VOLUME 2: Platform Initialization
Specification

Driver Execution Environment
Core Interface

Version 1.1 Errata B

Platform Initialization Specification VOLUME 2 DXE Core Interface

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2010 Unified EFI, Inc. All Rights Reserved.

ii 7/1/2010 Version 1.1 Errata B

Revision History

Revision Revision History Date
1.0 Initial public release. 8/21/06
1.0 errata Mantis tickets: 10/29/07

* M47 dxe_dispatcher_load_image_behavior
* M48 Make spec more consistent GUID & filename.

* M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

* M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

*« M178 Remove references to tail in file header and made file
checksum for the data

+ M183 Vol 1-Vol 5: Make spec more consistent.

* M192 Change PAD files to have an undefined GUID file name and
update all FV

1.1 Mantis tickets: 11/05/07
* M39 (Updates PCI Hostbridge & PCI Platform)

* M41 (Duplicate 167)

* M42 Add the definition of theDXE CIS Capsule AP & Variable AP
* M43 (SMbios)

* M46 (SMM error codes)

* M163 (Add Volume 4--SMM

* M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

* M179 (S3 boot script)

+ M180 (PMI ECR)

* M195 (Remove PMI references from SMM CIS)
* M196 (disposable-section type to the FFS)

1.1 Restore (missing) MP protocol 03/12/08
correction

Version 1.1 Errata B 7/1/2010 iii

Platform Initialization Specification VOLUME 2

DXE Core Interface

1.1 Errata

230 Updated to Volume 4, section 4.2, ReportStatusCode

231Parameter/description updates for Volume 4, section 4.3,
ReadSaveState() & WriteSaveState(), Parameters

232 SMM 1/0O Protocol Updates
233 Volume 4, Section 5.2 & 5.3 Updates
234 Volume 4, Section 5.5 Misc. Errata

235Volume 4, Chapter 8 Should Be Integrated Into Volume 3,
Section 2.1.4.1, 2.1.5.1 and 3.2.5

236 Volume 4, Section 9.5.1, 9.6, 9.7, 9.8 and 9.9 Formatting
238 CpuSaveStateFormat deprecated in Vol4 of SMM PI11.1 draft

239 rename EFI_SMM_HANDLER_ENTRY_POINT to be
EFI_SMM_HANDLER_ENTRY_POINT2 in Vol4 SMM of PI1.1

240 P11.1 Vol4 typos

244 Replace EFI_FIRMWARE_VOLUME_INFO_PPI with
EFI_PEl_FIRMWARE_VOLUME_INFO_PPI

250 PEI_SPECIFICATION_MINOR_REVISION should be 10

251 Firmware File Type Table (Volume 3, 2.1.4.1, Table 1) Should
Not Contain Section Information

252 Volume 3, Table 2 (2.1.5.1) does not contain
EFI_SECTION_DISPOSABLE

253 EFI_SECTION_PIC has incorrect typedef
254 RelnstallPpi() has incorrect prototype
255 NotifyPpi() has the incorrect prototype
256 CreateHob() has incorrect prototype

257 PEI Specification, Section 4.2.1 and Section 4.2.2 should be
peers of 4.1, 4.3, etc.

258 CreateHob() refers to non-existent specification.
259 FfsFindNextFile() Parameters Are Incorrect
260 FfsFindSectionData() has incorrect parameter description

261 AllocatePages() (PEI) refers to a non-existent specification
and non-existent function.

262 FfsGetVolumelnfo() missing return status codes

263 EFI_PEI_NOTIFY_DESCRIPTOR and
EF1_PEI_PPI_DESCRIPTOR prototypes are incorrect

264 EF1_PEI_SERVICES: Remove references to "future installed
services" from prototype

265 EFI_FV_BLOCK_MAP definition does not exist

267 Invalid References To the Pl Firmware Storage Specification
268 GUIDED_SECTION_EXTRACTION_PROTOCOL missing
'EFI_" prefix

269 References to EFI_FIRMWARE_VOLUME_PROTOCOL
should be EFI_FIRMWARE_VOLUME2_PROTOCOL

272 Various fixes for Communicate() in PI 1.1, Volume 4

273 EFI_SMM_CONTROL2_PROTOCOL Errata

274 Miscellanous SMST Errata from Volume 4, Section 3.2

275 Chapter heading for DXE ReportStatusCode function

276 EFI_STATUS_CODE_RUNTIME_PROTOCOL_GUID has
extra ;'

277 Remove references to "Framework" and "Framework-based"
in Volume 5

04/25/08

7/1/2010

Version 1.1 Errata B

1.1 Errata

Mantis tickets

204 Stack HOB update 1.1errata

225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

226 Remove references to Framework

227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

228 insert"typedef" missing from some typedefs in Volume 3

243 Define interface "EFI_PEI_FV_PPI" declaration in PI11.0
FfsFindNextVolume()

285 Time quality of service in S3 boot script poll operation

287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

290 PI Errata

305 Remove Datahub reference

336 SMM Control Protocol update

345 Pl Errata

353 PI Errata

360 S3RestoreConfig description is missing
363 Pl Volume 1 Errata

367 PCI Hot Plug Init errata

369 Volume 4 Errata

380 SMM Development errata

381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata

247 Clarification regarding use of dependency expression section
types with firmware volume image files

399 SMBIOS Protocol Errata

405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

422 TEMPORARY_RAM_SUPPORT_PPI is misnamed
428 Volume 5 PCl issue
430 Clarify behavior w/ the FV extended header

02/23/09

1.1 Errata

407 Add LMA Pseudo-Register to SMM Save State Protocol
455 Clarify InstallPeiMemory()

465 Correct PMI Interface

466 Add EXTENDED_SAL_PROC definition, etc

467 Vol2 & VolI3 Errata

05/22/09

Version 1.1 Errata B

7/1/2010

Platform Initialization Specification VOLUME 2

vi

DXE Core Interface

1.1 errata 345 P11.0 errata 12/16/09
468 Issues on proposed PI1.2 ACPI System Description Table
Protocol
492 Add Resource HOB Protectability Attributes
494 Vol. 2 Appendix A Clean up
495 Vol 1: update HOB reference
380
501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)
502 Disk info
503 typo
504 remove support for fixed address resources
509 PCI errata — execution phase
510 PCI errata - platform policy
511 PIC TE Image clarification/errata
520 PI Errata
521 Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace
525 Itanium ESAL, MCA/INIT/PMI errata
526 PlI SMM errata
529 PCD issues in Volume 3 of the PI1.2 Specification
541 Volume 5 Typo
543 Clarification around usage of FV Extended header
550 Naming conflicts w/ PI SMM
1.1 Errata B 363 PI volume 1 errata (2/24/10)
365 UEFI Capsule HOB
5/27/10

381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO
482 One other naming inconsistency in the PCD PPI declaration
483 PCD Protocol / PPI function name synchronization.....
496 Boot mode description

497 Status Code additions

548 Boot firmware volume clarification

552 MP services

553 Update text to PEI

554 update return code from PEI AllocatePages

555 Inconsistency in the S3 protocol

561 Minor update to PCD->SetPointer

571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

591ACPI Protocol Name collision

592 More SMM name conflicts

593 A couple of ISA I/O clarifications

595 SMM driver entry point clarification

596 Clarify ESAL return codes

602 SEC->PEI hand-off update

604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

7/1/2010

Version 1.1 Errata B

1.1 Errata B

» 628 ACPI SDT protocol errata
* 629 Typos in PCD GetSize()

5/27/10

Specification Volumes

The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and

printing convenience. The Platform Initialization Specification consists of the following volumes:
VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface
VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization

Specification is available to aid search functions through the entire specification.

Version 1.1 Errata B

7/1/2010

vii

Platform Initialization Specification VOLUME 2 DXE Core Interface

viii 7/1/2010 Version 1.1 Errata B

Contents

1
INErOdUCTION.... .. e 1
1.1 OVEIVIEW ..ttt e e e e e e ettt e e e e e e e ettt e e e e e e e e e nsaaeeeeeaeeeeannnssseeaeeeeeeeansnaneeeanns 1
1.2 Organization of the DXE CIS ... 1
1.3 Target AUGIENCE......ceiiiiieie et e e et e e e e e e e e e e e e e aaa 2
1.4 Conventions Used in this DOCUMENT............uuuiiiiiiiiiiiieiiieeiieieeeeeee e eeeeeeees 2
1.4.1 Data Structure Descriptions ... 3
1.4.2 ProtoCol DESCHPLIONScoeeeiiiiiii e e e 3
1.4.3 Procedure DeSCriPiONSuuiiii et e e e e e e e e s 4
1.4.4 Instruction DeSCrIPlIONSc..oiiiiiiiieiiiieeee e 4
1.4.5 Pseudo-Code CoNVENLIONSccceiviiiiieieeeeeeeee e, 4
1.4.6 TypographiC CONVENLIONSocuuiiiiiiiiie e 5
(T =T o TUT 1= 0 0 T=T o PP 5

2
L0 3 YT 7
2.1 Driver Execution Environment (DXE) Phaseuuuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 7
D U L oy BV (=Y ¢ T =1 o[S 8
A O 1= SRR 8
2.2.2 UEFI Boot Services Table..........ooo oo 9
2.2.3 UEFI Runtime Services Table ... 9
2.2.4 DXE Services Tablecooviviiiiiiieeee 10
2.3 DXE FOUNAAION. ...ttt te et ee e e e e e e e e e e 10
P D) 1= o = (o o = PSS 11
2.5 DXE DIIVEIS .. e it e e e nnne e nnnennee e 11
2.6 DXE Architectural ProtOCOIS.............uuiuuiiiiiiiiiiiiiiiiiiiiieieeee et e e e e e e e e e e e e eeeeeeeeeees 11
2.7 RUNEIME PrOtOCOI ...ttt s e s e e sneeneee 12

3
(=T 0T o3 g 1 =T T Vo =1 o 13
3.1 BOOE MANAJET ...ttt e e e e e e e e e e e e e 13

4
UEFI System Table ...t 15
4.1 DXE ServiCeS TabIle ..cooi oottt e e e e e e e e e e e e e e 15
DXE_SERVICES ...ttt e e et e e e e e e e nanes 15
4.2 UEFI Image Entry Point EXamPIesooooiiiiiii e 18
4.2.1 UEFI Application EXample ..o, 18
4.2.2 Non-UEFI Driver Model Example (Resident in Memory)ccccoooee. 20
4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory) 21
4.2.4 UEFI Driver Model EXample......ccccooiiiiiiiiiiee et e e 22
4.2.5 UEFI Driver Model Example (Unloadable)coccuiiiiiiiiiiiiiiiieeceeeei 22
4.2.6 UEFI Driver Model Example (Multiple Instances) ..o, 24

Version 1.1 Errata B 7/1/2010 ix

Platform Initialization Specification VOLUME 2 DXE Core Interface

5
Services - BoOOt ServiCes. ... e e 27
5.1 Extensions to UEFI Boot Service Event Usage ... 27
5.1 CreateEVeNt ... 27
5.1.2 Pre-Defined Event Groups ..., 27
5.1.3 Additions to Loadlmage()coooeeiiiieiii . 27

6
Runtime Capabilitiesc...coovveeiiiii e e 31
6.1 Additional RUNtIME ProtOCOL.............uuiiiiiiiiiiiiiiieieeee ettt 31
6.1.1 Status COAE SEIVICES......coiiiiiiiiiiie et e e eaeeeas 31

7
Services - DXE SerVICeSciimiiiemriiiiirrrirncessssss s s s s ssssssssssssssssssssssssssssssenens 33
4% B L1 oo [o 1o] o [PPSR 33
7.2 Global Coherency DOMaIN SEIVICESccuuviiiiiiiiiiiiiiieeieeieeeeeeeeeee e ee e e ee e e e e e e e e eeeeeeeees 33
7.2.1 Global Coherency Domain (GCD) Services OVEIrvieW...........cccccuvvvvvvvvvnnnninnnnnnns 33
7.2.2 GCD MemMOry RESOUITEScueiiiieiiiiiiiie ittt a e 33
7.2.3 GCD I/O RESOUICESuuueieieeieeeeeee et e e ettt e e e e e e e e e e e et e e e e aeeaeeees 35
7.2.4 Global Coherency DOMain SEIVICESccccceiiiuuuiiiivae v 36
7.3 DiSPALCNEr SEIVICES ...ovvviiiiiiiiieiiie ettt et eeeeaeeaaeees 67
7.3.1 DispatCher SEIVICESccooiiiiiii i 67

8
Protocols - Device Path Protocol............comciiiiieccrrecr e 73
< 20t I |10 o [o 1o) o [PPSR 73
8.2 Firmware Volume Media Device Path..............cccooiee e 73
8.3 Firmware File Media Device Path ..., 74

9
(94 = o0 4 Lo -1 £ o o 1t 75
1S B I 1010 [T 1o) o PR 75
9.2 Hand-Off BIOCK (HOB) LiSt......cciiiiiiiiiiiieee et e e 75
9.3 DXE Foundation Data StrUCLUIES..........oouiiiiiii e e 77
9.4 Required DXE Foundation COmMPONENtS..........covviiiiiiiiiiiiiiiiieieeieeeeeee et 78
9.5 Handing Control to DXE DispatCherooooiviiiiiiiiiiiiiiiiieeeeeeeeee e 80
9.6 DXE Foundation Entry POINt.......ccooo o 81
9.6.1 DXE_ENTRY _POINT ..ottt e e e e e e e e e e s e e e aeeeas 81
DXE_ENTRY _POINT ...ttt ettt e et e e e e e s e nnnneeeeeeeeannnnes 81
S A LY o1 T [T T[T PSP RRR 82
9.7.1 UEFI Boot Services Dependencies..........cccoeeeeeieiee e, 82
9.7.2 UEFI Runtime Services Dependencies.............cooooeiieiiiiii e iccee e 84
9.7.3 DXE Services Dependenci€sccooeieeeiiiiiiiici e, 87
9.8 HOB TranSlatioNS.......ccouueiiiiiie ettt e e et e e e e e e e et e e e e e e e e e nnnneeeeaaeeeans 88
9.8.1 HOB Translations OVEIVIEWcccoeeiiiiiiiiiiice ettt e s 88
9.8 2 PHIT HOB ...ttt ettt e s nnnneeeeaaens 88
9.8. 3 CPU HOB ... e e e e e e e e e e e e e e e e aaaaas 88
9.8.4 Resource Descriptor HOBS. ..., 89

X 7/1/2010 Version 1.1 Errata B

9.8.5 Firmware VOIUME HOBS ...ttt 90

9.8.6 Memory Allocation HOBS ... 90
9.8.7 GUID EXtensSion HOBS ...ttt e e e eea e 90

10
(D)4 3 B T o 2= e 3 1= o 91
TO. 1 INErOAUCTION ...ttt e e e 91
O T2 (o LU =T 0 01T] £ U 91
10.3 ThE A PFION FlE ...ttt e e e e e e e e e e e e e e e nannnae s 92
EFI_APRIORI_GUIDutiiiiiiiiei ettt a e e e e e e e e e 93
10.4 Firmware Volume Image Files ... 93
10.5 DependencCy EXPreSSIONSccccovieiiiiiiiii et e e e e e e e e e e e e e e e eeeeenanas 94
10.6 Dependency EXpressions OVEIVIEWuuuuiiiiiiiiiieiiiiiieeeeeeeeeeeeeeeeeeereeeeeeereeereeeeeeeeess 94
10.7 Dependency Expression INStruction Set............eeuviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 94
10.8 Dependency Expression with No Dependenciesueveeiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeee 106
10.9 Empty DependenCy EXPreSSIONSuuuuuuuiuuriuiiiiiiiiriuieerreeeeeserrerereseeeeeeereeeeeeerereeeeeee. 106
10.10 Dependency Expression Reverse Polish Notation (RPN)ccooiiiiiiiiiiniiiinnee, 108
10.11 DXE Dispatcher State Machinguuuiiiiiiiiiiiiiiiiiiiirieieeieeeeee e eeeeeeeeees 108
10.12 EXAMPIE OTFAEIINGSuuuuiuiiiuuiiiiiiiiiiiitiitiiiat aetaataaeaaesssssesasssssssssssssssssssssssessssessesssenseees 110
10.13 Security CONSIAEratioNScoiiiiiiiiiiiie e 113

1
D)) Y=Y 115
T4 INErOAUCHION ...ttt e e e neeenee s 115
11.2 Classes Of DXE DIIVELSciii it e e e e e e e e ee et e e e e e eeeeeenes 115
11.2.1 Barly DXE DFIVEISeuiiiiiiiiiiie ettt 115
11.2.2 DXE Drivers that Follow the UEFI Driver Modelccccvviceieiiiiiiiiiiiiinn. 116
11.2.3 Additional Classificationsooviiiiiiiiiii e 116

12
DXE Architectural ProtocCols ... e 117
T2.1 INTrOAUCHION ettt e e e e e e e e e e ettt e e e e e e e eeeeaaees 117
12.2 Boot Device Selection (BDS) Architectural Protocol............ccccuvvueiiiiiiiiiiiiiiiiiiiiiiininns 119
EFI_BDS_ARCH_PROTOCOL ...ttt 119
12.3 CPU Architectural ProtOCOIcooiiiiiiiiiiiie et e e e e 121
EFI_CPU_ARCH_PROTOQCOLuuuiiiiiiieeeeeciiieieeee et a e eareeeeeae e 121
12.4 Metronome Architectural ProtoCol...........cooooiiiiiiiiiii e 136
EFI_METRONOME_ARCH_PROTOCOL.........etttiiieiieiiiieiee e 136
12.5 Monotonic Counter Architectural Protocolcooeiiiiiiiieee e 138
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOLccoveeiiiiiiiiieieeeeeee 138
12.6 Real Time Clock Architectural ProtoColcccuuiiiiiieeiieiee e 139
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOLcccctiiiiiee e 139
12.7 Reset Architectural ProtocCol ..o 140
EFI_RESET_ARCH_PROTOCOLuvtiiiiieiiiiiiieieeee ettt 140
12.8 Runtime Architectural ProtoCol ... 141
EFI_RUNTIME_ARCH_PROTOCOLcceiiiiiiiiieeeeee e 141
12.9 Security Architectural ProtOCOl..............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiirieereerireseeereesreeeeeeereeeeeee—e. 146
EFI_SECURITY_ARCH_PROTOQCOLccoiiiiiiiieee e e e 146

Version 1.1 Errata B 7/1/2010 Xi

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.10 Timer Architectural ProtoCol........... ... 150
EFI_TIMER_ARCH_PROTOCOLoutiiiiiiiiiiiieiee et 150
12.11 Variable Architectural ProtoCol.................uuuuiiiiiiiiiiiiiiiiiiiiiieeeieeee e 157
EFI_VARIABLE_ARCH_PROTOCOL........ceiiiiiiieiee et 157
12.12 Variable Write Architectural ProtoColueiuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 158
EFI_VARIABLE_WRITE_ARCH_PROTOCOLcccceeiiiiiiiiiieee e 158
12.13 EFI Capsule Architectural ProtOColuuuiuiiiiiiiiiiiiiiiiiiiiieiiieveeeseesveeeeeeeseeeeeeeee 158
EFI_CAPSULE_ARCH_PROTOCOL......ccci ittt eeeeeee e 158
12.14 Watchdog Timer Architectural Protocolccoooiiiiiriiic e, 159
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL........ccccttiiiiiee e 159
13
DXE Boot Services Protocol........... i 165
R TR O Y= Y = SRR 165
13.2 Conventions and Abbreviations ... eeeeeeeeeeeeee 165
13.3 MP Services ProtoCOl OVEIVIEW............uuuuuuuiuiiiiiiiiiiiiiiiiiiiieiieeeseeeeereseeeseesreeeeeeereeeeeeeeee. 165
13.4 MP Services ProtOCOL........cooi i 166
EFI_MP_SERVICES_PROTOQCOL ...ccttiiiiiiiiiiiiiieeee e sieeeee e 166
14
DXE Runtime Protocolscoiimimiiiiricci s r s e 187
T4 INEOAUCTION ...ttt e e e e e e ee e s 187
14.2 Status Code Runtime ProtOCOL.........cc.eeiiiiiiiiiieeee e 187
EFI_STATUS_CODE_ PROTOQCOL ...cciiiieiiiiiiiiiieee e e e 187
15
Dependency EXpression Grammar.............cccceeeemmsscssssesssssmsssssssssessssnnnnes 193
15.1 Dependency EXpression Grammar.................uveuueeuurrrrreerrsereerssrerereeeeereeeeeee————.. 193
15.2 Example Dependency Expression BNF Grammar..............eeeevvvveeiiiiiieiiiieeeeeeeeeeeeeeeeee, 193
15.3 Sample DependenCy EXPreSSIONSuuuuuuuriuiiieiiiieeiueeteeeeeeeeeeeeeeeeeneeeeeseeeeeeeeeeeeeeeees 194
Appendix A
= o 0o T 1= P 197
A.1 EFI_REQUEST_UNLOAD _IMAGE ...ttt 197
Appendix B
GUID DefinitioNns......cooeeeeecci s s rcms e s e s s s s s s s e e e e e e e e 199
B.1 DXE Services Table GUIDo i 199
B.2 HOB LiSt GUID ...cooiiiieieiiiie ettt et e e e e e e e st e e e e e e s sennnsneaeeeeeeeanns 199
Figures
Figure 1. Pl Architecture Firmware Phases ... 8
Figure 2. GCD Memory State TransSitioNScoiiiiiiiiiiiiei e 35
Figure 3. GCD I/O State TranSItioNScooiiiiiiiiiieee e 36
Figure 4. HOB LiSt ... 76
Figure 5. UEFI System Table and Related Components...........cccccuuvvvuiiivniiniiiiniiiniiiiiinnnnnnns 77
Figure 6. DXE Foundation COMPONENTEScccoiiiiiiiiiiiiiicc e eaeaaee e aneeaneeaeees 78
Figure 7. DXE DriVer States........ooiiiiiiiiiii ettt 109

xii 7/1/2010 Version 1.1 Errata B

Figure 8. Sample Firmware Volume ... 111
Figure 9. DXE Architectural ProtoCoIsoooouiiiiii i 118
Tables
Table 1. Organization of the DXE CISuuiiiiiiiiiiiiiiiiiiieeeeeee e e e e e e e e e e e e e e e e eeeees 2
Table 2. UEFI BOOt SEIVICES.......uuiiiieeeiiiiiiiiiee ettt e e e e e e e e e e e e e e e s annneeeeeeens 9
Table 3. UEFI RUNIIME SEIVICES.....cccii ittt 10
TaDIE 4. DXE SEIVICES ... ittt e e ee et s s e esseeeseeeseeeeeeeeeeeeeeeeeeeeees 10
Table 5. DXE Architectural ProtOCOIS............uuuiuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 12
Table 6. Status Codes Runtime ProtoCol.............uueeiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee e 12
Table 7. Supported SUbSYSIEM ValUES.........uuviiiiiiiiiiiiiiieeeeeeeeeeeee e 29
Table 8. Status Code RuNtime ProtoCol...........cooiiiiiiiiiiieee e 31
Table 9. Global Coherency Domain Boot Type ServiCes..........couvvevvieiieeiiiiiiiiiiieiiieiieeeieeee, 37
Table 10. Dispatcher Boot TYPE SerVICES........uuuuiuiiiiiiiiiieiiiiiieiieeeeeeeeeeeeeeeee e ee e 67
Table 11. Firmware Volume Media Device Path................oevviiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee e 73
Table 12. Firmware Volume Device Node Text Representation.............ceevvviviiiiiiiviiieinennee. 73
Table 13. Firmware File Media Device Path ... 74
Table 14. Firmware Volume File Device Node Text Representation...........cccccccceeeiiinnninnnn, 74
Table 15. Boot Service DependencCies............uu i uiuiiiieiiiiiiiieiiieeeieeeeeeeeeeeee et ee e e e e e e e e e e e aeeeees 82
Table 16. Runtime Service DependencCies..............uuuueuuiiiiiiiiiiiiieieeeeieeeeeeeeeeeee e e e e e e e e 84
Table 17. DXE Service DePeNndENCIES..........uuuuiiiiiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeseeess 87
Table 18. Resource Descriptor HOB to GCD Type Mapping........ccevvevveeieeiiiieiiiiiieiiieeeeeeeeen, 89
Table 19. Dependency Expression Opcode SUMMaryeeveveeveeveeeeeeeeeeeeeeeeeeeeeeeeeeeees. 95
Table 20. BEFORE Instruction ENCOAING.........uuuuiiiiiiiiiiiiiieiieieeieeeeeeeeeeeeeeeeee e e e e 96
Table 21. AFTER Instruction ENCOAING.........uuiiiiiiiiiiiiiiieece e 97
Table 22. PUSH Instruction ENCOINGuviiiiiiiiiiiiiieeee e 98
Table 23. AND Instruction ENCOTINGcuuuiiiiiiiii e 99
Table 24. OR Instruction ENCOAINGuuuiiiiiiiiiiiiiiiiiiiiiieeeeeseeeeee e e e e e e e e e eeeeeeeeeeeees 100
Table 25. NOT Instruction ENCOAINGuuuuiiiiiiiiiiiiiiiiiiiiieiiiiiiisseseseesssseeeeeseeeseeeeeeessreeeeeee 101
Table 26. TRUE Instruction ENCOdiNg...........uoiiiiiiiiiiiiici e 102
Table 27. FALSE Instruction ENCOAINGuuiiiiiiiiiiiiee e 103
Table 28. END Instruction ENCOTINGcuutiiiiiiiieiiiiiie et 104
Table 29. SOR Instruction ENCOAING...........uuiiiiiiiiiiiiicee e 105
Table 30. DXE DispatCher OrderingS...........uuuuuuiiruiiiiiiiiiiiisirieriereereeererreeeeeeeeereeeeeeeeeeeeeee. 112
Table 31. StatuSFIag DitSuuuuiiiiiiii e s ree e eeeseaseeeeeees 171

Version 1.1 Errata B 7/1/2010 xiii

Platform Initialization Specification VOLUME 2 DXE Core Interface

Xiv 7/1/2010 Version 1.1 Errata B

1
Introduction

1.1 Overview

This specification defines the core code and services that are required for an implementation of the
driver execution environment (DXE) phase of the Unified Extensible Firmware Interface (UEFI)
Foundation. This DXE core interface specification (CIS) does the following:

* Describes the basic components of the DXE phase.

* Provides code definitions for services and functions that are architecturally required by the
Unified Extensible Firmware Interface Specification (UEFI 2.0 specification).

* Presents a set of backward-compatible extensions to the UEFI 2.0 specification.
* Describes the machine preparation that is required for subsequent phases of firmware execution.

See “Organization of the DXE CIS” for more information.

1.2 Organization of the DXE CIS

This DXE core interface specification (CIS) is organized as shown in Table 1. Because the DXE
Foundation is just one component of a PI Architecture-based firmware solution, there are a number
of additional specifications that are referred to throughout this document.

Version 1.1 Errata B 7/1/2010 1

Platform Initialization Specification VOLUME 2 DXE Core Interface
Table 1. Organization of the DXE CIS
Book Description

“Overview” on page 7

“Boot Manager” on page 13

“UEFI System Table” on page 15

“Services - Boot Services” on
page 27
“Runtime Capabilities” on page 31

“Services - DXE Services” on
page 33
“Protocols - Device Path Protocol” on

page 73
“DXE Foundation” on page 75

“DXE Dispatcher” on page 91

“DXE Drivers” on page 115

“DXE Architectural Protocols” on
page 117

“DXE Runtime Protocols” on
page 187
“Dependency Expression Grammar”

on page 193

Describes the major components of DXE, including the boot
manager, firmware core, protocols, and requirements.

Describes the boot manager, which is used to load UEFI drivers,
UEFI applications, and UEFI OS loaders.

Describes the DXE Service table.
Describes specific event types for DXE Foundation.

Contains definitions of a runtime protocol for status code support.

Contains definitions for the fundamental services that are present in
a DXE-compliant system before an OS is booted.

Defines the device path extensions required by the DXE Foundation.

Describes the DXE Foundation that consumes HOBs, Firmware
Volumes, and DXE Architectural Protocols to produce an UEFI
System Table, UEFI Boot Services, UEFI Runtime Services, and the
DXE Services.

Describes the DXE Dispatcher that is responsible for loading and
executing DXE drivers from Firmware Volumes.

Describes the different classes of DXE drivers that may be stored in
Firmware Volumes.

Describes the Architectural Protocols that are produced by DXE
drivers. They are also consumed by the DXE Foundation to produce
the UEFI Boot Services, UEFI Runtime Services, and DXE Services.

Lists success, error, and warning codes returned by DXE and UEFI
interfaces.

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
DXE driver stored in a Firmware Volume.

1.3 Target Audience

This document is intended for the following readers:

e IHVs and OEMs who will be implementing DXE drivers that are stored in firmware volumes.

» BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in various vendor architecture—based products.

1.4 Conventions Used in this Document

This document uses the typographic and illustrative conventions described below.

7/1/2010 Version 1.1 Errata B

Introduction

1.4.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRU CTU RE NAM E . The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.4.2 Protocol Descriptions

The protocols described in this document generally have the following format:

P I'OtOCO| N dame. The formal name of the protocol interface.
Summary: A brief description of the protocol interface.
GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol

interface structure or any of its procedures.

Version 1.1 Errata B 7/1/2010 3

Platform Initialization Specification VOLUME 2 DXE Core Interface

1.4.3 Procedure Descriptions

The procedures described in this document generally have the following format:

P roced ure N dame () . The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A Dbrief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.4.4 Instruction Descriptions

A dependency expression instruction description generally has the following format:

I n Stru Cti on N dame The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.4.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a /ist is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

4 7/1/2010 Version 1.1 Errata B

Introduction

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0

specification).

1.4.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text

Plain text (blue)

Bold

Italic

BOLD Monospace

Bold Monospace

Italic Monospace

Plain Monospace

1.5 Requirements

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an [talic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

In the online help version of this specification, words in a

Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

In code or in text, words in Ttalic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

In code, wordsina Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this

Version 1.1 Errata B

7/1/2010 5

Platform Initialization Specification VOLUME 2 DXE Core Interface

specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

6 7/1/2010 Version 1.1 Errata B

2
Overview

2.1 Driver Execution Environment (DXE) Phase

The Driver Execution Environment (DXE) phase is where most of the system initialization is
performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for initializing
permanent memory in the platform so that the DXE phase can be loaded and executed. The state of
the system at the end of the PEI phase is passed to the DXE phase through a list of position-
independent data structures called Hand-Off Blocks (HOBs). HOBs are described in detail in the
Platform Initialization Hand-Off Block Specification.

There are several components in the DXE phase:
* “DXE Foundation”

* “DXE Dispatcher”

* A set of “DXE Drivers”

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for system services, console devices, and boot devices. These
components work together to initialize the platform and provide the services required to boot an
operating system. The DXE phase and Boot Device Selection (BDS) phases work together to
establish consoles and attempt the booting of operating systems. The DXE phase is terminated when
an operating system is successfully booted. The DXE Foundation is composed of boot services code,
so no code from the DXE Foundation itself is allowed to persist into the OS runtime environment.
Only the runtime data structures allocated by the DXE Foundation and services and data structured
produced by runtime DXE drivers are allowed to persist into the OS runtime environment.

Figure 1 shows the phases that a platform with PI Architecture firmware will execute.

Version 1.1 Errata B 7/1/2010 7

Platform Initialization Specification VOLUME 2 DXE Core Interface
Pre Expozed N)
o il e
: 1 DXE APTs
now limited

R

Device,
Bus, or
Service
Driver

DXE

Dispatcher

Transient OS5
Environment

1

Transient OS
Boot Loader

{rP

.

0S-Present
App

Boot Services Final OS5 Final OS5
Runtime Services Beoot Loader gl Environment
DXE Services
security j
Security Pre EF| Driver Boot Transient Run Time After
{SEC) | Initialization Execution Device System Load (RT) Life
Environment | Environment | Selection (TSL) (AL)
(PEI) (DXE) (BDS)

Power on—=[. . Platform initalization . .]—[....05 boot....]—— = Shutdown

Figure 1. Pl Architecture Firmware Phases

In a PI Architecture firmware implementation, the phase executed prior to DXE is PEI. This
specification covers the transition from the PEI to the DXE phase, the DXE phase, and the DXE
phase’s interaction with the BDS phase. The DXE phase does not require a PEI phase to be
executed. The only requirement for the DXE phase to execute is the presence of a valid HOB list.
There are many different implementations that can produce a valid HOB list for the DXE phase to
execute. The PEI phase in a PI Architecture firmware implementation is just one of many possible
implementations.

2.2 UEFI System Table

2.2.1 Overview
The UEFI System Table is passed to every executable component in the DXE phase. The UEFI
System Table contains a pointer to the following:
* “UEFI Boot Services Table”
* “UEFI Runtime Services Table”
It also contains pointers to the console devices and their associated I/O protocols. In addition, the
UEFI System Table contains a pointer to the UEFI Configuration Table, and this table contains a list

of GUID/pointer pairs. The UEFI Configuration Table may include tables such as the “DXE
Services Dependencies” on page 87, HOB list, ACPI table, SMBIOS table, and SAL System table.

8 7/1/2010 Version 1.1 Errata B

Overview

The UEFI Boot Services Table contains services to access the contents of the handle database. The
handle database is where protocol interfaces produced by drivers are registered. Other drivers can
use the UEFI Boot Services to look up these services produced by other drivers.

All of the services available in the DXE phase may be accessed through a pointer to the UEFI
System Table.

2.2.2 UEFI Boot Services Table

Table 2 provides a summary of the services that are available through the UEFI Boot Services Table.
These services are described in detail in the UEFI 2.0 specification. This DXE CIS makes a few
minor, backward-compatible extensions to these services.

Table 2. UEFI Boot Services

UEFI Boot Services Description

Task Priority Provides services to increase or decrease the current task priority level. This
can be used to implement simple locks and to disable the timer interrupt for
short periods of time. These services depend on the “CPU Architectural
Protocol” on page 121.

Memory Provides services to allocate and free pages in 4 KB increments and allocate
and free pool on byte boundaries. It also provides a service to retrieve a map
of all the current physical memory usage in the platform.

Event and Timer Provides services to create events, signal events, check the status of events,
wait for events, and close events. One class of events is timer events, and
that class supports periodic timers with variable frequencies and one-shot
timers with variable durations. These services depend on the ‘“CPU
Architectural Protocol” on page 121, the “Timer Architectural Protocol” on
page 150, the “Metronome Architectural Protocol” on page 136, and the
“Watchdog Timer Architectural Protocol” on page 159.

Protocol Handler Provides services to add and remove handles from the handle database. It
also provides services to add and remove protocols from the handles in the
handle database. Additional services are available that allow any component
to lookup handles in the handle database, and open and close protocols in the
handle database.

Image Provides services to load, start, exit, and unload images using the PE/COFF
image format. These services use the services of the “Security Architectural
Protocol” on page 146 if it is present.

Driver Support Provides services to connect and disconnect drivers to devices in the platform.
These services are used by the BDS phase to either connect all drivers to all
devices, or to connect only the minimum number of drivers to devices required
to establish the consoles and boot an operating system. The minimal connect
strategy is one possible mechanism to reduce boot time.

2.2.3 UEFI Runtime Services Table

Table 3 provides a summary of the services that are available through the UEFI Runtime Services
Table. These services are described in detail in the UEFI 2.0 specification. One additional runtime
service, Status Code Services, is described in this specification.

