Training

%
L
L
g E -
1
1 .
L U
-f‘“ i i |
¥ ! § .1
T 1
f

-
3 &
ol

I\' ,‘.-r- |

_esson o
|

UEFI Driver Wizard LaC

intel Corporation
SoTtware and Services Group

Setup the UEFI Driver Wizard

Generate and compile a driver template

Test driver in NT32 using UEFI Shell 2.0

Port code into the template driver

dooy ___t 5. _|__.__._=__

Eﬁ_ﬂ__miu __ w_lﬂ __:

-
NN | R ——

- DeFINING A UEFI DRIVER?

”.#

Supports specific hardware, can be
~ unloaded or override an existing driver

UEFI DRIVERS - LOCATION

UEFI

P Interface [0s-Absent
Verifier Ao

Q)

Transient OS
Environment

Q)

Transient OS
Boot Loader

Wy
e L L i

[, I
rl

'

T

EFI Driver OS-Present
Dispatcher App

Intrinsic Servic 2s Final OS Boot Final OS
C Loader B4 Environment

Jin
Hus
T

| =/

i
Hig o |

.
ia] i
T

1
|

L

R

ecurity /

ﬁ‘,

i
k

I-IL
5 - Security Pre EFI Driver Execution | Boot Dev Transient Run Time After
ia ﬁ: (SEC) Initialization Environment Select System Load (RT) Life
e = (PEI) (DXE) (BDS) (TSL) (AL)

Power on —> [..Platform initialization. - [....0Sboot....] > Shutdown

(intel‘

UEFI DRIVERS - LOCATION

Chipset/Processor OEM, ISV &
Function DXE Driver specs Intel BU UEF Driver specs

(

19AHQ 143N

g g
= 5
S 9
< <
(1] [}
= -

uonedynads ain1iaydly

Driver Execution Environment (DXE) Spec

Pre-EFI Initialization (PEI)Spec

' Processoriiviodule ' CSTviodule
Spec(s), Spec(s),

L= UEFI DRIVERS VS. APPLICATIONS

Protocol (1)
Protocol (2)
Protocol (3)

UEFI Loader Driver Initialization

v

>

— DRIVERS PRODUCE PROTOCOLS

Instal IProtocol Interface

1-. Invoking\

=8 one of the
@il Protocol

~#1 Services

(HandIeProtocoI(GUID

—>| Handle
I
I
Protocol Interface
[
> Function Pointer
Function Pointer
3
!—r

Handle Database

| [
I
|
|
-
I
|
|
|
|

UEFI Driver
GUID 1

Protocol
specific
functions

Protocol
specific
functions

Device,
or next
Driver

L= DRIVER BINDING PROTOCOL

{ ..#

Start()

Starts a driver on a controller & Installs
Protocols

Stop()

Stops a driver from managing a controller

| é (intel.

L= EXAMPLE OF UEFI DRIVER SOURCE CODE
1‘ « C\FW\edk2\MdeModulePkg\Bus\Scsi\ScsiDiskDxe

— ScsiDiskDxe.inf
— ScsiDisk.c

— ScsiDisk.h

% [.inf] Entry point, Global Protocols
i % [.h] Driver's Private Data Structure declaration

| | ¥ [.] Review the Supported, Start and Stop functions

O
o
<C
N
a2
w
=
o

o

.

W

>
w
T
T
O
=
4,
-

._ _=__. =N _I__._ =

__ w_lﬂ __:

UEFI Driver Wizaro OVERVIEW

25

.
About UEFI Driver Wizard

v" Open source tool

|.:'"..-=
& UEFI Driver Wizard 0.11

Copyright @ 2012 Intel Corporation. Al rights reserved

This wizard is designed to aid in the development of UEFI Drivers
using the EDK, II open source project as a development environment.
The EDK II provides a cross-platform firmware development
environment for UEFI, UEFI Drivers are described in the Unified
Extensible Firmware Interface Spedfication, Version 2.3.1. There
are different categories of UEFI Drivers, and many variations of
each category. This wizard provides basic support for the most
comman categories of LEFI drivers. Many other driver designs are
possible, In addition, this wizard provides a templates for the
various driverrelated LUEFI Protocols induding Consales, Serial
Ports, Graphics, Mass Storage, Metwork Interfaces, and User
Credentials,

