
Advanced Configuration and Power
Interface Specification

Hewlett-Packard Corporation

Intel Corporation

Microsoft Corporation

Phoenix Technologies Ltd.

Toshiba Corporation

Revision 5.0

[December 6, 2011]

Advanced Configuration and Power Interface Specification
Acknowledgements

Copyright 2006 - 2011 All Rights Reserved.Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., Toshiba Corporation

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED OR INTENDED HEREBY.

HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS
SPECIFICATION. HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DO NOT WARRANT OR REPRESENT
THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.

All other product names are trademarks, registered trademarks, or service marks of their respective owners.
ii December 6, 2011 Version 5.0

Revision History

Revision Change Description Affected
Sections

5.0
Dec. 2, 2011

Ptec-002 5.2.6

5.0 MSFT-020 Enumeration Power Controls 7.2.7, 7.2.12,

5.0 MSFT-019 GTDT table 5.2.25

5.0 MSFT_0018 Locking Targets from AML 5.7.5

5.0 MSFT-0017 PLD clarification for handhelf form factors 5.1.8

5.0 MSFT-0016 Extended GPIO-signaled Event Numbers 5.6.5.3

5.0 MSFT-0015 (0.1) D3 Cold Errata 7.2.1, 7.2.18
through 7.2.22

5.0 MSFT-0014 5.2.23

5.0 MSFT-0013_ADR for SIO 6.2

5.0 MSFT-0012 ROM (Get ROM Data) 5.6.6, 9.16

MSFT-010 Reserved Table Signatures 5.2.6

5.0 MSFT-0009 (0.4)TimeAndAlarmDevice Modification 9.18

5.0 MSFT-0008 Collaborative Processor Performance Control 8.4.5

5.0 MSFT-0007 Platform Communications Channel added (new ch. 14) Ch 14 (new)

5.0 MSFT-0007-0008 -Platform_Communication_Channel_and_CPPC_changes (new) 14

5.0 MSFT-0006 SPB Abstraction 3.11.3,
5.5.2.4.5.x,
6.4.3.8.2,
6.5.8,18.1.3,
18.1.6, 18.1.7,
18.5.44,
18.5x,19.2.5.2

5.0 MSFT-0005 GPIO Abstraction 5.5.2.4.x,5.6,
5.6.5.x, 6.4.3,
6.3.8.x, 18.5.51,
18.5.52, 18.5.89

5.0 MSFT-0004 (0.2) Fixed DMA Descriptor 6.4.2.9, 18.5.50

5.0 MSFT-0003 Device identification 6.1, 6.1.3, 6.1.5,
6.1.6, 6.1.9

5.0 MSFT-0002 Interrupt Descriptors for Generic Interrupt Controller 5.2.11, 5.2.14-
15

Advanced Configuration and Power Interface Specification
5.0 MSFT-0001 HW-reduced ACPI 3.11.x, 4, 4.1.x,
4.3.7, 5.2.9,
5.2.9.1, 6.4.2.1,
6.4.3.6, 7.2.11,
7.3.4, 9.6, 12,
12.1, 12.6, 12.11,
12.11.1, 15,
15.1.x, 15.3,
15.3.1.x, 18.5.55,
18.5.57

5.0 INTC-0014 Remove a line (reference) not needed A.2.3

5.0 INTC-0013

5.0 INTC-0012 fix AML opcode table 19.3

5.0 INTC-0011 fix table offsets 18.6.x (tables)

5.0 INTC-0010 Update Constant Descriptions 18.5.88,
18.5.89,18.5.104
,18.5.136

5.0 INTC0009 RASF 5.2.20.x

5.0 INTC-008 5.2.6

5.0 INTC-006 Fixed Example 6.2.10.4

5.0 INTC-005 Update Package Description 18.5.92

5.0 INTC-004 Table Definition Language 20, 21.x

5.0 INTC-003 MPST 6.1, 6.1.3,
6.1.5,6.1.6, 6.1.9

5.0 INTC-002 EINJ 17.6.1, 17.6.3,
17.6.5

5.0 INTC-001 (0.8) Firmware Performance Data Table (FPDT) 5.2.20.4,
5.2.20.6

5.0 INTC-001 Firmware Performance Data Table (FPDT) (0.4) 5.2.19- 5.2.20.6

5.0 HP-0002 Additional Hardware Error Notification Types 18.3.2.7

5.0 HP-0001 (0.2) BMC Requested Graceful Shutdown 5.6.5, 6.3.5

5.0 ACPI4.0 _DSM function 0 clarification 9.14.1

5.0 AMD-002 0.3 ROM (Get ROM Data) B.3.3

Revision Change Description Affected
Sections
iv December 6, 2011 Version 5.0

4.0a
Apr. 2010

Errata corrected and clarifications added.
Removed text concerning government requirement of mechanical off
Clarified URL update document, Corrected section references for APIC, SLIT, SRAT
in Table 5-5, Update URLs and reformated Table 5-6
Corrected reference to Interrupt Source Override Structure
Corrected name for CPEP table
Corrected reference to SMBus, should be IPMI
Clarified BusCheck and DeviceCheck notifications in Table 5-53
Added link to non-ACPI Plug and Play ID reference document
Added missing _ATT and _GAI names, Corrected page/section references in Table 5-
67
Corrected EndTag name value. Was 0x78, correct value is 0x79 Table 6-33
Consumer/Producer bit is ignored (Restored 2.0C change that had been lost)
Clarified use of _GLK (Global Lock) object
Corrected definition of _TSD object
Corrected definition of _PSD object
Corrected table name (CPEP)
Corrected “maximum positive adjustment” value. Was 500%, correct value is 50%,
Updated description of example – 300 to 400 lux, Eliminated hardcoded package
lengths in examples, Changed “brightness” to “highest ambient light value”
Corrected reference to _IDE, should be _GTM. Corrected table reference
Clarified GPE Block Device Description
Corrected _PLD object examples
Repaired diagram that would not display properly Figure 10-2
Added missing _BCT method to Table 10-3
Clarified that OEM Information field should contain NULL string if not supported in
Table 10-4 &Table 10-5
Corrected description of _BTM arguments and return value
Clarified description of _BCT return value
Corrected HID for Power Source device. Was ACPI0003, correct value is ACPI0004
Corrected _PIF example. First package element was a Buffer, should be Integer,
Clarified that OEM Information field should contain NULL string if not supported Table
10-10
Corrected description of _SHL method Table 10-11
Clarified _PRL return value, a list of References
Corrected _PMC example. First package element was a Buffer, should be Integer
Clarified that OEM Information field should contain NULL string if not supported Table
10-12

2.2
5.2.6

5.2.12.4
5.2.18
5.5.2.4.3.1
5.6.5
5.6.6
5.6.7

6.4.2.8
6.4.3.5.1,2,3
6.5.7
8.4.3.4
8.4.4.5
8.4.5
9.2.5

9.8.2.1.1
9.10
9.13
10.1.3.1
10.2.2
10.2.1.1-2

10.2.2.8
10.2.2.9
10.3

10.3.3

10.4
10.3.4
10.4.1

Revision Change Description Affected
Sections

Advanced Configuration and Power Interface Specification
Removed “TODO” note. Updated example
Repaired diagram that would not display properly Figure 15-1
Corrected error conditions from “fatal” to “corrected
Corrected several incorrect section references, Clarified number of Generic Error
Data Entry structures is >=1 (not Zero)
Clarified number of Generic Error Data Entry structures is >=1 (not Zero)
Added new section clarifying SCI notification for generic error sources
Added new section describing Firmware First error handling
Clarified purpose of the codes Table 17-17
Added reference to table of COMMAND_STATUS codes Table 17-23
Clarified purpose of the command status codes in Table 17-27 and the error type
definitions in Table 17-28
Added _ATT resource descriptor field name
Clarified rules for Buffer vs. Integer return types from a field unit
Corrected section/page reference

10.4.1

10.5
15.1
17.1
17.3.1

17.3.2.6.1
17.3.2.6.2
17.4
17.5.1.1
17.6.1
17.6.3

18.1.8
18.5.44,89
18.5.101

4.0
June 2009

Major specification revision. Clock Domains, x2APIC Support, Logical Processor
Idling, Corrected Platform Error Polling Table, Maximum System Characteristics
Table, Power Metering and Budgeting, IPMI Operation Region, USB3 Support in
_PLD, Re-evaluation of _PPC acknowledgement via _OST, Thermal Model
Enhancements, _OSC at _SB, Wake Alarm Device, Battery Related Extensions,
Memory Bandwidth Monitoring and Reporting, ACPI Hardware Error Interfaces,
D3hot.

3.0b
Oct. 2006

Errata corrected and clarifications added.

3.0a
Dec. 2005

Errata corrected and clarifications added.

3.0
Sept. 2004

Major specification revision. General configuration enhancements. Inter-Processor
power, performance, and throttling state dependency support added. Support for >
256 processors added. NUMA Distancing support added. PCI Express support
added. SATA support added. Ambient Light Sensor and User Presence device
support added. Thermal model extended beyond processor-centric support.

2.0c
Aug. 2003

Errata corrected and clarifications added.

2.0b
Oct. 2002

Errata corrected and clarifications added.

2.0a
Mar. 2002

Errata corrected and clarifications added. ACPI 2.0 Errata Document Revision 1.0
through 1.5 integrated.

ACPI 2.0
Errata Doc.
Rev. 1.5

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.4

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.3

Errata corrected and clarifications added.

Revision Change Description Affected
Sections
vi December 6, 2011 Version 5.0

ACPI 2.0
Errata Doc.
Rev. 1.2

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.1

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.0

Errata corrected and clarifications added.

2.0
Aug. 2000

Major specification revision. 64-bit addressing support added. Processor and device
performance state support added. Numerous multiprocessor workstation and server-
related enhancements. Consistency and readability enhancements throughout.

1.0b
Feb. 1999

Errata corrected and clarifications added. New interfaces added.

1.0a
Jul. 1998

Errata corrected and clarifications added. New interfaces added.

1.0
Dec. 1996

Original Release.

Revision Change Description Affected
Sections

Advanced Configuration and Power Interface Specification
viii December 6, 2011 Version 5.0

Advanced Configuration and Power Interface Specification
Contents

1
Introduction... 1
1.1 Principal Goals.. 1
1.2 Power Management Rationale.. 2
1.3 Legacy Support... 3
1.4 OEM Implementation Strategy.. 3
1.5 Power and Sleep Buttons ... 4
1.6 ACPI Specification and the Structure Of ACPI ... 4
1.7 OS and Platform Compliance ... 6

1.7.1 Platform Implementations of ACPI-defined Interfaces .. 6
1.7.2 OSPM Implementations .. 10
1.7.3 OS Requirements.. 11

1.8 Target Audience.. 11
1.9 Document Organization .. 12

1.9.1 ACPI Introduction and Overview ... 12
1.9.2 Programming Models .. 13
1.9.3 Implementation Details.. 13
1.9.4 Technical Reference ... 14

1.10 Related Documents .. 15

2
Definition of Terms... 17
2.1 General ACPI Terminology ... 17
2.2 Global System State Definitions ... 24
2.3 Device Power State Definitions... 26
2.4 Sleeping State Definitions... 27
2.5 Processor Power State Definitions ... 28
2.6 Device and Processor Performance State Definitions .. 29

3
ACPI Overview.. 31
3.1 System Power Management... 33
3.2 Power States... 33

3.2.1 Power Button... 34
3.2.2 Platform Power Management Characteristics... 34

3.3 Device Power Management.. 36
3.3.1 Power Management Standards... 36
3.3.2 Device Power States... 36
3.3.3 Device Power State Definitions... 37

3.4 Controlling Device Power.. 37
3.4.1 Getting Device Power Capabilities.. 37
3.4.2 Setting Device Power States... 38
3.4.3 Getting Device Power Status .. 38
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba v

3.4.4 Waking the Computer ... 39
3.4.5 Example: Modem Device Power Management ... 39

3.5 Processor Power Management... 42
3.6 Device and Processor Performance States .. 43
3.7 Configuration and “Plug and Play” .. 43

3.7.1 Device Configuration Example: Configuring the Modem 44
3.7.2 NUMA Nodes .. 44

3.8 System Events .. 44
3.9 Battery Management... 45

3.9.1 Battery Communications ... 45
3.9.2 Battery Capacity.. 46
3.9.3 Battery Gas Gauge ... 46
3.9.4 Low Battery Levels.. 47
3.9.5 Battery Calibration... 48

3.10 Thermal Managment... 49
3.10.1 Active and Passive Cooling Modes... 50
3.10.2 Performance vs. Energy Conservation ... 51
3.10.3 Acoustics (Noise) .. 51
3.10.4 Multiple Thermal Zones... 51

3.11 Flexible Platform Architecture Support ... 51
3.11.1 Hardware-reduced ACPI ... 51
3.11.2 Low-Power Idle ... 52
3.11.3 Connection Resources.. 52

4
ACPI Hardware Specification .. 55
4.1 Hardware-Reduced ACPI ... 55

4.1.1 Hardware-Reduced Events ... 56
4.2 Fixed Hardware Programming Model ... 56

4.2.1 Functional Fixed Hardware ... 57
4.3 Generic Hardware Programming Model ... 58
4.4 Diagram Legends.. 60
4.5 Register Bit Notation ... 60
4.6 The ACPI Hardware Model .. 61

4.6.1 Hardware Reserved Bits ... 66
4.6.2 Hardware Ignored Bits .. 66
4.6.3 Hardware Write-Only Bits.. 66
4.6.4 Cross Device Dependencies... 66

4.7 ACPI Hardware Features.. 67
4.8 ACPI Register Model .. 68

4.8.1 ACPI Register Summary ... 71
4.8.2 Fixed Hardware Features.. 74
4.8.3 Fixed Hardware Registers... 84
4.8.4 Generic Hardware Registers... 92

5
ACPI Software Programming Model ... 101
5.1 Overview of the System Description Table Architecture .. 101
vi Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.1.1 Address Space Translation ... 104
5.2 ACPI System Description Tables.. 104

5.2.1 Reserved Bits and Fields .. 105
5.2.2 Compatability .. 106
5.2.3 Address Format... 106
5.2.4 Universal Uniform Identifiers (UUID)... 107
5.2.5 Root System Description Pointer (RSDP)... 108
5.2.6 System Description Table Header .. 109
5.2.7 Root System Description Table (RSDT) ... 113
5.2.8 Extended System Description Table (XSDT) .. 113
5.2.9 Fixed ACPI Description Table (FADT) .. 114
5.2.10 Firmware ACPI Control Structure (FACS)... 127
5.2.11 Definition Blocks.. 132
5.2.12 Multiple APIC Description Table (MADT).. 135
5.2.13 Global System Interrupts... 148
5.2.14 Smart Battery Table (SBST) ... 149
5.2.15 Embedded Controller Boot Resources Table (ECDT) 149
5.2.16 System Resource Affinity Table (SRAT) ... 151
5.2.17 System Locality Distance Information Table (SLIT) .. 154
5.2.18 Corrected Platform Error Polling Table (CPEP) .. 156
5.2.19 Maximum System Characteristics Table (MSCT) ... 157
5.2.20 ACPI RAS FeatureTable (RASF) .. 159
5.2.21 Memory Power StateTable (MPST) .. 163
5.2.22 Boot Graphics Resource Table (BGRT).. 179
5.2.23 Firmware Performance Data Table (FPDT) .. 182
5.2.24 Generic Timer Description Table (GTDT) ... 187

5.3 ACPI Namespace .. 189
5.3.1 Predefined Root Namespaces .. 191
5.3.2 Objects .. 192

5.4 Definition Block Encoding ... 192
5.5 Using the ACPI Control Method Source Language .. 194

5.5.1 ASL Statements .. 195
5.5.2 Control Method Execution... 196

5.6 ACPI Event Programming Model .. 218
5.6.1 ACPI Event Programming Model Components.. 218
5.6.2 Types of ACPI Events ... 219
5.6.3 Fixed Event Handling .. 220
5.6.4 General-Purpose Event Handling ... 220
5.6.5 GPIO-signaled ACPI Events ... 225
5.6.6 Device Object Notifications ... 227
5.6.7 Device Class-Specific Objects .. 231
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources....................... 233

5.7 Predefined Objects ... 244
5.7.1 _GL (Global Lock Mutex) ... 244
5.7.2 _OSI (Operating System Interfaces) .. 244
5.7.3 _OS (OS Name Object) ... 248
5.7.4 _REV (Revision Data Object)... 248
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba vii

5.7.5 _DLM (DeviceLock Mutex).. 249
5.8 System Configuration Objects .. 250

5.8.1 _PIC Method ... 250

6
Device Configuration ... 253
6.1 Device Identification Objects... 253

6.1.1 _ADR (Address) .. 254
6.1.2 _CID (Compatible ID).. 255
6.1.3 _CLS (Class Code) ... 256
6.1.4 _DDN (DOS Device Name)... 256
6.1.5 _HID (Hardware ID) .. 256
6.1.6 _HRV (Hardware Revision)... 257
6.1.7 _MLS (Multiple Language String).. 257
6.1.8 _PLD (Physical Device Location).. 258
6.1.9 _SUB... 265
6.1.10 _STR (String) .. 266
6.1.11 _SUN (Slot User Number)... 266
6.1.12 _UID (Unique ID)... 266

6.2 Device Configuration Objects ... 267
6.2.1 _CDM (Clock Domain) .. 268
6.2.2 _CRS (Current Resource Settings)... 268
6.2.3 _DIS (Disable)... 269
6.2.4 _DMA (Direct Memory Access)... 269
6.2.5 _FIX (Fixed Register Resource Provider) ... 272
6.2.6 _GSB (Global System Interrupt Base) .. 273
6.2.7 _HPP (Hot Plug Parameters) .. 274
6.2.8 _HPX (Hot Plug Parameter Extensions) ... 277
6.2.9 _MAT (Multiple APIC Table Entry) .. 281
6.2.10 _OSC (Operating System Capabilities)... 282
6.2.11 _PRS (Possible Resource Settings) ... 291
6.2.12 _PRT (PCI Routing Table) ... 291
6.2.13 _PXM (Proximity) .. 293
6.2.14 _SLI (System Locality Information) ... 294
6.2.15 _SRS (Set Resource Settings).. 297

6.3 Device Insertion, Removal, and Status Objects.. 297
6.3.1 _EDL (Eject Device List) ... 299
6.3.2 _EJD (Ejection Dependent Device)... 300
6.3.3 _EJx (Eject)... 301
6.3.4 _LCK (Lock) .. 302
6.3.5 _OST (OSPM Status Indication) ... 302
6.3.6 _RMV (Remove) ... 308
6.3.7 _STA (Status).. 308

6.4 Resource Data Types for ACPI... 309
6.4.1 ASL Macros for Resource Descriptors.. 309
6.4.2 Small Resource Data Type ... 309
6.4.3 Large Resource Data Type ... 316
viii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.5 Other Objects and Control Methods ... 349
6.5.1 _INI (Init) ... 349
6.5.2 _DCK (Dock) ... 350
6.5.3 _BDN (BIOS Dock Name)... 350
6.5.4 _REG (Region).. 351
6.5.5 _BBN (Base Bus Number) .. 353
6.5.6 _SEG (Segment)... 353
6.5.7 _GLK (Global Lock)... 355
6.5.8 _DEP (Operation Region Dependencies) ... 355

7
Power and Performance Management ... 357
7.1 Declaring a Power Resource Object ... 357

7.1.1 Defined Child Objects for a Power Resource.. 358
7.1.2 _OFF ... 358
7.1.3 _ON... 359
7.1.4 _STA (Status).. 359

7.2 Device Power Management Objects... 359
7.2.1 _DSW (Device Sleep Wake) ... 361
7.2.2 _PS0 (Power State 0) ... 362
7.2.3 _PS1 (Power State 1) ... 362
7.2.4 _PS2 (Power State 2) ... 362
7.2.5 _PS3 (Power State 3) ... 362
7.2.6 _PSC (Power State Current)... 363
7.2.7 _PSE (Power State for Enumeration) ... 363
7.2.8 _PR0 (Power Resources for D0)... 363
7.2.9 _PR1 (Power Resources for D1)... 364
7.2.10 _PR2 (Power Resources for D2)... 364
7.2.11 _PR3 (Power Resources for D3hot).. 365
7.2.12 _PRE (Power Resources for Enumeration) .. 365
7.2.13 PRW (Power Resources for Wake)... 366
7.2.14 _PSW (Power State Wake)... 367
7.2.15 _IRC (In Rush Current) ... 368
7.2.16 _S1D (S1 Device State) .. 368
7.2.17 _S2D (S2 Device State) .. 369
7.2.18 _S3D (S3 Device State) .. 369
7.2.19 _S4D (S4 Device State) .. 370
7.2.20 _S0W (S0 Device Wake State) ... 371
7.2.21 _S1W (S1 Device Wake State) ... 371
7.2.22 _S2W (S2 Device Wake State) ... 371
7.2.23 _S3W (S3 Device Wake State) ... 372
7.2.24 _S4W (S4 Device Wake State) ... 372

7.3 OEM-Supplied System-Level Control Methods .. 372
7.3.1 _BFS (Back From Sleep) ... 373
7.3.2 _PTS (Prepare To Sleep)... 373
7.3.3 _GTS (Going To Sleep) ... 374
7.3.4 System _Sx states ... 374
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba ix

7.3.5 _SWS (System Wake Source) .. 380
7.3.6 _TTS (Transition To State)... 381
7.3.7 _WAK (System Wake) ... 381

7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS .. 382

8
Processor Configuration and Control .. 385
8.1 Processor Power States ... 385

8.1.1 Processor Power State C0.. 387
8.1.2 Processor Power State C1.. 389
8.1.3 Processor Power State C2.. 389
8.1.4 Processor Power State C3.. 389
8.1.5 Additional Processor Power States... 390

8.2 Flushing Caches ... 391
8.3 Power, Performance, and Throttling State Dependencies.. 392
8.4 Declaring Processors... 393

8.4.1 _PDC (Processor Driver Capabilities)... 393
8.4.2 Processor Power State Control... 395
8.4.3 Processor Throttling Controls.. 400
8.4.4 Processor Performance Control.. 407
8.4.5 Collaborative Processor Performance Control.. 414
8.4.6 _PPE (Polling for Platform Errors) .. 427

8.5 Processor Aggregator Device ... 427
8.5.1 Logical Processor Idling .. 428
8.5.2 OSPM _OST Evaluation ... 429

9
ACPI-Defined Devices and Device-Specific Objects.............................. 431
9.1 _SI System Indicators .. 431

9.1.1 _SST (System Status)... 431
9.1.2 _MSG (Message) .. 431
9.1.3 _BLT (Battery Level Threshold) .. 432

9.2 Ambient Light Sensor Device.. 432
9.2.1 Overview ... 433
9.2.2 _ALI (Ambient Light Illuminance) .. 433
9.2.3 _ALT (Ambient Light Temperature)... 434
9.2.4 _ALC (Ambient Light Color Chromaticity) ... 434
9.2.5 _ALR (Ambient Light Response)... 435
9.2.6 _ALP (Ambient Light Polling) .. 439
9.2.7 Ambient Light Sensor Events.. 439
9.2.8 Relationship to Backlight Control Methods ... 440

9.3 Battery Device... 440
9.4 Control Method Lid Device.. 440

9.4.1 _LID... 440
9.5 Control Method Power and Sleep Button Devices.. 441
9.6 Embedded Controller Device .. 441
9.7 Generic Container Device... 441
9.8 ATA Controller Devices... 442
x Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
9.8.1 Objects for Both ATA and SATA Controllers... 442
9.8.2 IDE Controller Device.. 443
9.8.3 Serial ATA (SATA) Controller Device.. 446

9.9 Floppy Controller Device Objects ... 448
9.9.1 _FDE (Floppy Disk Enumerate) .. 448
9.9.2 _FDI (Floppy Disk Information) ... 449
9.9.3 _FDM (Floppy Disk Drive Mode)... 450

9.10 GPE Block Device... 450
9.10.1 Matching Control Methods for Events in a GPE Block Device........................ 451

9.11 Module Device .. 452
9.11.1 Describing PCI Bus and Segment Group Numbers under Module Devices ... 455

9.12 Memory Devices ... 457
9.12.1 Address Decoding... 458
9.12.2 Memory Bandwidth Monitoring and Reporting .. 458
9.12.3 _OSC Definition for Memory Device ... 460
9.12.4 Example: Memory Device ... 461

9.13 _UPC (USB Port Capabilities) .. 461
9.13.1 USB 2.0 Host Controllers and _UPC and _PLD ... 465

9.14 Device Object Name Collision .. 467
9.14.1 _DSM (Device Specific Method) ... 467

9.15 PC/AT RTC/CMOS Devices ... 470
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)...................................... 470
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02) 472

9.16 User Presence Detection Device .. 472
9.16.1 _UPD (User Presence Detect) .. 473
9.16.2 _UPP (User Presence Polling).. 473
9.16.3 User Presence Sensor Events .. 474

9.17 I/O APIC Device.. 474
9.18 Time and Alarm Device... 474

9.18.2 _GCP (Get Capability) .. 478
9.18.3 _GRT (Get Real Time) .. 479
9.18.4 _SRT (Set Real Time)... 479
9.18.5 _GWS (Get Wake alarm status).. 481
9.18.6 _CWS (Clear Wake alarm status) ... 481
9.18.7 _STP (Set Expired Timer Wake Policy) .. 481
9.18.8 _STV (Set Timer Value) .. 482
9.18.9 _TIP (Expired Timer Wake Policy) .. 482
9.18.10 _TIV (Timer Values) .. 483
9.18.11 ACPI Wakeup Alarm Events ... 483
9.18.12 Relationship to Real Time Clock Alarm ... 483
9.18.13 Time and Alarm device as a replacement to the RTC 483
9.18.14 Relationship to UEFI time source.. 483
9.18.15 Example ASL code ... 484

10
Power Source and Power Meter Devices ... 489
10.1 Smart Battery Subsystems ... 489
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xi

10.1.1 ACPI Smart Battery Status Change Notification Requirements...................... 492
10.1.2 Smart Battery Objects ... 493
10.1.3 _SBS (Smart Battery Subsystem) .. 494

10.2 Control Method Batteries .. 496
10.2.1 Battery Events... 497
10.2.2 Battery Control Methods ... 497

10.3 AC Adapters and Power Source Objects.. 510
10.3.1 _PSR (Power Source)... 510
10.3.2 _PCL (Power Consumer List) ... 511
10.3.3 _PIF (Power Source Information).. 511
10.3.4 _PRL (Power Source Redundancy List) ... 512

10.4 Power Meters.. 512
10.4.1 _PMC (Power Meter Capabilities)... 513
10.4.2 _PTP (Power Trip Points) ... 514
10.4.3 _PMM (Power Meter Measurement) ... 515
10.4.4 _PAI (Power Averaging Interval)... 515
10.4.5 _GAI (Get Averaging Interval)... 516
10.4.8 _PMD (Power Metered Devices)... 517

10.5 Example: Power Source and Power Meter Namespace.. 517

11
Thermal Management... 519
11.1 Thermal Control .. 519

11.1.1 Active, Passive, and Critical Policies .. 520
11.1.2 Dynamically Changing Cooling Temperature Trip Points 521
11.1.3 Detecting Temperature Changes .. 522
11.1.4 Active Cooling .. 524
11.1.5 Passive Cooling .. 525
11.1.6 Critical Shutdown .. 526

11.2 Cooling Preferences .. 527
11.2.1 Evaluating Thermal Device Lists... 528
11.2.2 Evaluating Device Thermal Relationship Information 529

11.3 Fan Device.. 529
11.3.1 Fan Objects... 530

11.4 Thermal Objects.. 533
11.4.1 _ACx (Active Cooling) ... 534
11.4.2 _ALx (Active List) .. 534
11.4.3 _ART (Active Cooling Relationship Table).. 535
11.4.4 _CRT (Critical Temperature)... 538
11.4.5 _DTI (Device Temperature Indication) .. 538
11.4.6 _HOT (Hot Temperature) .. 538
11.4.7 _NTT (Notification Temperature Threshold) ... 539
11.4.8 _PSL (Passive List)... 539
11.4.9 _PSV (Passive) ... 539
11.4.10 _RTV (Relative Temperature Values) ... 540
11.4.11 _SCP (Set Cooling Policy) .. 540
11.4.12 _TC1 (Thermal Constant 1) .. 543
xii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11.4.13 _TC2 (Thermal Constant 2) .. 543
11.4.14 _TMP (Temperature)... 544
11.4.15 _TPT (Trip Point Temperature) ... 544
11.4.16 _TRT (Thermal Relationship Table).. 544
11.4.17 _TSP (Thermal Sampling Period) ... 545
11.4.18 _TST (Temperature Sensor Threshold) .. 545
11.4.19 _TZD (Thermal Zone Devices).. 546
11.4.20 _TZM (Thermal Zone Member)... 546
11.4.21 _TZP (Thermal Zone Polling).. 546

11.5 Native OS Device Driver Thermal Interfaces .. 547
11.6 Thermal Zone Interface Requirements ... 548
11.7 Thermal Zone Examples... 548

11.7.1 Example: The Basic Thermal Zone... 548
11.7.2 Example: Multiple-Speed Fans ... 550
11.7.3 Example: Thermal Zone with Multiple Devices ... 552

12
ACPI Embedded Controller Interface Specification 559
12.1 Embedded Controller Interface Description .. 559
12.2 Embedded Controller Register Descriptions... 563

12.2.1 Embedded Controller Status, EC_SC (R) ... 563
12.2.2 Embedded Controller Command, EC_SC (W).. 564
12.2.3 Embedded Controller Data, EC_DATA (R/W)... 564

12.3 Embedded Controller Command Set .. 564
12.3.1 Read Embedded Controller, RD_EC (0x80) ... 565
12.3.2 Write Embedded Controller, WR_EC (0x81).. 565
12.3.3 Burst Enable Embedded Controller, BE_EC (0x82).. 565
12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)....................................... 566
12.3.5 Query Embedded Controller, QR_EC (0x84).. 566

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT 566
12.5 Embedded Controller Firmware .. 566
12.6 Interrupt Model.. 567

12.6.1 Event Interrupt Model.. 567
12.6.2 Command Interrupt Model .. 568

12.7 Embedded Controller Interfacing Algorithms .. 568
12.8 Embedded Controller Description Information .. 569
12.9 SMBus Host Controller Interface via Embedded Controller 569

12.9.1 Register Description.. 570
12.9.2 Protocol Description .. 574

12.10 SMBus Devices... 579
12.10.1 SMBus Device Access Restrictions .. 580
12.10.2 SMBus Device Command Access Restriction .. 580

12.11 Defining an Embedded Controller Device in ACPI Namespace 580
12.11.1 Example: EC Definition ASL Code ... 581

12.12 Defining an EC SMBus Host Controller in ACPI Namespace................................... 582
12.12.1 Example: EC SMBus Host Controller ASL-Code .. 582
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xiii

13
ACPI System Management Bus Interface Specification 585
13.1 SMBus Overview .. 585

13.1.1 SMBus Slave Addresses... 585
13.1.2 SMBus Protocols... 586
13.1.3 SMBus Status Codes .. 587
13.1.4 SMBus Command Values ... 587

13.2 Accessing the SMBus from ASL Code ... 587
13.2.1 Declaring SMBus Host Controller Objects .. 587
13.2.2 Declaring SMBus Devices... 588
13.2.3 Declaring SMBus Operation Regions ... 588
13.2.4 Declaring SMBus Fields.. 590
13.2.5 Declaring and Using an SMBus Data Buffer ... 592

13.3 Using the SMBus Protocols .. 593
13.3.1 Read/Write Quick (SMBQuick).. 593
13.3.2 Send/Receive Byte (SMBSendReceive) ... 594
13.3.3 Read/Write Byte (SMBByte).. 595
13.3.4 Read/Write Word (SMBWord)... 596
13.3.5 Read/Write Block (SMBBlock) .. 596
13.3.6 Word Process Call (SMBProcessCall) .. 597
13.3.7 Block Process Call (SMBBlockProcessCall) ... 598

14
Platform Communications Channel (PCC)... 599
14.1 Platform Communications Channel Table .. 599

14.1.1 Platform Communications Channel Global Flags ... 600
14.1.2 Platform Communications Channel Subspace Structures 600
14.1.3 Generic Communications Subspace Structure (type 0) 600

14.2 Generic Communications Channel Shared Memory Region 601
14.2.1 Generic Communications Channel Command Field 601
14.2.2 Generic Communications Channel Status Field ... 602

14.3 Doorbell Protocol .. 602
14.4 Platform Notification.. 603
14.5 Referencing the PCC address space.. 603

15
System Address Map Interfaces ... 605
15.1 INT 15H, E820H - Query System Address Map ... 606
15.2 E820 Assumptions and Limitations... 608
15.3 UEFI GetMemoryMap() Boot Services Function.. 608
15.4 UEFI Assumptions and Limitations .. 609
15.5 Example Address Map.. 610
15.6 Example: Operating System Usage.. 611