Version 1.1 Errata B 7/1/2010 9

Platform Initialization Specification VOLUME 2 DXE Core Interface

Table 3. UEFI Runtime Services

UEFI Runtime Services Description

Variable Provides services to look up, add, and remove environment variables from
nonvolatile storage. These services depend on the Variable Architectural
Protocol and the Variable Write Architectural Protocol.

Real Time Clock Provides services to get and set the current time and date. It also provides
services to get and set the time and date of an optional wake-up timer.
These services depend on the Real Time Clock Architectural Protocol.

Reset Provides services to shut down or reset the platform. These services
depend on the Reset Architectural Protocol.

Virtual Memory Provides services that allow the runtime DXE components to be converted
from a physical memory map to a virtual memory map. These services can
only be called once in physical mode. Once the physical to virtual
conversion has been performed, these services cannot be called again.
These services depend on the Runtime Architectural Protocol.

2.2.4 DXE Services Table

Table 4 provides a summary of the services that are available through the DXE Services Table.
These are new services that are available in boot service time and are required only by the DXE
Foundation and DXE drivers.

Table 4. DXE Services

DXE Services Description
Global Coherency Provides services to manage /0O resources, memory-mapped I/O resources,
Domain and system memory resources in the platform. These services are used to

dynamically add and remove these resources from the processor’s global
coherency domain.

Dispatcher Provides services to manage DXE drivers that are being dispatched by the
DXE Dispatcher.

2.3 DXE Foundation

10

The DXE Foundation is a boot service image that is responsible for producing the following:
» UEFI Boot Services

* UEFI Runtime Services

* DXE Services

The DXE Foundation consumes a HOB list and the services of the DXE Architectural Protocols to
produce the full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services.
The HOB list is described in detail in the Platform Initialization Hand-Off Block Specification.

The DXE Foundation is an implementation of UEFI. The DXE Foundation defined in this
specification is backward compatible with the UEFI 2.0 specification. As a result, both the DXE
Foundation and DXE drivers share many of the attributes of UEFI images. Because this
specification makes extensions to the standard UEFI interfaces, DXE images will not be functional

7/1/2010 Version 1.1 Errata B

Overview

on UEFI systems that are not compliant with this DXE CIS. However, UEFI images must be
functional on all UEFI-compliant systems including those that are compliant with the DXE CIS.

2.4 DXE Dispatcher

The DXE Dispatcher is one component of the DXE Foundation. This component is required to
discover DXE drivers stored in firmware volumes and execute them in the proper order. The proper
order is determine by a combination of an a priori file that is optionally stored in the firmware
volume and the dependency expressions that are part of the DXE drivers. The dependency
expression tells the DXE Dispatcher the set of services that a particular DXE driver requires to be
present for the DXE driver to execute. The DXE Dispatcher does not allow a DXE driver to execute
until all of the DXE driver’s dependencies have been satisfied. After all of the DXE drivers have
been loaded and executed by the DXE Dispatcher, control is handed to the BDS Architectural
Protocol that is responsible for implementing a boot policy that is compliant with the UEFI Boot
Manager described in the UEFI 2.0 specification.

2.5 DXE Drivers

The DXE drivers are required to initialize the processor, chipset, and platform. They are also
required to produce the DXE Architectural Protocols and any additional protocol services required
to produce 1/O abstractions for consoles and boot devices.

2.6 DXE Architectural Protocols

Table 5 provides a summary of the DXE Architectural Protocols. The DXE Foundation is abstracted
from the platform through the DXE Architectural Protocols. The DXE Architectural Protocols
manifest the platform-specific components of the DXE Foundation. DXE drivers that are loaded
and executed by the DXE Dispatcher component of the DXE Foundation must produce these
protocols.

Version 1.1 Errata B 7/1/2010 11

Platform Initialization Specification VOLUME 2 DXE Core Interface
Table 5. DXE Architectural Protocols
DXE Architectural Protocols Description

Security Architectural

CPU Architectural

Metronome Architectural
Timer Architectural

BDS Architectural

Watchdog Timer Architectural
Runtime Architectural
Variable Architectural
Variable Write Architectural
Protocol

Monotonic Counter Architectural

Reset Architectural
Real Time Clock Architectural

Allows the DXE Foundation to authenticate files stored in firmware
volumes before they are used.

Provides services to manage caches, manage interrupts, retrieve the
processor’s frequency, and query any processor-based timers.

Provides the services required to perform very short calibrated stalls.

Provides the services required to install and enable the heartbeat timer
interrupt required by the timer services in the DXE Foundation.

Provides an entry point that the DXE Foundation calls once after all of
the DXE drivers have been dispatched from all of the firmware
volumes. This entry point is the transition from the DXE phase to the
Boot Device Selection (BDS) phase, and it is responsible for
establishing consoles and enabling the boot devices required to boot
an OS.

Provides the services required to enable and disable a watchdog timer
in the platform.

Provides the services required to convert all runtime services and
runtime drivers from physical mappings to virtual mappings.

Provides the services to retrieve environment variables and set volatile
environment variables.

Provides the services to set nonvolatile environment variables.

Provides the services required by the DXE Foundation to manage a 64-
bit monotonic counter.

Provides the services required to reset or shutdown the platform.

Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

Capsule Architectural Protocol

Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

2.7 Runtime Protocol

Table 6 provides a summary of the runtime protocol for status codes.

Table 6. Status Codes Runtime Protocol

Status Code Runtime
Protocol:

Provides the services to send status codes from the DXE Foundation or DXE
drivers to a log or device.

7/1/2010 Version 1.1 Errata B

3
Boot Manager

3.1 Boot Manager

The Boot Manager in DXE executes after all the DXE drivers whose dependencies have been
satisfied have been dispatched by the DXE Dispatcher. At that time, control is handed to the Boot
Device Selection (BDS) phase of execution. The BDS phase is responsible for implementing the
platform boot policy. System firmware that is compliant with this specification must implement the
boot policy specified in the Boot Manager chapter of the UEFI 2.0 specification. This boot policy
provides flexibility that allows system vendors to customize the user experience during this phase of
execution.

The Boot Manager must also support booting from a short-form device path that starts with the first
node being a firmware volume device path. The boot manager must use the GUID in the firmware
volume device node to match it to a firmware volume in the system. The GUID in the firmware
volume device path is compared with the firmware volume name GUID. If a match is made, then the
firmware volume device path can be appended to the device path of the matching firmware volume
and normal boot behavior can then be used.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE Foundation
will hand control to the BDS Architectural Protocol after all of the DXE drivers whose dependencies
have been satisfied have been loaded and executed by the DXE Dispatcher. The BDS phase is
responsible for the following:

* Initializing console devices
* Loading device drivers
* Attempting to load and execute boot selections

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher to see if the
dependencies of any additional DXE drivers have been satisfied since the last time the DXE
Dispatcher was invoked.

Version 1.1 Errata B 7/1/2010 13

Platform Initialization Specification VOLUME 2 DXE Core Interface

14 7/1/2010 Version 1.1 Errata B

4
UEFI System Table

4.1 DXE Services Table
DXE_SERVICES

Summary
Contains a table header and pointers to all of the DXE-specific services.

Related Definitions
#define DXE_SERVICES SIGNATURE 0x565245535£455844

Version 1.1 Errata B

#define DXE SERVICES_ REVISION ((1<<16) | (00)
typedef struct {
EFI_TABLE_ HEADER Hdr;
//
// Global Coherency Domain Services
//
EFI_ADD MEMORY SPACE AddMemorySpace;
EFI_ALLOCATE MEMORY_ SPACE AllocateMemorySpace;
EFI_FREE MEMORY SPACE FreeMemorySpace,

EFI_REMOVE_MEMORY_ SPACE
EFI_GET_MEMORY_ SPACE_DESCRIPTOR
EFI_SET MEMORY SPACE ATTRIBUTES

RemoveMemorySpace,;
GetMemorySpaceDescriptor;
SetMemorySpaceAttributes;

EFI_GET MEMORY SPACE MAP GetMemorySpaceMap,;
EFI_ADD IO_SPACE AddIoSpace;
EFI_ALLOCATE IO_SPACE AllocateIoSpace;,
EFI_FREE IO_SPACE FreeIoSpace,
EFI_REMOVE IO_SPACE RemoveIoSpace,
EFI_GET_IO_SPACE DESCRIPTOR GetIoSpaceDescriptor;
EFI_GET IO _SPACE MAP GetIoSpaceMap;

//

// Dispatcher Services

//

EFI_DISPATCH Dispatch;
EFI_SCHEDULE Schedule;,
EFI_TRUST Trust;

//

7/1/2010

15

Platform Initialization Specification VOLUME 2 DXE Core Interface

// Service to process a single firmware volume found in a
capsule

//
EFI_PROCESS_FIRMWARE_VOLUME ProcessFirmwareVolume,
} DXE_ SERVICES;

Parameters
Hdr

The table header for the DXE Services Table. This header contains the
DXE_SERVI CES_SIGNATURE and DXE_SERVICES_REVISION values along
with the size of the DXE_SERVICES TABLE structure and a 32-bit CRC to verify
that the contents of the DXE Services Table are valid.

AddMemorySpace

Adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor. See the AddMemorySpace () function
description in this document.

AllocateMemorySpace

Allocates nonexistent memory, reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the processor. See the
AllocateMemorySpace () function description in this document.

FreeMemorySpace

Frees nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor. See the
FreeMemorySpace () function description in this document.

RemoveMemorySpace

Removes reserved memory, system memory, or memory-mapped [/O resources from
the global coherency domain of the processor. See the RemoveMemorySpace ()
function description in this document.

GetMemorySpaceDescriptor

Retrieves the descriptor for a memory region containing a specified address. See the
GetMemorySpaceDescriptor () function description in this document.

SetMemorySpaceAttributes

Modifies the attributes for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceAttributes () function description in this
document.

GetMemorySpaceMap

Returns a map of the memory resources in the global coherency domain of the
processor. See the GetMemorySpaceMap () function description in this document.

AddIoSpace

Adds reserved I/O or 1/O resources to the global coherency domain of the processor.
See the AddIoSpace () function description in this document.

16 7/1/2010 Version 1.1 Errata B

UEFI System Table

AllocateIoSpace

Allocates nonexistent I/O, reserved 1/O, or I/O resources from the global coherency
domain of the processor. See the AllocateIoSpace () function description in
this document.

FreeIoSpace

Frees nonexistent 1/0, reserved 1/0, or I/O resources from the global coherency
domain of the processor. See the FreeIoSpace () function description in this
document.

RemoveIoSpace

Removes reserved I/0O or I/O resources from the global coherency domain of the
processor. See the RemoveIoSpace () function description in this document.

GetIoSpaceDescriptor

Retrieves the descriptor for an I/O region containing a specified address. See the
GetIoSpaceDescriptor () function description in this document.

GetIoSpaceMap

Returns a map of the 1/0 resources in the global coherency domain of the processor.
See the GetIoSpaceMap () function description in this document.

Dispatch

Loads and executed DXE drivers from firmware volumes. See the Dispatch ()
function description in this document.

Schedule

Clears the Schedule on Request (SOR) flag for a component that is stored in a
firmware volume. See the Schedule () function description in this document.

Trust

Promotes a file stored in a firmware volume from the untrusted to the trusted state.

See the Trust () function description in this document.
ProcessFirmwareVolume

Creates a firmware volume handle for a firmware volume that is present in system

memory. See the ProcessFirmwareVolume () function description in this
document.

Description

The UEFI DXE Services Table contains a table header and pointers to all of the DXE-specific
services. Except for the table header, all elements in the DXE Services Tables are prototypes of
function pointers to functions as defined in “Services - DXE Services” on page 33.

Version 1.1 Errata B 7/1/2010 17

Platform Initialization Specification VOLUME 2 DXE Core Interface

4.2 UEFI Image Entry Point Examples

4.2.1 UEFI Application Example

18

The following example shows the UEFI image entry point for an UEFI application. This application
makes use of the UEFI System Table, UEFI Boot Services Table, UEFI Runtime Services Table,
and DXE Services Table.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES TABLE GUID;

EFI_SYSTEM TABLE *gST;
EFI_BOOT SERVICES *gBS;
EFI_RUNTIME SERVICES *gRT;
DXE_SERVICES *gDS;

EfiApplicationEntryPoint (
IN EFI_ HANDLE ImageHandle,
IN EFI _SYSTEM TABLE *SystemTable
)

UINTN Index;
BOOLEAN Result;
EFI_STATUS Status;
EFI TIME *Time;
UINTN NumberOfDescriptors;

EFI_GCD MEMORY SPACE DESCRIPTOR MemorySpaceDescriptor;

gST = SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
& (gST->ConfigurationTable[Index] .VendorGuid)
)
if (Result) {
gDS = gST->ConfigurationTable[Index].VendorTable;

}

if (ghS == NULL) {
return EFI NOT FOUND;

}

//
// Use UEFI System Table to print “Hello World” to the active console

// output device.
//

7/1/2010 Version 1.1 Errata B

UEFI System Table

Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\xr”);
if (EFI_ERROR (Status)) {
return Status;

//

// Use UEFI Boot Services Table to allocate a buffer to store the

// current time and date.

//

Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time
)

if (EFI_ERROR (Status)) {

return Status;

//
// Use the UEFI Runtime Services Table to get the current
// time and date.
//
Status = gRT->GetTime (&Time, NULL)
if (EFI_ERROR (Status)) {
return Status;

//
// Use UEFI Boot Services to free the buffer that was used to store
// the current time and date.
//
Status = gBS->FreePool (Time);
if (EFI_ERROR (Status)) {
return Status;

//
// Use the DXE Services Table to get the current GCD Memory Space Map
//
Status = gDS->GetMemorySpaceMap (
&NumberOfDescriptors,
&MemorySpaceMap
)
if (EFI_ERROR (Status)) {
return Status;

//

// Use UEFI Boot Services to free the buffer that was used to store
// the GCD Memory Space Map.

//

Version 1.1 Errata B 7/1/2010 19

Platform Initialization Specification VOLUME 2 DXE Core Interface

Status = gBS->FreePool (MemorySpaceMap) ;
if (EFI_ERROR (Status)) {
return Status;

return Status;

4.2.2 Non-UEFI Driver Model Example (Resident in Memory)

The following example shows the UEFI image entry point for an UEFI driver that does not follow
the UEFI Driver Model. Because this driver returns EFI_SUCCESS, it will stay resident in
memory after it exits.

EFI GUID gEfiDxeServicesTableGuid = DXE SERVICES TABLE GUID;

EFI SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI RUNTIME SERVICES *gRT;
DXE SERVICES *gDS;

EfiDriverEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

UINTN Index;
BOOLEAN Result;

gST = SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
& (gST->ConfigurationTable[Index] .VendorGuid)
)7
if (Result) {
gDS = gST->ConfigurationTable[Index] .VendorTable;

}
if (gDS == NULL) {

return EFI_REQUEST_UNLOAD_IMAGE;
}

/7

20 7/1/2010 Version 1.1 Errata B

UEFI System Table

// Implement driver initialization here.

//

return EFI SUCCESS;
}

4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)

The following example shows the UEFI image entry point for an UEFI driver that also does not
follow the UEFI Driver Model. Because this driver returns the error code
EFI_REQUEST UNLOAD IMAGE, it will not stay resident in memory after it exits.

EFI GUID gEfiDxeServicesTableGuid = DXE SERVICES TABLE GUID;

EFI SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI RUNTIME SERVICES *gRT;
DXE SERVICES *gDS;

EfiDriverEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

UINTN Index;
BOOLEAN Result;

gST = SystemTable;
gBS gST->BootServices;
gRT = gST->RuntimeServices;

gDS = NULL;
for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
Result = EfiCompareGuid (
&gEfiDxeServicesTableGuid,
& (gST->ConfigurationTable[Index] .VendorGuid)
)7
if (Result) {
gDS = gST->ConfigurationTable[Index].VendorTable;

}
if (gDS == NULL) ({

return EFI_REQUEST_UNLOAD_IMAGE;
}

//

// Implement driver initialization here.

/7

Version 1.1 Errata B 7/1/2010 21

Platform Initialization Specification VOLUME 2 DXE Core Interface

return EFI _REQUEST UNLOAD IMAGE;
}

4.2.4 UEFI Driver Model Example

The following is an UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER BINDING PROTOCOL is
defined in Chapter 9 of the UEFI 2.0 specification. The function prototypes for the
AbcSupported (), AbcStart (), and AbcStop () functions are defined in Section 9.1 of the
UEFT 2.0 specification. This function saves the driver's image handle and a pointer to the UEFI
Boot Services Table in global variables, so that the other functions in the same driver can have
access to these values. It then creates an instance of the EFI_DRIVER BINDING PROTOCOL
and installs it onto the driver's image handle.

extern EFI GUID gEfiDriverBindingProtocolGuid;
EFI BOOT SERVICES *gBS;
static EFI DRIVER BINDING PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
0x10,
NULL,
NULL
i

AbcEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

EFI STATUS Status;
gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
) ;

return Status;

4.2.5 UEFI Driver Model Example (Unloadable)

The following is the same UEFI Driver Model example as in the UEFI Driver Model Example,
except that it also includes the code required to allow the driver to be unloaded through the boot

22 7/1/2010 Version 1.1 Errata B

UEFI System Table

service Unload (). Any protocols installed or memory allocated in AbcEntryPoint () must be
uninstalled or freed in the AbcUnload (). The AbcUnload () function first checks to see how
many controllers this driver is currently managing. If the number of controllers is greater than zero,
then this driver cannot be unloaded at this time, so an error is returned.

extern EFI GUID gkEfilLoadedImageProtocolGuid;
extern EFI GUID gkEfiDriverBindingProtocolGuid;
EFI_BOOT SERVICES *gBS;
static EFI_DRIVER BINDING PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL
}i

EFI_STATUS
AbcUnload (
IN EFI_HANDLE ImageHandle

) ;

AbcEntryPoint (
IN EFI_ HANDLE ImageHandle,
IN EFI _SYSTEM TABLE *SystemTable

)

EFI_STATUS Status;
EFI_LOADED IMAGE PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI_OPEN PROTOCOL GET PROTOCOL
)

if (EFI_ERROR (Status)) {

return Status;

}
LoadedImage->Unload = AbcUnload;

mAbcDriverBinding->ImageHandle ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(

Version 1.1 Errata B 7/1/2010 23

Platform Initialization Specification VOLUME 2 DXE Core Interface

&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL

) 7

return Status;

EFI STATUS

AbcUnload (
IN EFI _HANDLE ImageHandle
)

EFI STATUS Status;
UINTN Count;

Status = LibGetManagedControllerHandles (ImageHandle, &Count, NULL);
if (EFI_ERROR (Status)) {
return Status;

if (Count > 0) {
return EFI ACCESS DENIED;
}

Status = gBS->UninstallMultipleProtocolInterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
) 7

return Status;

4.2.6 UEFI Driver Model Example (Multiple Instances)

24

The following is the same as the first UEFI Driver Model example, except that it produces three
EFI_DRIVER BINDING PROTOCOL instances. The first one is installed onto the driver’s image
handle. The other two are installed onto newly created handles.

extern EFI GUID gEfiDriverBindingProtocolGuid;
EFI BOOT SERVICES *gBS;

static EFI DRIVER BINDING PROTOCOL mAbcDriverBindingA = {
AbcSupportedA,
AbcStartA,
AbcStopA,
1/

7/1/2010 Version 1.1 Errata B

UEFI System Table

NULL,
NULL

}s

static EFI_DRIVER BINDING PROTOCOL mAbcDriverBindingB
AbcSupportedB,
AbcStartB,
AbcStopB,
ll
NULL,
NULL
bi

Il
—

static EFI_DRIVER BINDING PROTOCOL mAbcDriverBindingC = {
AbcSupportedC,
AbcStartC,
AbcStopC,
ll
NULL,
NULL
}i

AbcEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI _SYSTEM TABLE *SystemTable
)

EFI STATUS Status;

gBS = SystemTable->BootServices;

//

// Install mAbcDriverBindingA onto ImageHandle

//

mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindinga,
NULL
) 7

if (EFI_ERROR (Status)) {

return Status;

//
// Install mAbcDriverBindingB onto a newly created handle

Version 1.1 Errata B 7/1/2010 25

Platform Initialization Specification VOLUME 2 DXE Core Interface

//
mAbcDriverBindingB->ImageHandle = ImageHandle;
mAbcDriverBindingB->DriverBindingHandle NULL;

Status = gBS->InstallMultipleProtocolInterfaces (
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL
) 7

if (EFI_ERROR (Status)) {

return Status;

//

// Install mAbcDriverBindingC onto a newly created handle
//

mAbcDriverBindingC->ImageHandle = ImageHandle;

mAbcDriverBindingC->DriverBindingHandle NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL

) 7

return Status;

26 7/1/2010 Version 1.1 Errata B

5
Services - Boot Services

5.1 Extensions to UEFI Boot Service Event Usage

5.1.1 CreateEvent

CreateEventEx () in UEFI 2.0 allows for registration of events named by GUID’s. The DXE
foundation defines the following:
#define EFI_EVENT LEGACY_ BOOT_GUID
{0x2a571201, 0x4966, 0x47f6, 0x8b, 0x86, O0xf3, Oxle, 0x41l, O0xf3,
0x2f, 0x10}

This event is to be used with CreateEventEx () in order to be notified when the UEFI boot
manager is about to boot a legacy boot option. Notification of events of this type is sent just before
Int19h is invoked.

5.1.2 Pre-Defined Event Groups

This section describes the pre-defined event groups used by the PI specification.
EFI_EVENT GROUP_DXE_DISPATCH_GUID

This event group is notified by the system when the DXE dispatcher finished one round of driver
dispatch. This allows the SMM dispatcher get chance to dispatch SMM driver which will depend on
UEFI protocols.

Related Definitions
#define EFI_EVENT GROUP DXE DISPATCH GUID \
{ 0x708le22f, Oxcac6, 0x4053, 0x94, 0x68, 0x67, 0x57, \
0x82, Oxcf, 0x88, Oxe5 }

5.1.3 Additions to Loadlmage()

Summary

Loads an UEFI image into memory. This function has been extended from the LoadImage ()
Boot Service defined in the UEFI 2.0 specification. The DXE foundation extends this to support an
additional image type, allowing UEFI images to be loaded from files stored in firmware volumes. It
also validates the image using the services of the Security Architectural Protocol.

Prototype
EFI_STATUS
LoadImage (
IN BOOLEAN BootPolicy,
IN EFI_HANDLE ParentImageHandle,

Version 1.1 Errata B 7/1/2010 27

Platform Initialization Specification VOLUME 2 DXE Core Interface

28

IN EFI_DEVICE PATH *FilePath,

IN VOID *SourceBuffer OPTIONAL ,
IN UINTN SourceSize,
OUT EFI_HANDLE *ImageHandle
)/
Parameters
BootPolicy

If TRUE, indicates that the request originates from the boot manager, and that the boot
manager is attempting to load Fi IePath as a boot selection. Ignored if
SourceBuffer is not NULL.

ParentImageHandle

The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface () function description in the UEFI 2.0
specification. This field is used to initialize the ParentHandle field of the
LOADED _IMAGE protocol for the image that is being loaded.

FilePath

The specific file path from which the image is loaded. Type EFI_DEVICE PATH is
defined in the LocateDevicePath () function description in the UEFI 2.0
specification.

SourceBuffer

If not NULL, a pointer to the memory location containing a copy of the image to be
loaded.

SourceSize
The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL.
ImageHandle

Pointer to the returned image handle that is created when the image is successfully
loaded. Type EFI_HANDLE is defined in the InstallProtocolInterface ()
function description in the UEFI 2.0 specification.

Description

The LoadImage () function loads an UEFI image into memory and returns a handle to the image.
The supported subsystem values in the PE image header are listed in "Related Definitions" below.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a memory-
to-memory load in which SourceBuf fer points to the image to be loaded and SourceSize
indicates the image’s size in bytes. FilePath specifies where the image specified by
SourceBuffer and SourceSize wasloaded. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_FIRMWARE VOLUME2 PROTOCOL, followed by the

SIMPLE FILE SYSTEM PROTOCOL and then the LOAD FILE PROTOCOL to access the file
referred to by FilePath. In this case, the Boot Policy flag is passed to the

LOAD FILE.LoadFile () function and is used to load the default image responsible for booting

7/1/2010 Version 1.1 Errata B

Services - Boot Services

when the Fi1ePath only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11 of the UEFI 2.0 specification.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

The image is also validated using the FileAuthenticationState () service of the Security
Architectural Protocol (SAP). If the SAP returns the status EFI_SUCCESS, then the load operation
is completed normally. If the SAP returns the status EFI_SECURITY VIOLATION, then the load
operation is completed normally, and the EFI_SECURITY VIOLATION status is returned. In this
case, the caller is not allowed to start the image until some platform specific policy is executed to
protect the system while executing untrusted code. If the SAP returns the status
EFI_ACCESS_DENIED, then the image should never be trusted. In this case, the image is
unloaded from memory, and EFI_ACCESS_DENIED is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the LOADED IMAGE PROTOCOL. The caller may fill in the image’s “load options”
data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling StartImage (). Also, once the image is loaded, the caller either starts it by
calling StartImage () or unloads it by calling UnloadImage ().

Related Definitions

//**

// Supported subsystem values
//**

#define EFI_IMAGE SUBSYSTEM EFI_APPLICATION 10
#define EFI_IMAGE_ SUBSYSTEM EFI_BOOT SERVICE_DRIVER 11
#define EFI_IMAGE SUBSYSTEM EFI_RUNTIME DRIVER 12
#define EFI_IMAGE SUBSYSTEM SAL RUNTIME DRIVER 13

Table 7 describes the fields in the above definition.

Table 7. Supported Subsystem Values

Supported Subsystem Values Description
EFI_IMAGE_SUBSYSTEM_EFI_ | The image is loaded into memory of type EfiLoaderCode, and

APPLICATION the memory is freed when the application exits.
EFI_IMAGE_SUBSYSTEM_EFI_ | The image is loaded into memory of type
BOOT_SERVICE_DRIVER EfiBootServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with
EFI_SUCCESS, then the memory for the image is not freed.

EFI_IMAGE_SUBSYSTEM_EFI_ | The image is loaded into memory of type

RUNTIME_DRIVER EfiRuntimeServicesCode. If the image exits with an error
code, then the memory for the image is free. If the image exits with
EFI_SUCCESS, then the memory for the image is not freed.
Images of this type are automatically converted from physical
addresses to virtual address when the Runtime Service
SetVirtualAddressMap () is called.

Version 1.1 Errata B 7/1/2010 29

Platform Initialization Specification

30

VOLUME 2 DXE Core Interface

EFI_IMAGE_SUBSYSTEM_SAL_ ' The image is loaded into memory of type

RUNTIME_DRIVER

EfiRuntimeServicesCode. If the image exits with an error
code, then the memory for the image is free. If the image exits with
EFI_SUCCESS, then the memory for the image is not freed.
Images of this type are not converted from physical to virtual
addresses when the Runtime Service
SetVirtualAddressMap () is called.

Status Codes Returned

EFI_SUCCESS

The image was loaded into memory.

EFI_SECURITY_VIOLATION

The image was loaded into memory, but the current security policy
dictates that the image should not be executed at this time.

EFI_ACCESS_DENIED

The image was not loaded into memory because the current security
policy dictates that the image should never be executed.

EFI_NOT_FOUND

The FilePath was not found.

EFI_INVALID_PARAMETER

One of the parameters has an invalid value.

EFI_UNSUPPORTED

The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES

Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR

Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR

Image was not loaded because the device returned a read error.

7/1/2010 Version 1.1 Errata B

6
Runtime Capabilities

6.1 Additional Runtime Protocol

6.1.1 Status Code Services

Table 8 lists the runtime protocol that are used to report status codes. This protocol provides a
runtime protocol that can be bound by other runtime drivers for reporting status information.

Table 8. Status Code Runtime Protocol

Name Type Description
ReportStatusCode Runtime Reports status codes at boot services time and runtime.

Version 1.1 Errata B 7/1/2010 31

Platform Initialization Specification VOLUME 2 DXE Core Interface

32 7/1/2010 Version 1.1 Errata B

7
Services - DXE Services

7.1 Introduction
This chapter describes the services in the DXE Services Table. These services include the
following:
* Global Coherency Domain (GCD) Services
» Dispatcher Services

The GCD Services are used to manage the system memory, memory-mapped 1/O, and 1/O resources
present in a platform. The Dispatcher Services are used to invoke the DXE Dispatcher and modify
the state of a DXE driver that is being tracked by the DXE Dispatcher.

7.2 Global Coherency Domain Services

7.2.1 Global Coherency Domain (GCD) Services Overview

The Global Coherency Domain (GCD) Services are used to manage the memory and I/O resources
visible to the boot processor. These resources are managed in two different maps:

* GCD memory space map
* GCD I/O space map

If memory or I/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD I/O space map are updated. GCD Services are also provided to retrieve the contents
of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory resources
visible to the boot processor, and the second manages the I/O resources visible to the boot processor.
Not all processor types support I/O resources, so the management of I/O resources may not be
required. However, since system memory resources and memory-mapped 1/O resources are required
to execute the DXE environment, the management of memory resources is always required.

7.2.2 GCD Memory Resources

The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:

* AddMemorySpace ()

e AllocateMemorySpace ()
* FreeMemorySpace ()

* RemoveMemorySpace ()

* SetMemorySpaceAttributes()

Version 1.1 Errata B 7/1/2010 33

Platform Initialization Specification VOLUME 2 DXE Core Interface

34

The GCD Services used to retrieve the GCD memory space map include the following:
* GetMemorySpaceDescriptor ()
* GetMemorySpaceMap ()

The GCD memory space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access
memory resources. This information is used to initialize the state of the GCD memory space map.
Any memory regions outside this initial region are not available to any of the GCD Services that are
used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. There are additional HOB types that describe the
location of system memory, the location memory mapped 1/O, the location of firmware devices, the
location of firmware volumes, the location of reserved regions, and the location of system memory
regions that were allocated prior to the execution of the DXE Foundation. The DXE Foundation
must parse the contents of the HOB list to guarantee that memory regions reserved prior to the
execution of the DXE Foundation are honored. As a result, the GCD memory space map must
reflect the memory regions described in the HOB list. The GCD memory space map provides the
DXE Foundation with the information required to initialize the memory services such as
AllocatePages (), FreePages (),AllocatePool (), FreePool (), and
GetMemoryMap (). See the UEFI 2.0 specification for definitions of these services.

A memory region described by the GCD memory space map can be in one of several different states:
* Nonexistent memory

* System memory

* Memory-mapped I/O

* Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. Figure 2 shows the possible state transitions for each byte of memory in the GCD memory
space map. The transitions are labeled with the GCD Service that can move the byte from one state
to another. The GCD services are required to merge similar memory regions that are adjacent to
each other into a single memory descriptor, which reduces the number of entries in the GCD
memory space map.

7/1/2010 Version 1.1 Errata B

Services - DXE Services

Setﬂ«ttributes
Allocated
MMIO
Allacate Free
Setittributes Setatiributes SetAttributes
Allocated
Allocated
Reserved « System Memory
Allocate Fras Add Remove Allocate Free i
Setittributes Setattributes Setattributes
' Add ' Add '
Reserved
Remuove Remove
Free Allocate
Dperation GCD Service Sethttributes
Add AddMemorySpaced

¥

Remaove RemovebemoryEpaced
Allocate AllocateblemorySpace
Free FreetdermaorySpaced
SetAttributes| SetermonSpaceditributes

Allocated
Non Existent

Figure 2. GCD Memory State Transitions

7.2.3 GCD 1/O Resources
The Global Coherency Domain (GCD) Services used to manage 1/0O resources include the following:
* AddIoSpace()
* AllocateIoSpace()
* FreeIoSpace()
* RemoveIoSpace ()
The GCD Services used to retrieve the GCD I/0 space map include the following:
* GetIoSpaceDescriptor ()

* GetIoSpaceMap ()

The GCD /O space map is initialized from the HOB list that is passed to the entry point of the DXE
Foundation. One HOB type describes the number of address lines that are used to access I/O
resources. This information is used to initialize the state of the GCD 1/O space map. Any I/O
regions outside this initial region are not available to any of the GCD Services that are used to
manage I/O resources. The GCD I/O space map is designed to describe the I/0O address space with

Version 1.1 Errata B 7/1/2010 35

Platform Initialization Specification VOLUME 2 DXE Core Interface

as many as 64 address lines. Each region in the GCD I/O space map can being and end on a byte
boundary.

An /O region described by the GCD 1/O space map can be in several different states. These include
nonexistent I/O, I/0, and reserved 1/0. These I/O regions can be allocated and freed by DXE drivers
executing in the DXE environment. Figure 3 shows the possible state transitions for each byte of I/O
in the GCD 1/0O space map. The transitions are labeled with the GCD Service that can move the byte
from one state to another. The GCD Services are required to merge similar I/O regions that are
adjacent to each other into a single 1/0 descriptor, which reduces the number of entries in the GCD
1/O space map.

Allocated
(fle)

Allocated
Reserved

Allocate

Allocate

Add

Add

Reserved

Remove Remove

Allocate

Operation | GCD Service

Add AddloSpacel) Allocated
Remaove RemoveloSpacel Non Existent
Allocate AllocateloEpaced

Free FreeloSpacad)

Figure 3. GCD I/O State Transitions

7.2.4 Global Coherency Domain Services

36

The functions that make up Global Coherency Domain (GCD) Services are used during preboot to
add, remove, allocate, free, and provide maps of the system memory, memory-mapped I/O, and /O
resources in a platform. These services, used in conjunction with the Memory Allocation Services,
provide the ability to manage all the memory and I/O resources in a platform. Table 9 lists the
Global Coherency Domain Services.

7/1/2010 Version 1.1 Errata B

Services - DXE Services

Table 9. Global Coherency Domain Boot Type Services

Name
AddMemorySpace

AllocateMemorySpace

FreeMemorySpace

RemoveMemorySpace

GetMemorySpaceDescriptor

SetMemorySpaceAttributes

GetMemorySpaceMap

AddloSpace

AllocateloSpace

FreeloSpace

RemoveloSpace

GetloSpaceDescriptor

GetloSpaceMap

Description

This service adds reserved memory, system memory, or memory-
mapped 1/O resources to the global coherency domain of the
processor.

This service allocates nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

This service frees nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

This service removes reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the
processor.

This service retrieves the descriptor for a memory region containing a
specified address.

This service modifies the attributes for a memory region in the global
coherency domain of the processor.

Returns a map of the memory resources in the global coherency
domain of the processor.

This service adds reserved I/O, or I/O resources to the global
coherency domain of the processor.

This service allocates nonexistent I/O, reserved /O, or I/O resources
from the global coherency domain of the processor.

This service frees nonexistent I/0, reserved /O, or I/O resources from
the global coherency domain of the processor.

This service removes reserved I/O, or /O resources from the global
coherency domain of the processor.

This service retrieves the descriptor for an 1/O region containing a
specified address.

Returns a map of the 1/O resources in the global coherency domain of
the processor.

Version 1.1 Errata B

7/1/2010 37

Platform Initialization Specification VOLUME 2 DXE Core Interface

AddMemorySpace()

Summary

This service adds reserved memory, system memory, or memory-mapped 1/O resources to the global
coherency domain of the processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ADD_MEMORY_SPACE) (
IN EFI_GCD_MEMORY TYPE GcdMemoryType,
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Capabilities
)

Parameters
GcdMemoryType

The type of memory resource being added. Type EFI_GCD_MEMORY TYPE is
defined in “Related Definitions” below. The only types allowed are
EfiGcdMemoryTypeReserved, EfiGedMemoryTypeSystemMemory, and
EfiGcdMemoryTypeMemoryMappedIo.

