frequently, the benefit
of having intermediate states diminishes.

The policy owner also determines what class-specific events can cause the system to transition from
sleeping to working states, and enables this functionality based on application or user requests. Notice that
the definition of the wake events that each class supports will influence the system’s global power policy in
terms of the level of power management a system sleeping state can attain while still meeting wake latency
requirements set by applications or the user.

A.2 Device Power States
The following definitions apply to devices of all classes:
• D0. State in which device is on and running. It is receiving full power from the system and is

delivering full functionality to the user.
• D1. Class-specific low-power state (defined in the following section) in which device context may or

may not be lost. Buses in D1 cannot do anything to the bus that would force devices on that bus to lose
context.

• D2. Class-specific low-power state (defined in the following section) in which device context may or
may not be lost. Attains greater power savings than D1. Buses in D2 can cause devices on that bus to
lose some context (for example, the bus reduces power supplied to the bus). Devices in D2 must be
prepared for the bus to be in D2 or higher.

• D3. State in which device is off and not running. Device context is lost. Power can be removed from
the device.

432 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Device power-state transitions are typically invoked through bus-specific mechanisms (for example, ATA
Standby, USB Suspend, and so on). In some cases, bus-specific mechanisms are not available and device-
specific mechanisms must be used. Notice that the explicit command for entering the D3 state might be the
removal of power.

It is the responsibility of the policy owner (or other software) to restore any lost device context when
returning to the D0 state.

A.2.1 Bus Power Management
Policy owners for bus devices (for example, PCI, USB, Small Computer System Interface [SCSI]) have the
additional responsibility of tracking the power states of all devices on the bus and for transitioning the bus
itself to only those power states that are consistent with those of its devices. This means that the bus state
can be no lower than the highest state of one of its devices. However, enabled wake events can affect this
as well. For example, if a particular device is in the D2 state and set to wake the system and the bus can
only forward wake requests while in the D1 state, then the bus must remain in the D1 state even if all
devices are in a lower state.

Below are summaries of relevant bus power management specifications with references to the sources.

A.2.2 Display Power Management
Refer to the Display Power Management Signaling Specification (DPMS), available from:

Video Electronics Standards Association (VESA)
2150 North First Street
Suite 440
San Jose, CA 95131-2029

A DPMS-compliant video controller and DPMS-compliant monitor use the horizontal and vertical sync
signals to control the power mode of the monitor. There are 4 modes of operation: normal, standby,
suspend and off. DPMS-compliant video controllers toggle the sync lines on or off to select the power
mode.

A.2.3 PCMCIA/PCCARD/CardBus Power Management
Refer to the PCMCIA (Personal Computer Memory Card International Association) Web site,at
http://www.pc-card.com/.

PCMCIA and PCCARD devices do not have device power states defined. The only power states available
are on and off, controlled by the host bus controller. The CardBus specification is a superset of the
PCCARD specification, incorporating the power management specification for PCI bus. Power
management capabilities query, state transition commands and wake event reporting are identical.

A.2.4 PCI Power Management
Refer to the PCI Special Interest Group (PCISIG) Web site, at http://www.pcisig.com/.
• PCI Bus Power Management Capabilities Query. PCI Bus device capabilities are reported via the

optional Capabilities List registers, which are accessed via the Cap_Ptr.
• PCI Bus Power Management State Transition Commands. PCI Bus device power states are

controlled and queried via the standard Power Management Status/Control Register (PMCSR).
• PCI Bus Wakeup Event Reporting. PCI wake events are reported on the optional PME# signal, with

setting of the Wake_Int bit in the PMCSR. Wake event reporting is controlled by the Wake_En bit in
the PMCSR register.

A Device Class PM Specifications 433

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.2.5 USB Power Management
Refer to the Universal Serial Bus Implementers Forum (USB-IF) Web site, at http://www.usb.org/.
• USB Power Management Capabilities Query. USB device capabilities are reported to the USB Host

via the standard Power Descriptors. These address power consumption, latency time, wake support,
and battery support and status notification.

• USB Power Management State Transition Commands. USB device power states are controlled by
the USB Host via the standard SET_FEATURE command. USB device power states are queried via
the standard USB GET_STATUS command.

• USB Wakeup Event Reporting. USB wake event reporting is controlled using the SET_FEATURE
command, with value DEVICE_REMOTE_WAKEUP. USB wake events are reported by sending
remote wake resume signaling.

A.2.6 Device Classes
Below is a list of the class-specific device power management definitions available in this specification.
Notice that there exists a default device class definition that applies to all devices, even if there is a
separate, class-specific section that adds additional requirements.
• Audio Device Class. Applies to audio devices.
• COM Port Device Class. Applies to COM ports devices.
• Display Device Class. Applies to CRT monitors, LCD panels, and video controllers for those devices.
• Input Device Class. Applies to standard types of input devices such as keyboards, keypads, mice,

pointing devices, joysticks, and game pads, plus new types of input devices such as virtual reality
devices.

• Modem Device Class. Applies to modem and modem-like (for example, ISDN terminal adapters)
devices.

• Network Device Class. Applies specifically to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

• PC Card Controller Device Class. Applies to PC Card controllers and slots.
• Storage Device Class. Applies specifically to ATA hard disks, floppy disks, ATAPI and SCSI CD-

ROMs, and the IDE channel.

A.3 Default Device Class
The requirements expressed in this section apply to all devices, even if there is a separate, class-specific
power management definition that identifies additional requirements.

A.3.1 Default Power State Definitions

State Definition

D0 Device is on and running. It is receiving full power from the system, and is delivering full
functionality to the user.

D1 This state is not defined and not used by the default device class.

D2 This state is not defined and not used by the default device class.

D3 Device is off and not running. Device context is assumed lost, and there is no need for any of it
to be preserved in hardware. This state should consume the minimum power possible. Its only
requirement is to recognize a bus-specific command to re-enter D0. Power can be removed
from the device while in D3. If power is removed, the device will receive a bus-specific
hardware reset upon reapplication of power, and should initialize itself as in a normal power
on.

434 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.3.2 Default Power Management Policy

Present
State

Next
State

Cause

D0 D3 Device determined by the OS to not be needed by any applications or the user.

System enters a sleeping state.

D3 D0 Device determined by the OS to be needed by some application or the user.

A.3.3 Default Wake Events
There are no default wake events, because knowledge of the device is implicit in servicing such events.
Devices can expose wake capabilities to OSPM, and device-specific software can enable these, but there is
no generic application-level or OS-wide support for undefined wake events.

A.3.4 Minimum Power Capabilities
All devices must support the D0 and D3 states. Functionality available in D0 must be available after
returning to D0 from D3 without requiring a system reboot or any user intervention. This requirement
applies whether or not power is removed from the device during D3.

A.4 Audio Device Class
The requirements expressed in this section apply to audio devices.

A.4.1 Power State Definitions

State Status Definition

D0 Required Power is on. Device is operating.

D1 Optional Power consumption is less than D0 state. Device must be able to transition
between D0 and D1 states within 100 ms. No audio samples may be lost by
entering and leaving this state.

D2 Required Power consumption is less than D0 state. Device must be able to transition
between D0 and D2 states within 100 ms. Audio samples may be lost by entering
and leaving this state.

D3 Required The device is completely off or drawing minimal power. For example, a stereo
will be off, but a light-emitting diode (LED) may be on and the stereo may be
listening to IR commands.

If a device is in the D1 or D2 state it must resume within 100 ms. A device in the D3 state may take as long
as it needs to power up. It is the responsibility of the policy owner to advertise to the system how long a
device requires to power up.

All audio devices must be capable of D0, D2 and D3 states. It is desirable that an audio device be capable
of D1 state. The difference between D1 and D2 is that a device capable of D1 can maintain complete state
information in reduced power mode. The policy owner or other software must save all states for D2-
capable devices. Some audio samples may be lost in transitioning into and out of the D2 state.

Notice that the D1 state was added to allow digital signal processor (DSP)-equipped audio hardware to
exploit low-power modes in the DSP. For example, a DSP may be used to implement Dolby AC-3 Decode.
When paused it stops playing audio, but the DSP may contain thousands of bytes worth of state
information. If the DSP supports a low-power state, it can shut down and later resume from exactly the
audio sample where it paused without losing state information.

A Device Class PM Specifications 435

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.4.2 Power Management Policy
For the purpose of the following state transition policy, the following device-specific operational states are
defined:
• Playing. Audio is playing.
• Recording:

Foreground. Normal application is recording. Recording is considered foreground unless specifically
designated low priority.

Background. Speech recognition or speech activity detection is running. Recording may be preempted
by foreground recording or playing. Any audio recording may be designated as background.

• Full Duplex. Device is simultaneously playing and recording.
• Paused. File handle is open. Only devices that are playing, foreground recording or in full duplex

operation may be paused. Background recording may not be paused. State is static and never lost. The
paused state assumes that a device must transition to the resumed state rapidly. Playing or recording
must be resumed within 100 ms. No audio samples may be lost between the device is paused and later
resumed.

• Closed. No file handle is open.

Present
State

Next
State Cause

D3 D0 Audio device moves from closed to open state or paused when the device receives
the resume command.

D0 D1 Audio device receives pause command. If device is D1 capable, this state is
preferred. If not, the device driver will preserve context, and the device will be set to
D2.

D2/D1 D0 Audio device receives a resume command.

D0 D2 Audio device is closed. Audio inactivity timer started.

D2 D3 Audio inactivity timer expires.

D0 D3 Audio device is in background record mode and receives power-down command.

When an audio device is in the D0 state it will refuse system requests to transition to D3 state unless it is in
background record mode. When an audio device is paused (D1 or D2) and it receives a request to transition
to the D3 state, it will save the state of the audio device and transition to the D3 state.

Since multimedia applications often open and close audio files in rapid succession, it is recommended that
an inactivity timer be employed by the policy owner to prevent needless shutdowns (D3 transitions) of the
audio hardware. For example, frequent power cycling may damage audio devices powered by vacuum
tubes.

A.4.3 Wake Events
An audio device may be a wake device. For example, a USB microphone designed for security applications
might use the USB wake mechanism to signal an alarm condition.

A.4.4 Minimum Power Capabilities
All audio devices must be capable of D0, D2 and D3 power states. If the device is capable of maintaining
context while in a low-power state it should advertise support for D1. Transitional latency for the D2 or D3
states must be less than 100 ms. There are no latency restrictions for D3 transitions, but the policy owner
should advertise the amount of time required.

436 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.5 COM Port Device Class
The requirements expressed in this section apply to Universal Asynchronous Receiver/Transmitters
(UARTs) such as the common NS16550 buffered serial port and equivalents.

The two required states for any power-managed COM Port are full on (D0) and full off (D3). This in turn
requires that the COM port hardware be power-manageable by ACPI control methods for COM ports that
are on system boards, or by standard bus power management controls for COM ports that are on add-in
cards (for example, PCI). Because of this, ISA-based COM port add-in cards will not be able to meet this
requirement, and therefore cannot be compliant with this specification.

A.5.1 Power State Definitions

State Status Definition

D0 Required Line drivers are on. UART context is preserved.

D1 N/A This state is not defined for COM Ports. Use the D3 state instead.

D2 N/A This state is not defined for COM Ports. Use the D3 state instead.

D3 Required Line drivers are off (unpowered; outputs isolated from devices attached to the
port). UART context is lost. Latency to return to D0 is less than 1 second.

A.5.2 Power Management Policy

Present
State

Next
State Cause

D3 D0 Power-on reset

COM port opened by an application

D0 D3 COM port closed

System enters sleeping state while wake is disabled on this device.

System enters sleeping state while wake is enabled on this device and the device is
capable of generating wake to the system from state D3.

A.5.3 Wake Events
If the COM port is capable of generating wake events, asserting the “ring indicator” line (V.24 circuit 125)
will cause the COM port to assert a wake event. There are two common mechanisms that may be employed
(either one or both) for performing machine wake using COM ports.

The first provides a solution that is capable of waking the PC whether the UART is powered (D0) or not
(D3). Here, the “ring indicator” line (from V.24 circuit 125) is commonly connected directly to the system
wake device in addition to being connected to the UART. While this implementation is normative for COM
ports located on system motherboards (see the ACPI specification), it could also be done by add-in cards
with COM ports that reside on buses supporting system wake from devices in D3 (for example, PME#
signal on PCI).

The second mechanism requires that the UART be powered (D0) to use the UART’s interrupt output pin to
generate the wake event instead. When using this method, the OS COM port policy owner or power
management control methods are expected to configure the UART. Although any UART interrupt source
(for example, ‘data ready’) could theoretically be used to wake the system, these methods are beyond the
scope of this document.

A Device Class PM Specifications 437

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.5.4 Minimum Power Capabilities
A COM port conforming to this specification must support the D0 and D3 states.

A.6 Display Device Class
The requirements expressed in this section apply to CRT monitors, LCD panels, and video controllers.

A.6.1 Power State Definitions

A.6.1.1 CRT Monitors and LCD Panels

State Status Definition

D0 Required This state is equivalent to the “On” state defined in the VESA DPMS
specification (see Related Documents) and is signaled to the display using the
DPMS method.

Display is fully on

Video image is active

D1 Optional This state is equivalent to the “Standby” state defined in the VESA DPMS and is
signaled to the display using the DPMS method.

Display is functional but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 5 seconds

D2 Required This state is equivalent to the “Suspend” state defined in the VESA DPMS
specification and is signaled to the display using the DPMS method.

Display is functional and conserving energy

Video image is blank

Latency to return to D0 is less than 10 seconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS
specification and is signaled to the display using the DPMS method.

