
presented by

UEFI Firmware
Security Concerns and Best Practices

Fall 2017 UEFI Plugfest
October 30 – November 3, 2017

Presented by Dick Wilkins, PhD & Jim Mortensen
(Phoenix Technologies, Ltd.)

1UEFI Plugfest – October 2017 www.uefi.org

Legal Stuff

Copyright © 2017 Phoenix Technologies Ltd. All rights reserved.

PHOENIX TECHNOLOGIES LTD. MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION
HEREIN DESCRIBED AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR
PURPOSE OR NON-INFRINGEMENT. FURTHER, PHOENIX
TECHNOLOGIES LTD. RESERVES THE RIGHT TO REVISE THIS
DOCUMENTATION AND TO MAKE CHANGES FROM TIME TO TIME IN
THE CONTENT WITHOUT OBLIGATION OF PHOENIX TECHNOLOGIES
LTD. TO NOTIFY ANY PERSON OF SUCH REVISIONS OR CHANGES.

2UEFI Plugfest – October 2017 www.uefi.org

Contents

• Introduction

• Threats and Mitigation Guidelines

• Additional Concerns

• Validation Guidelines

• Next Steps

• Questions

3UEFI Plugfest – October 2017 www.uefi.org

Introduction

4UEFI Plugfest – October 2017 www.uefi.org

This Content

• This content is an update of
presentations at the 2014 and 2015
Spring UEFI plugfest events

• An earlier but more comprehensive
version may be found at:
http://www.uefi.org/learning_center/industryresources

5UEFI Plugfest – October 2017 www.uefi.org

Introduction

• UEFI firmware is now widely deployed and has become a
target for hackers and security analysts/researchers

• Poor implementations affect the credibility of the UEFI
“brand” and market perception of all implementations

• As with all software implementations, there are going to
be faults - (Phoenix is not perfect, even if we want to be)

• Phoenix would like to share some of our best practices in
the interest of raising the quality and security of all UEFI
implementations

6UEFI Plugfest – October 2017 www.uefi.org

Introduction

Firmware is software, and is therefore vulnerable
to the same threats that typically target software

• Maliciously crafted input

• Elevation of privilege

• Data tampering

• Unauthorized access to sensitive data

• Information disclosure

• Denial of Service

• Key Management

• Etc.

7UEFI Plugfest – October 2017 www.uefi.org

Introduction

Firmware-Specific Threats
• Maliciously crafted input – Buffer overflows to inject malware

• Elevation of privilege – SMM code injection

• Data tampering – Modifying UEFI variables (SecureBoot, Configuration, etc.)

• Unauthorized access to sensitive data – Disclosure of SMRAM contents

• Information disclosure – SMM rooted malware; “secrets” left in memory

• Denial of Service – SPI flash corruption to “brick” the system

• Key Management – Private Key Management for signed capsule updates

8UEFI Plugfest – October 2017 www.uefi.org

Introduction

We Are All At Risk!

Disclosures regarding UEFI BIOS security vulnerabilities look bad for the
whole UEFI community!

So how do we protect against UEFI Firmware attacks?

9UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

10UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Many organizations have provided disclosures of known
issues and guidelines for developing more secure firmware

Examples come from Intel, Microsoft, Mitre, NIST, Linux
distros and others. Some are public and some are available

only under NDA via direct communications with the
involved companies

11UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern:
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

12UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

13UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Malware injected into the address space is transient,
and will be cleaned up on the next boot

Malware injected into the firmware flash regions is
persistent and will run on every subsequent boot

14UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

SPI Flash Exploit
• All PEIMs in flash are mapped to the address space as a

part of FV_Recovery

• An attacker with write-access to flash can inject
malware into the firmware

• Malicious PEIMs can disallow flash updates, or cause
destructive behavior (e.g., ‘brick’ the system)

• Malicious DXE drivers can disable security settings and
install malicious code into the OS

• Malware in flash is persistent, and survives OS reinstall
and hard drive reformat

