
VOLUME 5: Platform Initialization
Specification

Standards

Version 1.1 Errata B

July 1, 1010

Platform Initialization Specification VOLUME 5 Standards

ii 7/1/2010 Version 1.1 Errata B

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2010 Unified EFI, Inc. All Rights Reserved.

Version 1.1 Errata B 7/1/2010 iii

Revision History

Revision Revision History Date

1.0 Initial public release. 8/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

Platform Initialization Specification VOLUME 5 Standards

iv 7/1/2010 Version 1.1 Errata B

1.1 Errata • 230 Updated to Volume 4, section 4.2, ReportStatusCode

• 231Parameter/description updates for Volume 4, section 4.3,
ReadSaveState() & WriteSaveState(), Parameters

• 232 SMM I/O Protocol Updates

• 233 Volume 4, Section 5.2 & 5.3 Updates

• 234 Volume 4, Section 5.5 Misc. Errata

• 235Volume 4, Chapter 8 Should Be Integrated Into Volume 3,
Section 2.1.4.1, 2.1.5.1 and 3.2.5

• 236 Volume 4, Section 9.5.1, 9.6, 9.7, 9.8 and 9.9 Formatting

• 238 CpuSaveStateFormat deprecated in Vol4 of SMM PI1.1 draft

• 239 rename EFI_SMM_HANDLER_ENTRY_POINT to be
EFI_SMM_HANDLER_ENTRY_POINT2 in Vol4 SMM of PI1.1

• 240 PI1.1 Vol4 typos

• 244 Replace EFI_FIRMWARE_VOLUME_INFO_PPI with
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

• 250 PEI_SPECIFICATION_MINOR_REVISION should be 10

• 251 Firmware File Type Table (Volume 3, 2.1.4.1, Table 1) Should
Not Contain Section Information

• 252 Volume 3, Table 2 (2.1.5.1) does not contain
EFI_SECTION_DISPOSABLE

• 253 EFI_SECTION_PIC has incorrect typedef

• 254 ReInstallPpi() has incorrect prototype

• 255 NotifyPpi() has the incorrect prototype

• 256 CreateHob() has incorrect prototype

• 257 PEI Specification, Section 4.2.1 and Section 4.2.2 should be
peers of 4.1, 4.3, etc.

• 258 CreateHob() refers to non-existent specification.

• 259 FfsFindNextFile() Parameters Are Incorrect

• 260 FfsFindSectionData() has incorrect parameter description

• 261 AllocatePages() (PEI) refers to a non-existent specification
and non-existent function.

• 262 FfsGetVolumeInfo() missing return status codes

• 263 EFI_PEI_NOTIFY_DESCRIPTOR and
EFI_PEI_PPI_DESCRIPTOR prototypes are incorrect

• 264 EFI_PEI_SERVICES: Remove references to "future installed
services" from prototype

• 265 EFI_FV_BLOCK_MAP definition does not exist

• 267 Invalid References To the PI Firmware Storage Specification

• 268 GUIDED_SECTION_EXTRACTION_PROTOCOL missing
'EFI_' prefix

• 269 References to EFI_FIRMWARE_VOLUME_PROTOCOL
should be EFI_FIRMWARE_VOLUME2_PROTOCOL

• 272 Various fixes for Communicate() in PI 1.1, Volume 4

• 273 EFI_SMM_CONTROL2_PROTOCOL Errata

• 274 Miscellanous SMST Errata from Volume 4, Section 3.2

• 275 Chapter heading for DXE ReportStatusCode function

• 276 EFI_STATUS_CODE_RUNTIME_PROTOCOL_GUID has
extra ';'

• 277 Remove references to "Framework" and "Framework-based"
in Volume 5

04/25/08

Version 1.1 Errata B 7/1/2010 v

1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.1 Errata • 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 455 Clarify InstallPeiMemory()

• 465 Correct PMI Interface

• 466 Add EXTENDED_SAL_PROC definition, etc

• 467 Vol2 & Vol3 Errata

05/22/09

Platform Initialization Specification VOLUME 5 Standards

vi 7/1/2010 Version 1.1 Errata B

1.1 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521 Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata B • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

(2/24/10)

5/27/10

Version 1.1 Errata B 7/1/2010 vii

1.1 Errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()

5/27/10

Platform Initialization Specification VOLUME 5 Standards

viii 7/1/2010 Version 1.1 Errata B

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

Version 1.1 Errata B 7/1/2010 ix

Contents

1
Platform Initialization Standards Introduction... 1
1.1 Overview ... 1
1.2 Terms Used in this Document... 1
1.3 Conventions Used in this Document... 6

1.3.1 Data Structure Descriptions .. 6
1.3.2 Protocol Descriptions .. 6
1.3.3 Procedure Descriptions... 7
1.3.4 Pseudo-Code Conventions ... 7
1.3.5 Typographic Conventions ... 7

1.4 Requirements.. 8

2
SMBus Host Controller Design Discussion ... 11
2.1 SMBus Host Controller Overview ... 11
2.2 Related Information... 11
2.3 SMBus Host Controller Protocol Terms .. 12
2.4 SMBus Host Controller Protocol Overview ... 12

3
SMBus Host Controller Code Definitions... 13
3.1 Introduction ... 13
3.2 SMBus Host Controller Protocol ... 14

EFI_SMBUS_HC_PROTOCOL .. 14
EFI_SMBUS_HC_PROTOCOL.Execute() .. 16
EFI_SMBUS_HC_PROTOCOL.ArpDevice() .. 18
EFI_SMBUS_HC_PROTOCOL.GetArpMap() .. 20
EFI_SMBUS_HC_PROTOCOL.Notify().. 21

4
SMBus PPI Design Discussion ... 23
4.1 Introduction ... 23
4.2 Target Audience.. 23
4.3 Related Information... 23
4.4 PEI SMBus PPI Overview... 24

5
SMBus PPI Code Definitions ... 25
5.1 Introduction ... 25
5.2 PEI SMBus PPI... 26

EFI_PEI_SMBUS2_PPI .. 26
EFI_PEI_SMBUS2_PPI.Execute() .. 28
EFI_PEI_SMBUS2_PPI.ArpDevice() ... 31
EFI_PEI_SMBUS2_PPI.GetArpMap() ... 34

Platform Initialization Specification VOLUME 5 Standards

x 7/1/2010 Version 1.1 Errata B

EFI_PEI_SMBUS2_PPI.Notify() .. 36

6
SMBIOS Protocol.. 39

EFI_SMBIOS_PROTOCOL .. 39
EFI_SMBIOS_PROTOCOL.Add() ... 41
EFI_SMBIOS_PROTOCOL.UpdateString() .. 44
EFI_SMBIOS_PROTOCOL.Remove() .. 45
EFI_SMBIOS_PROTOCOL.GetNext() .. 46

7
S3 Resume .. 49
7.1 S3 Overview.. 49
7.2 Goals... 49
7.3 Requirements.. 49
7.4 Assumptions ... 49

7.4.1 Multiple Phases of Platform Initialization... 49
7.4.2 Process of Platform Initialization ... 50

7.5 Restoring the Platform .. 50
7.5.1 Phases in the S3 Resume Boot Path.. 51

7.6 PEI Boot Script Executer PPI.. 54
EFI_PEI_S3_RESUME2_PPI ... 55

7.7 S3 Save State Protocol.. 55
EFI_S3_SAVE_STATE_PROTOCOL... 55

EFI_S3_SAVE_STATE_PROTOCOL.Write() ... 57
7.7.1 Opcodes for Write()... 59

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE .. 59
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE .. 61
EFI_BOOT_SCRIPT_IO_POLL_OPCODE .. 62
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE ... 64
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE ... 66
EFI_BOOT_SCRIPT_MEM_POLL_OPCODE.. 67
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE.. 69
EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.............................. 71
EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE .. 73
EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE.. 75
EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE............................ 77
EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE .. 79
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE.. 81
EFI_BOOT_SCRIPT_STALL_OPCODE .. 83
EFI_BOOT_SCRIPT_DISPATCH_OPCODE ... 84
EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE ... 85
EFI_BOOT_SCRIPT_INFORMATION_OPCODE .. 86
EFI_S3_SAVE_STATE_PROTOCOL.Insert() .. 87
EFI_S3_SAVE_STATE_PROTOCOL.Label() .. 89
EFI_S3_SAVE_STATE_PROTOCOL.Compare() .. 91

7.8 S3 SMM Save State Protocol ... 91
EFI_S3_SMM_SAVE_STATE_PROTOCOL .. 92

Version 1.1 Errata B 7/1/2010 xi

8
PCI Host Bridge .. 95
8.1 PCI Host Bridge Overview .. 95
8.2 PCI Host Bridge Design Discussion.. 95
8.3 PCI Host Bridge Resource Allocation Protocol ... 96

8.3.1 PCI Host Bridge Resource Allocation Protocol Overview 96
8.3.2 Host Bus Controllers ... 96
8.3.3 Producing the PCI Host Bridge Resource Allocation Protocol 97
8.3.4 Required PCI Protocols... 98
8.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 98

8.4 Sample PCI Architectures... 99
8.4.1 Sample PCI Architectures Overview ... 99
8.4.2 Desktop System with 1 PCI Root Bridge... 99
8.4.3 Server System with 4 PCI Root Bridges ... 100
8.4.4 Server System with 2 PCI Segments .. 101
8.4.5 Server System with 2 PCI Host Buses.. 101

8.5 ISA Aliasing Considerations.. 102
8.6 Programming of Standard PCI Configuration Registers ... 103
8.7 Sample Implementation .. 104

8.7.1 PCI enumeration process.. 107
8.7.2 Sample Enumeration Implementation ... 109

8.8 PCI HostBridge Code Definitions.. 110
8.8.1 Introduction ... 110
8.8.2 PCI Host Bridge Resource Allocation Protocol ... 111

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL 111
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase()

.. 117
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetNextRootB

ridge() .. 121
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttrib

utes() ... 123
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnum

eration() ... 125
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbe

rs() ... 127
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitResour

ces() .. 130
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetProposed

Resources()... 133
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.PreprocessCo

ntroller() ... 136

9
PCI Platform.. 141
9.1 Introduction ... 141
9.2 PCI Platform Overview.. 141
9.3 PCI Platform Support Related Information.. 142

Platform Initialization Specification VOLUME 5 Standards

xii 7/1/2010 Version 1.1 Errata B

9.3.1 Industry Specifications .. 142
9.3.2 PCI Specifications ... 142

9.4 PCI Platform Protocol ... 142
9.4.1 PCI Platform Protocol Overview.. 142

9.5 Incompatible PCI Device Support Protocol ... 143
9.5.1 Incompatible PCI Device Support Protocol Overview 143
9.5.2 Usage Model for the Incompatible PCI Device Support Protocol...................... 143

9.6 PCI Code Definitions... 144
9.6.1 PCI Platform Protocol.. 144

EFI_PCI_PLATFORM_PROTOCOL... 144
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()... 146
EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()............................... 148
EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy() 150
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()... 154

9.6.2 PCI Override Protocol ... 155
EFI_PCI_OVERRIDE_PROTOCOL ... 155

9.6.3 Incompatible PCI Device Support Protocol .. 156
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL............................. 156
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice() 158

10
Hot Plug PCI.. 161
10.1 HotPlug PCI Overview .. 161
10.2 Hot-Plug PCI Initialization Protocol Introduction ... 161
10.3 Hot-Plug PCI Initialization Protocol Related Information... 161
10.4 Requirements.. 162
10.5 Sample Implementation for a Platform Containing PCI Hot Plug* Slots 163
10.6 Code Definitions.. 164
10.7 Hot-Plug PCI Initialization Protocol ... 165

EFI_PCI_HOT_PLUG_INIT_PROTOCOL .. 165
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList() 167
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() 169
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding() 173

10.7.1 PCI Hot Plug Request Protocol... 176
EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify() 177

10.8 Sample Implementation for a Platform Containing PCI Hot Plug* Slots 179

Appendix A
Error Codes ... 181

Error Code Definitions .. 181

Version 1.1 Errata B 7/1/2010 xiii

Figures
Figure 1. Framework S3 Resume Boot Path .. 51
Figure 2. PEI Phase in S3 Resume Boot Path ... 52
Figure 3. Configuration Save for PEI Phase ... 53
Figure 4. Host Bus Controllers.. 97
Figure 5. Producing the PCI Host Bridge Resource Allocation Protocol............................... 98
Figure 6. Desktop System with 1 PCI Root Bridge .. 100
Figure 7. Server System with 4 PCI Root Bridges ... 100
Figure 8. Server System with 2 PCI Segments.. 101
Figure 9. Server System with 2 PCI Host Buses .. 102

Tables

Table 1. Standard PCI Devices – Header Type 0... 103
Table 2. PCI-to-PCI Bridge – Header Type 1 ... 104
Table 3. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage................................. 115
Table 4. ACPI 2.0 & 3.0 End Tag Usage .. 116
Table 5. I/O Resource Flag (Resource Type = 1) Usage.. 116
Table 6. Memory Resource Flag (Resource Type = 0) Usage ... 116
Table 7. Enumeration Descriptions... 119
Table 8. EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES field

descriptions.. 124
Table 9. ACPI 2.0 & 3.0 Resource Descriptor Field Values for StartBusEnumeration() 126
Table 10. ACPI 2.0 & 3.0 Resource Descriptor Field Values for SetBusNumbers() 128
Table 11. ACPI 2.0& 3.0 Resource Descriptor Field Values for SubmitResources().......... 131
Table 12. ACPI 2.0 & 3.0 Resource Descriptor Field Values for GetProposedResources().....

134
Table 13. EFI_RESOURCE_ALLOCATION_STATUS field descriptions 135
Table 14. EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE field descriptions.

138
Table 15. Legal combinations ... 152
Table 16. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage............................... 160
Table 17. ACPI 2.0 & 3.0 End Tag Usage .. 160
Table 18. Description of possible states for EFI_HPC_STATE .. 171
Table 19. EFI_HPC_PADDING_ATTRIBUTES field descriptions 175

Platform Initialization Specification VOLUME 5 Standards

xiv 7/1/2010 Version 1.1 Errata B

Platform Initialization Standards Introduction

Version 1.1 Errata B 7/1/2010 1

1
Platform Initialization Standards Introduction

1.1 Overview
These sections define the core code and services that are required for an implementation of the
System Management Bus (SMBus) Host Controller Protocol and System Management Bus (SMBus)
PEIM-to-PEIM Interface (PPI).

The SMBus Host Controller Protocol is used by code, typically early chipset drivers, and SMBus
bus drivers that are running in the UEFI Boot Services environment to perform data transactions
over the SMBus. This specification does the following:

• Describes the basic components of the SMBus Host Controller Protocol

• Provides code definitions for the SMBus Host Controller Protocol and the SMBus-related type
definitions that are architecturally required.

The SMBus PPI is used by other Pre-EFI Initialization Modules (PEIMs) to control an SMBus host
controller.

This specification does the following:

• Describes the basic components of the PEI SMBus PPI

• Provides code definitions for the PEI SMBus PPI and SMBus-related type definitions that are
architecturally required.

1.2 Terms Used in this Document
16-bit PC Card

Legacy cards that follow the PC Card Standard and operate in 16-bit mode.

CardBay PC Card

32-bit PC Cards that follow the high-performance serial PC Card Standard. After
initialization, these devices appear as standard PCI devices.

CardBus bridge

A hardware controller that produces a CardBus bus. A CardBus bus can accept a CardBus PC
Card as well as legacy 16-bit PC Cards. CardBus PC Cards appear just like PCI devices to the
configuration software.

CardBus PC Card

32-bit PC Cards that follow the PC Card Standard.

HB

Host bridge. See PCI host bridge.

Platform Initialization Specification

2 7/1/2010 Version 1.1 Errata B

HPB

Hot Plug Bus.

HPC

Hot Plug Controller. A generic term that refers to both a PHPC and a CardBus bridge.

HPRT

Hot Plug Resource Table.

incompatible PCI device

A PCI device that does not fully comply with the PCI Specification. Typically, this kind of
device has a special requirement for Base Address Register (BAR) allocation. Some devices
may want a special resource length or alignment, while others may want fixed I/O or memory
locations.

JEITA

Japan Electronics and Information Technology Association.

legacy PHPC

PCI devices that can be identified by their class code but were defined prior to the PCI
Standard Hot-Plug Controller and Subsystem Specification, revision 1.0. These devices have a
base class of 0x6, subclass of 0x4, and programming interface of 0.

MWI

Memory Write and Invalidate. See the PCI Local Bus Specification, revision 2.3, for more
information.

PC Card

Integrated circuit cards that follow the PC Card Standard. "PC Card" is a generic term that is
used to refer to 16-bit PC Cards, 32-bit CardBus PC Cards, and high-performance CardBay
PC Cards.

PC Card Standard

Refers to the set of specifications that are produced jointly by the PCMCIA and JEITA. This
standard was defined to promote interchangeability among mobile computers.

PCI bus

A generic term used to describe any PCI-like buses, including conventional PCI, PCI-X*, and
PCI Express*. From a software standpoint, a PCI bus is collection of up to 32 physical PCI
devices that share the same physical PCI bus.

PCI bus driver

Software that creates a handle for every PCI controller in the system and installs both the PCI
I/O Protocol and the Device Path Protocol onto that handle. It may optionally perform PCI
enumeration if resources have not already been allocated to all the PCI controllers. It also
loads and starts any EFI drivers that are found in any PCI option ROMs that were discovered
during PCI enumeration.

Platform Initialization Standards Introduction

Version 1.1 Errata B 7/1/2010 3

PCI configuration space

The configuration channel that is defined by PCI to configure PCI devices into the resource
domain of the system. Each PCI device must produce a standard set of registers in the form of
a PCI configuration header and can optionally produce device-specific registers. The registers
are addressed via Type 0 or Type 1 PCI configuration cycles as described by the PCI
Specification. The PCI configuration space can be shared across multiple PCI buses. On
Intel® architecture-based systems, the PCI configuration space is accessed via I/O ports
0xCF8 and 0xCFC. The PCI Express configuration space is accessed via a memory-mapped
aperture.

PCI controller

A hardware components that is discovered by a PCI bus driver and is managed by a PCI
device driver. This document uses the terms "PCI function" and "PCI controller" equivalently.

PCI device

A collection of up to 8 PCI functions that share the same PCI configuration space. A PCI
device is physically connected to a PCI bus.

PCI enumeration

The process of assigning resources to all the PCI controllers on a given PCI host bridge. This
process includes the following:

• Assigning PCI bus numbers and PCI interrupts

• Allocating PCI I/O resources, PCI memory resources, and PCI prefetchable memory
resources

• Setting miscellaneous PCI DMA values

Typically, PCI enumeration is to be performed only once during the boot process.

PCI function

A controller that provides some type of I/O services. It consumes some combination of PCI I/
O, PCI memory, and PCI prefetchable memory regions and the PCI configuration space. The
PCI function is the basic unit of configuration for PCI.

PCI host bridge

The software abstraction that produces one or more PCI root bridges. All the PCI buses that
are produced by a host bus controller are part of the same coherency domain. A PCI host
bridge is an abstraction and may be made up of multiple hardware devices. Most systems can
be modeled as having one PCI host bridge. This software abstraction is necessary while
dealing with PCI resource allocation because resources that are assigned to one PCI root
bridge depend on another and all the "related" PCI root bridges must be considered together
during resource allocation.

PCI root bridge

A PCI root bridge that produces a root PCI bus. It bridges a root PCI bus and a bus that is not a
PCI bus (e.g., processor local bus, InfiniBand* fabric). A PCI host bridge may have one or
more root PCI bridges. Configurations of a root PCI bridge within a host bridge can have
dependencies upon other root PCI bridges within the same host bridge.

Platform Initialization Specification

4 7/1/2010 Version 1.1 Errata B

PCI segment

A collection of up to 256 PCI buses that share the same PCI configuration space. A
PCI segment is defined in section 6.5.6 of the ACPI 2.0 Specification (also ACPI 3.0)
as the _SEG object. If a system supports only a single PCI segment, the PCI segment
number is defined to be zero.The existence of PCI segments enables the construction
of systems with greater than 256 PCI buses.

PEC

Packet Error Code. It is similar to a checksum data of the data coming across the SMBus wire.

PCI-to-CardBus bridges

A PCI device that produces a CardBus bus. The PCI-to-CardBus bridge has a PEI

Pre-EFI Initialization.

PEIM

Pre-EFI Initialization Module.

greater than 256 PCI buses.

PERR

Parity Error.

type 2 PCI configuration header and has a class code of 0x070600.

PHPC

PCI Hot Plug* Controller. A hardware component that controls the power to one or more
conventional PCI slots or PCI Express slots.

PPI

PEIM-to-PEIM Interface.

RB

Root bridge. See PCI root bridge.

resource padding

Also known as resource overallocation. System resources are said to be overallocated if more
resources are allocated to a PCI bus than are required. Resource padding allows a limited
number of add-in cards to be hot added to a PCI bus without disturbing allocation to the rest of
the buses.

root HPC

Root Hot Plug Controller. An HPC that gets reset only when the entire system is reset. Such
HPCs can depend upon the system firmware to initialize them because system firmware is
guaranteed to run after a system reset. An HPC that is embedded in the PCI root bridge is
considered a root HPC bridge. Some platform chipsets include special-purpose PCI-to-PCI
bridges. They appear like a PCI-to-PCI bridge to the configuration software, but their primary
bus interface is not a PCI bus. Such a component can be considered a root HPC if it is not
subordinate to an HPC. Legacy HPCs may be implemented as chipset devices that appear to be
behind a special-purpose PCI-to-PCI bridge, but these HPCs are not reset when the secondary

Platform Initialization Standards Introduction

Version 1.1 Errata B 7/1/2010 5

bus reset bit in the parent PCI-to-PCI bridge is set. Such HPCs are considered as root HPCs as
well.

An HPC that is a child of a PCI-to-PCI bridge is not a root HPC. Such an HPC can be reset if
the secondary bus reset bit in the PCI-to-PCI bridge is set by an operating system. Because the
initialization code in the system firmware may not be executed during this case, such an HPC
must initialize itself using hardware mechanisms, without any firmware intervention. An HPC
that is a child of another HPC is not a root HPC. See section 3.5.1.3 in the PCI Standard Hot-
Plug Controller and Subsystem Specification, revision 1.0, for details regarding this term.

root PCI bus

A PCI bus that is not a child of another PCI bus. For every root PCI bus, there is an object in
the ACPI name space with a Plug and Play (PNP) ID of "PNP0A03." Typical desktop systems
include only one root PCI bus.

SERR

System error.

SHPC

Standard (PCI) Hot Plug Controller. A PCI Hot Plug controller that conforms to the PCI Standard Hot-Plug
Controller and Subsystem Specification, revision 1.0. This specification is published by the PCI Special Interest
Group (PCI-SIG). An SHPC can either be embedded in a PCI root bridge or a PCI-to-PCI bridge.coherency
domain

The address resources of a system as seen by a processor. It consists of both system memory
and I/O space.

SMBus

System Management Bus.

SMBus host controller

Provides a mechanism for the processor to initiate communications with SMBus slave devices.
This controller can be connected to a main I/O bus such as PCI.

SMBus master device

Any device that initiates SMBus transactions and drives the clock.

SMBus PPI

A software interface that provides a method to control an SMBus host controller and access
the data of the SMBus slave devices that are attached to it.

SMBus slave device

The target of an SMBus transaction, which is driven by some master.

UDID

Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

Platform Initialization Specification

6 7/1/2010 Version 1.1 Errata B

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Platform Initialization Standards Introduction

Version 1.1 Errata B 7/1/2010 7

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

1.3.3 Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.4 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.5 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Platform Initialization Specification

8 7/1/2010 Version 1.1 Errata B

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.4 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

Platform Initialization Standards Introduction

Version 1.1 Errata B 7/1/2010 9

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

Platform Initialization Specification

10 7/1/2010 Version 1.1 Errata B

SMBus Host Controller Design Discussion

Version 1.1 Errata B 7/1/2010 11

2
SMBus Host Controller Design Discussion

2.1 SMBus Host Controller Overview
These section describe the System Management Bus (SMBus) Host Controller Protocol. This
protocol provides an I/O abstraction for an SMBus host controller. An SMBus host controller is a
hardware component that interfaces to an SMBus. It moves data between system memory and
devices on the SMBus by processing data structures and generating transactions on the SMBus. The
following use this protocol:

• An SMBus bus driver to perform all data transactions over the SMBus

• Early chipset drivers that need to manage devices that are required early in the Driver Execution
Environment (DXE) phase, before the Boot Device Selection (BDS) phase

This protocol should be used only by drivers that require direct access to the SMBus.

Considerable discussion has been done to understand the usage model of the UEFI Driver Model in
the SMBus. Although, the UEFI Driver Model concepts can be applied to SMBus, only the SMBus
Host Controller Protocol was created for now for the following reasons:

• The UEFI Driver Model is designed primarily for boot devices. Boot devices are unlikely to be
connected to the SMBus because of SMBus-intrinsic capability. They are slow and not
enumerable.

• The current usage model of SMBus is to enable and configure devices early during the boot
phase, before BDS.

A DXE driver that publishes this protocol will either support Execute, ArpDevice, GetArpMap, and
Notify; alternatively, a driver will support only Execute and return “not supported” for the latter 3
services.