BaseAddress

The physical address that is the start address of the memory resource being added.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length
The size, in bytes, of the memory resource that is being added.
Capabilities

The bit mask of attributes that the memory resource region supports. The bit mask of
available attributes is defined in the GetMemoryMap () function description in the
UEFT 2.0 specification.

Description

The AddMemorySpace () function converts unallocated non-existent memory ranges to a range
of reserved memory, a range of system memory, or a range of memory mapped I/O.
BaseAddress and Length specify the memory range, and GcdMemory Type specifies the
memory type. The bit mask of all supported attributes for the memory range being added is
specified by Capabilities. If the memory range is successfully added, then EFI_SUCCESS is
returned.

If the memory range specified by BaseAddress and Length is of type
EfiGcdMemoryTypeSystemMemory, then the memory range may be automatically allocated
for use by the UEFI memory services. If the addition of the memory range specified by

38 7/1/2010 Version 1.1 Errata B

Services - DXE Services

BaseAddress and Length results in a GCD memory space map containing one or more 4 KB
regions of unallocated EfiGedMemoryTypeSystemMemory aligned on 4 KB boundaries, then
those regions will always be converted to ranges of allocated
EfiGcdMemoryTypeSystemMemory. This extra conversion will never be performed for
fragments of memory that do not meet the above criteria.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID PARAMETER is returned.

If GedMemoryType is not EfiGedMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, or EfiGedMemoryTypeMemoryMappedIo, then
EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If any portion of the memory range specified by BaseAddress and Length is not of type
EfiGcdMemoryTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the memory range specified by BaseAddress and Length was allocated in a
prior call to AllocateMemorySpace (), then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to add the memory resource to the global
coherency domain of the processor, then EFI_OUT _OF RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_MEMORY TYPE
//***
typedef enum ({
EfiGecdMemoryTypeNonExistent,
EfiGecdMemoryTypeReserved,
EfiGecdMemoryTypeSystemMemory,
EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryTypeMaximum

} EFI_GCD MEMORY TYPE;

EfiGedMemoryTypeNonExistent

A memory region that is visible to the boot processor. However, there are no system
components that are currently decoding this memory region.

EfiGcdMemoryTypeReserved

A memory region that is visible to the boot processor. This memory region is being
decoded by a system component, but the memory region is not considered to be either
system memory or memory-mapped [/O.

EfiGcdMemoryTypeSystemMemory

Version 1.1 Errata B 7/1/2010 39

Platform Initialization Specification VOLUME 2 DXE Core Interface

A memory region that is visible to the boot processor. A memory controller is
currently decoding this memory region and the memory controller is producing a
tested system memory region that is available to the memory services.

EfiGcdMemoryTypeMemoryMappedIo

A memory region that is visible to the boot processor. This memory region is
currently being decoded by a component as memory-mapped /O that can be used to
access I/O devices in the platform.

Status Codes Returned

EFI_SUCCESS The memory resource was added to the global coherency domain
of the processor.
EFI_INVALID_PARAMETER GecdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the memory
resource to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddress and Length conflicts with a memory

resource range that was previously added to the global coherency
domain of the processor.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddress and Length was allocated in a prior call to

AllocateMemorySpace ().

40 7/1/2010 Version 1.1 Errata B

Services - DXE Services

AllocateMemorySpace()

Summary

This service allocates nonexistent memory, reserved memory, system memory, or memory-mapped
/0 resources from the global coherency domain of the processor.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE MEMORY SPACE) (

IN EFI_GCD_ALLOCATE TYPE GcdAllocateType,
IN EFI_GCD_MEMORY TYPE GcdMemoryType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
);
Parameters
GcdAllocateType
The type of allocation to perform. Type EFI_GCD_ALLOCATE TYPE is defined in
“Related Definitions” below.
GcdMemoryType
The type of memory resource being allocated. Type EFI_GCD_MEMORY TYPE is
defined in AddMemorySpace (). The only types allowed are
EfiGcdMemoryTypeNonExistent, EfiGecdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, and
EfiGecdMemoryTypeMemoryMappedIo.
Alignment
The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KB
boundary.
Length
The size in bytes of the memory resource range that is being allocated.
BaseAddress

Version 1.1 Errata B

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See “Description” below for more information. On
output the address is set to the base of the memory resource range that was allocated.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

7/1/2010 41

Platform Initialization Specification VOLUME 2 DXE Core Interface

42

ImageHandle
The image handle of the agent that is allocating the memory resource. Type
EFI_HANDLE is defined in InstallProtocolInterface () inthe UEFI 2.0
specification.

DeviceHandle

The device handle for which the memory resource is being allocated. If the memory
resource is not being allocated for a device that has an associated device handle, then
this parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

Description

The AllocateMemorySpace () function searches for a memory range of type
GcdMemoryType and converts the discovered memory range from the unallocated state to the
allocated state. The parameters GcdAllocateType, Alignment, Length, and
BaseAddress specify the manner in which the GCD memory space map is searched. If a memory
range is found that meets the search criteria, then the base address of the memory range is returned in
BaseAddress, and EFI_SUCCESS is returned. ImageHandle and DeviceHandle are used
to convert the memory range from the unallocated state to the allocated state. TmageHandle
identifies the image that is calling AllocateMemorySpace (), and DeviceHand]le identifies
the device that TmageHand1e is managing that requires the memory range. DeviceHandle is
optional, because the device that TmageHand1 e is managing might not have an associated device
handle. If a memory range meeting the search criteria cannot be found, then EFI_NOT_FOUND is
returned.

If GedAllocateType is EfiGedAllocateAnySearchBottomUp, then the GCD memory
space map is searched from the lowest address up to the highest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by A11ignment that matches
GcdMemoryType.

If GedAllocateType is EfiGedAllocateAnySearchTopDown, then the GCD memory
space map is searched from the highest address down to the lowest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by A1ignment that matches
GcdMemoryType.

If GedAllocateTypeis EfiGedAllocateMaxAddressSearchBottomUp, then the GCD
memory space map is searched from the lowest address up to BaseAddress looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by A1ignment
that matches GcdMemoryType.

If GedAllocateType is EfiGedAllocateMaxAddressSearchTopDown, then the GCD
memory space map is searched from BaseAddress down to the lowest address looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by A11ignment
that matches GedMemory Type.

If GedAllocateTypeis EfiGedAllocateAddress, then the GCD memory space map is
checked to see if the memory range starting at BaseAddress for Length bytes is of type
GcdMemoryType, unallocated, and begins on a the boundary specified by A11ignment.

7/1/2010 Version 1.1 Errata B

Services - DXE Services

If the GCD memory space map contains adjacent memory regions that only differ in their base

address and length fields, then those adjacent memory regions must be merged into a single memory

descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID PARAMETER is returned.
If ImageHandle is NULL, then EFI_INVALID PARAMETER is returned.

If GedMemoryType is not EfiGecdMemoryTypeNonExistent,
EfiGedMemoryTypeReserved, EfiGecdMemoryTypeSystem Memory, or
EfiGcdMemoryTypeMemoryMappedIo, then EFI_INVALID PARAMETER is returned.

If GedAlocateType is less than zero, or GedAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID PARAMETER is returned.

If there are not enough system resources available to allocate the memory range, then
EFI_OUT OF RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_ALLOCATE TYPE
//***
typedef enum {
EfiGecdAllocateAnySearchBottomUp,
EfiGecdAllocateMaxAddressSearchBottomUp,
EfiGcdAllocateAddress,
EfiGcdAllocateAnySearchTopDown,
EfiGecdAllocateMaxAddressSearchTopDown,
EfiGecdMaxAllocateType

} EFI_GCD_ALLOCATE_TYPE;

Status Codes Returned

EFI_SUCCESS The memory resource was allocated from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER GcdAllocateTypeisinvalid.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.
EFI_INVALID_PARAMETER BaseAddress is NULL.
EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the memory
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The memory resource request could not be satisfied.

Version 1.1 Errata B 7/1/2010

43

Platform Initialization Specification VOLUME 2 DXE Core Interface

FreeMemorySpace()

Summary

This service frees nonexistent memory, reserved memory, system memory, or memory-mapped [/O
resources from the global coherency domain of the processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE MEMORY SPACE) (
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length

)

Parameters
BaseAddress

The physical address that is the start address of the memory resource being freed.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory resource range that is being freed.

Description
The FreeMemorySpace () function converts the memory range specified by BaseAddress
and Length from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.
If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
allocated on previous calls to AllocateMemorySpace (), then EFI_NOT FOUND is returned.

If there are not enough system resources available to free the memory range, then
EFI_OUT_OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The memory resource was freed from the global coherency domain of
the processor.

EFI_INVALID_PARAMETER Length is zero.

44 7/1/2010 Version 1.1 Errata B

Services - DXE Services

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.

EFI_NOT_FOUND The memory resource range specified by BaseAddress and
Length was not allocated with previous calls to
AllocateMemorySpace ().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the memory resource
from the global coherency domain of the processor.

Version 1.1 Errata B 7/1/2010 45

Platform Initialization Specification VOLUME 2 DXE Core Interface

RemoveMemorySpace()

Summary

This service removes reserved memory, system memory, or memory-mapped I/O resources from the
global coherency domain of the processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REMOVE MEMORY SPACE) (
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length

)

Parameters
BaseAddress

The physical address that is the start address of the memory resource being removed.
Type EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory resource that is being removed.

Description

The RemoveMemorySpace () function converts the memory range specified by BaseAddress
and Length to the memory type EfiGecdMemoryTypeNonExistent. If this conversion is
successful, then EFI__SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base

address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
added to the GCD memory space map with previous calls to AddMemorySpace (), then
EFI_NOT_FOUND is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were allocated
from the GCD memory space map with previous calls to AllocateMemorySpace (), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the memory range, then
EFI_OUT_OF RESOURCES is returned.

46 7/1/2010 Version 1.1 Errata B

Status Codes Returned

Services - DXE Services

EFI_SUCCESS

The memory resource was removed from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER

Lengthis zero.

EFI_UNSUPPORTED

The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.

EFI_NOT_FOUND

One or more bytes of the memory resource range specified by
BaseAddress and Length was not added with previous calls to
AddMemorySpace ().

EFI_ACCESS_DENIED

One or more bytes of the memory resource range specified by
BaseAddress and Length has been allocated with
AllocateMemorySpace ().

EFI_OUT_OF RESOURCES

There are not enough system resources to remove the memory
resource from the global coherency domain of the processor.

Version 1.1 Errata B

7/1/2010

47

Platform Initialization Specification VOLUME 2 DXE Core Interface

GetMemorySpaceDescriptor()

Summary
This service retrieves the descriptor for a memory region containing a specified address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET MEMORY SPACE DESCRIPTOR) (
IN EFI_PHYSICAL ADDRESS BaseAddress,

OUT EFI_GCD MEMORY SPACE DESCRIPTOR *Descriptor
)

Parameters

BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the
memory region containing BaseAddress. Type
EFI_GCD_MEMORY SPACE DESCRIPTOR is defined in "Related Definitions"
below.

Description

The GetMemorySpaceDescriptor () function retrieves the descriptor for the memory region
that contains the address specified by BaseAddress. If a memory region containing
BaseAddress is found, then the descriptor for that memory region is returned in the caller
allocated structure Descriptor, and EFI_SUCCESS is returned.

If Descriptoris NULL, then EFI_INVALID PARAMETER is returned.

If a memory region containing BaseAddress is not present in the GCD memory space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_MEMORY_SPACE_DESCRI PTOR
//***
typedef struct {
EFI_PHYSICAL ADDRESS BaseAddress;

UINT64 Length;

UINT64 Capabilities;
UINT64 Attributes;
EFI_GCD_MEMORY TYPE GcdMemoryType,
EFI_HANDLE ImageHandle;

48 7/1/2010 Version 1.1 Errata B

Services - DXE Services

EFI_HANDLE DeviceHandle;
} EFI_GCD_MEMORY SPACE DESCRIPTOR;

Parameters

BaseAddress

The physical address of the first byte in the memory region. Type
EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length
The number of bytes in the memory region.
Capabilities
The bit mask of attributes that the memory region is capable of supporting. The bit

mask of available attributes is defined in the GetMemoryMap () function description
in the UEFI 2.0 specification.

Attributes

The bit mask of attributes that the memory region is currently using. The bit mask of
available attributes is defined in GetMemoryMap ().

GcdMemoryType
Type of the memory region. Type EFI_GCD_MEMORY TYPE is defined in the
AddMemorySpace () function description.

ImageHandle
The image handle of the agent that allocated the memory resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the memory

resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

DeviceHandle

The device handle for which the memory resource has been allocated. If
ImageHand]e is NULL, then the memory resource is not currently allocated. If this
field is NULL, then the memory resource is not associated with a device that is
described by a device handle. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The descriptor for the memory resource region containing
BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptoris NULL.

EFI_NOT_FOUND A memory resource range containing BaseAddress was not
found.

Version 1.1 Errata B 7/1/2010 49

Platform Initialization Specification VOLUME 2 DXE Core Interface

SetMemorySpaceAttributes()

Summary

This service modifies the attributes for a memory region in the global coherency domain of the
processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SET_MEMORY_SPACE_ATTRIBUTES) (
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)

Parameters
BaseAddress
The physical address that is the start address of a memory region. Type

EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length
The size in bytes of the memory region.
Attributes

The bit mask of attributes to set for the memory region. The bit mask of available
attributes is defined in the Ge tMemoryMap () function description in the UEFI 2.0
specification.

Description

The SetMemorySpaceAttributes () function modifies the attributes for the memory region
specified by BaseAddress and Length from their current attributes to the attributes specified by
Attributes. If this modification of attributes succeeds, then EFI__SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by At t ributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned. The At t ributes bit mask
must be a proper subset of the capabilities bit mask for the specified memory region. The
capabilities bit mask is specified when a memory region is added with AddMemorySpace () and
can be retrieved with GetMemorySpaceDescriptor () or GetMemorySpaceMap ().

50 7/1/2010 Version 1.1 Errata B

Services - DXE Services

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range, then
EFI_OUT_OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource

range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by
BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Version 1.1 Errata B 7/1/2010 51

Platform Initialization Specification VOLUME 2 DXE Core Interface

GetMemorySpaceMap()

Summary
Returns a map of the memory resources in the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_ MEMORY SPACE_MAP) (
OUT UINTN *NumberOfDescriptors,
OUT EFI_GCD_MEMORY SPACE DESCRIPTOR **MemorySpaceMap

)

Parameters

NumberOfDescriptors

A pointer to number of descriptors returned in the MemorySpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
MemorySpaceMap buffer on output.

MemorySpaceMap

A pointer to the array of EFI_GCD_MEMORY SPACE DESCRIPTORs. Type
EFI_GCD MEMORY SPACE DESCRIPTOR is defined in
GetMemorySpaceDescriptor (). This buffer is allocated with
AllocatePool (), so it is the caller’s responsibility to free this buffer with a call to
FreePool (). The number of descriptors in MemorySpaceMap is returned in
NumberOfDescriptors. See the UEFI 2.0 specification for definitions of
AllocatePool () and FreePool ().

Description

The GetMemorySpaceMap () function retrieves the entire GCD memory space map. If there are
no errors retrieving the GCD memory space map, then the number of descriptors in the GCD
memory space map is returned in NumberOfDescriptors, the array of descriptors from the
GCD memory space map is allocated with AllocatePool (), the descriptors are transferred into
MemorySpaceMap, and EFI__SUCCESS is returned.

If NumberOfDescriptorsis NULL, then EFI_INVALID PARAMETER is returned.
If MemorySpaceMap is NULL, then EFI_INVALID PARAMETER is returned.

If there are not enough resources to allocate MemorySpaceMap, then
EFI_OUT_OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The memory space map was returned in the MemorySpaceMap
buffer, and the number of descriptors in MemorySpaceMap was
returned in NumberOfDescriptors.

EFI_INVALID_PARAMETER | NumberOfDescriptors is NULL.

52 7/1/2010 Version 1.1 Errata B

Services - DXE Services

EFI_INVALID_PARAMETER

MemorySpaceMap is NULL.

EFI_OUT_OF RESOURCES

There are not enough resources to allocate MemorySpaceMap.

Version 1.1 Errata B

7/1/2010

53

Platform Initialization Specification VOLUME 2 DXE Core Interface

AddloSpace()

Summary
This service adds reserved 1/0, or I/O resources to the global coherency domain of the processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_ADD IO SPACE) (
IN EFI_GCD_IO_TYPE GcdIoType,
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length

)

Parameters
GecdIoType

The type of 1/O resource being added. Type EFI_GCD_IO TYPE is defined in
“Related Definitions” below. The only types allowed are
EfiGecdIoTypeReserved and EfiGedIoTypelo.

BaseAddress

The physical address that is the start address of the I/O resource being added. Type
EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length
The size in bytes of the 1/O resource that is being added.

Description

The AddIoSpace () function converts unallocated non-existent I/O ranges to a range of reserved
I/0O, or a range of I/O. BaseAddress and Length specify the /O range, and GcdIoType
specifies the I/O type. If the I/O range is successfully added, then EFI__SUCCESS is returned.

If the GCD 1/0 space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If GedIoType is not EfEiGedIoTypeReserved or EfiGedIoTypelo, then
EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If any portion of the I/O range specified by BaseAddress and Length is not of type
EfiGcdIoTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the I/O range specified by BaseAddress and Length was allocated in a prior
callto AllocateIoSpace (), then EFI_ACCESS_DENIED is returned.

54 7/1/2010 Version 1.1 Errata B

If there are not enough system resources available to add the I/O resource to the global coherency

Services - DXE Services

domain of the processor, then EFI_OUT OF RESOURCES is returned.

Related Definitions

//***

// EFI_GCD IO TYPE
//***
typedef enum ({

EfiGedIoTypeNonExistent,

EfiGecdIoTypeReserved,

EfiGedIoTypelo,

EfiGedIoTypeMaximum
} EFI_GCD IO TYPE;

EfiGedIoTypeNonExistent
An I/O region that is visible to the boot processor. However, there are no system
components that are currently decoding this I/O region.
EfiGecdIoTypeReserved
An /O region that is visible to the boot processor. This I/O region is currently being

decoded by a system component, but the I/O region cannot be used to access /O
devices.

EfiGecdIoTypelo
An I/O region that is visible to the boot processor. This I/O region is currently being

decoded by a system component that is producing I/O ports that can be used to access
I/O devices.

Status Codes Returned

EFI_SUCCESS The I/O resource was added to the global coherency domain of

the processor.

EFI_INVALID_PARAMETER GcdIoType s invalid.

EFI_INVALID_PARAMETER Length s zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the 1/0 resource to

the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the 1/0

resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the 1/0 resource range specified by

BaseAddress and Length conflicts with an 1/O resource
range that was previously added to the global coherency domain
of the processor.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length was allocated in a prior call to
AllocateIoSpace().

Version 1.1 Errata B 7/1/2010 55

Platform Initialization Specification VOLUME 2 DXE Core Interface

AllocateloSpace()

Summary

This service allocates nonexistent 1/0, reserved 1/0, or I/O resources from the global coherency
domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE IO SPACE) (
IN EFI_GCD_ALLOCATE TYPE AllocateType,
IN EFI_GCD_IO_TYPE GcdIoType,
IN UINTN Alignment,
IN UINT64 Length,
IN OUT EFI_PHYSICAL ADDRESS *BaseAddress,
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE DeviceHandle OPTIONAL
);
Parameters
GcdAllocateType
The type of allocation to perform. Type EFI_GCD_ALLOCATE TYPE is defined in
AllocateMemorySpace ().
GecdIoType
The type of 1/O resource being allocated. Type EFI_GCD_IO_TYPE is defined in
AddIoSpace (). The only types allowed are EfiGedIoTypeNonExistent,
EfiGecdIoTypeReserved, and EfiGedIoTypelIo.
Alignment
The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KB
boundary.
Length
The size in bytes of the I/O resource range that is being allocated.
BaseAddress
A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See "Description" below for more information. On
output the address is set to the base of the I/O resource range that was allocated. Type
EFI_PHYSICAL ADDRESS is defined in AllocatePages () in the UEFI 2.0
specification.
ImageHandle

The image handle of the agent that is allocating the I/O resource. Type EFI_HANDLE
is defined in InstallProtocolInterface () in the v.

56 7/1/2010 Version 1.1 Errata B

Services - DXE Services

DeviceHandle

The device handle for which the I/O resource is being allocated. If the I/O resource is
not being allocated for a device that has an associated device handle, then this
parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

Description

The AllocateIoSpace () function searches for an I/O range of type GcdIoType and converts
the discovered I/O range from the unallocated state to the allocated state. The parameters
GcdAllocateType, Alignment, Length, and BaseAddress specify the manner in which
the GCD 1/0O space map is searched. If an I/O range is found that meets the search criteria, then the
base address of the 1/O range is returned in BaseAddress, and EFI_SUCCESS is returned.
ImageHandle and DeviceHandle are used to convert the I/O range from the unallocated state
to the allocated state. TmageHand1e identifies the image that is calling AllocateIoSpace (),
and DeviceHandle identifies the device that TmageHand1e is managing that requires the 1/0
range. DeviceHandle is optional, because the device that TmageHandle is managing might
not have an associated device handle. If an I/O range meeting the search criteria cannot be found,
then EFI_NOT FOUND is returned.

If GedAllocateType is EfiGedAllocateAnySearchBottomUp, then the GCD I/O space
map is searched from the lowest address up to the highest address looking for unallocated I/O ranges
of Length bytes beginning on a boundary specified by A11ignment that matches GedToType.
If GedAllocateType is EfiGedAllocateAnySearchTopDown, then the GCD I/O space
map is searched from the highest address down to the lowest address looking for unallocated 1/O
ranges of Length bytes beginning on a boundary specified by A11ignment that matches
GcdIoType.

If GedAllocateTypeis EfiGedAllocateMaxAddressSearchBottomUp, then the GCD
I/0O space map is searched from the lowest address up to BaseAddress looking for unallocated
I/O ranges of Length bytes beginning on a boundary specified by A1ignment that matches
GcdIoType.

If GedAllocateType is EfiGedAllocateMaxAddressSearchTopDown, then the GCD
I/0 space map is searched from BaseAddress down to the lowest address looking for unallocated
I/0 ranges of Length bytes beginning on a boundary specified by A1 ignment that matches
GcdIoType.

If GedAllocateTypeis EfiGedAllocateAddress, then the GCD I/O space map is checked
to see if the I/O range starting at BaseAddress for Length bytes is of type GcdIoType,
unallocated, and begins on a the boundary specified by A11ignment.

If the GCD 1/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.
If BaseAddress is NULL, then EFI_INVALID PARAMETER is returned.
If TmageHand]e is NULL, then EFI_INVALID PARAMETER is returned.

If GedIoType is not EfEiGedIoTypeNonExistent, EfiGedIoTypeReserved, or
EfiGedIoTypelo, then EFI_INVALID PARAMETER is returned.

Version 1.1 Errata B 7/1/2010 57

Platform Initialization Specification

58

VOLUME 2 DXE Core Interface

If GedAlocateType is less than zero, or GedAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID PARAMETER is returned.

If there are not enough system resources available to allocate the I/0 range, then
EFI_OUT_OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS

The I/0 resource was allocated from the global coherency domain
of the processor.

EFI_INVALID_PARAMETER

GcdAllocateType s invalid.

EFI_INVALID_PARAMETER

GcdIoType s invalid.

EFI_INVALID_PARAMETER

Lengthis zero.

EFI_INVALID_PARAMETER

BaseAddress is NULL.

EFI_INVALID_PARAMETER

ImageHandle is NULL.

EFI_OUT_OF RESOURCES

There are not enough system resources to allocate the I/O
resource from the global coherency domain of the processor.

EFI_NOT_FOUND

The I/0 resource request could not be satisfied.

7/1/2010 Version 1.1 Errata B

Services - DXE Services

FreeloSpace()

Summary

This service frees nonexistent I/O, reserved 1/O, or I/O resources from the global coherency domain
of the processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE IO SPACE) (
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length

)

Parameters
BaseAddress

The physical address that is the start address of the I/O resource being freed. Type
EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length
The size in bytes of the I/O resource range that is being freed.

Description

The FreeIoSpace () function converts the I/O range specified by BaseAddress and Length
from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD 1/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not allocated
on previous calls to AllocateIoSpace (), then EFI_NOT_ FOUND is returned.

If there are not enough system resources available to free the 1/O range, then
EFI_OUT_OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The 1/0 resource was freed from the global coherency domain of the
processor.

EFI_INVALID_PARAMETER Length s zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O resource
range specified by BaseAddress and Length.

Version 1.1 Errata B 7/1/2010 59

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_NOT_FOUND The 1/0 resource range specified by BaseAddress and Length
was not allocated with previous calls to AllocateIoSpace ().

EFI_OUT_OF RESOURCES There are not enough system resources to free the 1/0 resource from
the global coherency domain of the processor.

60 7/1/2010 Version 1.1 Errata B

Services - DXE Services

RemoveloSpace()

Summary

This service removes reserved 1/0, or 1/O resources from the global coherency domain of the
processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REMOVE IO SPACE) (
IN EFI_PHYSICAL ADDRESS BaseAddress,
IN UINT64 Length

)

Parameters

BaseAddress

A pointer to a physical address that is the start address of the I/O resource being
removed. Type EFI_PHYSICAL ADDRESS is defined in AllocatePages () in
the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource that is being removed.

Description

The RemoveIoSpace () function converts the I/O range specified by BaseAddress and
Length to the I/O type EfiGedIoTypeNonExistent. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD 1/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the 1/O range specified by BaseAddress and Length were not added to
the GCD I/O space map with previous calls to AddIoSpace (), then EFI_NOT_ FOUND is
returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were allocated from
the GCD 1/0O space map with previous calls to AllocateIoSpace (), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the 1/0 range, then
EFI_OUT_ OF RESOURCES is returned.

Version 1.1 Errata B 7/1/2010 61

Platform Initialization Specification VOLUME 2 DXE Core Interface

Status Codes Returned

EFI_SUCCESS The I/O resource was removed from the global coherency domain
of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the 1/0
resource range specified by BaseAddress and Length.

EFI_NOT_FOUND One or more bytes of the 1/O resource range specified by
BaseAddress and Length was not added with previous
calls to AddIoSpace ().

EFI_ACCESS_DENIED One or more bytes of the 1/O resource range specified by
BaseAddress and Length has been allocated with
AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the 1/0
resource from the global coherency domain of the processor.

62 7/1/2010 Version 1.1 Errata B

Services - DXE Services

GetloSpaceDescriptor()

Summary
This service retrieves the descriptor for an I/O region containing a specified address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET IO SPACE DESCRIPTOR) (
IN EFI_PHYSICAL ADDRESS BaseAddress,

OUT EFI_GCD IO SPACE DESCRIPTOR *Descriptor
)

Parameters
BaseAddress
The physical address that is the start address of an I/O region. Type

EFI_PHYSICAL ADDRESS is defined in AllocatePages () in the UEFI 2.0
specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the 1/0
region containing BaseAddress. Type EFI_GCD_IO SPACE DESCRIPTOR is
defined in “Related Definitions” below.

Description

The GetIoSpaceDescriptor () function retrieves the descriptor for the I/O region that
contains the address specified by BaseAddress. If an I/O region containing BaseAddress is
found, then the descriptor for that I/O region is returned in the caller allocated structure
Descriptor,and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID PARAMETER is returned.

If an 1/0O region containing BaseAddress is not present in the GCD I/O space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_IO_S PACE_DESCRI PTOR
//***

typedef struct {
EFI_PHYSICAL ADDRESS BaseAddress;

UINT64 Length;
EFI_GCD_IO TYPE GcdIoType;,
EFI_HANDLE ImageHandle;
EFI_HANDLE DeviceHandle;

} EFI_GCD_IO SPACE_DESCRIPTOR;

Version 1.1 Errata B 7/1/2010 63

Platform Initialization Specification

64

Parameters

BaseAddress

VOLUME 2

Physical address of the first byte in the I/O region. Type
EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length

Number of bytes in the I/O region.

GcdIoType

DXE Core Interface

Type of the I/O region. Type EFI_GCD_IO_ TYPE is defined in the
AddIoSpace () function description.

ImageHandle

The image handle of the agent that allocated the 1/O resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the I/0
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

DeviceHandle

The device handle for which the I/O resource has been allocated. If TmageHandle
is NULL, then the I/O resource is not currently allocated. If this field is NULL, then
the I/0 resource is not associated with a device that is described by a device handle.
Type EFI_HANDLE is defined in InstallProtocolInterface () inthe UEFI

2.0 specification.

Status Codes Returned

EFI_SUCCESS

The descriptor for the I/0 resource region containing
BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER

Descriptoris NULL.

EFI_NOT_FOUND

An I/O resource range containing BaseAddres s was not found.

7/1/2010

Version 1.1 Errata B

Services - DXE Services

GetloSpaceMap()

Summary
Returns a map of the 1/0 resources in the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET IO _SPACE_MAP) (
OUT UINTN *NumberOfDescriptors,
OUT EFI_GCD_IO_SPACE DESCRIPTOR **IoSpaceMap
) ;

Parameters
NumberOfDescriptors
A pointer to number of descriptors returned in the ToSpaceMap buffer. This

parameter is ignored on input, and is set to the number of descriptors in the
ToSpaceMap buffer on output.

IoSpaceMap

A pointer to the array of EFI_GCD_IO_SPACE DESCRIPTORs. Type
EFI_GCD IO SPACE DESCRIPTOR is defined in

GetIoSpaceDescriptor (). This buffer is allocated with AllocatePool (),
so it is the caller’s responsibility to free this buffer with a call to FreePool (). The
number of descriptors in ToSpaceMap is returned in NumberOfDescriptors.

Description

The GetIoSpaceMap () function retrieves the entire GCD I/O space map. If there are no errors
retrieving the GCD 1/O space map, then the number of descriptors in the GCD 1/O space map is
returned in NumberOfDescriptors, the array of descriptors from the GCD 1/O space map is
allocated with AllocatePool (), the descriptors are transferred into ToSpaceMap, and
EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID PARAMETER is returned.
If ToSpaceMap is NULL, then EFI_INVALID PARAMETER is returned.

If there are not enough resources to allocate ToSpaceMap, then EFI_OUT OF RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The I/O space map was returned in the ToSpaceMap buffer, and
the number of descriptors in ToSpaceMap was returned in
NumberOfDescriptors.

EFI_INVALID_PARAMETER | NumberOfDescriptors is NULL.
EFI_INVALID_PARAMETER IoSpaceMap is NULL.

Version 1.1 Errata B 7/1/2010 65

Platform Initialization Specification

VOLUME 2 DXE Core Interface

EFI_OUT_OF RESOURCES

There are not enough resources to allocate ToSpaceMap.

66

7/1/2010 Version 1.1 Errata B

Services - DXE Services

7.3 Dispatcher Services

7.3.1 Dispatcher Services

The functions that make up the Dispatcher Services are used during preboot to schedule drivers for
execution. A driver may optionally have the Schedule On Request (SOR) flag set in the driver’s
dependency expression. Drivers with this bit set will not be loaded and invoked until they are
explicitly requested to do so. Files loaded from firmware volumes may be placed in the untrusted
state by the Security Architectural Protocol. The services in this section provide this ability to clear
the SOR flag in a DXE driver’s dependency expression and the ability to promote a file from a
firmware volume from the untrusted to the trusted state. Table 10 lists the Dispatcher Services.

Table 10. Dispatcher Boot Type Services

Name
Dispatch
Schedule

Trust

ProcessFirmwareVolume

Description
Loads and executed DXE drivers from firmware volumes.

Clears the Schedule on Request (SOR) flag for a component that is
stored in a firmware volume.

Changes the state of a file stored in a firmware volume from the
untrusted state to the trusted state.

Creates a firmware volume handle for a firmware volume that is
present in system memory.

Version 1.1 Errata B

7/1/2010 67

Platform Initialization Specification

Dispatch()

68

Summary

VOLUME 2

Loads and executes DXE drivers from firmware volumes.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_DISPATCH) (

VOID
)

Description

DXE Core Interface

The Dispatch () function searches for DXE drivers in firmware volumes that have been installed
since the last time the Dispatch () service was called. It then evaluates the dependency
expressions of all the DXE drivers and loads and executes those DXE drivers whose dependency
expression evaluate to TRUE. This service must interact with the Security Architectural Protocol to
authenticate DXE drivers before they are executed. This process is continued until no more DXE
drivers can be executed. If one or more DXE drivers are executed, then EFI__SUCCESS is returned.
If no DXE drivers are executed, EFI_NOT_FOUND is returned.

If an attempt is made to invoke the DXE Dispatcher recursively, then no action is performed by the
Dispatch () service, and EFI_ALREADY STARTED is returned. In this case, because the DXE
Dispatcher is already running, it is not necessary to invoke it again. All the DXE drivers that can be

dispatched will be dispatched.

Status Codes Returned

EFI_SUCCESS

One or more DXE driver were dispatched.

EFI_NOT_FOUND

No DXE drivers were dispatched.

EFI_ALREADY_STARTED

An attempt is being made to start the DXE Dispatcher recursively.

Thus no action was taken.

7/1/2010

Version 1.1 Errata B

Services - DXE Services

Schedule()

Summary
Clears the Schedule on Request (SOR) flag for a component that is stored in a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCHEDULE) (
IN EFI_HANDLE FirmwareVolumeHandle,
IN CONST EFI_GUID *FileName
)
Parameters

FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by Fi 1eName.
Type EFI_HANDLE is defined in InstallProtocolInterface () inthe UEFI
2.0 specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should
have its SOR bit cleared. Type EFI_GUID is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

Description

The Schedule () function searches the dispatcher queues for the driver specified by
FirmwareVolumeHandle and FileName. If this driver cannot be found, then
EFI_NOT_FOUND is returned. If the driver is found, and its Schedule On Request (SOR) flag is not
set in its dependency expression, then EFI_NOT_FOUND is returned. If the driver is found, and its
SOR bit is set in its dependency expression, then the SOR flag is cleared, and EFI__SUCCESS is
returned. After the SOR flag is cleared, the driver will be dispatched if the remaining portions of its
dependency expression are satisfied. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch () service must be used to invoke the DXE Dispatcher.

Status Codes Returned

EFI_SUCCESS The DXE driver was found and its SOR bit was cleared.
EFI_NOT_FOUND The DXE driver does not exist, or the DXE driver exists and its SOR
bit is not set.

Version 1.1 Errata B 7/1/2010 69

Platform Initialization Specification VOLUME 2 DXE Core Interface

Trust()

Summary
Promotes a file stored in a firmware volume from the untrusted to the trusted state. Only the
Security Architectural Protocol can place a file in the untrusted state. A platform specific
component may choose to use this service to promote a previously untrusted file to the trusted state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TRUST) (
IN EFI_HANDLE FirmwareVolumeHandle,
IN CONST EFI_GUID *FileName
)
Parameters

FirmwareVolumeHandle
The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface () in the UEFI
2.0 specification.

FileName
A pointer to the name of the file in a firmware volume. This is the file that should be

promoted from the untrusted state to the trusted state. Type EFI_GUID is defined in
InstallProtocolInterface () inthe UEFI 2.0 specification.

Description
The Trust () function promotes the file specified by Fi rmwareVolumeHandle and
FileName from the untrusted state to the trusted state. If this file is not found in the queue of
untrusted files, then EFI_NOT FOUND is returned. If the driver is found, and its state is changed to
trusted and EFI__SUCCESS is returned. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch () service must be used to invoke the DXE Dispatcher.

