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Introduction
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Introduction

• UEFI Secure Boot

– Introduced in UEFI version 2.3.1

– Assure the System boot process does not run any 

malicious/unverified code

– All external images to the BIOS must be signed and are 

verified against a signature database before execution

– Implementation follows the chapter 27 of UEFI spec and uses 

RSA-2048 Keys, X509 certificates, SHA256 and PKCS#1 

v1.5

• Secure Boot makes whole EFI FW (BIOS) a root of trust to an 

EFI OS

– No in-line methods exists to bypass the image verification
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BIOS Boot Flow
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Secure Boot Purpose

• Everyone knows UEFI Secure Boot is about making sure only 

properly signed and verified images are executed

• The main overall reason for UEFI Secure Boot is to prevent any 

unauthorized software from being loaded in the pre-boot space

– An attack in this pre-boot space can be referred to as a man in the 

middle attack or a root kit

– Both attacks can be undetectable to the OS and pass bad information 

and has access to all system resources
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to all devices and systems!



UEFI Secure Boot And Linux
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Secure Boot And Linux

• Linux is traditionally booted using a bootloader like GRUB

– Grub loads a kernel and ram disk into memory and launches 

the kernel

• Loading images into memory from GRUB is done through UEFI 

services

– Each image will be properly validated by the UEFI services 

before passing control back to GRUB

– Requires the proper signing of the kernel and ram disk!

• The Linux community at large has made use of a bootloader

called Shim

– https://github.com/mjg59/shim
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Shim
• Shim is an EFI bootloader that provides an easier method for 

Linux to manage keys for its own signed images

• Shim provides a secondary key database that can be managed 

by the user

– Not all OEMs provide easy ways to manage BIOS key databases
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• Shim key DB is managed by:

– Mok-util -- OS level application, indicates change request by user

– MokManager -- EFI application, launched when change is requested and 

helps user make their requested change

– All change requests require password based authentication

BIOS NVRAM

BIOS DB Shim DB



Booting Via Shim

• UEFI firmware gives control to Shim boot loader (signed by UEFI 

CA)

• Shim validates its own key DB for integrity

• Shim publishes its own security protocol

• Shim uses the BIOS DB or Shim DB to verify  and launch GRUB2

• GRUB2 uses shim security protocol to verify and launch Linux 

kernel and ram disk

• Linux kernel is now responsible for maintaining system integrity
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Any improperly signed image will result 

in a boot refusal and error screen



Example Boot Failure Screen

www.uefi.org 11LinuxCon 2014



Shim Bootflow
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Signing Linux Kernel
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Tools Used In Signing

• OpenSSL

• Kernel from distro or www.kernel.org

• Scripts for signing done by AMI

• SUSE well documents the process of signing here

• Fedora specific tools

– Certutil provided by Fedora 

– PESign provided by Fedora

• Ubuntu specific tools

– SBSign provided by Ubuntu
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http://www.openssl.org/
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http://en.opensuse.org/openSUSE:UEFI#Secure_Boot


Steps Taken Before Signing

• Download proper kernel image from either 

www.kernel.org or from distribution

• Build the kernel to whatever configuration is desired

• Build and install the kernel modules

• Install the kernel modules
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Fedora Specific Script 1 Steps

• Generate new key

• Export key in proper format

• Import certificate into NSS certificate DB

• Convert certificate into DER format

– Common format both BIOS and Shim DB use

• Invoke mok-util requesting insertion of key on next 

reboot

– Key is also copied to EFI partition for use by mok-util
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Fedora Specific Script 2 Steps

• Signs the kernel using pesign utility

• Verifies kernel signature exists
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Ubuntu Specific Script 1 Steps

• Generate a key

• Export key in proper format

• Invoke mok-util requesting insertion of key on 

next reboot
• Key is also copied to EFI partition for use by mok-util
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Ubuntu Specific Script 2 Steps

• Signs the kernel using sbsign utility
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Common After Signing Steps

• Copy signed kernel to the EFI boot partition

• Modify GRUB2 configuration to allow booting to 

newly built and custom signed kernel
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Adding Keys To The MoK DB

Method 1
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Generate A Signing Certificate

Generate a signing certificate that will be used to 

sign your Custom Kernel, and generate the 

associated DER formatted certificate.

– Instructions can be found on the OpenSuse Wiki 

under the “OpenSuse:UEFI” article.
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Add The Keys Into 

The Mok Database

• Keys imported into the Mok database must be in 

DER format

– Mokutil –import <importcertificate.cer>

• On reboot follow MokManager instructions to 

add certificate to the MOK DB
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Adding Keys To The UEFI DB

Method 2
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Adding Keys To 

The UEFI DB (1)

• Boot into the BIOS Setup

• On the Security Page of the BIOS setup, enter 

into the Secure Boot Menu

• Change the Secure Boot mode from “Standard” 

to “Custom”, then enter into the Key 

Management sub menu

• In the Authorized Signatures, submenu, select 

“Append Key”
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Adding Keys To 

The UEFI DB (2)

• Select Load key from external media

• Find the device type and navigate to the 

certificate

• Select Public Key Certificate for the import File 

Format

• Confirm the Update of ‘db” with the certificate 
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MoK Vs UEFI DB (1)

• Since Mok only functions within the Shim 

environment, it will not effect UEFI bootable 

external media (extra security)

• MoK DB is OS interactive and could be more 

susceptible to Malware 

• Keep generated keys secure in either case

– Virus can find the keys on the system and attempt to 

sign the virus code
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Demonstration
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• Demonstration of:

– Generating a key

– Signing a Linux kernel

– Adding it to GRUB2 as a boot option



Demonstration
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• Demonstration of:

– Adding keys for new kernel to UEFI DB



Demonstration
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• Demonstration of:

– Adding keys for new kernel to MoK DB



Call to Action
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Call to Action

• Investigate if UEFI Secure Boot would work in 

your environment

– Secure Boot is designed to work well with any UEFI 

OS!

• Try signing your own kernel and booting it with 

Secure Boot on and off

– Secure any keys used in signing!

• If process could be simplified become an active 

member of UEFI.org and offer your opinion
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For more information on 
the Unified EFI Forum and 
UEFI Specifications, visit 
http://www.uefi.org

presented by

www.uefi.org 33LinuxCon 2014

http://www.uefi.org/