If some of these assumptions become obsolete and require being revisited in the future, this
specification is extensible to convert to the UEFI Driver Model.

2.2 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementers Forum,

August 3, 2000: http://www.smbus.org

• PCI Local Bus Specification, revision 3.0, PCI Special Interest Group.

http://www.smbus.org

Platform Initialization Specification VOLUME 5 Standards

12 7/1/2010 Version 1.1 Errata B

2.3 SMBus Host Controller Protocol Terms
The following terms are used throughout this document to describe the model for constructing
SMBus Host Controller Protocol instances in the DXE environment.

PEC

Packet Error Code. It is similar to a checksum data of the data coming across the SMBus wire.

SMBus

System Management Bus.

SMBus host controller

Provides a mechanism for the processor to initiate communications with SMBus slave devices.
This controller can be connected to a main I/O bus such as PCI.

SMBus master device

Any device that initiates SMBus transactions and drives the clock.

SMBus slave device

The target of an SMBus transaction, which is driven by some master.

UDID

Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

2.4 SMBus Host Controller Protocol Overview
The interfaces that are provided in the EFI_SMBUS_HC_PROTOCOL are used to manage data
transactions on the SMBus. The EFI_SMBUS_HC_PROTOCOL is designed to support SMBus 1.0–
and 2.0–compliant host controllers.

Each instance of the EFI_SMBUS_HC_PROTOCOL corresponds to an SMBus host controller in a
platform. To provide support for early drivers that need to communicate on the SMBus, this protocol
is available before the Boot Device Selection (BDS) phase. During BDS, this protocol can be
attached to the device handle of an SMBus host controller that is created by a device driver for the
SMBus host controller's parent bus type. For example, an SMBus controller that is implemented as a
PCI device would require a PCI device driver to produce an instance of the
EFI_SMBUS_HC_PROTOCOL.

See “SMBus Host Controller Protocol” on page 14 for the definition of this protocol.

SMBus Host Controller Code Definitions

Version 1.1 Errata B 7/1/2010 13

3
SMBus Host Controller Code Definitions

3.1 Introduction
This section contains the basic definitions of the SMBus Host Controller Protocol. The following
protocol is defined in this section:

• EFI_SMBUS_HC_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_SMBUS_NOTIFY_FUNCTION

Platform Initialization Specification VOLUME 5 Standards

14 7/1/2010 Version 1.1 Errata B

3.2 SMBus Host Controller Protocol

EFI_SMBUS_HC_PROTOCOL

Summary
Provides basic SMBus host controller management and basic data transactions over the SMBus.

GUID
#define EFI_SMBUS_HC_PROTOCOL_GUID \
{0xe49d33ed, 0x513d, 0x4634, 0xb6, 0x98, 0x6f, 0x55, 0xaa, 0x75,
0x1c, 0x1b}

Protocol Interface Structure
typedef struct _EFI_SMBUS_HC_PROTOCOL {
 EFI_SMBUS_HC_EXECUTE_OPERATION Execute;
 EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE ArpDevice;
 EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP GetArpMap;
 EFI_SMBUS_HC_PROTOCOL_NOTIFY Notify;
} EFI_SMBUS_HC_PROTOCOL;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a driver to retrieve the address that was allocated by the SMBus host controller
during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a driver to register for a callback to the SMBus host controller driver when the
bus issues a notification to the bus controller driver. See the Notify() function
description.

Description
The EFI_SMBUS_HC_PROTOCOL provides SMBus host controller management and basic data
transactions over SMBus. There is one EFI_SMBUS_HC_PROTOCOL instance for each SMBus
host controller.

Early chipset drivers can communicate with specific SMBus slave devices by calling this protocol
directly. Also, for drivers that are called during the Boot Device Selection (BDS) phase, the device
driver that wishes to manage an SMBus bus in a system retrieves the EFI_SMBUS_HC_PROTOCOL
instance that is associated with the SMBus bus to be managed. A device handle for an SMBus host

SMBus Host Controller Code Definitions

Version 1.1 Errata B 7/1/2010 15

controller will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_SMBUS_HC_PROTOCOL instance.

Platform Initialization Specification VOLUME 5 Standards

16 7/1/2010 Version 1.1 Errata B

EFI_SMBUS_HC_PROTOCOL.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_EXECUTE_OPERATION) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

SlaveAddress

The SMBus slave address of the device with which to communicate. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Command

This command is transmitted by the SMBus host controller to the SMBus slave device
and the interpretation is SMBus slave device specific. It can mean the offset to a list of
functions inside an SMBus slave device. Not all operations or slave devices support
this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
SMBus Specification and is not related to PI Architecture. Type
EFI_SMBUS_OPERATION is defined in EFI_PEI_SMBUS_PPI.Execute() in
the Platform Initialization SMBus PPI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

SMBus Host Controller Code Definitions

Version 1.1 Errata B 7/1/2010 17

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This field will contain the actual
number of bytes that are executed for this operation. Not all operations require this
argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the System
Management Bus (SMBus) Specification. The resulting transaction will be either that the SMBus
slave devices accept this transaction or that this function returns with error.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll exit
criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is

determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure that was reflected in the
Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or bus
errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for

EfiSmbusQuickRead and EfiSmbusQuickWrite. Length

is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

Platform Initialization Specification VOLUME 5 Standards

18 7/1/2010 Version 1.1 Errata B

EFI_SMBUS_HC_PROTOCOL.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

ArpAll

A Boolean expression that indicates if the host drivers need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll is
TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The Unique Device Identifier (UDID) that is associated with this device. Type
EFI_SMBUS_UDID is defined in EFI_PEI_SMBUS_PPI.ArpDevice() in the
Platform Initialization SMBus PPI Specification.

SlaveAddress

The SMBus slave address that is associated with an SMBus UDID. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Description
The ArpDevice() function provides a standard way for a device driver to enumerate the entire
SMBus or specific devices on the bus.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll exit
criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect).

SMBus Host Controller Code Definitions

Version 1.1 Errata B 7/1/2010 19

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is

determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure was reflected in the Host
Status Register bit. Device Errors are a result of a transaction collision,
illegal command field, unclaimed cycle (host initiated), or bus errors
(collisions).

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented

by this driver.

Platform Initialization Specification VOLUME 5 Standards

20 7/1/2010 Version 1.1 Errata B

EFI_SMBUS_HC_PROTOCOL.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair of
the slave devices that were enumerated by the SMBus host controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

Length

Size of the buffer that contains the SMBus device map.

SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller driver. Type
EFI_SMBUS_DEVICE_MAP is defined in
EFI_PEI_SMBUS_PPI.GetArpMap() in the Platform Initialization SMBus PPI
Specification.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that were enumerated
by the SMBus host driver.

Status Codes Returned

EFI_SUCCESS The SMBus returned the current device map.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented by

this driver.

SMBus Host Controller Code Definitions

Version 1.1 Errata B 7/1/2010 21

EFI_SMBUS_HC_PROTOCOL.Notify()

Summary
Allows a device driver to register for a callback when the bus driver detects a state that it needs to
propagate to other drivers that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_NOTIFY) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_SMBUS_NOTIFY_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered function. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Data

Data that the host controller detects as sending a message and calls all the registered
function.

NotifyFunction

The function to call when the bus driver detects the SlaveAddress and Data pair.
Type EFI_SMBUS_NOTIFY_FUNCTION is defined in “Related Definitions” below.

Description
The Notify() function registers all the callback functions to allow the bus driver to call these
functions when the SlaveAddress/Data pair happens.

Platform Initialization Specification VOLUME 5 Standards

22 7/1/2010 Version 1.1 Errata B

Related Definitions
//***
// EFI_SMBUS_NOTIFY_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_NOTIFY_FUNCTION) (
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification..

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned

EFI_SUCCESS NotifyFunction was registered.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented by

this driver.

 SMBus PPI Design Discussion

Version 1.1 Errata B 7/1/2010 23

4
SMBus PPI Design Discussion

4.1 Introduction
These sections describe the System Management Bus (SMBus) PEIM-to-PEIM Interfaces (PPIs).
This document provides enough material to implement an SMBus Pre-EFI Initialization Module
(PEIM) that can control transactions between an SMBus host controller and its slave devices.

The material that is contained in this document is designed to support communication via the
SMBus. These extensions are provided in the form of SMBus-specific protocols. This document
provides the information that is required to implement an SMBus PEIM in the Pre-EFI Initialization
(PEI) portion of system firmware.

A full understanding of the Unified Extensible Firmware Interface Specification (UEFI
specification) and the System Management Bus (SMBus) Specification is assumed throughout this
document. See “Related Information,” below, for the URL for the System Management Bus (SMBus)
Specification.

4.2 Target Audience
This document is intended for the following readers:

• Original equipment manufacturers (OEMs) who will be creating platforms that are intended to
boot shrink-wrap operating systems.

• BIOS developers, either those who create general-purpose BIOS and other firmware products, or
those who modify these productss.

• Operating system developers who will be creating and/or adapting their shrink-wrap operating
system products.

4.3 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementer's Forum,

August 3, 2000:
http://www.smbus.org

• PCI Local Bus Specification, revision 3.0, PCI Special Interest Group.

http://www.smbus.org

Platform Initialization Specification VOLUME 5 Standards

24 7/1/2010 Version 1.1 Errata B

4.4 PEI SMBus PPI Overview
The PEI SMBus PPI is used by code, typically other PEIMs, that is running in the PEI environment
to access data on an SMBus slave device via the SMBus host controller. In particular, functions for
managing devices on SMBus buses are defined in this specification.

The interfaces that are provided in the EFI_PEI_SMBUS2_PPI are for performing basic
operations to an SMBus slave device. The system provides abstracted access to basic system
resources to allow a PEIM to have a programmatic method to access these basic system resources.
The main goal of this PPI is to provide an abstraction that simplifies the writing of PEIMs for
SMBus slave devices. This goal is accomplished by providing a standard interface to the SMBus
slave devices that does not require detailed knowledge about the particular hardware implementation
or protocols of the SMBus.

Certain implentations of the module may omit Arp capabilities. Specifically, a module will either
support Execute, ArpDevice, GetArpMap, and Notify; alternatively, a module will support only
Execute and return “not supported” for the latter 3 services.

See “PEI SMBus PPI” on page 26 for the definition of EFI_PEI_SMBUS2_PPI. This PPI is
produced by each of the SMBus host controllers in the system.

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 25

5
SMBus PPI Code Definitions

5.1 Introduction
This section contains the basic definitions for PEIMs and SMBus devices to use during the PEI
phase. The following PPI is defined in this section:

• EFI_PEI_SMBUS2_PPI

This section also contains the definitions for additional SMBus-related data types and structures that
are subordinate to the structures in which they are called. All of the data structures below except for
EFI_PEI_SMBUS_NOTIFY_FUNCTION can be used in the DXE phase as well. The following
types or structures can be found in "Related Definitions" of the parent function definition:

• EFI_SMBUS_DEVICE_ADDRESS

• EFI_SMBUS_DEVICE_COMMAND

• EFI_SMBUS_OPERATION

• EFI_SMBUS_UDID

• EFI_SMBUS_DEVICE_MAP

• EFI_PEI_SMBUS_NOTIFY_FUNCTION

Platform Initialization Specification VOLUME 5 Standards

26 7/1/2010 Version 1.1 Errata B

5.2 PEI SMBus PPI

EFI_PEI_SMBUS2_PPI

Summary
Provides the basic I/O interfaces that a PEIM uses to access its SMBus controller and the slave
devices attached to it.

GUID
#define EFI_PEI_SMBUS2_PPI_GUID \
{ 0x9ca93627, 0xb65b, 0x4324, \
{ 0xa2, 0x2, 0xc0, 0xb4, 0x61, 0x76, 0x45, 0x43 } }

PPI Interface Structure
typedef struct _EFI_PEI_SMBUS2_PPI {
 EFI_PEI_SMBUS2_PPI_EXECUTE_OPERATION Execute;
 EFI_PEI_SMBUS2_PPI_ARP_DEVICE ArpDevice;
 EFI_PEI_SMBUS2_PPI_GET_ARP_MAP GetArpMap;
 EFI_PEI_SMBUS2_PPI_NOTIFY Notify;
 EFI_GUID Identifier
} EFI_PEI_SMBUS2_PPI;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a PEIM to retrieve the address that was allocated by the SMBus host controller
during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a PEIM to register for a callback to the SMBus host controller PEIM when the
bus issues a notification to the bus controller PEIM. See the Notify() function
description.

Identifier

Identifier which uniquely identifies this SMBus controller in a system.

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 27

Description
The EFI_PEI_SMBUS2_PPI provides the basic I/O interfaces that are used to abstract accesses to
SMBus host controllers. There is one EFI_PEI_SMBUS2_PPI instance for each SMBus host
controller in a system. A PEIM that wishes to manage an SMBus slave device in a system will have
to retrieve the EFI_PEI_SMBUS2_PPI instance that is associated with its SMBus host controller.

Platform Initialization Specification VOLUME 5 Standards

28 7/1/2010 Version 1.1 Errata B

EFI_PEI_SMBUS2_PPI.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_EXECUTE_OPERATION) (
 IN CONST EFI_PEI_SMBUS2_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in "Related
Definitions" below.

Command

This command is transmitted by the SMBus host controller to the SMBus slave device
and the interpretation is SMBus slave device specific. It can mean the offset to a list of
functions inside an SMBus slave device. Not all operations or slave devices support
this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is defined in
"Related Definitions" below.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
System Management Bus (SMBus) Specification and is not related to UEFI. Type
EFI_SMBUS_OPERATION is defined in "Related Definitions" below.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This parameter will contain the

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 29

actual number of bytes that are executed for this operation. Not all operations require
this argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the System
Management Bus (SMBus) Specification. The resulting transaction will be either that the SMBus
slave devices accept this transaction or that this function returns with error.

Related Definitions
//***
// EFI_SMBUS_DEVICE_ADDRESS
//***
typedef struct _EFI_SMBUS_DEVICE_ADDRESS {
 UINTN SmbusDeviceAddress:7;
} EFI_SMBUS_DEVICE_ADDRESS;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated.

//***
// EFI_SMBUS_DEVICE_COMMAND
//***
typedef UINTN EFI_SMBUS_DEVICE_COMMAND;

//***
// EFI_SMBUS_OPERATION
//***
typedef enum _EFI_SMBUS_OPERATION {
 EfiSmbusQuickRead,
 EfiSmbusQuickWrite,
 EfiSmbusReceiveByte,
 EfiSmbusSendByte,
 EfiSmbusReadByte,
 EfiSmbusWriteByte,
 EfiSmbusReadWord,
 EfiSmbusWriteWord,
 EfiSmbusReadBlock,
 EfiSmbusWriteBlock,
 EfiSmbusProcessCall,
 EfiSmbusBWBRProcessCall

Platform Initialization Specification VOLUME 5 Standards

30 7/1/2010 Version 1.1 Errata B

} EFI_SMBUS_OPERATION;

See the System Management Bus (SMBus) Specification for descriptions of the fields in the above
definition.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll
exit criteria.

EFI_CRC_ERROR The checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed.

Timeout is determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure reflected in the
Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or
bus errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for

EfiSmbusQuickRead and EfiSmbusQuickWrite.

Length is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 31

EFI_PEI_SMBUS2_PPI.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_ARP_DEVICE) (
 IN CONST EFI_PEI_SMBUS2_PPI *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

ArpAll

A Boolean expression that indicates if the host PEIMs need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll is
TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The targeted SMBus Unique Device Identifier (UDID). The UDID may not exist for
SMBus devices with fixed addresses. Type EFI_SMBUS_UDID is defined in
"Related Definitions" below.

SlaveAddress

The new SMBus address for the slave device for which the operation is targeted. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Description
The ArpDevice() function enumerates the entire bus or enumerates a specific device that is
identified by SmbusUdid.

Platform Initialization Specification VOLUME 5 Standards

32 7/1/2010 Version 1.1 Errata B

Related Definitions
//***
// EFI_SMBUS_UDID
//***
typedef struct _EFI_SMBUS_UDID {
 UINT32 VendorSpecificId;
 UINT16 SubsystemDeviceId;
 UINT16 SubsystemVendorId;
 UINT16 Interface;
 UINT16 DeviceId;
 UINT16 VendorId;
 UINT8 VendorRevision;
 UINT8 DeviceCapabilities;
} EFI_SMBUS_UDID;

VendorSpecificId

A unique number per device.

SubsystemDeviceId

Identifies a specific interface, implementation, or device. The subsystem ID is defined
by the party that is identified by the SubsystemVendorId field.

SubsystemVendorId

This field may hold a value that is derived from any of several sources:

• The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

• The device OEM’s ID as assigned by the SBS Implementer's Forum or the PCI
SIG.

• A value that, in combination with the SubsystemDeviceId, can be used to
identify an organization or industry group that has defined a particular common
device interface specification.

Interface

Identifies the protocol layer interfaces that are supported over the SMBus connection
by the device. For example, Alert Standard Format (ASF) and IPMI.

DeviceId

The device ID as assigned by the device manufacturer (identified by the VendorId
field).

VendorId

The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

VendorRevision

UDID version number and a silicon revision identification.

DeviceCapabilities

Describes the device’s capabilities.

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 33

Status Codes Returned

EFI_SUCCESS The SMBus slave device address was set.

EFI_INVALID_PARAMETER SlaveAddress is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The SMBus slave device did not respond.

EFI_DEVICE_ERROR The request was not completed because the transaction failed.
Device errors are a result of a transaction collision, illegal command
field, or unclaimed cycle (host initiated).

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

Platform Initialization Specification VOLUME 5 Standards

34 7/1/2010 Version 1.1 Errata B

EFI_PEI_SMBUS2_PPI.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair of
the slave devices that were enumerated by the SMBus host controller PEIM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_GET_ARP_MAP) (
 IN CONST_EFI_PEI_SMBUS2_PPI *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

Length

Size of the buffer that contains the SMBus device map.

SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller PEIM. Type
EFI_SMBUS_DEVICE_MAP is defined in "Related Definitions" below.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that are enumerated by
the SMBus host PEIM.

Related Definitions
//***
// EFI_SMBUS_DEVICE_MAP
//***
typedef struct _EFI_SMBUS_DEVICE_MAP {
 EFI_SMBUS_DEVICE_ADDRESS SmbusDeviceAddress;
 EFI_SMBUS_UDID SmbusDeviceUdid;
} EFI_SMBUS_DEVICE_MAP;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 35

SmbusDeviceUdid

The SMBUS Unique Device Identifier (UDID) as defined in EFI_SMBUS_UDID.
Type EFI_SMBUS_UDID is defined in
EFI_PEI_SMBUS2_PPI.ArpDevice().

Status Codes Returned

EFI_SUCCESS The device map was returned correctly in the buffer.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

Platform Initialization Specification VOLUME 5 Standards

36 7/1/2010 Version 1.1 Errata B

EFI_PEI_SMBUS2_PPI.Notify()

Summary
Allows a PEIM to register for a callback when the PEIM detects a state that it needs to propagate to
other PEIMs that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_NOTIFY) (
 IN CONST_EFI_PEI_SMBUS2_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_PEI_SMBUS_NOTIFY2_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered functions. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Data

Data that the host controller detects as sending a message and calls all the registered
functions.

NotifyFunction

The function to call when the PEIM detects the SlaveAddress and Data pair.
Type EFI_PEI_SMBUS_NOTIFY2_FUNCTION is defined in "Related
Definitions" below.

Description
The Notify() function registers all the callback functions to allow the PEIM to call these
functions when the SlaveAddress/Data pair happens.

 SMBus PPI Code Definitions

Version 1.1 Errata B 7/1/2010 37

Related Definitions
//***
// EFI_PEI_SMBUS_NOTIFY2_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_NOTIFY2_FUNCTION) (
 IN CONST_EFI_PEI_SMBUS2_PPI *SmbusPpi,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SmbusPpi

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned

EFI_SUCCESS NotifyFunction has been registered.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

Platform Initialization Specification VOLUME 5 Standards

38 7/1/2010 Version 1.1 Errata B

SMBIOS Protocol

Version 1.1 Errata B 7/1/2010 39

6
SMBIOS Protocol

EFI_SMBIOS_PROTOCOL

Summary
Allows consumers to log SMBIOS data records, and enables the producer to create the SMBIOS
tables for a platform.

GUID
#define EFI_SMBIOS_PROTOCOL_GUID \
 { 0x3583ff6, 0xcb36, 0x4940, \
 { 0x94, 0x7e, 0xb9, 0xb3, 0x9f, 0x4a, 0xfa, 0xf7 } }

Protocol Interface Structure
typedef struct _EFI_SMBIOS_PROTOCOL {
 EFI_SMBIOS_ADD Add;
 EFI_SMBIOS_UPDATE_STRINGUpdateString;
 EFI_SMBIOS_REMOVE Remove;
 EFI_SMBIOS_GET_NEXT GetNext;
 UINT8 MajorVersion;
 UINT8 MinorVersion;
} EFI_SMBIOS_PROTOCOL;

Member Description
Add

Add an SMBIOS record including the formatted area and the optional strings that
follow the formatted area.

UpdateString

Update a string in the SMBIOS record.

Remove

Remove an SMBIOS record.

GetNext

Discover all SMBIOS records.

MajorVersion

The major revision of the SMBIOS specification supported.

MinorVersion

The minor revision of the SMBIOS specification supported.

Platform Initialization Specification VOLUME 5 Standards

40 7/1/2010 Version 1.1 Errata B

Description
This protocol provides an interface to add, remove or discover SMBIOS records. The driver which
produces this protocol is responsible for creating the SMBIOS data tables and installing the pointer
to the tables in the EFI System Configuration Table.

The caller is responsible for only adding SMBIOS records that are valid for the SMBIOS
MajorVersion and MinorVersion. When an enumerated SMBIOS field's values are
controlled by the DMTF, new values can be used as soon as they are defined by the DMTF without
requiring an update to MajorVersion and MinorVersion.

The SMBIOS protocol can only be called a TPL < TPL_NOTIFY.

SMBIOS Protocol

Version 1.1 Errata B 7/1/2010 41

EFI_SMBIOS_PROTOCOL.Add()

Summary
Add an SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_ADD) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_HANDLE ProducerHandle, OPTIONAL
 IN OUT EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN EFI_SMBIOS_TABLE_HEADER *Record
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

ProducerHandle

The handle of the controller or driver associated with the SMBIOS information. NULL
means no handle.

SmbiosHandle

On entry, if non-zero, the handle of the SMBIOS record. If zero, then a unique handle
will be assigned to the SMBIOS record. If the SMBIOS handle is already in use
EFI_ALREADY_STARTED is returned and the SMBIOS record is not updated.

Record

The data for the fixed portion of the SMBIOS record. The format of the record is
determined by EFI_SMBIOS_TABLE_HEADER.Type. The size of the formatted
area is defined by EFI_SMBIOS_TABLE_HEADER.Length and either followed
by a double-null (0x0000) or a set of null terminated strings and a null.

Description
This function allows any agent to add SMBIOS records. The caller is responsible for ensuring
Record is formatted in a way that matches the version of the SMBIOS specification as defined in
the MajorRevision and MinorRevision fields of the EFI_SMBIOS_PROTOCOL.

Record must follow the SMBIOS structure evolution and usage guidelines in the SMBIOS
specification. Record starts with the formatted area of the SMBIOS structure and the length is
defined by EFI_SMBIOS_TABLE_HEADER.Length. Each SMBIOS structure is terminated by a
double-null (0x0000), either directly following the formatted area (if no strings are present) or
directly following the last string. The number of optional strings is not defined by the formatted area,
but is fixed by the call to Add(). A string can be a place holder, but it must not be a NULL string as
two NULL strings look like the double-null that terminates the structure.

