
presented by

Self-signing The Linux Kernel

(The Hobbyist Approach)

Zachary Bobroff – American Megatrends, Inc.

Updated 2011-06-01August 22, 2014

Agenda

• Introduction

• Linux UEFI Secure Boot
Overview

• Signing a Kernel

• Adding keys to the MoK DB

• Adding keys to the UEFI
DB

• Call to Action

www.uefi.org 2LinuxCon 2014

Introduction

www.uefi.org 3LinuxCon 2014

Introduction

• UEFI Secure Boot

– Introduced in UEFI version 2.3.1

– Assure the System boot process does not run any

malicious/unverified code

– All external images to the BIOS must be signed and are

verified against a signature database before execution

– Implementation follows the chapter 27 of UEFI spec and uses

RSA-2048 Keys, X509 certificates, SHA256 and PKCS#1

v1.5

• Secure Boot makes whole EFI FW (BIOS) a root of trust to an

EFI OS

– No in-line methods exists to bypass the image verification

www.uefi.org 4LinuxCon 2014

BIOS Boot Flow

www.uefi.org 5LinuxCon 2014

Power On
or Reset

DXE Phase
Executes

OS
Maintains
Security

Verified
External
Option
ROMS

BIOS Execution Trusted External Images

Launch
Boot Image

PEI Phase
Executes

BDS Phase
Executes

Unverified External Option ROMS

Non-Trusted External Images

Verified

Display Error

Launch
Verified

Boot Image

Secure Boot Purpose

• Everyone knows UEFI Secure Boot is about making sure only

properly signed and verified images are executed

• The main overall reason for UEFI Secure Boot is to prevent any

unauthorized software from being loaded in the pre-boot space

– An attack in this pre-boot space can be referred to as a man in the

middle attack or a root kit

– Both attacks can be undetectable to the OS and pass bad information

and has access to all system resources

www.uefi.org 6LinuxCon 2014

BIOS
Operating

System
Malicious

Code

Preventing this type of attack is important

to all devices and systems!

UEFI Secure Boot And Linux

www.uefi.org 7LinuxCon 2014

Secure Boot And Linux

• Linux is traditionally booted using a bootloader like GRUB

– Grub loads a kernel and ram disk into memory and launches

the kernel

• Loading images into memory from GRUB is done through UEFI

services

– Each image will be properly validated by the UEFI services

before passing control back to GRUB

– Requires the proper signing of the kernel and ram disk!

• The Linux community at large has made use of a bootloader

called Shim

– https://github.com/mjg59/shim

www.uefi.org 8LinuxCon 2014

https://github.com/mjg59/shim

Shim
• Shim is an EFI bootloader that provides an easier method for

Linux to manage keys for its own signed images

• Shim provides a secondary key database that can be managed

by the user

– Not all OEMs provide easy ways to manage BIOS key databases

www.uefi.org 9LinuxCon 2014

• Shim key DB is managed by:

– Mok-util -- OS level application, indicates change request by user

– MokManager -- EFI application, launched when change is requested and

helps user make their requested change

– All change requests require password based authentication

BIOS NVRAM

BIOS DB Shim DB

Booting Via Shim

• UEFI firmware gives control to Shim boot loader (signed by UEFI

CA)

• Shim validates its own key DB for integrity

• Shim publishes its own security protocol

• Shim uses the BIOS DB or Shim DB to verify and launch GRUB2

• GRUB2 uses shim security protocol to verify and launch Linux

kernel and ram disk

• Linux kernel is now responsible for maintaining system integrity

www.uefi.org 10LinuxCon 2014

Any improperly signed image will result

in a boot refusal and error screen

Example Boot Failure Screen

www.uefi.org 11LinuxCon 2014

Shim Bootflow

www.uefi.org 12LinuxCon 2014

UEFI

DB
MoK

DB

SHIM GRUB2

1 2

REJECTED ACCEPTED

Signing Linux Kernel

www.uefi.org 13LinuxCon 2014

Tools Used In Signing

• OpenSSL

• Kernel from distro or www.kernel.org

• Scripts for signing done by AMI

• SUSE well documents the process of signing here

• Fedora specific tools

– Certutil provided by Fedora

– PESign provided by Fedora

• Ubuntu specific tools

– SBSign provided by Ubuntu

www.uefi.org 14LinuxCon 2014

http://www.openssl.org/
http://www.kernel.org/
http://en.opensuse.org/openSUSE:UEFI#Secure_Boot