Display is non-functional

Video image is blank

438 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.6.1.2 Video Controllers

State Status Definition

D0 Required Back-end is on

Video controller context is preserved

Video memory contents are preserved

D1 Optional Back-end is off, except for monitor/LCD control signaling (DPMS)

Video controller context is preserved

Video memory contents is preserved

Latency to return to D0 is less than 1 second

D2 Optional Back-end is off, except for monitor/LCD control signaling (DPMS)

Video controller context is lost

Video memory contents is lost

Latency to return to D0 is less than 5 second

D3 Required Back-end is off

Video controller context is lost (power removed)

Video memory contents is lost (power removed)

A.6.2 Power Management Policy

Present
State

Next
State Cause

D0 D1 User inactivity for a period of time (T1)

D1 D2 User inactivity for a period of time (T2 > T1)

D2 D3 User inactivity for a period of time (T3 > T2)

D1/D2/D3 D0 User activity or application UI change (for example, dialog pop-up)

These state transition definitions apply to both the monitor/ LCD and the video controller. However, the
control of the two devices is independent, except that a video controller will never be put into a lower
power state than its monitor/LCD(s).

Transitions for the video controller are commanded via the bus-specific control mechanism for device
states. Monitor/LCD transitions are commanded by signaling from the video controller (DPMS) and are
only generated as a result of explicit commands from the policy-owner. Monitor/LCD power control is
functionally independent from any other interface the monitor may provide (such as USB). For instance,
Hubs and HID devices in the monitor enclosure may be power-managed by their driver over the USB bus,
but the Monitor/LCD device itself may not; it must be power-managed by DPMS from the video controller.

A Device Class PM Specifications 439

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.6.3 Wake Events
Display devices incorporating a system power switch should generate a wake event when the switch is
pressed while the system is sleeping.

A.6.4 Minimum Power Capabilities
A CRT monitor or LCD panel conforming to this specification must support the D0, D2, and D3 states.
Support for the D1 state is optional. Transitional latencies for the D1 state must be less than 5 seconds, and
less than 10 seconds for the D2 state.

A video controller conforming to this specification must support the D0 and D3 states. Support for the D1
and D2 states is optional. Transitional latencies for the D1 state must be less than 1 second, and less than 5
seconds for the D2 state.

A.7 Input Device Class
The requirements expressed in this section apply to standard types of input devices such as keyboards,
keypads, mice, pointing devices, joysticks, game pads, to devices that combine these kinds of input
functionality (composite devices, and so on), and to new types of input devices such as virtual reality
devices, simulation devices, and so on.

A.7.1 Power State Definitions

State Status Definition

D0 Required Device is receiving full power from its power source, delivering full
functionality to the user, and preserving applicable context and state
information.

D1 Optional Input device power consumption is greatly reduced. In general,
device is in a power management state and is not delivering any
functionality to the user except wake functionality if applicable.
Device status, state, or other information indicators (for example,
LEDs, LCD displays, and so on) are turned off to save power.
The following device context and state information should be
preserved by the policy owner or other software:
Keyboard. Num, caps, scroll lock states (and Compose and Kana
states if applicable) and associated LED/indicator states, repeat
delay, and repeat rate.
Joystick. Forced feedback effects (if applicable).
Any input device. All context and state information that cannot be
preserved by the device when it’s conserving power.

D2 N/A This state is not defined for input devices, use D1 as the power
management state instead.

D3 Required Input device is off and not running. In general, the device is not
delivering any functionality to the user except wake functionality if
applicable. Device context and state information is lost.

440 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.7.2 Power Management Policy

Present
State

Next
State Cause

D3 D0 Requested by the system

D0 D1/D3* Requested by the system (for example, system goes to sleep with
wake enabled)

D0/D1 D3 Requested by the system (for example, system goes to sleep with
wake disabled)

Power is removed

D1/D3 D0 Device with enabled wake capability requests transition by
generating a wake event

Requested by the system
*Depends on capability of device (if it features D1 or D3 wake capability or not); device will be put in state
with the lowest possible power consumption.

A.7.3 Wake Events
It is recommended, but not required, that input devices implement and support bus-specific wake
mechanisms if these are defined for their bus type. This is recommended because a user typically uses an
input device of some kind to wake the system when it is in a power management state (for example, when
the system is sleeping).

The actual input data (particular button or key pressed) that’s associated with a wake event should never be
discarded by the device itself, but should always be passed along to the policy owner or other software for
further interpretation. This software implements a policy for how this input data should be interpreted, and
decides what should be passed along to higher-level software, and so on.

It is recommended that the device button(s) or key(s) used for power management purposes are clearly
labeled with text and/or icons. This is recommended for keyboards and other input devices on which all
buttons or keys are typically labeled with text and/or icons that identify their usage.

For example, a keyboard could include a special-purpose power management button (for example,
“Power”) that, when pressed during a system sleeping state, generates a wake event. Alternatively, the
button(s) on mice and other pointing devices could be used to trigger a wake event.

Examples of more advanced wake events include keyboard wake signaling when any key is pressed, mouse
wake signaling on detection of X/Y motion, joystick wake signaling on X/Y motion, and so on. However,
in order to avoid accidental or unintentional wake of the system, and to give the user some control over
which input events will result in a system wake, it’s suggested that more advanced types of wake events are
implemented as features that can be turned on or off by the user (for example, as part of the OSPM user
interface).

A.7.4 Minimum Power Capabilities
An input device conforming to this specification must support the D0 and D3 states. Support for the D1
state is optional.

A Device Class PM Specifications 441

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.8 Modem Device Class
The requirements expressed in this section apply to modems and similar devices, such as USB controlled
ISDN Terminal Adapters (“digital modems”) and computer-connected telephone devices ("CT phones").
This specification will refer to these devices as “modems; the same considerations apply to digital modems
and CT phones unless explicitly stated otherwise.

The scope of this section is further restricted to modems that support power management using methods
defined by the relevant PC-modem connection bus. These include PCI, USB, PCCARD (PCMCIA),
CardBus, and modems on the system motherboard described by ACPI BIOS control methods. The scope
does not include bus-specific means for devices to alert the host PC (for example, how to deliver a
”ringing”’ message), nor does it address how those alerting operations are controlled.

A.8.1 Technology Overview
Modems are traditionally serial devices, but today modems may be attached to a PC by many different
means. Further, many new modems expose a software serial interface, where the modem controller
function is implemented in software. This specification addresses three different connection types:
• Traditional connections without power-managed connections (for example, COM, LPT, ISA)
• Power managed connections (for example, PCCARD, CardBus, PCI, USB)
• Motherboard modems

For some of the above modem connection types mentioned, there are three different modem architectures
possible:
• Traditional modem (DAA, DSP, and controller in hardware)
• Controller-less design (DAA and DSP in hardware)
• "Soft modem" design (DAA and CODEC only in hardware)

The hardware components of the modem shall be controlled by the relevant bus commands, where
applicable (USB, PCI, CardBus). The software components are dependent on the power state of the CPU.

A.8.1.1 Traditional Connections
In older methods (COM, LPT, ISA) the modem is controlled primarily by serialized ASCII command
strings (for example, V.25ter) and traditional V.24 (RS-232) out-of-band leads. In these legacy devices,
there are no common means for power management other than the power switch for the device, or the
entire system unit.

An external modem connected to a COM port or LPT port typically has its own power supply. An LPT port
modem might run from the current on the LPT port +5V supply. For COM or LPT port modems, power is
typically controlled by a user switch.

The most common modem type is an ISA card with an embedded COM port. From a software standpoint,
they are logically identical to external modems, but the modems are powered by the PC system unit. Power
is drawn from the ISA bus without independent power switching.

A.8.1.2 Power-Managed Connections
PCMCIA, PCCARD and CardBus slots are powered and power-managed by the system, using means
defined in the relevant bus specifications. For PCMCIA and PCCARD devices, only D0 and D3 states are
available, via Socket Services in the OS and/or ACPI BIOS. CardBus adds intermediate states, using the
same mechanisms defined for PCI Bus.

PCI bus slots are powered and power-managed by the system, using means defined in the PCI
specification.

USB devices may be powered by the USB itself (100mA or 500mA), or have their own external power
supply. All USB devices are power-managed by the USB bus master, using means defined in the USB
specification.

442 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.8.1.3 Motherboard Modems
A modem embedded in the motherboard is powered by controls on the motherboard. It should be power-
managed by using control methods exposed via ACPI BIOS tables.

A.8.2 Power State Definitions

State Status Definition

D0 Required Phone interface is on (may be on or off hook)

Speaker is on

Controller Context is preserved

D1 N/A Not defined (do not use)

D2 Optional Phone interface is not powered by the host (on hook)

Speaker is off

Controller context is preserved

2 seconds maximum restore time

D3 Required Phone interface is not powered by host (on hook)

Speaker is off

Controller context may be lost

5 seconds maximum restore time

A.8.3 Power Management Policy

Present
State

Next
State Cause

D2/D3 D0 System issues a bus command to enter the D0 state (for example, an
application is answering or originating a call).

D0 D2 System issues a bus command to enter the D2 state. (for example, an
application is listening for an incoming call).

D0 D3 System issues a bus command to enter the D3 state (for example, all
applications have closed the Modem device).

A.8.4 Wake Events
For any type of modem device, wake events (if supported and enabled) are only generated in response to
detected “ringing” from an incoming call. All other events associated with modems (V.8bis messages, and
so on) require that the PC be in the “working” state to capture them. The methods and signals used to
generate the wake may vary as a function of the modem connection (bus) type and modem architecture.

Machine wake is allowed from any modem power state (D0, D2, and D3), and is accomplished by methods
described in the appropriate bus power management specification (PCI, USB, PCCARD), or by ACPI
system board control methods (for Modem on Motherboard implementations).

If the specific modem implementation or connection type does not enable it to assert system wake
signaling, these modems will not be able to wake the machine. The OS modem policy owner will have to
retain the PC in the “working” state to perform all types of event detection (including ringing).

A Device Class PM Specifications 443

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.8.5 Minimum Power Capabilities
A modem or similar device conforming to this specification must support the D0 and D3 states. Support of
the D2 state is optional.

A.9 Network Device Class
The requirements expressed in this section apply to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

A.9.1 Power State Definitions
For the purpose of the following state definitions “no bus transmission” means that transmit requests from
the host processor are not honored, and “no bus reception” means that received data are not transferred to
host memory.

State Status Definition

D0 Required Device is on and running and is delivering full functionality and
performance to the user

Device is fully compliant with the requirements of the attached
network

D1 Optional No bus transmission allowed

No bus reception allowed

No interrupts can occur

Device context may be lost

D2 Optional No bus transmission allowed

No bus reception allowed

No interrupts can occur

Device context may be lost

D3 Required Device context is assumed to be lost

No bus transmission allowed

No bus reception allowed

No interrupts can occur

This document does not specify maximum power and maximum latency requirements for the sleeping
states because these numbers are very different for different network technologies. The device must meet
the requirements of the bus that it attaches to.

Although the descriptions of states D1 and D2 are the same, the choice of whether to implement D1 or D2
or both may depend on bus services required, power requirements, or time required to restore the physical
layer. For example, a device designed for a particular bus might include state D1 because it needs a bus
service such as a bus clock to support Magic Packet™ wake, and that service is available in the bus
device’s D1 power state but not in D2. Also, a device might include both state D1 and state D2 to provide a
choice between lower power and lower latency.

444 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.9.2 Power Management Policy

Present
State

Next
State Cause

D0 Dx System enters sleep state. If wake is enabled, Dx is the lowest power
state (for example, D1, D2, D3) from which the network device
supports system wake.

An appropriate time-out has elapsed after a “link down” condition
was detected. Dx is the lowest power state in which the network
device can detect “link up.”

D0 D3 System initiated network shutdown.

System enters sleep state and wake is either not enabled or the
network device is capable of waking from D3.

D1/D2/D3 D0 System wake (transition to S0), including a wake caused by a network
wake event.

A.9.3 Wake Events
Network wake events are generally the result of either a change in the link status or the reception of a wake
frame from the network.

A.9.3.1 Link Status Events
Link status wake events are useful to indicate a change in the network’s availability, particularly when this
change may impact the level at which the system should re-enter the sleeping state. For example, a
transition from “link off” to “link on” may trigger the system to re-enter sleep at a higher level (for
example, S2 versus S3) so that wake frames can be detected. Conversely, a transition from “link on” to
“link off” may trigger the system to re-enter sleep at a deeper level (for example, S3 versus S2) since the
network is not currently available. The network device should implement an internal delay to avoid
unnecessary transitions when the link status toggles on or off momentarily.

A.9.3.2 Wake Frame Events
Wake frame events are used to wake the system whenever meaningful data is presented to the system over
the network. Examples of meaningful data include the reception of a Magic Packet™, a management
request from a remote administrator, or simply network traffic directly targeted to the local system. In all of
these cases the network device was pre-programmed by the policy owner or other software with
information on how to identify wake frames from other network traffic. The details of how this information
is passed between software and network device depend on the OS and therefore are not described in this
specification.

A.9.4 Minimum Power Capabilities
A network device conforming to this specification must support the D0 and D3 states. Support for the D1
and D2 states is optional.

A.10 PC Card Controller Device Class
The requirements expressed in this section apply to PC Card controller devices and the PC Card slots.

Power management of PC Cards is not defined by this specification. PC Card power management is
defined by the relevant power management specification for the card’s device class (for example, network,
modem, and so on), in conjunction with the PC Card standard (for 16-bit cards) or the PCI Power
Management Specification (for CardBus cards).

A Device Class PM Specifications 445

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.10.1 Power State Definitions

State Status Definition

D0 Required Card status change interrupts are fully functional.

