presented by

phoenix ”

UEFI Firmware

Security Concerns and Best Practices

Fall 2017 UEFI Plugfest
October 30 — November 3, 2017

Presented by Dick Wilkins, PhD & Jim Mortensen
(Phoenix Technologies, Ltd.)

8

UEFI Plugfest — October 2017 www.uefi.org

Legal Stuff

8

Copyright © 2017 Phoenix Technologies Ltd. All rights reserved.

PHOENIX TECHNOLOGIES LTD. MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION
HEREIN DESCRIBED AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT. FURTHER, PHOENIX
TECHNOLOGIES LTD. RESERVES THE RIGHT TO REVISE THIS
DOCUMENTATION AND TO MAKE CHANGES FROM TIME TO TIME IN
THE CONTENT WITHOUT OBLIGATION OF PHOENIX TECHNOLOGIES
LTD. TO NOTIFY ANY PERSON OF SUCH REVISIONS OR CHANGES.

UEFI Plugfest — October 2017 www.uefi.org

Contents

”

UEFI Plugfest — October 2017

8

Threats and Mitigation Guideline

Introduction

Additional Concerns
Validation Guidelines
Next Steps
Questions

www.uefi.org

Introduction

UEFI Plugfest — October 2017 www.uefi.org

This Content

* This content is an update of
presentations at the 2014 and 2015
Spring UEFI plugfest events

* An earlier but more comprehensive

version may be found at:
http://www.uefi.org/learning center/industryresources

UEFI Plugfest — October 2017 www.uefi.org

Introduction

 UEFI firmware is now widely deployed and has become a
target for hackers and security analysts/researchers

* Poor implementations affect the credibility of the UEFI
“brand” and market perception of all implementations

* As with all software implementations, there are going to
be faults - (Phoenix is not perfect, even if we want to be)

* Phoenix would like to share some of our best practices in
the interest of raising the quality and security of all UEFI
implementations

UEFI Plugfest — October 2017 www.uefi.org

Introduction

8

Firmware is software, and is therefore vulnerable
to the same threats that typically target software

Maliciously crafted input

Elevation of privilege

Data tampering

Unauthorized access to sensitive data
Information disclosure

Denial of Service

Key Management

Etc.

UEFI Plugfest — October 2017 www.uefi.org

Introduction

Firmware-Specific Threats

Maliciously crafted input — Buffer overflows to inject malware

Elevation of privilege — SMM code injection

Data tampering — Modifying UEFI variables (SecureBoot, Configuration, etc.)
Unauthorized access to sensitive data — Disclosure of SMRAM contents
Information disclosure — SMM rooted malware; “secrets” left in memory
Denial of Service — SPI flash corruption to “brick” the system

Key Management — Private Key Management for signed capsule updates

UEFI Plugfest — October 2017 www.uefi.org

Introduction

We Are All At Risk!

Disclosures regarding UEFI BIOS security vulnerabilities look bad for the
whole UEFI community!

So how do we protect against UEFI Firmware attacks?

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @';ﬂ

Many organizations have provided disclosures of known
issues and guidelines for developing more secure firmware

Examples come from Intel, Microsoft, Mitre, NIST, Linux
distros and others. Some are public and some are available
only under NDA via direct communications with the
involved companies

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @ﬂ

Key areas for concern:
* Firmware Flash Regions
 UEFI Variables in Flash
* Capsule Updates
e SMM
* Secure Boot
* Option ROMs

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @1

Key areas for concern
* Firmware Flash Regions

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Malware injected into the address space is transient,
and will be cleaned up on the next boot

Malware injected into the firmware flash regions is
persistent and will run on every subsequent boot

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

SPI Flash Exploit ~L AN I»

Dispatcher
@A DXE Driver
I Driver
DXE Driver

* All PEIMs in flash are mapped to the address space as a
part of FV_Recovery

* An attacker with write-access to flash can inject
malware into the firmware

* Malicious PEIMs can disallow flash updates, or cause

. Runtime
destructive behavior (e.g., ‘brick’ the system) Hard drive
* Malicious DXE drivers can disable security settings and
install malicious code into the OS e — Ev_Recovery
 Malware in flash is persistent, and survives OS reinstall Flasn FV_MAIN l
and hard drive reformat Variable Store

Address Space

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

* All flash Lock bits must be appropriately set

prior to running any untrusted code

If flash writes are protected via SMI
handlers, all SMM protection bits must also
be appropriately set

All Protected Range registers that block

writes to flash address space must also be
appropriately set and locked

UEFI Plugfest — October 2017

Vulnerability Note VU#766164

Intel BIOS locking mechanism contains race condition that enables write
protection bypass

Original Release date: 05 Jan 2015 | Last revised: 23 Jul 2015

& Print o Tweet | [Send 3 Share

Overview

A race condition exists in Intel chipsets that rely solely on the BIOS_CNTL.BIOSWE and BIOS_CMNTL.BLE bits as a
BIOS write locking mechanism. Successful exploitation of this vulnerability may result in a bypass of this locking
mechanism.