FV_Recovery
resources

FV_MAIN

Variable Store

Address Space

FV_MAIN

DXE

Dispatcher

DXE Driver

DXE Driver

DXE Driver

Runtime

Service

SPI

Flash

Hard drive

UEFI Plugfest – October 2017 www.uefi.org 15

Threats and Mitigation Guidelines

16

• All flash Lock bits must be appropriately set
prior to running any untrusted code

• If flash writes are protected via SMI
handlers, all SMM protection bits must also
be appropriately set

• All Protected Range registers that block
writes to flash address space must also be
appropriately set and locked

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

17

On resume from S3:
• All flash Lock bits must be appropriately set

prior to running any untrusted code

• If flash writes are protected via SMI
handlers, all SMM protection bits must also
be appropriately set

• All Protected Range registers that block
writes to flash address space must also be
appropriately set and locked

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

18

On resume from S3:
• Scripts that re-initialize the platform must

be secured against malicious modifications

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

19UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

20

• Ensure that all patches have been applied
to Variable Services drivers

• Review custom implementations for similar
vulnerabilities that have been patched in
the core implementation

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

21

• Lock Authenticated Variable regions as early
as possible

• Separate integral configuration and
security-based variables from those
expected to be modified at runtime

• Reduce permissions to only what is needed
• Remove RT access for POST-time variables
• Set variables as Read-Only if they are not

intended to be modified at runtime

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

22UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Secure Capsule Updates rely on proper signing, private key
management, validation, and rollback protection

• NIST SP 800-107 provides guidelines for hash algorithm usage
• NIST SP 800-57 provides guidelines for key management
• NIST SP 800-147(b) provides guidelines for secure BIOS Updates
• NIST SP 800-193* provides general firmware resiliency guidelines,

including firmware update mechanisms

* draft May 2017

23UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

24

• Ensure that all patches have been applied
to Capsule Update drivers

• Review custom implementations for similar
vulnerabilities that have been patched in
the core implementation

• Enforce Signed Capsule Updates
• Enforce Rollback Protection
• Use an HSM or Signing Authority for private

key protection

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

25UEFI Plugfest – October 2017 www.uefi.org

What is SMM?
• Highly privileged processor mode

• Entered through a System Management
Interrupt (SMI)

• Processor saves its context, services the SMI,
then restores context and resumes

• SMM code has full visibility of all address
space and devices

• Transition is transparent to the rest of the
system

Threats and Mitigation Guidelines

OS

Application

OS

Application

OS

Application

3rd Party Driver 3rd Party Driver

3rd Party Driver 3rd Party Driver

OS Kernel

Hypervisor

SMM

Ring 3

Ring 2

Ring 1

Ring 0

Ring -1

Ring -2

26UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

RAM

SMRAM

OS Kernel

Hypervisor

SMM Mode
• SMM code has full access to all system memory

and devices

• SMM code is not bound by OS Kernel or
Hypervisor protections

• SMM code can read all of memory, modify
memory contents, and even overwrite critical
system files and data on storage mediums

Hard drive

SMM Code

27UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

RAM

SMRAM

OS Kernel

Hypervisor

SMM Mode Exploits
• During an SMI, all code runs with SMM-level

privileges (Ring -2) regardless of where it resides

• Malware resident in SMRAM has full access to all
system memory and devices

• Legitimate code in unprotected memory can be
modified by Ring 0 malware

• Modified code called by an SMI handler runs with
SMM-level privileges (Ring -2) and gains full access to
the system

Hard drive

SMM Code

Non-SMM Code

28UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

29

• SMM code must never call code outside of
SMRAM because an attacker could have
maliciously modified that code

• SMM code must validate input parameters
from untrusted sources to prevent buffer
reads/writes that extend into SMRAM

• SMM code must copy input parameters and
validate and use the copy, to prevent time-
of-check-time-of-use (TOCTOU)
vulnerabilities

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

30

Enable Hardware Protections
• Lock SMRAM as early as possible
• Lock SMI control registers
• Enable hardware NX protections for

addresses outside of SMRAM (if supported)
• Enable paging NX protections for addresses

outside of SMRAM

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

31UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

32

• UEFI Variables that contain Secure Boot
settings must be locked and protected from
unauthorized modification