Status Codes Returned

EFI_SUCCESS The file was found in the untrusted state, and it was promoted to the
trusted state.
EFI_NOT_FOUND The file was not found in the untrusted state.

70 7/1/2010 Version 1.1 Errata B

Services - DXE Services

ProcessFirmwareVolume()

Summary
Creates a firmware volume handle for a firmware volume that is present in system memory.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_PROCESS_ FIRMWARE VOLUME) (
IN CONST VOID *FirmwareVolumeHeader,
IN UINTN Size,
OUT EFI_HANDLE *FirmwareVolumeHandle

)

Parameters

FirmwareVolumeHeader

A pointer to the header of the firmware volume.
Size

The size, in bytes, of the firmware volume.
FirmwareVolumeHandle

On output, a pointer to the created handle. This service will install the
EFI_FIRMWARE VOLUME2 PROTOCOL and EFI _DEVICE_ PATH PROTOCOL
for the of the firmware volume that is described by FirmwareVolumeHeader and
Size. Type EFI_HANDLE is defined in InstallProtocolInterface () in
the UEFI 2.0 specification.

Description
The ProcessFirmwareVolume () function examines the contents of the buffer specified by
FirmwareVolumeHeader and Size. If the buffer contains a valid firmware volume, then a
new handle is created, and the EFI_FIRMWARE VOLUME2 PROTOCOL and a memory-mapped
EFI_DEVICE PATH _ PROTOCOL are installed onto the new handle. The new handle is returned
in F1 rmwareVol umeHandle.

Status Codes Returned

EFI_SUCCESS The EFI_FIRMWARE VOLUME2 PROTOCOL and
EFI_DEVICE_ PATH PROTOCOL were installed onto
FirmwareVolumeHand]le for the firmware volume described
by FirmwareVolumeHeaderand Size.

EFI_VOLUME_CORRUPTED The firmware volume described by Fi rmwareVolumeHeader
and S1zeis corrupted.

Version 1.1 Errata B 7/1/2010 71

Platform Initialization Specification

72

VOLUME 2 DXE Core Interface

EFI_OUT_OF RESOURCES

There are not enough system resources available to produce the
EFI_FIRMWARE VOLUMEZ2 PROTOCOL and
EFI_DEVICE_PATH PROTOCOL for the firmware volume
described by Fi rmwareVolumeHeader and Size.

7/1/2010 Version 1.1 Errata B

8
Protocols - Device Path Protocol

8.1 Introduction

This section adds two device path node types that describe files stored in firmware volumes:
* Firmware File Media Device Path
* Firmware Volume Media Device Path

These device path nodes are used by a DXE-aware updated UEFI Boot Service LoadImage () to
load UEFI images from firmware volumes. This new capability is used by the DXE Dispatcher to
load DXE drivers from firmware volumes.

8.2 Firmware Volume Media Device Path

This type is used by systems implementing the PI architecture specifications to describe a firmware
volume.

Table 11. Firmware Volume Media Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 — Media Device Path

Sub-Type 1 1 Sub Type 7 — Firmware Volume Media
Device Path

Length 2 2 Length of this structure in bytes. Length is
20 bytes.

Firmware Volume 4 16 Firmware volume name. Type EFI_GUID.

Name

Table 12. Firmware Volume Device Node Text Representation

Device Node Type/Subtype/Other Description
Type: 4 (Media Device Path) Fv (fv-guid)
Sub-Type: 7 (Firmware Volume)

The £v-guidis a GUID.

Version 1.1 Errata B 7/1/2010 73

Platform Initialization Specification VOLUME 2 DXE Core Interface

8.3 Firmware File Media Device Path

This type is used by systems implementing the PI architecture specifications to describe a firmware
file in a firmware volume.

Table 13. Firmware File Media Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 — Media Device Path

Sub-Type 1 1 Sub Type 6 — Firmware File Media Device Path
Length 2 2 Length of this structure in bytes. Length is 20 bytes.
Firmware File Name 4 16 Firmware file name. Type EFI_GUID.

Table 14. Firmware Volume File Device Node Text Representation

Device Node Type/Subtype/Other Description
Type: 4 (Media Device Path) FvFile (fvfile-guid)
Sub-Type: 6 (Firmware File)

The fvfile-guidis a GUID.

74 7/1/2010 Version 1.1 Errata B

9
DXE Foundation

9.1 Introduction

The DXE Foundation is designed to be completely portable with no processor, chipset, or platform
dependencies. This lack of dependencies is accomplished by designing in several features:

e The DXE Foundation depends only upon a HOB list for its initial state.

This means that the DXE Foundation does not depend on any services from a previous phase, so
all the prior phases can be unloaded once the HOB list is passed to the DXE Foundation.

* The DXE Foundation does not contain any hard-coded addresses.
This means that the DXE Foundation can be loaded anywhere in physical memory, and it can

function correctly no matter where physical memory or where Firmware Volumes (FVs) are
located in the processor’s physical address space.

* The DXE Foundation does not contain any processor-specific, chipset-specific, or platform-
specific information.
Instead, the DXE Foundation is abstracted from the system hardware through a set of DXE
Architectural Protocol interfaces. These architectural protocol interfaces are produced by a set
of DXE drivers that are invoked by the DXE Dispatcher.

The DXE Foundation must produce the UEFI System Table and its associated set of UEFI Boot
Services and UEFI Runtime Services. The DXE Foundation also contains the DXE Dispatcher
whose main purpose is to discover and execute DXE drivers stored in FVs. The execution order of
DXE drivers is determined by a combination of the optional a priori file and the set of dependency
expressions that are associated with the DXE drivers. The FV file format allows dependency
expressions to be packaged with the executable DXE driver image. DXE drivers utilize a PE/COFF
image format, so the DXE Dispatcher must also contain a PE/COFF loader to load and execute DXE
drivers.

9.2 Hand-Off Block (HOB) List

The Hand-Off Block (HOB) list contains all the information that the DXE Foundation requires to
produce its memory-based services. The HOB list contains the following:

* Information on the boot mode and the memory that was allocated in the previous phase.

* A description of the system memory that was initialized by the previous phase along with
information about the firmware devices that were discovered in the previous phase.

The firmware device information includes the system memory locations of the firmware devices and
system memory locations of the firmware volumes that are contained within those firmware devices.
The firmware volumes may contain DXE drivers, and the DXE Dispatcher is responsible for loading
and executing the DXE drivers that are discovered in those firmware volumes.

The I/0 resources and memory-mapped I/O resources that were discovered in the previous phase.

Version 1.1 Errata B 7/1/2010 75

Platform Initialization Specification VOLUME 2 DXE Core Interface

The HOB list must be treated as a read-only data structure. It conveys the state of the system at the
time the DXE Foundation is started. The DXE Foundation and DXE drivers should never modify
the contents of the HOB list.

Figure 4 shows an example HOB list. The first HOB list entry is always the Phase Handoff
Information Table (PHIT) HOB that contains the boot mode and a description of the memory
regions used by the previous phase. The rest of the HOB list entries can appear in any order. This
example shows the various HOB types that are supported. The most important ones to the DXE
Foundation are the HOBs that describe system memory and the firmware volumes. A HOB list is
terminated by an end of list HOB. There is one additional HOB type that is not shown. This is a
GUIDed HOB that allows a module from the previous phase to pass private data to a DXE driver.
Only the DXE driver that recognizes the GUID value in the GUIDed HOB will be able to understand
the data in the GUIDed HOB. The DXE Foundation does not consume any GUIDed HOBs. The
HOB entries are all designed to be position independent. This allows the DXE Foundation to
relocate the HOB list to a different location if the DXE Foundation does not like where the previous
phase placed the HOB list in memory.

See “HOB Translations” on page 88 for more information on HOB types.

I I I I I | ——
System L0 MMIO Fimmwane Finmware DXE
Mermony Resmurces Resources Devices Yolumes Drivers

S AN f A —
PHIT HOB HOB HOB HOBE HOB ' DxE
Hm e] e e . D"' ers

76

Figure 4. HOB List

7/1/2010 Version 1.1 Errata B

DXE Foundation

9.3 DXE Foundation Data Structures

The DXE Foundation produces the UEFI System Table, and the UEFI System Table is consumed by
every DXE driver and executable image invoked by the DXE Dispatcher and BDS. It contains all
the information required for these components to utilize the services provided by the DXE
Foundation and the services provided by any previously loaded DXE driver. Figure 5 shows the
various components that are available through the UEFI System Table.

Active Consoles

Input Console
Output Console
Standard Error Console

System Configuration Table

DXE Services Table DXE Services Table
Global Coherency Domain Services HOB List
Dispatcher Services ACPI Table
SMBIOS Table

Handle Database

SAL System Table

Protocol Interface

Boot Services and Structures Runtime Services and Structures

Only available prior to OS runtime Available before and during OS runtime

Figure 5. UEFI System Table and Related Components

The DXE Foundation produces the UEFI Boot Services, UEFI Runtime Services, and DXE Services
with the aide of the DXE Architectural Protocols. The UEFI System Table also provides access to
all the active console devices in the platform and the set of UEFI Configuration Tables. The UEFI
Configuration Tables are an extensible list of tables that describe the configuration of the platform.
Today, this includes pointers to tables such as DXE Services, the HOB list, ACPI table, SMBIOS
table, and the SAL System Table. This list may be expanded in the future as new table types are
defined. Also, through the use of the Protocol Handle Services in the UEFI Boot Services Table,
any executable image can access the handle database and any of the protocol interfaces that have
been registered by DXE drivers.

When the transition to the OS runtime is performed, the handle database, active consoles, UEFI Boot
Services, DXE Services, and services provided by boot service DXE drivers are terminated. This
frees up memory for use by the OS. This only leaves the UEFI System Table, UEFI Runtime

Version 1.1 Errata B 7/1/2010 77

Platform Initialization Specification VOLUME 2 DXE Core Interface

Services Table, and the UEFI Configuration Tables available in the OS runtime environment. There
is also the option of converting all of the UEFI Runtime Services from a physical address space to an
OS-specific virtual address space. This address space conversion may be performed only once.

9.4 Required DXE Foundation Components

Figure 6 shows the components that a DXE Foundation must contain. A detailed description of
these component follows.

DXE Foundation

UEFI Boot Services DXE Services
Task Priority Event and Timer Image Global Conherency
Services Services Services Domain Services
Memory Protocol Handler § Driver Support . .

Firmware Volume PE/COFF HOB
Driver Loader Parser

Secti DXE Dispatcher
Firmware el)
Volume Extraction Flush Instruction

Block Protocol Cache

Driver Driver

(Read Only) Dependency
(Memory [Decompress SetJump Expression
Mapped) Driver LongJump Evaluator

Figure 6. DXE Foundation Components

A DXE Foundation must have the following components:

* An implementation of the UEFI Boot Services. UEFI Boot Services Dependencies describes
which services can be made available based on the HOB list alone and which services depend on
the presence of architectural protocols.

* Animplementation of the DXE Services. DXE Services Dependencies describes which services
can be made available based on the HOB list alone and which services depend on the presence
of architectural protocols.

* A HOB Parser that consumes the HOB list specified by HobStart and initializes the UEFI
memory map, GCD memory space map, and GCD I/O space map. See section if for details on
the translation from HOBs to the maps maintained by the DXE Foundation

78 7/1/2010 Version 1.1 Errata B

DXE Foundation

* An implementation if a DXE Dispatcher that includes a dependency expression evaluator. See
“DXE Dispatcher” on page 91 for a detailed description of this component.

* A Firmware Volume driver that produces the EFI_FIRMWARE VOLUME2 PROTOCOL for
every firmware volume described in the HOB list. This component is used by the DXE
Dispatcher to search for a priori files and DXE drivers in firmware volumes. See the Platform
Initialization Specification, Volume 3, for the definition of the Firmware Volume Protocol.

* Aninstance of the EFI_DECOMPRESS PROTOCOL. See the UEFI 2.0 specification for the
detailed requirements for this component. This component is required by the DXE Dispatcher to
read compressed sections from DXE drivers stored in firmware volumes. It is expected that
most DXE drivers will utilize compressed sections to reduce the size of firmware volumes.

» The DXE Dispatcher uses the Boot Service StartImage () to invoke a DXE driver. The
Boot Services StartImage () and Exit () work together to hand control to a DXE driver
and return control to the DXE Foundation. Since the Boot Service Exit () can be called for
anywhere inside a DXE driver, the Boot Service Exit () is required to rebalance the stack, so it
is in the same state it was in when the Boot Service Start () was called. This is typically
implemented using the processor-specific functions called SetJump () and LongJump () .
Since the DXE Foundation must use the Boot Services StartImage () and Exit () to
invoke DXE drivers, the routines SetJump () and LongJump () are required by the DXE
Foundation.

* A PE/COFF loader that supports PE32+ image types. This PE/COFF loader is used to
implement the UEFI Boot Service LoadImage (). The DXE Dispatcher uses the Boot Service
LoadImage () to load DXE drivers into system memory. If the processor that the DXE
Foundation is compiled for requires an instruction cache when an image is loaded into system
memory, then an instruction cache flush routine is also required in the DXE Foundation.

» The phase that executed prior to DXE will initialize a stack for the DXE Foundation to use. This
stack is described in the HOB list. If the size of this stack does not meet the DXE Foundation’s
minimum stack size requirement or the stack is not located in memory region that is suitable to
the DXE Foundation, then the DXE Foundation will have to allocate a new stack that does meet
the minimum size and location requirements. As a result, the DXE Foundation must contain a
stack switching routine for the processor type that the DXE Foundation is compiled.

Version 1.1 Errata B 7/1/2010 79

Platform Initialization Specification VOLUME 2 DXE Core Interface

9.5 Handing Control to DXE Dispatcher

The DXE Foundation must complete the following tasks before handing control to the DXE
Dispatcher. The order that these tasks are performed is implementation dependent.

80

Use the HOB list to initialize the GCD memory space map, the GCD I/O space map, and UEFI
memory map.

Allocate the UEFI Boot Services Table from EFI_BOOT SERVICES_ MEMORY and initialize
the services that only require system memory to function correctly. The remaining UEFI Boot
Services must be filled in with a service that returns EFI_NOT AVAILABLE YET.

Allocate the DXE Services Table from EFI_BOOT SERVICES MEMORY and initialize the
services that only require system memory to function correctly. The remaining DXE Services
must be filled in with a service that returns EFI_NOT AVAILABLE YET.

Allocate the UEFI Runtime Services Table from EFI_RUNTIME SERVICES MEMORY and
initialize all the services to a service that returns EFI_NOT AVAILABLE YET.

Allocate the UEFI System Table from EFI_RUNTIME SERVICES MEMORY and initialize all
the fields.

Build an image handle and EFI_LOADED IMAGE PROTOCOL instance for the DXE
Foundation itself and add it to the handle database.

If the HOB list is not in a suitable location in memory, then relocate the HOB list to a more
suitable location.

Add the DXE Services Table to the UEFI Configuration Table.
Add the HOB list to the UEFI Configuration Table.

Create a notification event for each of the DXE Architectural Protocols. These events will be
signaled when a DXE driver installs a DXE Architectural Protocol in the handle database. The
DXE Foundation must have a notification function associated with each of these events, so the
full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services can be
produced. Each of the notification functions should compute the 32-bit CRC of the UEFI Boot
Services Table, UEFI Runtime Services Table, and the DXE Services Table if the
CalculateCrc32 () Boot Services is available.

Initialize the Decompress Protocol driver that must be available before the DXE Dispatcher can
process compressed sections.

Produce firmware volume handles for the one or more firmware volumes that are described in
the HOB list.

Once these tasks have been completed, the DXE Foundation is ready to load and execute DXE
drivers stored in firmware volumes. This execution is done by handing control to the DXE
Dispatcher. Once the DXE Dispatcher has finished dispatching all the DXE drivers that it can,
control is then passed to the BDS Architectural Protocol. If for some reason, any of the DXE
Architectural Protocols have not been produced by the DXE drivers, then the system is in an
unusable state and the DXE Foundation must halt. Otherwise, control is handed to the BDS
Architectural Protocol. The BDS Architectural Protocol is responsible for transferring control to an
operating system or system utility.

7/1/2010 Version 1.1 Errata B

DXE Foundation

9.6 DXE Foundation Entry Point

9.6.1 DXE_ENTRY_POINT
The only parameter passed to the DXE Foundation is a pointer to the HOB list. The DXE
Foundation and all the DXE drivers must treat the HOB list as read-only data.

The function DXE ENTRY POINT is the main entry point to the DXE Foundation.
DXE_ENTRY_POINT

Summary
This function is the main entry point to the DXE Foundation.

Prototype

typedef

VOID

(EFIAPI *DXE ENTRY POINT) (
IN CONST VOID *HobStart

)

Parameters
HobStart
A pointer to the HOB list.

Description
This function is the entry point to the DXE Foundation. The PEI phase, which executes just before
DXE, is responsible for loading and invoking the DXE Foundation in system memory. The only
parameter that is passed to the DXE Foundation is HobStart. This parameter is a pointer to the
HOB list that describes the system state at the hand-off to the DXE Foundation. At a minimum, this
system state must include the following:

« PHIT HOB

+ CPUHOB

* Description of system memory

* Description of one or more firmware volumes

The DXE Foundation is also guaranteed that only one processor is running and that the processor is
running with interrupts disabled. The implementation of the DXE Foundation must not make any
assumptions about where the DXE Foundation will be loaded or where the stack is located. In
general, the DXE Foundation should make as few assumptions about the state of the system as
possible. This lack of assumptions will allow the DXE Foundation to be portable to the widest
variety of system architectures.

Version 1.1 Errata B 7/1/2010 81

Platform Initialization Specification

9.7 Dependencies

VOLUME 2 DXE Core Interface

9.7.1 UEFI Boot Services Dependencies

Table 15 lists all the UEFI Boot Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

82

Table 15. Boot Service Dependencies

Name

CreateEvent

CloseEvent

SignalEvent
WaitForEvent
CheckEvent

SetTimer

RaiseTPL

RestoreTPL
AllocatePages
FreePages
GetMemoryMap
AllocatePool

FreePool
InstallProtocolinterface
UninstallProtocollnterface
ReinstallProtocollnterface
RegisterProtocolNotify
LocateHandle
HandleProtocol
LocateDevicePath
OpenProtocol
CloseProtocol
OpenProtocollnformation
ConnectController
DisconnectController
ProtocolsPerHandle
LocateHandleBuffer
LocateProtocol
InstallMultipleProtocolinterfaces
UninstallMultipleProtocollnterfaces

Loadlmage

Dependency
HOB list
HOB list
HOB list
HOB list
HOB list
Timer Architectural Protocol
CPU Architectural Protocol
CPU Architectural Protocol
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list
HOB list

7/1/2010 Version 1.1 Errata B

DXE Foundation

Name Dependency

Startimage HOB list

Unloadlmage HOB list

EFI_IMAGE_ENTRY_POINT HOB list

Exit HOB list

ExitBootServices HOB list

SetWatchDogTimer Watchdog Architectural Protocol

Stall Metronome Architectural Protocol
Timer Architectural Protocol

CopyMem HOB list

SetMem HOB list

GetNextMonotonicCount Monotonic Counter Architectural Protocol

InstallConfigurationTable HOB list

CalculateCrc32 Runtime Architectural Protocol

9.7.1.1 SetTimer()

When the DXE Foundation is notified that the EFI_TIMER ARCH PROTOCOL has been installed,
then the Boot Service SetTimer () can be made available. The DXE Foundation can use the
services of the EFI_TIMER ARCH PROTOCOL to initialize and hook a heartbeat timer interrupt
for the DXE Foundation. The DXE Foundation can use this heartbeat timer interrupt to determine
when to signal on-shot and periodic timer events. This service may be called before the
EFI_TIMER ARCH PROTOCOL is installed. However, since a heartbeat timer is not running yet,
time is essentlally frozen at zero. This means that no periodic or one-shot timer events will fire until
the EFI_TIMER ARCH PROTOCOL is installed.

9.7.1.2 RaiseTPL()

The DXE Foundation must produce the Boot Service RaiseTPL () when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full
version of the Boot Service RaiseTPL () can be made available. When an attempt is made to raise
the TPL level to EFI_TPL HIGH_ LEVEL or higher, then the DXE Foundation should use the
services of the EFI_CPU_ARCH PROTOCOL to disable interrupts.

9.7.1.3 RestoreTPL()

The DXE Foundation must produce the Boot Service RestoreTPL () when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full
version of the Boot Service RestoreTPL () can be made available. When an attempt is made to
restore the TPL level to level below EFI_TPL HIGH LEVEL, then the DXE Foundation should
use the services of the EFI_CPU_ARCH . "~ PROTOCOL to enable interrupts.

Version 1.1 Errata B 7/1/2010 83

Platform Initialization Specification VOLUME 2 DXE Core Interface

9.7.1.4 SetWatchdogTimer()

When the DXE Foundation is notified that the EFI_WATCHDOG_ARCH PROTOCOL has been
installed, then the Boot Service SetWatchdogTimer () can be made available. The DXE
Foundation can use the services of the EFI_WATCHDOG _TIMER ARCH PROTOCOL to set the
amount of time before the system’s watchdog timer will expire.

9.7.1.5 Stall()

When the DXE Foundation is notified that the EFI_METRONOME ARCH PROTOCOL has been
installed, the DXE Foundation can produce a very simple version of the Boot Service Stall ().
The granularity of the Boot Service Stall () will be based on the period of the

EFI METRONOME ARCH PROTOCOL.

When the DXE Foundation is notified that the EFI_TIMER ARCH PROTOCOL has been installed,
the DXE Foundation can possibly produce a more accurate version of the Boot Service Stall ().
This all depends on the periods of the EFI_METRONOME ARCH PROTOCOL and the period of the
EFI_TIMER ARCH PROTOCOL. The DXE Foundation should produce the Boot Service

Stall () using the most accurate time base available.

9.7.1.6 GetNextMonotonicCount()

When the DXE Foundation is notified that the EFI_MONOTONIC COUNTER_ ARCH PROTOCOL
has been installed, then the Boot Service GetNextMonotonicCount () is ‘available. The DXE
driver that produces the EFI_MONOTONIC COUNTER ARCH PROTOCOL is responsible for
directly updating the Get NextMonotonicCount field of the UEFI Boot Services Table. The
DXE Foundation is only responsible for updating the 32-bit CRC of the UEFI Boot Services Table.

9.7.1.7 CalculateCrc32()

When the DXE Foundation is notified that the EFI_RUNTIME ARCH PROTOCOL has been
installed, then the Boot Service CalculateCrc32 () is available. The DXE driver that produces
the EFI_RUNTIME ARCH PROTOCOL is responsible for directly updating the
CalculateCrc32 field of the UEFI Boot Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Boot Services Table.

9.7.2 UEFI Runtime Services Dependencies

84

Table 16 lists all the UEFI Runtime Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

Table 16. Runtime Service Dependencies

Name Dependency
GetVariable Variable Architectural Protocol
GetNextVariableName Variable Architectural Protocol
SetVariable Variable Architectural Protocol / Variable Write Architectural Protocol
GetTime Real Time Clock Architectural Protocol
SetTime Real Time Clock Architectural Protocol
7/1/2010 Version 1.1 Errata B

DXE Foundation

GetWakeupTime Real Time Clock Architectural Protocol
SetWakeupTime Real Time Clock Architectural Protocol
SetVirtualAddressMap Runtime Architectural Protocol
ConvertPointer Runtime Architectural Protocol
ResetSystem Reset Architectural Protocol

GetNextHighMonotonicCount Monotonic Counter Architectural Protocol

UpdateCapsule Capsule Header Protocol

QueryCapsuleCapabilities Capsule Header Protocol

9.7.2.1 GetVariable()

When the DXE Foundation is notified that the EFI_VARIABLE ARCH PROTOCOL has been
installed, then the Runtime Service GetVariable () is available. The DXE driver that produces
the EFI_VARIABLE ARCH PROTOCOL is responsible for directly updating the GetVariable
field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for updating
the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.2 GetNextVariableName()

When the DXE Foundation is notified that the EFI_VARIABLE ARCH PROTOCOL has been
installed, then the Runtime Service GetNextVariableName () is available. The DXE driver
that produces the EFI_VARIABLE ARCH PROTOCOL is responsible for directly updating the
GetNextVariableName field of the UEFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.3 SetVariable()

When the DXE Foundation is notified that the EFI_VARIABLE ARCH PROTOCOL has been
installed, then the Runtime Service SetVariable () is available. The DXE driver that produces
the EFI_VARIABLE ARCH PROTOCOL is responsible for directly updating the SetVariable
field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for updating
the 32-bit CRC of the UEFI Runtime Services Table. The EFI_VARIABLE ARCH PROTOCOL is
required to provide read-only access to all environment variables and write access to volatile
environment variables.

When the DXE Foundation is notified that the EFI_VARIABLE WRITE ARCH PROTOCOL has
been installed, then write access to nonvolatile environment variables will also be available. If an
attempt is made to call this function for a nonvolatile environment variable prior to the installation of
EFI_VARIABLE WRITE ARCH PROTOCOL, then EFI _NOT_AVAILABLE YET must be
returned. This allows for ﬂex1b111ty in the design and 1mplementat10n of the variables services in a
platform such that read access to environment variables can be provided very early in the DXE phase
and write access to nonvolatile environment variables can be provided later in the DXE phase.

9.7.2.4 GetTime()

When the DXE Foundation is notified that the EFI_REAL TIME CLOCK_ARCH PROTOCOL has
been installed, then the Runtime Service GetTime () is available. The DXE driver that produces
the EFI_REAL TIME CLOCK ARCH_ PROTOCOL is responsible for directly updating the

Version 1.1 Errata B 7/1/2010 85

Platform Initialization Specification VOLUME 2 DXE Core Interface

GetTime field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for
updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.5 SetTime()

When the DXE Foundation is notified that the EFI_REAL TIME CLOCK ARCH PROTOCOL has
been installed, then the Runtime Service SetTime () is available. The DXE driver that produces
the EFI_REAL TIME CLOCK ARCH PROTOCOL is responsible for directly updating the
SetTime field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for
updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.6 GetWakeupTime()

When the DXE Foundation is notified that the EFI_REAL TIME CLOCK ARCH PROTOCOL has
been installed, then the Runtime Service Ge tWakeupTlme () is “available. The DXE driver that
produces the EFI_REAL TIME CLOCK_ARCH PROTOCOL is responsible for directly updating
the GetWakeupTime field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.7 SetWakeupTime()

When the DXE Foundation is notified that the EFI_REAL TIME CLOCK ARCH PROTOCOL has
been installed, then the Runtime Service Se tWakeupTlme () is “available. The DXE driver that
produces the EFI_REAL TIME CLOCK_ARCH PROTOCOL is responsible for directly updating
the SetWakeupTime field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.8 SetVirtualAddressMap()

When the DXE Foundation is notified that the EFI_RUNTIME ARCH PROTOCOL has been
installed, then the Runtime Service SetV:LrtualAddressMap () is available. The DXE driver
that produces the EFI_RUNTIME ARCH PROTOCOL is responsible for directly updating the
SetVirtualAddressMap field of the UEFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.9 ConvertPointer()

When the DXE Foundation is notified that the EFI_RUNTIME ARCH PROTOCOL has been
installed, then the Runtime Service ConvertPointer () is available. The DXE driver that
produces the EFI_RUNTIME ARCH PROTOCOL is responsible for directly updating the
ConvertPointer field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.10 ResetSystem()

When the DXE Foundation is notified that the EFI_RESET ARCH PROTOCOL has been
installed, then the Runtime Service ResetSystem () is available. The DXE driver that produces
the EFI_RESET ARCH_ PROTOCOL is responsible for directly updating the Reset field of the
UEFI Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit
CRC of the UEFI Runtime Services Table.

86 7/1/2010 Version 1.1 Errata B

DXE Foundation

9.7.2.11 GetNextHighMonotonicCount()

When the DXE Foundation is notified that the EFI_MONOTONIC_ COUNTER_ ARCH PROTOCOL
has been installed, then the Runtime Service GetNextHighMonotonicCount () is available.
The DXE driver that produces the EFI_MONOTONIC COUNTER ARCH PROTOCOL is
responsible for directly updating the Get NextHighMonotonicCount field of the UEFI
Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit CRC of
the UEFI Runtime Services Table.

9.7.3 DXE Services Dependencies

Table 17 lists all the DXE Services and the components upon which each of these services depend.
The topics that follow describe what responsibilities the DXE Foundation has in producing the
services that depend on the presence of DXE Architectural Protocols.

Table 17. DXE Service Dependencies

Name Dependency
AddMemorySpace HOB list
AllocateMemorySpace HOB list
FreeMemorySpace HOB list
RemoveMemorySpace HOB list
GetMemorySpaceDescriptor CPU Architectural Protocol
SetMemorySpaceAttributes CPU Architectural Protocol
GetMemorySpaceMap CPU Architectural Protocol
AddloSpace HOB list

AllocateloSpace HOB list

FreeloSpace HOB list

RemoveloSpace HOB list
GetloSpaceDescriptor HOB list

GetloSpaceMap HOB list

Schedule HOB list

9.7.3.1 GetMemorySpaceDescriptor()
When the DXE Foundation is notified that the EFI_CPU_ARCH PROTOCOL has been installed,
then the DXE Service GetMemorySpaceDescriptor () is fully functional. This function is
made available when the memory-based services are initialized. However, the Attributes field
of the EFI_GCD_MEMORY SPACE DESCRIPTOR is not valid until the
EFI_CPU_ARCH PROTOCOL is installed.

9.7.3.2 SetMemorySpaceAttributes()

When the DXE Foundation is notified that the EFI_CPU_ARCH PROTOCOL has been installed,
then the DXE Service SetMemorySpaceAttrlbutes () can n be made available. The DXE
Foundation can then use the SetMemoryAttributes () service of the

Version 1.1 Errata B 7/1/2010 87

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_CPU_ARCH_ PROTOCOL to implement the DXE Service
SetMemorySpaceAttributes ().

9.7.3.3 GetMemorySpaceMap()

When the DXE Foundation is notified that the EFI_CPU_ARCH PROTOCOL has been installed,
then the DXE Service GetMemorySpaceMap () is fully functional. This function is made
available when the memory-based services are initialized. However, the At tributes field of the
array of EFI_GCD_MEMORY SPACE DESCRIPTORSs is not valid until the

EFI_CPU_ARCH PROTOCOL is installed.

9.8 HOB Translations

9.8.1 HOB Translations Overview

The following topics describe how the DXE Foundation should interpret the contents of the HOB list
to initialize the GCD memory space map, GCD I/O space map, and UEFI memory map. After all of
the HOBs have been parsed, the Boot Service GetMemoryMap () and the DXE Services
GetMemorySpaceMap () and GetIoSpaceMap () should reflect the memory resources, I/O
resources, and logical memory allocations described in the HOB list.

See the Platform Initialization Hand-Off Block Specification for detailed information on HOBs.

9.8.2 PHIT HOB

The Phase Handoff Information Table (PHIT) HOB describes a region of tested system memory.
This region of memory contains the following:

* HOB list
* Some amount of free memory
* Potentially some logical memory allocations

The PHIT HOB is used by the DXE Foundation to determine the size of the HOB list so that the
DXE Foundation can relocate the HOB list to a new location in system memory. The base address
of the HOB list is passed to the DXE Foundation in the parameter HobStart, and the PHIT HOB
field Efi FreeMemoryBottom specifies the end of the HOB list.

Since the PHIT HOB may contain some of amount of free memory, the DXE Foundation may use
this free memory region in its early initialization phase until the full complement of UEFI memory
services are available.

See the Platform Initialization Hand-Off Block Specification for the definition of this HOB type.

9.8.3 CPU HOB

The CPU HOB contains the field SizeOfMemorySpaceMap . This field is used to initialize the
GCD memory space map. The SizeOfMemorySpaceMap field defines the number of address
bits that the processor can use to address memory resources. The DXE Foundation must create the
primordial GCD memory space map entry of type Ef iGedMemoryTypeNonExistent for the

88 7/1/2010 Version 1.1 Errata B

DXE Foundation

region from0to (1 << SizeOfMemorySpaceMap). All future GCD memory space operations
must be performed within this memory region.

The CPU HOB also contains the field SizeOfToSpaceMap . This field is used to initialize the
GCD I/O space map. The SizeOfIoSpaceMap field defines the number of address bits that the
processor can use to address I/O resources. The DXE Foundation must create the primordial GCD
I/0O space map entry of type EfiGedIoTypeNonExistent for the region from 0 to (1 <<
SizeOfToSpaceMap). All future GCD I/O space operations must be performed within this I/O
region.

See the Platform Initialization Hand-Off Block Specification for the definition of this HOB type.

9.8.4 Resource Descriptor HOBs

The DXE Foundation must traverse the HOB list looking for Resource Descriptor HOBs. These
HOBs describe memory and I/O resources that are visible to the processor. All of the resource
ranges described in these HOBs must fall in the memory and I/O ranges initialized in the GCD maps
based on the contents of the CPU HOB. The DXE Foundation will use the DXE Services
AddMemorySpace () and AddIoSpace () to register these memory and I/O resources in the
GCD maps.

The Owner field of the Resource Descriptor HOB is ignored by the DXE Foundation. The
ResourceType field and ResourceAttribute fields are used to determine the GCD memory
type or GCD I/O type of the resource. The table below shows this mapping. The resource range is
specified by the PhysicalStart and ResourceLength fields of the Resource Descriptor
HOB.

The ResourceAttribute field also contains the caching capabilities of memory regions. Ifa
memory region is being added to the GCD memory space map, then the ResourceAttribute
field will be used to initialize the supported caching capabilities. The ResourceAttribute
field is also be used to further qualify memory regions. For example, a system memory region
cannot be added to the UEFI memory map if it is read protected. However, it is legal to add a
firmware device memory region that is write-protected if the firmware device is a ROM.

See the Platform Initialization Hand-Off Block Specification for the definition of this HOB type.

Table 18. Resource Descriptor HOB to GCD Type Mapping

Resource Descriptor HOB GCD Map

Resource Type Attributes Memory Type I/O Type
System Memory Present Reserved

System Memory Present AND Initialized Reserved

System Memory Present AND Initialized AND Tested System Memory
Memory-Mapped 1/O Memory Mapped I/0

Firmware Device Memory Mapped I/O
Memory-Mapped 1/0 Reserved

Port

Memory Reserved Reserved

I/0 I/0

I/O Reserved Reserved

Version 1.1 Errata B 7/1/2010 89

Platform Initialization Specification VOLUME 2 DXE Core Interface

9.8.5 Firmware Volume HOBs

The DXE Foundation must traverse the HOB list for Firmware Volume HOBs. There are two types
of firmware volume HOBs:

* EFI_HOB FIRMWARE VOLUME, which describes PI Firmware Volumes.

* EFI_HOB FIRMWARE VOLUME2 which describes PI Firmware Volumes which came from a
firmware file within a firmware volume.

When the DXE Foundation discovers a Firmware Volume HOB, the DXE Dispatcher verifies that
the firmware volume has not been previously processed. Then a new handle must be created in the
handle database, and the EFI_FIRMWARE VOLUME2 PROTOCOL must be installed on that
handle. The BaseAddress and Length fields of the Firmware Volume HOB specific the
memory range that the firmware volume consumes. The DXE Service
AllocateMemorySpace () is used to allocate the memory regions described in the Firmware
Volume HOBs to the DXE Foundation. The UEFI Boot Service
InstallProtocolInterface () is used to create new handles and install protocol interfaces.

