
presented by

UEFI Security Defenses
UEFI Spring Plugfest – May 8-10, 2012

Presented by Dick Wilkins
Dick_Wilkins@phoenix.com

 Phoenix Technologies Ltd.

UEFI Plugfest – May 2012 www.uefi.org 1

Updated 2011-06-01

Agenda

• Introduction
• Defensive Security Goals
• Stack Buffer Overrun Detection

(/GS, /RTC)
• Heap Corruption Detection
• Data Execution Prevention (DEP) /

No eXecute (NX)
• Address Space Location

Randomization (ASLR)
• Conclusion
• Q & A

UEFI Plugfest – May 2012 www.uefi.org 2

Introduction

We will be discussing security defenses
that harden UEFI BIOS implementations
against attacks

The defenses discussed here have been
added to EDK 2 as part of a collaboration
between Microsoft and Phoenix
Technologies Ltd.

UEFI Plugfest – May 2012 www.uefi.org 3

System Memory

Defensive Security Goals

• Imagine the BIOS as a guarded gateway

UEFI Plugfest – May 2012 www.uefi.org 4

Hi, I’m a guard. I
check credentials at

this gate.

This is a river, and help is needed

to cross it.

System Memory

Defensive Security Goals

• Guards are good at checking credentials

UEFI Plugfest – May 2012 www.uefi.org 5

Checking your
credentials… you may

pass.

I’m a legitimate
worker, here are my

credentials, let me in.

System Memory

Defensive Security Goals

• Attackers want to get past the guard

UEFI Plugfest – May 2012 www.uefi.org 6

As a barbarian, I have
no credentials. I can’t
go through the gate.

But, I see that worker
program, isn’t perfect.

System Memory

Defensive Security Goals

• Workers do not always check credentials

UEFI Plugfest – May 2012 www.uefi.org 7

I am the data you were
looking for. Just help me
across, and put me over

by that guard.

You look like
normal data, so no

problem.

X

System Memory

Defensive Security Goals

• If the attacker distracts the guard…

UEFI Plugfest – May 2012 www.uefi.org 8

Now I distract the guard,
so my friends enter.

System Memory

Defensive Security Goals

• We have to prevent this from happening!

UEFI Plugfest – May 2012 www.uefi.org 9

Party time in System
Memory!

Where’s the beer?
I’m going to make a

big mess!

• Too much code to be sure it’s all perfect

System Memory

Defensive Security Goals

UEFI Plugfest – May 2012 www.uefi.org 10

I only have to trick
one of you… who’s
not quite perfect?

Protecting from Stack Buffer
Overruns

UEFI Plugfest – May 2012 www.uefi.org 11

Stack Buffer Overrun Detection

• Goal: Detect Buffer Overruns on the Stack
– Local Variables are stored on the stack
– Function return addresses are stored on the

stack

• Note that the intent of buffer overrun
detection is to expose coding errors at
runtime during testing that could
compromise security, not to provide perfect
protection from all possible buffer overrun
attacks

UEFI Plugfest – May 2012 www.uefi.org 12

Stack Buffer Overrun Detection

• Illustration of a vulnerable stack frame

UEFI Plugfest – May 2012 www.uefi.org 13

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Stack Buffer Overrun Detection

• Buffer overflows occur when a function
does not correctly check the amount of
data being transferred into a buffer

UEFI Plugfest – May 2012 www.uefi.org 14

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Stack Buffer Overrun Detection

• The MSVC /GS compiler switch inserts a
randomized guard cookie onto the stack
between the return address and locals

UEFI Plugfest – May 2012 www.uefi.org 15

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Random Guard Cookie

Stack Buffer Overrun Detection

• Changing the return address with a
buffer overflow requires changing the
guard cookie, so such overflows are
detected

UEFI Plugfest – May 2012 www.uefi.org 16

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Random Guard Cookie

Cookie changed,
STACK FAULT!