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

33

• SMM code must never call code outside of
SMRAM as this could allow bypass of
Secure Boot protections

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

34

• All flash Lock bits, SMM protections, and
Protected Range registers must be properly
set to prevent bypass of Secure Boot
protections

UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Secure Boot
• Disable CSM

• Set image verification defaults to secure values:
• DENY_EXECUTE_ON_SECURITY_VIOLATION

• QUERY_USER_ON_SECURITY_VIOLATION

• Disallow fallback to legacy boot

• Store all Secure Boot management variables as Authenticated Variables in
protected flash

• Require User-Presence to disable Secure Boot

• Protect variables containing user-settings for CSM and Secure Boot Enable
from unauthorized writes

35UEFI Plugfest – October 2017 www.uefi.org

Threats and Mitigation Guidelines

Key areas for concern
• Firmware Flash Regions

• UEFI Variables in Flash

• Capsule Updates

• SMM

• Secure Boot

• Option ROMs

36UEFI Plugfest – October 2017 www.uefi.org

Option ROM Exploit
• Install malware into the OS startup sequence

• Hook OS services to capture and leak sensitive data

• Hook OS services to hide from OS-level antivirus scans and other detection measures

• With legacy boot, could pollute the MBR. With UEFI boot, could replace the OS loader
(Bootx64.efi, BootIA32.efi)

• Perform persistent destructive behavior

• Install malware into hardware devices: hard drives, USB, Thunderbolt, etc.

• Reinstall OS-level malware on reset if it was detected and removed

• Survives OS reinstall and hard drive reformat if installed in a physical OpROM (e.g.,
addin card)

37

Threats and Mitigation Guidelines

UEFI Plugfest – October 2017 www.uefi.org 37

Option ROM Exploit Limitations
• Maliciously modified ROMs should not be dispatched if Secure Boot is properly enabled

• Cannot directly infect SMM if SMRAM is already locked

• Cannot write to SPI flash if flash write protections are already enabled

• THEREFORE, should be limited to Ring 0 privileges

Threats and Mitigation Guidelines

38
UEFI Plugfest – October 2017 www.uefi.org 38

Additional Concerns

39
UEFI Plugfest – October 2017 www.uefi.org 39

In addition to standard software security threats, UEFI
Platform Firmware is also susceptible to additional
threats, such as:

• Remote management control interfaces

• Debug hardware interfaces

• Custom security-related code implementations

• Development-oriented debugging code paths

• ASSERTs

• Password Handling

• Source code overrides

40

Additional Concerns

40
UEFI Plugfest – October 2017 www.uefi.org 40

Remote Management Control

41

• Ensure that the most recent version of
Management Engine (ME) or similar
firmware is used

• Provide an easy method for end-users to
update product firmware

4141
UEFI Plugfest – October 2017 www.uefi.org

Debug Hardware Interfaces

https://lab.dsst.io/slides/33c3/8069.html

• Ensure that all hardware debug interfaces
are disabled and locked for shipping
products

• Ensure that all debug code that reports
incoming/outgoing data for development is
removed from shipping products

• Ensure that End of Manufacturing write-
once registers and fuses are properly
set/blown

42
4242

UEFI Plugfest – October 2017 www.uefi.org

VOID Sha256Hash (
IN VOID *Password,
IN UINTN Length,
OUT UINT8 *Hash
)

{
UINTN i;
ZeroMem (Hash, 32);

// Just do a simple transformation for now.
// Replace with real code later.
for (i=0; i<Length; i++) {

Hash[i%32] = ((UINT8*)Password)[i] + 'W';
}

}

Custom Security-Related Code

43

• Always only use approved security-related
algorithms and industry vetted library
functions

• Never write custom security-related code
even as a temporary solution, because it
could end up in shipping products

int ValidatePassword (
IN CHAR16 *Password,
IN UINTN Length,
IN UINT8 *Hash
)

{
UINT8 PassHash [32];

// Call a secure hashing function.
Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), PassHash);

return MemCompare (Hash, PassHash, sizeof (PassHash));
}

4343
UEFI Plugfest – October 2017 www.uefi.org

Development Debugging Code

44

• If you’re adding debugging code that would
create a vulnerability if shipped – stop and
rethink! There’s most likely a better way.