ECK. I home page

v’ Based on Driver Writer’s
Guide for UEFI 2.3.17
content

v" Intel SSG engineers
contributed

v' Located on
www.TianoCore.org

5-
g
(2

http://www.tianocore.org/

Lab 8.1

L= LA 8.1: INSTALLING THE UEFI DRIVER WIZARD

¥ Requirements and Options

Work space must contain BaseTools, MdePkg &
MdeModulePkg Packages

for Driver development on
Tianocore.org

Uses previous lab’s setup C:\FW\Edk2

http://sourceforge.net/projects/edk2/files/UDK2010 Releases/UDK2010.SR1.UP1/UDK2010.SR1.UP1.IHV.zip/download

3 DRIVER FUNCTIONS

« UEFI Device Driver

. UEFI Version 2.3.1 (0x0002001F)
5 .« Unloadable driver

2 - Support IA32 & x64 CPUS

 Returns component name information
. Test console device

o ,_E » Option to produce strings & forms for setup

el

L= TEMPLATE FILE CONTENTS

Proper UEFI driver entry point

Basic driver libraries/headers

Skeletons for common driver functions

Error values until ported
EFI_UNSUPPORTED, EFI_DEVICE_ERROR

dooy ___t 5. _|__.__._=__

Eﬁ_ﬂ__miu __ w_lﬂ __:

O
L
>
<C
<
T
<
L
<
@)
o
>
(@)
-
S
(o'
L
>
(o'
()
(@m)]
(o'
<C
N
=
Y
>

O
=
=
=
w
m
6o
an
<
—J

___t T ____ =___

__z ._:

= PORTING DRIVER CODE

s o

o
D
(a'd
o
(o
('l
>
(V)
w
1
T
O
2
=
o
=
N
00
(an)]
<C
—

._ _=__. =N _I__._ =

__ w_lﬂ __:

¥ +- Helps Ie'bate ro ocOis,Speuflc GUID :
h through UE BQoij,,SeﬂN es..fun,glan .

1
l

=3} RT() GC

|-|1=||=| =

h Iiﬂ

Allocate a string buffer
In memory

M

i Fill the memory range
with a pattern

Lab 8.4

L= RoBUST LIBRARIES

d AllocateZeroPool ()
[MemoryAllocationLib.h]

d SetMem16()
[BaseMemoryLib.h]

Lab 8.4

DEBUGGING BEFORE TESTING THE DRIVER

%" . UEFI drivers can use the EDK Il debug library
= — Enables DEBUG() ASSERT()

%\ « DEBUG() statements

BN Visual Studio 2008 Command Prompt

Instal lProtocolInterface: DD9E7534-7762-4698-8C14-
InstallProtocolInterface: 387477C2-69C7-11D2-8E39-
InstallProtocolInterface: 9e863906-A40F-4875-977F-
Terminal - Mode 0, Column 80, Row = 25
1 80, Row = 50
100, Row = 31

InstallProtocolInterface: 09576E91-6D3F-11D2-8E39-
IPROGRESS CODE: v1040001 I1I0
lInstallProtocolInterface: 387477C1-69C7-11D2-8E39-
InstallProtocolInterface: DD9E7534-7762-4698-8C14-
InstallProtocolInterface: 387477C2-69C7-11D2-8E39-
l BlockSize : 512

LastBlock : 9FFF
IP10penBlock: Could not open \\.\a:, 2

BlockSize : 2048

| LastBlock : 4AFFF e (intel.

<
o
T
)
<
-
U
o
i
oz
@)
(ol
(ol
-
V)

._ _=__. =N _I__._ =

__ w_lﬂ __:

= SUPPORTED FUNCTION

credte Non-Vvolatile UEEITVariable

Ee Lab 8.5

L= ADDING NON-VouTiLe UEFI VARIABLES

B

EntryPoint() Init new buffer for NVRam
Variable

Supported() Call function to set/get
NVRam Variable

'
o/
O
<
@)
—J
=
D)
)
=
o
@
o
LN
60
an
<
L

V4
=
O
—
)
=
S
i
S
\/
ol
O
—
7
=
=
<

._ _=__. =N _I__._ =

__ w_lﬂ __:

“/
fiunctions
£

Jraread(d) an

~

EOIN0,

~
=)

r

POING

Hﬁ_ﬂ._m._l_“._".._mghﬂm
$i. 1 S o e SR e

L= ADDITIONAL PORTING

Adding strings and forms to setup (HIl)
Publish & consume protocols

Hardware initialization

|
|
] >
=B

" =

S —a—r—

R ST B

— - <

¢ =
E - =y

- o
'
] s
—
i =
g —
.

e —

=4 -

. - —
= [
=kE4 ey

i 1 =

Setup the UEFI Driver Wizard

Generate and compile a driver template

Test driver in NT32 using UEFI Shell 2.0

Port code into the template driver

(intel’

intel.