Description

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition’)

A race condition exists in Intel chipsets that rely solely on the BIOS_CMTL BIOSWE and BIOS_CMNTL BLE bits as a
BIOS write locking mechanism. According to Corey Kallenberg of The MITRE Corporation:

“When the BIOS_CNTL.BIOSWE bit is set to 1, the BIOS is made writable. Also contained with the BIOS_CNTL
register is the BIOS_CNTL. 5("BI0S Lock Enable”). When BIOS_CNTL.BLE is set to 1, attempts to write enable
the BIOS by setting BIOS_CNTL.BIOSWE to 1 will immediately generate a System Management [nterrupt (SMI).
It is the job of this SMI to determine whether or not it is permissible to write enable to the BIOS, and if not,
immediately set B/05_CNTL BIOSWE back to 0; the end result being that the BIOS is not writable.”

However, it has been shown that a race condition exists that can allow writes to the BIOS to occur between the
moment that an attempt is made to set BIOS_CNTL.BIOSWE to 1 and the moment that it is set back to 0 by the SMI

Impact

A local, authenticated attacker could write malicious code to the platform firmware. Additionally, if the "UEFI Variable"
region of the SPI Flash relies on BIOS_CNTL.BIOSLE for write protection, as many implementations do, this
vulnerability could be used to bypass UEFI Secure Boot. Lastly, the attacker could corrupt the platform firmware and
cause the system to become inoperable.

www.uefi.org

Threats and Mitigation Guidelines

O n re S u m e fro m S 3 : BIOS implementations fail to properly set UEFI write protections after waking

from sleep mode

O A” ﬂaSh LOCk b|tS must be appropﬂately set Original Release date: 30 Jul 2015 | Last revised: 12 Aug 2015
prior to running any untrusted code S e B o

Overview

Multiple BIOS implementations fail to properly set write protections after waking from sleep, leading to the possibility of

e |f flash writes are protected via SMI an abiary BIOS mage reflash
handlers, all SMM protection bits must also ="
be appropriately set

According to Comwell, Butterworth, Kovah, and Kallenberg, who reported the issue affecting certain Dell client systems
(CVE-2015-2890):

There are & number of chipset mechanisms on Intel x86-based computers that provide protection of the BIOS
from arbitrary reflash with attacker-controlled data. One of these is the BIOSLE and BIOSWE pair of bits found ir
the BIOS_CNTL register in the chipset. When the BIOSLE bit is set, the protection mechanism is enabled. The
BIOS_CNTL is reset to its default value after a system reset. By default, the BIOSLE bit of the BIOS_CNTL

® AI I P rote Cte d Ra n ge reg | Ste rS t h at b I OC k register is cleared (disabled). The BIOS is responsible for re-enabling it after a reset. When a system goes to
sleep and then wakes up, this is considered a reset from the hardware's point of view
W r I te S to fI a S h a d d ress S p a Ce m u St a I SO b e Therefare, the BIOS_CNTL register must be reconfigured after waring from sleep. In a normal boot, the
. BIOS_CNTL is propery configured. However, in some instances BIOS makers do not properly re-set
a p p ro p rl ate Iy Set a n d I O C ke d BIOS_CNTL bits upon wakeup. Therefore, an attacker is free to reflash the BIOS with an arbitrary image simply

by forcing the system to go to sleep and wakes again. This bypasses the enforcement of signed updates or any
other vendor mechanisms for protecting the BIOS from an arbitary reflash.

A similar issue affecting Apple systems (CVE-2015-3692) involves the FLOCKDMN bit remaining unset after waking from
sleep. For more information, refer to Pedro Vilaca's blog disclosure.

Impact

A privileged attacker with console access can reflash the BIOS of affected systems to an arbitrary image.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Vulnerability Note VU#976132

O n res u m e fro m 53 : UEFI implementations do not properly secure the EFlI S3 Resume Boot Path

boot script

L ScrlptS that re-lnltlallze the platform must Original Release date: 05 Jan 2015 | Last revised: 03 Aug 2015
be secured against malicious modifications 8 pmi | (@7west] (Mo | (B ster

Overview

Some UEFI systems fail to properly restrict access to the boot script used by the EFI 53 Resume Boot Path, allowing
an authenticated, local attacker to bypass various firmware write protections.