Card functional interrupts are fully functional.

Controller context (for example, memory, I/O windows) is fully
functional.

Controller interface is fully functional (processor can access cards).

Power to cards (slots) is available (may be on or off under software
control).

The controller is at its highest power consumption level.

Bus command response time is at its fastest level.

PC Cards can be in any Dx power state (D0-D3).

Note: In D0 state, CSTSCHG interrupts can be passed to a system
from a powered down PC Card (for more detail, refer to section
5.2.11.2 of PC Card Standard, Electrical Specification).

D1 Optional Card status change interrupts are disabled. CSTSCHG interrupt
events are still detectable by the controller and cause the bus-
specific wake signal to be asserted if wake is enabled on the
controller.

Card functional interrupts are disabled.

Controller context is preserved (all register contents must be
maintained but memory and I/O windows need not be functional).

Controller interface is non-functional (processor cannot access
cards).

Power to cards (slots) is available (may be on or off; retains power
setting it had at time of entry to D1).

Power-level consumption for the controller is high but less than D0.

The time required to restore the function from the D1 state to the D0
state is quicker than resumption from D3.

Bus command response time is equal to or slower than in D0.

PC Cards can be in the D1, D2, or D3 power states (not D0).

Note: In D1 state, CSTSCHG interrupts can be passed to a system
from a powered-down PC Card (for more detail, refer to section
5.2.11.2 of PC Card Standard, Electrical Specification).

D2 Optional • Functionally the same as D1 (may be implemented instead of
D1 in order to allow bus and/or system to enter a lower-power
state).

446 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

(continued)

State Status Definition

D3 Required Card status change interrupt: Disabled and need not be detected.

Card functional interrupt: Disabled and need not be detected.

Controller context (for example, memory, I/O windows): Lost.

Controller interface: Non-functional (processor can not access
cards).

Clock to controller: Off.

Power to cards (slots): Off (card context lost).

Note: If Vcc is removed (for example, PCI Bus B3) while the
device is in the D3 state, a bus-specific reset (for example, PCI
RST#) must be asserted when power is restored and functions will
then return to the D0 state with a full power-on reset sequence.
Whenever the transition from D3 to D0 is initiated through assertion
of a bus-specific reset, the power-on defaults will be restored to the
function by hardware just as at initial power up. The function must
then be fully initialized and reconfigured by software.

A.10.2 Power Management Policy
The PC Card controller is a bus controller. As such, its power state is dependent on the devices plugged
into the bus (child devices). OSPM will track the state of all devices on the bus and will put the bus into the
best possible power state based on the current device requirements on that bus. For example, if the PC Card
cards are all in the D1 state, OSPM will put the PC Card controller in the D1 state.

Present
State

Next
State Cause

D2/D3 D0 Any card in any slot needing to transition to state D0 due to a wake
event or because of system usage.

D0 D1 No card in any slot is in state D0.

D0 D2 No card in any slot is in state D0 or D1.

D0 D3 All cards in all slots are in state D3.

A.10.3 Wake Events
A wake event is any event that would normally assert the controller’s status change interrupt (for example,
card insertion, card battery state change, card ReqAttn event, and so on) or ring-indicate signal.

A.10.4 Minimum Power Capabilities
A PC Card controller device conforming to this specification must support the D0 and D3 states. Support
for the D1 or D2 states is optional.

A.11 Storage Device Class
The requirements expressed in this section apply to ATA hard disks, floppy disks, ATAPI and SCSI CD-
ROMs, and the IDE channel.

A Device Class PM Specifications 447

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.11.1 Power State Definitions

A.11.1.1 Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is
functional.

Interface mode context (for example, communications timings) is
programmed.

D1 Optional Drive controller (for example, interface and control electronics) is
functional.

Interface mode context (for example, communications timings) is
preserved.

Drive motor (for example, spindle) is stopped, with fast-start mode
enabled, if available.

Laser (if any) is off.

Recommended latency to return to D0 is less than 5 seconds.

Power consumption in D1 should be no more than 80% of power
consumed in D0.

Note: For ATA devices, this state is invoked by the Standby
Immediate command.

D2 N/A This state is not defined for storage devices.

D3 Required Drive controller (for example, interface and control electronics) is not
functional; context is lost.
Interface mode (for example, communications timings) is not
preserved.
Drive motor (for example, spindle) is stopped.
Laser (if any) is off.
Power consumption in D3 is no more than 10% of power consumed
in D0.
Note: For ATA devices, this state is invoked by the “sleep”
command.

448 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.11.1.2 Floppy Disk Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is
functional.
Drive motor (for example, spindle) is turning.

D1 N/A This state is not defined for floppy disk drives.

D2 N/A This state is not defined for floppy disk drives.

D3 Required Drive controller (for example, interface and control electronics) is not
functional; context is lost.
Drive motor (for example, spindle) is stopped.

A.11.1.3 IDE Channel Devices

State Status Definition

D0 Required Adapter is functional.

Adapter interface mode (for example, communications timings) is
programmed.

Power is applied to the bus (and all devices connected to it).

D1 N/A This state is not defined for the IDE Channel.

D2 N/A This state is not defined for the IDE Channel.

D3 Required Adapter is non-functional.
Adapter interface mode (for example, communications timings) is not
preserved.
Power to the bus (and all devices connected to it) may be off.

A.11.2 Power Management Policy

A.11.2.1 Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable
Storage Devices

Present
State

Next
State Cause

D3 D0 Device usage (high-priority I/O).

D0 D1* Device inactivity (no high-priority I/O) for some period of time (T1).

D0 D3 Device inactivity (no high-priority I/O) for a period of time
(T2=>T1).

System enters sleeping state.

D1* D0 Device usage (High-priority I/O).
* If supported.

Note: For ATA, the D3-to-D0 transition requires a reset of the IDE channel. This means that both devices
on a channel must be placed into D3 at the same time.

A Device Class PM Specifications 449

Compaq/Intel/Microsoft/Phoenix/Toshiba

A.11.2.2 IDE Channel Devices

Present
State

Next
State Cause

D3 D0 Any device on the channel needing to transition to a state other than
state D3.

D0 D3 All devices on the channel in state D3.

A.11.3 Wake Events
Storage devices with removable media can, optionally, signal wake upon insertion of media using their bus-
specific notification mechanism. There are no other wake events defined for Storage devices.

A.11.4 Minimum Power Capabilities
A hard disk, CD-ROM or IDE/ATAPI removable storage device conforming to this specification must
support the D0 and D3 states. Support for the D1 state is optional.

A floppy disk and IDE channel device conforming to this specification must support the D0 and D3 states.

450 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 451

Compaq/Intel/Microsoft/Phoenix/Toshiba

APPENDIX B: Video Extensions

B ACPI Extensions for Display Adapters

B.1 Introduction
This section of the document describes a number of specialized ACPI methods to support motherboard
graphics devices.

In many cases, system manufacturers need to add special support to handle multiple output devices such as
panels and TV-out capabilities, as well as special power management features. This is particularly true for
notebook manufacturers. The methods described here have been designed to enable interaction between the
system BIOS, video driver, and OS to smoothly support these features.

Systems containing a built-in display adapter are required to implement the ACPI Extensions for Display
Adapters.

Table B-1 Video Extension Object Requirements

Method Description

_DOS Enable/Disable output switching Required if system supports display
switching or LCD brightness levels

_DOD Enumerate all devices attached to display
adapter

Required if integrated controller supports
output switching

_ROM Get ROM Data Required if ROM image is stored in
proprietary format

_GPD Get POST Device Required if _VPO is implemented

_SPD Set POST Device Required if _VPO is implemented

_VPO Video POST Options Required if system supports changing post
VGA device

_ADR Return the unique ID for this device Required

_BCL Query list of brightness control levels
supported

Required if embedded LCD supports
brightness control

_BCM Set the brightness level Required if _BCL is implemented

_DDC Return the EDID for this device Required if embedded LCD does not
support return of EDID via standard
interface

_DCS Return status of output device Required if the system supports display
switching (via hotkey)

_DGS Query graphics state Required if the system supports display
switching (via hotkey

_DSS Device state set Required if the system supports display
switching (via hotkey).

452 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

B.2 Definitions
• Built-in display adapter. This is a graphics chip that is built into the motherboard and cannot be

replaced. ACPI information is valid for such built-in devices.
• Add-in display adapter. This is a graphics chip or board that can be added to or removed from the

computer. Because the system BIOS cannot have specific knowledge of add-in boards, ACPI
information is not available for add-in devices.

• Boot-up display adapter. This is the display adapter programmed by the system BIOS during
machine power-on self-test (POST). It is the device upon which the machine will show the initial
operating system boot screen, as well as any system BIOS messages.

• The system can change the boot-up display adapter, and it can switch between the built-in adapter and
the add-in adapter.

• Display device. This is a synonym for the term display adapter discussed above.
• Output device. This is a device, which is a recipient of the output of a display device. For example, a

CRT or a TV is an output device.

B.3 ACPI Namespace
This is an example of the display-related namespace on an ACPI system:

GPE // ACPI General-purpose HW event
 _L0x // Notify(VGA, 0x80) to tell OSPM of the event, when user presses
// the hot key to switch the output status of the monitor.
// Notify(VGA, 0x81) to tell the event to OSPM, when there are any
// changes on the sub-devices for the VGA controller

SB
|- PCI
 |- VGA // Define the VGA controller in the namespace
 |- _PS0 / PR0
 |- _PS1 / PR1
 |- _PS3
 |- _DOS // Method to control display output switching
 |- _DOD // Method to retrieve information about child output devices
 |- _ROM // Method to retrieve the ROM image for this device
 |- _GPD // Method for determining which VGA device will post
 |- _SPD // Method for controlling which VGA device will post
 |- _VPO // Method for determining the post options
 |- CRT // Child device CRT
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state
 |- _PS0 \
 |- _PS1 - Power methods
 |- _PS2 - for the output device
 |- _PS3 /
 |- LCD // Child device LCD
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state
 |- _BCL // Brightness control levels
 |- _BCM // Brightness control method
 |- _PS0 \
 |- _PS1 - Power methods
 |- _PS2 - for the output device
 |- _PS3 /
 |- TV // Child Device TV
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state

B ACPI Extensions for Display Adapters 453

Compaq/Intel/Microsoft/Phoenix/Toshiba

The LCD device represents the built-in output device. Mobile PCs will always have a built-in LCD display,
but desktop systems that have a built-in graphics adapter generally don’t have a built-in output device.

Notify(VGA, 0x80) is an event that should be generated whenever the state of one of the output devices
attached to the VGA controller has been switched or toggled. This event will, for example, be generated
when the user presses a hotkey to switch the active display output from the LCD panel to the CRT.

Notify(VGA, 0x81) is an event that should be generated whenever the state of any output devices attached
to the VGA controller has been changed. This event will, for example, be generated when the user plugs-in
or remove a CRT from the VGA port. In this case, OSPM will re-enumerate all devices attached to VGA
controller.

The event number is standardized because the event will be handled by the OS directly under certain
circumstances (see _DOS method later in this specification).

B.4 Display-specific Methods
The methods described in this section are all associated with specific display devices. This device-specific
association is represented in the namespace example in the previous section by the positioning of these
methods in a device tree.

B.4.1 _DOS (Enable/Disable Output Switching)
Many ACPI machines currently reprogram the active display output automatically when the user presses
the display toggle switch on the keyboard. This is done because most video device drivers are currently not
capable of being notified synchronously of such state changes. However, this behavior violates the ACPI
specification, because the system modifies some graphics device registers.

The existence of the _DOS method indicates that the system BIOS is capable of automatically switching
the active display output or controlling the brightness of the LCD. If it exists at all, the _DOS method must
be present for all display output devices. This method is required if the system supports display switching
or LCD brightness control.

Arguments:
Bit 1:0

0: The system BIOS should not automatically switch (toggle) the active display output,
but instead just save the desired state change for the display output devices in
variables associated with each display output, and generate the display switch event.
OSPM can query these state changes by calling the _DGS method.

1: The system BIOS should automatically switch (toggle) the active display output, with
no interaction required on the OS part. The display switch event should not be
generated in this case.

2: The _DGS values should be locked. It’s highly recommended that the system BIOS
do nothing when hotkey pressed. No switch, no notification.

3: Reserved
 Bit 2

0: The system BIOS should automatically control the brightness level of the LCD when
the power changes from AC to DC.

1: The system BIOS should not automatically control the brightness level of the LCD
when the power changes from AC to DC.

Return Value:

 None

454 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

The _DOS method controls this automatic switching behavior. This method should do so by saving the
parameter passed to this method in a global variable somewhere in the BIOS data segment. The system
BIOS then checks the value of this variable when doing display switching. This method is also used to
control the generation of the display switching Notify(VGA, 0x80/0x81).

The system BIOS, when doing switching of the active display, must verify the state of the variable set by
the _DOS method. The default value of this variable must be 1.

B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)
This method is used to enumerate devices attached to the display adapter. This method is required if
integrated controller supports output switching.

On many laptops today, a number of devices can be connected to the graphics adapter in the machine.
These devices are on the motherboard and generally are not directly enumerable by the video driver; for
this reason, all motherboard VGA attached devices are listed in the ACPI namespace.

These devices fall into two categories:
• Video output devices. For example, a machine with a single display device on the motherboard can

have three possible output devices attached to it, such as a TV, a CRT, or a panel.
• Non-video output devices. For example, TV Tuner, DVD decoder, Video Capture. They just attach to

VGA and their power management closely relates to VGA.

Both ACPI and the video driver have the ability to program and configure output devices. This means that
both ACPI and the video driver must enumerate the devices using the same IDs. Because there are no
standard configurations for display output devices, no standard ID generation mechanism can be used.