Platform Initialization Specification VOLUME 5 Standards

42 7/1/2010 Version 1.1 Errata B

Related Definitions
typedef UINT8 EFI_SMBIOS_TYPE;
typedef UINT16 EFI_SMBIOS_HANDLE;

typedef struct {
 EFI_SMBIOS_TYPE Type;
 UINT8 Length;
 EFI_SMBIOS_HANDLE Handle;
} EFI_SMBIOS_TABLE_HEADER;

#define EFI_SMBIOS_TYPE_BIOS_INFORMATION 0
#define EFI_SMBIOS_TYPE_SYSTEM_INFORMATION 1
#define EFI_SMBIOS_TYPE_BASEBOARD_INFORMATION 2
#define EFI_SMBIOS_TYPE_SYSTEM_ENCLOSURE 3
#define EFI_SMBIOS_TYPE_PROCESSOR_INFORMATION 4
#define EFI_SMBIOS_TYPE_MEMORY_CONTROLLER_INFORMATION 5
#define EFI_SMBIOS_TYPE_MEMORY_MODULE_INFORMATON 6
#define EFI_SMBIOS_TYPE_CACHE_INFORMATION 7
#define EFI_SMBIOS_TYPE_PORT_CONNECTOR_INFORMATION 8
#define EFI_SMBIOS_TYPE_SYSTEM_SLOTS 9
#define EFI_SMBIOS_TYPE_ONBOARD_DEVICE_INFORMATION 10
#define EFI_SMBIOS_TYPE_OEM_STRINGS 11
#define EFI_SMBIOS_TYPE_SYSTEM_CONFIGURATION_OPTIONS 12
#define EFI_SMBIOS_TYPE_BIOS_LANGUAGE_INFORMATION 13
#define EFI_SMBIOS_TYPE_GROUP_ASSOCIATIONS 14
#define EFI_SMBIOS_TYPE_SYSTEM_EVENT_LOG 15
#define EFI_SMBIOS_TYPE_PHYSICAL_MEMORY_ARRAY 16
#define EFI_SMBIOS_TYPE_MEMORY_DEVICE 17
#define EFI_SMBIOS_TYPE_32BIT_MEMORY_ERROR_INFORMATION 18
#define EFI_SMBIOS_TYPE_MEMORY_ARRAY_MAPPED_ADDRESS 19
#define EFI_SMBIOS_TYPE_MEMORY_DEVICE_MAPPED_ADDRESS 20
#define EFI_SMBIOS_TYPE_BUILT_IN_POINTING_DEVICE 21
#define EFI_SMBIOS_TYPE_PORTABLE_BATTERY 22
#define EFI_SMBIOS_TYPE_SYSTEM_RESET 23
#define EFI_SMBIOS_TYPE_HARDWARE_SECURITY 24
#define EFI_SMBIOS_TYPE_SYSTEM_POWER_CONTROLS 25
#define EFI_SMBIOS_TYPE_VOLTAGE_PROBE 26
#define EFI_SMBIOS_TYPE_COOLING_DEVICE 27
#define EFI_SMBIOS_TYPE_TEMPERATURE_PROBE 28
#define EFI_SMBIOS_TYPE_ELECTRICAL_CURRENT_PROBE 29
#define EFI_SMBIOS_TYPE_OUT_OF_BAND_REMOTE_ACCESS 30
#define EFI_SMBIOS_TYPE_BOOT_INTEGRITY_SERVICE 31
#define EFI_SMBIOS_TYPE_SYSTEM_BOOT_INFORMATION 32
#define EFI_SMBIOS_TYPE_64BIT_MEMORY_ERROR_INFORMATION 33
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE 34
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE_COMPONENT 35
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE_THRESHOLD_DATA 36

SMBIOS Protocol

Version 1.1 Errata B 7/1/2010 43

#define EFI_SMBIOS_TYPE_MEMORY_CHANNEL 37
#define EFI_SMBIOS_TYPE_IPMI_DEVICE_INFORMATION 38
#define EFI_SMBIOS_TYPE_SYSTEM_POWER_SUPPLY 39
#define EFI_SMBIOS_TYPE_INACTIVE 126
#define EFI_SMBIOS_TYPE_END_OF_TABLE 127
#define EFI_SMBIOS_OEM_BEGIN 128
#define EFI_SMBIOS_OEM_END 255

typedef UINT8 EFI_SMBIOS_STRING;

Status Codes Returned

EFI_SUCCESS Record was added.

EFI_OUT_OF_RESOURCES Record was not added.

EFI_ALREADY_STARTED The SmbiosHandle passed in was already in use.

Platform Initialization Specification VOLUME 5 Standards

44 7/1/2010 Version 1.1 Errata B

EFI_SMBIOS_PROTOCOL.UpdateString()

Summary
Update the string associated with an existing SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_UPDATE_STRING) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN UINTN *StringNumber,
 IN CHAR8 *String
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

SMBIOS Handle of structure that will have its string updated.

StringNumber

The non-zero string number of the string to update

String

Update the StringNumber string with String.

Description
This function allows the update of specific SMBIOS strings. The number of valid strings for any
SMBIOS record is defined by how many strings were present when Add() was called.

Status Codes Returned

EFI_SUCCESS SmbiosHandle had its StringNumber String updated.

EFI_INVALID_PARAMETER SmbiosHandle does not exist.

EFI_UNSUPPORTED String was not added since it's longer than 64 significant characters.

EFI_NOT_FOUND The StringNumber.is not valid for this SMBIOS record.

SMBIOS Protocol

Version 1.1 Errata B 7/1/2010 45

 EFI_SMBIOS_PROTOCOL.Remove()

Summary
Remove an SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_REMOVE) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_SMBIOS_PROTOCOL SmbiosHandle
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

The handle of the SMBIOS record to remove.

Description
This function removes an SMBIOS record using the handle specified by SmbiosHandle.

Status Codes Returned

EFI_SUCCESS SMBIOS record was removed.

EFI_INVALID_PARAMETER SmbiosHandle does not specify a valid SMBIOS record.

Platform Initialization Specification VOLUME 5 Standards

46 7/1/2010 Version 1.1 Errata B

EFI_SMBIOS_PROTOCOL.GetNext()

Summary
Allow the caller to discover all or some of the SMBIOS records.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_GET_NEXT) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN OUT EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN EFI_SMBIOS_TYPE *Type, OPTIONAL
 OUT EFI_SMBIOS_TABLE_HEADER **Record,
 OUT EFI_HANDLE *ProducerHandle OPTIONAL
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

On entry, points to the previous handle of the SMBIOS record. On exit, points to the
next SMBIOS record handle. If it is zero on entry, then the first SMBIOS record
handle will be returned. If it returns zero on exit, then there are no more SMBIOS
records.

Type

On entry, it points to the type of the next SMBIOS record to return. If NULL, it
indicates that the next record of any type will be returned. Type is not
modified by the this function.

Record

On exit, points to a pointer to the the SMBIOS Record consisting of the
formatted area followed by the unformatted area. The unformatted area
optionally contains text strings.

ProducerHandle

On exit, points to the ProducerHandle registered by Add(). If no
ProducerHandle was passed into Add() NULL is returned. If a NULL pointer is
passed in no data will be returned.

Description
This function allows all of the SMBIOS records to be discovered. It's possible to find
only the SMBIOS records that match the optional Type argument.

SMBIOS Protocol

Version 1.1 Errata B 7/1/2010 47

Status Codes Returned.

EFI_SUCCESS .SMBIOS record information was successfully returned in Record.

SmbiosHandle is the handle of the current SMBIOS record

EFI_NOT_FOUND The SMBIOS record with SmbiosHandle was the last available

record.

Platform Initialization Specification VOLUME 5 Standards

48 7/1/2010 Version 1.1 Errata B

S3 Resume

Version 1.1 5/22/2009 49

7
S3 Resume

7.1 S3 Overview
This specification defines the core code and services that are required for an implementation of the
S3 resume boot path in the PI. The S3 resume boot path is a special boot path that causes the system
to take actions different from those in the normal boot path. In this special path, the system derives
pre-saved data about the platform's configuration from persistent storage and configures the platform
before jumping to the operating system's waking vector.

This specification does the following:

• Describes the basic components of the S3 resume boot path, how it relates to a normal boot path,
and how it interacts with other PI phases and code

• Provides code definitions for the S3-related protocols and PPIs that are architecturally required
by the PI Specification.

7.2 Goals
The PI S3 resume boot path design has the following goals:

Extensibility:

The PI S3 resume boot path should easily adapt to different platforms by replacing only a few
platform-specific modules.

High performance:

The performance of the PI S3 resume boot path is highly visible to end users and must be
optimized.

7.3 Requirements
All aspects of this PI S3 resume boot path design must comply with the Advanced Configuration
and Power Interface Specification (hereafter referred to as the "ACPI specification"), revision 2.0.

The design should emphasize size efficiency, code reuse and maintainability.

7.4 Assumptions

7.4.1 Multiple Phases of Platform Initialization
The PI Architecture consists of multiple phases. For example:

• Pre-EFI Initialization (PEI)

• Driver Execution Environment (DXE)

Platform Initialization Specification VOLUME 5 Standards

50 5/22/2009 Version 1.1

• SMM (System Management Mode)

The PEI phase is responsible for initializing enough of the platform's resources to enable the
execution of the DXE phase, which is where the majority of platform configuration is performed by
different DXE drivers.

Initialization that is done in PEI is not necessarily preserved in DXE. In other words, a DXE driver
can override the configuration settings that were derived from PEI. In light of this fact, the preboot
platform state that the S3 resume boot path needs to restore is the DXE snapshot of the platform
state, rather than the PEI snapshot of the platform state.

7.4.2 Process of Platform Initialization
Platform initialization can be viewed as a flow of the following:

• I/O operations

• Memory operations

• Accessing the PCI configuration space

• A collection of platform-specific actions that can be abstracted by Pre-EFI Initialization Module
(PEIM) PEIM-to-PEIM Interfaces (PPIs)

The process of restoring hardware settings in different platforms involves different actions or even
different instruction sets. These differences, however, can be abstracted behind PEIM PPIs.

7.5 Restoring the Platform
The goal of the S3 resume process is to restore the platform to its preboot configuration. However, it
is impossible to restore the platform in only one step, without going through all the PI initialization
phases, because the PI Architecture cannot have a priori knowledge of the following:

• Preboot configuration that is introduced by various PEIMs

• Drivers provided by different vendors

As a result, the PI Architecture still needs to restore the platform in a phased fashion as it does in a
normal boot path. The figure below shows the phases in an S3 resume boot path. See the following
subsections for details of each phase.

S3 Resume

Version 1.1 5/22/2009 51

Figure 1. Framework S3 Resume Boot Path

7.5.1 Phases in the S3 Resume Boot Path

7.5.1.1 SEC and the S3 Resume Boot Path
The Security (SEC) phase is the first architectural phase in the PI Architecture. It builds the root of
trust for the entire system. As such, the SEC phase remains intact in the S3 resume boot path.

7.5.1.2 PEI

7.5.1.2.1 PEI and the S3 Resume Boot Path

The PEI phase initializes the platform with the minimum configuration needed to enable the
execution of the DXE phase. During the S3 resume boot path, the Framework still needs to restore
the PEI portion of configuration.

Each PEIM is "boot path aware" in that the PEIM can call the appropriate PEI service to find out
what the current boot path is. This awareness enables the platform to restore more efficiently
because the same PEIM can save the configuration during a normal boot path and take advantage of
that configuration in the S3 resume boot path. The figure below shows how the PEI phase works in a
normal boot path and in an S3 resume boot path.

SEC PEI DXE BDS

SEC

PEI
(S3-aware

PEIMs to restore
PEI phase

configuration)

Boot Script
Executor PEIM to

restore DXE phase
configuration

OS loadNormal Boot

S3 Resume

Boot Script
Table in NVS

Save

Execute

OS waking vector

Platform Initialization Specification VOLUME 5 Standards

52 5/22/2009 Version 1.1

Figure 2. PEI Phase in S3 Resume Boot Path

7.5.1.2.2 Saving Configuration Data in PEI

There are different ways to save configuration data, such as the firmware volume variable, for the
PEI phase in nonvolatile storage (NVS). One way is to save the data directly in the PEI phase.
However, if the PEI phase does not implement the capability to write to a firmware volume, a PEIM
can choose to pass the configuration data to the DXE phase using a Hand-Off Block (HOB). The
PEIM's DXE counterpart or another appropriate DXE component can then save the configuration
data. The figure below illustrates this mechanism to save the configuration data. See the PI
Specification for more details on HOBs.

To achieve higher performance, it is recommended to implement the latter mechanism because code
running in the PEI phase is more time consuming than code running in the DXE phase. Note that the
way to save the configuration data during the PEI phase is outside the scope of this document.

PEIM initializes
the platform

without known
configuration

Normal Boot Path

Nonvolatile
storage

Save Configuration

PEIM initializes
the platform
with known

configuration

Retrieve Configuration

S3 Resume Boot Path

S3 Resume

Version 1.1 5/22/2009 53

Figure 3. Configuration Save for PEI Phase

7.5.1.3 DXE

7.5.1.3.1 DXE and the S3 Resume Boot Path

In the DXE phase during a normal boot path, various DXE drivers collectively bring the platform to
the preboot state. However, bringing DXE into the S3 resume boot path and making a DXE driver
boot-path aware is very risky for the following reasons:

• The DXE phase hosts numerous services, which makes it rather large.

• Loading DXE from flash is very time consuming.

Even if DXE could be relocated into NVS during a normal boot, the large amount of memory that
DXE consumes and the complexity of executing the DXE phase do not justify doing so.

Instead, the Framework provides a boot script that lets the S3 resume boot path avoid the DXE phase
altogether, which helps to maximize optimum performance. During a normal boot, DXE drivers
record the platform's configuration in the boot script, which is saved in NVS. During the S3 resume
boot path, a boot script engine executes the script, thereby restoring the configuration.

P E IM in itia lize s

th e p la tfo rm

w ith ou t kn ow n

co n figu ra tio n

N o n vo la tile

s to ra ge

N o rm a l

B o o t P a th

P E IM in itia lize s

th e p la tfo rm

w ith kno w n

co n figu ra tio n

S 3 R e su m e

 B o o t P a th

D isp a tch D X E

com po ne n ts

R e trie ve

con figu ra tio n

S ave

con figu ra tion

P a ss H O B from P E I

ph ase to D X E p ha se

H O B

B u ild co n fig u ra tio n

in to H O B

Platform Initialization Specification VOLUME 5 Standards

54 5/22/2009 Version 1.1

The ACPI specification only requires the BIOS to restore chipset and processor configuration. The
chipset configuration can be viewed as a series of memory, I/O, and PCI configuration operations,
which DXE drivers record in the Framework boot script. During an S3 resume, a boot script engine
executes the boot script to restore the chipset settings. Processor configuration involves the
following:

• "Basic setup for System Management Mode (SMM)

• "Microcode updates

• "Processor-specific initialization

• "Processor cache setting

DXE drivers register a pointer to a function in the boot script to restore processor configuration.
During the S3 resume boot path, the boot script engine can jump to execute the registered code to
restore all processor-related configurations.

7.5.1.3.2 S3 Resume PPI and DXE IPL PPI

The DXE Initial Program Load (IPL) PPI is architecturally the last PPI that is executed in the PEI
phase. It is also made aware of the exact boot path that the Framework is currently using. It discovers
the boot mode and initiates the process of restoring the pre-boot platform state and jumping to the
operating system (OS) waking vector. The DXE phase is not entered, as it would be during a normal
boot.

When resuming from S3, the DXE IPL PEIM will transfer control to the S3 Resume PPI, which is
responsible for restoring the platform configuration and jumping to the waking vector.

7.5.1.4 SMM
The EFI_S3_SMM_SAVE_STATE_PROTOCOL publishes the PI SMM boot script abstractions

In an S3 resume boot path the data stored via this protocol is replayed in the order it was stored.

The order of replay is the order either of the S3 Save State Protocol or S3 SMM Save State Protocol
Write() functions were called during the boot process. Insert(), Label(), and
Compare() operations are ordered relative other S3 SMM Save State Protocol Write()
operations and the order relative to S3 State Save Write() operations is not defined. Due to these
ordering restrictions it is recommended that the S3 State Save Protocol be used during the DXE
phase when every possible.

The EFI_S3_SMM_SAVE_STATE_PROTOCOL can be called at runtime and
EFI_OUT_OF_RESOURCES may be returned from a runtime call. It is the responsibility of the
platform to ensure enough memory resource exists to save the system state. It is recommended that
runtime calls be minimized by the caller.3

7.6 PEI Boot Script Executer PPI

S3 Resume

Version 1.1 5/22/2009 55

EFI_PEI_S3_RESUME2_PPI

Summary
This PPI produces functions to interpret and execute the PI boot script table.

GUID
#define EFI_PEI_S3_RESUME2_PPI_GUID \
 {0x6d582dbc, 0xdb85, 0x4514, \
 0x8f, 0xcc, 0x5a, 0xdf, 0x62, 0x27, 0xb1,0x47}

PPI Interface Structure
typedef struct _EFI_PEI_S3_RESUME2_PPI {
 EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG2 S3RestoreConfig2;
} EFI_PEI_S3_RESUME2_PPI;

Parameters
S3RestoreConfig2

Perform S3 resume operation.

Description
This PPI is published by a PEIM and provides for the restoration of the platform's configuration
when resuming from the ACPI S3 power state. The ability to execute the boot script may depend on
the availability of other PPIs. For example, if the boot script includes an SMBus command, this
PEIM looks for the relevant PPI that is able to execute that command.

7.7 S3 Save State Protocol
This section defines how a DXE PI module can record IO operations to be performed as part of the
S3 resume. This is done via the EFI_S3_SAVE_STATE_PROTOCOL and this allows the
implementation of the S3 resume boot path to be abstracted from DXE drivers.

EFI_S3_SAVE_STATE_PROTOCOL

Summary
Used to store or record various IO operations to be replayed during an S3 resume.

GUID
#define EFI_S3_SAVE_STATE_PROTOCOL_GUID \

{ 0xe857caf6, 0xc046, 0x45dc, \

{ 0xbe, 0x3f, 0xee, 0x7, 0x65, 0xfb, 0xa8, 0x87 } }

Platform Initialization Specification VOLUME 5 Standards

56 5/22/2009 Version 1.1

Protocol Interface Structure
typedef struct _EFI_S3_SAVE_STATE_PROTOCOL
 EFI_S3_SAVE_STATE_PROTOCOL;

typedef struct _EFI_S3_SAVE_STATE_PROTOCOL {
 EFI_S3_SAVE_STATE_WRITE Write;
 EFI_S3_SAVE_STATE_INSERT Insert;
 EFI_S3_SAVE_STATE_LABEL Label;
 EFI_S3_SAVE_STATE_COMPARE Compare;
} EFI_S3_SAVE_STATE_PROTOCOL;

Parameters
Write

Write an opcode at the end of the boot script table. See the Write() function
description.

Insert

Write an opcode at the specified position in the boot script table. See the Insert()
function description.

Label

Find an existing label in the boot script table or, if not present, create it. See the
Label() function description.

Compare

Compare two positions in the boot script table to determine their relative location. See
the Compare() function description.

Description
The EFI_S3_SAVE_STATE_PROTOCOL publishes the PI boot script abstractions. This protocol is
not required for all platforms.

On an S3 resume boot path the data stored via this protocol is replayed in the order it appears in the
boot script table.

S3 Resume

Version 1.1 5/22/2009 57

EFI_S3_SAVE_STATE_PROTOCOL.Write()

Summary
Record operations that need to be replayed during an S3 resume .

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_S3_SAVE_STATE_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

The operation code (opcode) number. See "Related Definitions" below for the
defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections for the
definition of each opcode.

Description
This function is used to store an OpCode to be replayed as part of the S3 resume boot path. It is
assumed this protocol has platform specific mechanism to store the OpCode set and replay them
during the S3 resume.

Note: The opcode is inserted at the end of the boot script table.

This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.

If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

OpCode values of 0x80 - 0xFE are reserved for implementation-specific functions.

Platform Initialization Specification VOLUME 5 Standards

58 5/22/2009 Version 1.1

Related Definitions
//***
// EFI Boot Script Opcode definitions
//***

#define EFI_BOOT_SCRIPT_IO_WRITE_OPCODE 0x00
#define EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE 0x01
#define EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE 0x02
#define EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE 0x03
#define EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 0x04
#define EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 0x05
#define EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE 0x06
#define EFI_BOOT_SCRIPT_STALL_OPCODE 0x07
#define EFI_BOOT_SCRIPT_DISPATCH_OPCODE 0x08
#define EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE 0x09
#define EFI_BOOT_SCRIPT_INFORMATION_OPCODE 0x0A
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE 0x0B
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE 0x0C
#define EFI_BOOT_SCRIPT_IO_POLL_OPCODE 0x0D
#define EFI_BOOT_SCRIPT_MEM_POLL_OPCODE 0x0E
#define EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE 0x0F
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE 0x10

//***
// EFI_BOOT_SCRIPT_WIDTH
//***

typedef enum {
 EfiBootScriptWidthUint8,
 EfiBootScriptWidthUint16,
 EfiBootScriptWidthUint32,
 EfiBootScriptWidthUint64,
 EfiBootScriptWidthFifoUint8,
 EfiBootScriptWidthFifoUint16,
 EfiBootScriptWidthFifoUint32,
 EfiBootScriptWidthFifoUint64,
 EfiBootScriptWidthFillUint8,
 EfiBootScriptWidthFillUint16,
 EfiBootScriptWidthFillUint32,
 EfiBootScriptWidthFillUint64,
 EfiBootScriptWidthMaximum
} EFI_BOOT_SCRIPT_WIDTH;

S3 Resume

Version 1.1 5/22/2009 59

Status Codes Returned

7.7.1 Opcodes for Write()
This section contains the prototypes for variations of the Write() function, based on the Opcode
parameter.

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE

Summary
Adds a record for an I/O write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_WRITE_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

EFI_SUCCESS The operation succeeded. A record was added into the specified
script table.

EFI_INVALID_PARAMETER The parameter is illegal or the given boot script is not supported.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

Platform Initialization Specification VOLUME 5 Standards

60 5/22/2009 Version 1.1

Count

The number of I/O operations to perform. The number of bytes moved is Width size
* Count, starting at Address.

Buffer

The source buffer from which to write data. The buffer size is Width size * Count.

Description
This function adds an I/O write record into a specified boot script table. On script execution, this
operation writes the presaved value into the specified I/O ports.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 61

EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE

Summary
Adds a record for an I/O modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Data

A pointer to the data to be OR-ed.

DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

Description
This function adds an I/O read and write record into the specified boot script table. When the script
is executed, the register at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

62 5/22/2009 Version 1.1

EFI_BOOT_SCRIPT_IO_POLL_OPCODE

Summary
Adds a record for I/O reads the I/O location and continues when the exit criteria is satisfied or after a
defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero
in Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

S3 Resume

Version 1.1 5/22/2009 63

Description
This function adds a delay to the boot script table. The I/O read operation is repeated until either a
timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to Data. At least
one I/O access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

64 5/22/2009 Version 1.1

 EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE

Summary
Adds a record for a memory write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Count

The number of memory operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Description
This function adds a memory write record into a specified boot script table. When the script is
executed, this operation writes the presaved value into the specified memory location.

S3 Resume

Version 1.1 5/22/2009 65

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

66 5/22/2009 Version 1.1

EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE

Summary
Adds a record for a memory modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Data

A pointer to the data to be OR-ed.

DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

Description
This function adds a memory read and write record into a specified boot script table. When the script
is executed, the memory at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 67

EFI_BOOT_SCRIPT_MEM_POLL_OPCODE

Summary
Adds a record for memory reads of the memory location and continues when the exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero in
Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Platform Initialization Specification VOLUME 5 Standards

68 5/22/2009 Version 1.1

Description
This function adds a delay to the boot script table. The memory read operation is repeated until
either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to Data.
At least one I/O access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 69

EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12-1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Count

The number of PCI operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Platform Initialization Specification VOLUME 5 Standards

70 5/22/2009 Version 1.1

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 71

 EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

A pointer to the data to be OR-ed. The size depends on Width.

DataMask

A pointer to the data mask to be AND-ed.

Description
This function adds a PCI configuration read and write record into a specified boot script table. When
the script is executed, the PCI configuration space location at Address is read, AND-ed with
DataMask, and OR-ed with, and finally the result is written back.

Platform Initialization Specification VOLUME 5 Standards

72 5/22/2009 Version 1.1

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 73

EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE

Summary
Adds a record for PCI configuration space reads and continues when the exit criteria is satisfied or
after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero
in Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Platform Initialization Specification VOLUME 5 Standards

74 5/22/2009 Version 1.1

Description
This function adds a delay to the boot script table. The PCI configuration read operation is repeated
until either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to
Data. At least one PCI configuration access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 75

EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE. Type
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. See Table 12-1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Count

The number of PCI operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Platform Initialization Specification VOLUME 5 Standards

76 5/22/2009 Version 1.1

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 77

EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

A pointer to the data to be OR-ed. The size depends on Width.

DataMask

A pointer to the data mask to be AND-ed.

Platform Initialization Specification VOLUME 5 Standards

78 5/22/2009 Version 1.1

Description
This function adds a PCI configuration read and write record into a specified boot script table. When
the script is executed, the PCI configuration space location at Address is read, AND-ed with
DataMask, and OR-ed with, and finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 79

EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE

Summary
Adds a record for PCI configuration space reads and continues when the exit criteria is satisfied or
after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Type EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. See Table 12 1 in the Extensible
Firmware Interface Specification, version 1.10, for the address format.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero in
Data are ignored when polling the memory address.

Platform Initialization Specification VOLUME 5 Standards

80 5/22/2009 Version 1.1

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Description
This function adds a delay to the boot script table. The PCI configuration read operation is repeated
until either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to
Data. At least one PCI configuration access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 81

EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE

Summary
Adds a record for an SMBus command execution into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN UINTN *Length,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE. Type
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

SlaveAddress

The SMBus address for the slave device that the operation is targeting. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

Command

The command that is transmitted by the SMBus host controller to the SMBus slave
device. The interpretation is SMBus slave device specific. It can mean the offset to a
list of functions inside an SMBus slave device. Type
EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

Operation

Indicates which particular SMBus protocol it will use to execute the SMBus
transactions. Type EFI_SMBUS_OPERATION is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Platform Initialization Specification VOLUME 5 Standards

82 5/22/2009 Version 1.1

Length

A pointer to signify the number of bytes that this operation will do.

Buffer

Contains the value of data to execute to the SMBUS slave device.

Description
This function adds an SMBus command execution record into a specified boot script table. When the
script is executed, this operation executes a specified SMBus command.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 83

EFI_BOOT_SCRIPT_STALL_OPCODE

Summary
Adds a record for an execution stall on the processor into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN UINTN Duration
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_STALL_OPCODE. Type
EFI_BOOT_SCRIPT_STALL_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Duration

Duration in microseconds of the stall.