Description
According to Rafal Wojtczuk of Bromium and Corey Kallenberg of The MITRE Corporation:

"During the UEFI 53 Resume path, a boat scrpt i1s interpreted to re-initialize the platform. The boot script
dictates various memory and port read/write operations to facilitate this re-initialization. The boot script is
interpreted early enough where impartant platform secunty mechanisms have not yet been configured. For
example, BIOS_CNTL, which helps protects the platform firmware against arbitrary writes, is unlocked.
TSEGMB, which protects SMRAM against DMA, is also unlocked.

Given this, the boot script is in a securnty critical position and maintaining its integrty is important. However, we
have discovered that on certain systems the boot script resides in unprotected memory which can be tampered
with by an attacker with access to physical memory.”

Impact

An authenticated local attacker may be able to bypass Secure Boot and/or perform an arbitrary reflash of the platform
firmware despite the presence of signed firmware update enforcement. Additionally, the attacker could arbitrarily read
or write to the SMRAM region. Lastly. the attacker could corrupt the platform firmware and cause the system to
become inoperable.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @1

Key areas for concern

e UEFI Variables in Flash

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

. Vulnerability Note VU#533140
* EnSU re that a” patCheS have been d ppl Ied Tianocore UEFI implementation reclaim function vulnerable to buffer overflow

to Va r| a b I e Se rV| ces d r|Ve rs Original Release date: 05 Jan 2015 | Last revised: 03 Feb 2015

& Print o Tweet | | [E] Send Share

* Review custom implementations for similar Overview
re . . The reclaim function in the Tianocore open source implementation of UEFI contains a buffer overflow vulnerability.
vulnerabilities that have been patched in beseription
t h e CO re i m p I e m e ntatio n The open source Tianoclore projelct provides ? refsfrence implemer?tation of thel Unified Extensible Firmware Interface
(UEFI). Some commercial UEFI implementations incorporate portions of the Tianccore source code.

According to Rafal Wojtczuk of Bromium and Corey Kallenberg of The MITRE Corporation, a buffer overflow
vulnerability exists in the Reclaim function. Corey Kallenberg describes the vulnerability as follows:

"UEF! utilizes various non-volatile variables fo communicate information back and forth between the operating
system and the firmware; for instance, boot order, platform language, efc. These non-volatile vanables are stored
in a file-system like region on the SPI flash chip. This file-system supports many aperations such as deleting
existing varables, creating new vanables, and defragmenting the variable region in order to reclaim unused
space. This latter operation is important to ensure that large vanables can be created in the event the variable
region is resource constrained and fragmented with many unused “free slots.”

We have discovered a buffer overflow associated with this reclaim’ operation.”

Please note that this issue is unlikely to be directly exposed to an attacker In order to exploit this issue, a separate
vulnerability must allow prior modification of the SPI flash to enable the attacker to introduce valid variable headers
after the end of the variable storage area.

Impact

The consequences and exploitability of this bug will vary based on the particular firmware implementation. A local
attacker may be able to perform an arbitrary reflash of the platform firnware and escalate privileges or perform a denial
of service attack by rendering the system inoperable.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Lock Authenticated Variable regions as early
as possible

Separate integral configuration and
security-based variables from those
expected to be modified at runtime

Reduce permissions to only what is needed
* Remove RT access for POST-time variables
* Set variables as Read-Only if they are not
intended to be modified at runtime

UEFI Plugfest — October 2017

Vulnerability Note VU#758382
Unauthorized modification of UEFI variables in UEFI systems

Original Release date: 09 Jun 2014 | Last revised: 03 Feb 2015

& Print 3 Tweet | [Send B} Share

Overview

Certain firmware implementations may not correctly protect and validate information contained in certain UEFI
variables. Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of
service for the platform.

Description

As discussed in recent conference publications (CanSecWest 2014, Syscan 2014, and Hack-in-the-Box 2014) certain
UEFI implementations do not correctly protect and validate information contained in the "Setup’ UEFI variable. On
some systems, this variable can be overwritien using operating system APls. Exploitation of this vulnerahility could
potentially lead to bypass of security features, such as secure boot, and/or denial of service for the platform. Please
refer to the conference publications for further details.

Impact

A local attacker that obtains administrator access to the operating system may be able to modify UEFI variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platform.

www.uefi.org

Threats and Mitigation Guidelines @1

Key areas for concern

e Capsule Updates

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Secure Capsule Updates rely on proper signing, private key
management, validation, and rollback protection

 NIST SP 800-107 provides guidelines for hash algorithm usage
 NIST SP 800-57 provides guidelines for key management
 NIST SP 800-147(b) provides guidelines for secure BIOS Updates

 NIST SP 800-193* provides general firmware resiliency guidelines,
including firmware update mechanisms