16
Waking and Sleeping ... 613
16.1 Sleeping States... 615

16.1.1 S1 Sleeping State ... 617
xiv Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
16.1.2 S2 Sleeping State ... 618
16.1.3 S3 Sleeping State ... 618
16.1.4 S4 Sleeping State ... 619
16.1.5 S5 Soft Off State ... 620
16.1.6 Transitioning from the Working to the Sleeping State..................................... 621
16.1.7 Transitioning from the Working to the Soft Off State....................................... 622

16.2 Flushing Caches ... 622
16.3 Initialization ... 622

16.3.1 Placing the System in ACPI Mode .. 625
16.3.2 BIOS Initialization of Memory.. 625
16.3.3 OS Loading ... 627
16.3.4 Exiting ACPI Mode .. 629

17
Non-Uniform Memory Access (NUMA) Architecture Platforms 631
17.1 NUMA Node.. 631
17.2 System Locality... 631

17.2.1 System Resource Affinity Table Definition .. 632
17.3 System Locality Distance Information... 632

17.3.1 Online Hot Plug ... 632
17.3.2 Impact to Existing Localities.. 633

18
ACPI Platform Error Interfaces (APEI).. 635
18.2 Relationship between OSPM and System Firmware .. 636
18.3 Error Source Discovery... 636

18.3.1 Boot Error Source ... 636
18.3.2 ACPI Error Source .. 638

18.4 Firmware First Error Handling... 650
18.4.1 Example: Firmware First Handling Using NMI Notification 651

18.5 Error Serialization ... 651
18.5.1 Serialization Action Table.. 652
18.5.2 Operations... 658

18.6 Error Injection.. 662
18.6.1 Error Injection Table (EINJ)... 662
18.6.2 Injection Instruction Entries ... 665
18.6.3 Injection Instructions ... 666
18.6.4 Trigger Action Table.. 668

19
ACPI Source Language (ASL)Reference.. 671
19.1 ASL Language Grammar .. 671

19.1.1 ASL Grammar Notation... 672
19.1.2 ASL Name and Pathname Terms ... 673
19.1.3 ASL Root and Secondary Terms .. 673
19.1.4 ASL Data and Constant Terms ... 675
19.1.5 ASL Opcode Terms... 677
19.1.6 ASL Primary (Terminal) Terms ... 678
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xv

19.1.7 ASL Parameter Keyword Terms ... 689
19.1.8 ASL Resource Template Terms.. 691

19.2 ASL Concepts ... 699
19.2.1 ASL Names ... 699
19.2.2 ASL Literal Constants ... 699
19.2.3 ASL Resource Templates ... 701
19.2.4 ASL Macros... 703
19.2.5 ASL Data Types .. 703

19.3 ASL Operator Summary ... 715
19.4 ASL Operator Summary By Type .. 719
19.5 ASL Operator Reference ... 723

19.5.1 AccessAs (Change Field Unit Access).. 723
19.5.2 Acquire (Acquire a Mutex)... 724
19.5.3 Add (Integer Add).. 724
19.5.4 Alias (Declare Name Alias) ... 725
19.5.5 And (Integer Bitwise And) ... 725
19.5.6 Argx (Method Argument Data Objects) ... 725
19.5.7 BankField (Declare Bank/Data Field).. 726
19.5.8 Break (Break from While).. 727
19.5.9 BreakPoint (Execution Break Point).. 727
19.5.10 Buffer (Declare Buffer Object)... 727
19.5.11 Case (Expression for Conditional Execution).. 728
19.5.12 Concatenate (Concatenate Data) ... 728
19.5.13 ConcatenateResTemplate (Concatenate Resource Templates) 729
19.5.14 CondRefOf (Create Object Reference Conditionally) 729
19.5.15 Connection (Declare Field Connection Attributes) .. 729
19.5.16 Continue (Continue Innermost Enclosing While) .. 730
19.5.17 CopyObject (Copy and Store Object).. 730
19.5.18 CreateBitField (Create 1-Bit Buffer Field) .. 731
19.5.19 CreateByteField (Create 8-Bit Buffer Field) .. 731
19.5.20 CreateDWordField (Create 32-Bit Buffer Field) .. 731
19.5.21 CreateField (Create Arbitrary Length Buffer Field) 732
19.5.22 CreateQWordField (Create 64-Bit Buffer Field) .. 732
19.5.23 CreateWordField (Create 16-Bit Buffer Field) .. 732
19.5.24 DataTableRegion (Create Data Table Operation Region) 732
19.5.25 Debug (Debugger Output)... 733
19.5.26 Decrement (Integer Decrement) ... 733
19.5.27 Default (Default Execution Path in Switch) .. 734
19.5.28 DefinitionBlock (Declare Definition Block)... 734
19.5.29 DerefOf (Dereference an Object Reference) .. 735
19.5.30 Device (Declare Bus/Device Package) ... 735
19.5.31 Divide (Integer Divide)... 736
19.5.32 DMA (DMA Resource Descriptor Macro) .. 737
19.5.33 DWordIO (DWord IO Resource Descriptor Macro) 737
19.5.34 DWordMemory (DWord Memory Resource Descriptor Macro)..................... 739
19.5.35 DWordSpace (DWord Space Resource Descriptor Macro) 741
19.5.36 EISAID (EISA ID String To Integer Conversion Macro) 742
xvi Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.37 Else (Alternate Execution)... 743
19.5.38 ElseIf (Alternate/Conditional Execution).. 743
19.5.39 EndDependentFn (End Dependent Function Resource Descriptor Macro) .. 744
19.5.40 Event (Declare Event Synchronization Object) ... 745
19.5.41 ExtendedIO (Extended IO Resource Descriptor Macro) 745
19.5.42 ExtendedMemory (Extended Memory Resource Descriptor Macro) 747
19.5.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro) 748
19.5.44 External (Declare External Objects).. 750
19.5.45 Fatal (Fatal Error Check)... 751
19.5.46 Field (Declare Field Objects)... 751
19.5.47 FindSetLeftBit (Find First Set Left Bit)... 754
19.5.48 FindSetRightBit (Find First Set Right Bit) .. 754
19.5.49 FixedDMA (DMA Resource Descriptor Macro) ... 754
19.5.50 FixedIO (Fixed IO Resource Descriptor Macro).. 755
19.5.51 FromBCD (Convert BCD To Integer) .. 755
19.5.52 Function (Declare Control Method) ... 755
19.5.53 GpioInt (GPIO Interrupt Connection Resource Descriptor Macro)................ 757
19.5.54 GpioIo (GPIO Connection IO Resource Descriptor Macro) 758
19.5.55 I2CSerialBus (I2C Serial Bus Connection Resource Descriptor Macro)....... 759
19.5.56 If (Conditional Execution) .. 760
19.5.57 Include (Include Additional ASL File) .. 760
19.5.58 Increment (Integer Increment)... 760
19.5.59 Index (Indexed Reference To Member Object)... 761
19.5.60 IndexField (Declare Index/Data Fields)... 763
19.5.61 Interrupt (Interrupt Resource Descriptor Macro) ... 764
19.5.62 IO (IO Resource Descriptor Macro) .. 765
19.5.63 IRQ (Interrupt Resource Descriptor Macro) .. 766
19.5.64 IRQNoFlags (Interrupt Resource Descriptor Macro) 767
19.5.65 LAnd (Logical And).. 767
19.5.66 LEqual (Logical Equal) .. 767
19.5.67 LGreater (Logical Greater) .. 768
19.5.68 LGreaterEqual (Logical Greater Than Or Equal) .. 768
19.5.69 LLess (Logical Less) ... 768
19.5.70 LLessEqual (Logical Less Than Or Equal).. 769
19.5.71 LNot (Logical Not) ... 769
19.5.72 LNotEqual (Logical Not Equal)).. 769
19.5.73 Load (Load Definition Block) ... 770
19.5.74 LoadTable (Load Definition Block From XSDT) .. 770
19.5.75 Localx (Method Local Data Objects) ... 771
19.5.76 LOr (Logical Or) .. 772
19.5.77 Match (Find Object Match).. 772
19.5.78 Memory24 (Memory Resource Descriptor Macro) .. 773
19.5.79 Memory32 (Memory Resource Descriptor Macro) 774
19.5.80 Memory32Fixed (Memory Resource Descriptor Macro) 775
19.5.81 Method (Declare Control Method)... 775
19.5.82 Mid (Extract Portion of Buffer or String) .. 777
19.5.83 Mod (Integer Modulo).. 777
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xvii

19.5.84 Multiply (Integer Multiply) .. 778
19.5.85 Mutex (Declare Synchronization/Mutex Object).. 778
19.5.86 Name (Declare Named Object)... 779
19.5.87 NAnd (Integer Bitwise Nand)... 779
19.5.88 NoOp Code (No Operation) .. 779
19.5.89 NOr (Integer Bitwise Nor).. 780
19.5.90 Not (Integer Bitwise Not) ... 780
19.5.91 Notify (Notify Object of Event)... 780
19.5.92 Offset (Change Current Field Unit Offset)... 780
19.5.93 ObjectType (Get Object Type) .. 781
19.5.94 One (Constant One Integer).. 782
19.5.95 Ones (Constant Ones Integer) .. 782
19.5.96 OperationRegion (Declare Operation Region) .. 782
19.5.97 Or (Integer Bitwise Or) .. 784
19.5.98 Package (Declare Package Object) .. 784
19.5.99 PowerResource (Declare Power Resource) ... 785
19.5.100 Processor (Declare Processor) ... 786
19.5.101 QWordIO (QWord IO Resource Descriptor Macro)..................................... 786
19.5.102 QWordMemory (QWord Memory Resource Descriptor Macro) 788
19.5.103 QWordSpace (QWord Space Resource Descriptor Macro)........................ 790
19.5.104 RawDataBuffer.. 792
19.5.105 RefOf (Create Object Reference).. 792
19.5.106 Register (Generic Register Resource Descriptor Macro)............................ 792
19.5.107 Release (Release a Mutex Synchronization Object)................................... 793
19.5.108 Reset (Reset an Event Synchronization Object)...................................... 794
19.5.109 ResourceTemplate (Resource To Buffer Conversion Macro) 794
19.5.110 Return (Return from Method Execution) ... 794
19.5.111 Revision (Constant Revision Integer).. 795
19.5.112 Scope (Open Named Scope) .. 795
19.5.113 ShiftLeft (Integer Shift Left) ... 796
19.5.114 ShiftRight (Integer Shift Right) .. 796
19.5.115 Signal (Signal a Synchronization Event) ... 797
19.5.116 SizeOf (Get Data Object Size) .. 797
19.5.117 Sleep (Milliseconds Sleep).. 797
19.5.118 SPISerialBus (SPI Serial Bus Connection Resource Descriptor Macro) 798
19.5.119 Stall (Stall for a Short Time) .. 799
19.5.120 StartDependentFn (Start Dependent Function Resource Descriptor Macro)....

799
19.5.121 StartDependentFnNoPri (Start Dependent Function Resource Descriptor

Macro) ... 800
19.5.122 Store (Store an Object) ... 800
19.5.123 Subtract (Integer Subtract).. 801
19.5.124 Switch (Select Code To Execute Based On Expression)............................ 801
19.5.125 ThermalZone (Declare Thermal Zone).. 803
19.5.126 Timer (Get 64-Bit Timer Value) .. 803
19.5.127 ToBCD (Convert Integer to BCD).. 804
19.5.128 ToBuffer (Convert Data to Buffer) ... 804
xviii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.129 ToDecimalString (Convert Data to Decimal String)..................................... 805
19.5.130 ToHexString (Convert Data to Hexadecimal String) 805
19.5.131 ToInteger (Convert Data to Integer) .. 805
19.5.132 ToString (Convert Buffer To String) .. 806
19.5.133 ToUUID (Convert String to UUID Macro) ... 806
19.5.134 UARTSerialBus (UART Serial Bus Connection Resource Descriptor Macro) ..

807
19.5.135 Unicode (String To Unicode Conversion Macro)... 808
19.5.136 Unload (Unload Definition Block) .. 809
19.5.137 VendorLong (Long Vendor Resource Descriptor)....................................... 809
19.5.138 VendorShort (Short Vendor Resource Descriptor)...................................... 809
19.5.139 Wait (Wait for a Synchronization Event) ... 810
19.5.140 While (Conditional Loop)... 810
19.5.141 WordBusNumber (Word Bus Number Resource Descriptor Macro)........... 811
19.5.142 WordIO (Word IO Resource Descriptor Macro) .. 812
19.5.143 WordSpace (Word Space Resource Descriptor Macro)) 814
19.5.144 XOr (Integer Bitwise Xor) .. 815
19.5.145 Zero (Constant Zero Integer) .. 815

20
ACPI Machine Language (AML) Specification ... 817
20.1 Notation Conventions.. 817
20.2 AML Grammar Definition .. 818

20.2.1 Table and Table Header Encoding ... 818
20.2.2 Name Objects Encoding ... 819
20.2.3 Data Objects Encoding ... 820
20.2.4 Package Length Encoding ... 820
20.2.5 Term Objects Encoding... 821
20.2.6 Miscellaneous Objects Encoding .. 828

20.3 AML Byte Stream Byte Values.. 829
20.4 AML Encoding of Names in the Namespace ... 834

21
ACPI Data Tables and Table Definition Language 837
21.1 Types of ACPI Data Tables .. 837
21.2 ACPI Table Definition Language Specification ... 838

21.2.1 Overview of the Table Definition Language (TDL) .. 838
21.2.2 TDL Grammar Specification.. 839
21.2.3 Data Types.. 841
21.2.4 Fields Set Automatically by the Compiler.. 843
21.2.5 Special Fields.. 844
21.2.6 21.6 ..TDL Generic Data Types844
21.2.7 Defining a Known ACPI Table in TDL ... 845
21.2.8 Defining an Unknown or New ACPI table in TDL.. 845
21.2.9 21.9 ...Table Definition Language Examples846
21.2.10 Minimal ECDT Definition ... 848
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xix

Appendix A
Storage Device Class ... 851
A.1 Overview.. 851
A.2 Device Power States .. 851

A.2.1 Bus Power Management... 852
A.2.2 Display Power Management ... 852
A.2.3 PCMCIA/PCCARD/CardBus Power Management................................... 852
A.2.4 PCI Power Management .. 852
A.2.5 USB Power Management .. 853
A.2.6 Device Classes ... 853

A.3 Default Device Class .. 854
A.3.1 Default Power Management Policy... 854
A.3.2 Default Wake Events .. 854
A.3.3 Minimum Power Capabilities.. 854

A.4 Audio Device Class .. 854
A.4.1 Power State Definitions... 855
A.4.2 Power Management Policy .. 855
A.4.3 Wake Events... 856
A.4.4 Minimum Power Capabilities.. 856

A.5 COM Port Device Class.. 856
A.5.1 Power State Definitions... 857
A.5.2 Power Management Policy ... 857
A.5.3 Wake Events.. 857
A.5.4 Minimum Power Capabilities... 857

A.6 Display Device Class .. 857
A.6.1 Power State Definitions... 858
A.6.2 Power Management Policy for the Display Class 862
A.6.3 Wake Events... 862
A.6.4 Minimum Power Capabilities... 862
A.6.5 Performance States for Display Class Devices 863

A.7 Input Device Class... 864
A.7.1 Power State Definitions.. 864
A.7.2 Power Management Policy .. 865
A.7.3 Wake Events.. 865
A.7.4 Minimum Power Capabilities.. 866

A.8 Modem Device Class.. 866
A.8.1 Technology Overview .. 866
A.8.2 Power State Definitions.. 867
A.8.3 Power Management Policy ... 868
A.8.4 Wake Events... 868
A.8.5 Minimum Power Capabilities.. 868

A.9 Network Device Class .. 868
A.9.1 Power State Definitions... 868
A.9.2 Power Management Policy .. 869
A.9.3 Wake Events.. 869
A.9.4 Minimum Power Capabilities... 870

A.10 PC Card Controller Device Class .. 870
xx Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.10.1 Power State Definitions... 871
A.10.2 Power Management Policy .. 871
A.10.3 Wake Events.. 872
A.10.4 Minimum Power Capabilities.. 872

A.11 Storage Device Class .. 872
A.11.1 Power State Definitions.. 873
A.11.2 Power Management Policy .. 874
A.11.3 Wake Events... 874
A.11.4 Minimum Power Capabilities... 874

Appendix B
Video Extensions.. 877
B.1 ACPI Extensions for Display Adapters: Introduction ... 877
B.2 Definitions.. 878
B.3 ACPI Namespace ... 878

B.3.1 _DOS (Enable/Disable Output Switching) ... 880
B.3.2 _DOD (Enumerate All Devices Attached to the Display Adapter)........... 881
B.3.3 _ROM (Get ROM Data) .. 884
B.3.4 _GPD (Get POST Device) .. 884
B.3.5 _SPD (Set POST Device) ... 885
B.3.6 _VPO (Video POST Options)... 885

B.4 Notifications for Display Devices .. 886
B.5 Output Device-specific Methods... 886

B.5.1 _ADR (Return the Unique ID for this Device) .. 887
B.5.2 _BCL (Query List of Brightness Control Levels Supported)..................... 887
B.5.3 _BCM (Set the Brightness Level)... 888
B.5.4 _BQC (Brightness Query Current level)... 888
B.5.5 _DDC (Return the EDID for this Device).. 889
B.5.6 _DCS (Return the Status of Output Device) .. 889
B.5.7 _DGS (Query Graphics State) ... 890
B.5.8 _DSS (Device Set State) ... 890

B.6 Notifications Specific to Output Devices.. 891
B.7 Notes on State Changes .. 892
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xxi

xxii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Tables

Table 1-1 Hardware Type vs. OS Type Interaction... 3
Table 2-2 Summary of Global Power States... 25
Table 2-3 Summary of Device Power States .. 27
Table 3-4 Low Battery Levels ... 47
Table 3-5 Implementable Platform Types ... 53
Table 4-6 Feature/Programming Model Summary.. 67
Table 4-7 PM1 Event Registers .. 71
Table 4-8 PM1 Control Registers.. 71
Table 4-9 PM2 Control Register ... 72
Table 4-10 PM Timer Register.. 72
Table 4-11 Processor Control Registers... 72
Table 4-12 General-Purpose Event Registers .. 72
Table 4-13 Power Button Support... 75
Table 4-14 Sleep Button Support.. 78
Table 4-15 Alarm Field Decodings within the FADT ... 82
Table 4-16 PM1 Status Registers Fixed Hardware Feature Status Bits 85
Table 4-17 PM1 Enable Registers Fixed Hardware Feature Enable Bits 87
Table 4-18 PM1 Control Registers Fixed Hardware Feature Control Bits 88
Table 4-19 PM Timer Bits ... 89
Table 4-20 PM2 Control Register Bits ... 89
Table 4-21 Processor Control Register Bits.. 90
Table 4-22 Processor LVL2 Register Bits... 90
Table 4-23 Processor LVL3 Register Bits... 91
Table 4-24 Sleep Control Register ... 92
Table 4-25 Sleep Status Register .. 92
Table 5-26 Generic Address Structure (GAS) .. 106
Table 5-27 Address Space Format ... 107
Table 5-28 Root System Description Pointer Structure .. 109
Table 5-29 DESCRIPTION_HEADER Fields.. 109
Table 5-30 DESCRIPTION_HEADER Signatures for tables defined by ACPI 110
Table 5-31 DESCRIPTION_HEADER Signatures for tables reserved by ACPI 111
Table 5-32 Root System Description Table Fields (RSDT) .. 113
Table 5-33 Extended System Description Table Fields (XSDT) ... 114
Table 5-34 Fixed ACPI Description Table (FADT) Format .. 114
Table 5-35 Fixed ACPI Description Table Fixed Feature Flags.. 121
Table 5-36 Fixed ACPI Description Table Boot Architecture Flags 126
Table 5-37 Firmware ACPI Control Structure (FACS) .. 127
Table 5-38 Firmware Control Structure Feature Flags ... 130
Table 5-39 OSPM Enabled Firmware Control Structure Feature Flags.............................. 130
Table 5-40 Global Lock Structure within the FACS .. 131
Table 5-41 Differentiated System Description Table Fields (DSDT)................................... 133
Table 5-42 Secondary System Description Table Fields (SSDT) 134
Table 5-43 Multiple APIC Description Table (MADT) Format ... 135
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xxi

Table 5-44 Multiple APIC Flags .. 136
Table 5-45 APIC Structure Types ... 136
Table 5-46 Processor Local APIC Structure .. 137
Table 5-47 Local APIC Flags .. 137
Table 5-48 I/O APIC Structure ... 138
Table 5-49 Interrupt Source Override Structure ... 139
Table 5-50 MPS INTI Flags .. 139
Table 5-51 Non-maskable Source Structure .. 140
Table 5-52 Local APIC NMI Structure .. 140
Table 5-53 Local APIC Address Override Structure .. 141
Table 5-54 I/O SAPIC Structure ... 141
Table 5-55 Processor Local SAPIC Structure .. 142
Table 5-56 Platform Interrupt Sources Structure .. 143
Table 5-57 Platform Interrupt Source Flags.. 144
Table 5-58 Processor Local x2APIC Structure .. 144
Table 5-59 Local x2APIC NMI Structure .. 145
Table 5-60 GIC Structure Format ... 146
Table 5-61 GIC Flags.. 147
Table 5-62 GIC Distributor Structure ... 147
Table 5-63 Smart Battery Description Table (SBST) Format.. 149
Table 5-64 Embedded Controller Boot Resources Table Format....................................... 150
Table 5-65 Static Resource Affinity Table Format .. 151
Table 5-66 Processor Local APIC/SAPIC Affinity Structure ... 152
Table 5-67 Flags – Processor Local APIC/SAPIC Affinity Structure................................... 152
Table 5-68 Memory Affinity Structure ... 153
Table 5-69 Flags – Memory Affinity Structure... 153
Table 5-70 Processor Local x2APIC Affinity Structure ... 154
Table 5-71 SLIT Format.. 155
Table 5-72 Corrected Platform Error Polling Table Format .. 156
Table 5-73 Corrected Platform Error Polling Processor Structure 157
Table 5-74 Maximum System Characteristics Table (MSCT) Format................................. 157
Table 5-75 Maximum Proximity Domain Information Structure ... 158
Table 5-76 RASF Table format ... 159
Table 5-77 RASF Platform Communication Channel Shared Memory Region 159
Table 5-78 PCC Command Codes used by RASF Platform Communication Channel 161
Table 5-79 Platform RAS capabilities bitmap ... 161
Table 5-80 Parameter Block Structure for PATROL_SCRUB .. 161
Table 5-81 MPST Table Structure .. 165
Table 5-82 PCC Command Codes used by MPST Platform Communication Channel 166
Table 5-83 MPST Platform Communication Channel Shared Memory Region 166
Table 5-84 Power state Values .. 168
Table 5-85 Command Status ... 169
Table 5-86 Memory Power Node Structure definition ... 170
Table 5-87 Flag format.. 171
Table 5-88 Memory Power State Structure definition ... 172
Table 5-89 Memory Power State Characteristics Structure ... 172
Table 5-90 Flag format of Memory Power State Characteristics Structure 173
xxii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-91 Platform Memory Topology Table... 176
Table 5-92 Common Memory Aggregator Device Structure... 176
Table 5-93 Socket Structure .. 177
Table 5-94 Memory Controller Structure... 178
Table 5-95 Physical Components Identifier Structure ... 179
Table 5-96 Boot Graphics Resource Table Fields .. 180
Table 5-97 Status Description Field.. 180
Table 5-98 Image Type Description Field ... 181
Table 5-99 Firmware Performance Data Table (FPDT) Format ... 182
Table 5-100 Performance Record Structure .. 183
Table 5-101 Performance Record Types.. 183
Table 5-102 Runtime Performance Record Types ... 184
Table 5-103 S3 Performance Table Pointer Record .. 184
Table 5-104 S4 Performance Table Pointer Record .. 185
Table 5-105 S3 Performance Table Header .. 185
Table 5-106 Basic S3 Resume Performance Record .. 185
Table 5-107 Basic S3 Suspend Performance Record ... 186
Table 5-108 Firmware Basic Boot Performance Table Header ... 186
Table 5-109 Firmware Basic Boot Performance Data Record Structure 187
Table 5-110 GTDT Table Structure .. 188
Table 5-111 Global flags... 188
Table 5-112 Flag Definitions: Virtual Time, PL2 timers, and Secure & Non-Secure PL1 timers

... 189
Table 5-113 Namespaces Defined Under the Namespace Root.. 191
Table 5-114 Operation Region Address Space Identifiers.. 198
Table 5-115 IPMI Status Codes.. 204
Table 5-116 Accsessor Type Values .. 207
Table 5-117 ACPI Event Programming Model Components .. 219
Table 5-118 Fixed ACPI Events.. 220
Table 5-119 Device Object Notification Values... 227
Table 5-120 Control Method Battery Device Notification Values .. 229
Table 5-121 Power Source Object Notification Values ... 229
Table 5-122 Thermal Zone Object Notification Values ... 229
Table 5-123 Control Method Power Button Notification Values.. 229
Table 5-124 Control Method Sleep Button Notification Values... 230
Table 5-125 Control Method Lid Notification Values... 230
Table 5-126 Processor Device Notification Values... 230
Table 5-127 User Presence Device Notification Values ... 230
Table 5-128 Ambient Light Sensor Device Notification Values... 230
Table 5-129 Power Meter Object Notification Values ... 231
Table 5-130 Fan Device Notification Values... 231
Table 5-131 Memory Device Notification Values .. 231
Table 5-132 ACPI Device IDs ... 232
Table 5-133 Predefined ACPI Names... 234
Table 5-134 Predefined Object Names... 244
Table 5-135 Operating System Vendor Strings .. 245
Table 5-136 Feature Group Strings .. 245
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xxiii

Table 5-137 DeviceLockInfo Package Values .. 249
Table 6-138 Device Identification Objects .. 253
Table 6-139 ADR Object Address Encodings... 254
Table 6-140 Additional Language ID Alias Strings ... 258
Table 6-141 PLD Back Panel Example Settings... 263
Table 6-142 Device Configuration Objects ... 267
Table 6-143 HPP Package Contents .. 275
Table 6-144 PCI Setting Record Content ... 278
Table 6-145 PCI-X Setting Record Content .. 278
Table 6-146 PCI Express Setting Record Content ... 280
Table 6-147 Platform-Wide _OSC Capabilities DWORD 2... 286
Table 6-148 Interpretation of _OSC Support Field ... 287
Table 6-149 Interpretation of _OSC Control Field, Passed in via Arg3 288
Table 6-150 Interpretation of _OSC Control Field, Returned Value 289
Table 6-151 Mapping Fields ... 291
Table 6-152 Example Relative Distances Between Proximity Domains 295
Table 6-153 Example System Locality Information Table... 295
Table 6-154 Example Relative Distances Between Proximity Domains - 5 Node 296
Table 6-155 Device Insertion, Removal, and Status Objects ... 299
Table 6-156 OST Source Event Codes .. 303
Table 6-157 General Processing Status Codes.. 303
Table 6-158 Operating System Shutdown Processing (Source Events : 0x100) Status Codes

303
Table 6-159 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status

Codes... 304
Table 6-160 Insertion Processing (Source Event: 0x200) Status Codes............................ 304
Table 6-161 Small Resource Data Type Tag Bit Definitions... 310
Table 6-162 Small Resource Items... 310
Table 6-163 IRQ Descriptor Definition .. 310
Table 6-164 DMA Descriptor Definition .. 311
Table 6-165 Start Dependent Functions Descriptor Definition.. 312
Table 6-166 Start Dependent Function Priority Byte Definition .. 313
Table 6-167 End Dependent Functions Descriptor Definition... 313
Table 6-168 I/O Port Descriptor Definition .. 314
Table 6-169 Fixed-Location I/O Port Descriptor Definition ... 314
Table 6-170 Fixed DMA Resource Descriptor .. 315
Table 6-171 Vendor-Defined Resource Descriptor Definition... 315
Table 6-172 End Tag Definition .. 316
Table 6-173 Large Resource Data Type Tag Bit Definitions .. 316
Table 6-174 Large Resource Items .. 316
Table 6-175 24-bit Memory Range Descriptor Definition. ... 317
Table 6-176 Large Vendor-Defined Resource Descriptor Definition................................... 318
Table 6-177 32-Bit Memory Range Descriptor Definition ... 319
Table 6-178 32-bit Fixed-Location Memory Range Descriptor Definition 320
Table 6-179 Valid combination of Address Space Descriptors fields 321
Table 6-180 QWORD Address Space Descriptor Definition... 321
Table 6-181 DWORD Address Space Descriptor Definition ... 325
xxiv Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 6-182 WORD Address Space Descriptor Definition.. 327
Table 6-183 Extended Address Space Descriptor Definition.. 328
Table 6-184 Memory Resource Flag (Resource Type = 0) Definitions............................... 333
Table 6-185 I/O Resource Flag (Resource Type = 1) Definitions 333
Table 6-186 Bus Number Range Resource Flag (Resource Type = 2) Definitions 334
Table 6-187 Extended Interrupt Descriptor Definition... 334
Table 6-188 Generic Register Descriptor Definition ... 336
Table 6-189 GPIO Connection Descriptor Definition .. 337
Table 6-190 Serial Bus Connection Descriptor... 341
Table 6-191 I2C Serial Bus Connection Descriptor .. 343
Table 6-192 SPI Serial Bus Connection Descriptor .. 345
Table 6-193 UART Serial Bus Connection Descriptor .. 346
Table 6-194 Other Objects and Methods.. 349
Table 6-195 OSPM _INI Object Actions ... 350
Table 7-196 Power Resource Child Objects... 358
Table 7-197 Device Power Management Child Objects ... 360
Table 7-198 PSC Device State Codes.. 363
Table 7-199 Power Resource Requirements Package... 364
Table 7-200 S1 Action / Result Table ... 368
Table 7-201 S2 Action / Result Table ... 369
Table 7-202 S3 Action / Result Table ... 370
Table 7-203 S4 Action / Result Table ... 370
Table 7-204 BIOS-Supplied Control Methods for System-Level Functions 372
Table 7-205 System State Package ... 374
Table 8-206 Cstate Package Values .. 396
Table 8-207 CStateDependency Package Values.. 398
Table 8-208 PTC Package Values.. 400
Table 8-209 TState Package Values .. 402
Table 8-210 TStateDependency Package Values .. 404
Table 8-211 PCT Package Values.. 408
Table 8-212 PState Package Values .. 409
Table 8-213 PStateDependency Package Values.. 412
Table 8-214 Continuous Performance Control Package Values .. 416
Table 8-215 PCC Commands Codes used by Collaborative Processor Performance Control

425
Table 8-216 Processor Aggregator Device Objects... 428
Table 9-217 System Indicator Control Methods.. 431
Table 9-218 Control Method Ambient Light Sensor Device.. 432
Table 9-219 Control Method Lid Device ... 440
Table 9-220 ATA Specific Objects .. 442
Table 9-221 GTM Method Result Codes .. 445
Table 9-222 Tape Presence ... 449
Table 9-223 ACPI Floppy Drive Information ... 449
Table 9-224 MBM Package Details .. 459
Table 9-225 MSM Result Encoding .. 460
Table 9-226 Memory Device _OSC Capabilities DWORD number 2 460
Table 9-227 UPC Return Package Values ... 461
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xxv