Description
This function adds a stall record into a specified boot script table. When the script is executed, this
operation will stall the system for Duration number of microseconds.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

84 5/22/2009 Version 1.1

EFI_BOOT_SCRIPT_DISPATCH_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Type
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI 2.0 Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table.

The EntryPoint must point to memory of type of EfiRuntimeServicesCode,
EfiRuntimeServicesData, or EfiACPIMemoryNVS. The EntryPoint must have the same
calling convention as the PI DXE Phase.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 85

EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint,
 IN EFI_PHYSICAL_ADDRESS Context
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Type
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI Specification.

Context

Argument to be passed into the EntryPoint of the code to be dispatched. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI
Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table.

The EntryPoint and Context must point to memory of type of
EfiRuntimeServicesCode, EfiRuntimeServicesData, or EfiACPIMemoryNVS. The
EntryPoint must have the same calling convention as the PI DXE Phase.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Specification VOLUME 5 Standards

86 5/22/2009 Version 1.1

EFI_BOOT_SCRIPT_INFORMATION_OPCODE

Summary
Store arbitrary information in the boot script table. This opcode is a no-op on dispatch and is only
used for debugging script issues.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN UINT32 InformationLength,
 IN EFI_PHYSICAL_ADDRESS Information
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Type
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

InformationLenght

Length of the data in bytes.

Information

Information to be logged in the boot scrpit.

Description
This function adds a record that has no impact on the S3 replay. This function is used to store debug
information in the S3 data stream.

The Information must point to memory of type of EfiRuntimeServicesCode,
EfiRuntimeServicesData, or EfiACPIMemoryNVS.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume

Version 1.1 5/22/2009 87

EFI_S3_SAVE_STATE_PROTOCOL.Insert()

Summary
Record operations that need to be replayed during an S3 resume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_INSERT) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN BOOLEAN BeforeOrAfter,
 IN OUT EFI_S3_BOOT_SCRIPT_POSITION *Position OPTIONAL,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

BeforeOrAfter

Specifies whether the opcode is stored before (TRUE) or after (FALSE) the position
in the boot script table specified by Position. If Position is NULL or points to
NULL then the new opcode is inserted at the beginning of the table (if TRUE) or end
of the table (if FALSE).

Position

On entry, specifies the position in the boot script table where the opcode will be
inserted, either before or after, depending on BeforeOrAfter. On exit, specifies
the position of the inserted opcode in the boot script table.

OpCode

The operation code (opcode) number. See "Related Definitions" in Write() for the
defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections for the
definition of each opcode.

Description
This function is used to store an OpCode to be replayed as part of the S3 resume boot path. It is
assumed this protocol has platform specific mechanism to store the OpCode set and replay them
during the S3 resume.

The opcode is stored before (TRUE) or after (FALSE) the position in the boot script table specified
by Position. If Position is NULL or points to NULL then the new opcode is inserted at the
beginning of the table (if TRUE) or end of the table (if FALSE).

Platform Initialization Specification VOLUME 5 Standards

88 5/22/2009 Version 1.1

The position which is pointed to by Position upon return can be used for subsequent insertions.

This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.

If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

OpCode values of 0x80 - 0xFE are reserved for implementation specific functions.

Related Definitions
typedef VOID *EFI_S3_BOOT_SCRIPT_POSITION;

Status Codes Returned

EFI_SUCCESS The operation succeeded. An opcode was added into the script
table.

EFI_INVALID_PARAMETER The Opcode is an invalid opcode value.

EFI_INVALID_PARAMETER The Position is not a valid position in the boot script table.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

S3 Resume

Version 1.1 5/22/2009 89

EFI_S3_SAVE_STATE_PROTOCOL.Label()

Summary
Find a label within the boot script table and, if not present, optionally create it.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_LABEL) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN BOOLEAN BeforeOrAfter,
 IN BOOLEAN CreateIfNotFound,
 IN OUT EFI_S3_BOOT_SCRIPT_POSITION *Position OPTIONAL,
 IN CONST CHAR8 *Label
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

BeforeOrAfter

Specifies whether the label is stored before (TRUE) or after (FALSE) the position in
the boot script table specified by Position. If Position is NULL or points to
NULL then the new label is inserted at the beginning of the table (if TRUE) or end of
the table (if FALSE).

CreateIfNotFound

Specifies whether the label will be created if the label does not exists (TRUE) or not
(FALSE).

Position

On entry, specifies the position in the boot script table where the label will be inserted,
either before or after, depending on BeforeOrAfter. On exit, specifies the position
of the inserted label in the boot script table.

Label

Points to the label which will be inserted in the boot script table.

Description
If the label Label is already exists in the boot script table, then no new label is created, the
position of the Label is returned in *Position and EFI_SUCCESS is returned.

If the label Label does not already exist and CreateIfNotFound is TRUE, then it will be
created before or after the specified position and EFI_SUCCESS is returned.

If the label Label does not already exist and CreateIfNotFound is FALSE, then
EFI_NOT_FOUND is returned.

Platform Initialization Specification VOLUME 5 Standards

90 5/22/2009 Version 1.1

Status Codes Returned

EFI_SUCCESS The label already exists or was inserted.

EFI_NOT_FOUND The label did not already exist and CreateifNotFound was
FALSE.

EFI_INVALID_PARAMETER The Opcode is an invalid opcode value.

EFI_INVALID_PARAMETER The Position is not a valid position in the boot script table.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

S3 Resume

Version 1.1 5/22/2009 91

EFI_S3_SAVE_STATE_PROTOCOL.Compare()

Summary
Compare two positions in the boot script table and return their relative position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_COMPARE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN EFI_S3_BOOT_SCRIPT_POSITION Position1,
 IN EFI_S3_BOOT_SCRIPT_POSITION Position2,
 OUT UINTN *RelativePosition
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

Position1, Position2

The positions in the boot script table to compare.

RelativePosition

On return, points to the result of the comparison.

Description
This function compares two positions in the boot script table and returns their relative positions. If
Position1 is before Position2, then -1 is returned. If Position1 is equal to Position2,
then 0 is returned. If Position1 is after Position2, then 1 is returned.

Status Codes Returned

7.8 S3 SMM Save State Protocol
This chapter defines how a SMM PI module can record IO operations to be performed as part of the
S3 resume. This is done via the EFI_S3_SMM_SAVE_STATE_PROTOCOL and this allows the
implementation of the S3 resume boot path to be abstracted from SMM drivers.

The S3 SMM Save State Protocol shares the function Save() function definition with the S3 SMM
Save State Protocol but implements it on a separate protocol. Having separate protocols for SMM
and DXE makes it easier to accommodate the differences in the operating environment between
SMM and DXE.

EFI_SUCCESS The label already exists or was inserted.

EFI_INVALID_PARAMETER The Position1 or Position2 is not a valid position in
the boot script table.

Platform Initialization Specification VOLUME 5 Standards

92 5/22/2009 Version 1.1

EFI_S3_SMM_SAVE_STATE_PROTOCOL

Summary
Used to store or record various IO operations to be replayed during an S3 resume.

GUID
#define EFI_S3_SMM_SAVE_STATE_PROTOCOL_GUID \
 { 0x320afe62, 0xe593, 0x49cb, \
 { 0xa9, 0xf1, 0xd4, 0xc2, 0xf4, 0xaf, 0x1, 0x4c } }

Protocol Interface Structure
typedef struct _EFI_S3_SMM_SAVE_STATE_PROTOCOL {
 EFI_S3_SAVE_STATE_WRITE Write;
 EFI_S3_SAVE_STATE_INSERT Insert;
 EFI_S3_SAVE_STATE_LABEL Label;
 EFI_S3_SAVE_STATE_COMPARE Compare;
} EFI_S3_SMM_SAVE_STATE_PROTOCOL;

Parameters
Write

Write an opcode at the end of the boot script table. See the Write() function
description under the EFI_S3_SAVE_STATE_PROTOCOL definition.

Insert

Write an opcode at the specified position in the boot script table. See the Insert()
function description under the EFI_S3_SAVE_STATE_PROTOCOL definition.

Label

Find an existing label in the boot script table or, if not present, create it. See the
Label() function description under the EFI_S3_SAVE_STATE_PROTOCOL
definition.

Compare

Compare two positions in the boot script table to determine their relative location. See
the Compare() function description under the
EFI_S3_SAVE_STATE_PROTOCOL definition.

Description
The EFI_S3_SMM_SAVE_STATE_PROTOCOL publishes the PI SMMboot script abstractions

On an S3 resume boot path the data stored via this protocol is replayed in the order it was stored.

The order of replay is the order either of the S3 Save State Protocol or S3 SMM Save State Protocol
Write() functions were called during the boot process. Insert(), Label(), and
Compare() operations are ordered relative other S3 SMM Save State Protocol write() operations
and the order relative to S3 State Save Write() operations is not defined. Due to these ordering
restrictions it is recommended that the S3 State Save Protocol be used during the DXE phase when
every possible.

S3 Resume

Version 1.1 5/22/2009 93

The EFI_S3_SMM_SAVE_STATE_PROTOCOL can be called at runtime and
EFI_OUT_OF_RESOURCES may be returned from a runtime call. It is the responsibility of the
platform to ensure enough memory resource exists to save the system state. It is recommended that
runtime calls be minimized by the caller.

Platform Initialization Specification VOLUME 5 Standards

94 5/22/2009 Version 1.1

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 95

8
PCI Host Bridge

8.1 PCI Host Bridge Overview
This specification defines the core code and services that are required for an implementation of the
PCI Host Bridge Resource Allocation Protocol. This protocol is used by a PCI bus driver to program
the PCI host bridge and configure the root PCI buses. The registers inside the PCI host bridge that
control root PCI bus configuration are not governed by the PCI specification and vary from chipset
to chipset. The PCI Host Bridge Resource Allocation Protocol is therefore specific to a particular
chipset.

This specification does the following:

• Describes the basic components of the PCI Host Bridge Resource Allocation Protocol

• Describes several sample PCI architectures and a sample implementation of the PCI Host Bridge
Resource Allocation Protocol

• Provides code definitions for the PCI Host Bridge Resource Allocation Protocol and the PCI-
host-bridge-related type definitions that are architecturally required by this specification.

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe
platform policies.The platform policies are described by the EFI_PCI_PLATFORM_PROTOCOL,
which is desribed in section 9.6.1. Silicon-related policies are described by the
EFI_PCI_OVERRIDE_PROTOCOL, which is described in section 9.6.2

8.2 PCI Host Bridge Design Discussion

This section provides background and design information for the PCI Host Bridge Resource
Allocation Protocol. A PCI bus driver, running in the EFI Boot Services environment, uses this
protocol to program PCI host bridge hardware. This protocol abstracts a PCI host bridge. In
particular, functions for programming a PCI host bridge are defined here although other bus types
may be supported in a similar fashion as extensions to this specification.

This chapter discusses the following:

• PCI terms that are used in this document

• An overview of the PCI Host Bridge Resource Allocation Protocol

• Sample PCI architectures

• ISA aliasing considerations

• Programming of standard PCI configuration registers

• Sample implementation

Platform Initialization Specification VOLUME 5 Standards

96 7/1/2010 Version 1.1 Errata B

8.3 PCI Host Bridge Resource Allocation Protocol

8.3.1 PCI Host Bridge Resource Allocation Protocol Overview
The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus driver to program a PCI
host bridge. The registers inside a PCI host bridge that control configuration of PCI root buses are
not governed by the PCI specification and vary from chipset to chipset. The PCI Host Bridge
Resource Allocation Protocol implementation is therefore specific to a particular chipset.

Each PCI host bridge is comprised of one or more PCI root bridges, and there are hardware registers
associated with each PCI root bridge. These registers control the bus, I/O, and memory resources
that are decoded by the PCI root bus that the PCI root bridge produces and all the PCI buses that are
children of that PCI root bus.

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL allows for future
innovation of the chipsets. It abstracts the PCI bus driver from the chipset details. This design allows
system designers to make changes to the host bridge hardware without impacting a platform-
independent PCI bus driver.

See PCI Host Bridge Resource Allocation Protocol in Code Definitions for the definition of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

8.3.2 Host Bus Controllers
A platform can be viewed as the following:

• A set of processors

• A set of core chipset components that may produce one or more host buses

The figure below shows a platform with n processors (CPUs) and a set of core chipset components
that produce m host bridges (HBs).

Most systems with one PCI host bus controller will contain a single instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. More complex systems
may contain multiple instances of this protocol.

Note: There is no relationship between the number of chipset components in a platform and the number of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances. This protocol is an
abstraction from a software point of view. This protocol is attached to the device handle of a PCI host bus
controller, which itself is composed of one or more PCI root bridges. A PCI root bridge is a chipset
component(s) that produces a physical PCI bus whose parent is not another physical PCI bus.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 97

Figure 4. Host Bus Controllers

8.3.3 Producing the PCI Host Bridge Resource Allocation Protocol
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances are produced by
DXE drivers—most often by early DXE drivers.

The figure below shows how the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is used to identify the
associated PCI root bridges. After the steps in the figure are completed, the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL can then be queried to
identify the device handles of the associated PCI root bridges. See the UEFI 2.1 Specification for
details of the PCI Root Bridge I/O Protocol.

CPU 1 CPU 2 CPU n

Front Side Bus

Core Chipset Components

HB 1 HB 2 HB m

Platform Initialization Specification VOLUME 5 Standards

98 7/1/2010 Version 1.1 Errata B

Figure 5. Producing the PCI Host Bridge Resource Allocation Protocol

8.3.4 Required PCI Protocols
The following protocols are mandatory if the system supports PCI devices or slots:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

See the UEFI 2.1 Specification for more information on the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

8.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
It is expected, although not necessary, that a chipset-aware driver will produce the following
protocol instances:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Care has been taken to avoid overlap between the member functions of the two protocols. For
example, EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe
the SegmentNumber or the final resource assignment for a root bridge, because these attributes
are available using the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Both protocols contain links
to the associated instances of the other protocols, as follows:

DXE driver produces
PCI Host Bridge

Resource Allocation
Protocol.

Protocol is placed on
the device handle

corresponding to the
PCI host bridge.

Same driver creates
device handles for all
associated PCI root

bridges.

Same driver installs an
instance of the

PCI Root Bridge
I/O Protocol on each

handle.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 99

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL: Includes the handle of the PCI host bridge that is
associated with the root bridge.

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL: Provides a member
function to retrieve the handles of the associated root bridges.

The definition of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL attempts
to maintain compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.

See the UEFI 2.1 Specification for more information on the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

8.4 Sample PCI Architectures

8.4.1 Sample PCI Architectures Overview
The PCI Host Bridge Resource Allocation Protocol is a protocol that is designed to provide a
software abstraction for a wide variety of PCI architectures. This section provides examples of the
following PCI architectures:

• Desktop system with 1 PCI root bridge

• Server system with 4 PCI root bridges

• Server system with 2 PCI segments

• Server system with 2 PCI host buses

This section is not intended to be an exhaustive list of the PCI architectures that the PCI Host Bridge
Resource Allocation Protocol can support. Instead, it is intended to show the flexibility of this
protocol to adapt to current and future platform designs.

8.4.2 Desktop System with 1 PCI Root Bridge
The figure below shows an example of a PCI host bus with one PCI root bridge. This PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard and/or PCI slots. This
setup would be typical of a desktop system. In this system, the PCI root bridge needs minimal setup.
Typically, the PCI root bridge will decode the following:

• The entire bus range on Segment 0

• The entire I/O space of the processor

• All the memory above the top of system memory

The firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• One instance of PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Platform Initialization Specification VOLUME 5 Standards

100 7/1/2010 Version 1.1 Errata B

Figure 6. Desktop System with 1 PCI Root Bridge

8.4.3 Server System with 4 PCI Root Bridges
The figure below shows an example of a larger server with one PCI host Bus with four PCI root
bridges (RBs). The PCI devices that are attached to the PCI root bridges are all part of the same
coherency domain, which means they share the following:

• A common PCI I/O space

• A common PCI memory space

• A common PCI prefetchable memory space

As a result, each PCI root bridge must get resources out of a common pool. Each PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard or PCI slots. The
firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• Four instances of the PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Figure 7. Server System with 4 PCI Root Bridges

Core Chipset Components

PCI Host Bridge

PCI Root Bridge

Core Chipset Components

PCI Host Bridge

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 101

8.4.4 Server System with 2 PCI Segments
The figure below shows an example of a server with one PCI host bus and two PCI root bridges
(RBs). Each of these PCI root bridges is on a different PCI segment, which allows the system to have
up to 512 PCI buses. A single PCI segment is limited to 256 PCI buses. These two segments do not
share the same PCI configuration space, but they do share the following, which is why they can be
described with a single PCI host bus:

• A common PCI I/O space

• A common PCI memory space

• A common PCI prefetchable memory space

The firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• Two instances of the PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Figure 8. Server System with 2 PCI Segments

8.4.5 Server System with 2 PCI Host Buses
The figure below shows a server system with two PCI host buses and one PCI root bridge (RB) per
PCI host bus. As in Figure 8, this system supports up to 512 PCI buses, but the following resources
are not shared between the two PCI root bridges:

• PCI I/O space

• PCI memory space

• PCI prefetchable memory space

The firmware for this platform would produce the following:

• Two instances of the PCI Host Bridge Resource Allocation Protocol

• Two instances of the PCI Root Bridge I/O Protocol

Core Chipset Components

PCI Host Bridge

PCI RB

PCI Segment 0

PCI RB

PCI Segment 1

Platform Initialization Specification VOLUME 5 Standards

102 7/1/2010 Version 1.1 Errata B

See the UEFI 2.1 Specification, Chapter 13, for details of t the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Figure 9. Server System with 2 PCI Host Buses

8.5 ISA Aliasing Considerations
The PCI host bridge driver will handle the ISA alias addresses based on the platform policy. The
platform communicates the policy to the PCI host bridge driver using the
EFI_PCI_PLATFORM_PROTOCOL. If the PCI host bridge driver cannot locate an instance of
EFI_PCI_PLATFORM_PROTOCOL, it will not reserve the ISA alias addresses. The PCI bus driver
is not aware of this policy and probes devices to gather resource requirements regardless of this
policy. The EFI_PCI_PLATFORM_PROTOCOL is defined in section 9.6.1.

Note: When it is started, a PCI device may request that the ISA alias ranges be forwarded to it through the
EFI_PCI_IO_PROTOCOL.Attributes() member function by setting the input parameter
Attributes to EFI_PCI_IO_ATTRIBUTE_ISA_IO. If the ISA alias I/O addresses are not reserved
during enumeration, such a request may fail because one or more PCI devices may be occupying aliased
addresses.

If the ISA alias I/O addresses are to be reserved during enumeration, the PCI host bridge driver is
responsible for allocating four times the amount of the requested I/O. The PCI bus driver obtains the
resources by calling one of the following member functions:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
GetProposedResources()

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

The PCI host bridge driver sets the _RNG bit to communicate the availability of the ISA alias range
to the PCI bus driver. If the _RNG flag is set, the PCI bus enumerator is not allowed to allocate the
ISA alias addresses to any PCI device. See Table 5 in the "Description" section of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL for the definition of the
_RNG flag. In this case, a PCI device’s request to turn on aliasing will succeed because one or more
PCI devices may be occupying aliased addresses. The _RNG flag is the only aspect of the protocol
interface structure that is affected by ISA aliasing.

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 0

PCI Host Bus 1

PCI RB

PCI Segment 1

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 103

8.6 Programming of Standard PCI Configuration Registers
This topic defines design guidelines for programming PCI configuration registers in the standard
PCI header. It defines roles and responsibilities of various drivers.

Table 1. Standard PCI Devices – Header Type 0

PCI Configuration Register Bits Programmed By

PCI command register – I/O, Memory, and
Bus Master enable

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

PCI command register – SERR, PERR, MWI,
Special Cycle Enable, Fast Back to Back
Enable

Chipset/platform-specific code

PCI command register – VGA palette snoop PCI device driver.

Cache line size Chipset/platform code to match the processor’s cache line size
or some other value.

Latency timer PCI bus driver. This driver programs this register to default
values before it sends the

EfiPciBeforeResourceCollection notification.

For PCI devices, this value is 0x20. PCI-X* devices come out of
reset with this register set to 0x40. The PCI bus driver does not
change the setting. The PCI bus driver will also make sure that
the default value for PCI devices is consistent with the MIN_LAT
and MAX_LAT register values in the device’s PCI configuration
space.
Chipset/platform code can overwrite this register during the
EfiPciBeforeResourceCollection notification call. The
new value may come from the end user using configuration options.
The device driver may overwrite this value during its own Start()
function.

BIST PCI bus driver.

Base address registers PCI bus driver.

Interrupt line Not touched.

Subsystem vendor ID and Device ID Chipset/platform code. Per the PCI Specification, these
registers must get programmed before system software
accesses the device. Some noncompliant or chipset devices
may require that these registers be programmed during the
preboot phase.

Platform Initialization Specification VOLUME 5 Standards

104 7/1/2010 Version 1.1 Errata B

Table 2. PCI-to-PCI Bridge – Header Type 1

8.7 Sample Implementation
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual
implementations may vary. Calls to
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
PreprocessController() are not included for the sake of clarity.

Unless noted otherwise, all functions that are listed below are member functions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

PCI Configuration Register Bits Programmed By

PCI command register – I/O, Memory, Bus
Master enable, VGA palette snoop

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

PCI command register – SERR, PERR, MWI,
Fast Back to Back Enable, Special Cycle
Enable

Chipset/platform-specific code.

Cache line size Chipset/platform code to match the processor’s cache line size
or some other value.

Latency timer PCI bus driver. This driver programs to default values before it

sends the EfiPciBeforeResourceCollection
notification. For PCI devices, this value is 0x20. PCI-X devices
come out of reset with this register set to 0x40.The PCI bus
driver does not change the setting. The PCI bus driver will also
make sure that the default value for PCI devices is consistent
with the MIN_LAT and MAX_LAT register values in the device’s
PCI configuration space.
Chipset/platform code can overwrite this register during the
EfiPciBeforeResourceCollection notification call. The
new value may come from the end user using configuration options.

Base addresses registers, bus, I/O, and
memory aperture registers

PCI bus driver.

Interrupt line Not touched.

Bridge control register – ISA Enable, VGA
Enable

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

Bridge control register – PERR Enable, SERR
Enable, Fast Back to Back, Discard Timers

Chipset/platform-specific code.

Bridge control register – Secondary Bus
Reset

PCI bus driver is permitted to reset the secondary bus during
enumeration. The chipset/platform code may also reset the
secondary bus during the

EfiPciBeforeChildBusEnumeration notification.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 105

1. If the hardware supports dynamically changing the number of PCI root buses or changing the
segment number that is associated with a PCI root bus, such changes must be completed before
the next steps.

2. The chipset/platform driver(s) creates a device handle for the PCI host bridges in the system(s)
and installs an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle.

3. The chipset/platform driver(s) creates a device handle for every PCI root bridge and installs the
following on that handle:

• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• An instance of EFI_DEVICE_PATH_PROTOCOL

It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must
be initialized with the handle for the PCI host bridge that contains an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

...Other initialization activities take place.
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is called

and is passed the device handle of a PCI root bridge. The
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is
associated with the PCI root bridge can be found by using the ParentHandle field of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present in PI
Architecture systems.

5. Begin the PCI enumeration process. The order in which the various member functions are called
cannot be changed. Between any two steps, there can be any amount of implementation-specific
code as long as it does not call any member functions of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus
enumerator in sync.

6. Notify the host bridge driver that PCI enumeration is about to begin by calling
NotifyPhase(EfiPciHostBridgeBeginEnumeration). This member function
must be the first one that gets called. PCI enumeration has two steps: bus enumeration and
resource enumeration.

7. Notify the host bridge driver that bus enumeration is about to begin by calling NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

8. Do the following for every PCI root bridge handle:

• Call StartBusEnumeration(This,RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

• Allocate memory to hold resource requirements. These resources can be two resource trees:
one to hold bus requirements and another to hold the I/O and memory requirements.

• Call GetAllocAttributes() to get the attributes of this PCI root bridge. This
information is used to combine different types of memory resources in the next step.

• Scan all the devices in the specified bus range and on the specified segment. If it is a PCI-to-
PCI bridge, update the bus numbers and program the bus number registers in the PCI-to-PCI
bridge hardware. If it is an ordinary device, collect the resource request and add up all of

Platform Initialization Specification VOLUME 5 Standards

106 7/1/2010 Version 1.1 Errata B

these requests in multiple pools (e.g., I/O, 32-bit prefetchable memory). Combine different
types of memory requests at an appropriate level based on the PCI root bridge attributes.
Update the resource requirement information accordingly. On every PCI root bridge, reserve
space to cover the largest expansion ROMs on that bus, which will allow the PCI bus driver
to retrieve expansion ROMs from the PCI card or device without having to reprogram the
PCI host bridge. Because the memory and I/O resource collection step does not call any
member function of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be
performed at a later time.

• Once the number of PCI buses under this PCI root bridge is known, call
SetBusNumbers() with this information.

9. Notify the host bridge driver that the bus allocation phase is over by calling NotifyPhase
(EfiPciHostBridgeEndBusAllocation).