To solve this problem, the _DOD method returns a list of devices attached to the graphics adapter, along
with device-specific configuration information. This information will allow the cooperation between ACPI
components and the video driver.

Every child device enumerated in the ACPI namespace under the graphics adapter must be specified in this
list of devices.

Arguments:
None

Return Value:
A buffer containing an array of video device attributes as described in the table below.

Sample Code:

Method (_DOD, 0) {
Return (package(){
0x00010100, // CRT, detectable by BIOS
0x00010110, // LCD panel, detectable by BIOS
0x00000200, // TV, not detectable by the BIOS
0x00020000}) // empty(unknown) device, attached to VGA device
}

B ACPI Extensions for Display Adapters 455

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table B-2 Video Output Device Attributes

Bits Definition

15:0 Device ID. The device ID must match the IDs specified by Video Chip Vendors.
They must also be unique under VGA namespace.

16 BIOS. Can detect the device.

17 Non-VGA output device whose power is related to the VGA device. This can be
used when specifying devices like TV Tuner, DVD decoder, Video Capture, and
so on.

20:18 For VGA multiple-head devices, this specifies head ID.

31:21 Reserved (must be 0)

Table B-3 Commonly-used Device IDs

Bits Definition

0x0100 Monitor

0x0110 Panel

0x0200 TV

0 Other

Please contact the Video Chip vendors for other IDs.

B.4.3 _ROM (Get ROM Data)
This method is used to get a copy of the display devices’ ROM data. This method is required when the
ROM image is stored in a proprietary format such as stored in the system BIOS ROM. This method is not
necessary if the ROM image can be read through standard PCI interface (using ROM BAR).

The video driver can use the data returned by this method to program the device. The format of the data
returned by this function is a large linear buffer limited to 4 KB. The content of the buffer is defined by the
graphics independent hardware vendor (IHV) that builds this device. The format of this ROM data will
traditionally be compatible with the ROM format of the normal PCI video card, which will allow the video
driver to program its device, independently of motherboard versus add-in card issues.

The data returned by the _ROM method is implementation-specific data that the video driver needs to
program the device. This method is defined to provide this data as motherboard devices typically don’t
have a dedicated option ROM. This method will allow a video driver to get the key implementation specific
data it needs so that it can fully control and program the device without BIOS support.

Arguments:

 Arg0: Offset of the display device ROM data.

 Arg1: Size of the buffer to fill in (up to 4K).

Output:

 Buffer of bytes

456 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

B.4.4 _GPD (Get POST Device)
This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to query a CMOS value that determines which VGA device
will be posted at boot. A zero return value indicates the motherboard VGA will be posted on the next boot,
a 1 indicates a PCI VGA device will be posted, and a 2 indicates an AGP VGA device will be posted.

Arguments:

 None

Return Value:

 A 32-bit value

Bit 1:0

00 – Post the motherboard VGA device

01 – Post an add-in PCI VGA device

10 – Post an add-in AGP VGA device

11 – Reserved

Bit 31:2

Reserved (must be 0)

B.4.5 _SPD (Set POST Device)
This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to update a CMOS value that determines which video
device will be posted at boot. A zero argument will cause the “motherboard” to be posted on the next boot,
a 1 will cause an add-in PCI device to be posted, and a 2 will cause an add-in AGP device to be posted.

Arguments:

Bit 1:0

00 – Post the motherboard VGA device

01 – Post an add-in PCI VGA device

10 – Post an add-in AGP VGA device

11 – Reserved

Bit 31:2

Reserved (must be 0)

Return Value:

 A 32-bit value

 0 – Success

 non-zero – Failure

B ACPI Extensions for Display Adapters 457

Compaq/Intel/Microsoft/Phoenix/Toshiba

Sample Code:

 Method (_SPD, 1) { // Make the motherboard device the device to post }

B.4.6 _VPO (Video POST Options)
This method is required for systems with video devices built onto the motherboard and support changing
post-VGA device.

This method is used as a mechanism for the OS to determine what options are implemented. This method
will be used in conjunction with _GPD and _SPD.

Arguments:

 None

Return Value:

 A 32-bit integer

Bit 0: Posting the motherboard VGA device is an option. (Bit 0 should always be set)

Bit 1: Posting a PCI VGA device is an option.

Bit 2: Posting an AGP VGA device is an option.

Bits 31:3: Reserved (must be zero)

B.5 Output Device-specific Methods
The methods in this section are methods associated with the display output device.

B.5.1 _ADR (Return the Unique ID for this Device)
This method returns a unique ID representing the display output device. All output devices must have a
unique hardware ID. This method is required for all The IDs returned by this method will appear in the list
of hardware IDs returned by the _DOD method.

Arguments:

 None

Return Value:

 32-bit device ID

Sample Code:

 Method (_ADR, 0) {
 return(0x0100) // device ID for this CRT
 }

This method is required for all output display devices.

B.5.2 _BCL (Query List of Brightness Control Levels Supported)
This method allows the OS to query a list of brightness level supported by built-in display output devices.
(This method in not allowed for externally connected displays.) This method is required if an integrated
LCD is present and supports brightness levels.

Each brightness level is a number between 0 and 100, and can be thought of as a percentage. For example,
50 can be 50% power consumption or 50% brightness, as defined by the OEM.

458 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Arguments:

 None

Return Value:

 Package of bytes

Sample Code:

 Method (_BCL, 0) {
 // List of supported brightness levels
 Return (Package(7){
 80, // level when machine has full power
 50, // level when machine is on batteries
 // other supported levels
 20, 40, 60, 80, 100}
 }

The first number in the package is the level of the panel when full power is connected to the machine. The
second number in the package is the level of the panel when the machine is on batteries. All other numbers
are treated as a list of levels OSPM will cycle through when the user toggles (via a keystroke) the
brightness level of the display.

These levels will be set using the _BCM method described in the following section.

B.5.3 _BCM (Set the Brightness Level)
This method allows OSPM to set the brightness level of the built-in display output device.

The OS will only set levels that were reported via the _BCL method. This method is required if _BCL is
implemented.

Arguments:

 Arg0: Desired brightness level

Return Value:

 None

Sample Code:

 Method (_BCM, 1) { // Set the requested level }

The method will be called in response to a power source change or at the specific request of the end user,
for example, when the user presses a function key that represents brightness control.

B.5.4 _DDC (Return the EDID for this Device)
This method returns an EDID structure that represents the display output device. This method is required
for integrated LCDs that do not have another standard mechanism for returning EDID data.

Arguments:

 Arg0: Requested data length in bytes

 0x01 – 128 bytes

 0x02 – 256 bytes

Return Value:

 0 – Failure, invalid parameter

 non-zero – Requested data, 128 or 256 bytes of data

B ACPI Extensions for Display Adapters 459

Compaq/Intel/Microsoft/Phoenix/Toshiba

Sample Code:

 Method (_DDC, 2) {
 If (LEqual (Arg0, 1)) { Return (Buffer(128){ ,,,, }) }
 If (LEqual (Arg0, 2)) { Return (Buffer(256){ ,,,, }) }
 Return (0)
 }

The buffer will later be interpreted as an EDID data block. The format of this data is defined by the VESA
EDID specification.

B.5.5 _DCS (Return the Status of Output Device)
This method is required if hotkey display switching is supported.

Arguments:

None

Return Value:

 32-bit device status

Table B-4 Device Status

Bits Definition

0 Output connector exists in the system now

1 Output is activated

2 Output is ready to switch

3 Output is not defective (it is functioning properly)

4 Device is attached (this is optional)

5-31 Reserved (must be zero)

Example:
• If the output signal is activated by _DSS, _DCS returns 0x1F or 0x0F.
• If the output signal is inactivated by _DSS, _DCS returns 0x1D or 0x0D.
• If the device is not attached or cannot be detected, _DCS returns 0x0xxxx and should return 0x1xxxx if

it is attached.
• If the output signal cannot be activated, _ DCS returns 0x1B or 0x0B.
• If the output connector does not exist (when undocked), _DCS returns 0x00.

B.5.6 _DGS (Query Graphics State)
This method is used to query the state (active or inactive) of the output device. This method is required if
hotkey display switching is supported.
Arguments:
 None
Return Value:
 A 32-bit device state

460 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

Table B-5 Device State

Bits Definition

0 0 – next desired state is inactive

1 – means next desired state is active

1-31 Reserved (must be zero)

The desired state represents what the user wants to activate or deactivate, based on the special function
keys the user pressed. OSPM will query the desired state when it receives the display toggle event
(described earlier).

B.5.7 _DSS – Device Set State
OSPM will call this method when it determines the outputs can be activated or deactivated. OSPM will
manage this to avoid flickering as much as possible. This method is required if hotkey display switching is
supported.

Arguments:
 A 32-bit device state

Return Value:
 None

Table B-6 Device Status

Bits Definition

0 0 – Set output device to inactive state

1 – Set output device to active state

30 0 – Do whatever Bit31 requires to do

1 – Don’t do actual switching, but need to change _DGS to next state

31 0 – Don’t do actual switching, just cache the change

1 – If Bit30=0, commit actual switching, including any _DSS with MSB=0

 called before

 If Bit30=1, don’t do actual switching, change _DGS to next state

1-29 Reserved (must be zero)

Example Usage:

OS may call in such an order to turn off CRT, and turn on LCD

CRT._DSS(0);

LCD._DSS(80000001L);

or

LCD._DSS(1);

CRT._DSS(80000000L);

B ACPI Extensions for Display Adapters 461

Compaq/Intel/Microsoft/Phoenix/Toshiba

OS may call in such an order to force BIOS to make _DGS jump to next state without actual CRT, LCD
switching

CRT._DSS(40000000L);

LCD._DSS(C0000001L);

B.6 Note on State Changes
It is possible to have any number of simultaneous active output devices. It is possible to have 0, 1, 2 ... and
so on active output devices. For example, it is possible for both the LCD device and the CRT device to be
active simultaneously. It is also possible for all display outputs devices to be inactive (this could happen in
a system where multiple graphics cards are present).

The state of the output device is separate from the power state of the device. The “active” state represents
whether the image being generated by the graphics adapter would be sent to this particular output device. A
device can be powered off or in a low-power mode but still be the active output device. A device can also
be in an off state but still be powered on.

Example of the display-switching mechanism:

The laptop has three output devices on the VGA adapter. At this moment in time, the panel and the TV are
both active, while the CRT is inactive. The automatic display-switching capability has been disabled by
OSPM by calling _DOS(0), represented by global variable display_switching = 0.

The system BIOS, in order to track the state of these devices, will have three global variable to track the
state of these devices. There are currently initialized to:

 crt_active – 0

 panel_active – 1

 tv_active – 1

The user now presses the display toggle switch, which would switch the TV output to the CRT.

The system BIOS first updates three temporary variables representing the desired state of output devices:

 want_crt_active – 1

 want_panel_active – 1

 want_tv_active – 0

Then the system BIOS checks the display_switching variable. Because this variable is set to zero, the
system BIOS does not do any device reprogramming, but instead generates a Notify(VGA, 0x80/0x81)
event for the display. This event will be sent to OSPM.

OSPM will call the _DGS method for each enumerated output device to determine which devices should
now be active. OSPM will determine whether this is possible, and will reconfigure the internal data
structure of the OS to represent this state change. The graphics modes will be recomputed and reset.

Finally, OSPM will call the _DSS method for each output device it has reconfigured.

Note: OSPM may not have called the _DSS routines with the same values and the _DGS routines returned,
because the user may be overriding the default behavior of the hardware-switching driver or operating
system-provided UI. The data returned by the _DGS method (the want_XXX values) are only a hint to the
OS as to what should happen with the output devices.

If the display-switching variable is set to 1, then the BIOS would not send the event, but instead would
automatically reprogram the devices to switch outputs. Any legacy display notification mechanism could
also be performed at this time.