• If you absolutely must add insecure code
for debugging
• Make it runtime dependent on a behavior-

specific symbol so it is focused and easy to
remove

• Make definition of the runtime symbol build-
dependent on the Debug-build symbol so
Release builds will break

• Clearly comment it with a specific tag and
remove it as soon as possible

// BUGBUG_SECURITY: define symbols to include insecure code
// for debugging purposes. Remove prior to release!
#if !defined(MDEPKG_NDEBUG)
BOOLEAN mBypassVerification = TRUE;
BOOLEAN mLogPassword = TRUE;
#endif

int ValidatePassword (
IN CHAR16 *Password,
IN UINTN Length,
IN UINT8 *Hash
)

{
UINT8 PassHash [32];

// BUGBUG_SECURITY: insecure code.
if (mLogPassword) WritePasswordToLog (Password, Length);

// Call a secure hashing function.
Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), PassHash);

// BUGBUG_SECURITY: insecure code.
if (mBypassVerification) return 0;

return MemCompare (Hash, PassHash, sizeof (PassHash));
}

4444
UEFI Plugfest – October 2017 www.uefi.org

ASSERTs

45

• ASSERTs are DANGEROUS, and should be
avoided

• ASSERTs are compiled out of Release builds

• ASSERTs are for catching bugs that should
never happen

• ASSERTs are not for catching possible errors or
validating inputs

• ASSERTs used for input validation can allow for
buffer overruns and other exploitable
vulnerabilities

EFI_STATUS TransferData (
IN CHAR8 *InBuffer,
IN UINT32 Length,
IN UINT8 Id
)

{
EFI_STATUS Status;
UINT8 *StageBuffer;

// Validate input parameters.
if (InBuffer == NULL) return EFI_INVALID_PARAMETER;
if (Length == 0) return EFI_INVALID_PARAMETER;
if (Length > CONFIG_MAX_DATA_SIZE) return EFI_BAD_BUFFER_SIZE;

// Create local staging buffer.
Status = gBS->AllocatePool (

EfiRuntimeServicesData, Length, &StageBuffer);
if (EFI_ERROR (Status)) return Status;
ASSERT (StageBuffer != NULL); // ptr should never be null if

// AllocatePool returns success.

CopyMem (StageBuffer, InBuffer, Length);
Status = TransferDataToDevice (StageBuffer, Length, Id);

return Status;
}

4545
UEFI Plugfest – October 2017 www.uefi.org

Password Handling

46

• Never store passwords as raw text

• Always use an approved hashing algorithm
and only store representations of
passwords when needed

• Always explicitly clear buffers used to
operate on passwords as soon as possible
and before deallocation

EFI_STATUS AuthorizeUser (VOID)
{
EFI_STATUS Status;
SHA256_HASH PassHash, StoredHash;
UINT16 *Password;
int CmpValue;

// Get the stored representation of the password if set.
Status = GetPassHashFromStorage (&StoredHash);
if (EFI_ERROR (Status)) return Status; // no password set.

Status = gBS->AllocatePool (
EfiBootServicesData, MAX_PASS_SIZE, &Password);

if (EFI_ERROR (Status)) return Status;

// Get raw password text from user.
Status = GetPasswordFromUser (Password, MAX_PASS_SIZE);
if (EFI_ERROR (Status)) return Status;

Sha256Hash ((VOID*)Password, Length*sizeOf(CHAR16), &PassHash);
ZeroMem (Password, MAX_PASS_SIZE); // explicitly clear password

// before deallocating buffer.
gBS->FreePool (Password);

CmpValue = MemCompare (&StoredHash, &PassHash, sizeof
(PassHash));
if (CmpValue != 0) return EFI_ACCESS_DENIED;

return EFI_SUCCESS;
}

4646
UEFI Plugfest – October 2017 www.uefi.org

Overrides

Platform code often overrides portions of the core in an
Override folder
• Never assume that override code contains all current security fixes to the core versions

• Always compare the override versions with the latest core versions to ensure that all
security fixes are applied

• When adding custom code that could potentially add a vulnerability, always have the
code security-reviewed

47
4747

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

48
4848

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

For complex systems,

“Bug-Free” does not exist!