10. Notify the host bridge driver that resource allocation is about to begin by calling
NotifyPhase(EfiPciHostBridgeBeginResourceAllocation).

11. For every PCI root bridge handle, call SubmitResources(). The Configuration
information is derived from the resource requirements that were computed in step 8 above.

12. Call NotifyPhase(EfiPciHostBridgeAllocateResources) to allocate the
necessary resources. This call should not be made unless resource requirements for all the PCI
root bridges have been submitted. If the call succeeds, go to next step. Otherwise, there are two
options:

• Make do with the smaller ranges.

• Call GetProposedResources() to retrieve the proposed settings and examine the
differences. Prioritize various requests and drop lower-priority requests. Call
NotifyPhase(EfiPciHostBridgeFreeResources) to undo the previous
allocation. Go back to step 11 with reduced requirements, which includes resubmitting
requests for all the root bridges.

13. Call NotifyPhase(EfiPciHostBridgeSetResources) to program the hardware. At
this point, the decode logic in this host bridge is fully set up.

14. Do the following for every root bridge handle:

• Obtain the resource range that is assigned to a PCI root bridge by calling the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on
that handle.

• From the resource range that is assigned to the PCI root bridge, assign resources to all the
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents to
a buffer in memory. It is possible to defer the BAR programming for a PCI controller until a
connect request for the device is received.

• Create a device handle for each PCI device as required.

• Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on each of these handles.

15. Notify the host bridge driver that resource allocation is complete by calling
NotifyPhase(EfiPciHostBridgeEndResourceAllocation).

16. Deallocate any temporary buffers.

Looping on PCI root bridges is accomplished with the following algorithm:

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 107

RootBridgeHandle = NULL;
while (GetNextRootBridge(RootBridgeHandle) == EFI_SUCCESS) {
 . . .

8.7.1 PCI enumeration process
1. If the hardware supports dynamically changing the number of PCI root buses or changing the

segment number that is associated with a PCI root bus, such changes must be completed before
the next steps.

2. The PCI host bridge driver (s) creates a device handle for the PCI host bridges in the system(s)
and installs an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle.

3. The PCI root bridge driver(s) creates a device handle for every PCI root bridge and installs the
following on that handle:

• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• An instance of EFI_DEVICE_PATH_PROTOCOL

It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must
be initialized with the handle for the PCI host bridge that contains an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

8.7.1.1 Other initialization activities take place.
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is called

and is passed the device handle of a PCI root bridge. The
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is
associated with the PCI root bridge can be found by using the ParentHandle field of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present.

5. Begin the PCI enumeration process. The order in which the various member functions are called
cannot be changed. Between any two steps, there can be any amount of implementation-specific
code as long as it does not call any member functions of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus
enumerator in sync.

6. Notify drivers that PCI enumeration is about to begin using
EfiPciHostBridgeBeginenumeration.

8.7.1.2 PCI enumeration has two steps: bus enumeration and resource
enumeration.

7. Notify drivers that PCI bus enumeration is about to begin using
EfiPciHostBridgeBeginBusAllocation.

8. Do the following for every PCI root bridge handle:

• Call StartBusEnumeration (This, RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

• Allocate memory to hold resource requirements.

Platform Initialization Specification VOLUME 5 Standards

108 7/1/2010 Version 1.1 Errata B

• Call GetAllocAttributes() to get the attributes of this PCI root bridge. This
information is used to combine different types of memory resources in the next step.

• Scan all the devices in the specified bus range and on the specified segment.

If it is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in the
PCI-to-PCI bridge hardware. Call the drivers for preprocess notifications using
EfiPciBeforeChildBusEnumeration.

If it is an ordinary device, collect the resource request and add up all of these requests in multiple
pools (e.g., I/O, 32-bit prefetchable memory). Combine different types of memory requests at an
appropriate level based on the PCI root bridge attributes. Update the resource requirement
information accordingly.

On every PCI root bridge, reserve space to cover the largest expansion ROMs on that bus, which
will allow the PCI bus driver to retrieve expansion ROMs from the PCI card or device without
having to reprogram the PCI host bridge. Because the memory and I/O resource collection step
does not call any member function of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be performed at
a later time.

• Once the number of PCI buses under this PCI root bridge is known, call
SetBusNumbers() with this information.

9. Notify drivers that the bus allocation phase is over using
EfiPciHostBridgeEndBusAllocation.

10. Notify drivers that resource allocation is about to begin using
EfiPciHostBridgeBeginResourceAllocation.

11. For every PCI root bridge handle, call SubmitResources(). The Configuration
information is derived from the resource requirements that were computed in step 8 above.

12. Notify the drivers to allocate the necessary resources using
EfiPciHostBridgeAllocateResources. This call should not be made unless resource
requirements for all the PCI root bridges have been submitted. If the call succeeds, go to next
step. Otherwise, there are two options:

• Make do with the smaller ranges.

• Call GetProposedResources() to retrieve the proposed settings and examine the
differences. Prioritize various requests and drop lower-priority requests. Notify the drivers
using EfiPciHostBridgeFreeResources to undo the previous allocation. Go back
to step 11 with reduced requirements, which includes resubmitting requests for all the root
bridges.

13. Notify the drivers using EfiPciHostBridgeSetResources to program the hardware. At
this point, the decode logic in this host bridge is fully set up.

14. Do the following for every root bridge handle:

• Obtain the resource range that is assigned to a PCI root bridge by calling the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on
that handle.

• From the resource range that is assigned to the PCI root bridge, assign resources to all the
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents to
a buffer in memory. It is possible to defer the BAR programming for a PCI controller until a
connect request for the device is received.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 109

• Create a device handle for each PCI device as required.

• Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on each of these handles.

15. Notify the drivers that resource allocation is complete by using
EfiPciHostBridgeEndResourceAllocation.

16. Notify the drivers that bus enumeration is complete by calling
EfiPciHostBridgeEndEnumeration.

17. Deallocate any temporary buffers.

18. Install the EFI_PCI_ENUMERATION_COMPLETE_GUID protocol.

Related Definitions
#define EFI_PCI_ENUMERATION_COMPLETE_GUID \
 { 0x30cfe3e7, 0x3de1, 0x4586, \
 0xbe, 0x20, 0xde, 0xab, 0xa1, 0xb3, 0xb7, 0x93 }

Note: This protocol is always installed with a NULL pointer.

8.7.1.3 Sample PCI Device Set Up Implementation
This section describes further the outlines of the process in step 14, second bullet (above).

1. Call the PCI enumeration preprocess functions using
EfiPciBeforeResourceCollection.

2. Gather PCI device resource requirements.

3. If present, call EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL to see if there
is an alternate set of resources for this device.

4. Call the EFI_PCI_PLATFORM_PROTOCOL function GetPciRom(). If it returns
EFI_SUCCESS, go to step 7.

5. Call the EFI_PCI_OVERRIDE_PROTOCOL function GetPciRom(). If it returns
EFI_SUCCESS, go to step 7.

6. Find the PCI device's option ROM and copy its contents into memory. If there is no option
ROM, go to step 8.

7. Find and decompress the UEFI image within the option ROM image.

8. Exit

8.7.2 Sample Enumeration Implementation
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual
implementations may vary.

8.7.2.1 PCI Enumeration Phases
There are several phases of the PCI enumeration process. For each phase, the PCI platform drivers
and the PCI host bridge drivers are notified as follows:

Platform Initialization Specification VOLUME 5 Standards

110 7/1/2010 Version 1.1 Errata B

1. The PlatformNotify() function of the EFI_PCI_PLATFORM_PROTOCOL is called with
the enumeration phase and the execution phase BeforePciHostBridge.

2. The PlatformNotify() function of the EFI_PCI_OVERRIDE_PROTOCOL is called with
the enumeration phase and the execution phase BeforePciHostBridge.

3. The NotifyPhase function of each instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is called with the
enumeration phase.

4. The PlatformNotify() function of the EFI_PCI_PLATFORM_PROTOCOL is called
with the enumeration phase and the execution phase AfterPciHostBridge.

5. The PlatformNotify() function of the EFI_PCI_OVERRIDE_PROTOCOL is called with
the execution phase AfterPciHostBridge.

8.7.2.2 Additional locations to preprocess PCI devices
There are a few additional places during the PCI enumeration process where the platform or PCI
host bridge drivers are given the opportunity to preprocess individual PCI devices.

1. The PlatformPrepController function of the EFI_PCI_PLATFORM_PROTOCOL is
called with the preprocess phase and the execution phase of BeforePciHostBridge.

2. The PlatformPrepController function of each instance of the
EFI_PCI_OVERRIDE_PROTOCOL is called with the preprocess phase and the execution
phase of BeforePciHostBridge.

3. The PreprocessController function of each instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is called with the
preprocess phase.

4. The PlatformPrepController function of each instance of the
EFI_PCI_PLATFORM_PROTOCOL is called with the preprocess phase and the execution
phase of AfterPciHostBridge.

5. The PlatformPrepController function of the EFI_PCI_OVERRIDE_PROTOCOL is
called with the preprocess phase and the execution phase of AfterPciHostBridge.

8.8 PCI HostBridge Code Definitions

8.8.1 Introduction
This section contains the basic definitions of the PCI Host Bridge Resource Allocation Protocol.
This section defines the protocol
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES

• EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 111

8.8.2 PCI Host Bridge Resource Allocation Protocol

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

Summary
Provides the basic interfaces to abstract a PCI host bridge resource allocation.

Platform Initialization Specification VOLUME 5 Standards

112 7/1/2010 Version 1.1 Errata B

Note: This protocol is mandatory if the system includes PCI devices.

GUID
#define EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GUID \
 {
0xCF8034BE,0x6768,0x4d8b,0xB7,0x39,0x7C,0xCE,0x68,0x3A,0x9F,0xBE
}

Protocol Interface Structure
typedef struct _EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
{
 EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE
 NotifyPhase;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_B
RIDGE
 GetNextRootBridge;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_ATTRIBUTES
 GetAllocAttributes;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUME
RATION
 StartBusEnumeration;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS
 SetBusNumbers;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCE
S
 SubmitResources;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RE
SOURCES
 GetProposedResources;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONT
ROLLER
 PreprocessController;
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL;

Parameters
NotifyPhase

The notification from the PCI bus enumerator that it is about to enter a certain phase
during the enumeration process. See the NotifyPhase() function description.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 113

GetNextRootBridge

Retrieves the device handle for the next PCI root bridge that is produced by the host
bridge to which this instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is attached.
See the GetNextRootBridge() function description. See section 1.2 for a
definition of a PCI root bridge.

GetAllocAttributes

Retrieves the allocation-related attributes of a PCI root bridge. See the
GetAllocAttributes() function description.

StartBusEnumeration

Sets up a PCI root bridge for bus enumeration. See the
StartBusEnumeration() function description.

SetBusNumbers

Sets up the PCI root bridge so that it decodes a specific range of bus numbers. See the
SetBusNumbers() function description.

SubmitResources

Submits the resource requirements for the specified PCI root bridge. See the
SubmitResources() function description.

GetProposedResources

Returns the proposed resource assignment for the specified PCI root bridges. See the
GetProposedResources() function description.

PreprocessController

Provides hooks from the PCI bus driver to every PCI controller (device/function) at
various stages of the PCI enumeration process that allow the host bridge driver to
preinitialize individual PCI controllers before enumeration. See the
PreprocessController() function description.

Description
The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL provides the basic
resource allocation services to the PCI bus driver. There is one
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance for each PCI host
bridge in a system. The following will typically have only one PCI host bridge:

• Embedded systems

• Desktops

• Workstations

• Most servers

High-end servers may have multiple PCI host bridges. A PCI bus driver that wishes to manage a PCI
bus in a system will have to retrieve the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is associated
with the PCI bus to be managed. A device handle for a PCI host bridge will not contain an

Platform Initialization Specification VOLUME 5 Standards

114 7/1/2010 Version 1.1 Errata B

EFI_DEVICE_PATH_PROTOCOL instance because the PCI host bridge is a software abstraction
and has no equivalent in the ACPI name space.

All applicable member functions use ACPI 2.0 or ACPI 3.0 resource descriptors to describe
resources. Using ACPI resource descriptors does the following:

• Allows other types of resources to be described in the future because they are very generic in
nature.

• Avoids multiple structure definitions for describing resources.

• Maintains compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.

Only the following two resource descriptor types from the ACPI Specification may be used to
describe the current resources that are allocated to a PCI root bridge:

• QWORD Address Space Descriptor (ACPI 3.0)

• End Tag (ACPI 3.0)

The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 3 and Table 4 below contain
these two descriptor types. Table 5 and Table 6 define how resource-specific flags are used. See the
ACPI Specification for details on the field values.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 115

Table 3. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage

Byte

Offset

Byte

Length

Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:
 0: Memory range
 1: I/O range
 2: Bus number range

0x04 0x01 General flags.
Flags that are common to all resource types:
Bits[7:4]: Reserved (must be 0)
Bit[3] _MAF: Always returned as 1 while returning allocated requests to
indicate that the specified max address is fixed.
Bit[2] _MIF: Always returned as 1 while returning allocated requests to
indicate that the specified min address is fixed.
Bit[1] _DEC: Ignored.
Bit[0]: Ignored.

0x05 0x01 Type-specific flags. Ignored except as defined in Table 3-3 and Table 3-4
below.

0x06 0x08 Address Space Granularity. Used to differentiate between a 32-bit memory
request and a 64-bit memory request. For a 32-bit memory request, this field
should be set to 32. For a 64-bit memory request, this field should be set to
64. Ignored for I/O and bus resource requests. Ignored during

GetProposedResources().

0x0E 0x08 Address Range Minimum. Set to the base of the allocated address range
(bus, I/O, memory) during GetProposedResources(). Ignored during

SubmitResources().

0x16 0x08 Address Range Maximum. Used to indicate alignment requirement during
SubmitResources() and ignored during GetProposedResources().

This value must be 2n-1. The address base must be a multiple of the
granularity field. That is, if this field is 4k-1, the allocated address must be a
multiple of 4 KB.
Note: The interpretation of this field is different from the ACPI Specification
and PCI Root Bridge I/O Protocol.

0x1E 0x08 Address Translation Offset. Used to indicate the allocation status during
GetProposedResources() and ignored during SubmitResources().
Allocation status is defined in "Related Definitions" in
GetProposedResources().
Note: The interpretation of this field is different from the ACPI Specification
and PCI Root Bridge I/O Protocol.

0x26 0x08 Address Range Length. This field specifies the amount of resources that are
requested or allocated in number of bytes.

Platform Initialization Specification VOLUME 5 Standards

116 7/1/2010 Version 1.1 Errata B

Table 4. ACPI 2.0 & 3.0 End Tag Usage

Table 5. I/O Resource Flag (Resource Type = 1) Usage

Table 6. Memory Resource Flag (Resource Type = 0) Usage

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

Bits Meaning

Bits[7:1] Ignored.

Bit[0] _RNG. Ignored during an allocation request. Setting this bit while returning allocated
resources means that the I/O allocation must be limited to the ISA I/O ranges. In that case,
the PCI bus driver must allocate I/O addresses out of the ISA I/O ranges. The following are
the ISA I/O ranges:
n100–n3FF
n500–n7FF
n900–nBFF
nD00–nFFF
See ISA Aliasing Considerations for more details.

Bits Meaning

Bits[7:3] Ignored.

Bit[2:1] _MEM. Memory attributes.
Value and Meaning:

 0 The memory is nonprefetchable.
 1 Invalid.
 2 Invalid.
 3 The memory is prefetchable.

Note: The interpretation of these bits is somewhat different from the ACPI Specification.
According to the ACPI Specification, a value of 0 implies noncacheable memory and the
value of 3 indicates prefetchable and cacheable memory.

Bit[0] Ignored.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 117

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Noti
fyPhase()

Summary
These are the notifications from the PCI bus driver that it is about to enter a certain phase of the PCI
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE)
(
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

Phase

The phase during enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
"Related Definitions" below.

Description
This member function can be used to notify the host bridge driver to perform specific actions,
including any chipset-specific initialization, so that the chipset is ready to enter the next phase. Nine
notification points are defined at this time. See "Related Definitions" below for definitions of various
notification points and section 8.7 for usage.

More synchronization points may be added as required in the future.

Platform Initialization Specification VOLUME 5 Standards

118 7/1/2010 Version 1.1 Errata B

Related Definitions

Related Definitions
//***
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE
//***
typedef enum {
 EfiPciHostBridgeBeginEnumeration,
 EfiPciHostBridgeBeginBusAllocation,
 EfiPciHostBridgeEndBusAllocation,
 EfiPciHostBridgeBeginResourceAllocation,
 EfiPciHostBridgeAllocateResources,
 EfiPciHostBridgeSetResources,
 EfiPciHostBridgeFreeResources,
 EfiPciHostBridgeEndResourceAllocation,
 EfiPciHostBridgeEndEnumeration,
 EfiMaxPciHostBridgeEnumeratonPhase
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE;

Table 7 provides a description of the fields in the above enumeration:

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 119

Table 7. Enumeration Descriptions

Enumeration Description

EfiPciHostBridgeBeginEnum
eration

Resets the host bridge PCI apertures and internal data structures.
The PCI enumerator should issue this notification before starting a
fresh enumeration process. Enumeration cannot be restarted after
sending any other notification such as

EfiPciHostBridgeBeginBusAllocation.

EfiPciHostBridgeBeginBusA
llocation

The bus allocation phase is about to begin. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EfiPciHostBridgeEndBusAll
ocation

The bus allocation and bus programming phase is complete. No
specific action is required here. This notification can be used to
perform any chipset-specific programming.

EfiPciHostBridgeBeginReso
urceAllocation

The resource allocation phase is about to begin. No specific
action is required here. This notification can be used to perform
any chipset-specific programming.

EfiPciHostBridgeAllocateR
esources

Allocates resources per previously submitted requests for all the
PCI root bridges. These resource settings are returned on the

next call to GetProposedResources(). Before calling

NotifyPhase() with a Phase of

EfiPciHostBridgeAllocateResource, the PCI

bus enumerator is responsible for gathering I/O and memory
requests for all the PCI root bridges and submitting these requests

using SubmitResources(). This function pads the

resource amount to suit the root bridge hardware, takes care of
dependencies between the PCI root bridges, and calls the Global
Coherency Domain (GCD) with the allocation request. In the case
of padding, the allocated range could be bigger than what was
requested.
Note that the size of the allocated range could be smaller than
what was requested. This scenario could happen due to an
allocation failure, a host bridge hardware limitation, or any other
reason. In that case, the call will return an

EFI_OUT_OF_RESOURCES error. If the allocated windows

are smaller than what was requested, the PCI bus enumerator
may not be able to fit all the devices within the range. The PCI bus

driver can call GetProposedResouces() to find out

which of the resource types were partially allocated and the
difference between the amount that was requested and the
amount that was allocated. The PCI bus enumerator should
readjust the requested sizes (by dropping certain PCI devices or
PCI buses) to obtain a best fit. The PCI bus driver can call

NotifyPhase (EfiPciHostBridgeFreeResour
ces) to free up the original assignments and resubmit the

adjusted resource requests with SubmitResources().

Platform Initialization Specification VOLUME 5 Standards

120 7/1/2010 Version 1.1 Errata B

Status Codes Returned

EfiPciHostBridgeSetResour
ces

Programs the host bridge hardware to decode previously
allocated resources (proposed resources) for all the PCI root
bridges. After the hardware is programmed, reassigning
resources will not be supported. The bus settings are not affected.

EfiPciHostBridgeFreeResou
rces

Deallocates resources that were previously allocated for all the
PCI root bridges and resets the I/O and memory apertures to their
initial state. The bus settings are not affected. If the request to
allocate resources fails, the PCI enumerator can use this
notification to deallocate previous resources, adjust the requests,
and retry allocation.

EfiPciHostBridgeEndResour
ceAllocation

The resource allocation phase is completed. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EfiPciHostBridgeEndBusEnu
meration

The bus enumeration phase is completed. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EFI_SUCCESS The notification was accepted without any errors.

EFI_INVALID_PARAMETER The Phase is invalid.

EFI_NOT_READY This phase cannot be entered at this time. For example, this error

is valid for a Phase of

EfiPciHostBridgeAllocateResources if

SubmitResources() has not been called for one or more

PCI root bridges before this call.

EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid for

a Phase of EfiPciHostBridgeSetResources.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
This error is valid for a Phase of
EfiPciHostBridgeAllocateResources if the previously
submitted resource requests cannot be fulfilled or were only
partially fulfilled.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 121

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
NextRootBridge()

Summary
Returns the device handle of the next PCI root bridge that is associated with this host bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_
BRIDGE) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN OUT EFI_HANDLE *RootBridgeHandle
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

Returns the device handle of the next PCI root bridge. On input, it holds the
RootBridgeHandle that was returned by the most recent call to
GetNextRootBridge(). If RootBridgeHandle is NULL on input, the handle
for the first PCI root bridge is returned. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This function is called multiple times to retrieve the device handles of all the PCI root bridges that
are associated with this PCI host bridge. Each PCI host bridge is associated with one or more PCI
root bridges. On each call, the handle that was returned by the previous call is passed into the
interface, and on output the interface returns the device handle of the next PCI root bridge. The caller
can use the handle to obtain the instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL for
that root bridge. When there are no more PCI root bridges to report, the interface returns
EFI_NOT_FOUND. A PCI enumerator must enumerate the PCI root bridges in the order that they
are returned by this function.

The search is initiated by passing in a NULL device handle as input. Some of the member functions
of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL operate on a PCI root
bridge and expect the RootBridgeHandle as an input.

There is no requirement that this function return the root bridges in any specific relation with the EFI
device paths of the root bridges.

This function can also be used to determine the number of PCI root bridges that were produced by
this PCI host bridge. The host bridge hardware may provide mechanisms to change the number of

Platform Initialization Specification VOLUME 5 Standards

122 7/1/2010 Version 1.1 Errata B

root bridges that it produces, but such changes must be completed before the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed.

Status Codes Returned

EFI_SUCCESS The requested attribute information was returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not an EFI_HANDLE that was returned
on a previous call to GetNextRootBridge().

EFI_NOT_FOUND There are no more PCI root bridge device handles.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 123

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
AllocAttributes()

Summary
Returns the allocation attributes of a PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_GET_ATTRIBUTES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT UINT64 *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The device handle of the PCI root bridge in which the caller is interested. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Attributes

The pointer to attributes of the PCI root bridge. The permitted attribute values are
defined in "Related Definitions" below.

Description
The function returns the allocation attributes of a specific PCI root bridge. The attributes can vary
from one PCI root bridge to another. These attributes are different from the decode-related attributes
that are returned by the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
member function. The RootBridgeHandle parameter is used to specify the instance of the PCI
root bridge. The device handles of all the root bridges that are associated with this host bridge must
be obtained by calling GetNextRootBridge(). The attributes are static in the sense that they do
not change during or after the enumeration process. The hardware may provide mechanisms to
change the attributes on the fly, but such changes must be completed before
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed. The permitted
values of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES are defined in
"Related Definitions" below. The caller uses these attributes to combine multiple resource requests.
For example, if the flag EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM is set, the PCI bus
enumerator needs to include requests for the prefetchable memory in the nonprefetchable memory
pool and not request any prefetchable memory.

Platform Initialization Specification VOLUME 5 Standards

124 7/1/2010 Version 1.1 Errata B

Related Definitions
//***
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES
//***

#define EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM 1
#define EFI_PCI_HOST_BRIDGE_MEM64_DECODE 2

Following is a description of the fields in the above definition:

Table 8. EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES field
descriptions

Status Codes Returned

EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM If this bit is set, then the PCI root bridge does not
support separate windows for nonprefetchable and
prefetchable memory. A PCI bus driver needs to
include requests for prefetchable memory in the
nonprefetchable memory pool.

EFI_PCI_HOST_BRIDGE_MEM64_DECODE If this bit is set, then the PCI root bridge supports 64-bit
memory windows. If this bit is not set, the PCI bus
driver needs to include requests for a 64-bit memory
address in the corresponding 32-bit memory pool.

EFI_SUCCESS The requested attribute information was returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Attributes is NULL.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 125

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Star
tBusEnumeration()

Summary
Sets up the specified PCI root bridge for the bus enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERAT
ION) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge to be set up. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

Pointer to the pointer to the PCI bus resource descriptor.

Description
This member function sets up the root bridge for bus enumeration and returns the PCI bus range over
which the search should be performed in ACPI (2.0 & 3.0) resource descriptor format. The
following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
StartBusEnumeration().

Platform Initialization Specification VOLUME 5 Standards

126 7/1/2010 Version 1.1 Errata B

Table 9. ACPI 2.0 & 3.0 Resource Descriptor Field Values for StartBusEnumeration()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

This function cannot return resource descriptors for anything other than bus resources. This function
can be used to prevent a PCI bus driver from scanning certain PCI buses to work around a chipset
limitation. Because the size of ACPI resource descriptors is not fixed,
StartBusEnumeration() is responsible for allocating memory for the buffer
Configuration.

The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle
RootBridgeHandle.

Status Codes Returned

Field Setting

Address Range Minimum Set to the lowest bus number to be scanned.

Address Range Length Set to the number of PCI buses that may be scanned. The highest bus number is
computed by adding the length to the lowest bus number and subtracting 1.

Address Range Maximum Ignored.

All other fields Ignored.