See the Platform Initialization Specification, Volume 3, for code definitions concerning Hand-Off
Blocks, the Firmware Volume Block Protocol and the Firmware Volume Protocol.

9.8.6 Memory Allocation HOBs

Memory Allocation HOBs describe logical memory allocations that occurred prior to the DXE
phase. The DXE Foundation must parse the HOB list for this HOB type. When a HOB of this type
is discovered, the GCD memory space map must be updated with a call to the DXE Service
AllocateMemorySpace (). In addition, the UEFI memory map must be updated with logical
allocation described by the MemoryType, MemoryBaseAddress, and MemoryLength fields
of the Memory Allocation HOB.

Once the DXE Foundation has parsed all of the Memory Allocation HOBs, all of the unallocated
system memory regions in the GCD memory space map must be allocated to the DXE Foundation
with the DXE Service AllocateMemorySpace (). In addition, those same memory regions
must be added to the UEFI memory map so those memory regions can be allocated and freed using
the Boot Services AllocatePages (),AllocatePool (), FreePages (), and

FreePool ().

See the Platform Initialization Hand-Off Block Specification for the definition of this HOB type.

9.8.7 GUID Extension HOBs

90

The DXE Foundation does not require any GUID Extension HOBs. Implementations of the DXE
Foundation may use GUID Extension HOBs but shall not require them in order to function correctly.
GUID Extension HOBs contain private or implementation-specific data that is being passed from the
previous execution phase to a specific DXE driver. DXE drivers may choose to parse the HOB list
for GUID Extension HOBs.

See the Platform Initialization Hand-Off Block Specification for the definition of this HOB type.

7/1/2010 Version 1.1 Errata B

10
DXE Dispatcher

10.1 Introduction

After the DXE Foundation is initialized, control is handed to the DXE Dispatcher. The DXE
Dispatcher examines every firmware volume that is present in the system. Firmware volumes are
either declared by HOBEs, or they are declared by DXE drivers. For the DXE Dispatcher to run, at
least one firmware volume must be declared by a HOB.

The DXE Dispatcher is responsible for loading and invoking DXE drivers found in firmware
volumes. Some DXE drivers may depend on the services produced by other DXE drivers, so the
DXE Dispatcher is also required to execute the DXE drivers in the correct order. The DXE drivers
may also be produced by a variety of different vendors, so the DXE drivers must describe the
services they depend upon. The DXE dispatcher must evaluate these dependencies to determine a
valid order to execute the DXE drivers. Some vendors may wish to specify a fixed execution order
for some or all of the DXE drivers in a firmware volume, so the DXE dispatcher must support this
requirement.

The DXE Dispatcher will ignore file types that it does not recognize.

In addition, the DXE Dispatcher must support the ability to load “emergency patch” drivers. These
drivers would be added to the firmware volume to address an issue that was not know at the time the
original firmware was built. These DXE drivers would be loaded just before or just after an existing
DXE driver.

Finally, the DXE Dispatcher must be flexible enough to support a variety of platform specific
security policies for loading and executing DXE drivers from firmware volumes. Some platforms
may choose to run DXE drivers with no security checks, and others may choose to check the validity
of a firmware volume before it is used, and other may choose to check the validity of every DXE
driver in a firmware volume before it is executed.

10.2 Requirements

The DXE Dispatcher must meet the following requirement:

* Support fixed execution order of DXE drivers. This fixed execution order is specified in an
a priori file in the firmware volume.

* Determine DXE driver execution order based on each driver’s dependencies. A DXE
driver that is stored in a firmware volume may optionally contain a dependency expression
section. This section specifies the protocols that the DXE driver requires to execute.

* Support “emergency patch” DXE drivers. The dependency expressions are flexible enough
to describe the protocols that a DXE drivers may require. In addition, the dependency
expression can declare that the DXE driver is to be loaded and executed immediately before or
immediately after a different DXE driver.

Version 1.1 Errata B 7/1/2010 91

Platform Initialization Specification VOLUME 2 DXE Core Interface

* Support platform specific security policies for DXE driver execution. The DXE Dispatcher
is required to use the services of the Security Architecture Protocol every time a firmware
volume is discovered and every time a DXE driver is loaded.

When a new firmware volume is discovered, it is first authenticated with the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all firmware volumes. Then, a search is made for the a priori file. The a priori file has a fixed file
name, and it contains the list of DXE drivers that should be loaded and executed first. There can be
at most one a priori file per firmware volume, and it is legal to have zero a priori files in a firmware
volume. Once the DXE drivers from the a priori file have been loaded and executed, the
dependency expressions of the remaining DXE drivers in the firmware volumes are evaluated to
determine the order that they will be loaded and executed. The a priori file provides a strongly
ordered list of DXE drivers that are not required to use dependency expressions. The dependency
expressions provide a weakly ordered execution of the remaining DXE drivers.

The DXE Dispatcher loads the image using LoadImage () with the Fi IePath parameter
pointing ot the firmware volume from which the image is located.

Before each DXE driver is executed, it must be authenticated through the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all DXE drivers.

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol after the DXE
drivers in the a priori file and all the DXE drivers whose dependency expressions evaluate to TRUE
have been loaded and executed. The BDS Architectural Protocol is responsible for establishing the
console devices and attempting the boot of operating systems. As the console devices are
established and access to boot devices is established, additional firmware volumes may be
discovered. Ifthe BDS Architectural Protocol is unable to start a console device or gain access to a
boot device, it will reinvoke the DXE Dispatcher. This will allow the DXE Dispatcher to load and
execute DXE drivers from firmware volumes that have been discovered since the last time the DXE
Dispatcher was invoked. Once the DXE Dispatcher has loaded and executed all the DXE drivers it
can, control is once again returned to the BDS Architectural Protocol to continue the OS boot
process.

10.3 The A Priori File

The a priori file is a special file that may be present in a firmware volume. The a priori file format

described herein must be supported if the DXE Foundation implementation also supports 3rd party
firmware volumes. The rule is that there may be at most one a priori file per firmware volume
present in a platform. The a priori file has a known GUID file name, so the DXE Dispatcher can
always find the a priori file if it is present. Every time the DXE Dispatcher discovers a firmware
volume, it first looks for the a priori file. The a priori file contains the list of DXE drivers from that
firmware volume that should be loaded and executed before any other DXE drivers are discovered.
The DXE drivers listed in the a priori file are executed in the order that they appear. If any of those
DXE drivers have an associated dependency expression, then those dependency expressions are
ignored. The a priori file provides a deterministic execution order of DXE drivers. DXE drivers
that are executed solely based on their dependency expression are weakly ordered. This means that
the execution order is not completely deterministic between boots or between platforms. There are
cases where a deterministic execution order is required. One example would be to list the DXE

92 7/1/2010 Version 1.1 Errata B

DXE Dispatcher

drivers required to debug the rest of the DXE phase in the a priori file. These DXE drivers that
provide debug services may have been loaded much later if only their dependency expressions were
considered. By loading them earlier, more of the DXE Foundation and DXE drivers can be
debugged. Another example is to use the a priori file to eliminate the need for dependency
expressions. Some embedded platforms may only require a few DXE drivers with a highly
deterministic execution order. The a priori file can provide this ordering, and none of the DXE
drivers would require dependency expressions. The dependency expressions do have some amount
of size overhead, so this method may reduce the size of firmware images. The main purpose of the
a priori file is to provide a greater degree of flexibility in the firmware design of a platform.

See the next topic for the GUID definition of the a priori file, which is the file name that is stored in
a firmware volume.

The a priori file contains the file names of DXE drivers that are stored in the same firmware volume
as the a priori file. File names in firmware volumes are GUIDs, so the a priori file is simply a list of
byte-packed values of type EFI_GUID. Type EFI_GUID is defined in the UEFI 2.0 specification.
The DXE Dispatcher reads the list of EFI_GUIDs from the a priori file. Each EFI_GUID is used
to load and execute the DXE driver with that GUID file name. If the DXE driver specified by the
GUID file name is not found in the firmware volume, then the file is skipped. If the a priori file is
not en even multiple of EFI_GUIDSs in length, then the DXE driver specified by the last EFI_GUID
in the a priori file is skipped.

After all of the DXE drivers listed in the a priori file have been loaded and executed, the DXE
Dispatcher searches the firmware volume for any additional DXE drivers and executed them
according to their dependency expressions.

EFI_APRIORI_GUID

The following GUID definition is the file name of the a priori file that is stored in a firmware
volume. This file must be of type EFI_FV_FILETYPE FREEFORM and must contain a single
section of type EFI_SECTION_ RAW. “For details on firmware volumes, firmware file types, and
firmware file section types, see the Platform Initialization Specification, Volume 3 .

GUID
#define EFI_APRIORI_GUID \

{0xfc510ee7,0xffdc,0x11d4,0xbd,0x41,0x0,0x80,0xc7,0x3c,0x88,0x81
}

10.4 Firmware Volume Image Files

The PEI Dispatcher will ignore files with the section type of
EFI_SECTION_ FIRMWARE VOLUME IMAGE.

For DXE, while processing a firmware volume, if a file of type

EFI_FV_FIRMWARE VOLUME IMAGE is found, the DXE Dispatcher will check whether
information about this firmware volume i image file was already described in an
EFI_FIRMWARE VOLUME HOB2. Ifit was, then the file is ignored.

Version 1.1 Errata B 7/1/2010 93

Platform Initialization Specification VOLUME 2 DXE Core Interface

Otherwise, the DXE Dispatcher will search the file for a section with the type
EFI_SECTION DXE DEPEX, and if found, evaluate the expression against the presently installed
entries in the protocol database.

If the file has both a dependency expression that evaluates to TRUE (or no dependency expression
section) and the file is not already described by an EFI_FIRMWARE VOLUME HOB2, then the
DXE Dispatcher will search the file for a section with the type
EFI_SECTION FIRMWARE VOLUME IMAGE, copy its contents into memory, create a handle
and install the EFI_FIRMWMARE VOLUME2 PROTOCOL and
EFI_DEVICE PATH PROTOCOL on the handle.

10.5 Dependency Expressions

10.6 Dependency Expressions Overview

A DXE driver is stored in a firmware volume as a file with one or more sections. One of the sections
must be a PE32+ image. If a DXE driver has a dependency expression, then it is stored in a
dependency section. A DXE driver may contain additional sections for compression and security
wrappers. The DXE Dispatcher can identify the DXE drivers by their file type. In addition, the
DXE Dispatcher can look up the dependency expression for a DXE driver by looking for a
dependency section in a DXE driver file. The dependency section contains a section header
followed by the actual dependency expression that is composed of a packed byte stream of opcodes
and operands.

Dependency expressions stored in dependency sections are designed to be small to conserve space.
In addition, they are designed to be simple and quick to evaluate to reduce execution overhead.
These two goals are met by designing a small, stack based, instruction set to encode the dependency
expressions. The DXE Dispatcher must implement an interpreter for this instruction set in order to
evaluate dependency expressions. The instruction set is defined in the following topics.

3

See “Dependency Expression Grammar” on page 193 for an example BNF grammar for a
dependency expression compiler. There are many possible methods of specifying the dependency

expression for a DXE driver. Dependency Expression Grammar demonstrates one possible design
for a tool that can be used to help build DXE driver images.

10.7 Dependency Expression Instruction Set

94

The following topics describe each of the dependency expression opcodes in detail. Information
includes a description of the instruction functionality, binary encoding, and any limitations or unique
behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that matches
the type EFI_GUID that is described in the UEFI 2.0 specification. These GUIDs represent
protocols that are produced by DXE drivers and the file names of DXE drivers stored in firmware
volumes. A dependency expression is a packed byte stream of opcodes and operands. As a result,
some of the GUID operands will not be aligned on natural boundaries. Care must be taken on
processor architectures that do allow unaligned accesses.

7/1/2010 Version 1.1 Errata B

DXE Dispatcher

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped off
the stack to perform an operation. After the last operation is performed, the value on the top of the
stack represents the evaluation of the entire dependency expression. If a push operation causes a
stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions about
the maximum stack size it will support. Instead, it should be designed to grow the dependency
expression stack as required. In addition, DXE drivers that contain dependency expressions should
make an effort to keep their dependency expressions as small as possible to help reduce the size of
the DXE driver.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE,

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

If an instruction encoding extends beyond the end of the dependency section, then the entire
dependency expression evaluates to FALSE.,

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

Table 19 is a summary of the opcodes that are used to build dependency expressions. The following
topics describe each of these instructions in detail.

Table 19. Dependency Expression Opcode Summary

Opcode Description

0x00 BEFORE <File Name GUID>
0x01 AFTER <File Name GUID>
0x02 PUSH <Protocol GUID>
0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

0x09 SOR

Version 1.1 Errata B 7/1/2010 95

Platform Initialization Specification VOLUME 2 DXE Core Interface

BEFORE

Syntax
BEFORE <File Name GUID>

Description

This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just before the DXE driver with the file name specified by GUID.
This means that as soon as the dependency expression for the DXE driver specified by GUID
evaluates to TRUE, then this DXE driver must be placed in the dispatch queue just before the DXE
driver with the file name specified by GUID.

Operation
None.
Table 20 defines the BEFORE instruction encoding.

Table 20. BEFORE Instruction Encoding

Byte | Description

0 0x00

1..16 | A 16-byte GUID that represents the file name of a different DXE driver. The format is the same
as type EFI_GUID.

Behaviors and Restrictions

If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

96 7/1/2010 Version 1.1 Errata B

DXE Dispatcher

AFTER

Syntax
AFTER <File Name GUID>

Description
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just after the DXE driver with the file name specified by GUID. This
means that as soon as the dependency expression for the DXE driver specified by GUID evaluates to
TRUE, then this DXE driver must be placed in the dispatch queue just after the DXE Driver with the
file name specified by GUID.

Operation
None.
Table 21 defines the AFTER instruction encoding.

Table 21. AFTER Instruction Encoding

Byte @ Description

0 0x01

1..16 | A 16-byte GUID that represents the file name of a different DXE driver. The format is the
same as type EFT_GUID.

Behaviors and Restrictions

If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

Version 1.1 Errata B 7/1/2010 97

Platform Initialization Specification VOLUME 2 DXE Core Interface

PUSH

Syntax
PUSH <Protocol GUID>

Description
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE is
pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocateProtocol ().

Operation
Status = gBS->LocateProtocol (GUID, NULL, &Interface);
if (EFI_ERROR (Status)) {
PUSH FALSE;
} Else {
PUSH TRUE;

}

Table 22 defines the PUSH instruction encoding.

Table 22. PUSH Instruction Encoding

Byte Description

0 0x02

1..16 A 16-byte GUID that represents a protocol that is produced by a different DXE driver. The
format is the same at type EFI__GUID.

Behaviors and Restrictions
None.

98 7/1/2010 Version 1.1 Errata B

DXE Dispatcher

AND

Syntax
AND

Description

Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

Operation

Operandl <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operandl AND Operand2

PUSH Result

Table 23 defines the AND instruction encoding.

Table 23. AND Instruction Encoding

Byte Description
0 0x03.

Behaviors and Restrictions
None.

Version 1.1 Errata B 7/1/2010 99

Platform Initialization Specification VOLUME 2

OR

Syntax
OR

Description

DXE Core Interface

Pops two Boolean operands off the stack, performs a Boolean OR operation between the two

operands, and pushes the result back onto the stack.

Operation

Operandl <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operandl OR Operand2

PUSH Result

Table 24 defines the OR instruction encoding.

Table 24. OR Instruction Encoding

Byte Description
0 0x04.

Behaviors and Restrictions
None.

100 7/1/2010

Version 1.1 Errata B

DXE Dispatcher

NOT

Syntax
NOT

Description

Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

Operation

Operand <= POP Boolean stack element
Result <= NOT Operandl
PUSH Result

Table 25 defines the NOT instruction encoding.

Table 25. NOT Instruction Encoding

Byte Description
0 0x05.

Behaviors and Restrictions
None.

Version 1.1 Errata B 7/1/2010 101

Platform Initialization Specification VOLUME 2

TRUE

Syntax
TRUE

Description
Pushes a Boolean TRUE onto the stack.

Operation
PUSH TRUE

Table 26 defines the TRUE instruction encoding.

Table 26. TRUE Instruction Encoding

DXE Core Interface

Byte Description
0 0x06.

Behaviors and Restrictions
None.

102 7/1/2010

Version 1.1 Errata B

FALSE

Syntax
FALSE

Description
Pushes a Boolean FALSE onto the stack.

Operation
PUSH FALSE

Table 27 defines the FALSE instruction encoding.

Table 27. FALSE Instruction Encoding

DXE Dispatcher

Byte Description
0 0x07.

Behaviors and Restrictions
None.

Version 1.1 Errata B 7/1/2010

103

Platform Initialization Specification VOLUME 2

END

Syntax
END

Description

DXE Core Interface

Pops the final result of the dependency expression evaluation off the stack and exits the dependency

expression evaluator.

Operation
POP Result
RETURN Result

Table 28 defines the END instruction encoding.

Table 28. END Instruction Encoding

Byte Description
0 0x08.

Behaviors and Restrictions

This opcode must be the last one in a dependency expression.

104 7/1/2010

Version 1.1 Errata B

DXE Dispatcher

SOR

Syntax
SOR

Description

Indicates that the DXE driver is to remain on the Schedule on Request (SOR) queue until the DXE
Service Schedule () is called for this DXE. The dependency expression evaluator treats this
operation like a No Operation (NOP).

Operation
None.

Table 29 defines the SOR instruction encoding.

Table 29. SOR Instruction Encoding

Byte Description
0 0x09.

Behaviors and Restrictions

» If'this instruction is present in a dependency expression, it must be the first instruction in the
expression. If it appears in any other location in the dependency expression, then the
dependency expression is evaluated to FALSE.

* This instruction must be followed by a valid dependency expression. If this instruction is the
last instruction or it is followed immediately by an END instruction, then the dependency
expression is evaluated to FALSE.,

Version 1.1 Errata B 7/1/2010 105

Platform Initialization Specification VOLUME 2 DXE Core Interface

10.8 Dependency Expression with No Dependencies

A DXE driver that does not have any dependencies must have a dependency expression that
evaluates to TRUE with no dependencies on any protocol GUIDs or file name GUIDs. The DXE
Dispatcher will queue all the DXE drivers of this type immediately after the a priori file has been
processed.

The following code example shows the dependency expression for a DXE driver that does not have
any dependencies using the BNF grammar listed in Dependency Expression Grammar. This is
followed by the 2-byte dependency expression that is encoded using the instruction set described in
“Dependency Expression Instruction Set” on page 94.

//

// Source

//

TRUE

END

//

// Opcodes, Operands, and Binary Encoding
//

ADDR BINARY MNEMONIC
0x00 06 TRUE
0x01 08 END

10.9 Empty Dependency Expressions

106

If a DXE driver file does not contain a dependency section, then the DXE driver has an empty
dependency expression. The DXE Foundation must support DXE driver and UEFI drivers that
conform to the UEFI 2.0 specification. These UEFI drivers assume that all the UEFI Boot Services
and UEFI Runtime Services are available. If an UEFI driver is added to a firmware volume, then the
UEFI driver will have an empty dependency expression, and it should not be loaded and executed by
the DXE Dispatcher until all the UEFI Boot Services and UEFI Runtime Services are available. The
DXE Foundation cannot guarantee that this condition is true until all of the DXE Architectural
Protocols have been installed.

From the DXE Dispatcher’s perspective, DXE drivers without dependency expressions cannot be
loaded until all of the DXE Architectural Protocols have been installed. This is equivalent to an
implied dependency expression of all the GUIDs of the architectural protocols ANDed together.
This implied dependency expression is shown below. The use of empty dependency expressions
may also save space, because DXE drivers that require all the UEFI Boot Services and UEFI
Runtime Services to be present can simply remove the dependency section from the DXE driver file.

The code example below shows the dependency expression that is implied by an empty dependency
expression using the BNF grammar listed in “‘Dependency Expression Grammar” on page 193. It
also shows the dependency expression after it has been encoded using the instruction set described in
“Dependency Expression Instruction Set” on page 94. This fairly complex dependency expression
is encoded into a dependency expression that is 216 bytes long. Typical dependency expressions
will contain 2 or 3 terms, so those dependency expressions will typically be less than 60 bytes long.

7/1/2010 Version 1.1 Errata B

DXE Dispatcher

//

// Source

//

EFI_BDS ARCH PROTOCOL GUID AND

EFI_CPU ARCH PROTOCOL GUID AND

EFI_METRONOME ARCH PROTOCOL GUID AND

EFT_MONOTONIC COUNTER ARCH PROTOCOI, GUID AND

EFT_REAL TIME CLOCK ARCH PROTOCOL GUID AND

EFT_RESET ARCH PROTOCOL GUID AND

EFT_RUNTIME ARCH PROTOCOL GUID AND

EFT_SECURITY ARCH PROTOCOL GUID AND

EFT_TIMER ARCH PROTOCOL GUID AND

EFT_VARIABLE ARCH PROTOCOL GUID AND

EFT_VARIABLE WRITE ARCH PROTOCOL GUID AND

EFI_WATCHDOG TIMER ARCH PROTOCOL GUID

END

//

// Opcodes, Operands, and Binary Encoding

//

ADDR BINARY MNEMONIC

0x00 : 02 PUSH

0x01 : F6 3F 5E 66 CC 46 d4 11 EFI_BDS ARCH PROTOCOIL GUID
9A 38 00 90 27 3F C1 4D

Ox11 : 02 PUSH

0x12 : B1 CC BA 26 42 6F D4 11 EFI_CPU ARCH PROTOCOIL GUID
BC E7 00 80 C7 3C 88 81

0x22 : 03 AND

0x23 : 02 PUSH

0x24 : B2 CC BA 26 42 6F d4 11 EFI_METRONOME ARCH PROTOCOL GUID
BC E7 00 80 C7 3C 88 81

0x34 : 02 PUSH

0x35 : 72 70 A9 1D DC BD 30 4B
EFI_MONOTONIC COUNTER ARCH PROTOCOL_GUID
99 F1 72 A0 B5 6F FF 2A

0x45 : 03 AND
Ox46 : 03 AND
0x47 : 02 PUSH
0x48 : 87 AC CF 27 CC 46 d4 11 EFI_REAL TIME CLOCK ARCH PROTOCOL GUID

9A 38 00 90 27 3F C1 4D

0x58 : 02 PUSH

0x59 : 88 AC CF 27 CC 46 d4 11 EFI_RESET ARCH PROTOCOL GUID
9A 38 00 90 27 3F C1 4D

0x69 : 03 AND

Ox6A : 02 PUSH

0x6B : 53 82 d0 96 83 84 d4 11 EFI_RUNTIME ARCH PROTOCOL GUID

BC F1 00 80 C7 3C 88 81

Version 1.1 Errata B 7/1/2010 107

Platform Initialization Specification VOLUME 2 DXE Core Interface

0x7B : 02 PUSH

0x7C : E3 23 64 A4 17 46 f1 49 EFI SECURITY ARCH PROTOCOL GUID
B9 FF D1 BF A9 11 58 39
82 CE 5A 89 0C CB 2C 95

0xAO0 : 02 PUSH

OxAl : B3 CC BA 26 42 oF D4 11 EFI TIMER ARCH PROTOCOL GUID
BC E7 00 80 C7 3C 88 81

OxB1 : 03 AND

0xB2 : 02 PUSH

0xB3 : E2 68 56 1E 81 84 D4 11 EFI VARIABLE ARCH PROTOCOL GUID
BC F1 00 80 C7 3C 88 81

0xC3 : 02 PUSH

0xC4 : 18 F8 41 64 62 63 44 4E EFI VARIABLE WRITE ARCH PROTOCOL GUID
B5 70 7D BA 31 DD 24 53

0xD4 : 03 AND

0xD5 : 03 AND

OxD6 : 03 AND

0xD7 : 02 PUSH

0xD8 : F5 3F S5E 66 CC 46 d4 11 EFI WATCHDOG TIMER ARCH PROTOCOL GUID
9A 38 00 90 27 3F C1 4D

O0xE8 : 03 AND

O0xE9 : 08 END

10.10 Dependency Expression Reverse Polish Notation (RPN)

The actual equations will be presented by the DXE driver in a simple-to-evaluate form, namely
postfix.

The following is a BNF encoding of this grammar. See “Dependency Expression Instruction Set” on
page 94 for definitions of the dependency expressions.
<statement> ::= SOR <expression> END |
BEFORE <guid> END |
AFTER <guid> END |
<expression> END

<expression> ::= PUSH <guid> |
TRUE |
FALSE |
<expression> NOT |
<expression> <expression> OR |
<expression> <expression> AND

10.11 DXE Dispatcher State Machine

108

The DXE Dispatcher is responsible for tracking the state of a DXE driver from the time that the
DXE driver is discovered in a firmware volume until the DXE Foundation is terminated with a call
to ExitBootServices (). During this time, each DXE driver may be in one of several different
states. The state machine that the DXE Dispatcher must use to track a DXE driver is shown in

Figure 7.

7/1/2010 Version 1.1 Errata B

DXE Dispatcher

Undiscoverad Discoverad

DE Driver Found

The DXE Dispatcher
has notfound the
L E Drriver yet

The DXE Dispatcher
haz found the
[XE Driver

S0R Clear SOR Set

Diependency expression
evaluates to FALSE

Unrequested

Dependent

The DXE Dispatcher
ewaluates the DXE Drivers
dependency expression.

Schedule
i S0R opecode is prasent
inthe DXE Drivers
dependency expression

Dependency expression
evaluates to TRUE

DXE Diriver
Authentication Failed

Mever
Trusted

The SAF policy
mandates thatthe DXE
Criver should newer
be used

Dion't use the

Scheduled D¥E Driver

Untrusted
The SAF failed to
authenticate the
LxE Driver

The DXE Driveris added to
the queue of DXE Drivers that J
are ready to be exeouted.

Startimaged

Initializing Initialized
The DXE Driverhas
returned contml back to
the DXE Dispatcher

The DXE Driverhas been
given contral by the
[E Dizpatcher

Figure 7. DXE Driver States

A DXE driver starts in the “Undiscovered” state, which means that the DXE driver is in a firmware
volume that the DXE Dispatcher does not know about yet. When the DXE Dispatcher discovers a
new firmware volume, any DXE drivers from that firmware volume listed in the a priori file are
immediately loaded and executed. DXE drivers listed in the a priori file are immediately promoted
to the “Scheduled” state. The firmware volume is then searched for DXE drivers that are not listed
in the a priori file. Any DXE drivers found are promoted from the “Undiscovered” to the
“Discovered” state. The dependency expression for each DXE driver is evaluated. If the SOR
opcode is present in a DXE driver’s dependency expression, then the DXE driver is placed in the
“Unrequested” state. If the SOR opcode is not present in the DXE driver’s dependency expression,
then the DXE driver is placed in the “Dependent” state. Once a DXE driver is in the "Unrequested”
state, it may only be promoted to the “Dependent” state with a call to the DXE Service
Schedule().

Once a DXE Driver is in the “Dependent” state, the DXE Dispatcher will evaluate the DXE driver’s
dependency expression. If the DXE driver does not have a dependency expression, then a
dependency expression of all the architectural protocols ANDed together is assumed for that DXE
driver. If the dependency expression evaluates to FALSE, then the DXE driver stays in the

Version 1.1 Errata B 7/1/2010 109

Platform Initialization Specification VOLUME 2 DXE Core Interface

“Dependent” state. If the dependency expression never evaluates to TRUE, then it will never leave
the “Dependent” state. If the dependency expression evaluates to TRUE, then the DXE driver will
be promoted to the “Scheduled” state.

A DXE driver that is prompted to the “Scheduled” state is added to the end of the queue of other
DXE drivers that have been promoted to the “Scheduled” state. When the DXE driver has reached
the head of the queue, the DXE Dispatcher must use the services of the Security Authentication
Protocol (SAP) to check the authentication status of the DXE Driver. If the Security Authentication
Protocol deems that the DXE Driver violates the security policy of the platform, then the DXE
Driver is placed in the “Untrusted” state. The Security Authentication Protocol can also tell the
DXE Dispatcher that the DXE driver should never be executed and be placed in the “Never Trusted”
state. If a DXE driver is placed in the “Untrusted” state, it can only be promoted back to the
“Scheduled” state with a call to the DXE Service Trust ().

Once a DXE driver has reached the head of the scheduled queue, and the DXE driver has passed the
authentication checks of the Security Authentication Protocol, the DXE driver is loaded into
memory with the Boot Service LoadImage (). Control is then passed from the DXE Dispatcher to
the DXE driver with the Boot Service StartImage (). When StartImage () is called fora
DXE driver, that DXE driver is promoted to the “Initializing” state. The DXE driver returns control
to the DXE Dispatcher through the Boot Service Exit (). When a DXE driver has returned control
to the DXE Dispatcher, the DXE driver is in the terminal state called “Initialized.”

The DXE Dispatcher is responsible for draining the queue of DXE drivers in the “Scheduled” state
until the queue is empty. Once the queue is empty, then DXE Dispatcher must evaluate all the DXE
drivers in the "Dependent” state to see if any of them need to be promoted to the “Scheduled” state.
These evaluations need to be performed every time one or more DXE drivers have been promoted to
the “Initialized” state, because those DXE drivers may have produced protocol interfaces for which
the DXE drivers in the "Dependent” state are waiting.

10.12 Example Orderings

110

The order that DXE drivers are loaded and executed by the DXE Dispatcher is a mix of strong and
weak orderings. The strong orderings are specified through a priori files, and the weak orderings

are specified by dependency expressions in DXE drivers. Figure 8 shows the contents of a sample

firmware volume that contains the following:

* DXE Foundation image
* DXE driver images
* Ana priori file

The order that these images appear in the firmware volume is arbitrary. The DXE Foundation and
the DXE Dispatcher must not make any assumptions about the locations of files in firmware
volumes. The a priori file contains the GUID file names of the DXE drivers that are to be loaded
and executed first. The dependency expressions and the protocols that each DXE driver produces is
shown next to each DXE driver image in the firmware volume.

7/1/2010 Version 1.1 Errata B

DXE Dispatcher

Firmware Yolume

A Priori File
Security Driver
Runtime Driver
Wariahle Driver

Lepex=TRUE END

Produces . EFlI RUNTIME ARCH PROTOCOL

Lepex=TRUE EN
Produces : EFI_CPU_IO_FROTOCOL, EFl CPU ARCH PROTOCOL

m
=

Lepex= EF_CPU_IO_FPROTOCOLAND EFI CPU ARCH FPROTOCOLEM
FProduces: EFl TIMER ARCH PROTOCOL

Depex= EF_CPU_I0_PROTOCOLEND:
Produces : EFI METRONOME ARCH PROTOCOL

Lepex=THRUE EN

Froduces : EFl WARWBLE ARCH FROTOCOL, EFI WARIABLE WIRITE ARCH FPROTOCOL

=

Depex= EF_CPU_I0_PROTOCOLEND:
Produces : EFI RESET ARCH PROTOCOL

Lepex=TRUE EMD

Produces : EFI BDS ARCH PROTOCOL
Lepex=TRUE END

Produces: EFI SECURITY ARCH PROTOCOL

Figure 8. Sample Firmware Volume

Based on the contents of the firmware volume in the figure above, the Security Driver, Runtime
Driver, and Variable Driver will always be executed first. This is an example of a strongly ordered
dispatch due to the a priori file. The DXE Dispatcher will then evaluate the dependency expressions
of the remaining DXE drivers to determine the order that they will be executed. Based on the
dependency expressions and the protocols that each DXE driver produces, there are 30 valid
orderings from which the DXE Dispatcher may choose. The BDS Driver and CPU Driver tie for the
next drivers to be scheduled, because their dependency expressions are simply TRUE. A
dependency expression of TRUE means that the DXE driver does not require any other protocol
interfaces to be executed. The DXE Dispatcher may choose either one of these drivers to be
scheduled first. The Timer Driver, Metronome Driver, and Reset Driver all depend on the protocols
produced by the CPU Driver. Once the CPU Driver has been loaded and executed, the Timer
Driver, Metronome Driver, and Reset Driver may be scheduled in any order. The table below shows
all 30 possible orderings from the sample firmware volume in the figure above. Each ordering is
listed from left to right across the table. A reasonable implementation of a DXE Dispatcher would
consistently produce the same ordering for a given system configuration. If the configuration of the
system is changed in any way (including a order of files stored in a firmware volume), then a

Version 1.1 Errata B 7/1/2010 111

Platform Initialization Specification VOLUME 2 DXE Core Interface

different dispatch ordering may be generated, but this new ordering should be consistent until the
next system configuration change.

Table 30. DXE Dispatcher Orderings

Dispatch Order

1 2 3 4 5 6 7 8

1 Security = Runtime | Variable | BDS CPU Timer Metronome | Reset

2 Security | Runtime | Variable | BDS CPU Timer Reset Metronome
3 Security | Runtime | Variable | BDS CPU Metronome | Timer Reset

4 Security | Runtime | Variable | BDS CPU Metronome ' Reset Timer

5 Security = Runtime | Variable | BDS CPU Reset Timer Metronome
6 Security | Runtime | Variable | BDS CPU Reset Metronome | Timer

7 Security = Runtime | Variable | CPU BDS Timer Metronome | Reset

8 Security = Runtime | Variable | CPU BDS Timer Reset Metronome
9 Security | Runtime | Variable = CPU BDS Metronome | Timer Reset

10 Security | Runtime | Variable @ CPU BDS Metronome | Reset Timer

11 Security | Runtime | Variable | CPU BDS Reset Timer Metronome
12 Security | Runtime | Variable | CPU BDS Reset Metronome | Timer

13 | Security = Runtime | Variable | CPU Timer BDS Metronome | Reset

14 | Security = Runtime | Variable | CPU Timer BDS Reset Metronome
15 | Security = Runtime | Variable | CPU Timer Metronome | BDS Reset

16 Security | Runtime | Variable | CPU Timer Metronome ' Reset BDS

17 | Security = Runtime | Variable | CPU Timer Reset BDS Metronome
18 Security | Runtime | Variable | CPU Timer Reset Metronome @ BDS

19 | Security = Runtime | Variable | CPU Metronome | Timer BDS Reset

20 Security | Runtime | Variable | CPU Metronome = Timer Reset BDS

21 Security = Runtime | Variable | CPU Metronome | BDS Timer Reset

22 | Security | Runtime @ Variable | CPU Metronome @ BDS Reset Timer

23 | Security | Runtime | Variable | CPU Metronome | Reset Timer BDS

24 Security = Runtime | Variable @ CPU Metronome @ Reset BDS Timer

25 | Security | Runtime @ Variable | CPU Reset Timer Metronome | BDS

26 Security = Runtime | Variable | CPU Reset Timer BDS Metronome
27 | Security | Runtime | Variable | CPU Reset Metronome | Timer BDS

28 Security | Runtime | Variable | CPU Reset Metronome ' BDS Timer

29 | Security | Runtime | Variable | CPU Reset BDS Timer Metronome
30 Security = Runtime | Variable | CPU Reset BDS Metronome | Timer

112 7/1/2010 Version 1.1 Errata B

DXE Dispatcher

10.13 Security Considerations

The DXE Dispatcher is required to use the services of the Security Architectural Protocol every time
a firmware volume is discovered and before each DXE driver is executed. Because the Security
Architectural Protocol is produced by a DXE driver, there will be at least one firmware volume
discovered, and one or more DXE drivers loaded and executed before the Security Architectural
Protocol is installed. The DXE Dispatcher should not attempt to use the services of the Security
Architectural Protocol until the Security Architectural Protocol is installed. If a platform requires
the Security Architectural Protocol to be present very early in the DXE phase, then the a priori file
may be used to specify the name of the DXE driver that produces the Security Architectural
Protocol.