* draft May 2017

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Ensure that all patches have been applied Vulnerability Note VU#552286

to Ca p5u|e Update drivers UEFI EDK2 Capsule Update vulnerabilities
Review Custom implementations for Similar Original Release date: 07 Aug 2014 | Last revised: 22 Oct 2015
vulnerabilities that have been patched in

& Print ¥ Tweet K} Send Share

. . Overview
th e CO re I m p I e m e ntatlo n The EDKZ2 UEFI reference implementation contains multiple vulnerabilities in the Capsule Update mechanism.
Enforce Signed Capsule Updates Description
E nfo rce ROI I ba C k P rotectio N The open source EDK2 project provides a reference implementation of the Unified Extensible Firmware Interface

(UEFI). Researchers at The MITRE Corporation have discovered multiple vulnerabilities in the EDK2 Capsule Update

. . . . mechanism. Commercial UEFI implementations may incorporate portions of the EDK2 source code, including the
Use an HSM or Signing Authority for private vulnerable Capsule Update code.
key p rote Ct i O n Buffer overflow in Capsule Processing Phase - CVE-2014-4859

Dwring the Drive Execution Environment (DXE) phase of the UEFI boot process, the contents of the capsule image are
parsed during processing. An integer overflow vulnerability exists in the capsule processing phase that can cause the
allocation of a buffer to be unexpectedly small. As a result, attacker-controlled data can be written past the bounds of
the buffer.

Write-what-where condition in Coalescing Phase - CVE-2014-4360

During the Pre-EFI Initialization (PEI) phase of the UEFI boot process, the capsule update is coalesced into its original
form. Multiple integer overflow vulnerabilities exist in the coalescing phase that can be used to trigger a write-what-
where condition.

For more details, please refer to MITRE's vulnerability note.

Impact

A local authenticated attacker may be able to execute arbitrary code with the privileges of system firmware, potentially
allowing for persistent firmware level rootkits, bypassing of Secure Boot, or permanently DoS'ing the platform.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @1

Key areas for concern

* SMM

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

What is SMM?

* Highly privileged processor mode

* Entered through a System Management
Interrupt (SMI)

* Processor saves its context, services the SMI,
then restores context and resumes

 SMM code has full visibility of all address
space and devices

* Transition is transparent to the rest of the
system

UEFI Plugfest — October 2017

Ring 0 OS Kernel
Ring -1 Hypervisor
Ring -2 SMM

www.uefi.org

: OS OS OS
Ring 3 Application Application Application
Ring 2 3'd Party Driver
Ring 1 31 Party Driver 31 Party Driver

3'd Party Driver

Threats and Mitigation Guidelines

SMM MOde OS Kernel
e SMM code has full access to all system memory
and devices Hypervisor

* SMM code is not bound by OS Kernel or
Hypervisor protections

* SMM code can read all of memory, modify
memory contents, and even overwrite critical SMM Code
system files and data on storage mediums

Hard drive

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

SMM Mode Exploits

* During an SMI, all code runs with SMM-level
privileges (Ring -2) regardless of where it resides

OS Kernel

e Malware resident in SMRAM has full access to all
system memory and devices

* Legitimate code in unprotected memory can be
modified by Ring 0 malware SMM Code

 Modified code called by an SMI handler runs with
SMM-level privileges (Ring -2) and gains full access to

the system <> SMRAM

Non-SMM Code

Hard drive

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

* SMM code must never call code outside of -
SMRAM because an attacker could have rThe latest .
L. o securlty information
maliciously modified that code on Intel® products.
* SMM code must validate input parameters
from untrusted sources to prevent buffer
reads/writes that extend into SMRAM s |
. Product family: Intel® Server Board S1200/1400/1600/2400/2600/4600 series
* SMM code must copy input parameters and |

} —
b —

SmmRuntime Escalation of Privilege

INTEL-SA-00056

Impact of vulnerability: | Elevation of Privilege

validate and use the copy, to prevent time- Severty ring. | Important
Of_check_time_of_use (TOCTOU) Original release: ‘Aug 08, 2016
oo, e Last revised: Sep 30, 2016
vulnerabilities : p
Summary:

Intel is releasing mitigations for a privilege escalation issue. This issue affects the UEFI BIOS of select Intel
Products. The issue identified is a method that enables malicious code to gain access to System Management
Mode (SMM).

Description:

A malicious attacker with local administrative access can leverage the vulnerable function to gain access to
System NManagement Mode (SMM) and take full control of the platform. Intel products that are listed below
should apply the update.

