D P

Hardening Firmware Components with
Host-based Analysis

Spring 2019 UEFI Plugfest
April 8-12, 2019
Presented by Brian Richardson (Intel Corporation)

www.uefi.org

Agenda @

* Today’s Reality for Firmware
Developers

e Examine Tools for Driver &
Application Developers

* Host-based Firmware Analyzer
e Call to Action

www.uefi.org

Today’s Reality for Firmware Developers@

e Platform firmware is an essential component in
software root-of-trust.

e Platform firmware is a low-level component, so
potential security risks may not be apparent to
users or developers.

* Most firmware validation is done via integration
testing, which emphasizes functionality and
stability.

* Integration testing is not ideal for detecting
potential vulnerabilities in new firmware drivers.

Common Tools for Firmware Security @
Testing

* CHIPSEC: open source framework for analyzing the security of
platform firmware and hardware configuration at runtime, based on
the Unified Extensible Firmware Interface (UEFI) specification.

e (Code Coverage: Tools like the Intel® Intelligent Test System measure
the amount of firmware code executed during test runs (high
percentage is better).

* Symbolic Execution and Virtual Platforms: Intel’s Excite project uses a
combination of symbolic execution, fuzzing, and concrete testing to
find vulnerabilities in firmware running on Wind River* Simics*
virtual platforms.

* Great tools... but they’re based on integration testing, so issues are
more expensive to detect and mitigate. Can we improve testing
before integration?

Examine Tools for Driver & Application @
Developers

e Fuzzing: Test application programming interfaces (APIs) by
subjecting them to random, invalid, unexpected, or untrusted
(potentially malicious) inputs.

e Address Sanitizing: Detect memory corruption issues such as
heap buffer overflow, stack buffer overflow, and global buffer
overflow.

 Code Coverage: Identify code paths not executed during
validation so test scope can be increased to avoid corner cases.

 The Challenge: How can firmware developers use OS-based
test tools on isolated firmware components?

Host-based Firmware Analyzer (HBFA) ({7

—————————————————

('.
. User] | Investigation |
L5 .V —

Run
Report ‘

Error Injection
Pass Case

LibFuzzer

KLEE E AFL ‘
' I Sanitizer
I Coverage

Peach I

Testing UEFI firmware drivers in the developer’s environment

Host-based Firmware Analyzer

OS based environment utilizing best-in-class test tools

* GUI and command-line interfaces
* Fuzzing testing
— AFL, libFuzzer, Peach
* Symbolic execution (KLEE/STP)
* Address Sanitizer & Code Coverage

e Automated unit test execution
(Cunit)

* [nstrumentation methods for fault
injection and trace

e Database of unit test cases

Host-based Firmware Analyzer

= [crec N vevor [N cosecoversoe

TestFmpAuthenticationLibR
TestPartition

TestVariableSmm

TestudF Test Report
Summary

otal Seeds: 279

Execution Time: 0days,18hrs,53 min,31sec

Host-based Firmware Analyzer - Case Design @

Fuzz Framework
(AFL/ LibFuzzer/ Peach)

e |y

@ EntryPoint Trigger
‘ : Function
TestXXXMain To Be Tested

Host-based Firmware Analyzer — USB Test

Fuzz Framework
(AFL/ LibFuzzer/ Peach)

(2) feed @ O

@ EntryPoint Trigger
: UsbBuild
g TestUsbMain ' DescTable

———

@ Setup
Invoke

USB Desc Usb2Hc Stub
Buf UsbloPpiStub <

Example - AFL

american fuzzy lop 2.52b (TestBmpSupportLib)

® days, © hrs, 2 min, 1 sec
® days, © hrs, 1 min, 3 sec
none seen yet
none seen yet

(

25 (59.52%) D.04 0.26
0 (0.00%) 1.32 bits/tuple

splice 7 25 (59.52%)
15/16 (93.75%) 27 (64.29%)
413M ® (0 unique)
9082 /sec ® (O unique)

20/64.1k, 4/64.1k, 0/64.0Kk 3
0/8018, 0/2781, 1/2707 0
5/157k, ©/102k, ©/59.9k 0
0/12.1k, 0/53.3k, 0/92.3k 32

0/0, 0/0, 6/24.8k n/a
2/185k, ©/215k 100.00%
13.77%/3610, 64.04%

Example — Peach + Sanitizer

tiano@tiano-Vostro-3902: ~/TEST/edk2

READ of size 2 at 0x602000000032 thread TO

#0 0x52c277 in UsbBuildDescTable /home/tiano/TEST/edk2/UefiHostTestPkg/TestC
ase/MdeModulePkg/Bus/Usb/UsbBusDxe/UsbDesc.c:830:64

#1 0x5297ef in main /home/tiano/TEST/edk2/UefiHostTestPkg/TestCase/MdeModule
Pkg/Bus/Usb/UsbBusDxe/TestUsb.c:94:3

#2 ox7ffff6ee582f in _ libc _start main /build/glibc-Cl5G7W/glibc-2.23/csu/..
Jcsu/libc-start.c:291

#3 0x41a728 in _start (/home/tiano/TEST/edk2/Build/UefiHostTestPkg/DEBUG CLA
NG8/X64/TestUsb+0x41a728)

0x602000000032 is located 1 bytes to the right of 1-byte region [0x602000000030,
0x602000000031)
allocated by thread TO here:

#0 0x4e945f in __ interceptor_malloc /home/tiano/Downloads/llvm/projects/comp
iler-rt/lib/asan/asan_malloc_linux.cc:146

#1 0x52d1e4 in AllocateZeroPool /home/tiano/TEST/edk2/UefiHostTestPkg/Librar
y/MemoryAllocationLibHost/MemoryAllocationLibHost.c:37:12

#2 0x52bbel in UsbGetOneConfig /home/tiano/TEST/edk2/UefiHostTestPkg/TestCas
e/MdeModulePkg/Bus/Usb/UsbBusDxe/UsbDesc.c:744:9

#3 0x52bfc9 in UsbBuildDescTable /home/tiano/TEST/edk2/UefiHostTestPkg/TestC
ase/MdeModulePkg/Bus/Usb/UsbBusDxe/UsbDesc.c:814:14