Table 9-228 User Presence Detection Device.. 473
Table 9-229 Time and Alarm Device .. 475
Table 10-230 Example SMBus Device Slave Addresses ... 491
Table 10-231 Smart Battery Objects... 493
Table 10-232 Battery Control Methods ... 498
Table 10-233 BIF Return Package Values ... 499
Table 10-234 BIX Return Package Values ... 501
Table 10-235 Control Method Battery _OSC Capabilities DWORD2 Bit Definitions 503
Table 10-236 BST Return Package Values ... 505
Table 10-237 BMD Return Package Values ... 508
Table 10-238 Power Source Objects .. 510
Table 10-239 PIF Method Result Codes... 511
Table 10-240 Power Meter Objects .. 512
Table 10-241 PMC Method Result Codes .. 513
Table 11-242 Fan Specific Objects... 529
Table 11-243 FIF Package Details ... 530
Table 11-244 FPS FanPstate Package Details .. 531
Table 11-245 FST Package Details .. 533
Table 11-246 Thermal Objects ... 533
Table 11-247 Thermal Relationship Package Values... 536
Table 11-248 Thermal Relationship Package Values... 545
Table 12-249 Read only register table.. 563
Table 12-250 Register details ... 563
Table 12-251 Embedded Controller Commands .. 564
Table 12-252 Events for Which Embedded Controller Must Generate SCIs 568
Table 12-253 Read Command (3 Bytes) .. 568
Table 12-254 Write Command (3 Bytes) .. 568
Table 12-255 Query Command (2 Bytes .. 568
Table 12-256 Burst Enable Command (2 Bytes) .. 568
Table 12-257 Burst Disable Command (1 Byte) ... 568
Table 12-258 SMBus Status Codes.. 570
Table 12-259 SMB EC Interface ... 578
Table 12-260 Embedded Controller Device Object Control Methods 581
Table 12-261 EC SMBus HC Device Objects... 582
Table 13-262 SMBus Protocol Types ... 586
Table 14-263 Platform Communications Channel Table (PCCT) 599
Table 14-264 Platform Communications Channel Global Flags ... 600
Table 14-265 Generic PCC Subspace Structure .. 600
Table 14-266 PCC Subspace Structure type 0 (Generic Communications Subspace) 600
Table 14-267 Generic Communications Channel Shared Memory Region 601
Table 14-268 Generic Communications Channel Command Field..................................... 602
Table 14-269 Generic Communications Channel Status Field ... 602
Table 15-270 Address Range Types .. 605
Table 15-271 Input to the INT 15h E820h Call ... 606
Table 15-272 Output from the INT 15h E820h Call .. 607
Table 15-273 Address Range Descriptor Structure .. 607
Table 15-274 Extended Attributes for Address Range Descriptor Structure 607
xxvi Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 15-275 UEFI Memory Types and mapping to ACPI address range types 608
Table 15-276 Sample Memory Map.. 610
Table 18-277 Boot Error Record Table (BERT) Table.. 637
Table 18-278 Boot Error Region ... 637
Table 18-279 Hardware Error Source Table (HEST).. 638
Table 18-280 IA-32 Architecture Machine Check Exception Structure............................... 639
Table 18-281 IA-32 Architecture Machine Check Error Bank Structure 640
Table 18-282 IA-32 Architecture Corrected Machine Check Structure............................... 641
Table 18-283 IA-32 Architecture NMI Error Structure... 641
Table 18-284 PCI Express Root Port AER Structure.. 642
Table 18-285 PCI Express Device AER Structure.. 643
Table 18-286 PCI Express Bridge AER Structure .. 644
Table 18-287 Generic Hardware Error Source Structure.. 646
Table 18-288 Generic Error Status Block ... 647
Table 18-289 Generic Error Data Entry .. 648
Table 18-290 Hardware Error Notification Structure... 649
Table 18-291 Error Record Serialization Table (ERST).. 652
Table 18-292 Error Record Serialization Actions.. 653
Table 18-293 Command Status Definition .. 654
Table 18-294 Serialization Instruction Entry ... 654
Table 18-295 Serialization Instructions... 655
Table 18-296 Instruction Flags ... 656
Table 18-297 Error Record Serialization Info.. 658
Table 18-298 Error Injection Table (EINJ) .. 662
Table 18-299 Error Injection Actions... 663
Table 18-300 Injection Instruction Entry ... 665
Table 18-301 Instruction Flags ... 666
Table 18-302 Injection Instructions ... 666
Table 18-303 Command Status Definition .. 666
Table 18-304 Error Type Definition... 666
Table 18-305 SET_ERROR_TYPE_WITH_ADDRESS Data Structure.............................. 667
Table 18-306 Vendor Error Type Extension Structure.. 668
Table 18-307 Trigger Error Action .. 669
Table 19-308 ASL Grammar Notation .. 672
Table 19-309 Named Object Reference Encodings ... 699
Table 19-310 Definition Block Name Modifier Encodings... 699
Table 19-311 ASL Escape Sequences ... 701
Table 19-312 Example ASL Built-in Macros ... 703
Table 19-313 Summary of ASL Data Types ... 703
Table 19-314 Data Types and Type Conversions .. 707
Table 19-315 Object Conversion Rules .. 709
Table 19-316 Object Storing and Copying Rules.. 712
Table 19-317 Reading from ArgX Objects .. 712
Table 19-318 Writing to ArgX Objects .. 713
Table 19-319 Reading from LocalX Objects ... 713
Table 19-320 Writing to LocalX Objects ... 714
Table 19-321 Reading from Named Objects .. 714
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xxvii

Table 19-322 Writing to Named Objects... 714
Table 19-323 Concatenate Data Types .. 728
Table 19-324 Debug Object Display Formats... 733
Table 19-325 Field Unit list entires ... 752
Table 19-326 OperationRegion Region Types and Access Types 752
Table 19-327 Match Term Operator Meanings... 772
Table 19-328 TValues Returned By the ObjectType Operator ... 781
Table 19-329 Predefined Operation Region types.. 783
Table 19-330 UUID Buffer Format .. 806
Table 20-331 AML Grammar Notation Conventions... 817
Table 20-332 AML Byte Stream Byte Values ... 829
Table A-333 Default Power State Definitions.. 854
Table B-334 Video Extension Object Requirements... 877
Table B-335 Video Output Device Attributes .. 882
Table B-336 Example Device Ids.. 883
Table B-337 Notifications for Display Devices. .. 886
Table B-338 Device Status ... 889
Table B-339 Device State for _DGS ... 890
Table B-340 Device State for _DSS ... 890
Table B-341 Notification Values for Output Devices... 891
xxviii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figures

Figure 1-1 OSPM/ACPI Global System .. 5
Figure 3-2 Global System Power States and Transitions ... 33
Figure 3-3 Example Modem and COM Port Hardware ... 41
Figure 3-4 Reporting Battery Capacity.. 46
Figure 3-5 Remaining Battery Percent Formula ... 46
Figure 3-6 Re;maining Battery Life Formula ... 46
Figure 3-7 Low Battery and Warning .. 47
Figure 3-8 Thermal Zone .. 50
Figure 4-9 Generic Hardware Feature Model ... 59
Figure 4-10 Global States and Their Transitions .. 63
Figure 4-11 Example Event Structure for a Legacy/ACPI Compatible Event Model 64
Figure 4-12 Block Diagram of a Status/Enable Cell.. 69
Figure 4-13 Example Fixed Hardware Feature Register Grouping....................................... 70
Figure 4-14 Register Blocks versus Register Groupings .. 70
Figure 4-15 Power Management Timer .. 74
Figure 4-16 Fixed Power Button Logic.. 76
Figure 4-17 Fixed Hardware Sleep Button Logic .. 78
Figure 4-18 Sleeping/Wake Logic... 80
Figure 4-19 RTC Alarm... 81
Figure 4-20 Power Management Events to SMI/SCI Control Logic...................................... 83
Figure 4-21 Example of General-Purpose vs. Generic Hardware Events 94
Figure 4-22 Example Generic Address Space Lid Switch Logic... 97
Figure 5-23 Root System Description Pointer and Table.. 102
Figure 5-24 Description Table Structures ... 102
Figure 5-25 APIC–Global System Interrupts... 146
Figure 5-26 8259–Global System Interrupts ... 148
Figure 5-27 MPST ACPI Table Overview ... 164
Figure 5-28 Memory Power State Transitions .. 168
Figure 5-29 Image Offset .. 182
Figure 5-30 Example ACPI NameSpace .. 191
Figure 5-31 AML Encoding ... 193
Figure 6-32 System Panel and Panel Origin Positions ... 259
Figure 6-33 Laptop Panel and Panel Origin Positions .. 259
Figure 6-34 Default Shape Definitions .. 261
Figure 6-35 PLD Back Panel Rendering .. 265
Figure 6-36 System Locality information Table... 295
Figure 6-37 Device Ejection Flow Example Using _OST.. 306
Figure 7-38 Working / Sleeping State object evaluation flow... 383
Figure 8-39 Processor Power States .. 386
Figure 8-40 Throttling Example... 387
Figure 8-41 Equation 1 Duty Cycle Equation.. 387
Figure 8-42 Example Control for the STPCLK#.. 388
Figure 8-43 ACPI Clock Logic (One per Processor) ... 388
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba xxvii

Figure 8-44 Platform performance thresholds .. 418
Figure 8-45 OSPM performance controls .. 420
Figure 9-46 A five-point ALS Response Curve ... 436
Figure 9-47 A two-point ALS Response Curve ... 437
Figure 9-48 Example Response Curve for a Transflective Display 438
Figure 9-49 USB ports .. 463
Figure 9-50 Persistence of expired timer events .. 476
Figure 9-51 System transitions with WakeAlarm -- Timer... 477
Figure 9-52 System transitions with WakeAlarm -- Policy .. 478
Figure 10-53 Typical Smart Battery Subsystem (SBS)... 491
Figure 10-54 Single Smart Battery Subsystem... 495
Figure 10-55 Smart Battery Subsystem.. 496
Figure 10-56 Remaining Battery Percent Formula ... 506
Figure 10-57 Remaining Battery Life Formula .. 506
Figure 10-58 Power Meter and Power Source/Docking Namespace Example 518
Figure 11-59 ACPI Thermal Zone.. 520
Figure 11-60 Thermal Events ... 523
Figure 11-61 Temperature and CPU Performance Versus Time.. 525
Figure 11-62 Active and Passive Threshold Values ... 527
Figure 11-63 Cooling Preferences .. 528
Figure 12-64 Shared Interface .. 560
Figure 12-65 Private Interface .. 561
Figure 12-66 Interrupt Model .. 567
Figure 13-67 Bit Encoding Example ... 586
Figure 13-68 Smart Battery Subsystem Devices .. 589
Figure 13-69 Smart Battery Device Virtual Registers ... 591
Figure 16-70 Example Sleeping States .. 615
Figure 16-71 BIOS Initialization .. 623
Figure 16-72 Example Physical Memory Map .. 626
Figure 16-73 Memory as Configured after Boot.. 627
Figure 16-74 OS Initialization.. 628
Figure B-1 Example Display Architecture ... 883
xxviii Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
1
Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish
industry common interfaces enabling robust operating system (OS)-directed motherboard device
configuration and power management of both devices and entire systems. ACPI is the key element
in Operating System-directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration
interface specification. ACPI provides the means for an orderly transition from existing (legacy)
hardware to ACPI hardware, and it allows for both ACPI and legacy mechanisms to exist in a single
machine and to be used as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more
efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of
computers including (but not limited to) desktop, mobile, workstation, and server machines. From a
power management perspective, OSPM/ACPI promotes the concept that systems should conserve
energy by transitioning unused devices into lower power states including placing the entire system in
a low-power state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data
structures that, when implemented, enable support for robust OS-directed configuration and power
management (OSPM).

1.1 Principal Goals
ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide
adoption to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-
compatible) implementations.

The principal goals of ACPI and OSPM are to:

1. Enable all computer systems to implement motherboard configuration and power management
functions, using appropriate cost/function tradeoffs.

• Computer systems include (but are not limited to) desktop, mobile, workstation, and server
machines.

• Machine implementers have the freedom to implement a wide range of solutions, from the
very simple to the very aggressive, while still maintaining full OS support.

• Wide implementation of power management will make it practical and compelling for
applications to support and exploit it. It will make new uses of PCs practical and existing
uses of PCs more economical.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 1

Introduction
2. Enhance power management functionality and robustness.

• Power management policies too complicated to implement in a ROM BIOS can be
implemented and supported in the OS, allowing inexpensive power managed hardware to
support very elaborate power management policies.

• Gathering power management information from users, applications, and the hardware
together into the OS will enable better power management decisions and execution.

• Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

3. Facilitate and accelerate industry-wide implementation of power management.

• OSPM and ACPI reduces the amount of redundant investment in power management
throughout the industry, as this investment and function will be gathered into the OS. This
will allow industry participants to focus their efforts and investments on innovation rather
than simple parity.

• The OS can evolve independently of the hardware, allowing all ACPI-compatible machines
to gain the benefits of OS improvements and innovations.

4. Create a robust interface for configuring motherboard devices.

• Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale
It is necessary to move power management into the OS and to use an abstract interface (ACPI)
between the OS and the hardware to achieve the principal goals set forth above.

• Minimal support for power management inhibits application vendors from supporting or
exploiting it.

• Moving power management functionality into the OS makes it available on every machine
on which the OS is installed. The level of functionality (power savings, and so on) varies
from machine to machine, but users and applications will see the same power interfaces and
semantics on all OSPM machines.

• This will enable application vendors to invest in adding power management functionality to
their products.

• Legacy power management algorithms were restricted by the information available to the BIOS
that implemented them. This limited the functionality that could be implemented.

• Centralizing power management information and directives from the user, applications, and
hardware in the OS allows the implementation of more powerful functionality. For example,
an OS can have a policy of dividing I/O operations into normal and lazy. Lazy I/O
operations (such as a word processor saving files in the background) would be gathered up
into clumps and done only when the required I/O device is powered up for some other
reason. A non-lazy I/O request made when the required device was powered down would
cause the device to be powered up immediately, the non-lazy I/O request to be carried out,
and any pending lazy I/O operations to be done. Such a policy requires knowing when I/O
devices are powered up, knowing which application I/O requests are lazy, and being able to
assure that such lazy I/O operations do not starve.

• Appliance functions, such as answering machines, require globally coherent power
decisions. For example, a telephone-answering application could call the OS and assert, “I
am waiting for incoming phone calls; any sleep state the system enters must allow me to
2 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
wake and answer the telephone in 1 second.” Then, when the user presses the “off” button,
the system would pick the deepest sleep state consistent with the needs of the phone
answering service.

• BIOS code has become very complex to deal with power management. It is difficult to make
work with an OS and is limited to static configurations of the hardware.

• There is much less state information for the BIOS to retain and manage (because the OS
manages it).

• Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

• Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

• Because the BIOS has fewer functions and they are simpler, it is much easier (and therefore
cheaper) to implement and support.

• The existing structure of the PC platform constrains OS and hardware designs.

• Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the
hardware from the OS.

• ACPI is by nature more portable across operating systems and processors. ACPI control
methods allow for very flexible implementations of particular features.

1.3 Legacy Support
ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows
for both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

1.4 OEM Implementation Strategy
Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:

• An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM
software and implement the hardware part of the ACPI specification (for a given platform) in
one of many possible ways.

Hardware\OS Legacy OS ACPI OS with OSPM

Legacy hardware A legacy OS on legacy hardware
does what it always did.

If the OS lacks legacy support, legacy
support is completely contained within the
hardware functions.

Legacy and ACPI
hardware support in
machine

It works just like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware to
switch from legacy to OSPM/ACPI mode
and from then on, the system has full
OSPM/ACPI support.

ACPI-only hardware There is no power management. There is full OSPM/ACPI support.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 3

Introduction
• An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens
up even more hardware implementation possibilities. However, OEMs who implement hardware
that is OSPM-compatible but not ACPI-compatible will bear the cost of developing, testing, and
distributing drivers for their implementation.

1.5 Power and Sleep Buttons
OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button
that is a “soft” button that does not turn the machine physically off but signals the OS to put the
machine in a soft off or sleeping state. ACPI defines two types of these “soft” buttons: one for
putting the machine to sleep and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button
as determined by user settings. The two-button model has an easily accessible sleep button and a
separate power button. In either model, an override feature that forces the machine to the soft-off
state without OSPM interaction is also needed to deal with various rare, but problematic, situations.

1.6 ACPI Specification and the Structure Of ACPI
This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data
structures. This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they
relate to each other. This specification describes the interfaces between components, the contents of
the ACPI System Description Tables, and the related semantics of the other ACPI components.
Notice that the ACPI System Description Tables, which describe a particular platform’s hardware,
are at heart of the ACPI implementation and the role of the ACPI System Firmware is primarily to
supply the ACPI Tables (rather than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both
software and hardware and how they must behave. ACPI is, instead, an interface specification
comprised of both software and hardware elements.
4 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification

ACPI TablesACPI BIOSACPI Registers

Kernel

Device
Driver

ACPI
Register
Interface

ACPI Table
Interface

ACPI BIOS
Interface

- ACPI Spec Covers this area
- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Platform Hardware

Existing
industry
standard
register

interfaces to:
CMOS, PIC,

PITs, ...

ACPI Driver/
AML Interpreter

Dependent
Application

APIs

OS Specific
technologies,

interfaces, and code

OS
Independent
technologies,

interfaces,
code, and
hardware

BIOS

OSPM System Code

Figure 1-1 OSPM/ACPI Global System

There are three run-time components to ACPI:

ACPI System Description Tables.

Describe the interfaces to the hardware. Some descriptions limit what can be built (for
example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be
built in arbitrary ways and can describe arbitrary operation sequences needed to make
the hardware function. ACPI Tables containing “Definition Blocks” can make use of a
pseudo-code type of language, the interpretation of which is performed by the OS.
That is, OSPM contains and uses an interpreter that executes procedures encoded in
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 5

Introduction
the pseudo-code language and stored in the ACPI tables containing “Definition
Blocks.” The pseudo-code language, known as ACPI Machine Language (AML), is a
compact, tokenized, abstract type of machine language.

ACPI Registers.

The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

ACPI System Firmware.

Refers to the portion of the firmware that is compatible with the ACPI specifications.
Typically, this is the code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely,
compared to a legacy BIOS. The ACPI Description Tables are also provided by the
ACPI System Firmware.

1.7 OS and Platform Compliance
The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that
operating systems may require to completely support OSPM/ACPI. The minimum feature
implementation requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces
System platforms implement ACPI-defined hardware interfaces via the platform hardware and
ACPI-defined software interfaces and system description tables via the ACPI system firmware.
Specific ACPI-defined interfaces and OSPM concepts while appropriate for one class of machine
(for example, a mobile system), may not be appropriate for another class of machine (for example, a
multi-domain enterprise server). It is beyond the capability and scope of this specification to specify
all platform classes and the appropriate ACPI-defined interfaces that should be required for the
platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces
and hardware requirements suitable to the particular system platform class addressed in a particular
design guide. Platform design guides should not define alternative interfaces that provide similar
functionality to those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design Guides
Common description text and category names should be used in design guides to describe all
features, concepts, and interfaces defined by the ACPI specification as requirements for a platform
class. Listed below is the recommended set of high-level text and category names to be used to
describe the features, concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces
6 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
specified below are generally spread throughout the ACPI specification. The ACPI specification
defines:

System address map reporting interfaces (Section 14)

ACPI System Description Tables (Section 5.2):

Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table (ECDT)

System Resource Affinity Table (SRAT)

System Locality Information Table (SLIT)

Corrected Platform Error Polling Table (CPEP)

Maximum System Characteristics Table (MSCT)

ACPI RAS FeatureTable (RASF)

Memory Power StateTable (MPST)

Platform Memory Topology Table (PMTT)

Boot Graphics Resource Table (BGRT)

Firmware Performance Data Table (FPDT)

Generic Timer Description Table (GTDT)

ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):

Power management timer control/status

Power or sleep button with S5 override (also possible in generic space)

Real time clock wakeup alarm control/status

SCI /SMI routing control/status for Power Management and General-purpose events

System power state controls (sleeping/wake control) (Section 7)

Processor power state control (c states) (Section 8)

Processor throttling control/status (Section 8)

Processor performance state control/status (Section 8)

General-purpose event control/status

Global Lock control/status

System Reset control (Section 4.7.3.6)

Embedded Controller control/status (Section 12)

SMBus Host Controller (HC) control/status (Section 13)

Smart Battery Subsystem (Section 10.1)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 7

Introduction
ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2, Section 5.6.5):
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):

Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory

Global Lock related interfaces

ACPI Event programming model (Section 5.6)

ACPI-defined System BIOS Responsibilities (Section 15)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, S0, S5)
System sleeping states (S-states S1-S4) (Section 15)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides
The following provides an example of how a client platform design guide, whose goal is to require
robust configuration and power management for the system class, could use the recommended
terminology to define ACPI requirements.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system features,
concepts, and interfaces, along with their associated event models:

System address map reporting interfaces
8 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)

Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events

(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

· ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
Devices and device controls:

Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)

Global Lock related interfaces when a logical register in the hardware is shared between OS and firm-
ware environments

· ACPI Event programming model (Section 5.6)
· ACPI-defined System BIOS Responsibilities (Section 15)
· ACPI-defined State Definitions:

System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class specifications)
Processor power states (All processors must support the C1 Power State)

The following provides an example of how a design guide for systems that execute multiple OS
instances, whose goal is to require robust configuration and continuous availability for the system
class, could use the recommended terminology to define ACPI related requirements.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system features and
interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 9

Introduction
Power management timer control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events

(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

· ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
System indicators
Devices and device controls:

Processor
Global Lock related interfaces when a logical register in the hardware is shared between OS and firm-
ware environments

· ACPI Event programming model (Section 5.6)
· ACPI-defined System BIOS Responsibilities (Section 15)
· ACPI-defined State Definitions:

Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations
OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with
their associated event models appropriate to the system platform class upon which the OS executes.
This is the implementation of OSPM. The following outlines the OS enhancements and elements
necessary to support all ACPI-defined interfaces. To support ACPI through the implementation of
OSPM, the OS needs to be modified to:

• Use system address map reporting interfaces.

• Find and consume the ACPI System Description Tables.

• Interpret ACPI machine language (AML).

• Enumerate and configure motherboard devices described in the ACPI Namespace.

• Interface with the power management timer.

• Interface with the real-time clock wake alarm.

• Enter ACPI mode (on legacy hardware systems).

• Implement device power management policy.

• Implement power resource management.

• Implement processor power states in the scheduler idle handlers.

• Control processor and device performance states.

• Implement the ACPI thermal model.
10 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• Support the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

• Support acquisition and release of the Global Lock.

• Use the reset register to reset the system.

• Provide APIs to influence power management policy.

• Implement driver support for ACPI-defined devices.

• Implement APIs supporting the system indicators.

• Support all system states S1–S5.

1.7.3 OS Requirements
The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

• Use system address map reporting interfaces to get the system address map on Intel Architecture
(IA) platforms:

• INT 15H, E820H - Query System Address Map interface (see Section 15,“System Address
Map Interfaces”)

• EFI GetMemoryMap() Boot Services Function (see Section 15, “System Address Map
Interfaces”)

• Find and consume the ACPI System Description Tables (see Section 5, “ACPI Software
Programming Model”).

• Implementation of an AML interpreter supporting all defined AML grammar elements (see
Section 20, ACPI Machine Language Specification”).

• Support for the ACPI Event programming model including handling SCI interrupts, managing
fixed events, general-purpose events, embedded controller interrupts, and dynamic device
support.

• Enumerate and configure motherboard devices described in the ACPI Namespace.

• Implement support for the following ACPI devices defined within this specification:

• Embedded Controller Device (see Section 12, “ACPI Embedded Controller Interface
Specification”)

• GPE Block Device (see Section 9.10, “GPE Block Device”)

• Module Device (see Section 9.11, “Module Device”)

• Implementation of the ACPI thermal model (see Section 11, “Thermal Management”).

• Support acquisition and release of the Global Lock.

• OS-directed power management support (device drivers are responsible for maintaining device
context as described by the Device Power Management Class Specifications described in
Section A).

1.8 Target Audience
This specification is intended for the following users:

• OEMs building hardware containing ACPI-compatible interfaces
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 11

Introduction
• Operating system and device driver developers

• BIOS and ACPI system firmware developers

• CPU and chip set vendors

• Peripheral vendors

1.9 Document Organization
The ACPI specification document is organized into the following four parts:

• The first part of the specification (sections 1 through 3) introduces ACPI and provides an
executive overview.

• The second part (sections 4 and 5) defines the ACPI hardware and software programming
models.

• The third part (sections 6 through 17) specifies the ACPI implementation details; this part of the
specification is primarily for developers.

• The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI
Source Language (ASL) reference, parts of which are referred to by most of the other sections in
the document.

• Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview
The first three sections of the specification provide an executive overview of ACPI.

Section 1: Introduction.

 Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an
ACPI-compatible system, and provides references to related specifications.

Section 2: Definition of Terms.

 Defines the key terminology used in this specification. In particular, the global
system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep)
are defined in this section, along with the device power state definitions: Off (D3),
D3hot, D2, D1, and Fully-On (D0). Device and processor performance states (P0, P1,
…Pn) are also discussed.

Section 3: ACPI Overview.

Gives an overview of the ACPI specification in terms of the functional areas covered
by the specification: system power management, device power management,
processor power management, Plug and Play, handling of system events, battery
management, and thermal management.
12 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
1.9.2 Programming Models
Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification
that follow (all the rest of the sections of the specification) are based on the models defined in
sections 4 and 5. These sections are the heart of the ACPI specification. There are extensive cross-
references between the two sections.

Section 4: ACPI Hardware Specification.

Defines a set of hardware interfaces that meet the goals of this specification.

Section 5: ACPI Software Programming Model.

Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details
The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily
for developers.

Section 6: Configuration.

Defines the reserved Plug and Play objects used to configure and assign resources to
devices, and share resources and the reserved objects used to track device insertion
and removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance Management.

Defines the reserved device power-management objects and the reserved-system
power-management objects.

Section 8: Processor Configuration and Control.

Defines how the OS manages the processors’ power consumption and other controls
while the system is in the working state.

Section 9: ACPI-Specific Device Objects.

Lists the integrated devices that need support for some device-specific ACPI controls,
along with the device-specific ACPI controls that can be provided. Most device
objects are controlled through generic objects and control methods and have generic
device IDs; this section discusses the exceptions.

Section 10: Power Source Devices.

Defines the reserved battery device and AC adapter objects.

Section 11: Thermal Management.

Defines the reserved thermal management objects.

Section 12: ACPI Embedded Controller Interface Specification.

Defines the interfaces between an ACPI-compatible OS and an embedded controller.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 13

Introduction
Section 13: ACPI System Management Bus Interface Specification.

Defines the interfaces between an ACPI-compatible OS and a System Management
Bus (SMBus) host controller.

Section 14: Platform Communications Channel.

 Explains the generic mechanism for OSPM to communicate with an entity in the
platform defines a new address space type

Section 15: System Address Map Interfaces.

 Explains the special INT 15 call for use in ISA/EISA/PCI bus-based systems. This
call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard. UEFI-based memory
address map reporting interfaces are also described.

Section 16: Waking and Sleeping.

 Defines in detail the transitions between system working and sleeping states and their
relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and
8.

Section 17: Non-Uniform Memory Access (NUMA) Architecture Platforms.

Discusses in detail how ACPI define interfaces can be used to describe a NUMA
architecture platform. Refers to the reserved objects defined in sections 5, 6, 8, and 9.

Section 18: ACPI Platform Error Interfaces.

Defines interfaces that enable OSPM to processes different types of hardware error
events that are detected by platform-based error detection hardware.

1.9.4 Technical Reference
The fourth part of the specification contains reference material for developers.

Section 19: ACPI Source Language Reference.

 Defines the syntax of all the ASL statements that can be used to write ACPI control
methods, along with example syntax usage.

Section 20: ACPI Machine Language Specification.

Defines the grammar of the language of the ACPI virtual machine language. An ASL
translator (compiler) outputs AML.

Section 2: ACPI Data Tables and Table Language Definition.

Describes a simple language (the Table Definition Language or TDL) that can be used
to generate any ACPI data table.

Appendix A: Device class specifications.

Describes device-specific power management behavior on a per device-class basis.

Appendix B: Video Extensions.

Contains video device class-specific ACPI interfaces.
14 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
1.10 Related Documents
Power management and Plug and Play specifications for legacy hardware platforms are the
following, available from the ACPI Link Document under the heading "Legacy PNP Guidelines".

• Advanced Power Management (APM) BIOS Specification, Revision 1.2.

• Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® ItaniumTM Architecture Software Developer’s Manual, see the ACPI Link Document under
the heading "Intel Architecture Specifications".

ItaniumTM Processor Family System Abstraction Layer Specification, Intel Corporation, December
2003 (June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:

Unified Extensible Firmware Interface Specification, see the ACPI Link Document under the
heading "Unified Extensible Firmware Interface Specifications"

Documentation and specifications for the Smart Battery System components and the SMBus are
available from http://www.sbs-forum.org:

• The ACPI Link Document under the heading "Smart Battery System Components and SMBus
Specification".

• Smart Battery Data Specification, see the ACPI Link Document under the heading "Smart
Battery System Components and SMBus Specification".

• Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

• Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

• System Management Bus Specification, Revision 1.1, Smart Battery System Implementers
Forum, December, 1998.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 15

Introduction
16 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
2
Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three
parts:

General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global
system states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as
such, they are generally not visible to the user. For example, some devices may be in the off state
even though the system as a whole is in the working state. Device states apply to any device on any
bus.

2.1 General ACPI Terminology
Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPI is a method for describing hardware interfaces in
terms abstract enough to allow flexible and innovative hardware implementations and
concrete enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware

Computer hardware with the features necessary to support OSPM and with the
interfaces to those features described using the Description Tables as specified by this
document.

ACPI Namespace

A hierarchical tree structure in OS-controlled memory that contains named objects.
These objects may be data objects, control method objects, bus/device package
objects, and so on. The OS dynamically changes the contents of the namespace at run-
time by loading and/or unloading definition blocks from the ACPI Tables that reside
in the ACPI BIOS. All the information in the ACPI Namespace comes from the
Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)

Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which
ACPI control methods and objects are written. The AML encoding definition is
provided in section 19, “ACPI Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)

An interrupt controller architecture commonly found on Intel Architecture-based 32-
bit PC systems. The APIC architecture supports multiprocessor interrupt management
(with symmetric interrupt distribution across all processors), multiple I/O subsystem
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 17

Definition of Terms
support, 8259A compatibility, and inter-processor interrupt support. The architecture
consists of local APICs commonly attached directly to processors and I/O APICs
commonly in chip sets.

ACPI Source Language (ASL)

The programming language equivalent for AML. ASL is compiled into AML images.
The ASL statements are defined in section 18, “ACPI Source Language (ASL)
Reference.”

Control Method

A control method is a definition of how the OS can perform a simple hardware task.
For example, the OS invokes control methods to read the temperature of a thermal
zone. Control methods are written in an encoded language called AML that can be
interpreted and executed by the ACPI-compatible OS. An ACPI-compatible system
must provide a minimal set of control methods in the ACPI tables. The OS provides a
set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by
either including control methods in the BIOS that test configurations and respond as
needed or including a different set of control methods for each chip set revision.

Central Processing Unit (CPU) or Processor

The part of a platform that executes the instructions that do the work. An ACPI-
compatible OS can balance processor performance against power consumption and
thermal states by manipulating the processor performance controls. The ACPI
specification defines a working state, labeled G0 (S0), in which the processor executes
instructions. Processor sleeping states, labeled C1 through C3, are also defined. In the
sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also
defines processor performance states, where the processor (while in C0) executes
instructions, but with lower performance and (potentially) lower power consumption
and operating temperature. For more information, see section 8, “Processor
Configuration and Control.”

A definition block contains information about hardware implementation and
configuration details in the form of data and control methods, encoded in AML. An
OEM can provide one or more definition blocks in the ACPI Tables. One definition
block must be provided: the Differentiated Definition Block, which describes the base
system. Upon loading the Differentiated Definition Block, the OS inserts the contents
of the Differentiated Definition Block into the ACPI Namespace. Other definition
blocks, which the OS can dynamically insert and remove from the active ACPI
Namespace, can contain references to the Differentiated Definition Block. For more
information, see section 5.2.11, “Definition Blocks.”

Device

Hardware component outside the core chip set of a platform. Examples of devices are
liquid crystal display (LCD) panels, video adapters, Integrated Drive Electronics
(IDE) CD-ROM and hard disk controllers, COM ports, and so on. In the ACPI scheme
18 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
of power management, buses are devices. For more information, see section 3.3.2,
“Device Power States.”

Device Context

The variable data held by the device; it is usually volatile. The device might forget this
information when entering or leaving certain states (for more information, see section
2.3, “Device Power State Definitions.”), in which case the OS software is responsible
for saving and restoring the information. Device Context refers to small amounts of
information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)

An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the
Differentiated Definition Block, which supplies the implementation and configuration
information about the base system. The OS always inserts the DSDT information into
the ACPI Namespace at system boot time and never removes it.

Unified Extensible Firmware Interface (UEFI)

An interface between the OS and the platform firmware. The interface is in the form
of data tables that contain platform related information, and boot and run-time service
calls that are available to the OS and loader. Together, these provide a standard
environment for booting an OS.

Embedded Contorller

The general class of microcontrollers used to support OEM-specific implementations,
mainly in mobile environments. The ACPI specification supports embedded
controllers in any platform design, as long as the microcontroller conforms to one of
the models described in this section. The embedded controller performs complex low-
level functions through a simple interface to the host microprocessor(s).

Embedded Controller Interface

A standard hardware and software communications interface between an OS driver
and an embedded controller. This allows any OS to provide a standard driver that can
directly communicate with an embedded controller in the system, thus allowing other
drivers within the system to communicate with and use the resources of system
embedded controllers (for example, Smart Battery and AML code). This in turn
enables the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure (FACS)

A structure in read/write memory that the BIOS uses for handshaking between the
firmware and the OS. The FACS is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FADT). The FACS contains the system’s hardware
signature at last boot, the firmware waking vector, and the Global Lock.

Fixed ACPI Description Table (FADT)

A table that contains the ACPI Hardware Register Block implementation and
configuration details that the OS needs to directly manage the ACPI Hardware
Register Blocks, as well as the physical address of the DSDT, which contains other
platform implementation and configuration details. An OEM must provide an FADT
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 19

Definition of Terms
to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the namespace
information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features

A set of features offered by an ACPI interface. The ACPI specification places
restrictions on where and how the hardware programming model is generated. All
fixed features, if used, are implemented as described in this specification so that
OSPM can directly access the fixed feature registers.