Other vendors’ products which use the common BIOS function SmmRuntime may be impacted. To find out
whether a product you have may be vulnerable to this issue, please contact your system supplier.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Enable Hardware Protections Vulnerability Note VU#631788

BIOS implementations permit unsafe SMM function calls to memory locations

* Lock SMRAM as early as possible outside of SMRAM
° LOCk SMI Contr0| regiSterS Original Release date: 20 Mar 2015 | Last revised: 08 Jul 2015
. S Print Tweet | B Send | @@ Share
* Enable hardware NX protections for o
addresses outside of SMRAM (if supported) Overview

Multiple BIOS implementations permit unsafe System Management Mode (SMM) function calls to memory locations

* Enable paging NX protections for addresses outside of SMRAM.
outside of SMRAM Description

Multiple BIOS implementations permit unsafe System Management Mode (SMM) function calls to memory locations
outside of SMRAM. According to Corey Kallenberg of LegbaCore:

System Management Mode (SMM) is the most privileged execution mode on the ¥86 processor. Non-SMM code
can neither read nor write SMEAM (SMM RAM). Hence, even a ring O level attacker should be unable to gain
access to SMM.

However, on modem systems, some SMM code calls or interprets function pointers located outside of SMRAM
in an unsafe way. This provides opportunity for a ring 0 level attacker to break into SMM.

In order to exploit the vulnerability, an attacker must have access to physical memory. The attacker can gain code
execution in the context of SMM by first manipulating a function pointer or function called by SMM and then writing
bytes to System Management Interrupt (SMI) command port 0xkZ to trigger SMM.

Impact

A local, authenticated attacker may be able to execute arbitrary code in the context of SMM and bypass Secure Boot.
In systems that do not use protected range registers, an attacker may be able to reflash firmware.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @1

Key areas for concern

* Secure Boot

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

UEFI Variables that contain Secure Boot
settings must be locked and protected from
unauthorized modification

UEFI Plugfest — October 2017

Vulnerability Note VU#758382
Unauthorized modification of UEFI variables in UEFI systems

Criginal Release date: 09 Jun 2014 | Last revised: 03 Feb 2015

& Print 3 Tweet |] Send Share

Overview

Certain firmware implementations may not correctly protect and validate information contained in certain UEFI
variables. Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of
service for the platform.

Description

As discussed in recent conference publications (CanSecWest 2014, Syscan 2014, and Hack-in-the-Box 2014) certain
UEFI implementations do not corectly protect and validate information contained in the "Setup’ UEFI variable. On
some systems, this variable can be overwritten using operating system APls. Exploitation of this vulnerability could
potentially lead to bypass of security features, such as secure boot, and/or denial of service for the platform. Please
refer to the conference publications for further details.

Impact

A local attacker that obtains administrator access to the operating system may be able to modify UEFI variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platform.

www.uefi.org

Threats and Mitigation Guidelines

SMM code must never call code outside of
SMRAM as this could allow bypass of
Secure Boot protections

UEFI Plugfest — October 2017

www.uefi.org

Vulnerability Note VU#631788

BIOS implementations permit unsafe SMM function calls to memory locations
outside of SMRAM

Original Release date: 20 Mar 2015 | Last revised: 08 Jul 2015

& Print » Tweet | | [Send Shars

Overview

Multiple BIOS implementations permit unsafe System Management Mode (SMM) function calls to memory locations
outside of SMRANM.

Description

Multiple BIOS implementations permit unsafe System Management Mode (SMM) function calls to memory locations
outside of SMRAM. According to Corey Kallenberg of LegbaCore:

System Management Mode (SMM) is the most privileged execution mode on the ¥86 processor. Non-SMM code
can neither read nor write SMREAM (SMM RAM). Hence, even a ring O level attacker should be unable to gain
access to SMM.

However, on modem systems, some SMM code calls or interprets function pointers located outside of SMRAM
in an unsafe way. This provides opportunity for a ring 0 level attacker to break into SMM.

In order to exploit the vulnerability, an attacker must have access to physical memory. The attacker can gain code
execution in the context of SMM by first manipulating a function pointer or function called by SMM and then writing
bytes to System Management Interrupt (SMI) command port 0xkZ to trigger SMM.

Impact

A local, authenticated attacker may be able to execute arbitrary code in the context of SMM and bypass Secure Boot.
In systems that do not use protected range registers, an attacker may be able to reflash firmware.

Threats and Mitigation Guidelines

. . Vulnerability Note VU#766164
* A” ﬂaSh LOCk bItS, SM M protectlons, and Intel BI_OS locking mechanism contains race condition that enables write
Protected Range registers must be properly protection bypass
Original Release date: 05 Jan 2015 | Last revised: 23 Jul 2015
set to prevent bypass of Secure Boot

protections

& Print o Tweet | [Send 3 Share

Overview

A race condition exists in Intel chipsets that rely solely on the BIOS_CNTL.BIOSWE and BIOS_CMNTL.BLE bits as a
BIOS write locking mechanism. Successful exploitation of this vulnerability may result in a bypass of this locking
mechanism.