462 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 463

Compaq/Intel/Microsoft/Phoenix/Toshiba

Index

_EJx 170
AC adapter

device ID 146
power source objects 275

AC status notification 265
access types, Operation Region 366
access, device 312
AccessAs term 322
acoustics See noise
ACPI

definition 13
device ID 145
goals 1

ACPI Hardware See hardware
ACPI Machine Language See AML
ACPI mode

entering 242
exiting 248

ACPI Namespace
AML encoding 429
control method access 136
definition 13
display adapters 452
embedded controller device definition 313
generic hardware registers 78
Modifier Objects encoding, AML 415
modifiers, ASL 374
naming conventions 130
Processor statements 225
root namespaces 133
SMBus host controller objects 319

ACPI Source Language See ASL
ACPI System Description tables See tables
ACPI-compatible hardware See hardware
Acquire (Acquire a Mutex) 384
Acquire terms 371
active cooling

_ACx object 277, 284
control methods 280
definition 43, 277
engaging 280
preferences 43, 282
threshold values 282

active line printer (LPT) ports 35
Active List (_ALx) object 285
Add (Add) 384
add-in display adapter, definition 452
Address (_ADR) object 153
Address Range types 329
address register (SMB_ADDR) 305
Address Space Descriptors

DWORD 189

QWORD 185
resource specific flags 194
valid combinations 184
WORD 192

addresses
alarm fields 69
BARs (Base Address Registers) 368
blocking, BIOS 329
bus types 154
control methods 136
decoding 261
FACS 109
format 91
functional fixed hardware 46
Generic Address Structure (GAS) 91
generic hardware 47, 53
I/O (S)APIC 123, 200
map interfaces 329
map samples 333
mixed, preventing 123, 200
registers 59
reset register 78
slave 264, 317
SMBus 317
system description tables 87

Advanced Configuration and Power
Interface See ACPI

Advanced Programmable Interrupt
Controller See APIC

alarm address register
(SMB_ALRM_ADDR) 306

alarm data register (SMB_ALRM_DATA) 307
alarm events 68
Alias (Declare Name Alias) 374
allocation, device resources 167
AML

Arg Objects encoding 421
battery events 270
byte values 422
code event handler 48
compiling 47
Control Method Battery 271
data buffers, SMBus 323
Data Objects encoding 414
Debug Objects encoding 422
definition 13
grammar 412
Local Objects encoding 421
Name Objects encoding 413
Named Objects encoding 415
Namespace encoding 429
Namespace Modifier Objects encoding 415

464 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

notation conventions 411
Package Length encoding 414
purpose of 47
sleep button code example 66
SMBus device access protocols 324
specification 411
Term Objects encoding 415
Type 1 Opcodes encoding 417
Type 2 Opcodes encoding 418

And (Bitwise And) 384
angle brackets

AML 412
ASL notation 336

answering phones
modem example 33
power management 2
waking computer 35

APIC
_MAT (Multiple APIC Table Entry) 163
definition 13
I/O 16, 118
local 16
multiple description table (MADT) 16
NMI 121
Processor Local 117
structure types 117
support 115, 118

APM BIOS 25
appliance PCs 108
ARB_DIS 76
architecture, system description tables 87
Arg Objects encoding, AML 421
arguments, control methods 137
Argx (Method Argument Data Objects) 401
arrow symbol

ASL notation 336
ASL

_FIX usage example 160
_HPP example 162
AML, relation to 335
case sensitivity 351
CMOS protocols 367
comments 335
compiler directive terms 360
converting to AML 47
data objects 397
data types 352
definition 13
Definition Block terms 360
EC-SMB-HC device code 315
embedded controller device code 314
grammar 335
grammar notation 335
index with buffers example code 388
language 337
lid status code example 82

macros 136, 403, See also macros, ASL
modifiers 351, 374
multiple Smart Battery subsystem code 270
Named Object terms 361
names 337
Namespace modifiers 374
nested packages sample code 388
object names 351
object terms 360, 374
objects, declaring 135
opcodes 375, 382
parameters 354
power button code example 64
Power Resource statements 205
reserved object names 352
SMBBlock code 326
SMBBlockProcessCall code 327
SMBByte code 325
SMBProcessCall code 327
SMBQuick code 324
SMBSendReceive code 324
SMBus data buffer code 323
SMBus devices 321
SMBWord code 325
storing results 354
strings 335
terms 337, 359
thermal zone examples 288
Type 1 Opcodes 375
Type 2 Opcodes 382
User Terms 397
virtual register code 322

AT interrupt model 126
ATA hard disks See storage devices
audible output See noise
audio devices, power management 433, 434
aware device drivers 141
Back From Sleep (_BFS) 213
BankField (Declare Bank/Data Field) 361
bar symbol

AML notation 412
ASL notation 336

BARs (Base Address Registers) 368
Base Bus Number (_BBN) object 202
batteries See also Smart Batteries

capacity 39
Control Method Batteries 270
emergency shutdown 41
events 270
low-level warnings 40
management 38
multiple 38
power status information 32
remaining capacity 274
types supported 32

Battery Information (_BIF) object 271

B ACPI Extensions for Display Adapters 465

Compaq/Intel/Microsoft/Phoenix/Toshiba

Battery Status (_BST) object 273
Battery Trip Point (_BTP) object 274
bay devices 278
BIOS

address range types 329
configuring boot devices 37
determining ACPI support 70
Device Objects 364
devices, switching 461
Dock Name (_BDN) 200
initialization 241
legacy functions 25
legacy specifications 12
limitations on power management 2
memory initialization 244
relation to ACPI 4
resetting enable bits 80
S4 Sleeping state transition 238

bits
alarm 69
child 53, 78
child status 80
control 78
diagram legend 49
enable 57
general-purpose events 80
generic hardware registers 78
ignored 16, 54
interrupt status 53
lid status 82
parent 53, 78
PM timer 76
PM1 Control registers 75
PM1 Enable registers 74
PM1 Status registers 71
PM2 Control register 76
processor control register 77
processor LVL2 77
processor LVL3 78
register notation 49
reserved 17, 53, 90
reset register 78
SMBus protocol encoding 318
status 57, 78
system event signals 37
wake enabled 32
write-only 54

blanks 335
block count register (SMB_BCNT) 306
block devices, GPE 258
Block Write-Read Block Process Call

(SMBBlockProcessCall) protocol 327
blocking, control methods 136
blocks, register 58
BM_RLD 75
BM_STS 71

bold
AML notation 411
ASL notation 336

boot architecture flags, IA-PC 108
boot devices 37
boot resources, embedded controller 128
bootstrap ROM 245
boot-up 240
boot-up display adapter, definition 452
brackets, angle

AML notation 412
ASL notation 336

Break (Break) 376
BreakPoint (BreakPoint) 376
bridges

Base Bus Number (_BBN) 202
DWORD 190
flags 196
ISA bus device 251, 364
power states 32
purpose 89
QWORD 187
WORD 193

Brightness Control Levels Supported, Query List
of (_BCL) 457

brightness control, LCDs 451
Brightness Level, Set (_BCM) 458
Buffer (Declare Buffer Object) 397
Buffer field data type, ASL 352, 355
buffers, SMBus 323
built-in display adapter, definition 452
Burst Disable Embedded Controller

(BD_EC) 299
Burst Enable Embedded Controller

(BE_EC) 299
Burst flags 298
burst mode 299
Bus/Device packages 364
buses

power management standards 30, 432
segment locations 203
setting power states 31

button control models 62
buttons See power button; sleep button
byte values, AML 422
C0 processor power state

definition 23
implementation 221

C1 processor power state
definition 23
implementation 223

C2 processor power state
definition 23
implementation 223

C3 processor power state
definition 23

466 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

implementation 223
cache controller configuration 242
caches, flushing 224, 240
capacity, battery

calculating 39
low-level warnings 41
remaining 274
status information 32

CardBus mode 200
case sensitivity, ASL 351
Case statements 381
category names 6
Celsius scale 279
centenary value, RTC alarm 68
Central Processing Unit See CPU
CENTURY 69
channels, DMA 175
chemistry independence 265
child bits 53, 78
child objects, ASL statements 335
child status bits 80
CLK_VAL 77
clock logic 221
CMOS protocols 367
cold boots 78, 242
cold insertion and removal 168
COM port devices, power management 33, 433,

436
command protocols, SMBus 317
command register (SMB_CMD) 306
commands, embedded controller interface 298
comments, ASL 335
compatibility memory 245
compatibility, compiler 380
Compatible ID (_CID) object 154
compiler directive terms 360
compiling, ASL to AML 47, 380
composite battery 38
Concatenate (Concatenate) 384
ConcatenateResTemplate (Concatenate Resource

Templates) 385
CondRefOf (Conditional Reference Of) 385
configuration objects, device 157
configuring

BIOS initialization 242
boot devices 37
modem example 37
Plug and Play devices 37

Constant Data Terms 400
context, device 14
context, system

definition 18
during emergency shutdown 41
restoring 20
S4 sleeping state 237
sleep states lost in 22

contiguous RAM 245
Continue – Continue Innermost Enclosing

While 377
control bits

functions 78
symbol 49

Control Method Battery 38, 144, 145, 270
control methods See also objects

_ADR (Return the Unique ID for this
Device) 457

_BCL (Query List of Brightness Control
Levels Supported) 457

_BCM (Set the Brightness Level) 458
_BDN (BIOS Dock Name) 200
_BFS (Back From Sleep) 213
_DCK (Dock) 200
_DCS (Return the Status of Output

Device) 459
_DDC (Return the EDID for this Device) 458
_DDS (Device Set State) 460
_DGS (Query Graphics State) 459
_DOD (Enumerate All Devices Attached to

the Display Adapter) 454
_DOS (Enable/Disable Output

Switching) 453
_FDM (Floppy Disk Drive Mode) 258
_GPD (Get POST Device) 456
_GTF (Get Task File) 254
_GTM (Get Timing Mode) 255
_GTS (Going To Sleep) 214
_LID (lid device) 250
_MSG (Message) 250
_OFF 206
_ON 207
_PS0 (Power State 0) 209
_PS1 (Power State 1) 209
_PS2 (Power State 2) 209
_PS3 (Power State 3) 209
_PSC (Power State Current) 210
_PSW 212
_PTS (Prepare To Sleep) 213
_REG (Region) 200
_ROM (Get Rom Data) 455
_SCP (Set Cooling Policy) 286
_SPD (Set POST Device) 456
_SST (System Status) 250
_STM (Set Timing Mode) 256
_TMP (Temperature) 277, 287
_VPO (Video POST OPtions) 457
_WAK (System Wake) 218
arguments 137
ASL, writing 335
battery 271
definition 14
device identification 153
device removal 168

B ACPI Extensions for Display Adapters 467

Compaq/Intel/Microsoft/Phoenix/Toshiba

generic objects 146
initialization (_INI) 199
lid device 250
OEM-supplied 213
overview 136
power button 63, 251
Power Resource objects 206
power source 275
resources 157
sleep button 65, 251
Smart Battery Subsystem 268
system indicators 249
thermal management 284
video extensions 451

control registers 57
controllers, embedded

definition 15
interface 15

conversion, data types 352
cooling modes 43, 277
cooling preferences 43, 282
CopyObject – Copy an Object 385
core logic, system events 37
CPU

boot configuration 242
boot-up 240
cache flushing 224
clock logic 221
definition 14
fixed hardware control 45, 46
multiple performance state control 228
non-symmetric power state support 220
passive cooling 280
performance states 23
power management 36
processor power states 23, 219
thermal management 42
throttling 221, 225
waking operations 32

crashed systems 62, 63
CreateBitField 362
CreateByteField 362
CreateDWordField 362
CreateField (Field) 363
CreateQWordField 363
CreateWordField 363
Critical battery state 41
Critical Temperature (_CRT) object 282, 285
critical temperature shutdowns 277, 282
Cross Device Dependency 54
CRT monitors, power management 437
C-States (processor power) 224, 226
CT phones See modems
Current Resource Settings (_CRS) objects 158
Cx states See processor power states
D0-Fully On

control method 209
definition 21
In Rush Current (_IRC) object 212
power resource object 210
transitioning to 210

D1 Device State
control methods 209
definition 21
power resource objects 210
transitioning to 210

D2 Device State
control methods 209
definition 21
power resource objects 211
transitioning to 211

D3-Off
control methods 209
definition 21
transitioning to 207

dash character
AML notation 412
ASL notation 336

data buffers, SMBus 323
data macros 400
Data Objects encoding, AML 414
data objects, ASL

Buffer 397
data macros 400
Literal data 398
Package 397
types of 397

data register array (SMB_DATA) 306
data types

ASL 352
concatenate 385

data types, resource See resource data types
DataTableRegion 363
day alarm 68
day mode 29
DAY_ALRM 69
DDB Handle data type, ASL 352, 355
DDT, Plug and Play devices 36
Debug Data Object 401
Debug Object data type, ASL 352, 355
Debug Objects encoding, AML 422
Debug Port Specification, Microsoft 96
debugging

AML code 422
requirements for 335

decimals, notation 335
Decrement (Decrement) 386
dedicated embedded controller interface 295
Default statements 381
defined generic objects 146
Definition Block term 360
Definition Blocks

468 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

ASL code 351
definition 14
encoding 133
loading 89, 113, 378
loading from XSDT 390
unloading 381

definitions See terminology
degrees, Kelvin 279
dependencies, device 54, 175
DerefOf (Dereference Of Operator) 386
description tables See tables
design guides 6, 7
desktop PCs

power management 29
profile system type 108

Device (Declare Bus/Device Package) 364
device and processor performance states 23, 36
Device Class Power Management

specifications 30
Device data type, ASL 352, 355
device drivers, ACPI-Aware 141
Device Name (_DDN) object 156
device power

management 29, 431
modem example 33
objects 207
requirements 433
resources 31
specifications 431
standards 30
states 21, 22
status 32

Device Set State (_DSS) 460
devices

audio, power management 434
class-specific objects 145
COM port, power management 436
configuration objects 157
context, definition 14
definition 14
graphics 451
identification objects 153
IDs, common 455
input, power management 439
insertion and removal objects 167
interference 54
modems, power management 441
network, power management 443
object notification 143
PC Card controllers, power management 444
Plug and Play IDs 145
power states 21, 22
resource allocation 167
resource control method 157
SMBus, declaring 319
storage, power management 446

waking system 211
Devices Attached to the Display Adapter

(_DOD) 454
diagram legends 49
Differentiated Definition Block

Bus/Device packages 364
definition 14
determining device power capabilities 31
modem example 34

Differentiated Description Block
isolation logic 34

Differentiated System Description Table See
DSDT

digital modems See modems
Direct Memory Access (_DMA) object 158
Disable (_DIS) object 158
Disable Output Switching (_DOS) 453
display adapters

ACPI Namespace 452
control methods 451
definitions 452
requirements for 451
switching devices 461

display devices, power management 433, 437
Display Power Management Signaling

Specification (DPMS) 432
Divide (Divide) 386
DMA data structure 175
DMA Descriptor macro 404
Dock (_DCK) control method 200
docking

control methods 167, 200
event signals 37
objects 169
query events 79

documentation
organization 10
supplemental 12

drain rates, battery 39
drivers

interference 54
restoration 22

DSDT
definition 14, 114
location 88
purpose 89

dual 8259 118, 119
dual-button model 62
duty cycle 221
DVD decoders 454
DWORD 77, 189
DWORD Address Space Descriptor macro 407
dynamic insertion and removal 167
dynamic objects 137
dynamic Operation Regions 372
dynamic transitioning 50