The Security Architectural Protocol provides a service to evaluate the authentication status of a file.
This service can also be used to evaluate the authenticate status of a firmware volume. If the
authentication status is good, then no action is taken. If there is a problem with the firmware
volume’s authentication status, then the Security Architectural Protocol may perform a platform
specific action. One option is to force the DXE Dispatcher to ignore the firmware volume so no
DXE drivers will be loaded and executed from it. Another is to log the fact that the DXE Dispatcher
is going to start dispatching DXE driver from a firmware volume with a questionable authentication
status.

The Security Architectural Protocol can also be used to evaluate the authentication status of each
DXE driver discovered in a firmware volume. If the authentication status is good, then no action is
taken. If there is a problem with the DXE driver’s authentication status, then the Security
Architectural Protocol may take a platform-specific action. One possibility is to force the DXE
driver into the “Untrusted” state, so it will not be considered for dispatch until the Boot Service
Trust () is called for that DXE driver. Another possibility is to have the DXE Dispatcher place
the DXE driver in the “Never Trusted” state, so it will never be loaded or executed. Another option
is to log the fact that a DXE driver with a questionable authentication status is about to be loaded and
executed.

Version 1.1 Errata B 7/1/2010 113

Platform Initialization Specification VOLUME 2 DXE Core Interface

114 7/1/2010 Version 1.1 Errata B

11
DXE Drivers

11.1 Introduction

The DXE architecture provides a rich set of extensible services that provides for a wide variety of
different system firmware designs. The DXE Foundation provides the generic services required to
locate and execute DXE drivers. The DXE drivers are the components that actually initialize the
platform and provide the services required to boot an UEFI-compliant operating system or a set of
UEFI-compliant system utilities. There are many possible firmware implementations for any given
platform. Because the DXE Foundation has fixed functionality, all the added value and flexibility in
a firmware design is embodied in the implementation and organization of DXE drivers.

There are two basic classes of DXE drivers:

* Early DXE Drivers

* DXE Drivers that follow the UEFI Driver Model
Additional classifications of DXE drivers are also possible.

All DXE drivers may consume the UEFI Boot Services, UEFI Runtime Services, and DXE Services
to perform their functions. DXE drivers must use dependency expressions to guarantee that the
services and protocol interfaces they require are available before they are executed. See the
following topics for the DXE Architectural Protocols upon which the services depend:

» UEFI Boot Services Dependencies
» UEFI Runtime Services Dependencies

* DXE Services Dependencies

11.2 Classes of DXE Drivers

11.2.1 Early DXE Drivers

The first class of DXE drivers are those that execute very early in the DXE phase. The execution
order of these DXE drivers depends on the following:

e The presence and contents of an a priori file
* The evaluation of dependency expressions

These early DXE drivers will typically contain basic services, processor initialization code, chipset
initialization code, and platform initialization code. These early drivers will also typically produce
the DXE Architectural Protocols that are required for the DXE Foundation to produces its full
complement of UEFI Boot Services and UEFI Runtime Services. To support the fastest possible
boot time, as much initialization should be deferred to the DXE drivers that follow UEFI Driver
Model described in the UEFI 2.0 specification.

Version 1.1 Errata B 7/1/2010 115

Platform Initialization Specification VOLUME 2 DXE Core Interface

The early DXE drivers need to be aware that not all of the UEFI Boot Services, UEFI Runtime
Services, and DXE Services may be available when they execute because not all of the DXE
Architectural Protocols may be been registered yet.

11.2.2 DXE Drivers that Follow the UEFI Driver Model

The second class of DXE drivers are those that follow the UEFI Driver Model in the UEFI 2.0
specification. These drivers do not touch any hardware resources when they initialize. Instead, they
register a Driver Binding Protocol interface in the handle database. The set of Driver Binding
Protocols are used by the Boot Device Selection (BDS) phase to connect the drivers to the devices
that are required to establish consoles and provide access to boot devices. The DXE drivers that
follow the UEFI Driver Model ultimately provide software abstractions for console devices and boot
devices, but only when they are explicitly asked to do so.

The DXE drivers that follow the UEFI Driver Model do not need to be concerned with dependency
expressions. These drivers simply register the Driver Binding Protocol in the handle database when
they are executed, and this operation can be performed without the use of any DXE Architectural
Protocols. DXE drivers with empty dependency expressions will not be dispatched by the DXE
Dispatcher until all of the DXE Architectural Protocols have been installed.

11.2.3 Additional Classifications

116

DXE drivers can also be classified as the following:
* Boot service drivers
* Runtime drivers

Boot service drivers provide services that are available until the ExitBootServices ()
function is called. When ExitBootServices () is called, all the memory used by boot service
drivers is released for use by an operating system.

Runtime drivers provide services that are available before and after ExitBootServices () is
called, including the time that an operating system is running. All of the services in the UEFI
Runtime Services Table are produced by runtime drivers.

The DXE Foundation is considered a boot service component, so the DXE Foundation is also
released when ExitBootServices () is called. As a result, runtime drivers may not use any of
the UEFI Boot Services, DXE Services, or services produced by boot service drivers after
ExitBootServices () is called.

7/1/2010 Version 1.1 Errata B

12
DXE Architectural Protocols

12.1 Introduction

The DXE Foundation is abstracted from the platform hardware through a set of architectural
protocols. These protocols function just like other protocols in every way. The only difference is
that these architectural protocols are the protocols that the DXE Foundation itself consumes to
produce the UEFI Boot Services, UEFI Runtime Services, and DXE Services. DXE drivers that are
loaded from firmware volumes produce the DXE Architectural Protocols. This means that the DXE
Foundation must have enough services to load and start DXE drivers before even a single DXE
driver is executed.

The DXE Foundation is passed a HOB list that must contain a description of some amount of system
memory and at least one firmware volume. The system memory descriptors in the HOB list are used
to initialize the UEFTI services that require only memory to function correctly. The system is also
guaranteed to be running on only one processor in flat physical mode with interrupts disabled. The
firmware volume is passed to the DXE Dispatcher, and the DXE Dispatcher must contain a read-
only firmware file system driver to search for the a priori file and any DXE drivers in the firmware
volumes. When a driver is discovered that needs to be loaded and executed, the DXE Dispatcher will
use a PE/COFF loader to load and invoke the DXE driver. The early DXE drivers will produce the
DXE Architectural Protocols, so the DXE Foundation can produce the full complement of UEFI
Boot Services and UEFI Runtime Services.

Figure 9 shows the HOB list being passed to the DXE Foundation.

Version 1.1 Errata B 7/1/2010 117

Platform Initialization Specification VOLUME 2 DXE Core Interface

Firmware
Volumes

\ DXE

Drivers

System /0 MMIO Firmware
Memory Resources Resources Devices
| | | |

HOB List
PHIT DXE
Hog | HOB —P= HOB —P= HOB —Pp» HOB | ... | HOB Drivers

UEFI Boot Services Table DXE Services UEFI System Table UEFI Runtime Services

DXE Foundation / DXE Dispatcher

. . Variable Monotonic Status
Security Metronome BDS Runtime Write e Code

Architectural Architectural Architectural Architectural " . g
Architectural Architectural Architectural
Protocol Protocol Protocol Protocol
Protocol Protocol Protocol

Watchdog Variable R Real Time

£ Uiz Timer Clock
Architectural Architectural Architectural Architectural ;
Architectural

Protocol Protocol el Tl Protocol Protocol
Protocol Protocol

Hardware

118

Figure 9. DXE Architectural Protocols

The DXE Foundation consumes the services of the DXE Architectural Protocols and produces the
following:

* UEFI System Table

* UEFI Boot Services Table

* UEFI Runtime Services Table
* DXE Services Table

The UEFI Boot Services Table and DXE Services Table are allocated from UEFI boot services
memory, which means that the UEFI Boot Services Table and DXE Services Table are freed when
the OS runtime phase is entered. The UEFI System Table and UEFI Runtime Services Table are
allocated from UEFI runtime services memory, and they persist into the OS runtime phase.

When executing upon an UEFI-compliant system, UEFI drivers, applications, and UEFI-aware
operating systems can discern if the platform is built upon the Foundation by searching for the DXE
Services Table GUID in the UEFI System configuration table.

The DXE Architectural Protocols shown on the left of the figure are used to produce the UEFI Boot
Services and DXE Services. The DXE Foundation and these protocols will be freed when the
system transitions to the OS runtime phase. The DXE Architectural Protocols shown on the right are
used to produce the UEFI Runtime Services. These services will persist in the OS runtime phase.
The Runtime Architectural Protocol in the middle is unique. This protocol provides the services that

7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

are required to transition the runtime services from physical mode to virtual mode under the
direction of an OS. Once this transition is complete, the services of the Runtime Architectural
Protocol can no longer be used. The following topics describe all of the DXE Architectural
Protocols in detail.

12.2 Boot Device Selection (BDS) Architectural Protocol
EFI_BDS_ARCH_PROTOCOL

Summary
Transfers control from the DXE phase to an operating system or system utility. This protocol must
be produced by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation.

GUID
#define EFI_BDS ARCH PROTOCOL_GUID \
{0x665E3FF6,0x46CC,0x11d4,\
0x9A,0x38,0x00,0x90,0x27,0x3F,0xCl,0x4D}

Protocol Interface Structure
typedef struct {
EFI_BDS ENTRY FEntry;
} EFI_BDS ARCH PROTOCOL;

Parameters
Entry

The entry point to BDS. See the Entry () function description. This call does not
take any parameters, and the return value can be ignored. If it returns, then the
dispatcher must be invoked again, if it never returns, then an operating system or a
system utility have been invoked.

Description
The EFI_BDS_ARCH_ PROTOCOL transfers control from DXE to an operating system or a system
utility. If there are not enough drivers initialized when this protocol is used to access the required
boot device(s), then this protocol should add drivers to the dispatch queue and return control back to
the dispatcher. Once the required boot devices are available, then the boot device can be used to
load and invoke an OS or a system utility.

Version 1.1 Errata B 7/1/2010 119

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_BDS_ARCH_PROTOCOL.Entry()

Summary

Performs Boot Device Selection (BDS) and transfers control from the DXE Foundation to the
selected boot device. The implementation of the boot policy must follow the rules outlined in the
Boot Manager chapter of the UEFI 2.0 specification. This boot policy allows for flexibility, so the
platform vendor will typically customize the implementation of this service.

Prototype
typedef
VOID
(EFIAPI *EFI_BDS ENTRY) (
IN CONST EFI_BDS_ARCH PROTOCOL *This
)

Parameters
This
The EFI_BDS_ARCH_ PROTOCOL instance.

Description

This function uses policy data from the platform to determine what operating system or system
utility should be loaded and invoked. This function call also optionally uses the user's input to
determine the operating system or system utility to be loaded and invoked. When the DXE
Foundation has dispatched all the drivers on the dispatch queue, this function is called. This
function will attempt to connect the boot devices required to load and invoke the selected operating
system or system utility. During this process, additional firmware volumes may be discovered that
may contain addition DXE drivers that can be dispatched by the DXE Foundation. If a boot device
cannot be fully connected, this function calls the DXE Service Dispatch () to allow the DXE
drivers from any newly discovered firmware volumes to be dispatched. Then the boot device
connection can be attempted again. If the same boot device connection operation fails twice in a
row, then that boot device has failed, and should be skipped. This function should never return.

120 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

12.3 CPU Architectural Protocol
EFI_CPU_ARCH_PROTOCOL

Summary

Abstracts the processor services that are required to implement some of the DXE services. This
protocol must be produced by a boot service or runtime DXE driver and may only be consumed by
the DXE Foundation and DXE drivers that produce architectural protocols.

GUID

#define EFI_CPU_ARCH PROTOCOL_GUID \
{0x26baccbl,0x6£42,0x11d4,\
Oxbc,0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_CPU_ARCH PROTOCOL ({

EFI_CPU_FLUSH DATA CACHE FlushDataCache,;
EFI_CPU_ENABLE INTERRUPT EnablelInterrupt;,
EFI_CPU_DISABLE INTERRUPT DisableInterrupt;
EFI_CPU_GET_INTERRUPT STATE GetInterruptState,
EFI_CPU_INIT Init;

EFI_CPU_REGISTER INTERRUPT HANDLER RegisterInterruptHandler;,
EFI_CPU_GET_TIMER VALUE GetTimerValue;
EFI_CPU_SET ATTRIBUTES SetMemoryAttributes;
UINT32 NumberOfTimers;,

UINT32 DmaBufferAlignment;

} EFI_CPU_ARCH PROTOCOL;

Parameters
FlushDataCache

Flushes a range of the processor’s data cache. See the FlushDataCache ()
function description. If the processor does not contain a data cache, or the data cache
is fully coherent, then this function can just return EFI_SUCCESS. If the processor
does not support flushing a range of addresses from the data cache, then the entire data
cache must be flushed. This function is used by the root bridge 1/O abstractions to
flush data caches for DMA operations.

EnableInterrupt

Enables interrupt processing by the processor. See the EnableInterrupt ()
function description. This function is used by the Boot Service RaiseTPL () and
RestoreTPL().

DisableInterrupt

Disables interrupt processing by the processor. See the DisableInterrupt ()
function description. This function is used by the Boot Service RaiseTPL () and
RestoreTPL().

Version 1.1 Errata B 7/1/2010 121

Platform Initialization Specification VOLUME 2 DXE Core Interface

122

GetInterruptState

Retrieves the processor’s current interrupt state. See the GetInterruptState ()
function description.

Init
Generates an INIT on the processor. See the Init () function description. This
function may be used by the EFI_RESET Protocol depending upon a specified boot

path. If a processor cannot programmatically generate an INIT without help from
external hardware, then this function returns EFI_UNSUPPORTED.

RegisterInterruptHandler

Associates an interrupt service routine with one of the processor’s interrupt vectors.
See the RegisterInterruptHandler () function description. This function is
typically used by the EFI_TIMER ARCH PROTOCOL to hook the timer interrupt
in a system. It can also be used by the debugger to hook exception vectors.

GetTimerValue

Returns the value of one of the processor’s internal timers. See the
GetTimerValue () function description.

SetMemoryAttributes

Attempts to set the attributes of a memory region. See the
SetMemoryAttributes () function description.

NumberOfTimers

The number of timers that are available in a processor. The value in this field is a
constant that must not be modified after the CPU Architectural Protocol is installed.
All consumers must treat this as a read-only field.

DmaBufferAlignment

The size, in bytes, of the alignment required for DMA buffer allocations. This is
typically the size of the largest data cache line in the platform. This value can be
determined by looking at the data cache line sizes of all the caches present in the
platform, and returning the largest. This is used by the root bridge I/O abstraction
protocols to guarantee that no two DMA buffers ever share the same cache line. The
value in this field is a constant that must not be modified after the CPU Architectural
Protocol is installed. All consumers must treat this as a read-only field.

Description
The EFI_CPU_ARCH_ PROTOCOL is used to abstract processor-specific functions from the DXE
Foundation. This includes flushing caches, enabling and disabling interrupts, hooking interrupt
vectors and exception vectors, reading internal processor timers, resetting the processor, and
determining the processor frequency.

The GCD memory space map is initialized by the DXE Foundation based on the contents of the
HOB list. The HOB list contains the capabilities of the different memory regions, but it does not
contain their current attributes. The DXE driver that produces the EFI_CPU_ARCH PROTOCOL is
responsible for maintaining the current attributes of the memory regions visible to the processor.
This means that the DXE driver that produces the EFI_CPU_ARCH PROTOCOL must seed the

7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

GCD memory space map with the initial state of the attributes for all the memory regions visible to
the processor. The DXE Service SetMemorySpaceAttributes () allows the attributes of a
memory range to be modified. The SetMemorySpaceAttributes () DXE Service is
implemented using the SetMemoryAttributes () service of the
EFI_CPU_ARCH_PROTOCOL.

To initialize the state of the attributes in the GCD memory space map, the DXE driver that produces
the EFI_CPU_ARCH PROTOCOL must call the DXE Service

SetMemorySpaceAttributes () for all the different memory regions visible to the processor
passing in the current attributes. This, in turn, will call back to the SetMemoryAttributes ()
service of the EFI_CPU_ARCH PROTOCOL, and all of these calls must return EFI_SUCCESS,
since the DXE Foundation is only requesting that the attributes of the memory region be set to their
current settings. This will force the current attributes in the GCD memory space map to be set to
these current settings. After this initialization is complete, the next call to the DXE Service
GetMemorySpaceMap () will correctly show the current attributes of all the memory regions. In
addition, any future calls to the DXE Service SetMemorySpaceAttributes () will in turn call
the EFI_CPU_ARCH PROTOCOL so see of those attributes can be modified, and if they can, the
GCD memory space map will be updated accordingly.

Version 1.1 Errata B 7/1/2010 123

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_CPU_ARCH_PROTOCOL.FlushDataCache()

Summary

Flushes a range of the processor’s data cache. If the processor does not contain a data cache, or the
data cache is fully coherent, then this function can just return EFI__SUCCESS. If the processor does
not support flushing a range of addresses from the data cache, then the entire data cache must be
flushed. This function is used by the root bridge I/O abstractions to flush caches for DMA
operations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU FLUSH DATA CACHE) (
IN CONST EFI_CPU ARCH PROTOCOL *This,

IN EFI PHYSICAL ADDRESS Start,
IN UINT64 - Length,
IN EFI_CPU FLUSH TYPE FlushType
)

Parameters
This

The EFI_CPU_ARCH_ PROTOCOL instance.
Start

The beginning physical address to flush from the processor’s data cache.
Length

The number of bytes to flush from the processor’s data cache. This function may
flush more bytes than Length specifies depending upon the granularity of the flush
operation that the processor supports.

FlushType

Specifies the type of flush operation to perform. Type EFI_CPU_FLUSH TYPE is
defined in “Related Definitions” below.

Description

This function flushes the range of addresses from Start to Start+Length from the processor's
data cache. If Start is not aligned to a cache line boundary, then the bytes before Start to the
preceding cache line boundary are also flushed. If Start+Length is not aligned to a cache line
boundary, then the bytes past Start+Length to the end of the next cache line boundary are also
flushed. If the address range is flushed, then EFI__SUCCESS is returned. If the address range
cannot be flushed, then EFI_DEVICE_ ERROR is returned. If the processor does not support the
flush type specified by FlushType, then EFI_UNSUPPORTED is returned. The F1ushType of
EfiCpuFlushTypelWriteBackInvalidate must be supported. Ifthe data cache is fully
coherent with all DMA operations, then this function can just return EFI_SUCCESS. If the
processor does not support flushing a range of the data cache, then the entire data cache can be
flushed.

124 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Related Definitions
typedef enum {
EfiCpuFlushTypeWriteBackInvalidate,
EfiCpuFlushTypeWriteBack,
EfiCpuFlushTypeInvalidate,
EfiCpuMaxFlushType
} EFI_CPU_FLUSH_TYPE;

Status Codes Returned

EFI_SUCCESS The address range from Startto Start+Length was
flushed from the processor’s data cache.

EFI_UNSUPPORTED The processor does not support the cache flush type specified by
FlushType.

EFI_DEVICE_ERROR The address range from Start to Start+Length could not

be flushed from the processor's data cache.

Version 1.1 Errata B 7/1/2010 125

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_CPU_ARCH_PROTOCOL.Enablelnterrupt()

Summary

Enables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL () and RestoreTPL ().

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CPU_ENABLE INTERRUPT) (
IN CONST EFI_CPU_ARCH PROTOCOL *This

)

Parameters
This
The EFI_CPU_ARCH PROTOCOL instance.

Description

This function enables interrupt processing by the processor. If interrupts are enabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE ERROR is returned.

Status Codes Returned

EFI_SUCCESS Interrupts are enabled on the processor.
EFI_DEVICE_ERROR Interrupts could not be enabled on the processor.

126 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

EFI_CPU_ARCH_PROTOCOL.Disablelnterrupt()

Summary

Disables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL () and RestoreTPL ().

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_CPU_DISABLE INTERRUPT) (
IN CONST EFI_CPU_ARCH PROTOCOL *This

)

Parameters
This

The EFI_CPU_ARCH_ PROTOCOL instance.

Description

This function disables interrupt processing by the processor. If interrupts are disabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE ERROR is returned.

Status Codes Returned

EFI_SUCCESS

Interrupts are disabled on the processor.

EFI_DEVICE_ERROR

Interrupts could not be disabled on the processor.

Version 1.1 Errata B

7/1/2010

127

Platform Initialization Specification

VOLUME 2 DXE Core Interface

EFI_CPU_ARCH_PROTOCOL.GetInterruptState()

Summary

Retrieves the processor’s current interrupt state.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_CPU_GET_ INTERRUPT STATE) (
IN CONST EFI_CPU _ARCH PROTOCOL *This,

OUT BOOLEAN
)

Parameters
This

*State

The EFI_CPU_ARCH_ PROTOCOL instance.

State
A pointer to the

processor’s current interrupt state. Set to TRUE if interrupts are

enabled and FALSE if interrupts are disabled.

Description

This function retrieves the processor’s current interrupt state a returns it in State. If interrupts are
currently enabled, then TRUE is returned. If interrupts are currently disabled, then FALSE is

returned. If Stateis NULL,
EFI_SUCCESS is returned.

Status Codes Returned

then EFI_INVALID PARAMETER is returned. Otherwise,

EFI_SUCCESS

The processor’s current interrupt state was returned in State.

EFI_INVALID_PARAMETER

Stateis NULL.

128

7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

EFI_CPU_ARCH_PROTOCOL.Init()

Summary
Generates an INIT on the processor.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CPU_INIT) (
IN CONST EFI_CPU_ARCH PROTOCOL *This,
IN EFI_CPU_INIT TYPE InitType

)

Parameters
This
The EFI_CPU_ARCH_ PROTOCOL instance.
InitType

The type of processor INIT to perform. Type EFI_CPU_INIT TYPE is defined in
“Related Definitions” below.

Description

This function generates an INIT on the processor. If this function succeeds, then the processor will
be reset, and control will not be returned to the caller. If TnitType is not supported by this
processor, or the processor cannot programmatically generate an INIT without help from external
hardware, then EFI_UNSUPPORTED is returned. If an error occurs attempting to generate an INIT,
then EFI_DEVICE ERROR is returned.

Related Definitions
typedef enum ({
EfiCpulnit,
EfiCpuMaxInitType
} EFI_CPU_INIT TYPE;

Status Codes Returned

EFI_SUCCESS The processor INIT was performed. This return code should never be
seen.

EFI_UNSUPPORTED The processor INIT operation specified by TnitType is not
supported by this processor.

EFI_DEVICE_ERROR The processor INIT failed.

Version 1.1 Errata B 7/1/2010 129

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_CPU_ARCH_PROTOCOL.RegisterinterruptHandler()

Summary
Registers a function to be called from the processor interrupt handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_REGISTER INTERRUPT HANDLER) (
IN CONST EFI_CPU_ARCH PROTOCOL *This,
IN EFI_EXCEPTION TYPE InterruptType,
IN EFI_CPU_INTERRUPT HANDLER InterruptHandler

)

Parameters
This
The EFI_CPU_ARCH PROTOCOL instance.
InterruptType

Defines which interrupt or exception to hook. Type EFI_EXCEPTION TYPE and
the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT PROTOCOL of the UEFI 2.0 specification.

InterruptHandler

A pointer to a function of type EFI_CPU_INTERRUPT HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler will be
uninstalled. Type EFI_CPU_INTERRUPT HANDLER is defined in “Related
Definitions” below.

Description
The RegisterInterruptHandler () function registers and enables the handler specified by
InterruptHandler for a processor interrupt or exception type specified by
InterruptType. If InterruptHandler is NULL, then the handler for the processor interrupt
or exception type specified by InterruptType is uninstalled. The installed handler is called
once for each processor interrupt or exception.

If the interrupt handler is successfully installed or uninstalled, then EFI__SUCCESS is returned.

If InterruptHandler is not NULL, and a handler for Tnterrupt Type has already been
installed, then EFI_ALREADY STARTED is returned.

If InterruptHandler is NULL, and a handler for TnterruptType has not been installed,
then EFI_INVALID PARAMETER is returned.

If InterruptType is not supported, then EFI_UNSUPPORTED is returned.

The EFI_CPU_ARCH PROTOCOL implementation of this function must handle saving and
restoring system context to the system context record around calls to the interrupt handler. It must
also perform the necessary steps to return to the context that was interrupted by the interrupt. No
chaining of interrupt handlers is allowed.

130 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Related Definitions
typedef
VOID
(*EFI_CPU_INTERRUPT HANDLER) (
IN EFI_EXCEPTION TYPE InterruptType,
IN EFI_SYSTEM CONTEXT SystemContext
)
InterruptType

Defines the type of interrupt or exception that occurred on the processor. This
parameter is processor architecture specific. The type EFI_EXCEPTION TYPE
and the valid values for this parameter are defined in

EFI_DEBUG_SUPPORT PROTOCOL of the UEFI 2.0 specification.

SystemContext

A pointer to the processor context when the interrupt occurred on the processor. Type
EFI_SYSTEM CONTEXT is defined in the EFI_DEBUG_SUPPORT PROTOCOL of
the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The handler for the processor interrupt was successfully installed or
uninstalled.

EFI_ALREADY_STARTED InterruptHandleris not NULL, and a handler for
InterruptType was previously installed.
EFI_INVALID_PARAMETER | InterruptHandler is NULL, and a handler for
InterruptType was not previously installed.

EFI_UNSUPPORTED The interrupt specified by Tnterrupt Type is not supported.

Version 1.1 Errata B 7/1/2010 131

Platform Initialization Specification VOLUME 2

EFI_CPU_ARCH_PROTOCOL.GetTimerValue()

Summary
Returns a timer value from one of the processor's internal timers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU GET TIMER VALUE) (
IN CONST EFI_CPU ARCH PROTOCOL *This,

IN UINT32 TimerIndex,
OUT UINT64 *TimerValue,
OUT UINT64 *TimerPeriod
)

Parameters
This

The EFI_CPU_ARCH PROTOCOL instance.

TimerIndex

DXE Core Interface

OPTIONAL

Specifies which processor timer is to be returned in TimerValue. This parameter

must be between 0 and NumberOfTimers-1.
TimerValue
Pointer to the returned timer value.

TimerPeriod

A pointer to the amount of time that passes in femtoseconds (1071) for each increment
of TimerValue. If TimerValue does not increment at a predictable rate, then O is
returned. The amount of time that has passed between two calls to
GetTimerValue () can be calculated with the formula (Timervalue2 -
TimerValuel) * TimerPeriod. This parameter is optional and may be NULL.

Description

This function reads the processor timer specified by TimerIndexandreturnsitin TimerValue.
If Timervalue is NULL, then EFI_INVALID PARAMETER is returned. If TimerPeriodis

not NULL, then the amount of time that passes in femtoseconds (10'15) for each increment if
TimerValue isreturned in TimerPeriod. If the timer does not run at a predictable rate, then a
TimerPeriodof0 isreturned. If TimerIndex does not specify a valid timer in this processor,
then EFI_INVALID PARAMETER is returned. The valid range for TimerIndex is
0..NumberOfTimers-1. If the processor does not contain any readable timers, then this function
returns EFI_UNSUPPORTED. If an error occurs attempting to read one of the processor's timers,

then EFI_DEVICE ERROR is returned.

132 7/1/2010

Version 1.1 Errata B

Status Codes Returned

DXE Architectural Protocols

EFI_SUCCESS

The processor timer value specified by Timer Index was returned
in TimerValue.

EFI_INVALID_PARAMETER

TimerValue is NULL.

EFI_INVALID_PARAMETER

TimerIndexis not valid.

EFI_UNSUPPORTED

The processor does not have any readable timers.

EFI_DEVICE_ERROR

An error occurred attempting to read one of the processor's timers.

Version 1.1 Errata B

7/1/2010

133

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

Summary
Attempts to set the attributes for a memory range.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU _SET MEMORY ATTRIBUTES) (
IN CONST EFI_CPU ARCH PROTOCOL *This,

IN EFI PHYSICAL ADDRESS BaseAddress,
IN UINT64 N Length,
IN UINT64 Attributes
)’

Parameters
This

The EFI_CPU_ARCH_ PROTOCOL instance.
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL ADDRESS is defined in the AllocatePages () function
description in the UEFI 2.0 specification.

Length
The size in bytes of the memory region.
Attributes

The bit mask of attributes to set for the memory region. See the UEFI Boot Service
GetMemoryMap () for the set of legal attribute bits.

Description

This function modifies the attributes for the memory region specified by BaseAddress and
Length from their current attributes to the attributes specified by At tributes. If this
modification of attributes succeeds, then EFI__SUCCESS is returned.

If Length s zero, then EFI_INVALID PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by At t ributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range, then
EFI_OUT_OF RESOURCES is returned.

134 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Status Codes Returned

EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Lengthiis zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource
range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Version 1.1 Errata B 7/1/2010 135

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.4 Metronome Architectural Protocol
EFI_METRONOME_ARCH_PROTOCOL

Summary
Used to wait for ticks from a known time source in a platform. This protocol may be used to
implement a simple version of the Stall () Boot Service. This protocol must be produced by a
boot service or runtime DXE driver and may only be consumed by the DXE Foundation and DXE

drivers that produce DXE Architectural Protocols.

GUID
#define EFI_METRONOME ARCH PROTOCOL GUID \

{0x26baccb2,0x6£42,0x11d4, \
Oxbc,0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_METRONOME ARCH PROTOCOL ({

EFI_METRONOME WAIT FOR TICK WaitForTick;
UINT32 TickPeriod;,

} EFI_METRONOME ARCH PROTOCOL;

Parameters
WaitForTick
Waits for a specified number of ticks from a known time source in the platform. See
the WaitForTick () function description. The actual time passed between entry of
this function and the first tick is between 0 and TickPeriod 100 ns units. To
guarantee that at least Ti ckPeriod time has elapsed, wait for two ticks.

TickPeriod

The period of platform's known time source in 100 ns units. This value on any
platform must not exceed 200 ps. The value in this field is a constant that must not be
modified after the Metronome architectural protocol is installed. All consumers must

treat this as a read-only field.

Description
This protocol provides access to a known time source in the platform to the DXE Foundation. The
DXE Foundation uses this known time source to produce DXE Foundation services that require

calibrated delays.

136 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

Summary
Waits for a specified number of ticks from a known time source in a platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_METRONOME WAIT FOR TICK) (
IN CONST EFI_METRONOME ARCH PROTOCOL *This,
IN UINT32 TickNumber

)

Parameters
This
The EFI_METRONOME ARCH PROTOCOL instance.
TickNumber

Number of ticks to wait.

Description

The WaitForTick () function waits for the number of ticks specified by Ti ckNumber from a
known time source in the platform. If TickNumber of ticks are detected, then EFI_SUCCESS is
returned. The actual time passed between entry of this function and the first tick is between 0 and
TickPeriod 100 ns units. If you want to guarantee that at least Ti ck Period time has elapsed,
wait for two ticks. This function waits for a hardware event to determine when a tick occurs. It is
possible for interrupt processing, or exception processing to interrupt the execution of the
WaitForTick () function. Depending on the hardware source for the ticks, it is possible for a tick
to be missed. This function cannot guarantee that ticks will not be missed. If a timeout occurs
waiting for the specified number of ticks, then EFI_TIMEOUT is returned.

Status Codes Returned

EFI_SUCCESS The wait for the number of ticks specified by Ti ckNumber
succeeded.
EFI_TIMEOUT A timeout occurred waiting for the specified number of ticks.

Version 1.1 Errata B 7/1/2010 137

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.5 Monotonic Counter Architectural Protocol

EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL

Summary

Provides the services required to access the system’s monotonic counter. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID

#define EFI_MONOTONIC_ COUNTER_ARCH PROTOCOL_GUID \
{0x1da97072, 0xbddc,0x4b30, \
0x99,0xfl1,0x72,0xal0,0xb5,0x6f,0x£ff,0x2a}

Description

The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetNextHighMonotonicCount () field of the UEFI Runtime Services Table
and the GetNextMonotonicCount () field of the UEFI Boot Services Table. See Services -
Runtime Services and Services - Boot Services for details on these services. After the field of the
UEFI Runtime Services Table and the field of the UEFI Boot Services Table have been initialized,
the driver must install the EFI_MONOTONIC_COUNTER ARCH PROTOCOL_ GUID on anew
handle with a NULL interface pointer. The installation of this protocol informs the DXE Foundation
that the monotonic counter services are now available and that the DXE Foundation must update the
32-bit CRC of the UEFI Runtime Services Table and the 32-bit CRC of the UEFI Boot Services
Table.

138 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

12.6 Real Time Clock Architectural Protocol
EFl_REAL_TIME_CLOCK_ARCH_PROTOCOL

Summary

Provides the services required to access a system’s real time clock hardware. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation.

GUID

#define EFI_REAL TIME CLOCK_ARCH PROTOCOL GUID \
{0x27CFAC87,0x46CC,0x11d4,\
0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1l,0x4D}

Description

The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetTime (), SetTime () , GetWakeupTime (), and SetWakeupTime ()
fields of the UEFI Runtime Services Table. See “Runtime Capabilities” on page 31 for details on
these services. After the four fields of the UEFI Runtime Services Table have been initialized, the
driver must install the EFI _REAL TIME CLOCK_ARCH PROTOCOL_GUID on anew handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that the
real time clock-related services are now available and that the DXE Foundation must update the
32-bit CRC of the UEFI Runtime Services Table.

Version 1.1 Errata B 7/1/2010 139

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.7 Reset Architectural Protocol

EFI_RESET_ARCH_PROTOCOL

Summary

Provides the service required to reset a platform. This protocol must be produced by a runtime DXE
driver and may only be consumed by the DXE Foundation.

GUID

#define EFI_RESET ARCH_PROTOCOL_ GUID \
{0x27CFAC88,0x46CC,0x11d4,\
0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1l,0x4D}

Description

The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the ResetSystem () field of the UEFI Runtime Services Table. See ‘“‘Runtime
Capabilities” on page 31 for details on this service. After this field of the UEFI Runtime Services
Table has been initialized, the driver must install the EFI_RESET ARCH PROTOCOL GUID ona
new handle with a NULL interface pointer. The installation of this protocol informs the DXE
Foundation that the reset system service is now available and that the DXE Foundation must update
the 32-bit CRC of the UEFI Runtime Services Table.

140 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

12.8 Runtime Architectural Protocol

The following topics provide a detailed description of the EFI_RUNTIME ARCH PROTOCOL.
The DXE Foundation contains no runtime code, so all runtime code is contained in DXE
Architectural Protocols. This is due to the fact that runtime code must be callable in physical or
virtual mode. The Runtime Architectural Protocol contains the UEFI runtime services that are
callable only in physical mode. The Runtime Architectural Protocol can be thought of as the runtime
portion of the DXE Foundation.

The Runtime Architectural Protocol contains support for transition of runtime drivers from physical
mode calling to virtual mode calling.

EFI_RUNTIME_ARCH_PROTOCOL

Summary

Allows the runtime functionality of the DXE Foundation to be contained in a separate driver. It also
provides hooks for the DXE Foundation to export information that is needed at runtime. As such,
this protocol allows services to the DXE Foundation to manage runtime drivers and events. This
protocol also implies that the runtime services required to transition to virtual mode,
SetVirtualAddressMap () and ConvertPointer (), have been registered into the UEFI
Runtime Table in the UEFI System Table. This protocol must be produced by a runtime DXE driver
and may only be consumed by the DXE Foundation.