Description

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition’)

A race condition exists in Intel chipsets that rely solely on the BIOS_CMTL BIOSWE and BIOS_CMNTL BLE bits as a
BIOS write locking mechanism. According to Corey Kallenberg of The MITRE Corporation:

“When the BIOS_CNTL.BIOSWE bit is set to 1, the BIOS is made writable. Also contained with the BIOS_CNTL
register is the BIOS_CNTL. 5("BI0S Lock Enable”). When BIOS_CNTL.BLE is set to 1, attempts to write enable
the BIOS by setting BIOS_CNTL.BIOSWE to 1 will immediately generate a System Management [nterrupt (SMI).
It is the job of this SMI to determine whether or not it is permissible to write enable to the BIOS, and if not,
immediately set B/05_CNTL BIOSWE back to 0; the end result being that the BIOS is not writable.”

However, it has been shown that a race condition exists that can allow writes to the BIOS to occur between the
moment that an attempt is made to set BIOS_CNTL.BIOSWE to 1 and the moment that it is set back to 0 by the SMI

Impact

A local, authenticated attacker could write malicious code to the platform firmware. Additionally, if the "UEFI Variable"
region of the SPI Flash relies on BIOS_CNTL.BIOSLE for write protection, as many implementations do, this
vulnerability could be used to bypass UEFI Secure Boot. Lastly, the attacker could corrupt the platform firmware and
cause the system to become inoperable.

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Secure Boot

e Disable CSM

* Set image verification defaults to secure values:

* DENY_EXECUTE_ON_SECURITY_VIOLATION
* QUERY_USER_ON_SECURITY_VIOLATION

e Disallow fallback to legacy boot

e Store all Secure Boot management variables as Authenticated Variables in
protected flash

* Require User-Presence to disable Secure Boot

* Protect variables containing user-settings for CSM and Secure Boot Enable
from unauthorized writes

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines @1

Key areas for concern

* Option ROMs

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Option ROM Exploit

Install malware into the OS startup sequence
Hook OS services to capture and leak sensitive data
Hook OS services to hide from OS-level antivirus scans and other detection measures

With legacy boot, could pollute the MBR. With UEFI boot, could replace the OS loader
(Bootx64.efi, BootlA32.efi)

Perform persistent destructive behavior
Install malware into hardware devices: hard drives, USB, Thunderbolt, etc.
Reinstall OS-level malware on reset if it was detected and removed

Survives OS reinstall and hard drive reformat if installed in a physical OpROM (e.g.,
addin card)

UEFI Plugfest — October 2017 www.uefi.org

Threats and Mitigation Guidelines

Option ROM Exploit Limitations

* Maliciously modified ROMs should not be dispatched if Secure Boot is properly enabled
* Cannot directly infect SMM if SMRAM is already locked

* Cannot write to SPI flash if flash write protections are already enabled

* THEREFORE, should be limited to Ring O privileges

UEFI Plugfest — October 2017 www.uefi.org

Additional Concerns

UEFI Plugfest — October 2017 www.uefi.org

Additional Concerns

8

In addition to standard software security threats, UEF!
Platform Firmware is also susceptible to additional

threats, such as:

« Remote management control interfaces

* Debug hardware interfaces

* Custom security-related code implementations
 Development-oriented debugging code paths
 ASSERTs

 Password Handling

* Source code overrides

UEFI Plugfest — October 2017 www.uefi.org

Remote Management Control

* Ensure that the most recent version of Vulnerability Note VU#491375
Management Engine (M E) or Sim”ar Intel Active Management Technology (AMT) does not properly enforce access

control

fi rmwa re is u Sed Original Release date: 02 May 2017 | Last revised: 05 Jun 2017

& Print o Tweet | [HJ Send & Share

Overview

* Provide an easy method for end-users to
update product firmware

Technologies based on Intel Active Management Technology may be vulnerable to remote privilege escalation, which
may allow a remote, unauthenticated attacker to execute arbitrary code on the system.

Description
CWE-284: Improper Access Control - CVE-2017-5689

Intel offers a number of hardware-based remote management technologies meant for maintenance of computer
systems. These technologies include Intel® Active Management Technology (AMT), Intel® Small Business
Technology (SBT), and Intel® Standard Manageability, and the Intel Management Engine.

These technologies listen for remote commands on several known ports. Intel's documentation provides that ports
16992 and 16993 allow web GUI interaction with AMT. Other ports that may be used by AMT include 16994 and 16995,
and 623 and 664.

The Intel Management Engine that supports these technologies is vulnerable to a privilege escalation that allows an
unauthenticated attacker to gain access to the remote management features provided by the Intel Management
Engine. Intel has released a security advisory as well as a mitigation guide with more details.