EFI_SUCCESS The PCI root bridge was set up and the bus range was returned in
Configuration.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 127

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Set
BusNumbers()

Summary
Programs the PCI root bridge hardware so that it decodes the specified PCI bus range.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN VOID *Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge whose bus range is to be programmed. Type EFI_HANDLE is
defined in InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

The pointer to the PCI bus resource descriptor.

Description
This member function programs the specified PCI root bridge to decode the bus range that is
specified by the input parameter Configuration.

The bus range information is specified in terms of the ACPI (2.0 & 3.0) resource descriptor format.
The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
SetBusNumbers().

Platform Initialization Specification VOLUME 5 Standards

128 7/1/2010 Version 1.1 Errata B

Table 10. ACPI 2.0 & 3.0 Resource Descriptor Field Values for SetBusNumbers()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

This call will return EFI_INVALID_PARAMETER without programming the hardware if either of
the following are specified:

• Any descriptors other than bus type descriptors

• Any invalid descriptors

The bus range is typically a subset of what was returned during StartBusEnumeration(). If
SetBusNumbers() is called with incorrect (but valid) parameters, it may cause system failure.

The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle
RootBridgeHandle. This call cannot alter the following:

• The SegmentNumber field in the corresponding instances of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• The segment number settings in the hardware

The caller is responsible for allocating and deallocating a buffer to hold Configuration. If the
call returns EFI_DEVICE_ERROR, the PCI bus enumerator can optionally attempt another bus
setting.

Field Setting

Address Range Minimum Set to the lowest bus number to be decoded.

Address Range Length Set to the number of PCI buses that should be decoded. The highest bus number is
computed by adding the length to the lowest bus number and subtracting 1.

Address Range Maximum Ignored.

All other fields Ignored.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 129

Status Codes Returned

EFI_SUCCESS The bus range for the PCI root bridge was programmed.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Configuration is NULL.

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)
resource descriptor.

EFI_INVALID_PARAMETER Configuration does not include a valid ACPI 2.0 bus resource
descriptor.

EFI_INVALID_PARAMETER Configuration includes valid ACPI (2.0 & 3.0) resource
descriptors other than bus descriptors.

EFI_INVALID_PARAMETER Configuration contains one or more invalid ACPI resource
descriptors.

EFI_INVALID_PARAMETER "Address Range Minimum" is invalid for this root bridge.

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this root bridge.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

Platform Initialization Specification VOLUME 5 Standards

130 7/1/2010 Version 1.1 Errata B

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Sub
mitResources()

Summary
Submits the I/O and memory resource requirements for the specified PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN VOID *Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge whose I/O and memory resource requirements are being
submitted. Type EFI_HANDLE is defined in InstallProtocolInterface()
in the UEFI 2.1 Specification.

Configuration

The pointer to the PCI I/O and PCI memory resource descriptor.

Description
This function is used to submit all the I/O and memory resources that are required by the specified
PCI root bridge. The input parameter Configuration is used to specify the following:

• The various types of resources that are required

• The associated lengths in terms of ACPI (2.0 & 3.0) resource descriptor format

The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
SubmitResources().

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 131

Table 11. ACPI 2.0& 3.0 Resource Descriptor Field Values for SubmitResources()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

The caller must ask for appropriate alignment using the "Address Range Maximum" field. The caller
is responsible for allocating and deallocating a buffer to hold Configuration.

It is considered an error if no resource requests are submitted for a PCI root bridge. If a PCI root
bridge does not require any resources, a zero-length resource request must explicitly be submitted.

If the Configuration includes one or more invalid resource descriptors, all the resource
descriptors are ignored and the function returns EFI_INVALID_PARAMETER.

Field Setting

Address Range Length Set to the size of the aperture that is requested.

Address Space Granularity Used to differentiate between a 32-bit memory request and a 64-bit memory
request. For a 32-bit memory request, this field should be set to 32. For a 64-bit
memory request, this field should be set to 64. All other values result in this
function returning the error code of EFI_INVALID_PARAMETER.

Address Range Maximum Used to specify the alignment requirement. If "Address Range Maximum" is of the

form 2n-1, this member function returns the error code
EFI_INVALID_PARAMETER. The address base must be a multiple of the
granularity field. That is, if this field is 4 KB-1, the allocated address must be a
multiple of 4 KB.

Address Range Minimum Ignored.

Address Translation Offset Ignored.

All other fields Ignored.

Platform Initialization Specification VOLUME 5 Standards

132 7/1/2010 Version 1.1 Errata B

Status Codes Returned

EFI_SUCCESS The I/O and memory resource requests for a PCI root bridge were
accepted.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Configuration is NULL.

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)

resource descriptor.

EFI_INVALID_PARAMETER Configuration includes requests for one or more resource
types that are not supported by this PCI root bridge. This error will
happen if the caller did not combine resources according to
Attributes that were returned by

GetAllocAttributes().

EFI_INVALID_PARAMETER "Address Range Maximum" is invalid.

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER "Address Space Granularity" is invalid for this PCI root bridge.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 133

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
ProposedResources()

Summary
Returns the proposed resource settings for the specified PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOUR
CES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

The pointer to the pointer to the PCI I/O and memory resource descriptor.

Description
This member function returns the proposed resource settings for the specified PCI root bridge. The
proposed resource settings are prepared when NotifyPhase() is called with a Phase of
EfiPciHostBridgeAllocateResources. The output parameter Configuration
specifies the following:

• The various types of resources, excluding bus resources, that are allocated

• The associated lengths in terms of ACPI (2.0 & 3.0) resource descriptor format

The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
GetProposedResources().

Platform Initialization Specification VOLUME 5 Standards

134 7/1/2010 Version 1.1 Errata B

Table 12. ACPI 2.0 & 3.0 Resource Descriptor Field Values for GetProposedResources()

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

The callee is responsible for allocating a buffer to hold Configuration because the caller does
not know the number of descriptors that are required. The caller is also responsible for deallocating
the buffer.

If NotifyPhase() is called with a Phase of EfiPciHostBridgeAllocateResources
and returns EFI_OUT_OF_RESOURCES, the PCI bus enumerator may use
GetProposedResources() to retrieve the proposed settings. The
EFI_OUT_OF_RESOURCES error status indicates that one or more requests could not be fulfilled
or were partially fulfilled. Additional details of the allocation status for each type of resource can be
retrieved from the "Address Translation Offset" field in the resource descriptor that was returned by
this function; also see "Related Definitions" below for defined allocation status values. This error
could happen for the following reasons:

• Allocation failure

• A limitation in the host bridge hardware

• Any other reason

If the allocated windows are smaller than what was requested, the PCI bus enumerator may not be
able to fit all the devices within the range. In that case, the PCI bus enumerator may choose to
readjust the requested sizes (by dropping certain devices or PCI buses) to obtain a best fit. The PCI
bus driver calls NotifyPhase() with a Phase of EfiPciHostBridgeFreeResources to
free the original assignments.

If this member function is able to only partially fulfill the requests for one or more resource types,
the root bridges that are first in the list will get resources first. The ordering of the root bridges is
determined by the output of GetNextRootBridge(). The handle to the first root bridge is
obtained by calling GetNextRootBridge() with an input handle of NULL.

In the case of I/O resources, the PCI bus enumerator must check the _RNG flag. If this flag is set, the
I/O ranges that are allocated to the devices must come from the non-ISA I/O subset.

For example, if this flag is set, the "Address Range Minimum" is 0x1000, and the "Address Range
Length" is 0x1000, then the following I/O ranges can be allocated to PCI devices:

• 0x1000–0x10FF

• 0x1400–0x14FF

Field Setting

Address Range Length Set to the size of the aperture that is requested.

Address Space Granularity Ignored.

Address Range Minimum Indicates the starting address of the allocated ranges.

Address Translation Offset Indicates the allocation status. Allocation status is defined in "Related Definitions"
below.

Address Range Maximum Ignored.

All other fields Ignored.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 135

• 0x1800–0x18FF

• 0x1C00–0x1CFF

This call is made before NotifyPhase() is called with a Phase of
EfiPciHostBridgeSetResources. After that time, the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function should be
used to obtain the resources that were consumed by a particular PCI root bridge.

Related Definitions
//

// EFI_RESOURCE_ALLOCATION_STATUS
//

typedef UINT64 EFI_RESOURCE_ALLOCATION_STATUS;

#define EFI_RESOURCE_SATISFIED 0
#define EFI_RESOURCE_NOT_SATISFIED (UINT64) -1

Following is a description of the fields in the above definition. All other values indicate that the
request of this resource type could be partially fulfilled. The exact value indicates how much more
space is still required to fulfill the requirement.

Table 13. EFI_RESOURCE_ALLOCATION_STATUS field descriptions

Status Codes Returned

EFI_RESOURCE_SATISFIED The request of this resource type could be fulfilled.

EFI_RESOURCE_NOT_SATISFIED The request of this resource type could not be fulfilled for its absence
in the host bridge resource pool.

EFI_SUCCESS The requested parameters were returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Platform Initialization Specification VOLUME 5 Standards

136 7/1/2010 Version 1.1 Errata B

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Pre
processController()

Summary
Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various
stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual
PCI controllers before enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONT
ROLLER)(
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
);

Parameters
This

Pointer to the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.

RootBridgeHandle

The associated PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL member functions to access the PCI
configuration space of the device. See UEFI 2.1 Specification for the definition of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI device enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
"Related Definitions" below.

Description
This function is called during the PCI enumeration process. No specific action is expected from this
member function. It allows the host bridge driver to preinitialize individual PCI controllers before
enumeration.

The parameter RootBridgeHandle can be used to locate the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the root bridge that is the parent of

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 137

the specific PCI function. The parameter PciAddress can be passed to the Pci.Read() and
Pci.Write() functions of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to access
the PCI configuration space of the specific PCI function.

This member function is invoked during PCI enumeration and before the PCI enumerator has
created a handle for the PCI function. As a result, the EFI_PCI_IO_PROTOCOL cannot be used at
this point.

Two notification points are defined at this time. See type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE in "Related Definitions" below
for definitions of these notification points and ISA Aliasing Considerations for usage. More
synchronization points may be added as required in the future.

Related Definitions
//***
// EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE
//***
typedef enum {
 EfiPciBeforeChildBusEnumeration,
 EfiPciBeforeResourceCollection
} EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE;

Following is a description of the fields in the above enumeration:

Platform Initialization Specification VOLUME 5 Standards

138 7/1/2010 Version 1.1 Errata B

Table 14. EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE field descriptions

Status Codes Returned

EfiPciBeforeChildBusEnumeration This notification is applicable only to PCI-to-PCI bridges and
indicates that the PCI enumerator is about to begin enumerating the
bus behind the PCI-to-PCI bridge. This notification is sent after the
primary bus number, the secondary bus number, and the
subordinate bus number registers in the PCI-to-PCI bridge are
programmed to valid (but not necessary final) values. Programming
of the bus number register allows the chipset code to scan devices
on the bus that are immediately behind the PCI-to-PCI bridge. This
notification can be used to reset the secondary PCI bus. Some PCI-
to-PCI bridges can drive their secondary bus at various clock speeds
(33 MHz or 66 MHz, for example) and support PCI-X* or
conventional PCI mode. These bridges must be set up to operate at
the correct speed and correct mode before the downstream devices
and buses are enumerated. This notification can be used to perform
that activity. The host bridge code cannot reprogram the bus
numbers in the PCI-to-PCI bridge or reprogram any upstream
devices during this notification. It can touch the downstream devices
because the PCI enumerator has not found these devices. If there
are multiple PCI-to-PCI bridges on the same PCI bus, the order in
which the notification is sent to these bridges is implementation
specific. On the other hand, it is guaranteed that a PCI-to-PCI bridge
will see this notification before the downstream bridge receives this
notification or its child devices receive the
EfiPciBeforeResourceCollection notification.

EfiPciBeforeResourceCollection This notification is sent before the PCI enumerator probes the Base
Address Register (BAR) registers for every valid PCI function. This
notification can be used to program the backside registers that
determine the BAR size or any other programming such as the
master latency timer, cache line size, and PERR and SERR control.
This notification is sent regardless of whether the function
implements BAR or not. In the case of a multifunction device, this
notification is sent for every function of the device. The order within
the functions is not specified. The order in which this notification is
sent to various devices/functions on the same bus is implementation
specific.

EFI_SUCCESS The requested parameters were returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in

EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_
PHASE.

EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator
should not enumerate this device, including its child devices if it is
a PCI-to-PCI bridge.

PCI Host Bridge

Version 1.1 Errata B 7/1/2010 139

Platform Initialization Specification VOLUME 5 Standards

140 7/1/2010 Version 1.1 Errata B

PCI Platform

Version 1.1 5/22/2009 141

9
PCI Platform

9.1 Introduction
This section contains the basic definitions of protocols that provide PCI platform support. The
following protocols are defined in this section:

EFI_PCI_PLATFORM_PROTOCOL
EFI_PCI_OVERRIDE_PROTOCOL
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

EFI_PCI EXECUTION_PHASE
EFI_PCI_PLATFORM_POLICY

9.2 PCI Platform Overview
This section defines the core code and services that are required for an implementation of the
following protocols in this specification:

• PCI Platform Protocol

• PCI Override Protocol

• Incompatible PCI Device Support Protocol

The PCI Platform Protocol allows a PCI bus driver to obtain the platform policy and call a platform
driver at various points in the enumeration phase. The Incompatible PCI Device Support Protocol
allows a PCI bus driver to handle resource allocation for some PCI devices that do not comply with
the PCI Specification.

This specification does the following:

• Describes the basic components of the PCI Platform Protocol

• Describes the basic components of the Incompatible PCI Device Support Protocol and how
firmware configures incompatible PCI devices

• Provides code definitions for the PCI Platform Protocol, the Incompatible PCI Device Support
Protocol, and their related type definitions that are architecturally required by this specification.

This document is intended for the following readers:

• BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in IntelÆ architecture-based products.

Readers of this specification are assumed to have solid knowledge of the UEFI 2.1 Specification

Platform Initialization Specification VOLUME 5 Standards

142 5/22/2009 Version 1.1

9.3 PCI Platform Support Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

9.3.1 Industry Specifications
• Advanced Configuration and Power Interface Specification (hereafter referred to as the ACPI

Specification), version 3.0.

9.3.2 PCI Specifications
• Conventional PCI Specification, version 3.0: http://www.pcisig.com*

• PCI-to-PCI Bridge Architecture Specification, revision 1.2: http://www.pcisig.com*

• PCI-to-PCI Bridges and CardBus Controllers on Windows 2000, Windows XP, and Windows
Server 2003:
http://www.microsoft.com/whdc/system/bus/PCI/pcibridge-cardbus.mspx*

9.4 PCI Platform Protocol

9.4.1 PCI Platform Protocol Overview
“PCI Host Bridge Resource Allocation Protocol”, Section 8.8.2 defines and describes the PCI Host
Bridge Resource Allocation Protocol. The PCI Host Bridge Resource Allocation Protocol driver
provides chipset-specific functionality that works across processor architectures and unique platform
features. It does not address issues where an implementation varies across platforms.

In contrast, the PCI Override Protocol and PCI Platform Protocol provide interfaces allow a platform
driver or codebase driver to perform platform-specific actions. For example:

• Allow a PCI bus driver to obtain platform policy. The platform can use this protocol to control
whether the PCI bus driver reserves I/O ranges for ISA aliases and VGA aliases. The default
policy for the PCI bus driver is to reserve I/O ranges for both ISA aliases and VGA aliases,
which may result in a large amount of I/O space being unavailable for PCI devices. This
protocol allows the platform driver to change this policy.

• Call a platform driver at various points in the enumeration phase. The platform driver can use
these hooks to perform various platform-specific activities. Examples of such activities include
but are not limited to the following:

• PlatformPrepController() can be used to program the PCI subsystem vendor ID and
device ID into onboard and chipset devices.

• PlatformPrepController() and PlatformNotify() can be used for implementing
hardware workarounds.

• PlatformPrepController() can be used for preprogramming any backside registers that
control the Base Address Register (BAR) window sizes.

• PlatformPrepController() can be used to set PCI or PCI-X* bus speeds for PCI
bridges that support multiple bus speeds.

PCI Platform

Version 1.1 5/22/2009 143

• Allow PCI option ROMs to be stored in local storage. The platform can store PCI option ROMs
in local storage (e.g., a firmware volume) and report their existence to the PCI bus driver using
the GetPciRom() member function. Option ROMs for embedded PCI controllers are often
stored in a platform-specific location. The same member function can be used to override the
default PCI ROM on an add-in card with one from platform-specific storage.

A platform should implement this protocol if any of the functionality that is listed above is required.

See Code Definitions for the definition of EFI_PCI_PLATFORM_PROTOCOL and the member
functions listed above. See Section 8.8.2 for additional PCI-related design discussion.

9.5 Incompatible PCI Device Support Protocol

9.5.1 Incompatible PCI Device Support Protocol Overview
Some PCI devices do not fully comply with the PCI Specification. For example, a PCI device may
request that its I/O Base Address Register (BAR) be placed on a 0x200 boundary even though it is
requesting an I/O with a length of 0x100. The Incompatible PCI Device Support Protocol allows a
PCI bus driver to handle resource allocation for some PCI devices that do not comply with the PCI
Specification.

In the PI Architecture, the platform-specific PCI host bridge driver works with the generic, standard
PCI bus driver to configure the entire PCI subsystem. Even though the exact configuration is up to
individual incompatible devices, it is a platform choice to support those incompatible PCI devices.
For example, one platform may not want to support those incompatible devices while another
platform appears more tolerant of those devices.

See Code Definitions for the definition of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.

9.5.2 Usage Model for the Incompatible PCI Device Support Protocol
The following describes the usage model for the Incompatible PCI Device Support Protocol:

1. The PCI bus driver locates EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. If
the PCI bus driver cannot find this protocol, simply follow the regular PCI enumeration path.
Otherwise, go to step 2.

2. For each PCI device that was detected, the PCI bus driver begins collecting the required PCI
resources by probing the Base Address Register (BAR) for each device.

3. For each device, call
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice() to check
whether this PCI device is an incompatible device. If this device in not an incompatible device,
go to step 5.

4. Use the Configuration that is returned by CheckDevice() to override or modify the
original PCI resource requirements.

5. Follow the normal PCI enumeration process.

Platform Initialization Specification VOLUME 5 Standards

144 5/22/2009 Version 1.1

9.6 PCI Code Definitions
This section contains the basic definitions of protocols that provide PCI platform support. The
following protocols are defined in this section:

• EFI_PCI_PLATFORM_PROTOCOL

• EFI_PCI_OVERRIDE_PROTOCOL

• EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

EFI_PCI_CHIPSET_EXECUTION_PHASE

EFI_PCI_PLATFORM_POLICY

9.6.1 PCI Platform Protocol

EFI_PCI_PLATFORM_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and a platform-specific driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_PLATFORM_PROTOCOL_GUID \
 { 0x7d75280, 0x27d4, 0x4d69, 0x90, 0xd0, 0x56, 0x43, \
 0xe2, 0x38, 0xb3, 0x41 }

Protocol Interface Structure
typedef struct _EFI_PCI_PLATFORM_PROTOCOL {
 EFI_PCI_PLATFORM_PHASE_NOTIFY PlatformNotify;
 EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER PlatformPrepController;
 EFI_PCI_PLATFORM_GET_PLATFORM_POLICY GetPlatformPolicy;
 EFI_PCI_PLATFORM_GET_PCI_ROM GetPciRom;
} EFI_PCI_PLATFORM_PROTOCOL;

Parameters
PlatformNotify

The notification from the PCI bus enumerator to the platform that it is about to enter a
certain phase during the enumeration process. See the PlatformNotify()
function description.

PCI Platform

Version 1.1 5/22/2009 145

PlatformPrepController

The notification from the PCI bus enumerator to the platform for each PCI controller
at several predefined points during PCI controller initialization. See the
PlatformPrepController() function description.

GetPlatformPolicy

Retrieves the platform policy regarding enumeration. See the
GetPlatformPolicy() function description.

GetPciRom

Gets the PCI device’s option ROM from a platform-specific location. See the
GetPciRom() function description.

Description
The EFI_PCI_PLATFORM_PROTOCOL is published by a platform-aware driver. This protocol is
optional; see PCI Platform Protocol Overview in Design Discussion for scenarios in which this

protocol is required. There cannot be more than one instance of this protocol in the system.

If the PCI bus driver detects the presence of this protocol before enumeration, it will use the PCI
Platform Protocol to obtain information about the platform policy. The PCI bus driver will use this
protocol to get the PCI device's option ROM from a platform-specific location in storage. It will also
call the various member functions of this protocol at predefined points during PCI bus enumeration.
The member functions can be used for performing any platform-specific initialization that is
appropriate during the particular phase.

Platform Initialization Specification VOLUME 5 Standards

146 5/22/2009 Version 1.1

EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PHASE_NOTIFY) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI EXECUTION_PHASE ExecPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

HostBridge

The handle of the host bridge controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Phase

The phase of the PCI bus enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPh
ase().

ExecPhase

Defines the execution phase of the PCI chipset driver. Type EFI_PCI_
EXECUTION_PHASE is defined in "Related Definitions" below.

Description
The PlatformNotify() function can be used to notify the platform driver so that it can
perform platform-specific actions. No specific actions are required.

Several notification points are defined at this time. More notification points may be added as
required in the future. The function should return EFI_UNSUPPORTED for any value of Phase that
that the function does not support.

The PCI bus driver calls this function twice for every Phase-once before the PCI Host Bridge
Resource Allocation Protocol driver is notified, and once after the PCI Host Bridge Resource
Allocation Protocol driver has been notified.

This member function may not perform any error checking on the input parameters. If this member
function detects any error condition, it needs to handle those errors on its own because there is no
way to surface any errors to the caller.

PCI Platform

Version 1.1 5/22/2009 147

Related Definitions
//**
// EFI_PCI_EXECUTION_PHASE
//**
typedef enum {
 BeforePciHostBridge = 0,
 ChipsetEntry = 0,
 AfterPciHostBridge = 1,
 ChipsetExit = 1,
 MaximumExecutionPhase
} EFI_PCI_EXECUTION_PHASE;

typedef EFI_PCI_EXECUTION_PHASE EFI_PCI_CHIPSET_EXECUTION_PHASE;

Note: EFI_PCI_EXECUTION_PHASE is used to call a platform protocol and execute platform-specific
code. Following is a description of the fields in the above enumeration.

BeforePciHostBridge

The phase that indicates the entry point to the PCI Bus Notify phase. This platform
hook is called before the PCI bus driver calls the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL driver.

AfterPciHostBridge

The phase that indicates the exit point to the PCI Bus Notify phase before returning to
the PCI Bus Driver Notify phase. This platform hook is called after the PCI bus driver
calls the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
driver.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_UNSUPPORTED The function does not support the phase specified by Phase.

Platform Initialization Specification VOLUME 5 Standards

148 5/22/2009 Version 1.1

EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()

Summary
The platform driver receives notifications from the PCI bus enumerator at various phases during PCI
controller initialization, just like the PCI host bridge driver.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_HANDLE RootBridge,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_EXECUTION_PHASE ExecPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

HostBridge

The associated PCI host bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

RootBridge

The associated PCI root bridge handle.

PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL functions to access the PCI
configuration space of the device. See the UEFI 2.1 Specification for the definition of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI controller enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Preproce
ssController().

ExecPhase

Defines the execution phase of the PCI chipset driver. Type
EFI_PCI_CHIPSET_EXECUTION_PHASE is defined in
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify().

PCI Platform

Version 1.1 5/22/2009 149

Description
The PlatformPrepController() function can be used to notify the platform driver so that it
can perform platform-specific actions. No specific actions are required.

Several notification points are defined at this time. More synchronization points may be added as
required in the future. The function should return EFI_UNSUPPORTED for any value of Phase that
that the function does not support.

The PCI bus driver calls the platform driver twice for every PCI controller—once before the PCI
Host Bridge Resource Allocation Protocol driver is notified, and once after the PCI Host Bridge
Resource Allocation Protocol driver has been notified.

This member function may not perform any error checking on the input parameters. It also does not
return any error codes. If this member function detects any error condition, it needs to handle those
errors on its own because there is no way to surface any errors to the caller.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

Platform Initialization Specification VOLUME 5 Standards

150 5/22/2009 Version 1.1

EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()

Summary
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve platform policies regarding PCI enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PLATFORM_POLICY) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 OUT EFI_PCI_PLATFORM_POLICY *PciPolicy,
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

PciPolicy

The platform policy with respect to VGA and ISA aliasing. Type
EFI_PCI_PLATFORM_POLICY is defined in "Related Definitions" below.

Description
The GetPlatformPolicy() function retrieves the platform policy regarding PCI enumeration.
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve the policy.

The EFI_PCI_IO_PROTOCOL.Attributes() function allows a PCI device driver to ask for
various legacy ranges. Because PCI device drivers run after PCI enumeration, a request for legacy
allocation comes in after PCI enumeration. The only practical way to guarantee that such a request
from a PCI device driver will be fulfilled is to preallocate these ranges during enumeration. The PCI
bus enumerator does not know which legacy ranges may be requested and therefore must rely on
GetPlatformPolicy(). The data that is returned by GetPlatformPolicy() determines
the supported attributes that are returned by the EFI_PCI_IO_PROTOCOL.Attributes()
function.