GUID

#define EFI_RUNTIME ARCH PROTOCOL GUID \
{0xb7dfbdel, 0x52f,0x449f,\
0x87,0xbe, 0x98,0x18,0xfc,0x91,0xb7,0x33}

Protocol Interface Structure
typedef struct _EFI_RUNTIME ARCH PROTOCOL {

EFI_LIST ENTRY ImageHead;

EFI_LIST ENTRY EventHead;

UINTN MemoryDescriptorSize;,
UINT32 MemoryDesciptorVersion;
UINTN MemoryMapSize;

EFI_MEMORY DESCRIPTOR *MemoryMapPhysical;
EFI_MEMORY DESCRIPTOR *MemoryMapVirtual;
BOOLEAN VirtualMode,
BOOLEAN AtRuntime,

} EFI_RUNTIME ARCH PROTOCOL;

Version 1.1 Errata B 7/1/2010 141

Platform Initialization Specification VOLUME 2 DXE Core Interface

Parameters
ImageHead

A list of type EFI_RUNTIME IMAGE ENTRY where the DXE Foundation inserts
items into the list and the Runtime AP consumes the data to implement the
SetVirtualAddressMap () call.

EventHead

A list of type EFI_RUNTIME EVENT ENTRY where the DXE Foundation inserts
items into the list and the Runtime AP consumes the data to implement the
SetVirtualAddressMap () call.

MemoryDescriptorSize
Size of a memory descriptor that is returned by GetMemoryMap () . This value is
updated by the DXE Foundation.

MemoryDescriptorVersion
Version of a memory descriptor that is return by Ge tMemoryMap () . This value is
updated by the DXE Foundation.

MemoryMapSize

Size of the memory map in bytes contained in MemoryMapPhysical and
MemoryMapVirtual. This value is updated by the DXE Foundation when memory
for MemoryMapPhysical gets allocated.

MemoryMapPhysical

Pointer to a runtime buffer that contains a copy of the memory map returned via
GetMemoryMap (). The memory must be allocated by the DXE Foundation so that
it is accounted for in the memory map.

MemoryMapVirtual
Pointer to MemoryMapPhysical thatis updated to virtual mode after
SetVirtualAddressMap (). The DXE Foundation updates this value when it

updates MemoryMapPhysical with the same physical address. The Runtime AP is
responsible for converting MemoryMapVirtual to a virtual pointer.

VirtualMode

Boolean that is TRUE if SetVirtualAddressMap () has been called. This field is
set by the Runtime AP. When Vi rtualMode is TRUE MemoryMapVirtual
pointer contains the virtual address of the MemoryMapPhysical.

AtRuntime

Boolean that is TRUE if ExitBootServices () has been called. This field is set
by the Runtime AP.

Related Definitions

//***

// EFI _LIST ENTRY
//***

struct _EFI_LIST ENTRY {

142 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

struct EFI_LIST ENTRY *ForwardLink;
struct _EFI_LIST ENTRY *BackLink;

} EFI_LIST ENTRY;
ForwardLink

A pointer next node in the doubly linked list.

BackLink

A pointer previous node in the doubly linked list.
//***

// EFI_RUNTIME IMAGE ENTRY
[/ xFxxIhkdhkkhkhkkhkkhkhkkhhkhkhhkhhkhhkkhhhkrhkhhkkrhkdkhkkrrkkhkkx

typedef struct ({

VOID *ImageBase;,
UINT64 ImageSize;

VOID *RelocationData;,
EFI_HANDLE Handle;

EFI_LIST ENTRY Link;,
} EFI_RUNTIME_IMAGE ENTRY;

ImageBase
Start of image that has been loaded in memory. It is a pointer to either the DOS header
or PE header of the image. Type EFI_PHYSICAL ADDRESS is defined in the
AllocatePages () UEFI 2.0 specification.

ImageSize
Size in bytes of the image represented by ImageBase.

RelocationData
Information about the fix-ups that were performed on TmageBase when it was
loaded into memory. This information is needed when the virtual mode fix-ups are
reapplied so that data that has been programmatically updated will not be fixed up. If
code updates a global variable the code is responsible for fixing up the variable for
virtual mode.

Handle
The ImageHandle passed into TmageBase when it was loaded. See
EFI_IMAGE ENTRY POINT for the definition of TmageHandle.

Link

Entry for this node in the
EFI_RUNTIME ARCHITECTURE PROTOCOL.ImageHead list.

Version 1.1 Errata B 7/1/2010 143

Platform Initialization Specification VOLUME 2 DXE Core Interface

//***

// EFI_RUNTIME EVENT_ENTRY
[/ FFhxh K Ik dokdkkdkdkkdokdkkkdkdokdkdkdokdkkkdokdkkkdokdkkkdkdkkdokkkkkkkokkk

typedef struct ({

UINT32 Type;

EFI_TPL NotifyTpl;
EFI_EVENT NOTIFY NotifyFunction;
VOID *NotifyContext;
EFI_EVENT *Event;,
EFI_LIST ENTRY Link;,

} EFI_RUNTIME EVENT ENTRY;

Parameters
Type
The same as Type passed into CreateEvent ().
NotifyTpl
The same as NotifyTpl passed into CreateEvent (). Type EFI_TPL is
defined in RaiseTPL () in the UEFI 2.0 specification.
NotifyFunction
The same as NotifyFunction passed into CreateEvent (). Type
EFI_EVENT NOTIFY is defined in the CreateEvent () function description.
NotifyContext
The same as NotifyContext passed into CreateEvent ().
Event
The EFI_EVENT returned by CreateEvent () . Event must be in runtime memory.
Type EFI_EVENT is defined in the CreateEvent () function description.
Link
Entry for this node in the
EFI_RUNTIME ARCHITECTURE PROTOCOL. EventHead list.

Description

The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the SetVirtualAddressMap () and ConvertPointer () fields of the UEFI
Runtime Services Table and the CalculateCrc32 () field of the UEFI Boot Services Table. See
“Runtime Capabilities” on page 31 and “Services - Boot Services” on page 27 for details on these
services. After the two fields of the UEFI Runtime Services Table and the one field of the UEFI
Boot Services Table have been initialized, the driver must install the
EFI_RUNTIME ARCH PROTOCOL_GUID on a new handle with an
EFI_RUNTIME ARCH PROTOCOL interface pointer. The installation of this protocol informs the
DXE Foundation that the virtual memory services and the 32-bit CRC services are now available,
and the DXE Foundation must update the 32-bit CRC of the UEFI Runtime Services Table and the
32-bit CRC of the UEFI Boot Services Table.

144 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

All runtime DXE Foundation services are provided by the EFI_RUNTIME ARCH PROTOCOL.
This includes the support for registering runtime images that must be fixed up again when a
transition is made from physical mode to virtual mode. This protocol also supports all events that are
defined to fire at runtime. This protocol also contains a CRC-32 function that will be used by the
DXE Foundation as a boot service. The EFI_RUNTIME ARCH PROTOCOL needs the CRC-32
function when a transition is made from physical mode to virtual mode and the UEFI System Table
and UEFI Runtime Table are fixed up with virtual pointers.

Version 1.1 Errata B 7/1/2010 145

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.9 Security Architectural Protocol

EFI_SECURITY_ARCH_PROTOCOL

Summary

Abstracts security-specific functions from the DXE Foundation. This protocol must be produced by
a boot service or runtime DXE driver and may only be consumed by the DXE Foundation and any
other DXE drivers that need to validate the authentication of files.

GUID
#define EFI_SECURITY ARCH_ PROTOCOL_ GUID \
{0xA46423E3,0x4617,0x49£1,\
0xB9, 0xFF,0xD1l,0xBF,0xA9,0x11,0x58,0x39}

Protocol Interface Structure
typedef struct EFI_SECURITY ARCH PROTOCOL {
EFI_SECURITY FILE AUTHENTICATION STATE

FileAuthenticationState;
} EFI_SECURITY_ ARCH PROTOCOL;

Parameters
FileAuthenticationState

This service is called upon fault with respect to the authentication of a section of a file.
See the FileAuthenticationState () function description.

Description

The EFI_SECURITY ARCH PROTOCOL is used to abstract platform-specific policy from the
DXE Foundation. This includes locking flash upon failure to authenticate, attestation logging, and
other exception operations.

The driver that produces the EFI_SECURITY ARCH PROTOCOL may also optionally install the
EFI_SECURITY POLICY . PROTOCOL GUID onto a new handle with a NULL interface. The
existence of this GUID in the | protocol database means that the GUIDed Section Extraction Protocol
should authenticate the contents of an Authentication Section. The expectation is that the GUIDed
Section Extraction protocol will look for the existence of the

EFI_SECURITY POLICY PROTOCOL GUID in the protocol database. If it exists, then the
pubhcatlon thereof is taken as an injunction to attempt an authentication of any section wrapped in
an Authentication Section. See the Platform Initialization Specification, Volume 3, for details on
the GUIDed Section Extraction Protocol and Authentication Sections.

Additional GUID Definitions
#define EFI_SECURITY POLICY PROTOCOL GUID \

{0x78E4D245,0xCD4D,0x4a05,0xA2,0xBA,0x47,0x43,0xE8,0x6C,0xFC, 0xA
B}

146 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Version 1.1 Errata B 7/1/2010 147

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()

Summary

The DXE Foundation uses this service to check the authentication status of a file. This allows the
system to execute a platform-specific policy in response the different authentication status values.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SECURITY_FILE_AUTHENTICATION_STATE) (
IN CONST EFI_SECURITY ARCH PROTOCOL *This,

IN UINT32 AuthenticationStatus,
IN CONST EFI DEVI CE_PATH_PROTOCOL *File
)
Parameters
This

The EFI_SECURITY ARCH PROTOCOL instance.
AuthenticationStatus

The authentication type returned from the Section Extraction Protocol. See the
Platform Initialization Specification, Volume 3, for details on this type.

File

A pointer to the device path of the file that is being dispatched. This will optionally be
used for logging. Type EFI_DEVICE PATH PROTOCOL is defined Chapter 8 of
the UEFI 2.0 specification.

Description

The EFI_SECURITY ARCH PROTOCOL (SAP) is used to abstract platform-specific policy from
the DXE Foundation response to an attempt to use a file that returns a given status for the
authentication check from the section extraction protocol.

The possible responses in a given SAP implementation may include locking flash upon failure to
authenticate, attestation logging for all signed drivers, and other exception operations. The File
parameter allows for possible logging within the SAP of the driver.

If File is NULL, then EFI_INVALID PARAMETER is returned.

If the file specified by Fi 1e with an authentication status specified by
AuthenticationStatus is safe for the DXE Foundation to use, then EFI_SUCCESS is
returned.

If the file specified by Fi 1e with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use under any circumstances,
then EFI_ACCESS_DENIED is returned.

If the file specified by Fi 1e with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use right now, but it might be
possible to use it at a future time, then EFI_SECURITY_ VIOLATION is returned.

148 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Status Codes Returned

EFI_SUCCESS The file specified by F'1 1 e did authenticate, and the platform policy
dictates that the DXE Foundation may use F'i 1 e.
EFI_INVALID_PARAMETER Fileis NULL.

EFI_SECURITY_VIOLATION | The file specified by Fi 1 e did not authenticate, and the platform
policy dictates that F'1 1 e should be placed in the untrusted state.
A file may be promoted from the untrusted to the trusted state at a
future time with a call to the Trust () DXE Service.
EFI_ACCESS_DENIED The file specified by F'1 1 e did not authenticate, and the platform
policy dictates that F'i 1 e should not be used for any purpose.

Version 1.1 Errata B 7/1/2010 149

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.10 Timer Architectural Protocol

EFl_TIMER_ARCH_PROTOCOL

Summary

Used to set up a periodic timer interrupt using a platform specific timer, and a processor-specific
interrupt vector. This protocol enables the use of the SetTimer () Boot Service. This protocol
must be produce by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation or DXE drivers that produce other DXE Architectural Protocols.

GUID

#define EFI_TIMER ARCH PROTOCOL GUID \
{0x26baccb3,0x6£42,0x11d4, \
Oxbc,0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_TIMER ARCH PROTOCOL {

EFI_TIMER_REGESTER_HANDLER RegisterHandler;
EFI_TIMER SET TIMER PERIOD SetTimerPeriod;,
EFI_TIMER GET TIMER PERIOD GetTimerPeriod;

EFI_TIMER GENERATE SOFT_INTERRUPT GenerateSoftInterrupt;
} EFI_TIMER ARCH PROTOCOL;

Parameters
RegisterHandler
Registers a handler that will be called each time the timer interrupt fires. See the
RegisterHandler () function description. TimerPeriod defines the minimum

time between timer interrupts, so TimerPeriod will also be the minimum time
between calls to the registered handler.

SetTimerPeriod

Sets the period of the timer interrupt in 100 ns units. See the SetTimerPeriod ()
function description. This function is optional and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will be rounded up to the nearest
supported timer period.

GetTimerPeriod

Retrieves the period of the timer interrupt in 100 ns units. See the
GetTimerPeriod () function description.

GenerateSoftInterrupt

Generates a soft timer interrupt that simulates the firing of the timer interrupt. This
service can be used to invoke the registered handler if the timer interrupt has been
masked for a period of time. See the GenerateSoftInterrupt () function
description.

150 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Description

This protocol provides the services to initialize a periodic timer interrupt and to register a handler
that is called each time the timer interrupt fires. It may also provide a service to adjust the rate of the
periodic timer interrupt. When a timer interrupt occurs, the handler is passed the amount of time that
has passed since the previous timer interrupt.

Version 1.1 Errata B 7/1/2010 151

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary

Registers a handler that is called each timer the timer interrupt fires.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_TIMER REGISTER HANDLER) (
IN CONST EFI_TIMER ARCH PROTOCOL *This,
IN EFI_TIMER NOTIFY NotifyFunction

)

Parameters
This

The EFI_TIMER ARCH PROTOCOL instance.

NotifyFunction

Description

The function to call when a timer interrupt fires. This function executes at
EFI_TPL HIGH LEVEL. The DXE Foundation will register a handler for the timer
interrupt, so it can know how much time has passed. This information is used to
signal timer based events. NULL will unregister the handler. Type

EFI_TIMER NOTIFY is defined in "Related Definitions" below.

This function registers the handler Not i fyFunction so it is called every time the timer interrupt
fires. It also passes the amount of time since the last handler call to the Noti fyFunction. If
NotifyFunction is NULL, then the handler is unregistered. If the handler is registered, then
EFI_SUCCESS is returned. If the processor does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler when a handler is
already registered, then EFI_ALREADY STARTED is returned. If an attempt is made to unregister
a handler when a handler is not registered, then EFI_INVALID PARAMETER is returned. Ifan
error occurs attempting to register the Not i fyFunction with the timer interrupt, then
EFI_DEVICE ERROR is returned.

Related Definitions
typedef

VOID

(EFIAPI *EFI_TIMER NOTIFY) (
IN UINT64 Time

)

152

7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

Paramters
Time
Time since the last timer interrupt in 100 ns units. This will typically be
TimerPeriod, butif a timer interrupt is missed, and the

EFI_TIMER ARCH PROTOCOL driver can detect missed interrupts, then T'ime will
contain the actual amount of time since the last interrupt.

Status Codes Returned

EFI_SUCCESS The timer handler was registered.

EFI_UNSUPPORTED The platform does not support timer interrupts.

EFI_ALREADY_STARTED NotifyFunctionisnot NULL, and a handler is already
registered.

EFI_INVALID_PARAMETER | NotifyFunctionis NULL, and a handler was not previously
registered.

EFI_DEVICE_ERROR The timer handler could not be registered.

Version 1.1 Errata B 7/1/2010 153

Platform Initialization Specification VOLUME 2

EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the rate of the periodic timer interrupt.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_TIMER SET TIMER PERIOD) (
IN CONST EFI_TIMER ARCH PROTOCOL *This,
IN UINT64 TimerPeriod

)

Parameters
This
The EFI_TIMER ARCH PROTOCOL instance.

TimerPeriod

DXE Core Interface

The rate to program the timer interrupt in 100 ns units. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If the timer is programmable,
then the timer period will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriodis set to 0, then the timer interrupts will be

disabled.

Description

This function adjusts the period of timer interrupts to the value specified by TimerPeriod. If the
timer period is updated, then EFI__SUCCESS is returned. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If an error occurs while attempting to update
the timer period, then the timer hardware will be put back in its state prior to this call, and
EFI_DEVICE ERRORisreturned. If TimerPeriodis 0, then the timer interrupt is disabled.
This is not the same as disabling the processor's interrupts. Instead, it must either turn off the timer
hardware, or it must adjust the interrupt controller so that a processor interrupt is not generated when

the timer interrupt fires.

Status Codes Returned

EFI_SUCCESS The timer period was changed.
EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
EFI_DEVICE_ERROR The timer period could not be changed due to a device error.

154 7/1/2010

Version 1.1 Errata B

DXE Architectural Protocols

EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

Summary
Retrieves the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER GET TIMER PERIOD) (
IN CONST EFI_TIMER ARCH PROTOCOL *This,
OUT UINT64 *TimerPeriod

)

Parameters
This
The EFI_TIMER ARCH PROTOCOL instance.
TimerPeriod

A pointer to the timer period to retrieve in 100 ns units. If 0 is returned, then the timer
is currently disabled.

Description

This function retrieves the period of timer interrupts in 100 ns units, returns that value in
TimerPeriod, and returns EFI_SUCCESS. If TimerPeriodis NULL, then
EFI_INVALID PARAMETER isreturned. If a TimerPeriod of 0 is returned, then the timer is
currently disabled.

Status Codes Returned

EFI_SUCCESS The timer period was returned in TimerPeriod.
EFI_INVALID_PARAMETER TimerPeriodis NULL.

Version 1.1 Errata B 7/1/2010 155

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_TIMER_ARCH_PROTOCOL.GenerateSoftinterrupt()

Summary

Generates a soft timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER GENERATE SOFT INTERRUPT) (
IN CONST EFI_TIMER ARCH PROTOCOL *This

)

Parameters
This
The EFI_TIMER ARCH PROTOCOL instance.

Description

This function generates a soft timer interrupt. If the platform does not support soft timer interrupts,
then EFI_UNSUPPORTED is returned. Otherwise, EFI__SUCCESS is returned. If a handler has
been reglstered through the EFI_TIMER ARCH _ PROTOCOL. RegisterHandler () service,
then a soft timer interrupt will be ¢ generated If the timer interrupt is enabled when this service is
called, then the registered handler will be invoked. The registered handler should not be able to
distinguish a hardware-generated timer interrupt from a software-generated timer interrupt.

Status Codes Returned

EFI_SUCCESS The soft timer interrupt was generated.
EFI_UNSUPPORTED The platform does not support the generation of soft timer
interrupts.

156 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

12.11 Variable Architectural Protocol

EFI_VARIABLE_ARCH_PROTOCOL

Summary

Provides the services required to get and set environment variables. This protocol must be produced
by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID

#define EFI_VARIABLE_ARCH_PROTOCOL GUID \
{0xle5668e2,0x8481,0x11d4,\
Oxbc,0xfl,0x0,0x80,0xc7,0x3c,0x88,0x81}

Description

The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetVariable (), GetNextVariableName (), SetVariable () and
QueryVariableInfo () fields of the UEFI Runtime Services Table. See “Runtime
Capabilities” on page 31 for details on these services. After the three fields of the UEFI Runtime
Services Table have been initialized, the driver must install the
EFI_VARIABLE ARCH PROTOCOL_GUID on anew handle with a NULL interface pointer. The
installation of this protocol informs the DXE Foundation that the read-only and the volatile
environment variable related services are now available and that the DXE Foundation must update
the 32-bit CRC of the UEFI Runtime Services Table. The full complement of environment variable
services are not available until both this protocol and
EFI_VARIABLE WRITE ARCH PROTOCOL are installed. DXE drivers that require read-only
access or read/write access to volatile environment variables must have this architectural protocol in
their dependency expressions. DXE drivers that require write access to nonvolatile environment
variables must have the EFI_VARIABLE WRITE ARCH PROTOCOL in their dependency
expressions.

Version 1.1 Errata B 7/1/2010 157

Platform Initialization Specification VOLUME 2 DXE Core Interface

12.12 Variable Write Architectural Protocol
EFI_VARIABLE_WRITE_ARCH_PROTOCOL

Summary

Provides the services required to set nonvolatile environment variables. This protocol must be
produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE WRITE_ARCH PROTOCOL_GUID \
{0x6441£818,0x6362,0x4e4d4,\
0xb5,0x70,0x7d,0xba, 0x31,0xdd,0x24,0x53}

Description

The DXE driver that produces this protocol must be a runtime driver. This driver may update the
SetVariable () ficld of the UEFI Runtime Services Table. See “Runtime Capabilities” on
page 31 for details on this service. After the UEFI Runtime Services Table has been initialized, the
driver must install the EFI_VARIABLE WRITE ARCH PROTOCOL_ GUID onanew handle with
a NULL interface pointer. The installation of this protocol informs the DXE Foundation that the
write services for nonvolatile environment variables are now available and that the DXE Foundation
must update the 32-bit CRC of the UEFI Runtime Services Table. The full complement of
environment variable services are not available until both this protocol and
EFI_VARIABLE ARCH PROTOCOL are installed. DXE drivers that require read-only access or
read/write access to volatile environment variables must have the
EFI_VARIABLE WRITE ARCH PROTOCOL in their dependency expressions. DXE drivers that
require write access to nonvolatile environment variables must have this architectural protocol in
their dependency expressions.

12.13 EFI Capsule Architectural Protocol
EFI_CAPSULE_ARCH_PROTOCOL

Summary
Provides the services for capsule update.

GUID
#define EFI_CAPSULE_ARCH PROTOCOL GUID \
{ 0x5053697e, Ox2cbc, 0x4819, \
0x90, 0xd9, 0x5, 0x80, Oxde, Oxee, 0x57, 0x54 }

Description

The DXE Driver that produces this protocol must be a runtime driver. The driver is responsible for
initializing the CapsuleUpdate () and QueryCapsuleCapabilities () fields of the UEFI
Runtime Services Table. After the two fields of the UEFI Runtime Services Table have been

158 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

initialized, the driver must install the EFI_CAPSULE ARCH PROTOCOL_GUID on a new handle
with a NULL interface pointer. The installation of this | protocol informs the DXE Foundation that
the Capsule related services are now available and that the DXE Foundation must update the 32-bit
CRC of the UEFI Runtime Services Table.

12.14 Watchdog Timer Architectural Protocol

The following topics provide a detailed description of the

EFI_WATCHDOG_ TIMER ARCH PROTOCOL. This protocol is used to implement the Boot
Service SetWatchdogT:Lmer (). The watchdog timer may be implemented in software using
Boot Services, or it may be implemented with specialized hardware. The protocol provides a service
to register a handler when the watchdog timer fires and a service to set the amount of time to wait
before the watchdog timer is fired.

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL

Summary
Used to program the watchdog timer and optionally register a handler when the watchdog timer
fires. This protocol must be produced by a boot service or runtime DXE driver and may be
consumed only by the DXE Foundation or DXE drivers that produce other DXE Architectural
Protocols. If a platform wishes to perform a platform-specific action when the watchdog timer
expires, then the DXE driver that contains the implementation of the EFI_BDS ARCH PROTOCOL
should use this protocol's RegisterHandler () service.

GUID

#idefine EFI WATCHDOG TIMER . ARCH PROTOCOL GUID \
{0x665E3FF5 0x4 6CC 0x11d4 \
0x9A,0x38,0x00,0x90,0x27,0x3F,0xCl,0x4D}

Protocol Interface Structure

typedef struct _EFI_WATCHDOG_TIMER ARCH PROTOCOL {
EFI_WATCHDOG ' TIMER REGISTER HANDLER ReglsterHandler,
EFI_WATCHDOG_TIMER SET TIMER PERIOD SetTimerPeriod;
EFI_WATCHDOG_TIMER GET TIMER PERIOD GetTimerPeriod;

} EFI_WATCHDOG_TIMER ARCH PROTOCOL;

Parameters
RegisterHandler
Registers a handler that is invoked when the watchdog timer fires. See the
RegisterHandler () function description.
SetTimerPeriod

Sets the amount of time in 100 ns units to wait before the watchdog timer is fired. See
the SetTimerPeriod () function description. If this function is supported, then
the watchdog timer period will be rounded up to the nearest supported watchdog timer
period.

Version 1.1 Errata B 7/1/2010 159

Platform Initialization Specification VOLUME 2 DXE Core Interface

GetTimerPeriod

Retrieves the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. See the GetTimerPeriod () function description.

Description
This protocol provides the services required to implement the Boot Service
SetWatchdogTimer (). It provides a service to set the amount of time to wait before firing the
watchdog timer, and it also provides a service to register a handler that is invoked when the
watchdog timer fires. This protocol can implement the watchdog timer by using the event and timer
Boot Services, or it can make use of custom hardware. When the watchdog timer fires, control will
be passed to a handler if one has been registered. If no handler has been registered, or the registered
handler returns, then the system will be reset by calling the Runtime Service ResetSystem().

160 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary
Registers a handler that is to be invoked when the watchdog timer fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG TIMER REGISTER HANDLER) (
IN CONST EFI_WATCHDOG TIMER ARCH PROTOCOL *This,
IN EFI_WATCHDOG TIMER NOTIFY NotifyFunction

)

Parameters
This
The EFI_WATCHDOG_TIMER ARCH PROTOCOL instance.
NotifyFunction

The function to call when the watchdog timer fires. If this is NULL, then the handler
will be unregistered. Type EFI_WATCHDOG_TIMER NOTIFY is defined in
"Related Definitions" below.

Description

This function registers a handler that is to be invoked when the watchdog timer fires. By default,
EFI_WATCHDOG_ TIMER ARCH PROTOCOL will call the Runtime Service ResetSystem()
when the watchdog timer fires. If a NotifyFunction is registered, then NotifyFunction
will be called before the Runtime Service ResetSystem () is called. If NotifyFunctionis
NULL, then the watchdog handler is unregistered. If a watchdog handler is registered, then
EFI_SUCCESS is returned. If an attempt is made to register a handler when a handler is already
registered, then EFI_ALREADY STARTED is returned. If an attempt is made to uninstall a handler
when a handler is not installed, then return EFI_INVALID PARAMETER.

Related Definitions
typedef
VOID
(EFIAPI *EFI_WATCHDOG_TIMER NOTIFY) (
IN UINT64 Time
);
Time
The time in 100 ns units that has passed since the watchdog timer was armed. For the
notify function to be called, this must be greater than TimerPeriod.

Status Codes Returned

| EFI_SUCCESS ‘ The watchdog timer handler was registered or unregistered.

Version 1.1 Errata B 7/1/2010 161

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_ALREADY_STARTED NotifyFunctionis not NULL, and a handler is already
registered.

EFI_INVALID_PARAMETER | NotifyFunctionis NULL, and a handler was not previously
registered.

162 7/1/2010 Version 1.1 Errata B

DXE Architectural Protocols

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the amount of time in the future to fire the watchdog timer.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_WATCHDOG_TIMER_SET_IIMER;PERIOD) (
IN CONST EFI_WATCHDOG_TIMER ARCH PROTOCOL *This,
IN UINT64 TimerPeriod
)

Parameters
This
The EFI_WATCHDOG TIMER ARCH PROTOCOL instance.
TimerPeriod

The amount of time in 100 ns units to wait before the watchdog timer is fired. If
TimerPeriod is zero, then the watchdog timer is disabled.

Description

This function sets the amount of time to wait before firing the watchdog timer to TimerPeriod
100 ns units. If TimerPeriod is zero, then the watchdog timer is disabled.

Status Codes Returned

EFI_SUCCESS The watchdog timer has been programmed to fire in T1ime 100 ns
units.
EFI_DEVICE_ERROR A watchdog timer could not be programmed due to a device error.

Version 1.1 Errata B 7/1/2010 163

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

164

Summary

Retrieves the amount of time in 100 ns units that the system will wait before firing the watchdog
timer.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_GET_T IMER PERIOD)
IN CONST EFI_WATCHDOG_ TIMER ARCH PROTOCOL *This,
OUT UINT64 *TimerPeriod

)

Parameters
This
The EFI_WATCHDOG TIMER ARCH PROTOCOL instance.
TimerPeriod

A pointer to the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. If TimerPeriod of zero is returned, then the watchdog
timer is disabled.

Description

This function retrieves the amount of time the system will wait before firing the watchdog timer.
This period is returned in TimerPeriod, and EFI_SUCCESS is returned. If TimerPeriodis
NULL, then EFI_INVALID PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The amount of time that the system will wait before firing the watchdog
timer was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriodis NULL.

7/1/2010 Version 1.1 Errata B

13
DXE Boot Services Protocol

13.1 Overview

This chapter defines the services required for the Multiprocessor (MP) Services Protocol of Platform
Initialization Specification.

This specification does the following:

» eDescribes the basic components of the MP Services Protocol

» eProvides code definitions for the MP Services Protocol and the MP-related type definitions.

13.2 Conventions and Abbreviations

The following terms are used throughout this specification.
AP

Application processor. All other processors in a computer system other than the boot-strap
processor are called application processors.

BSP

Boot-strap processor. A processor in an MP platform that is chosen to execute the modules
that are necessary for booting the system. It is not necessary that the same processor that was
selected earlier as a BSP shall remain a BSP throughout an entire boot session.

DXE

Driver Execute Environment. Environment to support running modular code in the form of
EFI drivers; common to all platforms; typically in C language.

EFI

Extensible Firmware Interface — the specification containing interface definitions for
firmware. This includes both interfaces used by the operating system for booting as well as
interfaces that are used for internal construction of firmware.

MP

Multiprocessor.

13.3 MP Services Protocol Overview

The MP Services Protocol provides a generalized way of performing following tasks:

* eRetrieving information of multi-processor environment and MP-related status of specific
processors.

» eDispatching user-provided function to APs.

Version 1.1 Errata B 7/1/2010 165

Platform Initialization Specification VOLUME 2 DXE Core Interface

e eMaintain MP-related processor status.
The MP Services Protocol must be produced on any system with more than one logical processor.
The Protocol is available only during boot time.

MP Services Protocol is hardware-independent. Most of the logic of this protocol is architecturally
neutral. It abstracts the multi-processor environment and status of processors, and provides
interfaces to retrieve information, maintain, and dispatch.

MP Services Protocol may be consumed by ACPI module. The ACPI module may use this protocol
to retrieve data that are needed for an MP platform and report them to OS.

MP Services Protocol may also be used to program and configure processors, such as MTRR
synchronization for memory space attributes setting in DXE Services.

MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot by taking
advantage of the processing capabilities of the APs, for example, using APs to help test system
memory in parallel with other device initialization.

Diagnostics applications may also use this protocol for multi-processor.

13.4 MP Services Protocol

This section contains the basic definitions of the MP Services Protocol.
EFI_MP_SERVICES PROTOCOL

Summary

When installed, the MP Services Protocol produces a collection of services that are needed for MP
management.

GUID

#define EFI_MP_ SERVICES PROTOCOL_GUID \
{0x3£fdda605,0xa76e,0x4£f46, {0Oxad,0x29,0x12,0x£f4,0x53,0x1b,
0x3d,0x08}}

Protocol Interface Structure

typedef struct _EFI_MP SERVICES PROTOCOL {
EFI_MP_ SERVICES GET NUMBER OF PROCESSORS GetNumberOfProcessors;

EFI_MP_ SERVICES GET_PROCESSOR_INFO GetProcessorInfo;
EFI MP SERVICES_ STARTUP_ALL APS StartupAllAPs;
EFI MP SERVICES_ STARTUP_ THIS AP StartupThisAP;
EFI MP SERVICES SWITCH_ BSP SwitchBSP;
EFI_MP SERVICES ENABLEDISABLEAP EnableDisableAP;
EFI_MP_ SERVICES WHOAMI WhoAmI ;

} EFI_MP_SERVICES_PROTOCOL;

166 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

Parameters
GetNumberOfProcessors

Gets the number of logical processors and the number of enabled logical processors in
the system.

GetProcessorInfo

Gets detailed information on the requested processor at the instant this call is made.
StartupAllAPs

Starts up all the enabled APs in the system to run the function provided by the caller.

StartupThisAP
Starts up the requested AP to run the function provided by the caller.
SwitchBSP

Switches the requested AP to be the BSP from that point onward. This service
changes the BSP for all purposes.

EnableDisableAP
Enables and disables the given AP from that point onward.
WhoAmI

Gets the handle number of the caller processor.

Description

The MP Services Protocol must be produced on any system with more than one logical processor.
Before the UEFI event EFI_EVENT LEGACY BOOT_GUID or

EFI_EVENT GROUP_EXIT BOOT_SERVICES is s1gnaled the module that produces this
protocol is requ1red to place all APs into an idle state whenever the APs are disabled or the APs are
not executing code as requested through the StartupAllAPs () or StartupThisAP ()
services. The idle state of an AP is implementation dependent before the UEFI event
EFI_EVENT LEGACY BOOT_GUIDor EFI_EVENT GROUP_EXIT BOOT_ SERVICES is
51gnaled

After the UEFI event EFI_EVENT LEGACY BOOT_ GUID or

EFI_EVENT GROUP_EXIT BOOT_ SERVICES is s1gnaled all the APs must be placed in the OS
compat1ble CPU state as defined by the UEFI Specification. Implementations of this protocol may
use the UEFI event EFI_EVENT LEGACY BOOT_ GUID or

EFI_EVENT GROUP_EXIT BOOT_SERVICES to force APs into the OS compatible state as
defined by the UEFI Specification. Modules that use this protocol must guarantee that all non-
blocking mode requests on all APs have been completed before the UEFI event

EFI_EVENT LEGACY BOOT_GUIDor EFI_EVENT GROUP_EXIT BOOT_ SERVICES is
51gnaled Since the order that event notification functions in the same event group are executed is
not deterministic, an event of type EFI_EVENT LEGACY BOOT_GUID or

EFI_EVENT GROUP_EXIT BOOT SERVICES can not be used to guarantee that APs have
completed their non- blockmg ‘mode requests.

Version 1.1 Errata B 7/1/2010 167

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors()

Summary

This service retrieves the number of logical processor in the platform and the number of those
logical processors that are currently enabled. This service may only be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS) (
IN EFI_MP_SERVICES PROTOCOL *This,

OUT UINTN *NumberOf Processors,
OUT UINTN *NumberOfEnabledProcessors
)’
Parameters
This

A pointer to the EFI_MP_SERVICES PROTOCOL instance.
NumberOfProcessors

Pointer to the total number of logical processors in the system, including the BSP and
all enabled and disabled APs.

NumberOfEnabledProcessors

Pointer to the number of logical processors in the platform including the BSP that are
currently enabled.

Description
This function is used to retrieve the following information:
e The number of logical processors that are present in the system
* The number of enabled logical processors in the system at the instant this call is made.

Since MP Service Protocol provides services to enable and disable processors dynamically, the
number of enabled logical processors may vary during the course of a boot session.

This service may only be called from the BSP.

If this service is called from an AP, then EFI_DEVICE ERROR is returned. If
NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
EFI_INVALID PARAMETER isreturned. Otherwise, the total number of processors is returned
in NumberOfProcessors, the number of currently enabled processor is returned in
NumberOfEnabledProcessors,and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The number of logical processors and enabled logical
processors was retrieved.
EFI_DEVICE_ERROR The calling processor is an AP.

