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Agenda
 High-level description of Windows boot process

 Roles of different components involved

 Windows UEFI services usage

 Firmware Implementation points



Terms
 Pre-OS space = Boot environment

 Everything prior to ExitBootServices()

 Boot applications = Windows Boot applications

 Boot manager = Windows Boot manager

 Firmware boot manager = UEFI boot manager

 ESP = EFI system partition

 Location for Windows boot environment files



Typical Boot flow
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Boot Flow Screens
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Windows Boot manager (Bootmgr)
 Loads the Windows boot applications

 OS loader, Resume loader, memory tester

 Display boot menu and handles user to select

 Loads the BCD store to get a list of boot options

 Locate the OS loader on the device

 Load the appropriate OS loader into memory

 Transfer control to OS loader



Boot Configuration Data (BCD) store
 Stores configuration information required to boot

 Replaces legacy boot.ini (BIOS) and efinvr.exe (on 
Itanium)

 BCD is a container for BCD objects
 Each boot application is represented by a BCD object

 Object are identifed by GUIDs or aliases ({bootmgr}, 
{default})

 BCD object is a container of BCD elements

 Elements contain configuration setting for a boot 
application

 Located at (ESP)\EFI\Microsoft\Boot\BCD



Displaying Boot menu
 Boot manager looks under 

{bootmgr} BCD object

 Reads “displayorder” and 
“toolsdisplayorder” elements



Loading OS loader
 Boot entry provides the path to the loader

 “device” and “path” elements in the BCD store

 Loading OS loader into memory

 Bootmgr understands the NTFS file system

 Locates file on the disk and reads it into memory



Windows OS Loader
 Load all files needed by the kernel to initialize

 Setup the execution environment for the kernel

 Terminate boot services

 Transfer control to the kernel



Loading OS binaries
 What files are loaded?

 Kernel + other kernel components required for 
initialization (ntoskrnl.exe, hal.dll, kdcom, …)

 All drivers marked as boot start

 The system hive 

 Boot entry provides the path to the OS files

 BCD entry has “osdevice” and “systemroot” elements



OS Environment Setup
 Setting up OS environment involves:

 Initializing page tables for kernel

 Performing architecture specific initialization

 Setting up runtime services to operate in virtual mode

 Kernel page table initialization
 OS loader executes in the paging context of the kernel

 Kernel address space built as files are loaded and mapped

 Architecture-specific initialization
 Allocate and initialize GDT for kernel

 Allocate the IDT (initialized by kernel)

 Allocate kernel stacks



Virtual Addresses for Runtime 
Services
 OS calls runtime services in virtual mode

 OS loader creates virtual address mappings for all 
runtime regions

 Informs the firmware of virtual address mappings

 SetVirtualAddressMap service is used

 Invoked after calling ExitBootServices()



Execution context: Bootmgr
 Execution context includes:

 GDT, IDT, stack and page table mappings 

 Boot manager executes in firmware context

 GDT, IDT and stack initialized by firmware

 Page tables created by firmware

 Firmware established mapping of physical memory 
(identity mapping)



Execution context: OS loader
 OS loader executes in an alternate context

 Building the context for the kernel, so executes in a 
separate context

 Loader context:

 GDT, IDT and stack is initialized by OS loader on entry

 Page tables initialized by OS loader

 Non-identity mapping of physical memory (VA != PA)

 Boot services/Runtime services are identity mapped 
(might change in future)



Resume loader
 Restores OS context from the hibernation file 
 Hibernation file (hiber file)
 Contains state of physical memory and processors
 Created by kernel before putting system in S4

 All pages that were in use by OS must be restored
 Runtime memory map must not conflict with OS 

memory map
 Otherwise OS or firmware may corrupt each other’s 

data



S4 Resume requirements
 Firmware must ensure that physical memory is 

consistent across S4 sleep transitions 

 OS physical memory during boot must be available 
to OS during resume

 Required to restore physical memory across S4 
transition

 Runtime firmware memory must be consistent in size 
and location between boot and resume

 Windows will fail to resume from S4 if these 
conditions are not satisfied



Resume loader
 Firmware memory map is captured by loader and 

verified by resume application
 Fail resume if memory map is inconsistent

 Restores virtual address mappings for all runtime 
services code/data

 Informs the firmware of virtual address mappings

 SetVirtualAddressMap service is used

 Invoked after calling ExitBootServices()



Windows Boot Timeline Detail
Windows 

Boot 
Manager

Windows 
OS Loader

Kernel

Set Video Mode [GOP.SetMode()]
Load BCD Store [BLOCK_IO. ReadBlocks()]
Display Boot menu [Direct write to frame buffer]
Load winload.efi [BLOCK_IO. ReadBlocks()]
Setup loader context + Jump to OS loader