See "Related Definitions" below for a description of the output parameter PciPolicy. For
example, the platform can decide if it wishes to support devices that require ISA aliases using this
parameter. Note that the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
function returns the attributes that the root bridge hardware supports and does not depend upon
preallocations.

Related Definitions
typedef UINT32 EFI_PCI_PLATFORM_POLICY;

EFI_PCI_PLATYFORM_POLICY is a bitmask with the following legal combinations.

PCI Platform

Version 1.1 5/22/2009 151

#define EFI_RESERVE_NONE_IO_ALIAS 0x0000
#define EFI_RESERVE_ISA_IO_ALIAS 0x0001
#define EFI_RESERVE_ISA_IO_NO_ALIAS 0x0002
#define EFI_RESERVE_VGA_IO_ALIAS 0x0004
#define EFI_RESERVE_VGA_IO_NO_ALIAS 0x0008

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_UNSUPPORTED The function is not supported.

EFI_INVALID_PARAMETER PciPolicy is NULL.

Platform Initialization Specification VOLUME 5 Standards

152 5/22/2009 Version 1.1

EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

Summary
Gets the PCI device's option ROM from a platform-specific location.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PCI_ROM) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE PciHandle,
 OUT VOID **RomImage,
 OUT UINTN *RomSize
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

PciHandle

The handle of the PCI device. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

RomImage

If the call succeeds, the pointer to the pointer to the option ROM image. Otherwise,
this field is undefined. The memory for RomImage is allocated by
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() using the UEFI Boot Service
AllocatePool(). It is the caller's responsibility to free the memory using the
UEFI Boot Service FreePool(), when the caller is done with the option ROM.

RomSize

If the call succeeds, a pointer to the size of the option ROM size. Otherwise, this field
is undefined.

Description
The GetPciRom() function gets the PCI device's option ROM from a platform-specific location.
The option ROM will be loaded into memory. This member function is used to return an image that
is packaged as a PCI 2.2 option ROM. The image may contain both legacy and UEFI option ROMs.
See the UEFI 2.1 Specification for details. This member function can be used to return option ROM
images for embedded controllers. Option ROMs for embedded controllers are typically stored in
platform-specific storage, and this member function can retrieve it from that storage and return it to
the PCI bus driver. The PCI bus driver will call this member function before scanning the ROM that
is attached to any controller, which allows a platform to specify a ROM image that is different from
the ROM image on a PCI card.

PCI Platform

Version 1.1 5/22/2009 153

Status Codes Returned

9.6.2 PCI Override Protocol

EFI_PCI_OVERRIDE_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and an implementation's driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_OVERRIDE_GUID \
 { 0xb5b35764, 0x460c, 0x4a06, { 0x99, 0xfc, 0x77, 0xa1,
 0x7c, 0x1b, 0x5c, 0xeb } }

Protocol Interface Structure
typedef EFI_PCI_PLATFORM_PROTOCOL EFI_PCI_OVERRIDE_PROTOCOL;

Description
The EFI_PCI_OVERRIDE_PROTOCOL is published by an implementation aware driver. This
protocol is optional. But it must be called, if present, during PCI enumeration. There cannot be more
than one instance of this protocol in the system.

If the PCI bus driver detects the presence of this protocol before bus enumeration, it will use the PCI
Override Protocol to obtain information about the platform policy. If the PCI Platform Protocol does
not exist or returns an error, then this protocol is called.

The PCI bus driver will use this protocol to get the PCI device's option ROM from an
implementation-specific location in storage. If the PCI Platform Protocol does not exist or returns an
error, then this function is called.

It will also call the various member functions of this protocol at predefined points during PCI bus
enumeration. The member functions can be used for performing any implementation-specific
initialization that is appropriate during the particular phase.

EFI_SUCCESS The option ROM was available for this device and loaded into
memory.

EFI_NOT_FOUND No option ROM was available for this device.

EFI_OUT_OF_RESOURCES No memory was available to load the option ROM.

EFI_DEVICE_ERROR An error occurred in getting the option ROM.

Platform Initialization Specification VOLUME 5 Standards

154 5/22/2009 Version 1.1

9.6.3 Incompatible PCI Device Support Protocol

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

Summary
Allows the PCI bus driver to support resource allocation for some PCI devices that do not comply
with the PCI Specification.

Note: This protocol is optional. Only those platforms that implement this protocol will have the capability
to support incompatible PCI devices. The absence of this protocol can cause the PCI bus driver to
configure these incompatible PCI devices incorrectly. As a result, these devices may not work
properly.

GUID
#define EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL_GUID \
 {0xeb23f55a, 0x7863, 0x4ac2, 0x8d, 0x3d, 0x95, 0x65, \
 0x35, 0xde, 0x3, 0x75}

Protocol Interface Structure
typedef struct _EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL {
 EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE CheckDevice;
} EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL;

Parameters
CheckDevice

Returns a list of ACPI resource descriptors that detail any special resource
configuration requirements if the specified device is a recognized incompatible PCI
device. See the CheckDevice() function description.

Description
The EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL is used by the PCI bus driver
to support resource allocation for some PCI devices that do not comply with the PCI Specification.
This protocol can find some incompatible PCI devices and report their special resource requirements
to the PCI bus driver. The generic PCI bus driver does not have prior knowledge of any incompatible
PCI devices. It interfaces with the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
to find out if a device is incompatible and to obtain the special configuration requirements for a
specific incompatible PCI device.

This protocol is optional, and only one instance of this protocol can be present in the system. If a
platform supports this protocol, this protocol is produced by a Driver Execution Environment (DXE)
driver and must be made available before the Boot Device Selection (BDS) phase. The PCI bus
driver will look for the presence of this protocol before it begins PCI enumeration.

If this protocol exists in a platform, it indicates that the platform has the capability to support those
incompatible PCI devices. However, final support for incompatible PCI devices still depends on the
implementation of the PCI bus driver. The PCI bus driver may fully, partially, or not even support
these incompatible devices.

PCI Platform

Version 1.1 5/22/2009 155

During PCI bus enumeration, the PCI bus driver will probe the PCI Base Address Registers (BARs)
for each PCI device—regardless of whether the PCI device is incompatible or not—to determine the
resource requirements so that the PCI bus driver can invoke the proper PCI resources for them.
Generally, this resource information includes the following:

• Resource type

• Resource length

• Alignment

However, some incompatible PCI devices may have special requirements. As a result, the length or
the alignment that is derived through BAR probing may not be exactly the same as the actual
resource requirement of the device. For example, there are some devices that request I/O resources at
a length of 0x100 from their I/O BAR, but these incompatible devices will never work correctly if an
odd I/O base address, such as 0x100, 0x300, or 0x500, is assigned to the BAR. Instead, these devices
request an even base address, such as 0x200 or 0x400. The Incompatible PCI Device Support
Protocol can then be used to obtain these special resource requirements for these incompatible PCI
devices. In this way, the PCI bus driver will take special consideration for these devices during PCI
resource allocation to ensure that they can work correctly.

This protocol may support the following incompatible PCI BAR types:

• I/O or memory length that is different from what the BAR reports

• I/O or memory alignment that is different from what the BAR reports

• Fixed I/O or memory base address

See the Conventional PCI Specification 3.0 for the details of how a PCI BAR reports the resource
length and the alignment that it requires.

Platform Initialization Specification VOLUME 5 Standards

156 5/22/2009 Version 1.1

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevi
ce()

Summary
Returns a list of ACPI resource descriptors that detail the special resource configuration
requirements for an incompatible PCI device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE) (
 IN EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL *This,
 IN UINTN VendorId,
 IN UINTN DeviceId,
 IN UINTN RevisionId,
 IN UINTN SubsystemVendorId,
 IN UINTN SubsystemDeviceId,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
instance.

VendorID

A unique ID to identify the manufacturer of the PCI device. See the Conventional PCI
Specification 3.0 for details.

DeviceID

A unique ID to identify the particular PCI device. See the Conventional PCI
Specification 3.0 for details.

RevisionID

A PCI device-specific revision identifier. See the Conventional PCI Specification 3.0
for details.

SubsystemVendorId

Specifies the subsystem vendor ID. See the Conventional PCI Specification 3.0 for
details.

SubsystemDeviceId

Specifies the subsystem device ID. See the Conventional PCI Specification 3.0 for
details.

Configuration

A list of ACPI resource descriptors that detail the configuration requirement. See
Table 15 in the "Description" subsection below for the definition.

PCI Platform

Version 1.1 5/22/2009 157

Description
The CheckDevice() function returns a list of ACPI resource descriptors that detail the special
resource configuration requirements for an incompatible PCI device.

Prior to bus enumeration, the PCI bus driver will look for the presence of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. Only one instance of this
protocol can be present in the system. For each PCI device that the PCI bus driver discovers, the PCI
bus driver calls this function with the device’s vendor ID, device ID, revision ID, subsystem vendor
ID, and subsystem device ID. If the VendorId, DeviceId, RevisionId,
SubsystemVendorId, or SubsystemDeviceId value is set to (UINTN)-1, that field will
be ignored. The ID values that are not (UINTN)-1 will be used to identify the current device.

This function will only return EFI_SUCCESS. However, if the device is an incompatible PCI
device, a list of ACPI resource descriptors will be returned in Configuration. Otherwise, NULL
will be returned in Configuration instead. The PCI bus driver does not need to allocate memory
for Configuration. However, it is the PCI bus driver’s responsibility to free it. The PCI bus
driver then can configure this device with the information that is derived from this list of resource
nodes, rather than the result of BAR probing.

Only the following two resource descriptor types from the ACPI Specification may be used to
describe the incompatible PCI device resource requirements:

• QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1; also ACPI 3.0)

• End Tag (ACPI 2.0, section 6.4.2.8; also ACPI 3.0)

The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 15 and Table 16 below contain
these two descriptor types. See the ACPI Specification for details on the field values.

Platform Initialization Specification VOLUME 5 Standards

158 5/22/2009 Version 1.1

Table 15. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage

Table 16. ACPI 2.0 & 3.0 End Tag Usage

Status Codes Returned

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:
 0: Memory range
 1: I/O range

Other values will be ignored.

0x04 0x01 General flags. Ignored.

0x05 0x01 Type-specific flags. Ignored.

0x06 0x08 Address Space Granularity. Ignored.

0x16 0x08 Address Range Maximum. Used to convey the alignment information. This

value must be 2n-1. If no special alignment is required for the BAR, it must be
0. Then the alignment will set to (length-1), where the length is derived
through the BAR probing.

0x1E 0x08 Address Translation Offset. Used to indicate the BAR Index from 0 to 5.
Specially, (UINT64)-1 in this field means all the PCI BARs on the device.

0x26 0x08 Address Range Length. Length of the requested resource. If the device has
no special length request, it must be 0. Then the length that was obtained
from BAR probing will be applied.

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

EFI_SUCCESS The function always returns EFI_SUCCESS.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 161

10
Hot Plug PCI

10.1 HotPlug PCI Overview
This specification defines the core code and services that are required for an implementation of the
Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the EFI Boot Services
environment, uses this protocol to initialize the hot-plug subsystem. The same protocol may be used
by other buses such as CardBus that support hot plugging. This specification does the following:

• Describes the basic components of the hot-plug PCI subsystem and the Hot-Plug PCI
Initialization Protocol

• Provides code definitions for the Hot-Plug PCI Initialization Protocol and the hot-plug-PCI–
related type definitions that are architecturally required.

10.2 Hot-Plug PCI Initialization Protocol Introduction
This chapter describes the Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the EFI
Boot Services environment, uses this protocol to initialize the hot-plug subsystem. This protocol is
generic enough to include PCI-to-CardBus bridges and PCI Express* systems. This protocol
abstracts the hot-plug controller initialization and resource padding. This protocol is required on
platforms that support PCI Hot Plug* or PCI Express slots. For the purposes of initialization, a
CardBus PC Card bus is treated in the same way. This protocol is not required on all other platforms.

This protocol is not intended to support hot plugging of PCI cards during the preboot stage. Separate
components can be developed if such support is desired.

See Hot-Plug PCI Initialization Protocol in Code Definitions for the definition of
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.

10.3 Hot-Plug PCI Initialization Protocol Related Information
The following resources are referenced throughout this specification or may be useful to you:

• Conventional PCI Specification, revision 3.0: http://www.pcisig.com/*

• PC Card Standard, volumes 1, 7, and 8: http://www.pcmcia.org/*

• PCI Express Base Specification, revision 1.0a: http://www.pcisig.com/*

• PCI Hot-Plug Specification, revision 1.1: http://www.pcisig.com/*

• PCI Standard Hot-Plug Controller and Subsystem Specification, revision 1.0:
http://www.pcisig.com/*

Platform Initialization Specification VOLUME 5 Standards

162 7/1/2010 Version 1.1 Errata B

10.4 Requirements
PI Architecture firmware must support platforms with PCI Hot Plug* slots and PCI Express* Hot
Plug slots, as well as CardBus PC Card sockets. In both cases, the user is allowed to plug in new
devices or remove existing devices during runtime. PCI Hot Plug slots are controlled by a PCI Hot
Plug controller whereas CardBus sockets are controlled by a PCI-to-CardBus bridge. PCI Express
Hot Plug slots are controlled by a PCI Express root port or a downstream port in a switch. The term
"Hot Plug Controller" (HPC) in this document refers to all of these types of controllers. From the
standpoint of initialization, all three are identical and have the same general requirements, as
follows:

• The root HPCs may come up uninitialized after system reset. These HPCs must be initialized by
the system firmware.

• Every HPC may require resource padding. The padding must be taken into account during PCI
enumeration. This scenario is true for conventional PCI, PCI Express, and CardBus PC Cards
because they all consume shared system resources (I/O, memory, and bus). These resources are
produced by the root PCI bridge.

These general requirements place the following specific requirements on an implementation of the
PI Architechture PCI hot plug support:

• PI Architecture firmware must handle root HPCs differently than other regular PCI devices.
When a root HPC is initialized, the hot-plug slots or CardBus sockets are enabled and this
process may uncover more PCI buses and devices. In that respect, root HPCs are somewhat like
PCI bridges. The root HPC initialization process may involve detecting bus type and optimum
bus speed. The initialization process may also detect faults and voltage mismatches. The
initialization process may be specific to the controller and the platform. At the time of the root
HPC initialization, the PCI bus may not be fully initialized and the standard PCI bus-specific
protocols are not available. PI Architecture firmware must provide an alternate infrastructure for
the initialization code. In other words, the HPC initialization code should not be required to
understand the bus numbering scheme and other chipset details.

• PI Architecture firmware must support an unlimited number of HPCs in the system. PI
Architecture firmware must support various types of HPCs as long as they follow industry
standards or conventions. A mix of various types of HPCs is allowed.

• PI Architecture firmware must support legacy PCI Hot Plug Controllers (PHPCs; class code
0x6, subclass code 0x4) as well as Standard (PCI) Hot Plug Controllers (SHPCs). Other
conventional PCI Hot Plug controllers are not supported.

• PI Architecture firmware must be capable of supporting a PHPC that is a child of another PHPC.
In that case, the PCI Standard Hot-Plug Controller and Subsystem Specification requires that
the child PHPC must be initialized without firmware assistance because it is not a root PHPC.

• PI Architecture firmware must be capable of supporting SHPCs on an add-in card. In that case,
the PCI Standard Hot-Plug Controller and Subsystem Specification requires that such an SHPC
must be initialized without firmware assistance because it is not a root PHPC. PI Architecture
firmware must also support plug-in CardBus bridges that follow the CardBus Specification,
which is part of the PC Card Standard.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 163

• As stated above, root HPCs may require firmware initialization. PI Architecture firmware must
be capable of supporting root HPCs that are initialized by hardware and do not require any
firmware initialization.

• A PI Architecture PCI bus enumerator must overallocate resources for PCI Hot Plug buses and
CardBus sockets. The amount of overallocation may be platform specific.

• The root HPC initialization process may be time consuming. An SHPC can take as long as 15
seconds to enable power to a hot-plug bus without violating the PCI Special Interest Group
(PCI-SIG*) requirements. PI Architecture firmware should be able to initialize multiple HPCs in
parallel to reduce boot time. In contrast, CardBus initialization is quick.

• PI Architecture firmware should be able to handle when an HPC fails. PI Architecture firmware
should be able to handle an HPC that has been disabled.

• The PCI bus driver in PI Architecture firmware is not required to assume anything that is not in
one of the PCI-SIG specifications.

• It must be possible to produce legacy Hot Plug Resource Tables (HPRTs) if necessary. HPRTs
are described in the PCI Standard Hot-Plug Controller and Subsystem Specification.

10.5 Sample Implementation for a Platform Containing PCI
Hot Plug* Slots

Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that multiple passes of bus enumeration are required in a system containing
PCI Hot Plug slots.

See section 8.3 for definitions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL and its member functions.

If the platform supports PCI Hot Plug, an instance of the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.

The PCI enumeration process begins.

Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the hot-
plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot Plug
Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

Notify the host bridge driver that bus enumeration is about to begin by calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

For every PCI root bridge handle, do the following:

1. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnumera
tion (This,RootBridgeHandle).

Platform Initialization Specification VOLUME 5 Standards

164 7/1/2010 Version 1.1 Errata B

2. Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the UEFI 2.1 Specification for the definition
of the PCI Root Bridge I/O Protocol.

3. Allocate memory to hold resource requirements. These can be two resource descriptors, one to
hold bus requirements and another to hold the I/O and memory requirements.

4. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttribu
tes() to get the attributes of this PCI root bridge. This information is used to combine different
types of memory resources in the next step.

Scan all the devices in the specified bus range and the specified segment, one bus at a time. If the
device is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in
the PCI-to-PCI bridge hardware. If the device path of a device matches that of a root HPC and it
is not a PCI-to-CardBus bridge, it must be initialized by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() before the bus it
controls can be fully enumerated. The PCI bus enumerator determines the PCI address of the
PCI Hot Plug Controller (PHPC) and passes it as an input to InitializeRootHpc().

5. Continue to scan devices on that root bridge and start the initialization of all root HPCs.

6. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
so that the HPCs under initialization are still accessible. SetBusNumbers() cannot affect the PCI
addresses of the HPCs.

Wait until all the HPCs that were found on various root bridges in step 5 to complete initialization.

Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the nonroot
HPCs, call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding() to obtain
the amount of overallocation and add that amount to the requests from the physical devices.
Reprogram the bus numbers by taking into account the bus resource padding information. This
action will require calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers().
The rescan is not required if there is only one root bridge in the system.

Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it will
be initialized.

10.6 Code Definitions

This section contains the basic definitions that are related to PCI Hot Plug*.
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is defined in this section.

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_HPC_LOCATION

• EFI_HPC_STATE

• EFI_HPC_PADDING_ATTRIBUTES

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 165

10.7 Hot-Plug PCI Initialization Protocol

EFI_PCI_HOT_PLUG_INIT_PROTOCOL

Summary
This protocol provides the necessary functionality to initialize the Hot Plug Controllers (HPCs) and
the buses that they control. This protocol also provides information regarding resource padding.

Note: This protocol is required only on platforms that support one or more PCI Hot Plug* slots or CardBus
sockets.

GUID
#define EFI_PCI_HOT_PLUG_INIT_PROTOCOL_GUID \
 { 0xaa0e8bc1, 0xdabc, 0x46b0, 0xa8, 0x44, 0x37, 0xb8, \
 0x16, 0x9b, 0x2b, 0xea }

Protocol Interface Structure
typedef struct _EFI_PCI_HOT_PLUG_INIT_PROTOCOL {
 EFI_GET_ROOT_HPC_LIST GetRootHpcList;
 EFI_INITIALIZE_ROOT_HPC InitializeRootHpc;
 EFI_GET_HOT_PLUG_PADDING GetResourcePadding;
} EFI_PCI_HOT_PLUG_INIT_PROTOCOL;

Parameters
GetRootHpcList

Returns a list of root HPCs and the buses that they control. See the
GetRootHpcList() function description.

InitializeRootHpc

Initializes the specified root HPC. See the InitializeRootHpc() function
description.

GetResourcePadding

Returns the resource padding that is required by the HPC. See the
GetResourcePadding() function description.

Description
The EFI_PCI_HOT_PLUG_INIT_PROTOCOL provides a mechanism for the PCI bus enumerator
to properly initialize the HPCs and CardBus sockets that require initialization. The HPC
initialization takes place before the PCI enumeration process is complete. There cannot be more than
one instance of this protocol in a system. This protocol is installed on its own separate handle.

Because the system may include multiple HPCs, one instance of this protocol should represent all of
them. The protocol functions use the device path of the HPC to identify the HPC. When the PCI bus
enumerator finds a root HPC, it will call
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). If InitializeRootHpc() is
unable to initialize a root HPC, the PCI enumerator will ignore that root HPC and continue the

Platform Initialization Specification VOLUME 5 Standards

166 7/1/2010 Version 1.1 Errata B

enumeration process. If the HPC is not initialized, the devices that it controls may not be initialized,
and no resource padding will be provided.

From the standpoint of the PCI bus enumerator, HPCs are divided into the following two classes:

Root HPC

These HPCs must be initialized by calling InitializeRootHpc() during the enumeration
process. These HPCs will also require resource padding. The platform code must have a priori
knowledge of these devices and must know how to initialize them. There may not be any way
to access their PCI configuration space before the PCI enumerator programs all the upstream
bridges and thus enables the path to these devices. The PCI bus enumerator is responsible for
determining the PCI bus address of the HPC before it calls InitializeRootHpc().

Nonroot HPC

These HPCs will not need explicit initialization during enumeration process. These HPCs will
require resource padding. The platform code does not have to have a priori knowledge of
these devices.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 167

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()

Summary
Returns a list of root Hot Plug Controllers (HPCs) that require initialization during the boot process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_ROOT_HPC_LIST) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 OUT UINTN *HpcCount,
 OUT EFI_HPC_LOCATION **HpcList
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcCount

The number of root HPCs that were returned.

HpcList

The list of root HPCs. HpcCount defines the number of elements in this list. Type
EFI_HPC_LOCATION is defined in "Related Definitions" below.

Description
This procedure returns a list of root HPCs. The PCI bus driver must initialize these controllers
during the boot process. The PCI bus driver may or may not be able to detect these HPCs. If the
platform includes a PCI-to-CardBus bridge, it can be included in this list if it requires initialization.
The HpcList must be self consistent. An HPC cannot control any of its parent buses. Only one HPC
can control a PCI bus. Because this list includes only root HPCs, no HPC in the list can be a child of
another HPC. This policy must be enforced by the EFI_PCI_HOT_PLUG_INIT_PROTOCOL.
The PCI bus driver may not check for such invalid conditions.

The callee allocates the buffer HpcList.

Platform Initialization Specification VOLUME 5 Standards

168 7/1/2010 Version 1.1 Errata B

Related Definitions
//***
// EFI_HPC_LOCATION
//***
typedef struct {
 EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath;
 EFI_DEVICE_PATH_PROTOCOL *HpbDevicePath;
} EFI_HPC_LOCATION;

HpcDevicePath

The device path to the root HPC. An HPC cannot control its parent buses. The PCI bus
driver requires this information so that it can pass the correct HpcPciAddress to the
InitializeRootHpc() and GetResourcePadding() functions. Type
EFI_DEVICE_PATH is defined in LocateDevicePath() in the UEFI 2.1
Specification.

HpbDevicePath

The device path to the Hot Plug Bus (HPB) that is controlled by the root HPC. The
PCI bus driver uses this information to check if a particular PCI bus has hot-plug slots.
The device path of a PCI bus is the same as the device path of its parent. For Standard
(PCI) Hot Plug Controllers (SHPCs) and PCI Express*, HpbDevicePath is the same as
HpcDevicePath.

Status Codes Returned

EFI_SUCCESS HpcList was returned.

EFI_OUT_OF_RESOURCES HpcList was not returned due to insufficient resources.

EFI_INVALID_PARAMETER HpcCount is NULL.

EFI_INVALID_PARAMETER HpcList is NULL.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 169

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()

Summary
Initializes one root Hot Plug Controller (HPC). This process may causes initialization of its
subordinate buses.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INITIALIZE_ROOT_HPC) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 IN EFI_EVENT Event, OPTIONAL
 OUT EFI_HPC_STATE *HpcState
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcDevicePath

The device path to the HPC that is being initialized. Type EFI_DEVICE_PATH is
defined in LocateDevicePath() in the UEFI 2.1 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.

Event

The event that should be signaled when the HPC initialization is complete. Set to
NULL if the caller wants to wait until the entire initialization process is complete. The
event must be of type EFI_EVENT_NOTIFY_SIGNAL. Type EFI_EVENT is
defined in CreateEvent() in the UEFI2.1 Specification.

HpcState

The state of the HPC hardware. The type EFI_HPC_STATE is defined in "Related
Definitions" below.

Description
This function initializes the specified HPC. At the end of initialization, the hot-plug slots or sockets
(controlled by this HPC) are powered and are connected to the bus. All the necessary registers in the
HPC are set up. For a Standard (PCI) Hot Plug Controller (SHPC), the registers that must be set up
are defined in the PCI Standard Hot Plug Controller and Subsystem Specification. For others HPCs,
they are specific to the HPC hardware. The initialization process may choose not to enable certain
PCI Hot Plug* slots or sockets for any reason. The PCI Hot Plug slots or CardBus sockets that are
left disabled at this stage are not available to the system. A PCI slot may be disabled due to a power
fault, PCI bus type mismatch, or power budget constraints. The HPC initialization process can be

Platform Initialization Specification VOLUME 5 Standards

170 7/1/2010 Version 1.1 Errata B

time consuming. Powering up the slots that are controlled by SHPCs can take up to 15 seconds. In a
system with multiple HPCs, it is desirable to perform these activities in parallel. Therefore, this
procedure supports nonblocking execution mode.