Steps Taken Before Signing

• Download proper kernel image from either

www.kernel.org or from distribution

• Build the kernel to whatever configuration is desired

• Build and install the kernel modules

• Install the kernel modules

www.uefi.org 15LinuxCon 2014

http://www.kernel.org/

Fedora Specific Script 1 Steps

• Generate new key

• Export key in proper format

• Import certificate into NSS certificate DB

• Convert certificate into DER format

– Common format both BIOS and Shim DB use

• Invoke mok-util requesting insertion of key on next

reboot

– Key is also copied to EFI partition for use by mok-util

www.uefi.org 16LinuxCon 2014

Fedora Specific Script 2 Steps

• Signs the kernel using pesign utility

• Verifies kernel signature exists

www.uefi.org 17LinuxCon 2014

Signature



Ubuntu Specific Script 1 Steps

• Generate a key

• Export key in proper format

• Invoke mok-util requesting insertion of key on

next reboot
• Key is also copied to EFI partition for use by mok-util

www.uefi.org 18LinuxCon 2014

Ubuntu Specific Script 2 Steps

• Signs the kernel using sbsign utility

www.uefi.org 19LinuxCon 2014

Signature

Common After Signing Steps

• Copy signed kernel to the EFI boot partition

• Modify GRUB2 configuration to allow booting to

newly built and custom signed kernel

www.uefi.org 20LinuxCon 2014

Adding Keys To The MoK DB

Method 1

www.uefi.org 21LinuxCon 2014

Generate A Signing Certificate

Generate a signing certificate that will be used to

sign your Custom Kernel, and generate the

associated DER formatted certificate.

– Instructions can be found on the OpenSuse Wiki

under the “OpenSuse:UEFI” article.

www.uefi.org 22LinuxCon 2014

Add The Keys Into

The Mok Database

• Keys imported into the Mok database must be in

DER format

– Mokutil –import <importcertificate.cer>

• On reboot follow MokManager instructions to

add certificate to the MOK DB

www.uefi.org 23LinuxCon 2014

Adding Keys To The UEFI DB

Method 2

www.uefi.org 24LinuxCon 2014

Adding Keys To

The UEFI DB (1)

• Boot into the BIOS Setup

• On the Security Page of the BIOS setup, enter

into the Secure Boot Menu

• Change the Secure Boot mode from “Standard”

to “Custom”, then enter into the Key

Management sub menu

• In the Authorized Signatures, submenu, select

“Append Key”

www.uefi.org 25LinuxCon 2014

Adding Keys To

The UEFI DB (2)

• Select Load key from external media

• Find the device type and navigate to the

certificate

• Select Public Key Certificate for the import File

Format

• Confirm the Update of ‘db” with the certificate

www.uefi.org 26LinuxCon 2014

MoK Vs UEFI DB (1)

• Since Mok only functions within the Shim

environment, it will not effect UEFI bootable

external media (extra security)

• MoK DB is OS interactive and could be more

susceptible to Malware

• Keep generated keys secure in either case

– Virus can find the keys on the system and attempt to

sign the virus code

www.uefi.org 27LinuxCon 2014

Demonstration

www.uefi.org 28LinuxCon 2014

• Demonstration of:

– Generating a key

– Signing a Linux kernel

– Adding it to GRUB2 as a boot option

Demonstration

www.uefi.org 29LinuxCon 2014

• Demonstration of:

– Adding keys for new kernel to UEFI DB

Demonstration

www.uefi.org 30LinuxCon 2014

• Demonstration of:

– Adding keys for new kernel to MoK DB

Call to Action

www.uefi.org 31LinuxCon 2014

Call to Action

• Investigate if UEFI Secure Boot would work in

your environment

– Secure Boot is designed to work well with any UEFI

OS!

• Try signing your own kernel and booting it with

Secure Boot on and off

– Secure any keys used in signing!

• If process could be simplified become an active

member of UEFI.org and offer your opinion

www.uefi.org 32LinuxCon 2014

For more information on
the Unified EFI Forum and
UEFI Specifications, visit
http://www.uefi.org

presented by

www.uefi.org 33LinuxCon 2014

http://www.uefi.org/