It is currently not clear how many devices or computers are shipped with Intel remote management technologies
enabled by default. Criginal equipment manufacturers (OEMs) selling devices containing Intel products may enable
remote management features by default on a model or BIOS/UEF| version basis. The CERT/CC is reaching out to
OEMs to determine which if any models may be vulnerable by default. Intel's security advisory at present suggests
consumer personal computers are unaffected by default. The "Vendor Information” section below contains more
information.

Impact

A remote, unauthenticated attacker may be able to gain access to the remote management features of the system.
The execution cccurs at a hardware system level regardless of operating system environment and configuration.

UEFI Plugfest — October 2017 www.uefi.org

Debug Hardware Interfaces

Maxim Goryachy

Mark Ermolov

* Ensure that all hardware debug interfaces
are disabled and locked for shipping

duct Tapping into the Core
products

* Ensure that all debug code that reports
incoming/outgoing data for development is
removed from shipping products wesim Garvchy

e Ensure that End of Manufacturing write-

once registers and fuses are properly
Set/blown Intel® Direct Connect Interface as a basis for hardware Trojans

Positive Research Center
mgoryachiy@ ptsecurity.com
mermolov@ ptsecurity.com

wo

https://lab.dsst.io/slides/33c3/8069.html

UEFI Plugfest — October 2017 www.uefi.org

Custom Security-Related Code

* Always only use approved security-related
algorithms and industry vetted library
functions

* Never write custom security-related code

even as a temporary solution, because it
could end up in shipping products

UEFI Plugfest — October 2017

VOID Sha256Hash (
IN VOID *Passwe
IN UINTN Leng
OUT UINT8 *H

)

UINTN i;
ZeroMem (

// Just do
// Replace

int ValidatePassword (
IN CHAR16 *Password,
IN UINTN Length,
IN UINT8 *Hash
)

{
UINT8 PassHash [32];

<::ZZ;§éii a secure hashing function.
6Hash ((VOID*)Password *sizeOf(CHAR16), PassHash);

return MemCompare (Hash, PassHash, sizeof (PassHash));

}

www.uefi.org

Development Debugging Code

* If you're adding debugging code that would
create a vulnerability if shipped — stop and
rethink! There’s most likely a better way.

e |f you absolutely must add insecure code
for debugging

* Make it runtime dependent on a behavior-
specific symbol so it is focused and easy to
remove

* Make definition of the runtime symbol build-
dependent on the Debug-build symbol so
Release builds will break

* C(Clearly comment it with a specific tag and
remove it as soon as possible

UEFI Plugfest — October 2017

// BUGBUG_SECURITY: define symbols to include insecure code
// for debugging purposes. Remove prior to release!

#if !defined(MDEPKG_NDEBUG)
BOOLEAN mBypassVerification
BOOLEAN mLogPasswonrd

#endif

TRUE;
TRUE;

int ValidatePassword (
IN CHAR16 *Password,
IN UINTN Length,
IN UINT8 *Hash

)

UINT8 PassHash [32];

// BUGBUG_SECURITY: insecure code.
if (mLogPassword) WritePasswordToLog (Password, Length);

// Call a secure hashing function.
Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), PassHash);

// BUGBUG_SECURITY: insecure code.
if (mBypassVerification) return 0;

return MemCompare (Hash, PassHash, sizeof (PassHash));

www.uefi.org

ASSERTSs

ASSERTs are DANGEROUS, and should be EFI_STATUS TransferData (
. IN CHAR8 *InBuffer,
avoided IN UINT32 Length,
IN UINT8 Id
)
ASSERTs are compiled out of Release builds ¢ EFI_STATUS Status;
UINT8 *StageBuffer;
I // Validate input parameters.
ASSERTs are for CatChmg bugs that should if (InBuffer == NULL) return EFI_INVALID PARAMETER;
never happen if (Length == @) return EFI_INVALID_PARAMETER;

if (Length > CONFIG_MAX_DATA_SIZE) return EFI_BAD BUFFER_SIZE;

// Create local staging buffer.

ASSERTSs are not for catching possible errors or Status = gBS->AllocatePool (

. . . EfiRuntimeServicesData, Length, &StageBuffer);

Va“dat'ng |nPUtS if (EFI_ERROR (Status)) return Status;

ASSERT (StageBuffer != NULL); // ptr should never be null if
// AllocatePool returns success.

ASSERTs used for input validation can allow for T (S e
buffer overruns and Other EXPIOitable Status = TransferDataToDevice (StageBuffer, Length, Id);
vulnerabilities return Status;

UEFI Plugfest — October 2017 www.uefi.org

Password Handling

* Never store passwords as raw text

* Always use an approved hashing algorithm
and only store representations of
passwords when needed

* Always explicitly clear buffers used to

operate on passwords as soon as possible
and before deallocation

UEFI Plugfest — October 2017

{

}

EFI_STATUS AuthorizeUser (VOID)

(PassHash));

EFI_STATUS Status;

SHA256 HASH PassHash, StoredHash;
UINT16 *Password;

int CmpValue;

// Get the stored representation of the password if set.
Status = GetPassHashFromStorage (&StoredHash);
if (EFI_ERROR (Status)) return Status; // no password set.