Fixed Feature Events

A set of events that occur at the ACPI interface when a paired set of status and event
bits in the fixed feature registers are set at the same time. When a fixed feature event
occurs, a system control interrupt (SCI is raised. For ACPI fixed feature events,
OSPM (or an ACPI-aware driver) acts as the event handler.

Fixed Feature Registers

A set of hardware registers in fixed feature register space at specific address locations
in system I/O address space. ACPI defines register blocks for fixed features (each
register block gets a separate pointer from the FADT). For more information, see
section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers

The general-purpose event registers contain the event programming model for generic
features. All general-purpose events generate SCIs.

Generic Feature

A generic feature of a platform is value-added hardware implemented through control
methods and general-purpose events.

Global System Status

Global system states apply to the entire system, and are visible to the user. The various
global system states are labeled G0 through G3 in the ACPI specification. For more
information, see Section 2.2, “Global System State Definitions.”

Ignored Bits

Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI
specification. Ignored bits are undefined and can return zero or one (in contrast to
reserved bits, which always return zero). Software ignores ignored bits in ACPI
hardware registers on reads and preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC)

A general descriptive term for computers built with processors conforming to the
architecture defined by the Intel processor family based on the Intel Architecture
instruction set and having an industry-standard PC architecture.

I/O APIC

An Input/Output Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.
20 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
I/O SAPIC

An Input/Output Streamlined Advanced Programmable Interrupt Controller routes
interrupts from devices to the processor’s local APIC.

Legacy

A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features
found in today’s systems are used to support power management in a system that uses
a legacy OS that does not support the OS-directed power management architecture.

Legacy Hardware

A computer system that has no ACPI or OSPM power management support.

Legacy OS

An OS that is not aware of and does not direct the power management functions of the
system. Included in this category are operating systems with APM 1.x support.

Local APIC

A local Advanced Programmable Interrupt Controller receives interrupts from the I/O
APIC.

Local SAPIC

A local Streamlined Advanced Programmable Interrupt Controller receives interrupts
from the I/O SAPIC.

Multiple APIC Description Table (MADT)

The Multiple APIC Description Table (MADT) is used on systems supporting the
APIC and SAPIC to describe the APIC implementation. Following the MADT is a list
of APIC/SAPIC structures that declare the APIC/SAPIC features of the machine.

Object

The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the
information in the system definition tables. These objects can be data objects, package
objects, control method objects, and so on. Package objects refer to other objects.
Objects also have type, size, and relative name.

Object name

Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)

A model of power (and system) management in which the OS plays a central role and
uses global information to optimize system behavior for the task at hand.

Package

An array of objects.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 21

Definition of Terms
Power Button

A user push button or other switch contact device that switches the system from the
sleeping/soft off state to the working state, and signals the OS to transition to a
sleeping/soft off state from the working state.

Power Management

Mechanisms in software and hardware to minimize system power consumption,
manage system thermal limits, and maximize system battery life. Power management
involves trade-offs among system speed, noise, battery life, processing speed, and
alternating current (AC) power consumption. Power management is required for some
system functions, such as appliance (for example, answering machine, furnace
control) operations.

Power Resources

Resources (for example, power planes and clock sources) that a device requires to
operate in a given power state.

Power Sources

The battery (including a UPS battery) and AC line powered adapters or power
supplies that supply power to a platform.

Register Grouping

Consists of two register blocks (it has two pointers to two different blocks of
registers). The fixed-position bits within a register grouping can be split between the
two register blocks. This allows the bits within a register grouping to be split between
two chips.

Reserved Bits

Some unused bits in ACPI hardware registers are designated as “Reserved” in the
ACPI specification. For future extensibility, hardware-register reserved bits always
return zero, and data writes to them have no side effects. OSPM implementations must
write zeros to all reserved bits in enable and status registers and preserve bits in
control registers.

Root System Description Pointer (RSDP)

An ACPI-compatible system must provide an RSDP in the system’s low address
space. This structure’s only purpose is to provide the physical address of the RSDT
and XSDT.

Root System Description Table (RSDT)

A table with the signature ‘RSDT,’ followed by an array of physical pointers to other
system description tables. The OS locates that RSDT by following the pointer in the
RSDP structure.

Secondary System Description Table (SSDT)

SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a
platform description. After the DSDT is loaded into the ACPI Namespace, each
secondary description table listed in the RSDT/XSDT with a unique OEM Table ID is
22 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
loaded. This allows the OEM to provide the base support in one table, while adding
smaller system options in other tables.

Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button

A user push button that switches the system from the sleeping/soft off state to the
working state, and signals the OS to transition to a sleeping state from the working
state.

Smart Battery Subsystem

A battery subsystem that conforms to the following specifications: Smart Battery and
either Smart Battery System Manager or Smart Battery Charger and Selector—and the
additional ACPI requirements.

Smart Battery Table

An ACPI table used on platforms that have a Smart Battery subsystem. This table
indicates the energy-level trip points that the platform requires for placing the system
into different sleeping states and suggested energy levels for warning the user to
transition the platform into a sleeping state.

System Management Bus (SMBus)

A two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that
provides positive addressing for devices, as well as bus arbitration.

SMBus Interface

A standard hardware and software communications interface between an OS bus
driver and an SMBus controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)

An advanced APIC commonly found on Intel ItaniumTM Processor Family-based 64-
bit systems.

System Context

The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)

A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an
active, low, shareable, level interrupt.

System Management Interrupt (SMI)

An OS-transparent interrupt generated by interrupt events on legacy systems. By
contrast, on ACPI systems, interrupt events generate an OS-visible interrupt that is
shareable (edge-style interrupts will not work). Hardware platforms that want to
support both legacy operating systems and ACPI systems must support a way of re-
mapping the interrupt events between SMIs and SCIs when switching between ACPI
and legacy models.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 23

Definition of Terms
Thermal States

Thermal states represent different operating environment temperatures within thermal
zones of a system. A system can have one or more thermal zones; each thermal zone is
the volume of space around a particular temperature-sensing device. The transitions
from one thermal state to another are marked by trip points, which are implemented to
generate an SCI when the temperature in a thermal zone moves above or below the
trip point temperature.

Extended Root System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical
addresses of DESCRIPTION HEADERs that are larger than 32-bits. Notice that both
the XSDT and the RSDT can be pointed to by the RSDP structure.

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:

1. Does application software run?

2. What is the latency from external events to application response?

3. What is the power consumption?

4. Is an OS reboot required to return to a working state?

5. Is it safe to disassemble the computer?

6. Can the state be entered and exited electronically?

Following is a list of the system states:

G3 Mechanical Off

A computer state that is entered and left by a mechanical means (for example, turning
off the system’s power through the movement of a large red switch). It is implied by
the entry of this off state through a mechanical means that no electrical current is
running through the circuitry and that it can be worked on without damaging the
hardware or endangering service personnel. The OS must be restarted to return to the
Working state. No hardware context is retained. Except for the real-time clock, power
consumption is zero.

G2/S5 Soft Off

A computer state where the computer consumes a minimal amount of power. No user
mode or system mode code is run. This state requires a large latency in order to return
to the Working state. The system’s context will not be preserved by the hardware. The
system must be restarted to return to the Working state. It is not safe to disassemble
the machine in this state.

G1 Sleeping

A computer state where the computer consumes a small amount of power, user mode
threads are not being executed, and the system “appears” to be off (from an end user’s
perspective, the display is off, and so on). Latency for returning to the Working state
24 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
varies on the wake environment selected prior to entry of this state (for example,
whether the system should answer phone calls). Work can be resumed without
rebooting the OS because large elements of system context are saved by the hardware
and the rest by system software. It is not safe to disassemble the machine in this state.

G0 Working

A computer state where the system dispatches user mode (application) threads and
they execute. In this state, peripheral devices (peripherals) are having their power state
changed dynamically. The user can select, through some UI, various performance/
power characteristics of the system to have the software optimize for performance or
battery life. The system responds to external events in real time. It is not safe to
disassemble the machine in this state.

S4 Non-Voaltile Sleep

A special global system state that allows system context to be saved and restored
(relatively slowly) when power is lost to the motherboard. If the system has been
commanded to enter S4, the OS will write all system context to a file on non-volatile
storage media and leave appropriate context markers. The machine will then enter the
S4 state. When the system leaves the Soft Off or Mechanical Off state, transitioning to
Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the
configuration of the machine have not changed, and the user has not manually aborted
the restore. If all these conditions are met, as part of the OS restarting, it will reload
the system context and activate it. The net effect for the user is what looks like a
resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and
memory size. It might be possible for the user to swap a PC Card or a Device Bay
device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the
system context must be written to non-volatile storage by the hardware; entering the Working state
first so that the OS or BIOS can save the system context takes too long from the user’s point of view.
The transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-2 Summary of Global Power States

Global system
state

Software
runs

Latency Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically

G0 Working Yes 0 Large No No Yes

G1 Sleeping No >0,
varies
with
sleep
state

Smaller No No Yes
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 25

Definition of Terms
Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This
implies that a platform designed to give the user the appearance of “instant-on,” similar to a home
appliance device, will use the G0 and G1 states almost exclusively (the G3 state may be used for
moving the machine or repairing it).

2.3 Device Power State Definitions
Device power states are states of particular devices; as such, they are generally not visible to the
user. For example, some devices may be in the Off state even though the system as a whole is in the
Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal
criteria:

• Power consumption-How much power the device uses.

• Device context--How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

• Device driver--What the device driver must do to restore the device to full on.

• Restore time--How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all
four power states defined. Devices may be capable of several different low-power modes, but if
there is no user-perceptible difference between the modes, only the lowest power mode will be used.
The Device Class Power Management Specifications, included in Appendix A of this specification,
describe which of these power states are defined for a given type (class) of device and define the
specific details of each power state for that device class. For a list of the available Device Class
Power Management Specifications, see “Appendix A: Device Class Specifications.”

D3 (Off)

Power has been fully removed from the device. The device context is lost when this
state is entered, so the OS software will reinitialize the device when powering it back
on. Since device context and power are lost, devices in this state do not decode their
address lines. Devices in this state have the longest restore times. All classes of
devices define this state.

D3hot

The meaning of the D3hot State is defined by each device class. Devices in the D3hot
State are required to be software enumerable. In general, D3hot is expected to save
more power and optionally preserve device context. If device context is lost when this
state is entered, the OS software will reinitialize the device when transitioning to D0.

G2/S5 Soft Off No Long Very near 0 Yes No Yes

G3 Mechanical Off No Long RTC battery Yes Yes No

Global system
state

Software
runs

Latency Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically
26 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Devices in this state can have long restore times. All classes of devices define this
state.

Note: The D3hot state differs from the D3 state in two distinct parameters; the main power rail is present
and software can access a device in D3hot. For devices that support both D3hot and D3 exposed
to OSPM via _PR3, device software/drivers must always assume OSPM will target D3and must
assume device context will be lost.

D2

The meaning of the D2 Device State is defined by each device class. Many device
classes may not define D2. In general, D2 is expected to save more power and
preserve less device context than D1 or D0. Buses in D2 may cause the device to lose
some context (for example, by reducing power on the bus, thus forcing the device to
turn off some of its functions).

D1

The meaning of the D1 Device State is defined by each device class. Many device
classes may not define D1. In general, D1 is expected to save less power and preserve
more device context than D2.

D0 (Fully-On)

This state is assumed to be the highest level of power consumption. The device is
completely active and responsive, and is expected to remember all relevant context
continuously.

Table 2-3 Summary of Device Power States

Note: Devices often have different power modes within a given state. Devices can use these modes as
long as they can automatically transparently switch between these modes from the software,
without violating the rules for the current Dx state the device is in. Low-power modes that
adversely affect performance (in other words, low speed modes) or that are not transparent to
software cannot be done automatically in hardware; the device driver must issue commands to
use these modes.

2.4 Sleeping State Definitions
Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx
states are briefly defined below. For a detailed definition of the system behavior within each Sx state,
see Section 7.3.4, “System _Sx States.” For a detailed definition of the transitions between each of
the Sx states, seeSection 16.1, “Sleeping States.”

Device State Power Consumption Device Context Retained Driver Restoration

D0 - Fully-On As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization and
load

D3 - Off 0 None Full initialization and load
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 27

Definition of Terms
S1 Sleeping State

The S1 sleeping state is a low wake latency sleeping state. In this state, no system
context is lost (CPU or chip set) and hardware maintains all system context.

S2 Sleeping State

The S2 sleeping state is a low wake latency sleeping state. This state is similar to the
S1 sleeping state except that the CPU and system cache context is lost (the OS is
responsible for maintaining the caches and CPU context). Control starts from the
processor’s reset vector after the wake event.

S3 Sleeping State

The S3 sleeping state is a low wake latency sleeping state where all system context is
lost except system memory. CPU, cache, and chip set context are lost in this state.
Hardware maintains memory context and restores some CPU and L2 configuration
context. Control starts from the processor’s reset vector after the wake event.

S4 Sleeping State

The S4 sleeping state is the lowest power, longest wake latency sleeping state
supported by ACPI. In order to reduce power to a minimum, it is assumed that the
hardware platform has powered off all devices. Platform context is maintained.

S5 Soft Off State

The S5 state is similar to the S4 state except that the OS does not save any context.
The system is in the “soft” off state and requires a complete boot when it wakes.
Software uses a different state value to distinguish between the S5 state and the S4
state to allow for initial boot operations within the BIOS to distinguish whether or not
the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions
Processor power states (Cx states) are processor power consumption and thermal management states
within the global working state, G0. The Cx states possess specific entry and exit semantics and are
briefly defined below. For a more detailed definition of each Cx state, see section 8.1, “Processor
Power States.”

C0 Processor Power State

While the processor is in this state, it executes instructions.

C1 Processor Power State

This processor power state has the lowest latency. The hardware latency in this state
must be low enough that the operating software does not consider the latency aspect of
the state when deciding whether to use it. Aside from putting the processor in a non-
executing power state, this state has no other software-visible effects.

C2 Processor Power State

The C2 state offers improved power savings over the C1 state. The worst-case
hardware latency for this state is provided via the ACPI system firmware and the
operating software can use this information to determine when the C1 state should be
28 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
used instead of the C2 state. Aside from putting the processor in a non-executing
power state, this state has no other software-visible effects.

C3 Processor Power State

The C3 state offers improved power savings over the C1 and C2 states. The worst-
case hardware latency for this state is provided via the ACPI system firmware and the
operating software can use this information to determine when the C2 state should be
used instead of the C3 state. While in the C3 state, the processor’s caches maintain
state but ignore any snoops. The operating software is responsible for ensuring that the
caches maintain coherency.

2.6 Device and Processor Performance State Definitions
Device and Processor performance states (Px states) are power consumption and capability states
within the active/executing states, C0 for processors and D0 for devices. The Px states are briefly
defined below. For a more detailed definition of each Px state from a processor perspective, see
section 8.4.4, “Processor Performance Control.” For a more detailed definition of each Px state from
a device perspective see section 3.6, “Device and Processor Performance States,” and the device
class specifications in Appendix A.

P0 Performance State

While a device or processor is in this state, it uses its maximum performance
capability and may consume maximum power.

P1 Performance State

In this performance power state, the performance capability of a device or processor is
limited below its maximum and consumes less than maximum power.

Pn Performance State

In this performance state, the performance capability of a device or processor is at its
minimum level and consumes minimal power while remaining in an active state. State
n is a maximum number and is processor or device dependent. Processors and devices
may define support for an arbitrary number of performance states not to exceed 16.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 29

Definition of Terms
30 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
3
ACPI Overview

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the power
management and motherboard device configuration functions of a computer. During OS initialization, OSPM takes
over these functions from legacy implementations such as the APM BIOS, SMM-based firmware, legacy applica-
tions, and the PNPBIOS. Having done this, OSPM is responsible for handling motherboard device configuration
events as well as for controlling the power, performance, and thermal status of the system based on user preference,
application requests and OS imposed Quality of Service (QOS) / usability goals. ACPI provides low-level interfaces
that allow OSPM to perform these functions. The functional areas covered by the ACPI specification are:

System power management

ACPI defines mechanisms for putting the computer as a whole in and out of system
sleeping states. It also provides a general mechanism for any device to wake the
computer.

Device power management

ACPI tables describe motherboard devices, their power states, the power planes the
devices are connected to, and controls for putting devices into different power states.
This enables the OS to put devices into low-power states based on application usage.

Processor power management

While the OS is idle but not sleeping, it will use commands described by ACPI to put
processors in low-power states.

Device and processor performance management.

 While the system is active, OSPM will transition devices and processors into different
performance states, defined by ACPI, to achieve a desirable balance between
performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

Configuration / Plug and Play

ACPI specifies information used to enumerate and configure motherboard devices.
This information is arranged hierarchically so when events such as docking and
undocking take place, the OS has precise, a priori knowledge of which devices are
affected by the event.

System Events

ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal,
and so on. This mechanism is very flexible in that it does not define specifically how
events are routed to the core logic chip set.

Battery management

Battery management policy moves from the APM BIOS to the ACPI OS. An ACPI-
compatible battery device needs either a Smart Battery subsystem interface, which is
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 31

ACPI Overview
controlled by the OS directly through the embedded controller interface, or a Control
Method Battery interface. A Control Method Battery interface is completely defined
by AML control methods, allowing an OEM to choose any type of the battery and any
kind of communication interface supported by ACPI. The battery must comply with
the requirements of its interface, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by
adjusting the Low Battery or Battery Warning trip point. When there are multiple
batteries present, the battery subsystem is not required to perform any synthesis of a
“composite battery” from the data of the separate batteries. In cases where the battery
subsystem does not synthesize a “composite battery” from the separate battery’s data,
the OS must provide that synthesis.

Thermal management

Since the OS controls the power and performance states of devices and processors,
ACPI also addresses system thermal management. It provides a simple, scalable
model that allows OEMs to define thermal zones, thermal indicators, and methods for
cooling thermal zones.

Embedded Controller

ACPI defines a standard hardware and software communications interface between an
OS bus enumerator and an embedded controller. This allows any OS to provide a
standard bus enumerator that can directly communicate with an embedded controller
in the system, thus allowing other drivers within the system to communicate with and
use the resources of system embedded controllers. This in turn enables the OEM to
provide platform features that the OS and applications can use.

SMBus Controller

ACPI defines a standard hardware and software communications interface between an
OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. This in turn
enables the OEM to provide platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s
power, performance, and thermal status given the user’s preferences and while supporting OS
imposed Quality of Service (QOS) / usability goals. To achieve these goals, ACPI requires that once
an ACPI compliant platform is in ACPI mode, the platform’s hardware, firmware, or other non-OS
software must not manipulate the platform’s configuration, power, performance, and thermal control
interfaces independently of OSPM. OSPM alone is responsible for coordinating the configuration,
power management, performance management, and thermal control policy of the system.
Manipulation of these interfaces independently of OSPM undermines the purpose of OSPM/ACPI
and may adversely impact the system’s configuration, power, performance, and thermal policy
goals. There are two exceptions to this requirement. The first is in the case of the possibility of
damage to a system from an excessive thermal conditions where an ACPI compatible OS is present
and OSPM latency is insufficient to remedy an adverse thermal condition. In this case, the platform
may exercise a failsafe thermal control mechanism that reduces the performance of a system
component to avoid damage. If this occurs, the platform must notify OSPM of the performance
reduction if the reduction is of significant duration (in other words, if the duration of reduced
performance could adversely impact OSPM’s power or performance control policy - operating
32 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
system vendors can provide guidance in this area). The second exception is the case where the
platform contains Active cooling devices but does not contain Passive cooling temperature trip
points or controls,. In this case, a hardware based Active cooling mechanism may be implemented
without impacting OSPM’s goals. Any platform that requires both active and passive cooling must
allow OSPM to manage the platform thermals via ACPI defined active and passive cooling
interfaces.

3.1 System Power Management
Under OSPM, the OS directs all system and device power state transitions. Employing user
preferences and knowledge of how devices are being used by applications, the OS puts devices in
and out of low-power states. Devices that are not being used can be turned off. Similarly, the OS
uses information from applications and user settings to put the system as a whole into a low- power
state. The OS uses ACPI to control power state transitions in hardware.

3.2 Power States
From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:

G3 -Mech
Off

Legacy

Wake
Event

G0 (S0) -
Working

G1 -
Sleeping

S4
S 3

S2
S1

Power
Failure/
Power Off

G2 (S 5) -
Soft Off

BIOS
Routine

C0

D0
D1

D2
D3
Modem

D0
D1

D2
D3
HDD

D0
D1

D2
D3

CDROM

C2
C1

Cn

Performance
State Px Throttling

C0

CPU

Figure 3-2 Global System Power States and Transitions

See Section 2.2, “Global System State Definitions,” for detailed definitions of these states.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 33

ACPI Overview
In general use, computers alternate between the Working and Sleeping states. In the Working state,
the computer is used to do work. User-mode application threads are dispatched and running.
Individual devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if
they are not being used. Any device the system turns off because it is not actively in use can be
turned on with short latency. (What “short” means depends on the device. An LCD display needs to
come on in sub-second times, while it is generally acceptable to wait a few seconds for a printer to
wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working
sub-states differ in speed of computation, power used, heat produced, and noise produced. Tuning
within the Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer
into one of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The
sleeping sub-states differ in what events can arouse the system to a Working state, and how long this
takes. When the machine must awaken to all possible events or do so very quickly, it can enter only
the sub-states that achieve a partial reduction of system power consumption. However, if the only
event of interest is a user pushing on a switch and a latency of minutes is allowed, the OS could save
all system context into an NVS file and transition the hardware into the S4 sleeping state. In this
state, the machine draws almost zero power and retains system context for an arbitrary period of
time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management
interfaces boot in the Legacy state and transition to the Working state when an ACPI OS loads. A
system without legacy support (for example, a RISC system) transitions directly from the
Mechanical Off state to the Working state. Users typically put computers into the Mechanical Off
state by flipping the computer’s mechanical switch or by unplugging the computer.

3.2.1 Power Button
In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical
Off or, on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as
the user wants the machine to “come on” in less than 1 second with all context as it was when the
user turned the machine “off”), system alert functions (such as the system being used as an
answering machine or fax machine), or application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off
state. A mechanism to stop current flow is required for legal reasons in some jurisdictions (for
example, in some European countries). The other is the “main” power button. This is in some
obvious place (for example, beside the keyboard on a laptop). Unlike legacy on/off buttons, all it
does is send a request to the system. What the system does with this request depends on policy issues
derived from user preferences, user function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1Mobile PC
Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/
ACPI will allow enhanced power savings techniques and more refined user policies.
34 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Aspects of mobile PC power management in the ACPI specification are thermal management (see
Section 11, “Thermal Management”) and the embedded controller interface (see Section 12, “ACPI
Embedded Controller Interface Specification”).

3.2.2.2 Desktop PCs
Power-managed desktops will be of two types, though the first type will migrate to the second over
time.

Ordinary “Green PC”

Here, new appliance functions are not the issue. The machine is really only used for
productivity computations. At least initially, such machines can get by with very
minimal function. In particular, they need the normal ACPI timers and controls, but
don’t need to support elaborate sleeping states, and so on. They, however, do need to
allow the OS to put as many of their devices/resources as possible into device standby
and device off states, as independently as possible (to allow for maximum compute
speed with minimum power wasted on unused devices). Such PCs will also need to
support wake from the sleeping state by means of a timer, because this allows
administrators to force them to turn on just before people are to show up for work.

Home PC

Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the
functionality of the ordinary green PC. In fact, it has all of the ACPI power
functionality of a laptop except for docking and lid events (and need not have any
legacy power management). Note that there is also a thermal management aspect to a
home PC, as a home PC user wants the system to run as quietly as possible, often in a
thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs
Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because
they have the largest hardware configurations and because it’s not practical for somebody to hit the
off switch when they leave at night.

Day Mode

 In day mode, servers are power-managed much like a corporate ordinary green PC,
staying in the Working state all the time, but putting unused devices into low-power
states whenever possible. Because servers can be very large and have, for example,
many disk spindles, power management can result in large savings. OSPM allows
careful tuning of when to do this, thus making it workable.

Night Mode

In night mode, servers look like home PCs. They sleep as deeply as they can and are
still able to wake and answer service requests coming in over the network, phone
links, and so on, within specified latencies. So, for example, a print server might go
into deep sleep until it receives a print job at 3 A.M., at which point it wakes in
perhaps less than 30 seconds, prints the job, and then goes back to sleep. If the print
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 35

ACPI Overview
request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management
This section describes ACPI-compatible device power management. The ACPI device power states
are introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping
state is described, and an example of ACPI-compatible device management using a modem is given.

3.3.1 Power Management Standards
To manage power of all the devices in the system, the OS needs standard methods for sending
commands to a device. These standards define the operations used to manage power of devices on a
particular I/O interconnect and the power states that devices can be put into. Defining these
standards for each I/O interconnect creates a baseline level of power management support the OS
can utilize. Independent Hardware Vendors (IHVs) do not have to spend extra time writing software
to manage power of their hardware, because simply adhering to the standard gains them direct OS
support. For OS vendors, the I/O interconnect standards allow the power management code to be
centralized in the driver for each I/O interconnect. Finally, I/O interconnect-driven power
management allows the OS to track the states of all devices on a given I/O interconnect. When all
the devices are in a given state (or example, D3 - off), the OS can put the entire I/O interconnect into
the power supply mode appropriate for that state (for example, D3 - off).

I/O interconnect-level power management specifications are written for a number of buses
including:

• PCI

• PCI Express

• CardBus

• USB

• IEEE 1394

3.3.2 Device Power States
To unify nomenclature and provide consistent behavior across devices, standard definitions are used
for the power states of devices. Generally, these states are defined in terms of the following criteria:

• Power consumption--How much power the device uses.

• Device context--How much of the context of the device is retained by the hardware.

• Device driver--What the device driver must do to restore the device to fully on.

• Restore latency--How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for
the class. See Section 2.3, “Device Power State Definitions,” for the detailed description of the
general device power states (D0-D3).
36 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
3.3.3 Device Power State Definitions
The device power state definitions are device-independent, but classes of devices on a bus must
support some consistent set of power-related characteristics. For example, when the bus-specific
mechanism to set the device power state to a given level is invoked, the actions a device might take
and the specific sorts of behaviors the OS can assume while the device is in that state will vary from
device type to device type. For a fully integrated device power management system, these class-
specific power characteristics must also be standardized:

Device Power State Characteristics.

Each class of device has a standard definition of target power consumption levels,
state-change latencies, and context loss.

Minimum Device Power Capabilities.

Each class of device has a minimum standard set of power capabilities.

Device Functional Characteristics.

Each class of device has a standard definition of what subset of device functionality or
features is available in each power state (for example, the net card can receive, but
cannot transmit; the sound card is fully functional except that the power amps are off,
and so on).

Device Wakeup Characteristics.

Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state
characteristics for each class of device.

3.4 Controlling Device Power
ACPI interfaces provides control and information needed to perform device power management.
ACPI interfaces describe to OSPM the capabilities of all the devices it controls. It also gives the OS
the control methods used to set the power state or get the power status for each device. Finally, it has
a general scheme for devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devices is
handled through their own bus specification (in this case, PCI). All other devices on the main board
are handled through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have
additional power management or configuration options not covered by their own bus specification.

For more detailed information see Section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities
As the OS enumerates devices in the system, it gets information about the power management
features that the device supports. The Differentiated Definition Block given to the OS by the BIOS
describes every device handled by ACPI. This description contains the following information:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 37

ACPI Overview
• A description of what power resources (power planes and clock sources) the device needs in
each power state that the device supports. For example, a device might need a high power bus
and a clock in the D0 state but only a low-power bus and no clock in the D2 state.

• A description of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use this information to infer what
device and system power states from which the device can support wake.

• The optional control method the OS can use to set the power state of the device and to get and
set resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock
sources themselves and the control methods for turning them on and off. For detailed information,
see Section 7, “Power and Performance Management.”

3.4.2 Setting Device Power States
OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus
as possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power
state based on the current device requirements on that bus. For example, if all devices on a bus are in
the D3 state, the OS will send a command to the bus control chip set to remove power from the bus
(thus putting the bus in the D3 state). If a particular bus supports a low-power supply state, the OS
puts the bus in that state if all devices are in the D1 or D2 state. Whatever power state a device is in,
the OS must be able to issue a Set Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device
before it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in Section 7, “Power and Performance Management.”).

Once the power resources have been switched, the OS executes the appropriate control method to
put the device in that power state. Notice that this might not mean that power is removed from the
device. If other active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status
OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI
to inform the OS of changes in power status. For example, a device can trigger an interrupt to inform
the OS that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status
changes) to OSPM. The platform signals events to the OS via the SCI interrupt. An SCI interrupt
status bit is set to indicate the event to the OS. The OS runs the control method associated with the
event. This control method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification.
For batteries that report only basic battery status information (such as total capacity and remaining
capacity), the OS uses control methods from the battery’s description table to read this information.
38 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
To read status information for Smart Batteries, the OS can use a standard Smart Battery driver that
directly interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer
The wake operation enables devices to wake the computer from a sleeping power state. This
operation must not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in
which they can still forward the wake signal. When a device with wake enabled decides to wake the
machine, it sends the defined signal on its bus. Bus bridges must forward this signal to upstream
bridges using the appropriate signal for that bus. Thus, the signal eventually reaches the core chip set
(for example, an ACPI chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to
wake the machine based on application requests, and then enables wake on those devices in a device
and bus specific manner.

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of
this bit is listed in the device’s entry in the description table. Only devices that have their wake
feature enabled can wake the machine. The OS keeps track of the power states that the wake devices

support, and keeps the machine in a power state in which the wake can still wake the machine1
(based on capabilities reported in the description table).

When the computer is in the Sleeping state and a wake device decides to wake the machine, it
signals to the ACPI chip set. The SCI status bit corresponding to the device waking the machine is
set, and the ACPI chip set resumes the machine. After the OS is running again, it clears the bit and
handles the event that caused the wake. The control method for this event then uses the Notify
command to tell the OS which device caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI
platform must also be able to record and report the wake source to OSPM. When a system is
woken from certain states (such as the S4 state), it may start out in non-ACPI mode. In this case,
the SCI status bit may be cleared when ACPI mode is re-entered. However the platform must still
attempt to record the wake source for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device
can also be put into a low power state during the S0 system state, and that this device may
generate a wake signal in the S0 state as the following example illustrates.

3.4.5 Example: Modem Device Power Management
To illustrate how these power management methods function in ACPI, consider an integrated
modem. (This example is greatly simplified for the purposes of this discussion.) The power states of
a modem are defined as follows (this is an excerpt from the Modem Device Class Power
Management Specification):

1. Some OS policies may require the OS to put the machine into a global system state for
which the device can no longer wake the system. Such as when a system has very low battery power.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 39

ACPI Overview
D0

Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1

Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook

D2

Same as D3

D3

Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3 D0

COM port opened

D0, D1 D3

COM port closed

D0 D1

Modem put in answer mode

D1 D0

Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

Based on that policy, the modem and the COM port to which it is attached can be implemented in
hardware as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This
example is not intended to describe how OEMs should build hardware.
40 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figure 3-3 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the
ACPI Differentiated Description Block so that devices are isolated as power planes are sequenced
off.

3.4.5.1 Obtaining the Modem Capabilities
The OS determines the capabilities of this modem when it enumerates the modem by reading the
modem’s entry in the Differentiated Definition Block. In this case, the entry for the modem would
report:

The device supports D0, D1, and D3:

• D0 requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

• To wake the machine, the modem needs no power resources (implying it can wake the machine
from D0, D1, and D3)

Control methods for setting power state and resources

3.4.5.2 Setting the Modem Power State
While the OS is running (G0 state), it switches the modem to different power states according to the
power policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the D0 state.
Then if the application puts the modem in answer mode, the OS puts the modem in the D1 state to
wait for the call. To make this state transition, the ACPI first checks to see what power resources are
no longer needed. In this case, PWR2 is not needed. Then it checks to make sure no other device in
the system requires the use of the PWR2 power resource. If the resource is no longer needed, the
OSPM uses the _OFF control method associated with that power resource in the Differentiated

S
w

itc
he

d
po

w
er

S
w

itc
he

d
po

w
er

ACPI core
chip set Phone

interface
Modem

controller

I/O

Control
Phone

line

PWR1 PWR2

RI

WAKE

PWR1_EN

PWR2_EN

MDM_D1
MDM_D3

I/O COM port
(UART)

I/O

COM_D3
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 41

ACPI Overview
Definition Block to turn off the PWR2 power plane. This control method sends the appropriate
commands to the core chip set to stop asserting the PWR2_EN line. Then, OSPM runs a control
method (_PS1) provided in the modem’s entry to put the device in the D1 state. This control method
asserts the MDM_D1 signal that tells the modem controller to go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state.
For example, assume that the PWR1 power plane also powers an active line printer (LPT) port.
Suppose the user terminates the modem application, causing the COM port to be closed, and
therefore causing the modem to be shut off (state D3). As always, OSPM checks to see which power
resources are no longer needed. Because the LPT port is still active, PWR1 is in use. OSPM does not
turn off the PWR1 resource. It continues the state transition process by running the modem’s control
method to switch the device to the D3 power state. The control method causes the MDM_D3 line to
be asserted. The modem controller now turns off all its major functions so that it draws little power,
if any, from the PWR1 line. Because the COM port is closed, the same sequence of events will take
place to put it in the D3 state. Notice that these registers might not be in the device itself. For
example, the control method could read the register that controls MDM_D3.