Switch to alternate paging context
Snapshot FW memory map [for S4 consistency check]
Read OS binaries [BLOCK_IO. ReadBlocks()]
Prepare for runtime virtualization (snapshot FW 
runtime memory map, allocate virtual regions)
Setup OS environment
ExitBootServices()
SetVirtualAddressMap() to virtualize runtime services

Draw initial progress bar (write to frame buffer)
Read/Write NVRAM entries



BCD store and NVRAM
 BCD abstracts all the information in the NVRAM

 Provides consistent interfaces to manipulate boot 
entries

 NVRAM boot entries are cached in the BCD store

 BCD has 1:1 mappings for some UEFI global variables 

 BootOrder  “displayorder”

 Timeout   “timeout”

 BootNext   “bootsequence”

 All variables encapsulated by {fwbootmgr} object



BCD store and NVRAM
 Boot#### is represented by a BCD object

 Any time {fwbootmgr} is manipulated, NVRAM is 
automatically updated

 Windows only creates one additional NVRAM entry 
for Windows Boot manager



Windows UEFI Usage



Display Protocol Usage
 Boot environment display

 Boot applications switch the system into graphics mode

 Required for localized text to be rendered

 GOP and UGA protocols are supported

 UGA is deprecated, so long-term choice should be GOP

 Windows requires 1024x768 or 800x600 resolution 
with 32-bit or 24-bit color (BGR frame format)

 Fallback to text mode + English if requirements not met

 Text mode output requires Simple Text Output protocol



Display Protocol Usage
 GOP does not support runtime calls
 Boot applications will set the video mode
 Preserve mode and frame buffer after 

ExitBootServices() and until high-res graphics 
driver takes over

 Firmware may not manipulate frame buffer after 
mode is set by OS Loader

 VGA support still requires INT 10h support
 Windows Server 2008 supports headless systems 

with no VGA



I/O Protocol Usage
 Boot environment input

 Only keyboard is supported as the input device

 Simple Text Input protocol is required to read keyboard 
input

 Boot environment disk I/O

 Windows uses Block I/O Protocol and Device Path 
Protocol to boot from a block IO device.

 Windows boot applications have filesystem support for 
NTFS, FAT, UDFS, CDFS

 Block I/O protocol is used extensively by the OS loader 
and Resume loader.



Other Protocols
 For BitLocker™ support, Windows uses the EFI 

TCG Protocol

 For PXE boot, Windows uses the EFI PXE Base 
Code Protocol



Runtime Services Usage
 Minimal amount of runtime services are used at OS 

runtime.

 Windows uses only UEFI variable services

 Windows philosophy is give preference to OS native 
drivers followed by ACPI runtime support

 Only use UEFI runtime services when required (and not 
supported by other preferred options)

 Windows uses following variable services:

 GetVariable/SetVariable

 GetNextVariableName



WHEA Error reporting
 For WHEA error record persistence, Windows uses 

QueryVariableInfo variable service

 Assumes implementation of UEFI 2.1 hardware error 
record persistence

 Minimum storage requirement must be guaranteed for 
error records 

 1KB on x64; 100KB on Itanium

 Additional info. available Microsoft’s WHDC site:
 http://www.microsoft.com/whdc/system/pnppwr/whea/de

fault.mspx



Windows on UEFI Implementation 
issues



Implementation Issues
 S4 Resume memory map issue

 Resume failure if runtime memory map is inconsistent

 Runtime services invocation by OS

 Invoked in the context of the OS with interrupts on and 
paging enabled.

 Runtime services virtualization range

 Services may be virtualized in high virtual address region.

 Do not assume addresses are below certain value (< 4GB)



Implementation Issues
 Runtime services execution time

 Bugcheck 0x101(CLOCK_WATCHDOG_TIMEOUT) possible 
if runtime services uses SMM and takes too long

 May cause secondary processor to miss some clock 
interrupts (leads system to believe processor is hung)

 Simultaneous runtime services invocation possible

 OS will invoke one runtime service at a time normally

 On NMI or MCA exceptions, OS may invoke runtime services 
to persist error record

 Other runtime operations may have been in flight at that 
time



Implementation Issues
 Interrupt status prior to ExitBootServices()

 Interrupts are turned OFF while boot application runs

 Interrupts are turned ON before making a firmware call

 Do not assume that interrupts are always ON. 



IA64 Differences
 Virtual address mappings for runtime services created 

during OS (HAL) initialization

 Fallback to using physical mode if runtime services 
virtual mappings cannot be setup

 Does not use alternate paging contexts in the boot 
environment



Summary
 Different components involved in Windows boot and 

their timeline

 How UEFI Protocols and services are used by 
Windows

 Implementation issues



Questions???



THE END!