Stack Buffer Overrun Detection

• /GS does NOT detect changes to locals if
the buffer overrun doesn’t reach the
guard cookie

UEFI Plugfest – May 2012 www.uefi.org 17

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Random Guard Cookie

All is well, cookie is
okay

Stack Buffer Overrun Detection

• The MSVC /RTCs compiler switch inserts
0xCC onto the stack between local
variables

UEFI Plugfest – May 2012 www.uefi.org 18

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Random Guard Cookie

0xCCCCCCCC

0xCCCCCCCC

0xCCCCCCCC

Stack Buffer Overrun Detection

• If a buffer overflow changes the filler
between locals, that overflow is detected

UEFI Plugfest – May 2012 www.uefi.org 19

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Random Guard Cookie

Not 0xCCCCCCCC

Not 0xCCCCCCCC

0xCCCCCCCC

Filler not 0xCC,
STACK FAULT!

Stack Buffer Overrun Detection

• However, 0xCC is easy to forge, and the
check comes just before return, not
immediately after the buffer overflow

UEFI Plugfest – May 2012 www.uefi.org 20

Return Address

Local Protocol Interface Ptr

Data Buffer

Reserved for Function Calling
Parameters

Random Guard Cookie

0xCCCCCCCC

0xCCCCCCCC

0xCCCCCCCC

Even if the credential
check was secure, I’m

taking a break when the
attack occurs, and I

might not return until
after the attack takes

effect

Stack Buffer Overrun Detection

• Note that /RTC switches require that
optimizations be disabled

• Because of the insecure signature and the
optimization disable requirement, the
current /RTC implementation should be
considered a debugging feature meant to
help identify buffer overflows, and can not
provide more security in a release build than
is already provided by /GS

UEFI Plugfest – May 2012 www.uefi.org 21

Heap Corruption Detection

UEFI Plugfest – May 2012 www.uefi.org 22

Heap corruption detection

• Goal: Detect Buffer Overruns on the
Heap

–Protocols with function pointers are
typically stored on the heap

–Dynamically sized buffers are also usually
allocated and stored on the heap

UEFI Plugfest – May 2012 www.uefi.org 23

Heap corruption detection

• Heap is dynamically allocated memory

UEFI Plugfest – May 2012 www.uefi.org 24

POOL_HEAD Signature

POOL_HEAD Size

Data Buffer

POOL_TAIL Signature

POOL_TAIL Size

POOL_HEAD Signature

POOL_HEAD Size

Protocol with Function Pointers

Heap corruption detection

• Buffer Overflow attack on Heap looks like

UEFI Plugfest – May 2012 www.uefi.org 25

POOL_HEAD Signature

POOL_HEAD Size

Data Buffer

POOL_TAIL Signature

POOL_TAIL Size

POOL_HEAD Signature

POOL_HEAD Size

Protocol with Function Pointers

Heap corruption detection

• Existing signature checks should catch

UEFI Plugfest – May 2012 www.uefi.org 26

POOL_HEAD Signature

POOL_HEAD Size

Data Buffer

POOL_TAIL Signature

POOL_TAIL Size

POOL_HEAD Signature

POOL_HEAD Size

Protocol with Function Pointers

When buffer is freed,
Dxe Core checks size
and signatures, and

returns an error if there
is a problem

Heap corruption detection

• Remaining ways to improve heap corruption detection
– More of the heap should be verified in addition to those

signatures around specific memory under consideration during
heap free or allocate calls

– Full validation of heap should occur periodically, outside the
context of allocate and free calls

– Heap signatures should be encrypted at run-time using XOR
with a random number to prevent signature forgery by attackers

– Failed signature checks should throw an exception, rather than
returning an error, as few clients of “free” function calls check
for or handle error conditions returned by free

– Guard pages (which are write protected or for which page
presence bit is clear) should be placed between code and data
pages

UEFI Plugfest – May 2012 www.uefi.org 27

Prevention of the Execution of Data

UEFI Plugfest – May 2012 www.uefi.org 28

Data Execution Prevention

• Goal: Prevent usage of data buffers as
storage for exploit code

• Enabling CPU Technology
– Modern x86 CPUs provide support for NX as a

bit that can be set in PAE and IA32E page
tables (called XD in Intel Volume 3)

– Setting the execute disable bit in a page table
entry causes the processor to page fault when
fetching code from the associated page

UEFI Plugfest – May 2012 www.uefi.org 29

Data Execution Prevention

• Illustration of a vulnerable variable
arrangement in the context of a
vulnerable function; note that this need
not be on the stack

UEFI Plugfest – May 2012 www.uefi.org 30

Function Ptr

Data Buffer

I’m legitimate code
that happens to be
slightly flawed, and

am stored away from
the data I depend on

I’m also legitimate,
and help with

functionality that can
be accessed through

a function pointer

Data Execution Prevention

• The attacker tricks vulnerable code into
copying an exploit into the buffer and
altering the function pointer to point to it

UEFI Plugfest – May 2012 www.uefi.org 31

Function Ptr

Data Buffer

New Ptr

I’m here to be
copied into your

buffer

OK!