Bugs provide a means to compromise a system!

49
4949

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

Challenges of developing “Bug-Free” Firmware

• There are thousands and thousands of lines of code
 Manual review of all code and code paths is impractical

• There are multiple settings that must all be configured properly
 Test case matrixes for all use-cases can be overwhelming

• Even widely-accepted “safe” code can be found vulnerable
 OpenSSL 1.0.1 through 1.0.1f (Heartbleed)

• Systems rarely use the most current and secure code base
 Last minute code changes to products nearing release are risky

50
5050

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

Targeted Source Code Reviews

• Variable Usage and Organization
• What would happen if a variable were deleted?

• What benefit could an attacker gain by modifying a variable?

• Does a variable need to be accessible at Runtime? Does it need to be
modified at Runtime?

51
5151

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

Targeted Source Code Reviews

• External Facing Code and SMI Handlers
• Does the code properly validate externally provided input parameters? Does it use

copies to prevent TOCTOU vulnerabilities?

• Can an untrusted source provide input parameters that would cause unexpected
behavior?

• Can the code be tricked into copying data into or out of unintended address space
such as SMRAM?

52
5252

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

Targeted Source Code Reviews

• Security Related Code
• Are industry vetted security algorithms being used, (no custom or ad hoc

implementations)?

• Are security algorithms being used correctly?

• Are the most recent versions of security libraries being used?

• Are the standard core implementations being used, (no older or custom versions
in an Override folder)?

• Are there any bugs or code paths that could allow bypass of a security check?

53
5353

UEFI Plugfest – October 2017 www.uefi.org

Validation Guidelines

Validation Tools

• When a new vulnerability is discovered, always create a test for it (if possible)

• When there are any changes to code related to a security vulnerability, always re-test
for the vulnerability (if possible)

• Perform fuzz and boundary testing

• Incorporate industry standard testing tools, such as CHIPSEC and automated code
analysis

54
5454

UEFI Plugfest – October 2017 www.uefi.org

Next Steps

55
5555

UEFI Plugfest – October 2017 www.uefi.org

Next Steps

What Phoenix is Doing
• Performing targeted code reviews

• Developing security test tools and integrating into our QA process

• Reviewing disclosures and guidelines, and verifying our implementations

• Back porting security fixes to previous codebases

• Working with customers to educate them on important security fixes

• Monitoring the EDK2 codebase for important security fixes

• Monitoring social media for publicly disclosed findings

• Investigating emerging specifications, such as NIST SP 800-193

56
5656

UEFI Plugfest – October 2017 www.uefi.org

Next Steps
• Everyone that provides pre-OS code, and that includes firmware Option

ROM code and EFI applications, needs to follow similar steps to validate
their implementations

• Become a Contributor member for access to UEFI work in progress

• Select a corporate technical security representative and have them
participate with the UEFI Spec Security Sub-team

• Consider participation in the Tianocore open-source development project
and its security team

• Sign up to the usrt-notify email alias via admin@uefi.org to receive urgent
security notifications

• Make sure you have NDAs and arrangements to receive security
notifications from silicon providers, OSVs, etc.

57
5757

UEFI Plugfest – October 2017 www.uefi.org

mailto:admin@uefi.org

presented by

Thanks for attending the Fall 2017
UEFI Plugfest

For more information on the Unified
EFI Forum and UEFI Specifications,
visit http://www.uefi.org

58
5858

UEFI Plugfest – October 2017 www.uefi.org

http://www.uefi.org/

