Agenda

Introduction
Why Security Testing?
Areas to test
Available Test Sources
Next Steps
Q & A
Introduction

UEFI is everywhere
- Tablets, PCs, Servers, Industrial Controllers
- Booting in UEFI Mode
- UEFI Secure Boot since 2.3.1c and Windows 8.0
 - Trying to protect the layers before the OSs
- UEFI interfaces are exposed, no BIOS hiding in the CSM

Security Researchers
- UEFI provides well defined interfaces to the OSs
- All Modern Windows 8 systems have common UEFI specs
- Security Researchers have a good starting point at TianoCore.ORG
Why Security Testing?

Systems are very complex
A single bit in a register can allow attacks
 - If BIOS_Control bit 0 = 1, BIOS is writable
 - If BIOS is writable, a hacker can insert code
 - If the hacker is skilled, the code can do anything

This example can turn a system into a Brick!

OEM Warranty issue!

www.uefi.org
Areas to Test

Interfaces to the OS
Network interfaces
Interfaces to SMM / security co-processors
External port interfaces
 - Keyboards!, Mice!, USB ports, PCIe slots
ROM storage device registers
SMI Protection Control registers
Device update is critical
Some testing after machine is ready to ship
Available Test Sources

Silicon Vendors
- Open source tools
- NDA / Confidential tools

MITRE’s Copernicus
BIOS Vendor tests

Hacking Tools
Intel Tools

Intel CHIPSEC tool – (github.com/chipsec/chipsec)
 Open source “engine”
 Open source test scripts
 NDA Test scripts
Intel SelfTest (NDA)

Most Intel tools identify Failures!!
CHIPSEC

A framework for analyzing security of PC platforms including hardware, system firmware and platform component configuration.

Allows creating security test suites, security assessment tools for low level components and interfaces.

[...]

BIOS Region Write Protection not enabled !!

[...]

Failed: Not all required SMI sources are enabled and locked!
Intel’s SelfTest

BIOS Write Protect is Disabled !!
MITRE’s Copernicus

"[The BIOS] is a great place to persist indefinitely without fear of detection" – MITRE Copernicus_July-2013.pptx

BIOS Access Control checking
 Run collection tool
 Run Python analysis tools
 Review results

 Failures are not identified !!
MITRE’s Copernicus Log – limited chipsets

Thank you for using Copernicus!
If you’d like to help us build a master list of vulnerable BIOSes, please email your .csv file to copernicus@mitre.org

Allocating memory for ICH Parameters object
Allocating memory for MCH Parameters object
Allocating memory for Flash Chip object
Allocating memory for SMBIOS Parameters object
Initializing ICH parameters
Email the following to copernicus@mitre.org so we can look into adding support for this architecture.

Copernicus Error: Unidentified IO Controller Hub vendor=8086, device=27bc
Memory Controller: vendor=8086, device=a010
Error initializing ICH parameters

Cleaning up allocated memory.
Freeing memory for Flash Chip
Freeing memory for MCH Parameters object
Freeing memory for ICH Parameters object
Freeing memory for SMBIOS Parameters object
Freeing memory for Host Data
One or more elements of Copernicus Failed. Return Status 0x00000001

MITRE Copernicus Unloading

Unknown Device !!
MITRE’s Copernicus – Error?

Failing BIOS - Unlocked !!
YES it is a failure !!
Some of Insyde’s test tools

Private Interface Tester
Tests SMI input parameters – buffers
InsydeSecurityTestToolX64.efi
InsydeSecurityTestToolIA32.efi

Insyde Toolbox - H2OITB
Around 20 separate tests
Variables, CMOS, variable reclaim testing

** in development
Private Interface Tester

Insyde Security Test Tool V1.0
Copyright (c) 2014, Insyde Software Corporation. All Rights Reserved.

Function 54h test....[Pass]
Function 55h test....[Pass]
Function 56h test....[Pass]
Function 57h test....[Pass]
Function 58h test....[Pass]
Function 59h test....[Pass]
Function 5Ah test....[Pass]
Function 5Bh test....[Failed]

The range of input buffer memory can overlap SMRAM.
Insyde Toolbox examples

- **Variable reclamation check** [count]
 If variable size is not full, continue to write variables to cause reclaim on next boot

- **Variable rebuild check** [count]
 Erase all variables and FV header with fill data 0xFF or 0x00

- **Variable boundary check** [count]
 Write variables and try to overfill the space
 Write variables and try to exactly fill the space

- **Variable usage** [count]
 Check available space to check if BIOS updated any variables

- **Dump Variables to a file**

- **Perform malicious change to variables**

- **Partially erase variables**
Hacker tools

UEFITool - UEFI firmware image viewer and editor
https://github.com/LongSoft/UEFITool

Universal-IFR-Extractor - extract IFR from UEFI modules
https://github.com/donovan6000/Universal-IFR-Extractor

HxD - Hex Editor and Disk Editor
http://mh-nexus.de/en/hxd/

Binwalk - Firmware Analysis Tool
https://github.com/devttys0/binwalk

Search for signatures inside binary files
http://freecode.com/projects/signsrch

firmware-mod-kit - tools for easy deconstruction and reconstruction of firmware images
https://code.google.com/p/firmware-mod-kit/
Next Steps

Decide how much testing is required

Test in multiple project phases
 - Design phase = What will you test?
 - Development phase = Is everything ready to lock down?
 - Manufacturing phase = Is the system ready to ship?

Don’t ship with back doors! Perform final locks!

Expect future attacks, prepare for field updates
Contact Kevin Davis or Alan Lo for demos

Insyde Suites #902 & #904

Building A UEFI Security Test Strategy

Demo
More reading ...

• Intel CHIPSEC
 https://github.com/chipsec/chipsec

• MITRE Copernicus tool
 http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about

• Signed BIOS Attack

• BIOS Attack Summary

• NIST BIOS Protection Guidelines (SP 800-147 and SP 800-147B)

• IAD BIOS Update Protection Profile
 https://www.niap-ccevs.org/pp/pp_bios_v1.0.pdf

• Windows Hardware Certification Requirements
 http://download.microsoft.com/download/A/D/F/ADF5BEDE-C0FB-4CC0-A3E1-B38093F50BA1/windows8-hardware-cert-requirements-system.pdf

• UEFI Forum sub-teams: USST (UEFI Security) and PSST (PI Security)
For more information on the Unified EFI Forum and UEFI Specifications, visit http://www.uefi.org