Data Execution Prevention

• Some function, perhaps the vulnerable
function, calls the exploit code through
the corrupt function pointer

UEFI Plugfest – May 2012 www.uefi.org 32

Function Ptr

Data Buffer

New Ptr

I need to call that
function to do
some work…

Data Execution Prevention

• The exploit code now has control and can
do nearly anything

UEFI Plugfest – May 2012 www.uefi.org 33

Function Ptr

Data Buffer

New Ptr

Thanks for calling
me, HA HA HA!

This is data and cannot execute (NX)

Data Execution Prevention

• With data execution prevention, DXE
Core marks all memory that is definitely
data as “NX” or No eXecute

UEFI Plugfest – May 2012 www.uefi.org 34

Function Ptr

Data Buffer

I will hear an
alarm if that

data is
executed

This is data and cannot execute (NX)

Data Execution Prevention

• The exploit code is still copied into the
buffer by the vulnerable code

UEFI Plugfest – May 2012 www.uefi.org 35

Function Ptr

Data Buffer

New Ptr

I’m here to be
copied into your

buffer

OK!

This is data and cannot execute (NX)

Data Execution Prevention

• Somewhere, the exploit is still called
through the modified function pointer

UEFI Plugfest – May 2012 www.uefi.org 36

Function Ptr

Data Buffer

New Ptr

I need to call that
function to do
some work…

This is data and cannot execute (NX)

Data Execution Prevention

• But the (NX) protection on the data
pages acts as an alarm, and the page
fault handler in DXE core is called before
the exploit can execute

UEFI Plugfest – May 2012 www.uefi.org 37

Function Ptr

Data Buffer

New Ptr

PAGE
FAULT

PAGE FAULT! Attempt
to execute data page!

Data Execution Prevention

• Pre-requisites
– Memory from which code is to be executed

must be allocated as one of the following types
• EfiReservedMemoryType
• EfiLoaderCode
• EfiBootServicesCode
• EfiRuntimeServicesCode
• EfiACPIMemoryNVS

– IA32_EFER.NXE (MSR 0xC0000080 bit 11) must
be set for the BSP and all APs when
IA32_EFER.LME (MSR 0xC0000080 bit 8) is set

UEFI Plugfest – May 2012 www.uefi.org 38

Data Execution Prevention

• Phoenix NX Implementation
– New BasePageTableLib MdePkg library

• BasePageTableLib contains stub functions

• BasePageTableLibIA32E contains IA32E page table
support (used for X64)

– Enabling PcdPageTableNxSupport causes
DxeIplPeim to enable IA32_EFER.NXE

– Enabling PcdPageTableLibrarySupport causes
DxeCore to call the Page Table Library
functions when pages are allocated

UEFI Plugfest – May 2012 www.uefi.org 39

Data Execution Prevention

• Platform and Silicon Considerations
– All application processor (AP) entry vector setup code that sets

bit 8 of MSR 0xC0000080 must also set bit 11 before enabling
paging using the boot processors (BP) page tables

– Very early SMM initialization code re-uses the boot processors
page tables
• AllocatePages must be used to set memory from 0x38000 to

0x40000 to EfiReservedMemoryType during the first SMI
• The code that sets bit 8 of MSR 0xC0000080 must also set bit 11

when the first SMI occurs

• You will know if you missed anything
– System will reboot or lock up, depending on current IDT and the

conditions of the fault
– A fetch from data address space will cause a page fault

 UEFI Plugfest – May 2012 www.uefi.org 40

Randomization of the Execution
Address Space

UEFI Plugfest – May 2012 www.uefi.org 41

Address Space Layout
Randomization (ASLR)