B ACPI Extensions for Display Adapters 469

Compaq/Intel/Microsoft/Phoenix/Toshiba

E_TMR_VAL 76
E820 mapping 329
EC_DATA (embedded controller data

register) 298
EC_SC (R) (embedded controller status

register) 297
EC_SC (W) (embedded controller command

register) 298
ECDT 128
ECI See embedded controller interface
EC-SMB-HC 303, 314
EDID control methods (_DDC) 458
EFI

definition 14
GetMemoryMap interface 331
RSDP location 92

EISA ID 156
EISAID macro 401
Eject (_EJx) object 170
Eject Device List (_EDL) object 169
Ejection Dependent Device (_EJD) object 169
ejection mechanisms 167
Else/ElseIf (Else Operator) 377
embedded controller

address space 53
boot resources table 128
burst mode 299
definition 15
device ID 145
device object 251
event control example 79
multiple 293
operations 84
queuing events 142
region control method 201

embedded controller interface
ACPI Namespace objects 313
algorithms 302
ASL code, device 314
bi-directional communications 293
Burst flag 298
command interrupt model 301
command register (EC_SC (W)) 298
command set 298
commands, restricted 313
configurations, additional 296
data register (EC_DATA) 298
definition 15
device access 312
firmware requirements 300
Input Buffer Full (IBF) flag 297, 302
interrupt model 301
objects 313
OEM-definable values 302
Output Buffer Full (OBF) flag 297, 302
private 295

registers 296
SCI event (SCI_EVT) flags 297
shared 294, 296
SMBus host controller 303
SMBus notification header

(OS_SMB_EVT) 300
SMBus protocol descriptions 307
SMBus registers 303
SMI event flags 298
specifications 293
status register (EC-SC (W)) 297

emergency shutdown 41
enable bits

corresponding status bits 80
resetting 80
symbol 49

enable register 37
Enable/Disable Output Switch (_DOS) 453
encoding

AML 413
Definition Blocks 133
object names, ASL 351
tables 90

End Dependent Functions 176
end tag 178
End-Dependent Functions Descriptor macro 404
energy conservation See power management
Enterprise servers 108
Enumerate All Devices Attached to the Display

Adapter (_DOD) 454
enumeration, enabling 319
errors, fatal 378
Ethernet adapters See network devices
Event (Declare Event Synchronization

Object) 365
Event data type, ASL 352, 355
events

alarm 68
AML code handler 48
battery 270
button 62
enable register 37
fixed feature 15
fixed handling 139
general model 37
general-purpose registers 15, 78
hardware 51
interrupt 51, 70
link status 444
OS-transparent 52
power button 63
power button override 64
programming model 137
query 79
shared 53
status register 37

470 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

synchronization objects 379
synchronization, waiting for 396
user-initiated 62
wake frame 444

exiting ACPI mode 248
extended I/O bus 145
Extended Interrupt Descriptor 196
Extended Interrupt Descriptor macro 409
Extended Root Systems Description Table See

XSDT
Extensible Firmware Interface See EFI
External (Declare External Objects) 360
FACS

definition 15
flags 111
Global Lock 111
table fields 109

FADT
alarm bits 68
cache flushing 224, 240
definition 15
flags 106, 107
location 88
optional feature bits 71
Plug and Play IDs 159
processor power states 220
purpose 88
reset register location 78
SCI interrupt mapping 70
table fields 99

fans
active cooling 43, 280
device operations 251
noise preferences 43
Plug and Play ID 85
thermal zone example 290

Fatal (Fatal Check) 378
fatal errors 378
features

fixed 15
generic 15
generic hardware 80

Field (Declare Field Objects) 365
fields

alarm 69
cache flushing 240
declaring objects 365
embedded controller boot resources 128
FACS 109
FADT 99, 159
I/O APIC 118
I/O SAPIC 122
MADT 116
NMI 120
Processor Local APIC 117
processor performance 231

reserved 90
RSDT 96
SBST 126
SMBus 321
Start Dependent Functions 175
XSDT 98

FindSetLeftBit (Find Set Left Bit) 386
FindSetRightBit (Find Set Right Bit) 387
firmware

ACPI System 5
embedded controller requirements 300
OSPM controls 26
SMM functional fixed hardware

implementation 46
Firmware ACPI Control Structure See FACS
Fixed ACPI Description Table See FADT
fixed event handling 139
fixed features

definition 15
events 15
registers 15

fixed hardware
definition 45
feature control bits 75
feature enable bits 73
feature status bits 71
features 55
functional implementation 46
interfaces 46
power button 63
programming model 45
register blocks 58
registers 56, 71
sleep button 65

fixed location I/O port descriptor 178
Fixed Register Resource Provider (_FIX) 159
fixed width registers 198
FixedList 335
flags

Burst 298
DWORD 189
FACS 111
FADT 106, 107
I/O resource 195, 196
IA-PC boot architecture 108
Input Buffer Full (IBF) 297, 302
interrupt vector 197
local APIC 118
MADT 116
memory resource 194
MPS INTI 119
Output Buffer Full (OBF) 297, 302
QWORD 185
SCI event (SCI_EVT) 297
SMI event (SMI_EVT) 298
system type 108

B ACPI Extensions for Display Adapters 471

Compaq/Intel/Microsoft/Phoenix/Toshiba

WORD 192
floppy controller device objects 256
Floppy Disk Drive Mode (_FDM) control

method 258
Floppy Disk Enumerate (_FDE) object 256
Floppy Disk Information (_FDI) object 257
floppy disks See storage devices
flushing caches 224, 240
frequency mismatch 143
FromBCD (Convert from BCD) 387
functional device configuration 242
functional fixed hardware 46
functions

End Dependent 176
Start Dependent 175

G0 Working state
behavior during 234
definition 19
properties 20
transitioning to 50
transitioning to Sleeping state 239
transitioning to Soft-Off 239

G1 Sleeping state
definition 19
properties 20
transitioning to 234

G2 Soft Off
definition 19
properties 20
transitioning to 50

G3 Mechanical Off
definition 19
properties 20
transitioning from 50
transitioning to 28

game pads See input devices
GAS See Generic Address Structure
GBL_EN 74
GBL_RLS 75
GBL_STS 72
general event model 37
general-purpose event registers

addresses 60, 78
blocks 61, 80
definition 15
event 0 80
event 0 enable 81
event 0 status 81
event 1 81
event 1 enable 82
event 1 status 81
grouping 59
wake events, role in 142

general-purpose events
handling 140
wake 141

generic address space, SMBus 317
Generic Address Structure (GAS) 91
generic events

example 79
top-level 79

generic feature, definition 15
generic hardware

definition 45
features 55, 80
power button control 63
programming model 47
registers 47, 56, 78
sleep button control 65

generic ISA bus device 251
generic objects 146
generic register descriptor 198
Generic Register Descriptor macro 409
Get POST Device (_GPD) 456
Get Power Status 32
Get ROM Data (_ROM) 455
Get Task File (_GTF) control method 254
Get Timing Mode (_GTM) control method 255
GetMemoryMap 331
Global Lock 111
Global Lock (_GLK) object 204
Global Lock Mutex 152
Global Lock Structure 112
global standby timer 53
global system interrupts 118, 125
global system states

definition 16, 19
terminology 19
transitioning 27, 51

goals
ACPI 1
OSPM 1
power management 2

Going To Sleep (_GTS) control method 214
GPE

block devices 146, 258
control method 141

grammar
AML 412
ASL 335

grammar notation
AML 411
ASL 335

graphics devices, requirements for 451
Graphics State, Query (_DGS) 459
Green PCs, power management for 29
groupings, register See register groupings
guides, design 6, 7
hardware See also fixed hardware; generic

hardware
ACPI interfaces 4
ACPI specifications 45

472 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

definition 13
events 51
features 55
fixed 45
generic 47
ignored bits 54
interfaces 5
legacy 53
legacy vs. ACPI 3
OEM implementation 3
OS-independent 46, 47
OSPM model 50
register definitions 47
registers 56
reserved bits 53
value-added 47

hardware ID (_HID) object 156, 267
headers, long 98
headers, table 87, 94
heat management See thermal management
hexadecimals, notation 335
holes, compatibility 245
home PCs, power management for 29
host controller objects, SMBus 319
hot insertion and removal 168, 170
Hot Plug Memory Table Specification,

Microsoft 96
Hot Plug Parameters (_HPP) object 161
Hot Temperature (_HOT) object 285
hung systems 62, 63
hysteresis 278
I/O APIC

_MAT (Multiple APIC Table Entry 163
definition 16
Global System Interrupts 126
mixed addresses, preventing 123, 200
structure 118

I/O operations, lazy 2
I/O Port Descriptor macros 404
I/O port descriptors 177
I/O resource flag 195, 196
I/O SAPIC

definition 16
mixed addresses, preventing 123, 200
Platform Interrupt Source structure 123
structure 122

I/O space 53, 89
IA (Intel Architecture) specifications 12
IA processors 224
IA-32 systems 46
IA-PC

boot architecture flags 108
definition 16
interrupt models 119
memory map system 329
memory mapping 244

RSDP location 92
ID, Compatible (_CID object) 154
IDE

controller device 252
drives 48

IDE devices See storage devices
identification objects, device 153
idle loops, CPU 36
idle timers, legacy 53
IDs, Plug and Play 145, 153
If (If Operator) 378
ignored bits

definition 16, 54
PM1 Status register 73

implementation requirements
OEM 3
OS 10
OSPM 9

In Rush Current (_IRC) object 212
Include (Include Another ASL File) 360
Increment (Increment) 387
independence, OS

ACPI 3
functional fixed hardware 46
generic hardware 47

Independent Hardware Vendors (IHVs)
power management standards 30

Index (Index) 387
Index with Buffers 388
Index with Packages 388
Index with Strings 389
IndexField (Declare Index/Data Fields) 369
indicators, system 249
initialization

BIOS 241
boot-up 240
OS 247

initialization object (_INI) 199
Input Buffer Full (IBF) flag 297, 302
input devices, power management 433, 439
Input/Output See I/O
insertion and removal objects 167
insertion and removal, batteries 270
INT 15 mapping 329
Integer data type, ASL 352, 356
Integers 399
Intel Architecture specifications 12
Intel Architecture-Personal Computer See IA-

PC
interdependent resources 175
interfaces

ACPI 4
battery 38
BIOS, legacy 25
Control Method Battery 271
design guides 6

B ACPI Extensions for Display Adapters 473

Compaq/Intel/Microsoft/Phoenix/Toshiba

EC-SMB-HC 303
embedded controller 15
extensible firmware (EFI) 14
fixed hardware 46
hardware 5
mapping 329
sharing protocols 296
SMBus 18, 317

interference, device 54
Interrupt Descriptor macro, Extended 409
interrupt events

logic 51
SCI 70
shareable 70
SMI 70

Interrupt Source Overrides 119
interrupt sources, non-maskable (NMIs) 120
interrupt status bits 53
interrupts

embedded controller interface 301
Extended Interrupt Descriptor 196
models 115, 118, 125
Platform Interrupt Source structure 123
PMIs 123

invocation, control methods 136
IRQ Descriptor macro, ASL 403
IRQs

data structure 173
mapping 118, 120
modem configuration example 37
PCI routing 166

ISA
bus device 145, 251
Device Objects code 364
interrupt sources 119
old cards 177

ISDN Terminal Adapters See modems
isolation logic 34
italics, ASL notation 336
joysticks See input devices
Kelvin scale 279
kernel 4
key, logic diagrams 49
keyboard controllers 293
keyboards See input devices
LAN, waking from 29
LAnd (Logical And) 389
large resource data type 179
latency

acceptable 27
global power states 20
processor power states 219

lazy I/O operations 2
LCD panels

brightness control 451
power management 437

legacy BIOS interfaces 25
legacy hardware

BIOS specification 12
boot flags 108
converting to fixed 45
definition 16
interrupt handlers 70
support 3

legacy OS, definition 16
legacy systems

definition 16
memory mapping 244
power button functions 28
power management 52
power state transitions 50
switching devices out of 200
transitioning to ACPI 70

legends, logic diagrams 49
LEqual (Logical Equal) 389
LGreater (Logical Greater) 389
LGreaterEqual (Logical Greater Than Or

Equal) 390
lid device 146
lid status notification values 145
lid switch 82
life, battery 39
link status events 444
LINT 121
Literal Data Terms 398
LLess (Logical Less) 390
LLessEqual (Logical Less Than Or Equal) 390
LNot (Logical Not) 390
Load (Load Differentiated Definition

Block) 378
loading Definition Blocks 89, 113, 378, 390
LoadTable (Load Definition Block From

XSDT) 390
local APIC, definition 16
local area networks See LAN
Local Objects encoding, AML 421
Localx (Method Local Data Objects 402
Lock (_LCK) object 171
Lock, Global 111
logic

fixed power button 63
generic hardware event example 79
lid switch 82
sleep button 65
sleeping/wake control 67

logic diagram legends 49
Long Vendor-Defined Descriptor macros 405
LOr (Logical Or) 391
low-level warnings, battery 40
LPT ports 35
macros, ASL

24-bit Memory Descriptor 405

474 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

32-bit Fixed Memory Descriptor 406
32-bit Memory Descriptor 405
coding 136
data 400
DMA Descriptor 404
DWORD 407
EISAID 401
End-Dependent Functions Descriptor 404
Extended Interrupt Descriptor 409
Fixed I/O Port Descriptor 405
Generic Register Descriptor 409
I/O Port Descriptor 404
IRQ Descriptor 403
QWORD 406
Resource Descriptors 403
Resource Template 401
Start Dependent Function Descriptor 404
Unicode 401
Vendor-Defined Descriptors 405
WORD 408