)
=
1,
=
e
¥ -
O
Ve

i i Al

. .-nim.# :nﬁn.

ir_...ﬂ-. I LR

e & r_._; ki %,

- -"—
= ':._ ==

;GSUPPORTED PCl ConTROLLER Device HANDLE

B PCI Controller Device Handle * Inputs:
— “This”
— Controller to manage
— Remaining Device Path
« Supported()

— Checks to see if a driver

- :f supports a controller
i1, Opens PCI 10 Protocol — Check should not change

g_
152 Checks hardware state of controller
— Minimize execution time,
3. Closes PCI_IO Protocol

EFl_DEVICE_PATH_PROTOCOL

EFI_PCI_IO_PROTOCOL

Bnln move complex I/0 to Start()
.&;;“4 Returns: Supported or — May be called for controller
iz's Not Supparted that is already managed

iy — Child is optionally specified

(intel'

-
e

;
————
i

b e b

= START - PCl CONTROLLER Device HANDLE

—

T
- —

[
1 1 13

PCI Controller Device Handle * Inputs:
; . llThiS"
EFI_DEVICE_PATH_PROTOCOL _ Controller to manage,

. — Remaining Device Path
EFI_PCI_IO_PROTOCOL

o Start()
EFI_BLOCK_10_PROTOCOL — OpensPCI /0

— Starts adriveron a
controller

— Can create ALL child
handles or ONE child
handle

e - -
io =

'

== STOP - PCl CONTROLLER DEVICE HANDLE

» Stop()
— ClosesPCl 1/0

— Stops a driver from
managing a controller

— Destroys all specified child
handles

— If no children specified,
controller is stopped

— Stopping a bus controller
requires 2 calls

ts
‘i Inputs:

iy "This" e One call to stop the
Eahe: IS children. A second call to
— Controller to manage stop the bus controller itself

— Remaining Device Path

DISCLAIMER

THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED “AS IS” WITH
NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT OR BY THE SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to its specifications at any time, without notice.

Recipients of this information remain solely responsible for the design, sale and functionality of their products,
including any liability arising from product infringement or product warranty.

Intel may make changes to specifications, product roadmaps and product descriptions at any time, without
notice.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright ° 2008-2013, Intel Corporation

5-
g
(2

OPTIMIZATION NOTICE

Intel’'s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2°, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Notice revision #20110804

	Lesson 8�UEFI Driver Wizard Lab
	Lesson 8 Objectives
	UEFI Driver Review
	Defining a UEFI Driver?
	UEFI Drivers - Location
	UEFI Drivers - Location
	UEFI Drivers Vs. Applications
	Drivers Produce Protocols�
	Driver Binding Protocol
	Example of UEFI Driver source code
	Lab 8.1 Creating a UEFI Driver �			 using the UEFI Driver Wizard
	UEFI Driver Wizard Overview
	Lab 8.1: Installing the UEFI Driver Wizard
	Driver Functions
	Template File Contents
	Lab 8.2 Building a UEFI Driver
	Lab 8.3 Editing�			 MyWizardDriver/ComponentName.c
	Porting Driver Code
	Lab 8.4 writing the supported �			 function for a UEFI driver
	Lab 8.4: Supported() Goals
	Start() Goals
	Robust Libraries
	Debugging before Testing the Driver
	Lab 8.5 Returning a Successfully�			 Supported Function
	Lab 8.5: Returning a Successful Supported Function
	Adding Non-Volitile UEFI Variables
	Lab 8.5 Porting Unload() �			 and Stop()functions
	Slide Number 28
	Additional Porting
	Lesson 8 Summary
	Slide Number 31
	Slide Number 32
	Backup
	Supported - PCI Controller Device Handle
	Start - PCI Controller Device Handle
	Stop - PCI Controller Device Handle
	Disclaimer
	Optimization Notice