If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of the
HPC initialization.

The PCI bus enumerator will call this function for every root HPC that is returned by
GetRootHpcList().

The PCI bus enumerator must make sure that the registers that are required during HPC initialization
are accessible before calling InitializeRootHpc(). The determination of whether the
registers are accessible is based on the following rules:

• For HPCs (legacy HPCs, SHPCs inside a PCI-to-PCI bridge, and PCI Express* HPCs), the PCI
configuration space of the HPC device must be accessible. In other words, all the upstream
bridges including root bridges and special-purpose PCI-to-PCI bridges are programmed to
forward PCI configuration cycles to the HPC.

• SHPCs inside a root bridge are accessible without any initialization of the PCI bus.

• PCI-to-CardBus bridges have their registers mapped into the memory space using a memory
Base Address Register (BAR).

This function takes the device path of the HPC as an input. At the time of HPC initialization, the PCI
bus enumeration is not complete. The PCI bus enumerator may not have created a handle for the
HPC and the hot-plug initialization code cannot use the EFI_PCI_IO_PROTOCOL or
EFI_DEVICE_PATH_PROTOCOL like other PCI device drivers. The device path uniquely
identifies the HPC and also the PCI bus that it controls.

If the HPC is a PCI device, the hot-plug initialization code may need its address on the PCI bus
(EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS; see the UEFI 2.1 Specification
for its definition) to access its registers. The PCI address of a regular PCI device is dynamic but is
known to the PCI bus driver. Therefore, the PCI bus driver provides it through the input parameter
HpcPciAddress to this function. Passing this address eliminates the need for
InitializeRootHpc() to convert the device path into the PCI address. If the HPC is a
function in a multifunction device, this address is the PCI address of that function. The HPC’s
configuration space must be accessible at the specified HpcPciAddress until the HPC initialization is
complete. In other words, the PCI bus driver cannot renumber PCI buses that are upstream to the
HPC while it is being initialized.

This member function can use the LocateDevicePath() function to locate the appropriate
instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

If the Event is not NULL, this function will return control to the caller without completing the
entire initialization. This function must perform some basic checks to make sure that it knows how
to initialize the specified HPC before returning control. The Event is signaled when the
initialization process completes, regardless of whether it results in a failure. The caller must check
HpcState to get the initialization status after the event is signaled.

If Event is not NULL, it is possible that the Event may be signaled before this function returns.
There are at least two cases where that may happen:

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 171

• A simple implementation of EFI_PCI_HOT_PLUG_INIT_PROTOCOL may force the caller
to wait until the initialization is complete. In that case, the InitializeRootHpc() function may
signal the event before it returns control back to the caller.

• The HPC may already have been initialized by the time InitializeRootHpc() is called.
In that case, InitializeRootHpc() will signal Event and return control back to the
caller.

HpcState returns the state of the HPC at the time when control returns. If Event is NULL, HpcState
must indicate that the HPC has completed initialization. If Event is not NULL, HpcState can indicate
that the HPC has not completed initialization when this function returns, but HpcState must be
updated before Event is signaled.

The firmware may not wait until InitializeRootHpc() to start HPC initialization. The firmware may
start the initialization earlier in the boot process and the initialization may be completely done by the
time the PCI bus enumerator calls InitializeRootHpc(). An HPC can be initialized by hardware
alone, and no firmware initialization may be needed. For such HPCs, this member function does not
have to do any real work. In such cases, InitializeRootHpc() merely acts as a synchronization point.

Related Definitions
//***
// EFI_HPC_STATE
//***
// Describes current state of an HPC

typedef UINT16 EFI_HPC_STATE;

#define EFI_HPC_STATE_INITIALIZED 0x01
#define EFI_HPC_STATE_ENABLED 0x02

Following is a description of the possible states for EFI_HPC_STATE.

Table 18. Description of possible states for EFI_HPC_STATE

Status Codes Returned

0 Not initialized

EFI_HPC_STATE_INITIALIZED The HPC initialization function was called and the HPC completed
initialization, but it was not enabled for some reason. The HPC may be
disabled in hardware, or it may be disabled due to user preferences,
hardware failure, or other reasons. No resource padding is required.

EFI_HPC_STATE_INITIALIZED |
EFI_HPC_ENABLED

The HPC initialization function was called, the HPC completed
initialization, and it was enabled. Resource padding is required.

EFI_SUCCESS If Event is NULL, the specific HPC was successfully initialized. If

Event is not NULL, Event will be signaled at a later time when

initialization is complete.

Platform Initialization Specification VOLUME 5 Standards

172 7/1/2010 Version 1.1 Errata B

EFI_UNSUPPORTED This instance of EFI_PCI_HOT_PLUG_INIT_PROTOCOL does

not support the specified HPC. If Event is not NULL, it will not be

signaled.

EFI_OUT_OF_RESOURCES Initialization failed due to insufficient resources. If Event is not NULL,

it will not be signaled.

EFI_INVALID_PARAMETER HpcState is NULL.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 173

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

Summary
Returns the resource padding that is required by the PCI bus that is controlled by the specified Hot
Plug Controller (HPC).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_HOT_PLUG_PADDING) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 OUT EFI_HPC_STATE *HpcState,
 OUT VOID **Padding,
 OUT EFI_HPC_PADDING_ATTRIBUTES *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcDevicePath

The device path to the HPC. Type EFI_DEVICE_PATH is defined in
LocateDevicePath() in the UEFI 2.1 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.

HpcState

The state of the HPC hardware. Type EFI_HPC_STATE is defined in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc().

Padding

The amount of resource padding that is required by the PCI bus under the control of
the specified HPC. Because the caller does not know the size of this buffer, this buffer
is allocated by the callee and freed by the caller.

Attributes

Describes how padding is accounted for. The padding is returned in the form of ACPI
(2.0 & 3.0) resource descriptors. The exact definition of each of the fields is the same
as in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitRe
sources() in section 8.8.2. Type EFI_HPC_PADDING_ATTRIBUTES is
defined in "Related Definitions" below.

Platform Initialization Specification VOLUME 5 Standards

174 7/1/2010 Version 1.1 Errata B

Description
This function returns the resource padding that is required by the PCI bus that is controlled by the
specified HPC. This member function is called for all the root HPCs and nonroot HPCs that are
detected by the PCI bus enumerator. This function will be called before PCI resource allocation is
completed. This function must be called after all the root HPCs, with the possible exception of a
PCI-to-CardBus bridge, have completed initialization. Waiting until initialization is completed
allows the HPC driver to optimize the padding requirement. The calculation may take into account
the number of empty and/or populated PCI Hot Plug* slots, the number of PCI-to-PCI bridges
among the populated slots, and other factors. This information is available only after initialization is
complete. PCI-to-CardBus bridges require memory resources before the initialization is started and
therefore are considered an exception. The padding requirements are relatively constant for PCI-to-
CardBus bridges and an estimated value must be returned.

If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of
HPC initialization.

The input parameters HpcDevicePath, HpcPciAddress, and HpcState are described in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). The value of
HpcPciAddress for the same root HPC may be different from what was passed to
InitializeRootHpc(). The HPC’s configuration space must be accessible at the specified
HpcPciAddress until this function returns control.

The padding is returned in the form of ACPI (2.0 & 3.0) resource descriptors. The exact definition of
each of the fields is the same as in the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitResources()
function. See the section 8.8 for the definition of this function.

The PCI bus driver is responsible for adding this resource request to the resource requests by the
physical PCI devices. If Attributes is EfiPaddingPciBus, the padding takes effect at the PCI bus
level. If Attributes is EfiPaddingPciRootBridge, the required padding takes effect at the root
bridge level. For details, see the definition of EFI_HPC_PADDING_ATTRIBUTES in "Related
Definitions" below.

Note that the padding request cannot ask for specific legacy resources such as COM port addresses.
Legacy PC Card devices may require such resources. Supporting these resource requirements is
outside the scope of this specification.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 175

Related Definitions
//***
// EFI_HPC_PADDING_ATTRIBUTES
//***
// Describes how resource padding should be applied

typedef enum {
 EfiPaddingPciBus,
 EfiPaddingPciRootBridge

} EFI_HPC_PADDING_ATTRIBUTES;

Following is a description of the fields in the above definition.

Table 19. EFI_HPC_PADDING_ATTRIBUTES field descriptions

Status Codes Returned

EfiPaddingPciBus Apply the padding at a PCI bus level. In other words, the resources
that are allocated to the bus containing hot-plug slots are padded by
the specified amount. If the hot-plug bus is behind a PCI-to-PCI
bridge, the PCI-to-PCI bridge apertures will indicate the padding.

EfiPaddingPciRootBridge Apply the padding at a PCI root bridge level. If a PCI root bridge
includes more than one hot-plug bus, the resource padding requests
for these buses are added together and the resources that are
allocated to the root bridge are padded by the specified amount. This
strategy may reduce the total amount of padding, but requires
reprogramming of PCI-to-PCI bridges in a hot-add event. If the hot-
plug bus is behind a PCI-to-PCI bridge, the PCI-to-PCI bridge
apertures do not indicate the padding for that bus.

EFI_SUCCESS The resource padding was successfully returned.

EFI_UNSUPPORTED This instance of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL

does not support the specified HPC.

EFI_NOT_READY This function was called before HPC initialization is complete.

EFI_INVALID_PARAMETER HpcState is NULL.

EFI_INVALID_PARAMETER Padding is NULL.

EFI_INVALID_PARAMETER Attributes is NULL.

EFI_OUT_OF_RESOURCES ACPI (2.0 & 3.0) resource descriptors for Padding cannot be allocated
due to insufficient resources.

Platform Initialization Specification VOLUME 5 Standards

176 7/1/2010 Version 1.1 Errata B

10.7.1 PCI Hot Plug Request Protocol
A hot-plug capable PCI bus driver should produce the EFI PCI Hot Plug Request protocol. When a
PCI device or a PCI-like device (for example, 32-bit PC Card) is installed after PCI bus does the
enumeration, the PCI bus driver can be notified through this protocol. For example, when a 32-bit
PC Card is inserted into the PC Card socket, the PC Card bus driver can call interface of this
protocol to notify PCI bus driver to allocate resource and create handles for this PC Card.

Summary
Provides services to notify PCI bus driver that some events have happened in a hot-plug controller
(for example, PC Card socket, or PHPC), and ask PCI bus driver to create or destroy handles for the
PCI-like devices.

GUID
#define EFI_PCI_HOTPLUG_REQUEST_PROTOCOL_GUID \
 {0x19cb87ab,0x2cb9,0x4665,0x83,0x60,0xdd,0xcf,\
 0x60,0x54,0xf7,0x9d}

Protocol Interface Structure
typedef struct _EFI_PCI_HOTPLUG_REQUEST_PROTOCOL {
 EFI_PCI_HOTPLUG_REQUEST_NOTIFY Notify;
} EFI_PCI_HOTPLUG_REQUEST_PROTOCOL;

Parameters
Notify

Notify the PCI bus driver that some events have happened in a hot-plug controller (for
example, PC Card socket, or PHPC), and ask PCI bus driver to create or destroy
handles for the PCI-like devices. See Section 0 for a detailed description.

Description
The EFI_PCI_HOTPLUG_REQUEST_PROTOCOL is installed by the PCI bus driver on a separate
handle when PCI bus driver starts up. There is only one instance in the system. Any driver that wants
to use this protocol must locate it globally.

The EFI_PCI_HOTPLUG_REQUEST_PROTOCOL allows the driver of hot-plug controller, for
example, PC Card Bus driver, to notify PCI bus driver that an event has happened in the hot-plug
controller, and the PCI bus driver is requested to create (add) or destroy (remove) handles for the
specified PCI-like devices. For example, when a 32-bit PC Card is inserted, this protocol interface
will be called with an add operation, and the PCI bus driver will enumerate and start the devices
inserted; when a 32-bit PC Card is removed, this protocol interface will be called with a remove
operation, and the PCI bus driver will stop the devices and destroy their handles.

The existence of this protocol represents the capability of the PCI bus driver. If this protocol exists in
system, it means PCI bus driver is hot-plug capable, thus together with the effort of PC Card bus
driver, hot-plug of PC Card can be supported. Otherwise, the hot-plug capability is not provided.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 177

EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify()

Summary

This function is used to notify PCI bus driver that some events happened in a hot-plug controller, and the PCI bus driver is
requested to start or stop specified PCI-like devices.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_HOTPLUG_REQUEST_NOTIFY) (
 IN EFI_PCI_HOTPLUG_REQUEST_PROTOCOL *This,
 IN EFI_PCI_HOTPLUG_OPERATION Operation,
 IN EFI_HANDLE Controller,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
 IN OUT UINT8 *NumberOfChildren,
 IN OUT EFI_HANDLE *ChildHandleBuffer
);

Parameters
This

A pointer to the EFI_PCI_HOTPLUG_REQUEST_PROTOCOL instance. Type
EFI_PCI_HOTPLUG_REQUEST_PROTOCOL is defined in Section 0.

Operation

The operation the PCI bus driver is requested to make. See "Related Definitions" for
the list of legal values.

Controller

The handle of the hot-plug controller.

RemainingDevicePath

The remaining device path for the PCI-like hot-plug device. It only contains device
path nodes behind the hot-plug controller. It is an optional parameter and only valid
when the Operation is a add operation. If it is NULL, all devices behind the PC Card
socket are started.

NumberOfChildren

The number of child handles. For a add operation, it is an output parameter. For a
remove operation, it’s an input parameter. When it contains a non-zero value, children
handles specified in ChildHandleBuffer are destroyed. Otherwise, PCI bus
driver is notified to stop managing the controller handle.

ChildHandleBuffer

The buffer which contains the child handles. For a add operation, it is an output
parameter and contains all newly created child handles. For a remove operation, it
contains child handles to be destroyed when NumberOfChildren contains a non-
zero value. It can be NULL when NumberOfChildren is 0. It’s the caller’s
responsibility to allocate and free memory for this buffer.

Platform Initialization Specification VOLUME 5 Standards

178 7/1/2010 Version 1.1 Errata B

Description
This function allows the PCI bus driver to be notified to act as requested when a hot-plug event has
happened on the hot-plug controller. Currently, the operations include add operation and remove
operation.

If it is a add operation, the PCI bus driver will enumerate, allocate resources for devices behind the
hot-plug controller, and create handle for the device specified by RemainingDevicePath. The
RemainingDevicePath is an optional parameter. If it is not NULL, only the specified device is
started; if it is NULL, all devices behind the hot-plug controller are started. The newly created
handles of PC Card functions are returned in the ChildHandleBuffer, together with the number
of child handle in NumberOfChildren.

If it is a remove operation, when NumberOfChildren contains a non-zero value, child handles
specified in ChildHandleBuffer are stopped and destroyed; otherwise, PCI bus driver is
notified to stop managing the controller handle.

Related Definitions
//***
// EFI PCI HOTPLUG NOTIFY OPERATION
//***
typedef enum {
 EfiPciHotPlugRequestAdd,
 EfiPciHotplugRequestRemove
} EFI_PCI_HOTPLUG_OPERATION;

EfiPciHotplugRequestAdd

The PCI bus driver is requested to create handles for the specified devices. An array of
EFI_HANDLE is returned, a NULL element marks the end of the array.

EfiPciHotplugRequestRemove

The PCI bus driver is requested to destroy handles for the specified devices.

Hot Plug PCI

Version 1.1 Errata B 7/1/2010 179

Status Codes Returned

10.8 Sample Implementation for a Platform Containing PCI
Hot Plug* Slots

Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that hot plug PCI devices may require that multiple passes of bus
enumeration are required.

There are several phases during the PCI bus enumeration process when PCI hot plug slots are
present. At each phase, the PlatformNotify function of the EFI_PCI_PLATFORM_PROTOCOL and
EFI_PCI_OVERRIDE_PROTOCOL will be called with the execution phase BeforePciHostBridge.
Then the PCI host bridge driver function NotifyPhase is called. Finally, the PlatformNotify functions
are called again, but with the execution phase AfterPciHostBridge.

1. If the platform supports PCI Hot Plug, an instance of the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.

2. The PCI enumeration process begins.

3. Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the
hot-plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot Plug
Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

4. Notify the drivers using EfiPciHostBridgeBeginBusAllocation.

5. For every PCI root bridge handle, do the following:

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnum
eration (This, RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the UEFI 2.1`Specification for the
definition of the PCI Root Bridge I/O Protocol.

• Allocate memory to hold resource requirements.

EFI_SUCCESS The handles for the specified device have been created or destroyed
as requested, and for an add operation, the new handles are
returned in ChildHandleBuffer.

EFI_INVALID_PARAMETER Operation is not a legal value.

EFI_INVALID_PARAMETER Controller is NULL or not a valid handle.

EFI_INVALID_PARAMETER NumberOfChildren is NULL.

EFI_INVALID_PARAMETER ChildHandleBuffer is NULL while Operation is ìremoveî and
NumberOfChildren contains a non-zero value.

EFI_INVALID_PARAMETER ChildHandleBuffer is NULL while Operation is ìaddî.

EFI_OUT_OF_RESOURCES There are no enough resources to start the devices.

Platform Initialization Specification VOLUME 5 Standards

180 7/1/2010 Version 1.1 Errata B

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttr
ibutes() to get the attributes of this PCI root bridge. This information is used to
combine different types of memory resources in the next step.

Scan all the devices in the specified bus range and the specified segment, one bus at a time. If the
device is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in
the PCI-to-PCI bridge hardware. If the device path of a device matches that of a root HPC and it
is not a PCI-to-CardBus bridge, it must be initialized by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() before the bus it
controls can be fully enumerated. The PCI bus enumerator determines the PCI address of the
PCI Hot Plug Controller (PHPC) and passes it as an input to InitializeRootHpc().

• Continue to scan devices on that root bridge and start the initialization of all root HPCs.

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumber
s() so that the HPCs under initialization are still accessible. SetBusNumbers() cannot
affect the PCI addresses of the HPCs.

6. Wait until all the HPCs that were found on various root bridges in step 5 to complete
initialization.

7. Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the
nonroot HPCs, call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()
to obtain the amount of overallocation and add that amount to the requests from the physical
devices. Reprogram the bus numbers by taking into account the bus resource padding
information. This action requires calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
. The rescan is not required if there is only one root bridge in the system.

Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it will
be initialized.

Version 1.1 Errata B 7/1/2010 181

Appendix A
Error Codes

A.1 Error Code Definitions
For 32-bit architecture:

#define EFI_INTERRUPT_PENDING 0xa0000000
#define EFI_WARN_INTERRUPT_SOURCE_PENDING 0x20000000
#define EFI_WARN_INTERRUPT_SOURCE_QUIESCED 0x20000001

For 64-bit architecture:
#define EFI_INTERRUPT_PENDING 0xa000000000000000
#define EFI_WARN_INTERRUPT_SOURCE_PENDING 0x2000000000000000
#define EFI_WARN_INTERRUPT_SOURCE_QUIESCED 0x2000000000000001

Platform Initialization Specification VOLUME 5 Standards

182 7/1/2010 Version 1.1 Errata B

	Revision History
	Contents
	1 Platform Initialization Standards Introduction
	1.1 Overview
	1.2 Terms Used in this Document
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Protocol Descriptions
	1.3.3 Procedure Descriptions
	1.3.4 Pseudo-Code Conventions
	1.3.5 Typographic Conventions

	1.4 Requirements

	2 SMBus Host Controller Design Discussion
	2.1 SMBus Host Controller Overview
	2.2 Related Information
	2.3 SMBus Host Controller Protocol Terms
	2.4 SMBus Host Controller Protocol Overview

	3 SMBus Host Controller Code Definitions
	3.1 Introduction
	3.2 SMBus Host Controller Protocol
	EFI_SMBUS_HC_PROTOCOL
	EFI_SMBUS_HC_PROTOCOL.Execute()
	EFI_SMBUS_HC_PROTOCOL.ArpDevice()
	EFI_SMBUS_HC_PROTOCOL.GetArpMap()
	EFI_SMBUS_HC_PROTOCOL.Notify()

	4 SMBus PPI Design Discussion
	4.1 Introduction
	4.2 Target Audience
	4.3 Related Information
	4.4 PEI SMBus PPI Overview

	5 SMBus PPI Code Definitions
	5.1 Introduction
	5.2 PEI SMBus PPI
	EFI_PEI_SMBUS2_PPI
	EFI_PEI_SMBUS2_PPI.Execute()
	EFI_PEI_SMBUS2_PPI.ArpDevice()
	EFI_PEI_SMBUS2_PPI.GetArpMap()
	EFI_PEI_SMBUS2_PPI.Notify()

	6 SMBIOS Protocol
	EFI_SMBIOS_PROTOCOL
	EFI_SMBIOS_PROTOCOL.Add()
	EFI_SMBIOS_PROTOCOL.UpdateString()
	EFI_SMBIOS_PROTOCOL.Remove()
	EFI_SMBIOS_PROTOCOL.GetNext()

	7 S3 Resume
	7.1 S3 Overview
	7.2 Goals
	7.3 Requirements
	7.4 Assumptions
	7.4.1 Multiple Phases of Platform Initialization
	7.4.2 Process of Platform Initialization

	7.5 Restoring the Platform
	7.5.1 Phases in the S3 Resume Boot Path

	7.6 PEI Boot Script Executer PPI
	EFI_PEI_S3_RESUME2_PPI

	7.7 S3 Save State Protocol
	EFI_S3_SAVE_STATE_PROTOCOL
	EFI_S3_SAVE_STATE_PROTOCOL.Write()
	7.7.1 Opcodes for Write()
	EFI_BOOT_SCRIPT_IO_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_POLL_OPCODE
	EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_POLL_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE
	EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE
	EFI_BOOT_SCRIPT_STALL_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE
	EFI_BOOT_SCRIPT_INFORMATION_OPCODE
	EFI_S3_SAVE_STATE_PROTOCOL.Insert()
	EFI_S3_SAVE_STATE_PROTOCOL.Label()
	EFI_S3_SAVE_STATE_PROTOCOL.Compare()

	7.8 S3 SMM Save State Protocol
	EFI_S3_SMM_SAVE_STATE_PROTOCOL

	8 PCI Host Bridge
	8.1 PCI Host Bridge Overview
	8.2 PCI Host Bridge Design Discussion
	8.3 PCI Host Bridge Resource Allocation Protocol
	8.3.1 PCI Host Bridge Resource Allocation Protocol Overview
	8.3.2 Host Bus Controllers
	8.3.3 Producing the PCI Host Bridge Resource Allocation Protocol
	8.3.4 Required PCI Protocols
	8.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

	8.4 Sample PCI Architectures
	8.4.1 Sample PCI Architectures Overview
	8.4.2 Desktop System with 1 PCI Root Bridge
	8.4.3 Server System with 4 PCI Root Bridges
	8.4.4 Server System with 2 PCI Segments
	8.4.5 Server System with 2 PCI Host Buses

	8.5 ISA Aliasing Considerations
	8.6 Programming of Standard PCI Configuration Registers
	8.7 Sample Implementation
	8.7.1 PCI enumeration process
	8.7.2 Sample Enumeration Implementation

	8.8 PCI HostBridge Code Definitions
	8.8.1 Introduction
	8.8.2 PCI Host Bridge Resource Allocation Protocol
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Noti fyPhase()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get NextRootBridge()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get AllocAttributes()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Star tBusEnumeration()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Set BusNumbers()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Sub mitResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get ProposedResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Pre processController()

	9 PCI Platform
	9.1 Introduction
	9.2 PCI Platform Overview
	9.3 PCI Platform Support Related Information
	9.3.1 Industry Specifications
	9.3.2 PCI Specifications

	9.4 PCI Platform Protocol
	9.4.1 PCI Platform Protocol Overview

	9.5 Incompatible PCI Device Support Protocol
	9.5.1 Incompatible PCI Device Support Protocol Overview
	9.5.2 Usage Model for the Incompatible PCI Device Support Protocol

	9.6 PCI Code Definitions
	9.6.1 PCI Platform Protocol
	EFI_PCI_PLATFORM_PROTOCOL
	EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()
	EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()
	EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()
	EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

	9.6.2 PCI Override Protocol
	EFI_PCI_OVERRIDE_PROTOCOL

	9.6.3 Incompatible PCI Device Support Protocol
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevi ce()

	10 Hot Plug PCI
	10.1 HotPlug PCI Overview
	10.2 Hot-Plug PCI Initialization Protocol Introduction
	10.3 Hot-Plug PCI Initialization Protocol Related Information
	10.4 Requirements
	10.5 Sample Implementation for a Platform Containing PCI Hot Plug* Slots
	10.6 Code Definitions
	10.7 Hot-Plug PCI Initialization Protocol
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()
	10.7.1 PCI Hot Plug Request Protocol
	EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify()

	10.8 Sample Implementation for a Platform Containing PCI Hot Plug* Slots

	Appendix A Error Codes
	A.1 Error Code Definitions