MADT
_MAT object 163
definition 16
flags 116
interrupt models 115
table fields 116

Magic Packet wake 443
management See power management; thermal

management
mapping

E820 329
EFI GetMemoryMap 331
Global System Interrupts 126
INT 15 329
interfaces for 329
IRQs 118, 120
PCI interrupt pins 165
physical memory 244
Query System Address Map function 334
samples 333

Match (Find Object Match) 391
Mechanical Off

definition 19
properties 20
transitioning from 50
transitioning to 28

memory
BIOS initialization 244
controller configuration 242
descriptor macros 405, 406
devices 261
map interfaces 329
map sample 333
NVS 244
physical mapping 244
resource flag 194, 195

memory device 146
memory range descriptors

24-Bit 179
32-Bit 181
32-Bit Fixed Location 183
purpose 180

memory space 53
Message (_MSG) control method 250
Method (Declare Control Method) 370
Method data type, ASL 352, 356
methods, control See control methods
mice See input devices
Microsoft Device Class Power Management

specifications 30
Mid (Retrieve Portion of Buffer or String 392
mobile PCs

lid switch 82
power management 28
profile system type 108

Mod (Modulo) 393
modems

configuration example 37
power management 433, 441
power management example 33

modifiers
ASL names 351
namespace 374

Module Device 146, 259
MON-ALRM 69
monitors See display devices
month alarm 68
motherboard device configurations

ACPI goals 1
controlled by OSPM 25
modems 442

MPS INTI flags 119
Multiple APIC Description Table See MADT
Multiple APIC Table Entry (_MAT) object 163
multiple Smart Battery Subsystem 269
Multiply (Multiply) 393
multiprocessor PCs

performance control 228
power management for 29

mutex
acquiring 384
Global Lock 152
release synchronization objects 379

Mutex (Declare Synchronization/Mutex
Object) 371

Mutex data type, ASL 352, 356
Name (Declare Named Object) 374
Name Objects encoding, AML 413
Named Object terms 361
Named Objects encoding, AML 415
names, ASL 337
names, object 16

B ACPI Extensions for Display Adapters 475

Compaq/Intel/Microsoft/Phoenix/Toshiba

Namespace See ACPI Namespace
naming conventions 130
NAnd (Bitwise Nand) 393
nested packages 388
network devices, power management 433, 443
night mode 29
NMIs 120, 121
noise, active cooling 43
non-linear address spaces 317
Non-Maskable Interrupt Sources (NMIs) 120,

121
non-visible states, device power 21
Non-Volatile Sleep state, definition 20
Non-Volatile Sleeping memory (NVS) 244
Noop Code (No Operation) 378
NOr (Bitwise Nor) 393
Not (Not) 393
notation

AML 411
ASL 335
numeric constants 335
register bits 49

Nothing 335
notification

battery removal 270
embedded controller interface 300
power button control 63
Smart Battery status 265
temperature changes 279

Notify (Notify) 379
numeric constants, notation 335
NVS files

checking validity 246
restoring from 20

NVS memory 244
object name, definition 16
Object Reference data type, ASL 352, 356
object terms, ASL 360
objects See also control methods

_ACx (Active Cooling) 277, 284
_ADR (Address) 153
_ALx (Active List) 285
_BBN (Base Bus Number) 202
_BIF (Battery Information) 271
_BST (Battery Status) 273
_BTP (Battery Trip Point) 274
_CID (Compatible ID) 154
_CRS (Current Resource Settings) 158
_CRT (Critical Temperature) 282, 285
_CST (C States) 226
_DDN (Device Name 156
_DIS (Disable) 158
_DMA (Direct Memory Access) 158
_EDL (Eject Device List) 169
_EJD (Ejection Dependent Device) 169
_EJx (Eject) 170

_FDE (Floppy Disk Enumerate) 256
_FDI (Floppy DIsk Information) 257
_FIX (Fixed Register Resource Provider) 159
_GLK (Global Lock) 204
_HID (hardware ID) 156, 267
_HOT (Hot Temperature) 285
_HPP (Hot Plug Parameters) 161
_INI (Init) 199
_IRC (In Rush Current) 212
_LCK (Lock) 171
_MAT (Multiple APIC Table Entry) 163
_PCL (Power Consumer List) 275
_PCT (Performance Control) 229
_PPC (Performance Present Capabilities) 231
_PR0 (Power Resources for D0) 210
_PR1 (Power Resources for D1) 210
_PR2 (Power Resources for D2) 211
_PRS (Possible Resource Settings) 164
_PRT (PCI Routing Table) 165
_PRW (Power Resources for Wake) 142, 211
_PSL (Passive List) 285
_PSR (Power Source) 275
_PSS (Performance Supported States) 230
_PSV (Passive) 277, 286
_PTC (Processor Throttling Control) 225
_PXM (Proximity) 167
_RMV (Remove) 171
_S1D 212
_S2D 212
_S3D 212
_S4D 213
_SBS (Smart Battery Subsystem) 267
_SEG (Segment) 203
_SRS (Set Resource Settings) 167
_STA (Status) 172, 207
_STR (String) 156
_SUN (Slot User Number) 156
_TC1 (Thermal Constant 1) 286
_TC2 (Thermal Constant 2) 286
_TSP (Thermal Sampling Period) 287
_TZD (Thermal Zone Devices) 287
_TZP (Thermal Zone Polling) 287
_UID (Unique ID) 156
ASL encoding 351
ASL statements 335
ASL, declaring 135
control methods 136
data 397
definition 16
device configuration 157
device identification 153
device insertion and removal 167
device power resource 210
device-specific 249
dynamic 137
EC-SMB-HC 314

476 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

embedded controller interface 313
floppy controller 256
generic 146
global scope 133
initialization 199
Module Device 259
names, reserved 352
Notify operator 143
OS-defined 152
Power Resource 205
processor 225
revision data 152
Smart Battery 267
SMBus host controller 319
static 137
thermal management 284
unnamed 134

ObjectType 335, 394
OEM implementation 3
OEM-supplied control methods 213
off See Mechanical Off; Soft-Off
OFF 206
ON 207
One (Constant One Object) 400
Ones (Constant Ones Object) 400
opcodes

Type 1, AML 417
Type 1, ASL 375
Type 2, AML 418
Type 2, ASL 382

Operating System See OS
Operating System-directed Power

Management See OSPM
Operation Region data type, ASL 352, 356
Operation Region Field Unit data type,

ASL 352, 355
operation regions

SMBus 317, 320
OperationRegion term

access types 366
Declare Operation Region 371

operators, ASL 352
OpRegion 136
Or (Bit-wise Or) 394
organization, document 10
original equipment manufacturer See OEM
OS

AML support, required 335
boot flags 108
compatibility requirements 10
defined object names 152
DefinitionBlock compiling 360
device power management 31
drivers, embedded controller interface 293
functional fixed hardware implementation 46
independent generic hardware 47

legacy hardware interaction 3
loading 246
name object 152
policy owner, device power management 431
power management 2
Query System Address Map 334
S4 Sleeping state transition 238
transparent events 52

OSPM
caches, flushing 240
cooling policy changes 278
cooling preferences 43
definition 17
device insertion and removal 167
event handlers 53
exclusive controls 26
fixed hardware access 45
fixed hardware registers 71
functions 25
general-event register access 80
generic hardware model 48
Get Power Status 32
goals 1
hardware model 50
implementation requirements 9
passive cooling 280
performance states 36
power management vs. performance 205
power state control 26
Real Time Clock Alarm (RTC) 68
resetting system 78
Set Power State operation 31
SMBus registration 319
thermal management 42, 277
transitioning to sleeping states 235
transitioning working to sleeping states 239
transitioning working to soft-off state 239

Output Buffer Full (OBF) flag 297, 302
output devices

control methods 459
definition 452
switching 461
types of 454

override, power button 64
P_BLK 77
P_LVL2 77
P_LVL3 78
P0 performance state, definition 23
P1 performance state, definition 23
Package (Declare Package Object) 397
Package data type, ASL 352, 356
packages

definition 17
length 133
length encoding, AML 414
nested 388

B ACPI Extensions for Display Adapters 477

Compaq/Intel/Microsoft/Phoenix/Toshiba

packet error checking (PEC) 318
parameters, ASL 354
parent bits 53, 78
parent objects, ASL statements 335
parentheses, AML notation 412
Passive (_PSV) object 277, 286
passive cooling

definition 43, 277
preferences 43, 282
processor clock throttling 280
threshold values 282

Passive List (_PSL) object 285
PC Card controllers, power management 433,

444
PC keyboard controllers 293
PCCARD 432
PCI

BAR target operations 368
bus number 202
buses, address space translation 89
Device Objects code 364
device power management 432
interrupt pins 165
IRQ routing 166
power management 432

PCI configuration space 45, 53
PCI Interrupt Link device 146
PCI Routing Table (_PRT) object 165
PCISIG 432
PCMCIA 432
PEC (packet error checking) 304, 318
Performance Control (_PCT) object 229
Performance Present Capabilities (_PPC)

object 231
performance states

definitions 23
device 36

Performance Supported States (_PSS)
object 230

performance, energy conservation vs. 43, 205
Persistent System Description Table

(PSDT) 115
phones, answering

modem example 33
power management 2
waking computer 35

PIC method 152
pins

general event model 38
GPE 80

platform
implementation 5
independence 3

Platform Interrupt Source structure 123
Platform Management Interrupts (PMIs) 123
Plug and Play devices

ACPI control 36
IDs 145, 153
large resource items 179
modem example 37
resource control method 157
small resource items 173
specifications 12

PM timer
bits 76
function 53
idle time, determining 36
operations 61
register address 59
register blocks 61

PM1 Control registers
addresses 59
bits 75
blocks 60
grouping 58, 74

PM1 Enable registers 73
PM1 Event registers

addresses 59
blocks 60
grouping 58, 71

PM1 Status registers 71
PM2 Control registers

addresses 59
bits 76
blocks 60

PM2 Controller register grouping 59
PMIs 123
Pn performance state, definition 23
PNPBIOS 25
Polarity flags 119
policy owner 431
polling, thermal 279, 280
port descriptors, I/O 177
portability See independence, OS
Possible Resource Settings (_PRS) object 164
POST Device control methods 456
power button

ASL code example 64
control methods 63, 251
definition 17
device ID 146
dual-button model 62
fixed hardware 63
functions 28
object notification values 144
override 64, 67
single-button model 62

Power Consumer List (_PCL) object 275
power consumption

device and processor performance states 23
device power states 22
global power states 20

478 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

power loss
Mechanical Off 50
S4 Non-Volatile Sleep state 20

power management
audio devices 434
BIOS 2
buses 432
COM port devices 436
cooling, relationship to 43
definition 17
desktop PCs 29
device 29, 431, 433
device objects 207
display devices 437
display standards 432
goals 1, 2
input devices 439
lazy I/O operations 2
legacy 52
mobile PCs 28
modem devices 441
modem example 33
multiprocessor PCs 29
network devices 443
PC Card controllers 444
PCI 432
PCMCIA 432
performance states 36
performance vs. energy conservation 43, 205
Plug and Play devices 37
preferred system types 108
processor 36
servers 29
setting device power states 31
standards 30
storage devices 446

power management (PM) timer
bits 76
function 53
idle time, determining 36
operations 61
register address 59
register blocks 61

Power Resource data type, ASL 352, 356
power resources

battery management 263
child objects 206
definition 17
device objects 210
devices, turning off 32
Differentiated Definition Block 31
isolation logic 34
objects 205
shared 35
wake system object 211

Power Source (_PSR) object 275

power sources
AC adapter 275
definition 17
object notification values 144

power states
control methods 209
controlled by OSPM 26
device 21
global 19
non-symmetric processor 220
objects 209
processor 23, 219
sleeping 22
transitioning 50
user-visible 27

PowerResource (Declare Power Resource) 372
preferences, user

performance vs. energy conservation 43, 282
power button 28

preferred PM profile system 108
Prepare to Sleep (_PTS) control method 213
private embedded controller interface 295
Process Call (SMBProcessCall) protocol 327
processor See CPU
Processor (Declare Processor) 373
processor and device performance states 23
processor control block 61
processor control registers

addresses 59
bits 77

Processor data type, ASL 352, 356
processor device notification values 145
Processor Local APIC 117, 121
Processor Local SAPIC 123
processor LVL2 register 77, 220
processor LVL3 register 78, 220
processor objects 225
processor register block 77
Processor Throttling Control (_PTC) object 225
programming models

events 137
feature summary 55
fixed 45
generic 47

protocol register (SMB_PRTCL) 304
protocols

BARs (Base Address Registers) 368
CMOS 367
SMBus 307, 317, 324

Proximity (_PXM) object 167
PSDT 115
pseudocode language See AML
pulsed interrupts 301
PWRBTN_EN 74
PWRBTN_STS 72
Query Embedded Controller (QR_EC) 300

B ACPI Extensions for Display Adapters 479

Compaq/Intel/Microsoft/Phoenix/Toshiba

query events 79
Query System Address Map function 334
query value, definition 49
quotes