3.4.5.3 Obtaining the Modem Power Status
Integrated modems have no batteries; the only power status information for the device is the power
state of the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control
method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control
method reads from the necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer
As indicated in the modem capabilities, this modem can wake the machine from any device power
state. Before putting the computer in a sleep state, the OS enables wake on any devices that
applications have requested to be able to wake the machine. Then, it chooses the lowest sleeping
state that can still provide the power resources necessary to allow all enabled wake devices to wake
the machine. Next, the OS puts each of those devices in the appropriate power state, and puts all
other devices in the D3 state. In this case, the OS puts the modem in the D3 state because it supports
wake from that state. Finally, the OS saves a resume vector and puts the machine into a sleep state
through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate
(RI) line when it detects a ring on the phone line. This line is routed to the core chip set to generate a
wake event. The chip set then wakes the system and the hardware will eventually passes control
back to the OS (the wake mechanism differs depending on the sleeping state). After the OS is
running, it puts the device in the D0 state and begins handling interrupts from the modem to process
the event.

3.5 Processor Power Management
To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and
C3) when the OS is idle. In these low-power states, the CPU does not run any instructions, and
wakes when an interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power
Management Timer. This timer runs at a known, fixed frequency and allows the OS to precisely
42 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
determine idle time. Depending on this idle time estimate, the OS will put the CPU into different
quality low-power states (which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in Section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States
This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/
executing states, C0 for processors and D0 for devices. Performance states allow OSPM to make
tradeoffs between performance and energy conservation. Device and processor performance states
have the greatest impact when the states invoke different device and processor efficiency levels as
opposed to a linear scaling of performance and energy consumption. Since performance state
transitions occur in the active/executing device states, care must be taken to ensure that performance
state transitions do not adversely impact the system.

Examples of device performance states include:

• A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

• An LCD panel that supports multiple brightness levels that correspond to levels of power
consumption.

• A graphics component that scales performance between 2D and 3D drawing modes that
corresponds to levels of power consumption.

• An audio subsystem that provides multiple levels of maximum volume that correspond to levels
of maximum power consumption.

• A Direct-RDRAMTM controller that provides multiple levels of memory throughput
performance, corresponding to multiple levels of power consumption, by adjusting the
maximum bandwidth throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”
In addition to power management, ACPI interfaces provide controls and information that enable
OSPM to configure the required resources of motherboard devices along with their dynamic
insertion and removal. ACPI Definition Blocks, including the Differentiated System Description
Table (DSDT) and Secondary System Description Tables (SSDTs), describe motherboard devices in
a hierarchical format called the ACPI namespace. The OS enumerates motherboard devices simply
by reading through the ACPI Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report
the hardware resources that the device could occupy, an object that reports the resources that are
currently used by the device, and objects for configuring those resources. The information is used by
the Plug and Play OS (OSPM) to configure the devices.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 43

ACPI Overview
Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes
boot devices described in the ACPI system description tables as well as devices that are
controlled through other standards.

3.7.1 Device Configuration Example: Configuring the Modem
Returning to the modem device example above, the OS will find the modem and load a driver for it
when the OS finds it in the DSDT. This table will have control methods that give the OS the
following information:

• The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/O 2E8-2EF

• The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one
of the supported configurations that does not conflict with any other devices. Then, OSPM
configures the device for those resources by running a control method supplied in the modem’s
section of the Differentiated Definition Block. This control method will write to any I/O ports or
memory addresses necessary to configure the device to the given resources.

3.7.2 NUMA Nodes
Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of
hardware resources including processors, memory, and I/O buses, that comprise what is commonly
known as a “NUMA node”. Processor accesses to memory or I/O resources within the local NUMA
node is generally faster than processor accesses to memory or I/O resources outside of the local
NUMA node. ACPI defines interfaces that allow the platform to convey NUMA node topology
information to OSPM both statically at boot time and dynamically at run time as resources are added
or removed from the system.

3.8 System Events
ACPI includes a general event model used for Plug and Play, Thermal, and Power Management
events. There are two registers that make up the event model: an event status register and an event
enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS.
When the OS receives this interrupt, it will run the control methods corresponding to any bits set in
the event status register. These control methods use AML commands to tell the OS what event
occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management
events connected to the same pin in the core logic. The event status and event enable registers would
only have one bit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing
the status bit set, runs the control method for that bit. The control method checks the hardware and
determines the event was a docking event (for example). It then signals to the OS that a docking
event has occurred, and can tell the OS specifically where in the device hierarchy the new devices
will appear.
44 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug
and Play, Thermal, and Power Management events wired to three different pins so there would be
three status bits (and three enable bits). Yet another design might have every individual event wired
to its own pin and status bit. This design, at the opposite extreme from the single pin design, allows
very complex hardware, yet very simple control methods. Countless variations in wiring up events
are possible. However, note that care must be taken to ensure that if events share a signal that the
event that generated the signal can be determined in the corresponding event handling control
method allowing the proper device notification to be sent.

3.9 Battery Management
Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by
adjusting the Low Battery or Battery Warning trip point. When there are multiple batteries present,
the battery subsystem is not required to perform any synthesis of a “composite battery” from the data
of the separate batteries. In cases where the battery subsystem does not synthesize a “composite
battery” from the separate battery's data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control
Method Battery interface.

• Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see Section 12.9, “SMBus
Host Controller Interface via Embedded Controller.” For additional information about the Smart
Battery subsystem interface, see Section 10.1, “Smart Battery Subsystems.”

• Control Method Battery is completely accessed by AML code control methods, allowing the
OEM to choose any type of battery and any kind of communication interface supported by
ACPI. For more information about the Control Method Battery Interface, see Section 10.2,
“Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications
Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to
query information from the platform’s battery system. This information may include full charged
capacity, present battery capacity, rate of discharge, and other measures of the battery’s condition.
All battery system types must provide notification to the OS when there is a change such as inserting
or removing a battery, or when a battery starts or stops discharging. Smart Batteries and some
Control Method Batteries are also able to give notifications based on changes in capacity. Smart
batteries provide extra information such as estimated run-time, information about how much power
the battery is able to provide, and what the run-time would be at a predetermined rate of
consumption.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 45

ACPI Overview
3.9.2 Battery Capacity
Each battery must report its designed capacity, latest full-charged capacity, and present remaining
capacity. Remaining capacity decreases during usage, and it also changes depending on the
environment. Therefore, the OS must use latest full-charged capacity to calculate the battery
percentage. In addition the battery system must report warning and low battery levels at which the
user must be notified and the system transitioned to a sleeping state. SeeFigure 3-4 for the relation of
these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit
of battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

Figure 3-4 Reporting Battery Capacity

3.9.3 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following
formula:

Figure 3-5 Remaining Battery Percent Formula

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining battery life. At
the most basic level, Remaining Battery life is calculated by following formula:

Figure 3-6 Re;maining Battery Life Formula

OEM designed initial capacity for warning

OEM designed initial capacity for low

Last full charged capacity
Designed capacity

Present remaining capacity

Remaining Battery Percentage[%] =
Battery Remaining Capacity [mAh/mWh]

Last Full Charged Capacity [mAh/mWh]
* 100

Remaining Battery Life [h]=
Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]
46 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Smart Batteries also report the present rate of drain, but since they can directly report the estimated
run-time, this function should be used instead as it can more accurately account for variations
specific to the battery.

3.9.4 Low Battery Levels
A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical
battery level or flag. The values for warning and low represent the amount of energy or battery
capacity needed by the system to take certain actions. The critical battery level or flag is used to
indicate when the batteries in the system are completely drained. OSPM can determine independent
warning and low battery capacity values based on the OEM-designed levels, but cannot set these
values lower than the OEM-designed values, as shown in the figure below

Figure 3-7 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and
OEM-designed initial low capacity as well as a flag to report when that battery has reached or is
below its critical energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily
specific to one particular machine type, so the OEM-designed warning, low, and critical levels are
reported separately in a Smart Battery Table described in Section 5.2.14.

The table below describes how these values should be set by the OEM and interpreted by the OS.

Table 3-4 Low Battery Levels

Level Description

Warning When the total available energy (mWh) or capacity (mAh) in the batteries falls below this level,
the OS will notify the user through the UI. This value should allow for a few minutes of run-time
before the “Low” level is encountered so the user has time to wrap up any important work,
change the battery, or find a power outlet to plug the system in.

Warning

Low

Full

Critical

OEM-designed initial capacity for warning (minimum)

OEM-designed initial capacity for low (minimum)

Last full charged capacity

OSPM-selected low battery

OSPM-selected low battery warning capacity

OEM-defined Battery Critical flag

F

E
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 47

ACPI Overview
3.9.4.1 Emergency Shutdown
Running until all batteries in a system are critical is not a situation that should be encountered
normally, since the system should be put into a sleeping state when the battery becomes low. In the
case that this does occur, the OS should take steps to minimize any damage to system integrity. The
emergency shutdown procedure should be designed to minimize bad effects based on the assumption
that power may be lost at any time. For example, if a hard disk is spun down, the OS should not try
to spin it up to write any data, since spinning up the disk and attempting to write data could
potentially corrupt files if the write were not completed. Even if a disk is spun up, the decision to
attempt to save even system settings data before shutting down would have to be evaluated since
reverting to previous settings might be less harmful than having the potential to corrupt the settings
if power was lost halfway through the write operation.

3.9.5 Battery Calibration
The reported capacity of many batteries generally degrade over time, providing less run time for the
user. However, it is possible with many battery systems to provide more useable runtime on an old
battery if a calibration or conditioning cycle is run occasionally. The user has typically been able to
perform a calibration cycle either by going into the BIOS setup menu, or by running a custom driver
and calibration application provided by the OEM. The calibration process typically takes several
hours, and the laptop must be plugged in during this time. Ideally the application that controls this
should make this as good of a user experience as possible, for example allowing the user to schedule
the system to wake up and perform the calibration at some time when the system will not be in use.

Low This value is an estimation of the amount of energy or battery capacity required by the system to
transition to any supported sleeping state. When the OS detects that the total available battery
capacity is less than this value, it will transition the system to a user defined system state (S1-
S5). In most situations this should be S4 so that system state is not lost if the battery eventually
becomes completely empty. The design of the OS should consider that users of a multiple battery
system may remove one or more of the batteries in an attempt replace or charge it. This might
result in the remaining capacity falling below the “Low” level not leaving sufficient battery capacity
for the OS to safely transition the system into the sleeping state. Therefore, if the batteries are
discharging simultaneously, the action might need to be initiated at the point when both batteries
reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not appear to
be able to supply power to run the system any longer. When this occurs, the OS must attempt to
perform an emergency shutdown as described below.
For a smart battery system, this would typically occur when all batteries reach a capacity of 0, but
an OEM may choose to put a larger value in the Smart Battery Table to provide an extra margin
of safely.
For a Control Method Battery system with multiple batteries, the flag is reported per battery. If any
battery in the system is in a critically low state and is still providing power to the system (in other
words, the battery is discharging), the system is considered to be in a critical energy state. The
_BST control method is required to return the Critical flag on a discharging battery only when all
batteries have reached a critical state; the ACPI BIOS is otherwise required to switch to a non-
critical battery.

Level Description
48 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Since the calibration user experience does not need to be different from system to system it makes
sense for this service to be provided by the OSPM. .In this way OSPM can provide a common
experience for end users and eliminate the need for OEMs to develop custom battery calibration
software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in Section 10.2.2.5 and
Section 10.2.2.6. First, there is a means to detect when it would be beneficial to calibrate the battery.
Second there is a means to perform that calibration cycle. Both of those functions may be
implemented by dedicated hardware such as a battery controller chip, by firmware in the embedded
controller, by the BIOS, or by OSPM. From here on any function implemented through AML,
whether or not the AML code relies on hardware, will be referred to as “AML controlled” since the
interface is the same whether the AML passes control to the hardware or not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be
reported through the _BMD method. Alternately, the _BMD method may simply report the number
of cycles before calibration should be performed and let the OS attempt to count the cycles. A
counter implemented by the hardware or the BIOS will generally be more accurate since the
batteries can be used without the OS running, but in some cases, a system designer may opt to
simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration
cycle can be AML controlled or OSPM controlled. OSPM can only implement a very simple
algorithm since it doesn’t have knowledge of the specifics of the battery system. It will simply
discharge the battery until it quits discharging, then charge it until it quits charging. In the case
where the AC adapter cannot be controlled through the _BMC, it will prompt the user to unplug the
AC adapter and reattach it after the system powers off. If the calibration cycle is controlled by AML,
the OS will initiate the calibration cycle by calling _BMC. That method will either give control to
the hardware, or will control the calibration cycle itself. If the control of the calibration cycle is
implemented entirely in AML code, the BIOS may avoid continuously running AML code by
having the initial call to _BMC start the cycle, set some state flags, and then exit. Control of later
parts of the cycle can be accomplished by putting code that checks these state flags in the battery
event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in Section 10.2.

3.10 Thermal Managment
ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can
make cooling decisions based on application load on the CPU as well as the thermal heuristics of the
system. OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is
one large thermal zone, but an OEM can partition the system into several logical thermal zones if
necessary. Figure 3-8 is an example mobile PC diagram that depicts a single thermal zone with a
central processor as the thermal-coupled device. In this example, the whole notebook is covered as
one large thermal zone. This notebook uses one fan for active cooling and the CPU for passive
cooling.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 49

ACPI Overview
Figure 3-8 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a
computer. For some thermal implementation examples on an ACPI platform, see Section 11.6,
“Thermal Zone Interface Requirements.”

3.10.1 Active and Passive Cooling Modes
ACPI defines two cooling modes, Active and Passive:

Passive cooling

OS reduces the power consumption of devices at the cost of system performance to
reduce the temperature of the machine.

Active cooling

OS increases the power consumption of the system (for example, by turning on a fan)
to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased
power to reduce the heat within the system while Passive cooling requires reduced power to decrease
the temperature. The effect of this relationship is that Active cooling allows maximum system
performance, but it may create undesirable fan noise, while Passive cooling reduces system
performance, but is inherently quiet.

F0: PIC, PITs,
 DMA, RTC, EIO, ...

CPU

CPU/
Memory/

PCI Bridge

F2:
USB

F1: BM
IDE

SIO:
COMs,
LPT,
FDC,
ACPI

EPROM

Graphics

Embedded
Controller

D
R
A
M

L
2

D
R
A
M

PCI/PCI
Bridge

L
A
N

M
P
E
G

NVRAM

LCD

LPT

COM

HDD
1

USB
Port 1

CRT

Keyboard

PS/2
Ports

Mouse

Docking

HDD
0

FDD

Momentary

Thermal
Zone

DPR0

DPR1

P
L
L

Fan
(Active Cooling)

(Passive Cooling)
50 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
3.10.2 Performance vs. Energy Conservation
A robust OSPM implementation provides the means for the end user to convey to OSPM a
preference (or a level of preference) for either performance or energy conservation. Allowing the
end user to choose this preference is most critical to mobile system users where maximizing system
run-time on a battery charge often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s
preference for energy conservation corresponds to the Passive cooling mode. ACPI defines an
interface to convey the cooling mode to the platform. Active cooling can be performed with minimal
OSPM thermal policy intervention. For example, the platform indicates through thermal zone
parameters that crossing a thermal trip point requires a fan to be turned on. Passive cooling requires
OSPM thermal policy to manipulate device interfaces that reduce performance to reduce thermal
zone temperature.

3.10.3 Acoustics (Noise)
Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient
noise environment. In this case, the end user’s physical requirement for fan silence may override the
preference for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire
for fan silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and
passive cooling, see Section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones
The basic thermal management model defines one thermal zone, but in order to provide extended
thermal control in a complex system, ACPI specifies a multiple thermal zone implementation. Under
a multiple thermal zone model, OSPM will independently manage several thermal-coupled devices
and a designated thermal zone for each thermal-coupled device, using Active and/or Passive cooling
methods available to each thermal zone. Each thermal zone can have more than one Passive and
Active cooling device. Furthermore, each zone might have unique or shared cooling resources. In a
multiple thermal zone configuration, if one zone reaches a critical state then OSPM must shut down
the entire system.

3.11 Flexible Platform Architecture Support
ACPI defines mechanisms and models to accommodate platform architectures that deviate from the
traditional PC. ACPI provides support for platform technologies that enable lower-power, lower
cost, more design flexibility and more device diversity. This support is described in the following
sections, and detailed in later chapters.

3.11.1 Hardware-reduced ACPI
ACPI offers an alternative platform interface model that removes ACPI hardware requirements for
platforms that do not implement the PC Architecture. In the Hardware-reduced ACPI model, the
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 51

ACPI Overview
Fixed hardware interface requirements of Chapter 4 are removed, and Generic hardware interfaces
are used instead. This provides the level of flexibility needed to innovate and differentiate in low-
power hardware designs while enabling support by multiple Operating Systems.

Hardware-reduced ACPI has the following requirements:

• UEFI firmware interface for boot (Legacy BIOS is not supported).

• Boot in ACPI mode only (ACPI Enable, ACPI Disable, SMI_CMD and Legacy mode are not
supported)

• No hardware resource sharing between OSPM and other asynchronous operating environments,
such as UEFI Runtime Services or System Management Mode. (The Global Lock is not
supported)

• No dependence on OS-support for maintaining cache coherency across processor sleep states
(Bus Master Reload and Arbiter Disable are not supported)

Systems that do not meet the above requirements must implement the ACPI Fixed Hardware
interface.

3.11.1.1 Interrupt-based Wake Events
On HW-reduced ACPI platforms, wakeup is an attribute of connected interrupts. Interrupts that are
designed to wake the processor or the entire platform are defined as wake-capable. Wake-capable
interrupts, when enabled by OSPM, wake the system when they assert.

3.11.2 Low-Power Idle
Platform architectures may support hardware power management models other than the traditional
ACPI Sleep/Resume model. These are typically implemented in proprietary hardware and are
capable of delivering low-latency, connected idle while saving as much energy as ACPI Sleep states.
To support the diversity of hardware implementations, ACPI provides a mechanism for the platform
to indicate to OSPM that such capability is available.

3.11.2.1 Low Power S0 Idle Capable Flag
This flag in the FADT informs OSPM whether a platform has advanced idle power capabilities such
that S0 idle achieves savings similar to or better than those typically achieved in S3. With this flag,
OSPM can keep the system in S0 idle for its low-latency response and its connectedness rather than
transitioning to a system sleep state which has neither. The flag enables support for a diversity of
platform implementations: traditional Sleep/Resume systems, systems with advanced idle power,
systems that support neither, and systems that can support both, depending on the capabilities of the
installed OS.

3.11.3 Connection Resources
General-purpose I/O (GPIO) and Simple Peripheral Bus (SPB) controllers are hardware resources
provided in silicon solutions to enable flexible configuration of a broad range of system designs.
These controllers can provide input, output, interrupt and serial communication connections to
arbitrary devices in a system. The function to which one of these connections is put depends on the
specific device involved and the needs of the platform design. In order to support these platform
technologies, ACPI defines a general abstraction for flexible connections.
52 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
In order to maintain compatibility with existing software models, ACPI abstracts these connections
as hardware resources.

The Connection Resource abstraction mirrors the hardware functionality of GPIO and SPB
controllers. Like other resources, these connections are allocated and configured before use. With
the resources described by the platform, OSPM abstracts the underlying configuration from device
drivers. Drivers, then, can be written for the device's function only, and reused with that functional
hardware regardless of how it is integrated into a given system.

The key aspects of the Connection Resource abstraction are:

• GPIO and SPB controllers are enumerated as devices in the ACPI Namespace.

• GPIO Connection and SPB Connection resource types are defined.

• Namespace devices that are connected to GPIO or SPB controllers use Resource Template
Macros to add Connection Resources to their resource methods (_CRS, _SRS, etc.).

• GPIO Connection Resources can be designated by the platform for use as GPIO-signaled ACPI
Events.

• Connection Resources can be used by AML methods to access pins and peripherals through
GPIO and SPB operation regions.

3.11.3.1 Supported Platforms
The HW-reduced ACPI and Low power S0 Idle Capable flags combine to represent 4 platform types
that can be implemented. The following table enumerates these, as well as the intended OSPM
behavior and specific platform requirements.

Table 3-5 Implementable Platform Types

Low Power
S0 Idle
Capable

Hardware-
reduced
ACPI

OSPM Behavior Platform Implementation

0 0 Fixed hardware interface accessed
for features, events and system
power management.
Traditional Sleep/Resume power
management.

Implement Fixed-feature hardware
interface.

0 1 Fixed-feature hardware interface not
accessed.
Sleep/Resume Power Management
using FADT SLEEP_*_REG fields
and Interrupt-based wake signaling.

Implement GPIO-signaled ACPI Events;
Implement software alternatives to any
ACPI fixed features, including the Sleep
registers.
Implement wake-capable interrupts for
wake events.

1 0 Fixed hardware interface accessed
for features and events.
Platform-specific Low-power Idle
power management.

Implement Fixed-feature hardware
interface.
Implement low-power hardware such
that the platform achieves power savings
in S0 similar to or better than those
typically achieved in S3.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 53

ACPI Overview
1 1 Fixed-feature hardware interface not
accessed.
Platform-specific Low-power Idle
power management.

Implement GPIO-signaled ACPI Events;
Implement software alternatives to any
ACPI fixed features desired;
Implement wake-capable interrupts for
any wake events.
Implement low-power hardware such
that the platform achieves power savings
in S0 similar to or better than those
typically achieved in S3.

Low Power
S0 Idle
Capable

Hardware-
reduced
ACPI

OSPM Behavior Platform Implementation
54 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
4
ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. These interface mechanisms are
optional (See "Hardware-Reduced ACPI", below).However, if the ACPI Hardware Specification is
implemented, platforms must comply with the requirements in this section.

This section describes the hardware aspects of ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of
the existing legacy programming model the same; however, to meet certain feature goals, designated
features conform to a specific addressing and programming scheme. Hardware that falls within this
category is referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section
carefully to understand the changes needed to convert a legacy-only hardware model to an ACPI/
Legacy hardware model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within
the generic category has a wide degree of flexibility in its implementation.

4.1 Hardware-Reduced ACPI
For certain classes of systems the ACPI Hardware Specification may not be adequate. Examples
include legacy-free, UEFI-based platforms with recent processors, and those implementing mobile
platform architectures. For such platforms, a Hardware-reduced ACPI mode is defined. Under this
definition, the ACPI Fixed Hardware interface is not implemented, and software alternatives for
many of the features it supports are used instead. Note, though, that Hardware-reduced ACPI is not
intended to support every possible ACPI system that can be built today. Rather, it is intended to
introduce new systems that are designed to be HW-reduced from the start. The ACPI HW
Specification should be used if the platform cannot be designed to work without it. Specifically, the
following features are not supported under the HW-reduced definition:

• The Global Lock, SMI_CMD, ACPI Enable and ACPI Disable. Hardware-reduced ACPI
systems always boot in ACPI mode, and do not support hardware resource sharing between
OSPM and other asynchronous operating environments, such as UEFI Runtime Services or
System Management Mode.

• Bus Master Reload and Arbiter Disable. Systems that depend on OS use of these bits to maintain
cache coherency across processor sleep states are not supported.

Platforms that require the above features must implement the ACPI Hardware Specification.

Platforms that are designed for the Hardware-reduced ACPI definition must implement Revision 5
or greater of the Fixed ACPI Descriptor Table, and must set the HW_REDUCED_ACPI flag in the
Flags field.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 55

ACPI Hardware Specification
4.1.1 Hardware-Reduced Events
HW-reduced ACPI platforms require alternatives to some of the features supported in the ACPI HW
Specification, where none already exists. There are two areas that require such alternatives: The
ACPI Platform Event Model, and System and Device Wakeup.

4.1.1.1 GPIO-Signaled Events
General Purpose Input/Output (GPIO) hardware can be used for signaling platform events. GPIO
HW is a generalization of the GPE model, and is a shared hardware resource used for many
applications. ACPI support for GPIO is described in section 3.11.3, "Connection Resources".

ACPI Events are signaled by GPIO interrupt connections, which describe the connection to a GPIO
controller and pin, and which are mapped to the ACPI Event Handling mechanism via the ACPI
Event Information namespace object (_AEI). OSPM treats GPIO Interrupt Connections listed in
_AEI exactly as it does SCI interrupts: it executes the Event Method associated with the specific
event. The name of the method to run is determined by the pin information contained in the GPIO
Interrupt Connection resource.

GPIO-signaled events can also be wake events, just as GPE events can on traditional ACPI
platforms. Designating which events are wake events is done through attributes of the GPIO
Interrupt Connection resource used.

4.1.1.2 Interrupt-based Wake Events
Wake events on HW-reduced ACPI platforms are always caused by an interrupt reaching the
processor. Therefore, there are two requirements for waking the system from a sleep or low-power
idle state, or a device from a low-power state. First, the interrupt line must be Wake-Capable. Wake-
capable interrupts are designed to be able to be delivered to the processor from low-power states.
This implies that it must also cause the processor and any required platform hardware to power-up so
that an Interrupt Service Routine can run. Secondly, an OS driver must enable the interrupt before
entering a low-power state, or before OSPM puts the system into a sleep or low-power idle state.

Wake-capable interrupts are designated as such in their Extended Interrupt or GPIO Interrupt
Connection resource descriptor.

4.2 Fixed Hardware Programming Model
Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:

• Performance sensitive features

• Features that drivers require during wake

• Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power
management timer are defined as fixed hardware to reduce the performance impact of accessing this
hardware, which will result in more quickly reducing a thermal condition or extending battery life. If
this logic were allowed to reside in PCI configuration space, for example, several layers of drivers
would be called to access this address space. This takes a long time and will either adversely affect
56 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
the power of the system (when trying to enter a low-power state) or the accuracy of the event (when
trying to get a time stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to
load the entire OS. For example, if PCI configuration space access is needed, the bus enumerator is
loaded with all drivers used by the enumerator. Defining these interfaces in fixed hardware at
addresses with which OSPM can communicate without any other driver’s assistance, allows OSPM
to gather information prior to making a decision as to whether it continues loading the entire OS or
puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition
the system to the G2 state. In the case where OSPM event handler is no longer able to respond to
power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state.

4.2.1 Functional Fixed Hardware
ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard
configuration and system power management. Additionally, the definition of these interfaces, as
well as others defined in this specification, conveys to OS Vendors (OSVs) developing ACPI-
compatible operating systems, the necessary interfaces that operating systems must manipulate to
provide robust support for system configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU
architectures cannot be accommodated by this model as they can require a sequence of hardware
manipulations intermixed with native CPU instructions to provide the ACPI-defined interface
function. In this case, an ACPI-defined fixed hardware interface can be functionally implemented by
the CPU manufacturer through an equivalent combination of both hardware and software and is
defined by ACPI as Functional Fixed Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent
manner by using System Management Mode (SMM) based system firmware. Unfortunately, the
nature of SMM-based code makes this type of OS independent implementation difficult if not
impossible to debug. As such, this implementation approach is not recommended. In some cases,
Functional Fixed Hardware implementations may require coordination with other OS components.
As such, an OS independent implementation may not be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical
information supplied by the CPU manufacturer. The downside of this approach is that functional
fixed hardware support must be developed for each OS. In some cases, the CPU manufacturer may
provide a software component providing this support. In other cases support for the functional fixed
hardware may be developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address
spaces other than the System I/O address space. This is accomplished through the specification of an
address space ID in the register definition (see Section 5.2.3.1, “Generic Address Structure,” for
more information). When specifically directed by the CPU manufacturer, the system firmware
may define an interface as functional fixed hardware by supplying a special address space identifier,
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 57

ACPI Hardware Specification
FfixedHW (0x7F), in the address space ID field for register definitions. It is emphasized that
functional fixed hardware definitions may be declared in the ACPI system firmware only as
indicated by the CPU Manufacturer for specific interfaces as the use of functional fixed hardware
requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only
when the interfaces are common across machine designs for example, systems sharing a common
CPU architecture that does not support fixed hardware implementation of an ACPI-defined
interface. OEMs are cautioned not to anticipate that functional fixed hardware support will be
provided by OSPM differently on a system-by-system basis. The use of functional fixed hardware
carries with it a reliance on OS specific software that must be considered. OEMs should consult OS
vendors to ensure that specific functional fixed hardware interfaces are supported by specific
operating systems.

4.3 Generic Hardware Programming Model
Although the fixed hardware programming model requires hardware registers to be defined at
specific address locations, the generic hardware programming model allows hardware registers to
reside in most address spaces and provides system OEMs with a wide degree of flexibility in the
implementation of specific functions in hardware. OSPM directly accesses the fixed hardware
registers, but relies on OEM-provided ACPI Machine Language (AML) code to access generic
hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s
control and event logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language
(ASL)—a programming language that OEMs use to create AML. The ASL language provides many
of the operators found in common object-oriented programming languages, but it has been
optimized to enable the description of platform power management and configuration hardware. An
ASL compiler converts ASL source code to AML, which is a very compact machine language that
the ACPI AML code interpreter executes.

AML does two things:

• Abstracts the hardware from OSPM

• Buffers OEM code from the different OS implementations

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an
ACPI configuration. One attribute of value-added hardware is that it is all implemented differently.
To enable OSPM to execute properly on different types of value added hardware, ACPI defines
higher level “control methods” that it calls to perform an action. The OEM provides AML code,
which is associated with control methods, to be executed by OSPM. By providing AML code,
generic hardware can take on almost any form.

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has
to execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues
specific to each particular OS.
58 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The generic feature model is represented in the following block diagram. In this model the generic
feature is described to OSPM through AML code. This description takes the form of an object that
sits in the ACPI Namespace associated with the hardware to which it is adding value.

Figure 4-9 Generic Hardware Feature Model

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would
then have a reference to the AML PowerResource object (which controls the value added power
plane) in its namespace, and associated with that object would be control methods that OSPM
invokes to control the D3 state of the drive:

• _PS0: A control method to sequence the IDE drive to the D0 state.

• _PS3: A control method to sequence the IDE drive to the D3 state.

• _PSC: A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the
hardware. OSPM understands how to control power planes (turn them on or off or to get their status)
through its defined PowerResource object, while the hardware has platform-specific AML code
(contained in the appropriate control methods) to perform the desired function. In this example, the
platform would describe its hardware to the ACPI OS by writing and placing the AML code to turn
the hardware off within the _PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to
place the drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware
to place the HDD into an even lower power state.

As an example of a generic event feature, a platform might have a docking capability. In this case, it
will want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to
any shareable system interrupt. In the case of docking, the event is generated when a docking has
been detected or when the user requests to undock the system. This enables the following sequence:

Generic Event
Logic

Control
Events

ACPI Driver
and AML-
Interpreter

Generic
Control
Logic

AML Rds

GP Event Status

Generic Child
Event Status
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 59

ACPI Hardware Specification
OSPM responds to the SCI and calls the AML code event handler associated with that generic event.
The ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections
enable a reader to understand the following:

• Which hardware registers are required or optional when an ACPI feature, concept or interface is
required by a design guide for a platform class

• How to design fixed hardware features

• How to design generic hardware features

• The ACPI Event Model

4.4 Diagram Legends
The hardware section uses simplified logic diagrams to represent how certain aspects of the
hardware are implemented. The following symbols are used in the logic diagrams to represent
programming bits.

Write-only control bit

Enable, control or status bit

Sticky status bit

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the
behavior that it generates its control function when it is set. Reads to write-only bits are treated as
ignore by software (the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software
setting or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As
a status bit it directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCI
event. The query value is associated with the event control method that is scheduled to execute upon
an embedded controller event.

4.5 Register Bit Notation
Throughout this section there are logic diagrams that reference bits within registers. These diagrams
use a notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit

##
60 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Registername contains the name of the register as it appears in this specification

Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

4.6 The ACPI Hardware Model
The ACPI hardware model is defined to allow OSPM to sequence the platform between the various
global system states (G0-G3) as illustrated in the following figure by manipulating the defined
interfaces. When first powered on, the platform finds itself in the global system state G3 or
“Mechanical Off.” This state is defined as one where power consumption is very close to zero—the
power plug has been removed; however, the real-time clock device still runs off a battery. The G3
state is entered by any power failure, defined as accidental or user-initiated power loss.