Status = gBS->AllocatePool (
EfiBootServicesData, MAX_ PASS SIZE, &Password);
if (EFI_ERROR (Status)) return Status;

// Get raw password text from user.

Status = GetPasswordFromUser (Password, MAX_PASS_SIZE);

if (EFI_ERROR (Status)) return Status;

Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), &PassHash);

ZeroMem (Password, MAX_PASS_SIZE); // explicitly clear password
// before deallocating buffer.

gBS->FreePool (Password);

CmpValue = MemCompare (&StoredHash, &PassHash, sizeof

if (CmpValue != @) return EFI_ACCESS DENIED;

return EFI_SUCCESS;

www.uefi.org

Overrides

Platform code often overrides portions of the core in an
Override folder

 Never assume that override code contains all current security fixes to the core versions

* Always compare the override versions with the latest core versions to ensure that all
security fixes are applied

* When adding custom code that could potentially add a vulnerability, always have the
code security-reviewed

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

For complex systems,
“Bug-Free” does not exist!

Bugs provide a means to compromise a system!

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

Challenges of developing “Bug-Free” Firmware

e There are thousands and thousands of lines of code
> Manual review of all code and code paths is impractical

* There are multiple settings that must all be configured properly

> Test case matrixes for all use-cases can be overwhelming

* Even widely-accepted “safe” code can be found vulnerable
> OpenSSL 1.0.1 through 1.0.1f (Heartbleed)

e Systems rarely use the most current and secure code base
> Last minute code changes to products nearing release are risky

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

Targeted Source Code Reviews

* Variable Usage and Organization
* What would happen if a variable were deleted?
 What benefit could an attacker gain by modifying a variable?

e Does a variable need to be accessible at Runtime? Does it need to be
modified at Runtime?

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

Targeted Source Code Reviews

* External Facing Code and SMI Handlers

* Does the code properly validate externally provided input parameters? Does it use
copies to prevent TOCTOU vulnerabilities?

* (Can an untrusted source provide input parameters that would cause unexpected
behavior?

* Can the code be tricked into copying data into or out of unintended address space
such as SMRAM?

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

Targeted Source Code Reviews

e Security Related Code

e Are industry vetted security algorithms being used, (no custom or ad hoc
implementations)?

e Are security algorithms being used correctly?
* Are the most recent versions of security libraries being used?

* Are the standard core implementations being used, (no older or custom versions
in an Override folder)?

* Are there any bugs or code paths that could allow bypass of a security check?

UEFI Plugfest — October 2017 www.uefi.org

Validation Guidelines

Validation Tools

« When a new vulnerability is discovered, always create a test for it (if possible)

* When there are any changes to code related to a security vulnerability, always re-test
for the vulnerability (if possible)

 Perform fuzz and boundary testing

* |ncorporate industry standard testing tools, such as CHIPSEC and automated code
analysis

UEFI Plugfest — October 2017 www.uefi.org

Next Steps

UEFI Plugfest — October 2017 www.uefi.org

Next Steps

What Phoenix is Doing

Performing targeted code reviews
* Developing security test tools and integrating into our QA process
 Reviewing disclosures and guidelines, and verifying our implementations
 Back porting security fixes to previous codebases
 Working with customers to educate them on important security fixes
 Monitoring the EDK2 codebase for important security fixes
 Monitoring social media for publicly disclosed findings
* |nvestigating emerging specifications, such as NIST SP 800-193

UEFI Plugfest — October 2017 www.uefi.org

7
Next Steps
Everyone that provides pre-OS code, and that includes firmware Option

ROM code and EFl applications, needs to follow similar steps to validate
their implementations

Become a Contributor member for access to UEFI work in progress

Select a corporate technical security representative and have them
participate with the UEFI Spec Security Sub-team

Consider participation in the Tianocore open-source development project
and its security team

Sign up to the usrt-notify email alias via admin@uefi.org to receive urgent
security notifications

Make sure you have NDAs and arrangements to receive security
notifications from silicon providers, OSVs, etc.

UEFI Plugfest — October 2017 www.uefi.org

mailto:admin@uefi.org

Thanks for attending the Fall 2017
UEFI Plugfest

For more information on the Unified
EFl Forum and UEFI Specifications,
visit http://www.uefi.org

presented by

phoenix

technologies

UEFI Plugfest — October 2017 www.uefi.org

http://www.uefi.org/