AML notation 411
ASL notation 336

QWORD 185
QWORD Address Space Descriptor macro 406
Read Embedded Controller (RD_EC) 298
Read/Write Block (SMBBlock) protocol 326
Read/Write Byte (SMBByte) protocol 325
Read/Write Quick (SMBQuick) protocol 324
Read/Write Word (SMBWord) protocol 325
Real Time Clock Alarm (RTC) 68
reclaim memory 244
RefOf (Reference Of) 395
Region (_REG) control method 200
register bits, notation 49
register blocks 58
register definitions, hardware 46
register groupings

definition 17, 57
list of 58

registers
BARs (Base Address Registers) 368
control 57
EC-SMB-HC 303
embedded controller interface 296
enable 37
fixed feature 15
fixed hardware 71
general-purpose event 15
reset 78
SMB-HC 311
status 37
status/enable 57
virtual 318, 322

related device interference 54
Release (Release a Mutex Synchronization

Object) 379
Release terms 371
Remaining Battery Percentage 39, 274
removal objects 167
removal, batteries 270
Remove (_RMV) object 171
requirements, implementation

OS 10
OSPM 9

reserved bits
definition 17
hardware 53
PM1 Control registers 75
PM1 Enable registers 74
PM1 Status register 72, 73
software requirements 90

reserved object names 352

reserved SMBus protocol values 317
Reset (Reset an Event Synchronization

Object) 379
reset register 78
resource data types

Address Space Descriptors 184
control methods 172
DMA 175
End Dependent Functions 176
end tag 178
IRQ 173
large 179
memory range descriptors 179
small 172
Start Dependent Functions 175
vendor defined 178, 181

resource descriptor macros 403
Resource Template macro 401
resources

allocation 167
control method 157
interdependencies 175

resources, power See power resources
restoring system context 20, 237
results, storing 354
Return (Return) 379
Revision (Constant Revision Object) 400
revision data object 152
RISC processors 184
RISC systems 28
ROM control methods 455
Root System Description Pointer See RSDP
Root System Description Table See RSDT
RSDP

definition 17
location 92
table structure 93

RSDT
definition 17
location 88
table fields 96

RTC (Real Time Clock Alarm) 68
RTC/CMOS protocols 367
RTC_EN 74
RTC_STS 73
S0 State (Working) 216
S1 Sleeping state

_S1D object 212
behavior during 216
definition 22
implementation 236
transitioning 215
waking using RTC 68

S2 Sleeping state
_S2D object 212
behavior during 216

480 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

definition 22
implementation 236
transitioning 215
waking using RTC 68

S3 Sleeping state
_S3D object 212
behavior during 217
definition 22
implementation 237
transitioning 215
waking using RTC 68

S4 Sleeping state
_S4D object 213
behavior during 217
definition 20, 22
implementation 237
low-level battery 41
waking using RTC 68

S5 Soft-Off
behavior during 218, 238
definition 19, 22
properties 20
transitioning to 239

SAPIC
definition 18
I/O 16, 122
local 16
NMI 120
Processor Local 123
support 115

saving system context
during emergency shutdown 41
S4 Non-Volatile Sleep state 20, 237

SBST 127
SCI

battery status information 32
definition 18
embedded controller events 301
enable bits 32
event flags (SCI_EVT) 297
interrupt handlers 52, 70

SCI_EN 70, 71, 75
Scope (Open Named Scope) 375
SCSI, power management 432
Secondary System Description Table See SSDT
Segment (_SEG) object 203
Send/Receive Byte (SMBSendReceive)

protocol 324
separators, ASL 335
Serialized methods 371
server machines, power management 29
Set Cooling Policy (SCP) control method 286
Set POST Device (_SPD) 456
Set Power State 31
Set Resource Settings (_SRS) object 167
Set the Brightness Level (_BCM) 458

Set Timing Mode (_STM) control method 256
settings, user

performance vs. energy conservation 43, 282
power button 28

shareable interrupts 70
shared interface, embedded controller 294, 296
ShiftLeft (Shift Left) 395
ShiftRight (Shift Right) 395
Short Vendor-Defined Descriptor macro 405
shutdown, emergency 41, 282
shutting down See Mechanical Off; Soft-Off
Signal (Signal a Synchronization Event) 379
signatures

collisions, avoiding 95, 96
interpreting 88, 96
values, storing 90

Simple Boot Flag Specification, Microsoft 96
single quotes

AML notation 411
ASL notation 336

single-button model 62
SizeOf (SizeOf Data Object) 395
slave addresses, SMBus 264, 317
Sleep (Sleep) 379
sleep button

ASL code example 66
control methods 65, 251
definition 17
device ID 146
fixed hardware 65
object notification values 144
support 65

Sleeping states
behavior during 216
button logic 65
control methods 213
definitions 19, 22
entering 235
logic controlling 67
non-volatile 20
objects 212
packages, system state 214
power consumption 20
power loss 20
properties 20
transitioning 27, 214
transitioning to 233, 234
user settings 28
waking using RTC 68

Slot User Number (_SUN) object 156
SLP_EN 75, 235
SLP_EN field 67
SLP_TYPx 75, 235
SLP_TYPx field 57, 67
SLPBTN_EN 74
SLPBTN_STS 72

B ACPI Extensions for Display Adapters 481

Compaq/Intel/Microsoft/Phoenix/Toshiba

small resource data type 172
Smart Batteries

control methods 268
definition 18
device ID 146
multiple battery subsystem 269
objects 267
single battery subsystem 268
SMBus data buffers 323
SMBus devices 320
specifications 12
status notification 265
subsystem 38, 263
supported 32
table 18
table formats 126

Smart Battery Charger
functions 265
status notification 266

Smart Battery Selector 266
Smart Battery System Manager

functions 265
status notification 266

SMB-HC 264, 269, 311
SMBus

address register (SMB_ADDR) 305
address space 317
alarm address register

(SMB_ALRM_ADDR) 306
alarm data register

(SMB_ALRM_DATA) 307
block count register (SMB_BCNT) 306
Block Write-Read Block Process Call

(SMBBlockProcessCall) protocol 327
command register (SMB_CMD) 306
commands, restricted 313
data buffers 323
data register array (SMB_DATA) 306
definition 18
device access, embedded controller

interface 312
device enumeration, enabling 319
device ID 146
embedded controller interface 303
encoding, bit 318
fields, declaring 321
generic hardware addresses 53
host controller notification header

(OS_SMB_EVT) 300
host controller objects, declaring 319
interface 18
operation regions 317, 320
PEC (packet error checking) 318
Process Call (SMBProcessCall) protocol 327
protocol register (SMB_PRTCL) 304
protocols 307, 317, 324

Read/Write Block (SMBBlock) protocol 326
Read/Write Byte (SMBByte) protocol 325
Read/Write Quick (SMBQuick) 324
Read/Write Word (SMBWord) protocol 325
Send/Receive Byte (SMBSendReceive)

protocol 324
slave addresses 264, 317
specifications 12
status codes 318
status register (SMB_STS) 303
transactions 318
virtual registers 318

SMI
definition 18
embedded controller firmware 300
event flags (SMI_EVT) 298
interrupt events 52, 70

SMM firmware 46
Soft-Off

behavior during 218, 238
definition 19, 22
properties 20
transitioning crashed systems to 63
transitioning to 50, 239

SOHO servers 108
sources, power See power sources
SSDT 17, 114
Stall (Stall for a Short Time) 380
standards

device power states 30
power management 30

Start Dependent functions 175
Start-Dependent Function Descriptor macro 404
statements

ASL 335
Case 381
Default 381
ElseIf 377
If 377
Power Resource 205
Processor 225
Switch 381

states See power states
static objects 137
Status (_STA) 207
Status (_STA) object 172
status bits

corresponding enable bits 80
functions 78
symbol 49

status codes, SMBus 318
status notification, Smart Battery 265
status register 37
status register (SMB_STS) 303
status, battery 32
status/enable registers 57

482 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

sticky status bit, definition 49
storage devices, power management 433, 446
Store (Store) 395
storing results, ASL operators 354
Streamlined Advanced Programmable Interrupt

Controller See SAPIC
String (_STR) object 156
String data type, ASL 353, 356
strings, ASL 335, 399
Subtract (Subtract) 396
supplemental documentation 12
surprise-style removal 167, 171
Switch – Select Code To Execute Based O 380
Switch statements 381
switching, output devices 461
Sx states See Sleeping states
symbols, logic diagrams 49
syntax

ASL 335
OperationRegion 320
Power Resource statements 205

system context
definition 18
during emergency shutdown 41
restoring 20
S4 Sleeping state 237
sleep states lost in 22

System Control Interrupt See SCI
system description tables See tables
system events, general model 37
system indicators 249
System Management Bus See SMBus
System Management Interrupt See SMI
System Management Mode See SMM
system memory space 53
system states, global See global system states
System Status (_SST) control method 250
System Wake (_WAK) control method 218
tables

address format 91
compatibility 91
DSDT 114
embedded controller boot resources 128
encoding format 90
FACS 109
FADT 99
headers 87, 94
MADT 116
overview 87
RSDP 93
RSDT 96
SBST (Smart Battery Description) 126
signatures 95, 96
SSDT 114
XSDT 98

Temperature (_TMP) control method 277, 287

temperature changes, detecting 278
temperature management See thermal

management
Term Objects encoding, AML 415
terminology

design guides 6, 7
device power states 21
general 13
global system states 19
performance states 23
processor power states 23
sleeping states 22

terms
AML 411
ASL 337, 359
ASL notation 336

Thermal Constant 1 (_TC1) object 286
Thermal Constant 2 (_TC2) object 286
thermal management

control methods 284
energy conservation, optimizing 43
notification of temperature changes 279
objects 284
OSPM controlled 277
overview 42
performance, optimizing 43
polling 279, 280
temperature changes, detecting 278
threshold settings, dynamically changing 278
trip points 279

Thermal Sampling Period (_TSP) object 287
thermal states, definition 18
Thermal Zone data type, ASL 353, 356
Thermal Zone Devices (_TZD) object 287
Thermal Zone Polling (_TZP) object 287
thermal zones

basic configuration 288
examples 288
mobile PC example 42
multiple 44
multiple-speed fan example 290
object notification values 144
object requirements 288

ThermalZone (Declare Thermal Zone) 373
thirty-two bit fixed location memory range

descriptor 183
thirty-two bit memory range descriptor 181
throttling 221, 225
THT_EN 77
timers

global standby 53
idle 53
power management (PM) 53, 61

TMR- field 62
TMR_EN 74
TMR_STS 71

B ACPI Extensions for Display Adapters 483

Compaq/Intel/Microsoft/Phoenix/Toshiba

TMR_VAL 76
ToBCD (Convert to BCD) 396
ToBuffer (Convert Data Type to Buffer) 384
ToDecimalString (Convert Data Type to

Decimal String) 386
ToHexString (Convert Data Type 387
ToInteger (Convert Data Type to Integer) 389
token ring adapters See network devices
top of memory 245
ToString (Create ASCII String From

Buffer) 396
transactions, SMBus

data buffers 323
status codes 318

transitioning
crashed systems 62, 63
device power states 432
Legacy mode to ACPI 70
power states 27, 50
waking and sleeping 233
working to sleeping states 239
working to soft-off states 239

transparent events 52
transparent switching, device power states 22
trap monitors 53
Trigger Mode flags 120
trip points, thermal 279
turning off See Mechanical Off; Soft-Off;

transitioning
TVs 454
twenty-four bit memory range descriptor 179
Type 1 Opcodes

AML encoding 417
ASL 375

Type 2 Opcodes
AML encoding 418
ASL 375, 382

UARTs, power management 436
Unicode macro 401
Uninitialzed data type, ASL 352, 355
Unique ID (_UID) object 156
Unload (Unload Differentiated Definition

Block) 381
unnamed objects 134
unrelated device interference 54
upper case, ASL names 351
USB, power management 432, 433
user preferences

performance vs. energy conservation 43, 282
power button 28

User Terms 397
user-visible power states 27
value-added hardware

enabling OSPM 47
registers 78

Variable List 335

VCR-style ejection mechanism 167
vendor defined descriptor macros 405
vendor defined resource data types 178, 181
VESA specifications 432
VGA 454, 456
video controllers, power management 437
Video Electronics Standards Associations

(VESA) 432
video extensions, requirements for 451
Video POST Options (_VPO) 457
virtual data objects 401
virtual registers 318, 322
visible states

global system 19
power 27

Wait (Wait for a Synchronization Event) 396
WAK_STS (Wake Status) 67, 73
wake frame events 444
waking

_BFS (Back From Sleep) control method 213
_WAK control method 218
audio devices 435
COM ports 436
device power resource object (_PRW) 211
devices 434
disabling system-waking devices 212
display devices 439
initialization 240
input devices 440
latency time 27
lid switch 82
logic controlling 67
modem devices 442
modem example 33, 35
network devices 444
OS operations 32
overview 233
PC Card controllers 446
Real Time Clock Alarm (RTC) 68
resetting lost enable bits 80
storage devices 449

warm insertion and removal 168, 170
warnings, battery 40
WBINVD 224, 240
web sites

Intel Architecture 12
Microsoft 12
PCISIG 432
PCMCIA 432
Smart Battery System 12
SMBus specification 317
USB-IF 433

While (While) 382
WORD 192
WORD Address Descriptor macro 408
Working state

484 Advanced Configuration and Power Interface Specification

Compaq/Intel/Microsoft/Phoenix/Toshiba

behavior during 234
definition 19
properties 20
transitioning to 50
transitioning to Sleeping state 239
transitioning to Soft-Off 239

workstations 108
Write Embedded Controller (WR_EC) 299
write-only bits

control 49

definition 54
XOr (Bitwise Xor) 397
XSDT

definition 18
loading Definition Block 390
location 88
table fields 98

Zero (Constant Zero Object) 400
Zero, One, Ones data type, ASL 352, 356
zones, thermal See thermal zones