The G3 state transitions into either the G0 working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the G0
working state by always returning the status bit SCI_EN set (1) (for more information, see
Section 4.8.2.5, “Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy
and ACPI operations (which is necessary for supporting a non-ACPI OS), then it would always boot
into the Legacy state (illustrated by returning the SCI_EN clear (0)). In either case, a transition out of
the G3 state requires a total boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered
from either the G3 “Mechanical Off,” the G2 “Soft Off,” or the G0 “Working” states only if the
hardware supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is
disabled (no SCIs are generated) and the hardware uses legacy power management and
configuration mechanisms. While in the Legacy state, an ACPI-compliant OS can request a
transition into the G0 working state by performing an ACPI mode request. OSPM performs this
transition by writing the ACPI_ENABLE value to the SMI_CMD, which generates an event to the
hardware to transition the platform into ACPI mode. When hardware has finished the transition, it
sets the SCI_EN bit and returns control back to OSPM. While in the G0 “working state,” OSPM can
request a transition to Legacy mode by writing the ACPI_DISABLE value to the SMI_CMD
register, which results in the hardware going into legacy mode and resetting the SCI_EN bit LOW
(for more information, see Section 4.8.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The G0 “Working” state is the normal operating environment of an ACPI machine. In this state
different devices are dynamically transitioning between their respective power states (D0, D1, D2,
D3hot, or D3) and processors are dynamically transitioning between their respective power states
(C0, C1, C2 or C3). In this state, OSPM can make a policy decision to place the platform into the
system G1 “sleeping” state. The platform can only enter a single sleeping state at a time (referred to
as the global G1 state); however, the hardware can provide up to four system sleeping states that
have different power and exit latencies represented by the S1, S2, S3, or S4 states. When OSPM
decides to enter a sleeping state it picks the most appropriate sleeping state supported by the
hardware (OS policy examines what devices have enabled wake events and what sleeping states
these support). OSPM initiates the sleeping transition by enabling the appropriate wake events and
then programming the SLP_TYPx field with the desired sleeping state and then setting the
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 61

ACPI Hardware Specification
SLP_ENx bit. The system will then enter a sleeping state; when one of the enabled wake events
occurs, it will transition the system back to the working state (for more information, see Section 16,
“Waking and Sleeping”).

Another global state transition option while in the G0 “working” state is to enter the G2 “soft off” or
the G3 “mechanical off” state. These transitions represent a controlled transition that allows OSPM
to bring the system down in an orderly fashion (unloading applications, closing files, and so on). The
policy for these types of transitions can be associated with the ACPI power button, which when
pressed generates an event to the power button driver. When OSPM is finished preparing the
operating environment for a power loss, it will either generate a pop-up message to indicate to the
user to remove power, in order to enter the G3 “Mechanical Off” state, or it will initiate a G2 “soft-
off” transition by writing the value of the S5 “soft off” system state to the SLP_TYPx register and
setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support.
Each sleeping state has different power and wake latency characteristics. The sleeping state differs
from the working state in that the user’s operating environment is frozen in a low-power state until
awakened by an enabled wake event. No work is performed in this state, that is, the processors are
not executing instructions. Each system sleeping state has requirements about who is responsible for
system context and wake sequences (for more information, see Section 16, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the
sleeping state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the
sequence). Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only
machine will re-enter the G0 state directly (hardware returns the SCI_EN bit set), while an ACPI/
Legacy machine transitions to the Legacy state (SCI_EN bit is clear).
62 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figure 4-10 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to
implement this behavior model. Events are used to notify OSPM that some action is needed, and
control logic is used by OSPM to cause some state transition. ACPI-defined events are “hardware”
or “interrupt” events. A hardware event is one that causes the hardware to unconditionally perform
some operation. For example, any wake event will sequence the system from a sleeping state (S1,
S2, S3, and S4 in the global G1 state) to the G0 working state (see Figure 16-70).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver),
which allows the software to make a policy decision based on the event. For ACPI fixed-feature
events, OSPM or an ACPI-aware driver acts as the event handler. For generic logic events OSPM
will schedule the execution of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-
visible interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want
to support both legacy operating systems and ACPI systems support a way of re-mapping the
interrupt events between SMIs and SCIs when switching between ACPI and legacy models. This is
illustrated in the following block diagram.

S4BIOS_F
S4BIOS_REQ

ACPI_DISABLE
(SCI_EN=0)

G3 -Mech
Off

Legacy
Boot

(SCI_EN=0)

Legacy
Boot

(SCI_EN=0)

ACPI_ENABLE
(SCI_EN=1)

Legacy

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

C0

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure/
Power Off

ACPI
Boot

(SCI_EN=1)

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=(S1-S4)
and

SLP_EN

D0
D1

D2
D3

Modem

D0
D1

D2
D3
HDD

D0
D1

D2
D3

CDROM

BIOS
Routine

C2
C1

Cn

Performance
State Px

Throttling

C0

CPU
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 63

ACPI Hardware Specification
Figure 4-11 Example Event Structure for a Legacy/ACPI Compatible Event Model

This example logic illustrates the event model for a sample platform that supports both legacy and
ACPI event models. This example platform supports a number of external events that are power-
related (power button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status
change). The logic represents the three different types of events:

OS Transparent Events

These events represent OEM-specific functions that have no OS support and use
software that can be operated in an OS-transparent fashion (that is, SMIs).

Interrupt Events

These events represent features supported by ACPI-compatible operating systems, but
are not supported by legacy operating systems. When a legacy OS is loaded, these
events are mapped to the transparent interrupt (SMI# in this example), and when in
ACPI mode they are mapped to an OS-visible shareable interrupt (SCI#). This logic is
represented by routing the event logic through the decoder that routes the events to the
SMI# arbiter when the SCI_EN bit is cleared, or to the SCI# arbiter when the SCI_EN
bit is set.

Hardware events

These events are used to trigger the hardware to initiate some hardware sequence such
as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system
activity or idleness based on device idle timers, device traps, and the global standby timer. Legacy
power management models use the idle timers to determine when a device should be placed in a
low-power state because it is idle—that is, the device has not been accessed for the programmed
amount of time. The device traps are used to indicate when a device in a low-power state is being
accessed by OSPM. The global standby timer is used to determine when the system should be

Power Plane
Control

Generic Space

GLBL STBY
Timer

PWRBTN

LID

THRM

DOCK
STS_CHG

RI

SMI Arbiter

Sleep/Wake
State machine

SMI#

SCI#

Legacy Only Event Logic

ACPI/Legacy Event Logic

ACPI Only Event Logic

SMI Events

SCI/SMI Events

Dec
0

1

CPU Clock
Control

Device
Traps

Device Idle
Timers

User
Interface

Thermal
Logic

Hardware
Events

RTC

SCI_EN

ACPI/Legacy Generic Control Features

ACPI/Legacy Fixed Control Features

Wake-up Events

PM Timer

SCI Arbiter
64 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
allowed to go into a sleeping state because it is idle—that is, the user interface has not been used for
the programmed amount of time.

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI
mode. This work is handled by different software structures in an ACPI-compatible OS. For
example, the driver model of an ACPI-compatible OS is responsible for placing its device into a
low-power state (D1, D2, D3hot, or D3) and transitioning it back to the On state (D0) when needed.
And OSPM is responsible for determining when the system is idle by profiling the system (using the
PM Timer) and other knowledge it gains through its operating structure environment (which will
vary from OS to OS). When the system is placed into the ACPI mode, these events no longer
generate SMIs, as OSPM handles this function. These events are disabled through some OEM-
proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models
(docking, the power button, and so on) and this type of interrupt event changes to an SCI event when
enabled for ACPI. The ACPI OS will generate a request to the platform’s hardware (BIOS) to enter
into the ACPI mode. The BIOS sets the SCI_EN bit to indicate that the system has successfully
entered into the ACPI mode, so this is a convenient mechanism to map the desired interrupt (SMI or
SCI) for these events (as shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model:
the power management timer (PM Timer). This is a free running timer that the ACPI OS uses to
profile system activity. The frequency of this timer is explicitly defined in this specification and
must be implemented as described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on
where and how the programming model is generated. If used, all fixed hardware features are
implemented as described in this specification so that OSPM can directly access the fixed hardware
feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI
Namespace. These interfaces can be very flexible; however, their use is limited by the defined ACPI
control methods (for more information, see Section 9, “ACPI Devices and Device Specific
Objects”). Generic hardware usually controls power planes, buffer isolation, and device reset
resources. Additionally, “child” interrupt status bits can be accessed via generic hardware interfaces;
however, they have a “parent” interrupt status bit in the GP_STS register. ACPI defines eight
address spaces that may be accessed by generic hardware implementations. These include:

• System I/O space

• System memory space

• PCI configuration space

• Embedded controller space

• System Management Bus (SMBus) space

• CMOS

• PCI BAR Target

• IPMI space
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 65

ACPI Hardware Specification
Generic hardware power management features can be implemented accessing spare I/O ports
residing in any of these address spaces. The ACPI specification defines an optional embedded
controller and SMBus interfaces needed to communicate with these associated address spaces.

4.6.1 Hardware Reserved Bits
ACPI hardware registers are designed such that reserved bits always return zero, and data writes to
them have no side affects. OSPM implementations must write zeros to reserved bits in enable and
status registers and preserve bits in control registers, and they will treat these bits as ignored.

4.6.2 Hardware Ignored Bits
ACPI hardware registers are designed such that ignored bits are undefined and are ignored by
software. Hardware-ignored bits can return zero or one. When software reads a register with ignored
bits, it masks off ignored bits prior to operating on the result. When software writes to a register with
ignored bit fields, it preserves the ignored bit fields.

4.6.3 Hardware Write-Only Bits
ACPI hardware defines a number of write-only control bits. These bits are activated by software
writing a 1 to their bit position. Reads to write-only bit positions generate undefined results. Upon
reads to registers with write-only bits, software masks out all write-only bits.

4.6.4 Cross Device Dependencies
Cross Device Dependency is a condition in which an operation to a device interferes with the
operation of other unrelated devices, or allows other unrelated devices to interfere with its behavior.
This condition is not supportable and can cause platform failures. ACPI provides no support for
cross device dependencies and suggests that devices be designed to not exhibit this behavior. The
following two examples describe cross device dependencies:

4.6.4.1 Example 1: Related Device Interference
This example illustrates a cross device dependency where a device interferes with the proper
operation of other unrelated devices. Device A has a dependency that when it is being configured it
blocks all accesses that would normally be targeted for Device B. Thus, the device driver for Device
B cannot access Device B while Device A is being configured; therefore, it would need to
synchronize access with the driver for Device A. High performance, multithreaded operating
systems cannot perform this kind of synchronization without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive
controller. If these devices demonstrate this behavior, then when a software driver configures the
serial port, accesses to the hard drive need to block. This can only be done if the hard disk driver
synchronizes access to the disk controller with the serial driver. Without this synchronization, hard
drive data will be lost when the serial port is being configured.

4.6.4.2 Example 2: Unrelated Device Interference
This example illustrates a cross-device dependency where a device demonstrates a behavior that
allows other unrelated devices to interfere with its proper operation. Device A exhibits a
66 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
programming behavior that requires atomic back-to-back write accesses to successfully write to its
registers; if any other platform access is able to break between the back-to-back accesses, then the
write to Device A is unsuccessful. If the Device A driver is unable to generate atomic back-to-back
accesses to its device, then it relies on software to synchronize accesses to its device with every other
driver in the system; then a device cross dependency is created and the platform is prone to Device A
failure.

4.7 ACPI Hardware Features
This section describes the different hardware features defined by the ACPI interface. These features
are categorized as the following:

• Fixed Hardware Features

• Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations
described by the ACPI programming model. Generic hardware features reside in one of four address
spaces (system I/O, system memory, PCI configuration, embedded controller, or serial device I/O
space) and are described by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed
hardware features are optional, if implemented they must be implemented as described since OSPM
manipulates the registers of fixed hardware devices and expects the defined behavior. Functional
fixed hardware provides functional equivalents of the fixed hardware feature interfaces as described
in Section 4.2.1, “Functional Fixed Hardware.”

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied
AML code (for more information, see Section 5, “ACPI Software Programming Model”), which can
be written to support a wide variety of hardware. Also, ACPI provides specialized control methods
that provide capabilities for specialized devices. For example, the Notify command can be used to
notify OSPM from a generic hardware event handler (control method) that a docking or thermal
event has taken place. A good understanding of this section and Section 5 of this specification will
give designers a good understanding of how to design hardware to take full advantage of an ACPI-
compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support
many types of hardware not listed.

Table 4-6 Feature/Programming Model Summary

Feature Name Description Programming Model

Power Management
Timer

24-bit or 32-bit free running timer. Fixed Hardware Feature Control
Logic

Power Button User pushes button to switch the system
between the working and sleeping states.

Fixed Hardware Event and Control
Logic or Generic Hardware Event
and Logic

Sleep Button User pushes button to switch the system
between the working and sleeping state.

Fixed Hardware Event and Control
Logic or Generic Hardware Event
and Logic
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 67

ACPI Hardware Specification
4.8 ACPI Register Model
ACPI hardware resides in one of six address spaces:

• System I/O

• System memory

• PCI configuration

• SMBus

• Embedded controller

• Functional Fixed Hardware

Power Button Override User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm Programmed time to wake the system. Optional Fixed Hardware Eventa

Sleep/Wake Control
Logic

Logic used to transition the system
between the sleeping and working states.

Fixed Hardware Control and Event
Logic

Embedded Controller
Interface

ACPI Embedded Controller protocol and
interface, as described in Section 12,
“ACPI Embedded Controller Interface
Specification.”

Generic Hardware Event Logic, must
reside in the general-purpose register
block

Legacy/ACPI Select Status bit that indicates the system is
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

Lid switch Button used to indicate whether the
system’s lid is open or closed (mobile
systems only).

Generic Hardware Event Feature

C1 Power State Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control Logic to place the processor into a C2
power state.

Fixed Hardware Control Logic

C3 Power Control Logic to place the processor into a C3
power state.

Fixed Hardware Control Logic

Thermal Control Logic to generate thermal events at
specified trip points.

Generic Hardware Event and Control
Logic (See description of thermal
logic in Section 3.10, “Thermal
Management.”)

Device Power
Management

Control logic for switching between
different device power states.

Generic Hardware control logic

AC Adapter Logic to detect the insertion and removal
of the AC adapter.

Generic Hardware event logic

Docking/device insertion
and removal

Logic to detect device insertion and
removal events.

Generic Hardware event logic

a. RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

Feature Name Description Programming Model
68 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Different implementations will result in different address spaces being used for different functions.
The ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed
hardware registers are required to implement ACPI-defined interfaces. The generic hardware
registers are needed for any events generated by value-added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built
in memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks
used by OSPM. The bits within these registers have attributes defined for the given register block.
The types of registers that ACPI defines are:

• Status/Enable Registers (for events)

• Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation
definition that needs to be followed (unless otherwise noted), which is illustrated by the following
diagram:

Figure 4-12 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only
be cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting
or resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,”
which generates an SCI when set if its enable bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two
pointers to two different blocks of registers, where each bit location within a register grouping is
fixed and cannot be changed. The bits within a register grouping, which have fixed bit positions, can
be split between the two register blocks. This allows the bits within a register grouping to reside in
either or both register blocks, facilitating the ability to map bits within several different chips to the
same register thus providing the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved
bits, or unused bits within a register block always return zero for reads and have no side effects for
writes (which is a requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object _Sx
contains a SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer
values of 0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed
by the SLP_TYPb value within the field to the “B” register block. All other bit locations will be
written with the same value. Also, OSPM does not read the SLP_TYPx value but throws it away.

Status Bit

Enable Bit

Event Input Event Output
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 69

ACPI Hardware Specification
Figure 4-13 Example Fixed Hardware Feature Register Grouping

As an example, the above diagram represents a register grouping consisting of register block A and
register block b. Bits “a” and “d” are implemented in register block B and register block A returns a
zero for these bit positions. Bits “b”, “c” and “e” are implemented in register block A and register
block B returns a zero for these bit positions. All reserved or ignored bits return their defined ACPI
values.

When accessing this register grouping, OSPM must read register block a, followed by reading
register block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A
followed by writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate
pointer from the FADT. These addresses are set by the OEM as static resources, so they are never
changed—OSPM cannot re-map ACPI resources. The following register blocks are defined:

Figure 4-14 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain
the fixed hardware feature event bits. Each event register block (if implemented) contains two
registers: a status register and an enable register. Each register grouping has a defined bit position

Register Block A

Register Block B

Bit d Bit c Bit b Bit aBit e

Register
Grouping

PM1a_EVT_BLK

PM1b_EVT_BLK

PM2 Control Block

PM Timer Block

Processor Block

Register GroupingsRegister Blocks

PM1a_STS
PM1a_EN

PM1 EVT Grouping

PM1 CNT Grouping
PM1a_CNT_BLK

PM1b_CNT_BLK

PM1b_STS
PM1b_EN

PM1a_CNT

PM1b_CNT

PM2_CNT_BLKPM2_CNT

PM_TMR_BLKPM_TMR

P_BLK
P_CNT

P_LVL2
P_LVL3

Registers

GPE0_BLK

GPE1_BLK

GPE0_STS
GPE0_EN

GPE1_STS
GPE1_EN

General Purpose Event 0
Block

General Purpose Event 1
Block
70 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
that cannot be changed; however, the bit can be implemented in either register block (A or B). The A
and B register blocks for the events allow chipsets to vary the partitioning of events into two or more
chips. For read operations, OSPM will generate a read to the associated A and B registers, OR the
two values together, and then operate on this result. For write operations, OSPM will write the value
to the associated register in both register blocks. Therefore, there are two rules to follow when
implementing event registers:

• Reserved or unimplemented bits always return zero (control or enable).

• Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PM1a_CNT_BLK and PM1b_CNT_BLK register blocks. Each register block is associated with a
single control register. Each register grouping has a defined bit position that cannot be changed;
however, the bit can be implemented in either register block (A or B). There are two rules to follow
when implementing CNT registers:

• Reserved or unimplemented bits always return zero (control or enable).

• Writes to reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function.
The general-purpose event register contains the event programming model for generic features. All
generic events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere;
however, the top-level generic event resides in one of the general-purpose register blocks. Any
generic feature event status not in the general-purpose register space is considered a child or sibling
status bit, whose parent status bit is in the general-purpose event register space. Notice that it is
possible to have N levels of general-purpose events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPE0_BLK or the
GPE1_BLK. Each register block is pointed to separately from within the FADT. Each register block
is further broken into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the
general-purpose event registers follow the event model for the fixed hardware event registers.

4.8.1 ACPI Register Summary
The following tables summarize the ACPI registers:

Table 4-7 PM1 Event Registers

Table 4-8 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)

PM1a_STS PM1_EVT_LEN/2 <PM1a_EVT_BLK >

PM1a_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2

PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >

PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Register Size (Bytes) Address (relative to register block)

PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >

PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 71

ACPI Hardware Specification
Table 4-9 PM2 Control Register

Table 4-10 PM Timer Register

Table 4-11 Processor Control Registers

Table 4-12 General-Purpose Event Registers

4.8.1.1 PM1 Event Registers
The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required
register block when the following ACPI interface categories are required by a class specific platform
design guide:

• Power management timer control/status

• Processor power state control/status

• Global Lock related interfaces

• Power or Sleep button (fixed register interfaces)

• System power state controls (sleeping/wake control)

The PM1b_EVT_BLK is an optional register block. Each register block has a unique 32-bit pointer
in the Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If
the PM1b_EVT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same
size: the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is
variable and is described by the PM1_EVT_LEN field in the FADT, which indicates the total length
of the register block in bytes. Hence if a length of “4” is given, this indicates that each register
contains two bytes of I/O space. The PM1 event register block has a minimum size of 4 bytes.

Register Size (Bytes) Address (relative to register block)

PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Register Size (Bytes) Address (relative to register block)

PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See
Section 8.4.3.1, “PTC [Processor Throttling Control].”)

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

Register Size (Bytes) Address (relative to register block)

GPE0_STS GPE0_LEN/2 <GPE0_BLK>

GPE0_EN GPE0_LEN/2 <GPE0_BLK>+GPE0_LEN/2

GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2
72 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
4.8.1.2 PM1 Control Registers
The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required
register block when the following ACPI interface categories are required by a class specific platform
design guide:

• SCI/SMI routing control/status for power management and general-purpose events

• Processor power state control/status

• Global Lock related interfaces

• System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer
in the Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If
the PM1b_CNT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The
length of the register is variable and is described by the PM1_CNT_LEN field in the FADT, which
indicates the total length of the register block in bytes. The PM1 control register block must have a
minimum size of 2 bytes.

4.8.1.3 PM2 Control Register
The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains a
length variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the
PM2_CNT register (the only register in this register block). This register block is optional, if not
supported its block pointer and length contain a value of zero.

4.8.1.4 PM Timer Register
The PM timer register is contained in the PM_TMR_BLK register block, which is a required register
block when the power management timer control/status ACPI interface category is required by a
class specific platform design guide.

This register block contains the register that returns the running value of the power management
timer. The FADT also contains a length variable for this register block (PM_TMR_LEN) that is
equal to the size in bytes of the PM_TMR register (the only register in this register block).

4.8.1.5 Processor Control Block (P_BLK)
There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert
to the lowest common denominator of processor control block support. The processor control block
contains the processor control register (P_CNT-a 32-bit performance control configuration register),
and the P_LVL2 and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls
the behavior of the processor clock logic for that processor, the P_LVL2 register is used to place the
CPU into the C2 state, and the P_LVL3 register is used to place the processor into the C3 state.

4.8.1.6 General-Purpose Event Registers
The general-purpose event registers contain the root level events for all generic features. To
facilitate the flexibility of partitioning the root events, ACPI provides for two different general-
purpose event blocks: GPE0_BLK and GPE1_BLK. These are separate register blocks and are not a
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 73

ACPI Hardware Specification
register grouping, because there is no need to maintain an orthogonal bit arrangement. Also, each
register block contains its own length variable in the FADT, where GPE0_LEN and GPE1_LEN
represent the length in bytes of each register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is 0
or 1). The length of the GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN. The
length of the GPE1_STS and GPE1_EN registers is equal to half the GPE1_LEN. If a generic
register block is not supported then its respective block pointer and block length values in the FADT
table contain zeros. The GPE0_LEN and GPE1_LEN do not need to be the same size.

4.8.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPI.

4.8.2.1 Power Management Timer
The ACPI specification requires a power management timer that provides an accurate time value
used by system software to measure and profile system idleness (along with other tasks). The power
management timer provides an accurate time function while the system is in the working (G0) state.
To allow software to extend the number of bits in the timer, the power management timer generates
an interrupt when the last bit of the timer changes (from 0 to 1 or 1 to 0). ACPI supports either a 24-
bit or 32-bit power management timer. The PM Timer is accessed directly by OSPM, and its
programming model is contained in fixed register space. The programming model can be partitioned
in up to three different register blocks. The event bits are contained in the PM1_EVT register
grouping, which has two register blocks, and the timer value can be accessed through the
PM_TMR_BLK register block. A block diagram of the power management timer is illustrated in the
following figure:

Figure 4-15 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off
a 3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-
bit or 24-bit timer. The programming model for the PM Timer consists of event logic, and a read port
to the counter value. The event logic consists of an event status and enable bit. The status bit is set
any time the last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the
TMR_EN bit is set, then the setting of the TMR_STS will generate an ACPI event in the PM1_EVT
register grouping (referred to as PMTMR_PME in the diagram). The event logic is only used to
emulate a larger timer.

OSPM uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current
value of the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an
initial TMR_VAL upon loading OSPM and assumes that the timer is counting. It is allowable to stop

PMTMR_PME

TMR_EN
PM1x_EN.0

3.579545 MHz

-- 24/32

TMR_VAL
PM_TMR.0-23/0-31

TMR_STS
PM1x_STS.024/32-bit

Counter
Bits(23/31-0)
74 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
the Timer when the system transitions out of the working (G0/S0) state. The only timer reset
requirement is that the timer functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the
accuracy of reading the timer.

4.8.2.2 Console Buttons
ACPI defines user-initiated events to request OSPM to transition the platform between the G0
working state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a
recommended mechanism to unconditionally transition the platform from a hung G0 working state
to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such,
these ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

• A single-button model that generates an event for both sleeping and entering the soft-off state.
The function of the button can be configured using OSPM UI.

• A dual-button model where the power button generates a soft-off transition request and a
sleeping button generates a sleeping transition request. The type of button implies the function
of the button.

Control of these button events is either through the fixed hardware programming model or the
generic hardware programming model (control method based). The fixed hardware programming
model has the advantage that OSPM can access the button at any time, including when the system is
crashed. In a crashed system with a fixed hardware power button, OSPM can make a “best” effort to
determine whether the power button has been pressed to transition to the system to the soft-off state,
because it doesn’t require the AML interpreter to access the event bits.

4.8.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-
button model, the user button acts as both a power button for transitioning the system between the
G0 and G2 states and a sleeping button for transitioning the system between the G0 and G1 states.
The action of the user pressing the button is determined by software policy or user settings. In the
dual-button model, there are separate buttons for sleeping and power control. Although the buttons
still generate events that cause software to take an action, the function of the button is now
dedicated: the sleeping button generates a sleeping request to OSPM and the power button generates
a waking request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power
button device object, as shown in the following:

Table 4-13 Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object

Fixed hardware power button Clear Absent

Control method power button Set Present
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 75

ACPI Hardware Specification
The power button can also have an additional capability to unconditionally transition the system
from a hung working state to the G2 soft-off state. In the case where OSPM event handler is no
longer able to respond to power button events, the power button override feature provides a back-up
mechanism to unconditionally transition the system to the soft-off state. This feature can be used
when the platform doesn’t have a mechanical off button, which can also provide this function. ACPI
defines that holding the power button active for four seconds or longer will generate a power button
override event.

4.8.2.2.1.1 Fixed Power Button

Figure 4-16 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT_BLK. This
logic consists of a single enable bit and sticky status bit. When the user presses the power button, the
power button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit
(PWRBTN_EN) is set and the power button status bit is set (PWRBTN_STS) due to a button press
while the system is in the G0 state, then an SCI is generated. OSPM responds to the event by
clearing the PWRBTN_STS bit. The power button logic provides debounce logic that sets the
PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power
button press after the button press that transitioned the system into the sleeping state unconditionally
sets the power button status bit and wakes the system, regardless of the value of the power button
enable bit. OSPM responds by clearing the power button status bit and waking the system.

4.8.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This
allows the power button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the power button is implemented using generic
hardware, then the OEM needs to define the power button as a device with an _HID object value of
“PNP0C0C,” which then identifies this device as the power button to OSPM. The AML event
handler then generates a Notify command to notify OSPM that a power button event was generated.
While the system is in the working state, a power button press is a user request to transition the
system into either the sleeping (G1) or soft-off state (G2). In these cases, the power button event
handler issues the Notify command with the device specific code of 0x80. This indicates to OSPM to
pass control to the power button driver (PNP0C0C) with the knowledge that a transition out of the
G0 state is being requested. Upon waking from a G1 sleeping state, the AML event handler
generates a notify command with the code of 0x2 to indicate it was responsible for waking the
system.

The power button device needs to be declared as a device within the ACPI Namespace for the
platform and only requires an _HID. An example definition follows.

This example ASL code performs the following:

PWRBTN#

PWRBTN_EN
PM1x_EN.8

PWRBTN_STS
PM1x_STS.8

Debounce
Logic

PWRBTN Event

PWRBTN
Over-ridePWRBTN

Statemachine
76 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• Creates a device named “PWRB” and associates the Plug and Play identifier (through the _HID
object) of “PNP0C0C.”

• The Plug and Play identifier associates this device object with the power button driver.

• Creates an operational region for the control method power button’s programming model:
System I/O space at 0x200.

• Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to their
bit position, therefore preserved would fail in this case.

• Creates a field within the operational region for the power button status bit (called PBP). In this
case the power button status bit is a child of the general-purpose event status bit 0. When this bit
is set, it is the responsibility of the ASL-code to clear it (OSPM clears the general-purpose status
bits). The address of the status bit is 0x200.0 (bit 0 at address 0x200).

• Creates an additional status bit called PBW for the power button wake event. This is the next bit
and its physical address would be 0x200.1 (bit 1 at address 0x200).

• Generates an event handler for the power button that is connected to bit 0 of the general-purpose
event status register 0. The event handler does the following:

• Clears the power button status bit in hardware (writes a one to it).

• Notifies OSPM of the event by calling the Notify command passing the power button object and
the device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){
 Name(_HID, EISAID(“PNP0C0C”))
 Name(_PRW, Package(){0, 0x4})

 OperationRegion(\PHO, SystemIO, 0x200, 0x1)
 Field(\PHO, ByteAcc, NoLock, WriteAsZeros){
 PBP, 1, // sleep/off request
 PBW, 1 // wakeup request
 }
} // end of power button device object

Scope(_GPE){ // Root level event handlers
 Method(_L00){ // uses bit 0 of GP0_STS register
 If(\PBP){
 Store(One, \PBP) // clear power button status
 Notify(_SB.PWRB, 0x80) // Notify OS of event
 }
 If(\PBW){
 Store(One, \PBW)
 Notify(_SB.PWRB, 0x2)
 }
 } // end of _L00 handler
} // end of _GPE scope

4.8.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four
seconds while the system is in the working state, a hardware event is generated and the system will
transition to the soft-off state. This hardware event is called a power button override. In reaction to
the power button override event, the hardware clears the power button status bit (PWRBTN_STS).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 77

ACPI Hardware Specification
4.8.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request
OSPM to transition the platform between the G0 working and G1 sleeping states. Support for a sleep
button is indicated by a combination of the SLEEP_BUTTON flag and the sleep button device
object:

Table 4-14 Sleep Button Support

4.8.2.2.2.1 Fixed Hardware Sleeping Button

Figure 4-17 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. This
logic consists of a single enable bit and sticky status bit. When the user presses the sleep button, the
sleep button status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button
enable bit (SLPBTN_EN) is set, and the sleep button status bit is set (SLPBTN_STS, due to a button
press) while the system is in the G0 state, then an SCI is generated. OSPM responds to the event by
clearing the SLPBTN_STS bit. The sleep button logic provides debounce logic that sets the
SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the S0, S1, S2, S3 or S4 states), any further sleep button press
(after the button press that caused the system transition into the sleeping state) sets the sleep button
status bit (SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by
clearing the sleep button status bit and waking the system.

4.8.2.2.2.2 Control Method Sleeping Button

The sleep button programming model can also use the generic hardware programming model. This
allows the sleep button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the sleep button is implemented via generic
hardware, then the OEM needs to define the sleep button as a device with an _HID object value of
“PNP0C0E”, which then identifies this device as the sleep button to OSPM. The AML event handler
then generates a Notify command to notify OSPM that a sleep button event was generated. While in
the working state, a sleep button press is a user request to transition the system into the sleeping (G1)
state. In these cases the sleep button event handler issues the Notify command with the device
specific code of 0x80. This will indicate to OSPM to pass control to the sleep button driver
(PNP0C0E) with the knowledge that the user is requesting a transition out of the G0 state. Upon

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object

No sleep button Set Absent

Fixed hardware sleep button Clear Absent

Control method sleep button Set Present

SLPBTN#

SLPBTN_EN
PM1x_EN.9

SLPBTN_STS
PM1x_STS.9Debounce

Logic
SLPBTN Event

SLPBTN
State machine
78 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
waking-up from a G1 sleeping state, the AML event handler generates a Notify command with the
code of 0x2 to indicate it was responsible for waking the system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the
platform and only requires an _HID. An example definition is shown below.

The AML code below does the following:

• Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID
object) of “PNP0C0E.”

• The Plug and Play identifier associates this device object with the sleep button driver.

• Creates an operational region for the control method sleep button’s programming model: System
I/O space at 0x201.

• Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to their
bit position, hence preserved would fail in this case).

• Creates a field within the operational region for the sleep button status bit (called PBP). In this
case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is set it
is the responsibility of the AML code to clear it (OSPM clears the general-purpose status bits).
The address of the status bit is 0x201.0 (bit 0 at address 0x201).

• Creates an additional status bit called PBW for the sleep button wake event. This is the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

• Generates an event handler for the sleep button that is connected to bit 0 of the general-purpose
status register 0. The event handler does the following:

• Clears the sleep button status bit in hardware (writes a “1” to it).

• Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){
 Name(_HID, EISAID(“PNP0C0E”))
 Name(_PRW, Package(){0x01, 0x04})
 OperationRegion(\Boo, SystemIO, 0x201, 0x1)
 Field(\Boo, ByteAcc, NoLock, WriteAsZeros){
 SBP, 1, // sleep request
 SBW, 1 // wakeup request
 } // end of field definition
}
Scope(_GPE){ // Root level event handlers
 Method(_L01){ // uses bit 1 of GP0_STS register
 If(\SBP){
 Store(One, \SBP) // clear sleep button status
 Notify(_SB.SLPB, 0x80) // Notify OS of event
 }
 If(\SBW){
 Store(One, \SBW)
 Notify(_SB.SLPB, 0x2)
 }
 } // end of _L01 handler
} // end of _GPE scope
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 79

ACPI Hardware Specification
4.8.2.3 Sleeping/Wake Control
The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working
state upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more
information, see Section 16.1.4.2, “The S4BIOS Transition”).