• Goal: Prevent Attacker from Exploiting
Valid Code Loaded at a Known Address

• Enabling Technology

–A good source of random numbers is
needed that varies on every boot

–Random numbers can come from a TPM or
the CPU’s time stamp counter can be used
to seed a random number generator

 UEFI Plugfest – May 2012 www.uefi.org 42

This is data and cannot execute (NX)

Address Space Layout
Randomization (ASLR)

• DXE core contains code to set page table
properties, such as NX, as well as to
handle page faults

UEFI Plugfest – May 2012 www.uefi.org 43

Function Ptr

Data Buffer

I set that property, I
also have to be able

to clear it to load
legitimate code

This is data and cannot execute (NX)

Address Space Layout
Randomization (ASLR)

• The attacker once again overflows the
buffer, and changes a function pointer

UEFI Plugfest – May 2012 www.uefi.org 44

Function Ptr

Data Buffer

New Ptr

I’m here to be
copied into your

buffer

OK!

This is data and cannot execute (NX)

• The altered function pointer is data, so it
is referenced to make a call to DXE core
without triggering a fault

Address Space Layout
Randomization (ASLR)

UEFI Plugfest – May 2012 www.uefi.org 45

Function Ptr

Data Buffer

New Ptr

I need to call that
function to do
some work…

• Legitimate code in DXE core is exploited
to disable NX on the memory where the
exploit is currently stored

This is now code and can execute

Address Space Layout
Randomization (ASLR)

UEFI Plugfest – May 2012 www.uefi.org 46

Function Ptr

Data Buffer

New Ptr

Someone needs to
execute code from
that memory, clear

NX

• As a result, the exploit code can now be
executed at any time, and NX no longer
triggers a page fault

Address Space Layout
Randomization (ASLR)

UEFI Plugfest – May 2012 www.uefi.org 47

Function Ptr

Data Buffer

New Ptr

Thanks for letting me
execute, HA HA HA!

This is data and cannot execute (NX)

Address Space Layout
Randomization (ASLR)

• Address space location randomization
causes code to be loaded at different
random addresses on every boot

UEFI Plugfest – May 2012 www.uefi.org 48

Function Ptr

Data Buffer

Move like a
butterfly, sting

like a bee…
Dodge and

weave, baby!

This is data and cannot execute (NX)

Address Space Layout
Randomization (ASLR)

• The exploit can still trick the target into
loading it and can change the function
pointer to point to a new address

UEFI Plugfest – May 2012 www.uefi.org 49

Function Ptr

Data Buffer

New Ptr

OK!

I’m here to be
copied into your

buffer

This is data and cannot execute (NX)

Address Space Layout
Randomization (ASLR)

• The altered function pointer is still data,
so it is referenced properly without
triggering a fault

UEFI Plugfest – May 2012 www.uefi.org 50

Function Ptr

Data Buffer

New Ptr

I need to call that
function to do
some work…

This is data and cannot execute (NX)

Address Space Layout
Randomization (ASLR)

• But the altered pointer can’t point to
code at a known location, because all
code is loaded at random addresses

UEFI Plugfest – May 2012 www.uefi.org 51

Function Ptr

Data Buffer

New Ptr

HA! You missed!
UNDEFINED

OPERATION! (At least
I’m not exploited)

Address Space Layout
Randomization (ASLR)
• Phoenix ASLR Implementation

– New BaseBinSecurityLib MdePkg library
• Contains code underlying support for /GS, /RTC
• Also contains random number generation for ASLR
• Used by PE loaders to randomize load addresses
• May be replaced to change random number source

– Enabling
PcdAddressSpaceLocRandomizationSupport causes
PE loaders to randomize addresses

– Minimum code alignment can be defined using
PcdASLRDefaultAlignmentShift; normally alignment
requirements comes directly from PE file format

UEFI Plugfest – May 2012 www.uefi.org 52

Thanks for attending the
UEFI Spring Plugfest 2012

For more information on
the Unified EFI Forum and
UEFI Specifications, visit
http://www.uefi.org

presented by

UEFI Plugfest – May 2012 www.uefi.org 53

http://www.uefi.org/