168 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

EFI_INVALID_PARAMETER | NumberOfProcessors is NULL
EFI_INVALID_PARAMETER | NumberOfEnabledProcessors is NULL

Version 1.1 Errata B 7/1/2010 169

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_MP_SERVICES_PROTOCOL.GetProcessorinfo()

Summary

Gets detailed MP-related information on the requested processor at the instant this call is made. This
service may only be called from the BSP.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MP SERVICES_ GET PROCESSOR _ INFO) (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
)i

Parameters
This
A pointer to the EFI_MP_SERVICES_ PROTOCOL instance.
ProcessorNumber

The handle number of processor. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP SERVICES PROTOCOL.GetNumberOfProcessors().

ProcessorInfoBuffer

A pointer to the buffer where information for the requested processor is deposited.
The buffer is allocated by the caller. Type EFI_PROCESSOR_INFORMATION is
defined in "Related Definitions" below.

Description

This service retrieves detailed MP-related information about any processor on the platform. Note the
following:

» The processor information may change during the course of a boot session.
* The data of information presented here is entirely MP related.

Information regarding the number of caches and their sizes, frequency of operation, slot numbers is
all considered platform-related information and is not provided by this service.

This service may only be called from the BSP.

Related Definitions

//***

// EFI_PROCESSOR_INFORMATION
[/ *xrkkkkkkxkkkkhkkhhhkhkhrkhhkhhkhhhhkhkhkhkhhhhhhkhkhkhxkhxkx

typedef struct {
UINT64 ProcessorId;

170 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

UINT32 StatusFlag;,
EFI_CPU_PHYSICAL LOCATION Location;
} EFI_PROCESSOR_INFORMATION;

ProcessorId
The unique processor ID determined by system hardware.

For IA32 and X64, the processor ID is the same as the Local APIC ID. Only the lower
8 bits are used, and higher bits are reserved.

For IPF, the lower 16 bits contains id/eid, and higher bits are reserved.

StatusFlag
Flags indicating if the processor is BSP or AP, if the processor is enabled or disabled,
and if the processor is healthy. The bit format is defined below.

Location

The physical location of the processor, including the physical package number that
identifies the cartridge, the physical core number within package, and logical thread
number within core. Type EFI_PHYSICAL LOCATION is defined below.

//***

// StatusFlag Bits Definition
//***

#define PROCESSOR AS BSP BIT 0x00000001
#define PROCESSOR ENABLED BIT 0x00000002
#define PROCESSOR HEALTH STATUS BIT 0x00000004

PROCESSOR_AS_BSP_BIT

This bit indicates whether the processor is playing the role of BSP. If the bit is 1, then
the processor is BSP. Otherwise, it is AP.

PROCESSOR_ENABLED BIT

This bit indicates whether the processor is enabled. If the bit is 1, then the processor is
enabled. Otherwise, it is disabled.

PROCESSOR_HEALTH STATUS BIT

This bit indicates whether the processor is healthy. If the bit is 1, then the processor is
healthy. Otherwise, some fault has been detected for the processor.

Bits 3..31 are reserved and must be 0. The following table shows all the possible combinations of
the StatusFlag bits:

Table 31. StatusFlag bits

BSP ENABLED | HEALTH | Description
0 0 Unhealthy Disabled AP.
0 1 Healthy Disabled AP.
1 0 Unhealthy Enabled AP.

Version 1.1 Errata B 7/1/2010 171

Platform Initialization Specification

172

VOLUME 2

DXE Core Interface

Healthy Enabled AP.

Invalid. The BSP can never be in the disabled state.

Invalid. The BSP can never be in the disabled state.

Unhealthy Enabled BSP.

=R =R a0
== OO -
S| O | O =

Healthy Enabled BSP.

//***

// EFI_CPU_PHYSICAL LOCATION
[/ % % % 3 ok e ke ok ok e ok ok ek ok ok e ok ok ok o ok

typedef struct {

UINT32 Package;

UINT32 Core;

UINT32 Thread;

} EFI_CPU_PHYSICAL LOCATION;

Package

Zero-based physical package number that identifies the cartridge of the processor.

Core

Zero-based physical core number within package of the processor.

Thread

Zero-based logical thread number within core of the processor.

Status Codes Returned

EFI_SUCCESS

Processor information was returned.

EFI_DEVICE_ERROR

The calling processor is an AP.

EFI_INVALID_PARAMETER

ProcessorInfoBufferis NULL.

EFI_NOT_FOUND

The processor with the handle specified by

ProcessorNumber does not exist in the platform.

7/1/2010

Version 1.1 Errata B

DXE Boot Services Protocol

EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()

Summary

This service executes a caller provided function on all enabled APs. APs can run either
simultaneously or one at a time in sequence. This service supports both blocking and non-blocking
requests. The non-blocking requests use EFI events so the BSP can detect when the APs have
finished. See "Non-blocking Execution Support" below for details. This service may only be called
from the BSP.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_MP SERVICES_STARTUP ALL APS) (

IN EFI_MP_SERVICES PROTOCOL *This,
IN EFI_AP PROCEDURE Procedure,
IN BOOLEAN SingleThread,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroSeconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT UINTN **FailedCpulList OPTIONAL
)i
Parameters
This
A pointer to the EFI_MP_SERVICES_ PROTOCOL instance.
Procedure
A pointer to the function to be run on enabled APs of the system. Type
EFI_AP PROCEDURE is defined in “Related Definitions” below.
SingleThread
If TRUE, then all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number.
If FALSE, then all the enabled APs execute the function specified by Procedure
simultaneously.
wWaitEvent

The event created by the caller with CreateEvent () service.

Ifitis NULL, then execute in blocking mode. BSP waits until all APs finish or
TimeoutInMicroSeconds expires.

If it’s not NULL, then execute in non-blocking mode. BSP requests the function
specified by Procedure to be started on all the enabled APs, and go on executing
immediately. If all return from Procedure or Timeout InMicroSeconds
expires, this event is signaled. The BSP can use the CheckEvent () or
WaitForEvent () services to check the state of event.

Version 1.1 Errata B 7/1/2010 173

Platform Initialization Specification VOLUME 2 DXE Core Interface

174

Type EFI_EVENT is defined in CreateEvent () in the Unified Extensible
Firmware Interface Specification (Version 2.0).

TimeoutInMicroseconds

Indicates the time limit in microseconds for APs to return from Procedure, either
for blocking or non-blocking mode. Zero means infinity.

If the timeout expires before all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled APs are available for next function
assigned by EFI_MP_SERVICES PROTOCOL.StartupAllAPs () or
EFI_MP SERVICES PROTOCOL.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

If the timeout expires in non-blocking mode, WaitEvent is signaled with
SignalEvent().

ProcedureArgument

The parameter passed into Procedure for all APs.
FailedCpuList

If NULL, this parameter is ignored.

Otherwise, if all APs finish successfully, then its content is set to NULL. If not all APs
finish before timeout expires, then its content is set to address of the buffer holding
handle numbers of the failed APs. The buffer is allocated by MP Service Protocol, and
it’s the caller’s responsibility to free the buffer with FreePool () service.

In blocking mode, it is ready for consumption when the call returns. In non-blocking
mode, it is ready when waitEvent is signaled.

The list of failed CPU is terminated by END_OF CPU_LIST. It is defined in
“Related Definitions” below.

Description

This function is used to dispatch all the enabled APs to the function specified by Procedure.

If any enabled AP is busy, then EFI_NOT_ READY is returned immediately and Procedure is
not started on any AP.

If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute
the function specified by Procedure simultaneously.

If waitEvent is NULL, execution is in blocking mode. The BSP waits until all APs finish or
TimeoutInMicroSecs expires. Otherwise, execution is in non-blocking mode, and the BSP
returns from this service without waiting for APs. If a non-blocking mode is requested after the
UEFI Event EFI_EVENT GROUP_READY_ TO_BOOT is signaled, then EFI_UNSUPPORTED
must be returned.

If the timeout specified by TimeoutInMicroseconds expires before all APs return from
Procedure, then Procedure on the failed APs is terminated. All enabled APs are always
available for further calls to EFI_MP SERVICES_ PROTOCOL.StartupAllAPs ()and
EFI_MP SERVICES PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL,
its content points to the list of processor handle numbers in which Procedure was terminated.

7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

This service may only be called from the BSP.

Note: It is the responsibility of the consumer of the
EFI MP SERVICES PROTOCOL.StartupAllAPs () fo make sure that the nature of the
code thatis executed on the BSP and the dispatched APs is well controlled. The MP Services
Protocol does not guarantee that the Procedure function is MP-safe. Hence, the tasks that can
be run in parallel are limited to certain independent tasks and well-controlled exclusive code. EFI
services and protocols may not be called by APs unless otherwise specified.

Related Definitions
#define END_OF CPU_LIST OXfEffEffEf

typedef

VOID

(EFIAPI *EFI_AP PROCEDURE) (
IN VOID *ProcedureArgument

)

ProcedureArgument

Pointer to the procedure’s argument

Non-Blocking Execution Support
The following usage guidelines must be followed for non-blocking execution support.

In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroSeconds
expires.

In non-blocking execution mode, BSP is freed to return to the caller and then proceed to the next
task without having to wait for APs. The following sequence needs to occur in a non-blocking
execution mode:

1. The caller that intends to use this MP Services Protocol in non-blocking mode creates
WaitEvent by calling the EFl CreateEvent () service.

The caller invokes EFI_MP SERVICES PROTOCOL.StartupAllAPs (). If the parameter
WaitEvent is not NULL, then StartupAllAPs () executes in non-blocking mode. It requests
the function specified by Procedure to be started on all the enabled APs, and releases the BSP to
continue with other tasks.

2. The caller can use the CheckEvent () and WaitForEvent () services to check the state of
the WaitEvent created in step 1.

3. When the APs complete their task or TimeoutInMicroSecondss expires, the MP Service
signals WaitEvent by calling the EFl SignalEvent () function. If FailedCpulList is
not NULL, its content is available when WaitEvent is signaled. If all APs returned from
Procedure prior to the timeout, then FailedCpuListissetto NULL. Ifnotall APs return
from Procedure before the timeout, then FailedCpuList is filled in with the list of the
failed APs. The buffer is allocated by MP Service Protocol using AllocatePool (). Itisthe
caller’s responsibility to free the buffer with FreePool () service.

4. This invocation of SignalEvent () function informs the caller that invoked
EFI_MP SERVICES PROTOCOL.StartupAllAPs () that either all the APs completed

Version 1.1 Errata B 7/1/2010 175

Platform Initialization Specification VOLUME 2 DXE Core Interface

the specified task or a timeout occurred. The contents of FailedCpuList can be examined to
determine which APs did not complete the specified task prior to the timeout.

Status Codes Returned

EFI_SUCCESS In blocking mode, all APs have finished before the timeout
expired.

EFI_SUCCESS In non-blocking mode, function has been dispatched to all
enabled APs.

EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event
EFI_EVENT GROUP_READY TO_BOOT was signaled.

EFI_DEVICE_ERROR Caller processor is AP.

EFI_NOT_STARTED No enabled APs exist in the system.

EFI_NOT_READY All enabled APs are busy.

EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs
have finished.

EFI_INVALID_PARAMETER | Procedure is NULL.

176 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

EFI_MP_SERVICES_PROTOCOL.StartupThisAP()

Summary

This service lets the caller get one enabled AP to execute a caller-provided function. The caller can
request the BSP to either wait for the completion of the AP or just proceed with the next task by
using the EFI event mechanism. See the "Non-blocking Execution Support" section in

EFI_MP SERVICES PROTOCOL.StartupAllAPs () for more details. This service may only
be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP SERVICES_STARTUP THIS AP) (
IN EFI_MP_SERVICES PROTOCOL *This,

IN EFI_AP_PROCEDURE *Procedure,
IN UINTN ProcessorNumber,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT BOOLEAN *Finished OPTIONAL
)
Parameters
This

A pointer to the EFI_MP_SERVICES PROTOCOL instance.
Procedure

A pointer to the function to be run on the designated AP. Type

EFI_AP_PROCEDURE is defined in

EFI_MP_SERVICES_PROTOCOL.StartupAllAPs ().
ProcessorNumber

The handle number of the AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_ SERVICES_ PROTOCOL.GetNumberOfProcessors().

WaitEvent
The event created by the caller with CreateEvent () service.

If it is NULL, then execute in blocking mode. BSP waits until this AP finishes or
TimeoutInMicroSeconds expires.

If it’s not NULL, then execute in non-blocking mode. BSP requests the function
specified by Procedure to be started on the AP, and go on executing immediately.
If this AP finishes or Timeout InMicroSeconds expires, this event is signaled.
BSP can use the CheckEvent () and WaitForEvent () services to check the
state of event.

Version 1.1 Errata B 7/1/2010 177

Platform Initialization Specification VOLUME 2 DXE Core Interface

Type EFI_EVENT is defined in CreateEvent () in the Unified Extensible
Firmware Interface Specification (Version 2.0)

TimeoutInMicrosecsond

Indicates the time limit in microseconds for this AP to finish the function, either for
blocking or non-blocking mode. Zero means infinity.

If the timeout expires before this AP returns from Procedure, then Procedure on the
AP is terminated. The AP is available for subsequent calls to

EFI_MP SERVICES PROTOCOL.StartupAllAPs () and

EFI_MP SERVICES PROTOCOL.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

If the timeout expires in non-blocking mode, WaitEvent is signaled with
SignalEvent().

ProcedureArgument

The parameter passed into Procedure on the specified AP.
Finished

If NULL, this parameter is ignored.

In blocking mode, this parameter is ignored.

In non-blocking mode, if AP returns from Procedure before the timeout expires, its
content is set to TRUE. Otherwise, the value is set to FALSE. The caller can
determine if the AP returned from Procedure by evaluating this value.

Description

This function is used to dispatch one enabled AP to the function specified by Procedure passing
in the argument specified by ProcedureArgument.

If waitEvent is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. BSP
proceeds to the next task without waiting for the AP. If a non-blocking mode is requested after the
UEFI Event EFI_EVENT GROUP_READY TO_BOOT is signaled, then EFI_UNSUPPORTED
must be returned.

If the timeout specified by Timeout InMicroseconds expires before the AP returns from
Procedure, then execution of Procedure by the AP is terminated. The AP is available for
subsequent calls to EFI_MP_SERVICES PROTOCOL.StartupAllAPs () and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

This service may only be called from the BSP.

Status Codes Returned

EFI_SUCCESS In blocking mode, specified AP finished before the timeout
expires.

EFI_SUCCESS In non-blocking mode, the function has been dispatched to
specified AP.

178 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event
EFI_EVENT GROUP_READY TO_BOOT was signaled.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP
has finished.

EFI_NOT_READY The specified AP is busy.

EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.

EFI_INVALID_PARAMETER | ProcessorNumber specifies the BSP or disabled AP.

EFI_INVALID_PARAMETER | procedure is NULL.

Version 1.1 Errata B 7/1/2010 179

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

Summary

This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. This service may only be called from the current BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_SWITCH_BSP) (
IN EFI_MP SERVICES PROTOCOL *This,

IN UINTN ProcessorNumber,
IN BOOLEAN EnableOl1dBSP
)/
Parameters
This

A pointer to the EFI_MP_SERVICES PROTOCOL instance.
ProcessorNumber

The handle number of AP that is to become the new BSP. The range is from 0 to the
total number of logical processors minus 1. The total number of logical processors can
be retrieved by

EFI_MP SERVICES PROTOCOL.GetNumberOfProcessors().

EnableOl1dBSP

If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be
disabled.

Description

This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue
seamlessly from where the old one left off. This service may not be supported after the UEFI Event
EFI_EVENT GROUP_READY TO_ BOOT is signaled.

If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must
be returned.

This call can only be performed by the current BSP.

Status Codes Returned

EFI_SUCCESS BSP successfully switched.

EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service
returning.

EFI_UNSUPPORTED Switching the BSP is not supported.

EFI_SUCCESS The calling processor is an AP.

180 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.

EFI_INVALID_PARAMETER | ProcessorNumber specifies the current BSP or a disabled
AP.
EFI_NOT_READY The specified AP is busy.

Version 1.1 Errata B 7/1/2010 181

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()

Summary
This service lets the caller enable or disable an AP from this point onward. This service may only be
called from the BSP.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_MP SERVICES_ ENABLEDISABLEAP) (
IN EFI_MP_SERVICES_PROTOCOL *This,

IN UINTN ProcessorNumber,
IN BOOLEAN EnableAP,
IN UINT32 *HealthFlag OPTIONAL
);
Parameters
This

A pointer to the EFI_MP_SERVICES_ PROTOCOL instance.

ProcessorNumber

The handle number of AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP SERVICES PROTOCOL.GetNumberOfProcessors().

EnableAP
Specifies the new state for the processor specified by ProcessorNumber. TRUE
for enabled, FALSE for disabled.

HealthFlag

If not NULL, a pointer to a value that specifies the new health status of the AP. This
flag corresponds to StatusFlag defined in

EFI_MP SERVICES_ PROTOCOL.GetProcessorInfo (). Only the
PROCESSOR_HEALTH STATUS_ BIT isused. All other bits are ignored.

If it is NULL, this parameter is ignored.

Description
This service allows the caller enable or disable an AP from this point onward. The caller can
optionally specify the health status of the AP by Health. Ifan AP is being disabled, then the state
of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must
guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that
is compatible with an MP operating system. This service may not be supported after the UEFI
Event EFI_EVENT GROUP_READY TO BOOT is signaled.

If the enable or disable AP operation cannot be completed prior to the return from this service, then
EFI_UNSUPPORTED must be returned.

This service may only be called from the BSP.

182 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

Status Codes Returned

EFI_SUCCESS The specified AP successfully enabled or disabled.

EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this
service returning.

EFI_UNSUPPORTED Enabling or disabling an AP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.

EFI_INVALID_PARAMETER | ProcessorNumber specifies the BSP.

Version 1.1 Errata B 7/1/2010 183

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_MP_SERVICES_PROTOCOL.WhoAml()

Summary

This return the handle number for the calling processor. This service may be called from the BSP
and APs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP SERVICES_ WHOAMI) (
IN EFI_MP_SERVICES PROTOCOL *This,
OUT UINTN *ProcessorNumber
);

Parameters
This
A pointer to the EFI_MP_SERVICES_ PROTOCOL instance.
ProcessorNumber

Pointer to the handle number of AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP SERVICES PROTOCOL.GetNumberOfProcessors().

Description

This service returns the processor handle number for the calling processor. The returned value is in
the range from 0 to the total number of logical processors minus 1. The total number of logical
processors can be retrieved with

EFI_MP SERVICES PROTOCOL.GetNumberOfProcessors (). This service may be called
from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID PARAMETER is
returned. Otherwise, the current processors handle number is returned in ProcessorNumber,
and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The current processor handle number was returned in
ProcessorNumber.

EFI_INVALID_PARAMETER | ProcessorNumber is NULL.

184 7/1/2010 Version 1.1 Errata B

DXE Boot Services Protocol

Version 1.1 Errata B 7/1/2010 185

Platform Initialization Specification VOLUME 2 DXE Core Interface

186 7/1/2010 Version 1.1 Errata B

14
DXE Runtime Protocols

14.1 Introduction

In addition to the architectural protocols listed earlier, there is also a runtime protocol. Specifically,
the ability to report status codes is runtime-callable service that allows for emitting status and
progress information. It was formerly part of the 0.9 DXE-CIS runtime table, but in consideration of
UEFI 2.0 compatibility, this capability has become a separate runtime protocol.

14.2 Status Code Runtime Protocol
EFI_STATUS_CODE_ PROTOCOL

Summary
Provides the service required to report a status code to the platform firmware. This protocol must be
produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_STATUS_ CODE_RUNTIME PROTOCOL_GUID \

{ 0xd2b2b828, 0x826, 0x48a7, 0xb3, 0Oxdf, 0x98, 0x3c, 0x0, 0x60,
0x24, 0xfO0}

Protocol Interface Structure
typedef struct _EFI_STATUS CODE_ PROTOCOL {
EFI_REPORT_ STATUS_ CODE ReportStatusCode,
} EFI_STATUS_CODE_PROTOCOL;

Parameters
ReportStatusCode

Emit a status code.

Description

The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
providing the ReportStatusCode () service with the EFI_STATUS_CODE_PROTOCOL.

Version 1.1 Errata B 7/1/2010 187

Platform Initialization Specification VOLUME 2 DXE Core Interface

EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()

Summary
Provides an interface that a software module can call to report a status code.

Prototype

EFI_STATUS

(EFIAPI *EFI_REPORT STATUS_CODE) (
IN EFI_STATUS_CODE_ TYPE Type,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN CONST EFI_GUID *CallerId OPTIONAL,
IN CONST EFI_STATUS CODE_DATA *Data OPTIONAL
)/

Parameters
Type
Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
1s defined in "Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This included
information about the class and subclass that is used to classify the entity as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers. Type EFI_GUID is
defined in InstallProtocolInterface () inthe UEFI 2.0 specification.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE DATA is defined in "Related Definitions” below. The
contents of this data type may have additional GUID-specific data.

Description

Various software modules including drivers can call this function to report a status code. No
disposition of the status code is guaranteed. The ReportStatusCode () function may choose to
log the status code, but this action is not required.

188 7/1/2010 Version 1.1 Errata B

DXE Runtime Protocols

It is possible that this function may get called at EFI_TPL LEVEL HIGH. Therefore, this
function cannot call any protocol interface functions or services (including memory allocation) that
are not guaranteed to work at EFI_TPL LEVEL HIGH. It should be noted that

SignalEvent () could be called by this function because it works at any TPL including
EFI_TPL L

EVEL HIGH. Itis possible for an implementation to use events to log the status codes when the
TPL level is reduced.

ReportStatusCode () function can perform other implementation specific work, but that is not
specified in the architecture document.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform wide view and may not be able to accurately assess the impact of the error
condition. The DXE driver that produces the Status Code Architectural Protocol,

EFI_STATUS CODE_ARCH_ PROTOCOL, is responsible for assessing the true severity level based
on the reported severity and other information. This DXE driver may perform platform specific
actions based on the type and severity of the status code being reported.

If Data is present, the Status Code Architectural Protocol driver treats it as read only data. The
Status Code Architectural Protocol driver must copy Data to a local buffer in an atomic operation
before performing any other actions. This is necessary to make this function re-entrant. The size of
the local buffer may be limited. As a result, some of the Data can be lost. The size of the local
buffer should at least be 256 bytes in size. Larger buffers will reduce the probability of losing part of
the Data. Note than multiple status codes may be reported at elevated TPL levels before the TPL
level is reduced. Allocating multiple local buffers may reduce the probability losing status codes at
elevated TPL levels. If all of the local buffers are consumed, then this service may not be able to
perform the platform specific action required by the status code being reported. As a result, if all the
local buffers are consumed, the behavior of this service is undefined.

Ifthe CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

Related Definitions

//
// Status Code Type Definition

//
typedef UINT32 EFI_STATUS CODE_TYPE;

//

// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_ CODE_RESERVED MASK are

// reserved for use by this specification.

//

#define EFI_STATUS CODE TYPE MASK 0x000000FF

#define EFI_STATUS CODE_SEVERITY MASK OxFF000000

#define EFI_STATUS _CODE_RESERVED MASK 0x00FFFFO00

//
// Definition of code types, all other values masked by

Version 1.1 Errata B 7/1/2010 189

Platform Initialization Specification VOLUME 2 DXE Core Interface

// EFI_STATUS CODE TYPE MASK are reserved for use by
// this specification.

//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003
//

// Definitions of severities, all other values masked by

// EFI_STATUS_CODE_ SEVERITY MASK are reserved for use by

// this specification.

// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error

// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.

//

#define EFI_ERROR MINOR 0x40000000
#define EFI_ERROR MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR UNCONTAINED 0xa0000000
//

// Status Code Value Definition

//

typedef UINT32 EFI_STATUS CODE_VALUE;

//

// A Status Code Value is made up of the class, subclass, and
// an operation.

//

#define EFI_STATUS CODE_ CLASS MASK 0xFF000000

#define EFI_STATUS_CODE_SUBCLASS MASK 0x00FF0000

#define EFI_STATUS _CODE OPERATION MASK 0x0000FFFF

//

// Definition of Status Code extended data header.

// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.

//

typedef struct ({
UINT16 HeaderSize;
UINT16 Size;

EFI_GUID Type;
} EFI_STATUS_CODE_DATA;

190 7/1/2010 Version 1.1 Errata B

DXE Runtime Protocols

Parameters
HeaderSize

The size of the structure. This is specified to enable future expansion.
Size

The size of the data in bytes. This does not include the size of the header structure.
Type

The GUID defining the type of the data.

Status Codes Returned

EFI_SUCCESS The function completed successfully
EFI_DEVICE_ERROR The function should not be completed due to a device error.

Version 1.1 Errata B 7/1/2010 191

Platform Initialization Specification VOLUME 2 DXE Core Interface

192 7/1/2010 Version 1.1 Errata B

15

Dependency Expression Grammar

15.1 Dependency Expression Grammar

This topic contains an example BNF grammar for a DXE driver dependency expression compiler
that converts a dependency expression source file into a dependency section of a DXE driver stored

in a firmware volume.

15.2 Example Dependency Expression BNF Grammar

<depex>

<bool>

<term>

<factor>

<guid>

<hex32>
<hex16>
<hex8>

<hexprefix>::

<hexvalue>

<hexdigit>

Version 1.1 Errata B

BEFORE <guid>

AFTER <guid>

SOR <bool>

<bool>

<bool> AND <term>

<bool> OR <term>

<term>

NOT <factor>

<factor>

<bool>

TRUE

FALSE

GUID

END

Y{' <hex32> ',’ <hexl6> '‘,’ <hexl6> ‘,’
<hex8> ',’ <hex8> ‘,’ <hex8> ',’ <hex8> ‘',’
<hex8> ',’ <hex8> ',’ <hex8> ‘,’ <hex8> '}’
<hexprefix> <hexvalue>

<hexprefix> <hexvalue>

<hexprefix> <hexvalue>

0! Vx!

Q7 oy’

<hexdigit> <hexvalue>

<hexdigit>

[0-9]

[a-f]

[A-F]

7/1/2010 193

Platform Initialization Specification VOLUME 2 DXE Core Interface

15.3 Sample Dependency Expressions

The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

194 7/1/2010 Version 1.1 Errata B

//
// Source

//

Dependency Expression Grammar

EFI_CPU_IO PROTOCOL GUID AND EFI CPU ARCH PROTOCOL GUID END

//

// Opcodes,

//

ADDR BINARY

Operands,

and Binary Encoding

0x00 02
0x01 26
88
O0x11 02
0x12 bl
bc
0x22 : 03
0x23 08
//
// Source
//

25
77

cc
e’

ba 26 42
00 80 c7

6f
3c

MNEMONIC

PUSH
40 4b EFI _CPU IO PROTOCOL GUID
ac 45

PUSH
d4 11 EFI_CPU ARCH PROTOCOL GUID
88 81

AND

END

AFTER (EFI_CPU DRIVER FILE NAME GUID) END

//

// Opcodes, Operands, and Binary Encoding
//

ADDR BINARY MNEMONIC
0x00 : 01 AFTER

0x01 : 93 e5 7b 98 43 16 Ob 45
be 4f 8f 07 66 6e 36 56

O0x11 : 08
//
// Source
//

EFI_CPU DRIVER FILE NAME GUID

END

SOR EFI_CPU IO PROTOCOL_ GUID END

//

// Opcodes,

//

ADDR BINARY

Version 1.1 Errata B

Operands and Binary Encoding

MNEMONIC

7/1/2010

195

Platform Initialization Specification VOLUME 2 DXE Core Interface

0x00 : 09 SOR

0x01 : 02 PUSH

0x02 : bl cc ba 26 42 6f d4 11 EFI_CPU IO PROTOCOL GUID
bc e7 00 80 c7 3c 88 81

0x12 : 03 END

196 7/1/2010 Version 1.1 Errata B

Appendix A
Error Codes

A.1 EFI_REQUEST_UNLOAD_IMAGE

#define DXE ERROR(a)

(MAX BIT|MAX BIT >> 2 | (a))

EFI_REQUEST_UNLOAD_IM
AGE

EFI_NOT_AVAILABLE_YET

DXE_ERROR (1)

If this value is returned by an EFIl image, then the
image should be unloaded.

DXE_ERROR (2)

If this value is returned by an API, it means the
capability is not yet installed/available/ready to use.

Version 1.1 Errata B

7/1/2010

197

Platform Initialization Specification VOLUME 2 DXE Core Interface

198 7/1/2010 Version 1.1 Errata B

Appendix B
GUID Definitions

B.1 DXE Services Table GUID

#define DXE_SERVICES_TABLE GUID \
{0x5ad34ba,0x6£02,0x4214,0x95,0x2e, 0x4d, 0xa0,0x39, 0x8e, 0x2b, 0xb9
}

B.2 HOB List GUID

#define HOB LIST GUID \
{0x7739f24c,0x93d7,0x11d4,0x9a,0x3a, 0x0,0x90,0x27,0x3f, 0xcl, 0x4d
}

Version 1.1 Errata B 7/1/2010 199

Platform Initialization Specification VOLUME 2 DXE Core Interface

200 7/1/2010 Version 1.1 Errata B

	Revision History
	Contents
	1 Introduction
	1.1 Overview
	1.2 Organization of the DXE CIS
	1.3 Target Audience
	1.4 Conventions Used in this Document
	1.4.1 Data Structure Descriptions
	1.4.2 Protocol Descriptions
	1.4.3 Procedure Descriptions
	1.4.4 Instruction Descriptions
	1.4.5 Pseudo-Code Conventions
	1.4.6 Typographic Conventions

	1.5 Requirements

	2 Overview
	2.1 Driver Execution Environment (DXE) Phase
	2.2 UEFI System Table
	2.2.1 Overview
	2.2.2 UEFI Boot Services Table
	2.2.3 UEFI Runtime Services Table
	2.2.4 DXE Services Table

	2.3 DXE Foundation
	2.4 DXE Dispatcher
	2.5 DXE Drivers
	2.6 DXE Architectural Protocols
	2.7 Runtime Protocol

	3 Boot Manager
	3.1 Boot Manager

	4 UEFI System Table
	4.1 DXE Services Table
	4.2 UEFI Image Entry Point Examples
	4.2.1 UEFI Application Example
	4.2.2 Non-UEFI Driver Model Example (Resident in Memory)
	4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)
	4.2.4 UEFI Driver Model Example
	4.2.5 UEFI Driver Model Example (Unloadable)
	4.2.6 UEFI Driver Model Example (Multiple Instances)

	5 Services - Boot Services
	5.1 Extensions to UEFI Boot Service Event Usage
	5.1.1 CreateEvent
	5.1.2 Pre-Defined Event Groups
	5.1.3 Additions to LoadImage()

	6 Runtime Capabilities
	6.1 Additional Runtime Protocol
	6.1.1 Status Code Services

	7 Services - DXE Services
	7.1 Introduction
	7.2 Global Coherency Domain Services
	7.2.1 Global Coherency Domain (GCD) Services Overview
	7.2.2 GCD Memory Resources
	7.2.3 GCD I/O Resources
	7.2.4 Global Coherency Domain Services

	AddMemorySpace()
	AllocateMemorySpace()
	FreeMemorySpace()
	RemoveMemorySpace()
	GetMemorySpaceDescriptor()
	SetMemorySpaceAttributes()
	GetMemorySpaceMap()
	AddIoSpace()
	AllocateIoSpace()
	FreeIoSpace()
	RemoveIoSpace()
	GetIoSpaceDescriptor()
	GetIoSpaceMap()
	7.3 Dispatcher Services
	7.3.1 Dispatcher Services

	Dispatch()
	Schedule()
	Trust()
	ProcessFirmwareVolume()

	8 Protocols - Device Path Protocol
	8.1 Introduction
	8.2 Firmware Volume Media Device Path
	8.3 Firmware File Media Device Path

	9 DXE Foundation
	9.1 Introduction
	9.2 Hand-Off Block (HOB) List
	9.3 DXE Foundation Data Structures
	9.4 Required DXE Foundation Components
	9.5 Handing Control to DXE Dispatcher
	9.6 DXE Foundation Entry Point
	9.6.1 DXE_ENTRY_POINT

	9.7 Dependencies
	9.7.1 UEFI Boot Services Dependencies
	9.7.2 UEFI Runtime Services Dependencies
	9.7.3 DXE Services Dependencies

	9.8 HOB Translations
	9.8.1 HOB Translations Overview
	9.8.2 PHIT HOB
	9.8.3 CPU HOB
	9.8.4 Resource Descriptor HOBs
	9.8.5 Firmware Volume HOBs
	9.8.6 Memory Allocation HOBs
	9.8.7 GUID Extension HOBs

	10 DXE Dispatcher
	10.1 Introduction
	10.2 Requirements
	10.3 The A Priori File
	10.4 Firmware Volume Image Files
	10.5 Dependency Expressions
	10.6 Dependency Expressions Overview
	10.7 Dependency Expression Instruction Set
	BEFORE
	AFTER
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END
	SOR
	10.8 Dependency Expression with No Dependencies
	10.9 Empty Dependency Expressions
	10.10 Dependency Expression Reverse Polish Notation (RPN)
	10.11 DXE Dispatcher State Machine
	10.12 Example Orderings
	10.13 Security Considerations

	11 DXE Drivers
	11.1 Introduction
	11.2 Classes of DXE Drivers
	11.2.1 Early DXE Drivers
	11.2.2 DXE Drivers that Follow the UEFI Driver Model
	11.2.3 Additional Classifications

	12 DXE Architectural Protocols
	12.1 Introduction
	12.2 Boot Device Selection (BDS) Architectural Protocol
	EFI_BDS_ARCH_PROTOCOL.Entry()
	12.3 CPU Architectural Protocol
	EFI_CPU_ARCH_PROTOCOL.FlushDataCache()
	EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.GetInterruptState()
	EFI_CPU_ARCH_PROTOCOL.Init()
	EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler()
	EFI_CPU_ARCH_PROTOCOL.GetTimerValue()
	EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()
	12.4 Metronome Architectural Protocol
	EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()
	12.5 Monotonic Counter Architectural Protocol
	12.6 Real Time Clock Architectural Protocol
	12.7 Reset Architectural Protocol
	12.8 Runtime Architectural Protocol
	12.9 Security Architectural Protocol
	EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()
	12.10 Timer Architectural Protocol
	EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt()
	12.11 Variable Architectural Protocol
	12.12 Variable Write Architectural Protocol
	12.13 EFI Capsule Architectural Protocol
	12.14 Watchdog Timer Architectural Protocol
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

	13 DXE Boot Services Protocol
	13.1 Overview
	13.2 Conventions and Abbreviations
	13.3 MP Services Protocol Overview
	13.4 MP Services Protocol
	EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors()
	EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo()
	EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
	EFI_MP_SERVICES_PROTOCOL.StartupThisAP()
	EFI_MP_SERVICES_PROTOCOL.SwitchBSP()
	EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()
	EFI_MP_SERVICES_PROTOCOL.WhoAmI()

	14 DXE Runtime Protocols
	14.1 Introduction
	14.2 Status Code Runtime Protocol
	EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()

	15 Dependency Expression Grammar
	15.1 Dependency Expression Grammar
	15.2 Example Dependency Expression BNF Grammar
	15.3 Sample Dependency Expressions

	Appendix A Error Codes
	A.1 EFI_REQUEST_UNLOAD_IMAGE

	Appendix B GUID Definitions
	B.1 DXE Services Table GUID
	B.2 HOB List GUID