Figure 4-18 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The
type of sleep state desired is programmed into the SLP_TYPx field and upon assertion of the
SLP_EN the hardware will sequence the system into the defined sleeping state. OSPM gets values
for the SLP_TYPx field from the _Sx objects defined in the static definition block. If the object is
missing OSPM assumes the hardware does not support that sleeping state. Prior to entering the
desired sleeping state, OSPM will read the designated _Sx object and place this value in the
SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows
the user to initiate an Off sequence in the case where the system software is no longer able to recover
the system (the system has hung). ACPI defines that this sequence be initiated by the user pressing
the power button for over 4 seconds, at which point the hardware unconditionally sequences the
system to the Off state. This logic is represented by the PWRBTN_OR signal coming into the sleep
logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to
sequence the system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided
for OSPM to “spin-on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1
sleeping state, execution control is passed backed to OSPM immediately, whereas when waking
from the S2-S5 states execution control is passed to the BIOS software (execution begins at the
CPU’s reset vector). The WAK_STS bit provides a mechanism to separate OSPM’s sleeping and
waking code during an S1 sequence. When the hardware has sequenced the system into the sleeping
state (defined here as the processor is no longer able to execute instructions), any enabled wake
event is allowed to set the WAK_STS bit and sequence the system back on (to the G0 state). If the
system does not support the S1 sleeping state, the WAK_STS bit can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able
to dynamically sequence between the different sleeping states. This is accomplished by waking the
system; OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit–
placing the system again in the sleeping state.

SLP_EN
PM1x_CNT.S4.13

WAK_STS
PM1x_STS.S0.15

Sleeping

SLP_TYP:3
PM1x_CNT.S4.[10-12]

Wakeup/
Sleep
Logic

"OR" or all
Wake
Events

PWRBTN_OR
80 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
4.8.2.4 Real Time Clock Alarm
If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in
the sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be
used to generate a wake event when the system is in a sleeping state. ACPI provides for additional
hardware to support OSPM in determining that the RTC was the source of the wake event: the
RTC_STS and RTC_EN bits. Although these bits are optional, if supported they must be
implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a
possible wake source; however, it might miss certain wake events. If implemented, the RTC wake
feature is required to work in the following sleeping states: S1-S3. S4 wake is optional and
supported through the RTC_S4 flag within the FADT (if set, then the platform supports RTC wake

in the S4 state)1.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an
RTC hardware power management event will be generated (which will wake the system from a
sleeping state, provided the battery low signal is not asserted).

Figure 4-19 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within
the FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event
status and enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the
source of the wake event without loading the entire OS. This also gives the platform the capability of
indicating an RTC wake source without consuming a GPE bit, as would be required if RTC wake
was not implemented using the fixed hardware RTC feature. If the fixed hardware feature event bits
are not supported, then OSPM will attempt to determine this by reading the RTC’s status field. If the
platform implements the RTC fixed hardware feature, and this hardware consumes resources, the
_FIX method can be used to correlate these resources with the fixed hardware. See Section 6.2.5,
“_FIX (Fixed Register Resource Provide”, for details.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and
24-hour alarm). Optional extensions are provided for the following features:

Day Alarm.

The DAY_ALRM field points to an optional CMOS RAM location that selects the
day within the month to generate an RTC alarm.

1. Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will dis-
able the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

Real Time Clock
(RTC) RTC Wake-up

Event

RTC_EN
PM1x_EN.10

RTC_STS
PM1x_STS.10
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 81

ACPI Hardware Specification
Month Alarm.

The MON_ALRM field points to an optional CMOS RAM location that selects the
month within the year to generate an RTC alarm.

Centenary Value.

The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in IA-PC architecture systems).
OSPM will insure that the periodic and update interrupt sources are disabled prior to sleeping. This
allows the RTC’s interrupt pin to serve as the source for the RTC_STS bit generation. Note however
that if the RTC interrupt pin is used for RTC_STS generation, the RTC_STS bit value may not be
accurate when waking from S4. If this value is accurate when waking from S4, the platform should
set the S4_RTC_STS_VALID flag, so that OSPM can utilize the RTC_STS information.

Table 4-15 Alarm Field Decodings within the FADT

4.8.2.5 Legacy/ACPI Select and the SCI Interrupt
As mentioned previously, power management events are generated to initiate an interrupt or
hardware sequence. ACPI operating systems use the SCI interrupt handler to respond to events,

Field Value Address (Location) in RTC CMOS RAM
(Must be Bank 0)

DAY_ALRM Eight bit value that can represent 0x01-0x31
days in BCD or 0x01-0x1F days in binary. Bits
6 and 7 of this field are treated as Ignored by
software. The RTC is initialized such that this
field contains a “don’t care” value when the
BIOS switches from legacy to ACPI mode. A
don’t care value can be any unused value (not
0x1-0x31 BCD or 0x01-0x1F hex) that the
RTC reverts back to a 24 hour alarm.

The DAY_ALRM field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM area
that contains the day alarm value. A value
of zero in the DAY_ALRM field indicates
that the day alarm feature is not
supported.

MON_ALRM Eight bit value that can represent 01-12
months in BCD or 0x01-0xC months in binary.
The RTC is initialized such that this field
contains a don’t care value when the BIOS
switches from legacy to ACPI mode. A “don’t
care” value can be any unused value (not 1-12
BCD or x01-xC hex) that the RTC reverts back
to a 24 hour alarm and/or 31 day alarm).

The MON_ALRM field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM area
that contains the month alarm value. A
value of zero in the MON_ALRM field
indicates that the month alarm feature is
not supported. If the month alarm is
supported, the day alarm function must
also be supported.

CENTURY 8-bit BCD or binary value. This value indicates
the thousand year and hundred year
(Centenary) variables of the date in BCD (19
for this century, 20 for the next) or binary (x13
for this century, x14 for the next).

The CENTURY field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM area
that contains the Centenary value for the
date. A value of zero in the CENTURY
field indicates that the Centenary value is
not supported by this RTC.
82 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
while legacy systems use some type of transparent interrupt handler to respond to these events (that
is, an SMI interrupt handler). ACPI-compatible hardware can choose to support both legacy and
ACPI modes or just an ACPI mode. Legacy hardware is needed to support these features for non-
ACPI-compatible operating systems. When the ACPI OS loads, it scans the BIOS tables to
determine that the hardware supports ACPI, and then if the it finds the SCI_EN bit reset (indicating
that ACPI is not enabled), issues an ACPI activate command to the SMI handler through the SMI
command port. The BIOS acknowledges the switching to the ACPI model of power management by
setting the SCI_EN bit (this bit can also be used to switch over the event mechanism as illustrated
below):

Figure 4-20 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent
through a decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the
interrupt events to the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt
events to the SCI interrupt logic. This bit always returns set for ACPI-compatible hardware that does
not support a legacy power management mode (in other words, the bit is wired to read as “1” and
ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt
that uses a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt
is mapped to (see Section 5.2.6, “System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a
hardware event (for example, SMI for IA-PC processors). OSPM uses this register to make the
hardware switch in and out of ACPI mode. Within the FADT are three values that signify the
address (SMI_CMD) of this port and the data value written to enable the ACPI state
(ACPI_ENABLE), and to disable the ACPI state (ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following
would occur:

• ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.

• OSPM does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the
FADT.

• OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following
would occur:

• ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.

Dec
0

1

Power
Management
Event Logic

SCI_EN
PM1x_CNT.0

SMI_EVNT

SCI_EVNT
Shareable
Interrupt
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 83

ACPI Hardware Specification
• OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the
FADT.

• OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the
Legacy to ACPI transition stated above.

4.8.2.6 Processor Control
The ACPI specification defines several processor controls including power state control, throttling
control, and performance state control. See Section 8, “Processor Configuration and Control,” for a
complete description of the processor controls.

4.8.3 Fixed Hardware Registers
The fixed hardware registers are manipulated directly by OSPM. The following sections describe
fixed hardware features under the programming model. OSPM owns all the fixed hardware resource
registers; these registers cannot be manipulated by AML code. Registers are accessed with any
width up to its register width (byte granular).

4.8.3.1 PM1 Event Grouping
The PM1 Event Grouping has a set of bits that can be distributed between two different register
blocks. This allows these registers to be partitioned between two chips, or all placed in a single chip.
Although the bits can be split between the two register blocks (each register block has a unique
pointer within the FADT), the bit positions are maintained. The register block with unimplemented
bits (that is, those implemented in the other register block) always returns zeros, and writes have no
side effects.

4.8.3.1.1 PM1 Status Registers
Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN / 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between
two registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these
pointers to the register space are found in the FADT. Accesses to the PM1 status registers are done
through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state this register is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or
soft-off state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.
84 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 4-16 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the most significant
bit of a 24/32-bit counter changes from clear to set or set to clear. While
TMR_EN and TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system bus master
requests the system bus, and can only be cleared by writing a “1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity (this
bit monitors any bus master that can cause an incoherent cache for a
processor in the C3 state when the bus master performs a memory
transaction).

5 GBL_STS This bit is set when an SCI is generated due to the BIOS wanting the attention
of the SCI handler. BIOS will have a control bit (somewhere within its address
space) that will raise an SCI and set this bit. This bit is set in response to the
BIOS releasing control of the Global Lock and having seen the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.

8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off state, a wake event is
generated when the power button is pressed (regardless of the PWRBTN_EN
bit setting). This bit is only set by hardware and can only be reset by software
writing a “1” to this bit position.
ACPI defines an optional mechanism for unconditional transitioning a system
that has stopped working from the G0 working state into the G2 soft-off state
called the power button override. If the Power Button is held active for more
than four seconds, this bit is cleared by hardware and the system transitions
into the G2/S5 Soft Off state (unconditionally).
Support for the power button is indicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field is ignored by
OSPM.
If the power button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the system working
state, while SLPBTN_EN and SLPBTN_STS are both set, an interrupt event is
raised. In the sleeping or soft-off states a wake event is generated when the
sleeping button is pressed and the SLPBTN_EN bit is set. This bit is only set by
hardware and can only be reset by software writing a “1” to this bit position.
Support for the sleep button is indicated by the SLP_BUTTON flag in the FADT
being reset (zero). If the SLP_BUTTON flag is set or a sleep button device
object is present in the ACPI Namespace, then this bit field is ignored by
OSPM.
If the sleep button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 85

ACPI Hardware Specification
4.8.3.1.2 PM1Enable Registers
Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> + PM1_EVT_LEN / 2 System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split
between two registers: PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit
aligned address and is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for
these pointers to the register space are found in the FADT. Accesses to the PM1 Enable registers are
done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state the enables
are cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-
only platforms (where SCI_EN is always set), when transitioning from either the mechanical off
(G3) or soft-off state to the G0 working state this register is cleared prior to entering the G0 working
state.

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts the RTC IRQ
signal). Additionally, if the RTC_EN bit is set then the setting of the RTC_STS
bit will generate a power management event (an SCI, SMI, or resume event).
This bit is only set by hardware and can only be reset by software writing a “1”
to this bit position.
If the RTC was the cause of the wake (from an S1-S3 state), then this bit is set
prior to returning control to OSPM. If the RTC_S4 flag within the FADT is set,
and the RTC was the cause of the wake from the S4 state), then this bit is set
prior to returning control to OSPM.

11 Ignore This bit field is ignored by software.

12-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_
STS

This bit is required for chipsets that implement PCI Express. This bit is set by
hardware to indicate that the system woke due to a PCI Express wakeup event.
A PCI Express wakeup event is defined as the PCI Express WAKE# pin being
active , one or more of the PCI Express ports being in the beacon state, or
receipt of a PCI Express PME message at a root port. This bit should only be
set when one of these events causes the system to transition from a non-S0
system power state to the S0 system power state. This bit is set independent of
the state of the PCIEXP_WAKE_DIS bit.
Software writes a 1 to clear this bit. If the WAKE# pin is still active during the
write, one or more PCI Express ports is in the beacon state or the PME
message received indication has not been cleared in the root port, then the bit
will remain active (i.e. all inputs to this bit are level-sensitive).
Note: This bit does not itself cause a wake event or prevent entry to a sleeping
state. Thus if the bit is 1 and the system is put into a sleeping state, the system
will not automatically wake.

15 WAK_STS This bit is set when the system is in the sleeping state and an enabled wake
event occurs. Upon setting this bit system will transition to the working state.
This bit is set by hardware and can only be cleared by software writing a “1” to
this bit position.

Bit Name Description
86 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats the enable bits as
write as zero.

Table 4-17 PM1 Enable Registers Fixed Hardware Feature Enable Bits

4.8.3.2 PM1 Control Grouping
The PM1 Control Grouping has a set of bits that can be distributed between two different registers.
This allows these registers to be partitioned between two chips, or all placed in a single chip.

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an
SCI event is generated anytime the TMR_STS bit is set. When this bit is
reset then no interrupt is generated when the TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS bit
are set, an SCI is raised.

6-7 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit to
generate a power management event (SCI or wake). The PWRBTN_STS
bit is set anytime the power button is asserted. The enable bit does not
have to be set to enable the setting of the PWRBTN_STS bit by the
assertion of the power button (see description of the power button
hardware).
Support for the power button is indicated by the PWR_BUTTON flag in
the FADT being reset (zero). If the PWR_BUTTON flag is set or a power
button device object is present in the ACPI Namespace, then this bit field
is ignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit to
generate a power management event (SCI or wake). The SLPBTN_STS
bit is set anytime the sleep button is asserted. The enable bit does not
have to be set to enable the setting of the SLPBTN_STS bit by the active
assertion of the sleep button (see description of the sleep button
hardware).
Support for the sleep button is indicated by the SLP_BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep
button device object is present in the ACPI Namespace, then this bit field
is ignored by OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to
generate a wake event. The RTC_STS bit is set any time the RTC
generates an alarm.

11-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_DIS This bit is required for chipsets that implement PCI Express. This bit
disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no impact on
the value of the PCIEXP_WAKE_STS bit.

15 Reserved Reserved. These bits always return a value of zero.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 87

ACPI Hardware Specification
Although the bits can be split between the two register blocks (each register block has a unique
pointer within the FADT), the bit positions specified here are maintained. The register block with
unimplemented bits (that is, those implemented in the other register block) returns zeros, and writes
have no side effects.

4.8.3.2.1 PM1 Control Registers
Register Location: <PM1a_CNT_BLK / PM1b_CNT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split
between two registers: PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-
bit aligned address and is pointed to by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for
these pointers to the register space are found in the FADT. Accesses to PM1 control registers are
accessed through byte and word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.

Table 4-18 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI interrupt for the
following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events will
generate an SMI interrupt. It is the responsibility of the hardware to set or reset this
bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the C0 state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event to the BIOS
software, that is, generates an SMI to pass execution control to the BIOS for IA-PC
platforms. BIOS software has a corresponding enable and status bit to control its
ability to receive ACPI events (for example, BIOS_EN and BIOS_STS). The
GBL_RLS bit is set by OSPM to indicate a release of the Global Lock and the
setting of the pending bit in the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.

10-12 SLP_TYPx Defines the type of sleeping state the system enters when the SLP_EN bit is set to
one. This 3-bit field defines the type of hardware sleep state the system enters
when the SLP_EN bit is set. The _Sx object contains 3-bit binary values
associated with the respective sleeping state (as described by the object). OSPM
takes the two values from the _Sx object and programs each value into the
respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting this bit causes
the system to sequence into the sleeping state associated with the SLP_TYPx
fields programmed with the values from the _Sx object.

14-15 Reserved Reserved. This field always returns zero.
88 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
4.8.3.3 Power Management Timer (PM_TMR)
Register Location: <PM_TMR_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read-Only
Size: 32 bits

This read-only register returns the current value of the power management timer (PM timer). The
FADT has a flag called TMR_VAL_EXT that an OEM sets to indicate a 32-bit PM timer or reset to
indicate a 24-bit PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This
register is accessed as 32 bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.

Table 4-19 PM Timer Bits

4.8.3.4 PM2 Control (PM2_CNT)
Register Location: <PM2_CNT_BLK> System I/O, System Memory, or Functional
 Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is
byte aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.

Table 4-20 PM2 Control Register Bits

Bit Name Description

0-23 TMR_VAL This read-only field returns the running count of the power management timer.
This is a 24-bit counter that runs off a 3.579545-MHz clock and counts while in
the S0 working system state. The starting value of the timer is undefined, thus
allowing the timer to be reset (or not) by any transition to the S0 state from any
other state. The timer is reset (to any initial value), and then continues counting
until the system’s 14.31818 MHz clock is stopped upon entering its Sx state. If the
clock is restarted without a reset, then the counter will continue counting from
where it stopped.

24-31 E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the upper
eight bits; if the hardware supports a 24-bit timer then this field returns all zeros.

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is CLEAR
the system arbiter is enabled and the arbiter can grant the bus to other bus
masters. When this bit is SET the system arbiter is disabled and the default CPU
has ownership of the system.
OSPM clears this bit when using the C0, C1 and C2 power states.

>0 Reserved Reserved
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 89

ACPI Hardware Specification
4.8.3.5 Processor Register Block (P_BLK)
This optional register block is used to control each processor in the system. There is one unique
processor register block per processor in the system. For more information about controlling
processors and control methods that can be used to control processors, see Section 8, “Processor
Configuration and Control.” This register block is DWORD aligned and the context of this register
block is not maintained across S3 or S4 sleeping states, or the S5 soft-off state.

4.8.3.5.1 Processor Control (P_CNT): 32
Register Location: Either <P_BLK>: System I/O Space
 or specified by _PTC Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the
throttling hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values
in the FADT. Software treats all other CLK_VAL bits as ignored (those not used by the duty setting
value).

Table 4-21 Processor Control Register Bits

4.8.3.5.2 Processor LVL2 Register (P_LVL2): 8
Register Location: Either <P_BLK> + 4: System I/O Space
 or specified by _CST Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-22 Processor LVL2 Register Bits

Bit Name Description

0-3 CLK_VAL Possible locations for the clock throttling value.

4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field. THT_EN bit
must be reset LOW when changing the CLK_VAL field (changing the duty setting).

5-31 CLK_VAL Possible locations for the clock throttling value.

Bit Name Description

0-7 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads to
this register also generate an “enter a C2 power state” to the clock control logic.
90 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
4.8.3.5.3 Processor LVL3 Register (P_LVL3): 8
Register Location: Either <P_BLK> + 5: System I/O Space
 or specified by _CST Object: System I/O, System Memory, or
 Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-23 Processor LVL3 Register Bits

4.8.3.6 Reset Register
The optional ACPI reset mechanism specifies a standard mechanism that provides a complete
system reset. When implemented, this mechanism must reset the entire system. This includes
processors, core logic, all buses, and all peripherals. From an OSPM perspective, asserting the reset
mechanism is the logical equivalent to power cycling the machine. Upon gaining control after a
reset, OSPM will perform actions in like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT
(always accessed via the natural alignment and size described in RESET_REG). To reset the
machine, software will write a value (indicated in RESET_VALUE in FADT) to the reset register.
The RESET_REG field in the FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a
function in bus 0. Therefore, the Address_Space_ID value in RESET_REG must be set to I/O space,
Memory space, or PCI Configuration space (with a bus number of 0). As the register is only 8 bits,
Register_Bit_Width must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the
processor will not execute beyond the write instruction. OSPM should execute spin loops on the
CPUs in the system following a write to this register.

4.8.3.7 Sleep Control and Status Registers
The optional ACPI sleep registers (SLEEP_CONTROL_REG and SLEEP_STATUS_REG) specify
a standard mechanism for system sleep state entry on HW-Reduced ACPI systems. When
implemented, the Sleep registers are a replacement for the SLP_TYP, SLP_EN and WAK_STS
registers in the PM1_BLK. Use of these registers is at the discretion of OSPM. OSPM can decide
whether to enter sleep states on the platform based on the LOW_POWER_S0_IDLE_CAPABLE
flag. Even when implemented, OSPM may use other provided options for hibernate and shutdown
(e.g. UEFI ResetSystem()).

The HW-reduced Sleep mechanism is implemented via two 8-bit registers described by
SLEEP_CONTROL_REG and SLEEP_STATUS_REG in the FADT (always accessed via the
natural alignment and size described in SLEEP_*_REG). To put the machine into a system sleep
state, software will write the HW-reduced Sleep Type value (obtained from the _Sx object in the
DSDT) and the SLP_EN bit to the sleep control register. The OSPM then polls the WAK_STS bit of

Bit Name Description

0-7 P_LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads to
this register also generate an “enter a C3 power state” to the clock control logic.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 91

ACPI Hardware Specification

re
Sx

ue

the SLEEP_STATUS_REG waiting for it to be one (1), indicating that the system has been
transitioned back to the Working state.

The Sleep registers may exist only in I/O space, Memory space, or in PCI Configuration space on a
function in bus 0. Therefore, the Address_Space_ID value must be set to I/O space, Memory space,
or PCI Configuration space (with a bus number of 0). As the registers are only 8 bits,
Register_Bit_Width must be 8 and Register_Bit_Offset must be 0.

Table 4-24 Sleep Control Register

Table 4-25 Sleep Status Register

4.8.4 Generic Hardware Registers
ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O,
system memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are
contained in the general-purpose event registers. The general-purpose event registers are pointed to

Field Name Bit
Length

Bit
Offset

Description

Reserved 1 0 Reserved. This bit is reserved by OSPM.

Ignore 1 1 Software ignores this bit field.

SLP_TYPx 3 2 Defines the type of sleeping state the system enters when the
SLP_EN bit is set to one. This 3-bit field defines the type of hardwa
sleep state the system enters when the SLP_EN bit is set. The _
object contains 3-bit binary values associated with the respective
sleeping state (as described by the object). OSPM
takes the two values from the _Sx object and programs each val
into the respective SLP_TYPx field.

SLP_EN 1 5 This is a write-only bit and reads to it always return a zero. Setting
this bit causes the system to sequence into the sleeping state
associated with the SLP_TYPx fields programmed with the values
from the _Sx object.

Reserved 2 6 Reserved. This field always returns zero.

Field Name Bit
Length

Bit
Offset

Description

Ignore 4 0 Software ignores this bit field.

Reserved 2 4 Reserved. These bits always return a value of zero.

Ignore 1 6 Software ignores this bit field.

WAK_STS 1 7 This bit is set when the system is in the sleeping state and an
enabled wake event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and can
only be cleared by software writing a “1” to this bit position.
92 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
by the GPE0_BLK and GPE1_BLK register blocks, and the generic hardware registers can be in any
of the defined ACPI address spaces. A device’s generic hardware programming model is described
through an associated object in the ACPI Namespace, which specifies the bit’s function, location,
address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits
are used to generate an event that allows OSPM to call a control method associated with the pending
status bit. The called control method can then control the hardware by manipulating the hardware
control bits or by investigating child status bits and calling their respective control methods. ACPI
requires that the top level “parent” event status and enable bits reside in either the GPE0_STS or
GPE1_STS registers, and “child” event status bits can reside in generic address space.

The example below illustrates some of these concepts. The top diagram shows how the logic is
partitioned into two chips: a chipset and an embedded controller.

• The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

• The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 93

ACPI Hardware Specification
Figure 4-21 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEx_STS register are the:

• Embedded controller interrupt, which contains two query events: one for AC detection and one
for docking (the docking query event has a child interrupt status bit in the docking chip).

• Ring indicate status (used for waking the system).

• Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events
is active.

• A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this
event; OSPM will then schedule for execution the control method associated with query value
34.

Another query event is for the docking chip that generates a docking event. In this case, the
embedded controller will return a query value of 35 upon a query command from system software
responding to an SCI from the embedded controller. OSPM will then schedule the control method
associated with the query value of 35 to be executed, which services the docking event.

GPx_REG
Block

ACPI-Compatible
Chip Set

Momentary

Momentary

PWRBTN#

LID
Switch

Power
Button

LID#

Embedded
Controller

8

EC_CS#

EXTSMI#

EXTPME#

AC#

E
m

be
dd

ed
 C

on
tr

ol
le

r
In

te
rf

ac
e

EC_STS
GP_STS.0

EC_EN
GP_EN.0

Other SCI
sources

SCI#
Shareable

Interrupt

AC_STS
E0.0

DOCK_STS
P0.40.1

DOCK#

RI#

EXTPME#

RI_STS
GP_STS.1

RI_EN
GP_EN.1

RI#

AC#

DOCK#

EXTPME# EXTPME#

LID_STS
GP_STS.2

LID_EN
GP_EN.2

LID

LID_POL
S33.2

EXTSMI#
SMI-only
sourcesEXTSMI#

EXTSMI#
SMI Only
Events

Debounce

Docking
Chip

DOCK#

34

35
94 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the
GPEx_EN register. Notice that the child status bits do not necessarily need enable bits (see the
DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open
(LID_POL is set and LID is set) or closed (LID_POL is clear and LID is clear). This control bit
resides in generic I/O space (in this case, bit 2 of system I/O space 33h) and would be manipulated
with a control method associated with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks.
However, AML code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML.
ACPI provides both an event and control model for development of these features. The ACPI
specification also provides specific control methods for notifying OSPM of certain power
management and Plug and Play events. Section 5, “ACPI Software Programming Model,” provides
information on the types of hardware functionality that support the different types of subsystems.
The following is a list of features supported by ACPI. The list is not intended to be complete or
comprehensive.

• Device insertion/ejection (for example, docking, device bay, A/C adapter)

• Batteries1

• Platform thermal subsystem

• Turning on/off power resources

• Mobile lid Interface

• Embedded controller

• System indicators

• OEM-specific wake events

• Plug and Play configuration

4.8.4.1 General-Purpose Event Register Blocks
ACPI supports up to two general-purpose register blocks as described in the FADT (see Section 5,
“ACPI Software Programming Model”) and an arbitrary number of additional GPE blocks described
as devices within the ACPI namespace. Each register block contains two registers: an enable and a
status register. Each register block is 32-bit aligned. Each register in the block is accessed as a byte.
It is up to the specific design to determine if these bits retain their context across sleeping or soft-off
states. If they lose their context across a sleeping or soft-off state, then BIOS resets the respective
enable bit prior to passing control to the OS upon waking.

4.8.4.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPE0_STS and the GPE0_EN registers. Each
register’s length is defined to be half the length of the GPE0 register block, and is described in the

1. ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined standard
for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by
OEMs that use a proprietary “control method” battery interface.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 95

ACPI Hardware Specification
ACPI FADT’s GPE0_BLK and GPE0_BLK_LEN operators. OSPM owns the general-purpose
event resources and these bits are only manipulated by OSPM; AML code cannot access the general-
purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for
various events.

The platform designer would then wire the GPEs to the various value-added event hardware and the
AML code would describe to OSPM how to utilize these events. As such, there will be the case
where a platform has GPE events that are not wired to anything (they are present in the chip set), but
are not utilized by the platform and have no associated AML code. In such, cases these event pins
are to be tied inactive such that the corresponding SCI status bit in the GPE register is not set by a
floating input pin.

4.8.4.1.1.1 General-Purpose Event 0 Status Register
Register Location:<GPE0_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank
zero of the general-purpose registers. Each available status bit in this register corresponds to the bit
with the same bit position in the GPE0_EN register. Each available status bit in this register is set
when the event is active, and can only be cleared by software writing a “1” to its respective bit
position. For the general-purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with
its respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their
length).

4.8.4.1.1.2 General-Purpose Event 0 Enable Register
Register Location: <GPE0_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each
available enable bit in this register corresponds to the bit with the same bit position in the
GPE0_STS register. The enable bits work similarly to how the enable bits in the fixed-event
registers are defined: When the enable bit is set, then a set status bit in the corresponding status bit
will generate an SCI bit. OSPM accesses GPE registers through byte accesses (regardless of their
length).

4.8.4.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each
register’s length is defined to be half the length of the GPE1 register block, and is described in the
ACPI FADT’s GPE1_BLK and GPE1_BLK_LEN operators.
96 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
4.8.4.1.2.1 General-Purpose Event 1 Status Register
Register Location: <GPE1_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each
available status bit in this register corresponds to the bit with the same bit position in the GPE1_EN
register. Each available status bit in this register is set when the event is active, and can only be
cleared by software writing a “1” to its respective bit position. For the general-purpose event
registers, unimplemented bits are ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with
its respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.2.2 General-Purpose Event 1 Enable Register
Register Location: <GPE1_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each
available enable bit in this register corresponds to the bit with the same bit position in the
GPE1_STS register. The enable bits work similarly to how the enable bits in the fixed-event
registers are defined: When the enable bit is set, a set status bit in the corresponding status bit will
generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.2 Example Generic Devices
This section points out generic devices with specific ACPI driver support.

4.8.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be
used by the OS as policy input for sleeping the system, or for waking the system from a sleeping
state. If used, then the OEM needs to define the lid switch as a device with an _HID object value of
“PNP0C0D”, which identifies this device as the lid switch to OSPM. The Lid device needs to
contain a control method that returns its status. The Lid event handler AML code reconfigures the lid
hardware (if it needs to) to generate an event in the other direction, clear the status, and then notify
OSPM of the event.

Example hardware and ASL code is shown below for such a design.

Figure 4-22 Example Generic Address Space Lid Switch Logic

LID_POL

LID_STS

8 ms
Debounce

Momentary Normally
Open push button
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 97

ACPI Hardware Specification
This logic will set the Lid status bit when the button is pressed or released (depending on the
LID_POL bit).

The ASL code below defines the following:

• An operational region where the lid polarity resides in address space System address space in
registers 0x201.

• A field operator to allow AML code to access this bit: Polarity control bit (LID_POL) is called
LPOL and is accessed at 0x201.0.

• A device named _SB.LID with the following:
— A Plug and Play identifier “PNP0C0D” that associates OSPM with this object.
— Defines an object that specifies a change in the lid’s status bit can wake the system from the

S4 sleep state and from all higher sleep states (S1, S2, or S3).

• The lid switch event handler that does the following:
— Defines the lid status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.
— Defines the event handler for the lid (only event handler on this status bit) that does the

following:

• Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite
condition).

• Generates a notify to the OS that does the following:

• Passes the _SB.LID object.

• Indicates a device specific event (notify value 0x80).
// Define a Lid switch
OperationRegion(\PHO, SystemIO, 0x201, 0x1)
Field(\PHO, ByteAcc, NoLock, Preserve) {
 LPOL, 1 // Lid polarity control bit
}

Device(_SB.LID){
 Name(_HID, EISAID(“PNP0C0D”))
 Method(_LID){Return(LPOL)}
 Name(_PRW, Package(2){
 1, // bit 1 of GPE to enable Lid wakeup
 0x04} // can wakeup from S4 state
)
}
Scope(_GPE){ // Root level event handlers
 Method(_L01){ // uses bit 1 of GP0_STS register
 Not(LPOL, LPOL) // Flip the lid polarity bit
 Notify(LID, 0x80) // Notify OS of event
 }
}

4.8.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value
added hardware is contained within the embedded controller while allowing the AML code to access
this hardware in an abstracted fashion.

• The embedded controller is defined as a device and must contain a set number of control
methods:
98 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• _HID with a value of PNP0C09 to associate this device with the ACPI’s embedded controller’s
driver.

• _CRS to return the resources being consumed by the embedded controller.

• _GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s
device as control methods. An example of defining an embedded controller device is shown below:

Device(EC0) {
 // PnP ID
 Name(_HID, EISAID(“PNP0C09”))
 // Returns the “Current Resources” of EC
 Name(_CRS,
 ResourceTemplate(){
 IO(Decode16, 0x62, 0x62, 0, 1)
 IO(Decode16, 0x66, 0x66, 0, 1)
 })
 // Indicate that the EC SCI is bit 0 of the GP_STS register
 Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

 OperationRegion(\EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 // Field definitions
 }
 // Query methods
 Method(_Q00){...}
 Method(_QFF){...}
}

For more information on the embedded controller, see Section 12, “ACPI Embedded Controller
Interface Specification.”

4.8.4.2.3 Fan

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a
device with the Plug and Play ID of “PNP0C0B.” It should then contain a list power resources used
to control the fan.

For more information, see Section 9, “ACPI-Defined Devices and Device Specific Objects.” .
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 99

ACPI Hardware Specification
100 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5
ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in Section 4, “ACPI Hardware Specification.”
ACPI also provides an abstract interface for controlling the power management and configuration of
an ACPI system. Finally, ACPI defines an interface between an ACPI-compatible OS and the
system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe
system information, features, and methods for controlling those features. These tables list devices on
the system board or devices that cannot be detected or power managed using some other hardware
standard, plus their capabilities as described in Section 3, “Overview.” They also list system
capabilities such as the sleeping power states supported, a description of the power planes and clock
sources available in the system, batteries, system indicator lights, and so on. This enables OSPM to
control system devices without needing to know how the system controls are implemented.

Topics covered in this section are:

• The ACPI system description table architecture is defined, and the role of OEM-provided
definition blocks in that architecture is discussed.

• The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture
The Root System Description Pointer (RSDP) structure is located in the system’s memory address
space and is setup by the platform firmware. This structure contains the address of the Extended
System Description Table (XSDT), which references other description tables that provide data to
OSPM, supplying it with knowledge of the base system’s implementation and configuration (see
Figure 5-23).

Located in system's memory address space

Extended System
Description Table

Header

XSDT

Entry

Entry

...

Entry

...

Root System
Description Pointer

Header

Sig

 contents

Header

Sig

 contents

RSD PTR

Pointer

Pointer
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 101

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

ACPI Software Programming Model
Figure 5-23 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system
description tables is to define for OSPM various industry-standard implementation details. Such
definitions enable various portions of these implementations to be flexible in hardware requirements
and design, yet still provide OSPM with the knowledge it needs to control hardware directly.

The Extended System Description Table (XSDT) points to other tables in memory. Always the first
table, it points to the Fixed ACPI Description table (FADT). The data within this table includes
various fixed-length entries that describe the fixed ACPI features of the hardware. The FADT table
always refers to the Differentiated System Description Table (DSDT), which contains information
and descriptions for various system features. The relationship between these tables is shown in
Figure 5-24.

Figure 5-24 Description Table Structures

• OSPM finds the RSDP structure as described in Figure 5.2.5.1 (“Finding the RSDP on IA-PC
Systems”) or Figure 5.2.5.2 (“Finding the RSDP on UEFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description
Table or the Extended System Description Table. The Root System Description Table starts with the
signature “RSDT”, while the Extended System Description Table starts with the signature “XSDT”.

Device I/O
Device Memory

PCI configuration
Embedded Controller space

Firmware ACPI
Control Structure

Wake Vector
Shared Lock

FACS

GPx_BLK

PM2x_BLK

Differentiated System
Description Table

Header

DSDT

Differentiated
Definition

Block

PM1x_BLK

Fixed ACPI
Description Table

Header

FACP

Static info

Located in
port space

OEM-Specific

ACPI
Driver

Software

Hardware

FIRM
DSDT
BLKs

...
102 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
These tables contain one or more physical pointers to other system description tables that provide
various information about the system. As shown in Figure 5-24, there is always a physical address in
the Root System Description Table for the Fixed ACPI Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known
signature. Based on the signature, OSPM can then interpret the implementation-specific data within
the description table.

The purpose of the FADT is to define various static system information related to configuration and
power management. The Fixed ACPI Description Table starts with the “FACP” signature. The
FADT describes the implementation and configuration details of the ACPI hardware registers on the
platform.

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK,
and one or more P_BLKs), see Section 4.8, “ACPI Register Model.” The PM1a_EVT_BLK,
PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK
blocks are for controlling low-level ACPI system functions.

The GPE0_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model
for Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical
pointer to a data structure known as the Differentiated System Description Table (DSDT), which is
encoded in Definition Block format (See Section 5.2.11, “Definition Blocks”).

A Definition Block contains information about the platform’s hardware implementation details in
the form of data objects arranged in a hierarchical (tree-structured) entity known as the “ACPI
namespace”, which represents the platform’s hardware configuration. All definition blocks loaded
by OSPM combine to form one namespace that represents the platform. Data objects are encoded in
a format known as ACPI Machine Language or AML for short. Data objects encoded in AML are
“evaluated” by an OSPM entity known as the AML interpreter. Their values may be static or
dynamic. The AML interpreter’s dynamic data object evaluation capability includes support for
programmatic evaluation, including accessing address spaces (for example, I/O or memory
accesses), calculation, and logical evaluation, to determine the result. Dynamic namespace objects
are known as “control methods”. OSPM “loads” or “unloads” an entire definition block as a logical
unit – adding to or removing the associated objects from the namespace. The DSDT is always loaded
by OSPM at boot time and cannot be unloaded. It contains a Definition Block named the
Differentiated Definition Block that contains implementation and configuration information OSPM
can use to perform power management, thermal management, or Plug and Play functionality that
goes beyond the information described by the ACPI hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior
definitions. A Definition Block can be loaded from system memory address space. One use of a
Definition Block is to describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to
the ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks
enable simple platform implementations to be expressed by using a few well-defined object names.
In theory, it might be possible to define a PCI configuration space-like access method within a
Definition Block, by building it from I/O space, but that is not the goal of the Definition Block
specification. Such a space is usually defined as a “built in” operator.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 103

ACPI Software Programming Model
Some operators perform simple functions and others encompass complex functions. The power of
the Definition Block comes from its ability to allow these operations to be glued together in
numerous ways, to provide functionality to OSPM. The operators present are intended to allow
many useful hardware designs to be ACPI-expressed, not to allow all hardware designs to be
expressed.

5.1.1 Address Space Translation
Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass
through the bridges. This translation can take the form of the addition or subtraction of an offset. Or
it can take the form of a conversion from I/O cycles into Memory cycles and back again. When
translation takes place, the addresses placed on the processor bus by the processor during a read or
write cycle are not the same addresses that are placed on the I/O bus by the I/O bus bridge. The
address the processor places on the processor bus will be known here as the processor-relative
address. And the address that the bridge places on the I/O bus will be known as the bus-relative
address. Unless otherwise noted, all addresses used within this section are processor-relative
addresses.

For example, consider a platform with two root PCI buses. The platform designer has several
choices. One solution would be to split the 16-bit I/O space into two parts, assigning one part to the
first root PCI bus and one part to the second root PCI bus. Another solution would be to make both
root PCI buses decode the entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into
memory space. In this second scenario, when the processor needs to read from an I/O register of a
device underneath the second root PCI bus, it would need to perform a memory read within the
range that the root PCI bus bridge is using to map the I/O space.

Note: Industry standard PCs do not provide address space translations because of historical
compatibility issues.

5.2 ACPI System Description Tables
This section specifies the structure of the system description tables:

• Root System Description Pointer (RSDP)

• System Description Table Header

• Root System Description Table (RSDT)

• Fixed ACPI Description Table (FADT)

• Firmware ACPI Control Structure (FACS)

• Differentiated System Description Table (DSDT)

• Secondary System Description Table (SSDT)

• Multiple APIC Description Table (MADT)

• Smart Battery Table (SBST)

• Extended System Description Table (XSDT)

• Embedded Controller Boot Resources Table (ECDT)

• System Locality Distance Information Table (SLIT)
104 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• System Resource Affinity Table (SRAT)

• Corrected Platform Error Polling Table (CPEP)

• Maximum System Characteristics Table (MSCT)

• ACPI RAS FeatureTable (RASF)

• Memory Power StateTable (MPST)

• Platform Memory Topology Table (PMTT)

• Boot Graphics Resource Table (BGRT)

• Firmware Performance Data Table (FPDT)

• Generic Timer Description Table (GTDT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian
format. Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields
For future expansion, all data items marked as reserved in this specification have strict meanings.
This section lists software requirements for reserved fields. Notice that the list contains terms such
as ACPI tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
• OEM implementations of software and AML code return the bit value of 0 for all reserved bits

in ACPI tables or in other software values, such as resource descriptors.

• For all reserved bits in ACPI tables and registers, OSPM implementations must:

• Ignore all reserved bits that are read.

• Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved
bit values it reads).

• Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components
• OEM implementations of software and AML code return only defined values and do not return

reserved values.

• OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components
• Software ignores all reserved bits read from hardware enable or status registers.

• Software writes zero to all reserved bits in hardware enable registers.

• Software ignores all reserved bits read from hardware control and status registers.

• Software preserves the value of all reserved bits in hardware control registers by writing back
read values.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 105

ACPI Software Programming Model
5.2.1.4 Ignored Hardware Bits and Software Components
• Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits

in these same types of registers.

5.2.2 Compatability
All versions of the ACPI tables must maintain backward compatibility. To accomplish this,
modifications of the tables consist of redefinition of previously reserved fields and values plus
appending data to the 1.0 tables. Modifications of the ACPI tables require that the version numbers
of the modified tables be incremented. The length field in the tables includes all additions and the
checksum is maintained for the entire length of the table.

5.2.3 Address Format
Addresses used in the ACPI 1.0 system description tables were expressed as either system memory
or I/O space. This was targeted at the IA-32 environment. Newer architectures require addressing
mechanisms beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-
bit addressing and it must allow the placement of control registers in address spaces other than
System I/O.

5.2.3.1 Generic Address Structure
The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-26), is used to express register addresses within
tables defined by ACPI .

Table 5-26 Generic Address Structure (GAS)

Field Byte
Length

Byte
Offset

Description

Address Space
ID

1 0 The address space where the data structure or register exists.
Defined values are:
0 System Memory
1 System I/O
2 PCI Configuration Space
3 Embedded Controller
4 SMBus
5 to 0x09 Reserved
0x0A Platform Communications Channel (PCC)
0x0B to 0x7E Reserved
0x7F Functional Fixed Hardware
0x80 to 0xBF Reserved
0xC0 to 0xFF OEM Defined

Register Bit
Width

1 1 The size in bits of the given register. When addressing a data
structure, this field must be zero.

Register Bit
Offset

1 2 The bit offset of the given register at the given address. When
addressing a data structure, this field must be zero.
106 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-27 Address Space Format

5.2.4 Universal Uniform Identifiers (UUID)
UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are
128 bit long values that extremely likely to be different from all other UUIDs generated until 3400
A.D. UUIDs are used to distinguish between callers of ASL methods, such as _DSM and _OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to
generate them is specified in ISO/IEC 11578:1996 and can be found as part of the Distributed
Computing Environment 1.1: Remote Procedure Call specification, which can be found in the ACPI
Link Document under the heading "Universal Uniform Identifiers (UUID)".

Access Size 1 3 Specifies access size.
0 Undefined (legacy reasons)
1 Byte access
2 Word access
3 Dword access
4 QWord access

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)

Address Space Format

0–System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-bit
platforms must have the high DWORD set to 0.

1–System I/O The 64-bit I/O address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

2–PCI Configuration
Space

PCI Configuration space addresses must be confined to devices on

 PCI Segment Group 0, bus 0. This restriction exists to accommodate access to fixed
hardware prior to PCI bus enumeration. The format of addresses are defined as
follows:

WORD Location Description

Highest WORD Reserved (must be 0)

… PCI Device number on bus 0

… PCI Function number

Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F–Functional
Fixed Hardware

Use of GAS fields other than Address_Space_ID is specified by the CPU
manufacturer. The use of functional fixed hardware carries with it a reliance on OS
specific software that must be considered. OEMs should consult OS vendors to
ensure that specific functional fixed hardware interfaces are supported by specific
operating systems.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 107

ACPI Software Programming Model
5.2.5 Root System Description Pointer (RSDP)
During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure
from the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it
then locates the Root System Description Table (RSDT) or the Extended Root System Description
Table (XSDT) using the physical system address supplied in the RSDP.

5.2.5.1 Finding the RSDP on IA-PC Systems
OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory
ranges on 16-byte boundaries for a valid Root System Description Pointer structure signature and
checksum match as follows:

• The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the
EBDA can be found in the two-byte location 40:0Eh on the BIOS data area.

• The BIOS read-only memory space between 0E0000h and 0FFFFFh.

5.2.5.2 Finding the RSDP on UEFI Enabled Systems
In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure
exists within the EFI System Table. The OS loader is provided a pointer to the EFI System Table at
invocation. The OS loader must retrieve the pointer to the RSDP structure from the EFI System
Table and convey the pointer to OSPM, using an OS dependent data structure, as part of the hand off
of control from the OS loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table
within the EFI System Table. EFI Configuration Table entries consist of Globally Unique Identifier
(GUID)/table pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0
and the other for ACPI 2.0 or later specification revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is:

• EB9D2D30-2D88-11D3-9A16-0090273FC14D.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is:

• 8868E871-E4F1-11D3-BC22-0080C73C8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer using the
current revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If
the GUID is not found then the OS loader will search for the RSDP structure pointer using the ACPI
1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before
assuming platform control via the EFI ExitBootServices interface. See the UEFI Specification for
more information.

5.2.5.3 RSDP Structure
The revision number contained within the structure indicates the size of the table structure.
108 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-28 Root System Description Pointer Structure

5.2.6 System Description Table Header
All system description tables begin with the structure shown in Table 5-29. The Signature field
determines the content of the system description table. System description table signatures defined
by this specification are listed in Table 5-30.

Table 5-29 DESCRIPTION_HEADER Fields

Field Byte
Length

Byte
Offset

Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing blank
character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table, bytes
0 to 19, including the checksum field. These bytes must sum to
zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are backward
compatible to lower revision numbers. The ACPI version 1.0
revision number of this table is zero. The current value for this field
is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting from
offset 0. This field is used to record the size of the entire table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended
Checksum

1 32 This is a checksum of the entire table, including both checksum
fields.

Reserved 3 33 Reserved field

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The ASCII string representation of the table identifier. Notice that if

OSPM finds a signature in a table that is not listed in Table 5-30,

OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in the
Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting from
offset 0. This field is used to record the size of the entire table.

Revision 1 8 The revision of the structure corresponding to the signature field for
this table. Larger revision numbers are backward compatible to
lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 109

ACPI Software Programming Model
For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table
ID fields in any table. The intent of these fields is to allow for a binary control system that support
services can use. Because many support functions can be automated, it is useful when a tool can
programmatically determine which table release is a compatible and more recent revision of a prior
table on the same OEMID and OEM Table ID.

Table 5-30 and Table 5-31 contain the system description table signatures defined by this
specification. These system description tables may be defined by ACPI and documented within this
specification (Table 5-30) or they may be simply reserved by ACPI and defined by other industry
specifications (Table 5-31). This allows OS and platform specific tables to be defined and pointed to
by the RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI
specification acts as gatekeeper to avoid collisions in table signatures.

Table signatures will be reserved by the ACPI promoters and posted independently of this
specification in ACPI errata and clarification documents on the ACPI web site. Requests to reserve a
4-byte alphanumeric table signature should be sent to the email address info@acpi.info and should
include the purpose of the table and reference URL to a document that describes the table format.
Tables defined outside of the ACPI specification may define data value encodings in either little
endian or big endian format. For the purpose of clarity, external table definition documents should
include the endian-ness of their data value encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at the ACPI Link
Document, which should conspicuously be placed in the same location as this specification.

Table 5-30 DESCRIPTION_HEADER Signatures for tables defined by ACPI

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the particular
data table. This field is particularly useful when defining a definition
block to distinguish definition block functions. The OEM assigns
each dissimilar table a new OEM Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed to
be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 18.3.1, “Boot Error Source”

“BGRT” Boot Graphics Resource Table Section 5.2.22, “Boot Graphics Resource Table”

“CPEP” Corrected Platform Error Polling
Table

Section 5.2.18, “Corrected Platform Error Polling Table”

“DSDT” Differentiated System Description
Table

Section 5.2.11.1, “Differentiated System Description
Table”

“ECDT” Embedded Controller Boot
Resources Table

Section 5.2.15 “Embedded Controller Boot Resources
Table”
110 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-31 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

“EINJ” Error Injection Table Section 18.6.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 18.5, “Error Serialization”

”FACP” Fixed ACPI Description Table
(FADT)

Section 5.2.9, “Fixed ACPI Description Table”

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“FPDT” Firmware Performance Data Table Section 5.2.23, “Firmware Performance Data Table”

“GTDT” Generic Timer Description Table Section 5.2.24, “Generic Timer Description Table”

“HEST” Hardware Error Source Table Section 18.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics
Table

Section 5.2.19, “Maximum System Characteristics
Table”

“MPST” Memory Power StateTable Section 5.2.21, “Memory Power StateTable”

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures starting with
“OEM” are reserved for OEM use.

“PMTT” Platform Memory Topology Table Section 5.2.21.12, Memory Topology Table (PMTT)

“PSDT” Persistent System Description
Table

Section 5.2.11.3, “Persistent System Description Table”

“RASF” ACPI RAS FeatureTable Section 5.2.20.3, “ACPI RAS FeatureTable”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”

“SBST” Smart Battery Specification Table Section 5.2.14, “Smart Battery Table”

“SLIT” System Locality Distance
Information Table

Section 5.2.17, “System Locality Distance Information
Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “System Resource Affinity Table”

“SSDT” Secondary System Description
Table

Section 5.2.11.2, “Secondary System Description Table”

“XSDT” Extended System Description
Table

Section 5.2.8, “Extended System Description Table”

Signature Description and External Reference

“BOOT” Simple Boot Flag Table
See the ACPI Link Document under the heading "Simple Boot Flag Table".

“CSRT” Core System Resource Table
See the ACPI Link Document under the heading "Core System Resource Table".

“DBG2” Debug Port Table 2
Microsoft Debug Port Table 2 Specification
See the ACPI Link Document under the heading "Debug Port Table 2".

“DBGP” Debug Port Table
See the ACPI Link Document under the heading "Debug Port Table".

“DMAR” DMA Remapping Table
See the ACPI Link Document under the heading "DMA Remapping Table".

Signature Description Reference
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 111

ACPI Software Programming Model
“ETDT” Event Timer Description Table (Obsolete)
IA-PC Multimedia Timers Specification. This signature has been superseded by “HPET” and is
now obsolete.

“HPET” IA-PC High Precision Event Timer Table
IA-PC High Precision Event Timer Specification
See the ACPI Link Document under the heading "IA-PC High Precision Event Timer Table".

“IBFT” iSCSI Boot Firmware Table
See the ACPI Link Document under the heading "iSCSI Boot Firmware Table".

“IVRS” I/O Virtualization Reporting Structure
See the ACPI Link Document under the heading "I/O Virtualization Reporting Structure".

“MCFG” PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0
See the ACPI Link Document under the heading "PCI Sig".

“MCHI” Management Controller Host Interface Table
DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
See the ACPI Link Document under the heading "Management Controller Host Interface
Table".

“MSDM” Microsoft Data Management Table
See: Microsoft Data Management Table Specification
See the ACPI Link Document under the heading "Microsoft Data Management Table".

“SLIC” Microsoft Software Licensing Table Specification
See the ACPI Link Document under the heading "Microsoft Software Licensing Table

Specification".
“SPCR” Serial Port Console Redirection Table

Microsoft Serial Port Console Redirection Table
See the ACPI Link Document under the heading "Serial Port Console Redirection Table".

“SPMI” Server Platform Management Interface Table
See the ACPI Link Document under the heading "Server Platform Management Interface
Table".

“TCPA” Trusted Computing Platform Alliance Capabilities Table
TCPA PC Specific Implementation Specification
See the ACPI Link Document under the heading "Trusted Computing Platform Alliance
Capabilities Table".

TPM2 Trusted Platform Module 2 Table
See: Trusted Platform Module 2 Table Specification
See the ACPI Link Document under the heading "Trusted Platform Module 2 Table".

“UEFI” UEFI ACPI Data Table
UEFI Specification
See the ACPI Link Document under the heading "Unified Extensible Firmware Interface
Specifications".

“WAET” Windows ACPI Eemulated Devices Table
See the ACPI Link Document under the heading "Windows ACPI Emulated Devices Table".

“WDAT” Watch Dog Action Table
Requirements for Hardware Watchdog Timers Supported by Windows – Design Specification
See the ACPI Link Document under the heading "Watchdog Action Table".

Signature Description and External Reference
112 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.7 Root System Description Table (RSDT)
OSPM locates that Root System Description Table by following the pointer in the RSDP structure.
The RSDT, shown in Table 5-32, starts with the signature ‘RSDT’ followed by an array of physical
pointers to other system description tables that provide various information on other standards
defined on the current system. OSPM examines each table for a known signature. Based on the
signature, OSPM can then interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT,
described in the next section, supersedes RSDT functionality.

Table 5-32 Root System Description Table Fields (RSDT)

5.2.8 Extended System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT
can be pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

“WDRT” Watchdog Resource Table
Watchdog Timer Hardware Requirements for Windows Server 2003
See the ACPI Link Document under the heading "Watchdog Timer Resource Table (WDRT)".

“WPBT” Windows Platform Binary Table

See the ACPI Link Document under the heading "Windows Platform Binary Table".

Field

Byte
Length

Byte
Offset Description

Header

 Signature 4 0 ‘RSDT’ Signature for the Root System Description Table.

 Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

 OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

Signature Description and External Reference
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 113

ACPI Software Programming Model
Table 5-33 Extended System Description Table Fields (XSDT)

5.2.9 Fixed ACPI Description Table (FADT)
The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital
to an ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
PM_TMR_BLK, GPE0_BLK, and GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which
in turn provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical
addresses.

Note: If the HW_REDUCED_ACPI flag in the table is set, OSPM will ignore fields related to the ACPI
HW register interface: Fields at offsets 46 through 108 and 148 through 232, as well as FADT Flag
bits 1, 2, 3,7,8,12,13, 14, 16 and 17).

Table 5-34 Fixed ACPI Description Table (FADT) Format

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘XSDT’. Signature for the Extended System Description Table.

 Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

 OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table. (This
signature predates ACPI 1.0, explaining the mismatch with
this table's name.)

 Length 4 4 Length, in bytes, of the entire FADT.
114 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Revision 1 8 5

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the RSDT.

 OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and
Firmware exchange control information. See Section 5.2.6,
“Root System Description Table,” for a description of the
FACS. If the X_FIRMWARE_CTRL field contains a non zero
value then this field must be zero. A zero value indicates that
no FACS is specified by this field.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL,
which was eliminated in ACPI 2.0. Platforms should set this
field to zero but field values of one are also allowed to
maintain compatibility with ACPI 1.0.

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.
Field Values:
0 Unspecified
1 Desktop
2 Mobile
3 Workstation
4 Enterprise Server
5 SOHO Server
6 Appliance PC
7 Performance Server
8) Tablet

>8 Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the
Global System interrupt number of the SCI interrupt. OSPM is
required to treat the ACPI SCI interrupt as a sharable, level,
active low interrupt.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 115

ACPI Software Programming Model
SMI_CMD 4 48 System port address of the SMI Command Port. During ACPI
OS initialization, OSPM can determine that the ACPI
hardware registers are owned by SMI (by way of the SCI_EN
bit), in which case the ACPI OS issues the ACPI_ENABLE
command to the SMI_CMD port. The SCI_EN bit effectively
tracks the ownership of the ACPI hardware registers. OSPM
issues commands to the SMI_CMD port synchronously from
the boot processor. This field is reserved and must be zero on
system that does not support System Management mode.

ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI ownership of
the ACPI hardware registers. The last action SMI does to
relinquish ownership is to set the SCI_EN bit. During the OS
initialization process, OSPM will synchronously wait for the
transfer of SMI ownership to complete, so the ACPI system
releases SMI ownership as quickly as possible. This field is
reserved and must be zero on systems that do not support
Legacy Mode.

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI ownership
of the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off
all SCI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot
processor. This field is reserved and must be zero on systems
that do not support Legacy Mode.

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates
S4BIOS_REQ is not supported. (See Table 5-37)

PSTATE_CNT 1 55 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to assume processor performance state
control responsibility.

PM1a_EVT_BLK 4 56 System port address of the PM1a Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded by the X_PM1a_EVT_BLK field.

PM1b_EVT_BLK 4 60 System port address of the PM1b Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.
This field is superseded by the X_PM1b_EVT_BLK field.

Field Byte
Length

Byte
Offset

Description
116 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
PM1a_CNT_BLK 4 64 System port address of the PM1a Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded by the X_PM1a_CNT_BLK
field.

PM1b_CNT_BLK 4 68 System port address of the PM1b Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.
This field is superseded by the X_PM1b_CNT_BLK field.

PM2_CNT_BLK 4 72 System port address of the PM2 Control Register Block. See
Section 4.8.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.
This field is superseded by the X_PM2_CNT_BLK field.

PM_TMR_BLK 4 76 System port address of the Power Management Timer
Control Register Block. See Section 4.8.3.3, “Power
Management Timer (PM_TMR),” for a hardware description
layout of this register block. This is a required field. This field
is superseded by the X_PM_TMR_BLK field.

GPE0_BLK 4 80 System port address of General-Purpose Event 0 Register
Block. See Section 4.8.4.1, “General-Purpose Event Register
Blocks,” for a hardware description of this register block. This
is an optional field; if this register block is not supported, this
field contains zero. This field is superseded by the
X_GPE0_BLK field.

GPE1_BLK 4 84 System port address of General-Purpose Event 1 Register
Block. See Section 4.8.4.1, “General-Purpose Event Register
Blocks,” for a hardware description of this register block. This
is an optional field; if this register block is not supported, this
field contains zero. This field is superseded by the
X_GPE1_BLK field.

PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if
supported, PM1b_ EVT_BLK. This value is 4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if
supported, PM1b_CNT_BLK. This value is 2.

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support for the
PM2 register block is optional. If supported, this value is 1. If
not supported, this field contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. This field’s
value must be 4.

GPE0_BLK_LEN 1 92 Number of bytes decoded by GPE0_BLK. The value is a non-
negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a non-
negative multiple of 2.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 117

ACPI Software Programming Model
GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where
GPE1 based events start.

CST_CNT 1 95 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the _CST object
and C States Changed notification.

P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system does
not support a C3 state.

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush
strides that need to be read (using cacheable addresses) to
completely flush dirty lines from any processor’s memory
caches. Notice that the value in FLUSH_STRIDE is typically
the smallest cache line width on any of the processor’s
caches (for more information, see the FLUSH_STRIDE field
definition). If the system does not support a method for
flushing the processor’s caches, then FLUSH_SIZE and
WBINVD are set to zero. Notice that this method of flushing
the processor caches has limitations, and WBINVD=1 is the
preferred way to flush the processors caches. This value is
typically at least 2 times the cache size. The maximum
allowed value for FLUSH_SIZE multiplied by
FLUSH_STRIDE is 2 MB for a typical maximum supported
cache size of 1 MB. Larger cache sizes are supported using
WBINVD=1.
This value is ignored if WBINVD=1.
This field is maintained for ACPI 1.0 processor compatibility
on existing systems. Processors in new ACPI-compatible
systems are required to support the WBINVD function and
indicate this to OSPM by setting the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor’s memory caches. This value is
typically the smallest cache line width on any of the
processor’s caches. For more information, see the description
of the FLUSH_SIZE field.
This value is ignored if WBINVD=1.
This field is maintained for ACPI 1.0 processor compatibility
on existing systems. Processors in new ACPI-compatible
systems are required to support the WBINVD function and
indicate this to OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle
setting is within the processor’s P_CNT register.

Field Byte
Length

Byte
Offset

Description
118 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows
the software to select a nominal processor frequency below
its absolute frequency as defined by:
THTL_EN = 1

BF * DC/(2DUTY_WIDTH)
 Where:
BF–Base frequency
DC–Duty cycle setting
When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle
is not supported and the processor continuously runs at its
base frequency.

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm value.
If this field contains a zero, then the RTC day of the month
alarm feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space
that OSPM can use to program the day of the month alarm.
See Section 4.8.2.4 “Real Time Clock Alarm,” for a
description of how the hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm value.
If this field contains a zero, then the RTC month of the year
alarm feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space
that OSPM can use to program the month of the year alarm. If
this feature is supported, then the DAY_ALRM feature must
be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains a
zero, then the RTC centenary feature is not supported. If this
field has a non-zero value, then this field contains an index
into RTC RAM space that OSPM can use to program the
centenary field.

IAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5-36 for a
description of this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5-35 for a description of this
field.

RESET_REG 12 116 The address of the reset register represented in Generic
Address Structure format (See Section 4.8.3.6, “Reset
Register,” for a description of the reset mechanism.)
Note: Only System I/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 119

ACPI Software Programming Model
RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to reset
the system. (See Section 4.8.3.6, “Reset Register,” for a
description of the reset mechanism.)

Reserved 3 129 Must be 0.

X_FIRMWARE_CTRL 8 132 64bit physical address of the FACS. This field is used when
the physical address of the FACS is above 4GB. If the
FIRMWARE_CTRL field contains a non zero value then this
field must be zero. A zero value indicates that no FACS is
specified by this field.

X_DSDT 8 140 64bit physical address of the DSDT.

X_PM1a_EVT_BLK 12 148 Extended address of the PM1a Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

X_PM1a_CNT_BLK 12 172 Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

X_PM2_CNT_BLK 12 196 Extended address of the Power Management 2 Control
Register Block, represented in Generic Address Structure
format. See Section 4.8.3.4 “PM2 Control (PM2_CNT),” for a
hardware description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure
format. See Section 4.8.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this register
block. This is a required field.

X_GPE0_BLK 12 220 Extended address of the General-Purpose Event 0 Register
Block, represented in Generic Address Structure format. See
Section 5.2.9 “Fixed ACPI Description Table,” for a hardware
description of this register block. This is an optional field; if
this register block is not supported, this field contains zero.

Field Byte
Length

Byte
Offset

Description
120 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-35 Fixed ACPI Description Table Fixed Feature Flags

X_GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format. See
Section 5.2.9, “Fixed ACPI Description Table,” for a hardware
description of this register block. This is an optional field; if
this register block is not supported, this field contains zero.

SLEEP_CONTROL_RE
G

12 244 The address of the Sleep register, represented in Generic
Address Structure format (See Section 4.8.3.7, "Sleep
Control and Status Registers," for a description of the sleep
mechanism.)
Note: Only System I/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

SLEEP_STATUS_REG 12 256 The address of the Sleep status register, represented in
Generic Address Structure format (See Section 4.8.3.7,
"Sleep Control and Status Registers," for a description of the
sleep mechanism.)
Note: Only System I/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

FACP - Flag Bit
Length

Bit
Offset

Description

WBINVD 1 0 Processor properly implements a functional equivalent to the
WBINVD IA-32 instruction.
If set, signifies that the WBINVD instruction correctly flushes
the processor caches, maintains memory coherency, and
upon completion of the instruction, all caches for the current
processor contain no cached data other than what OSPM
references and allows to be cached. If this flag is not set, the
ACPI OS is responsible for disabling all ACPI features that
need this function. This field is maintained for ACPI 1.0
processor compatibility on existing systems. Processors in
new ACPI-compatible systems are required to support this
function and indicate this to OSPM by setting this field.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but
does not guarantee the caches are invalidated. This provides
the complete semantics of the WBINVD instruction, and
provides enough to support the system sleeping states. If
neither of the WBINVD flags is set, the system will require
FLUSH_SIZE and FLUSH_STRIDE to support sleeping
states. If the FLUSH parameters are also not supported, the
machine cannot support sleeping states S1, S2, or S3.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 121

ACPI Software Programming Model
PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors.

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to only
work on a uniprocessor (UP) system. A one indicates that the
C2 power state is configured to work on a UP or
multiprocessor (MP) system.

PWR_BUTTON 1 4 A zero indicates the power button is handled as a fixed
feature programming model; a one indicates the power button
is handled as a control method device. If the system does not
have a power button, this value would be “1” and no sleep
button device would be present.
Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the
power button is handled as a control method device.

SLP_BUTTON 1 5 A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is
handled as a control method device.
If the system does not have a sleep button, this value would
be “1” and no sleep button device would be present.
Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the
sleep button is handled as a control method device.

FIX_RTC 1 6 A zero indicates the RTC wake status is supported in fixed
register space; a one indicates the RTC wake status is not
supported in fixed register space.

RTC_S4 1 7 Indicates whether the RTC alarm function can wake the
system from the S4 state. The RTC must be able to wake the
system from an S1, S2, or S3 sleep state. The RTC alarm can
optionally support waking the system from the S4 state, as
indicated by this value.

TMR_VAL_EXT 1 8 A zero indicates TMR_VAL is implemented as a 24-bit value.
A one indicates TMR_VAL is implemented as a 32-bit value.
The TMR_STS bit is set when the most significant bit of the
TMR_VAL toggles.

DCK_CAP 1 9 A zero indicates that the system cannot support docking. A
one indicates that the system can support docking. Notice
that this flag does not indicate whether or not a docking
station is currently present; it only indicates that the system is
capable of docking.

RESET_REG_SUP 1 10 If set, indicates the system supports system reset via the
FADT RESET_REG as described in Section 4.8.3.6, “Reset
Register.”

SEALED_CASE 1 11 System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS 1 12 System Type Attribute. If set indicates the system cannot
detect the monitor or keyboard / mouse devices.

FACP - Flag Bit
Length

Bit
Offset

Description
122 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
CPU_SW_SLP 1 13 If set, indicates to OSPM that a processor native instruction
must be executed after writing the SLP_TYPx register.

PCI_EXP_WAK 1 14 If set, indicates the platform supports the
PCIEXP_WAKE_STS bit in the PM1 Status register and the
PCIEXP_WAKE_EN bit in the PM1 Enable register. This bit
must be set on platforms containing chipsets that implement
PCI Express.

USE_PLATFORM_CLO
CK

1 15 A value of one indicates that OSPM should use a platform
provided timer to drive any monotonically non-decreasing
counters, such as OSPM performance counter services.
Which particular platform timer will be used is OSPM specific,
however, it is recommended that the timer used is based on
the following algorithm: If the HPET is exposed to OSPM,
OSPM should use the HPET. Otherwise, OSPM will use the
ACPI power management timer. A value of one indicates that
the platform is known to have a correctly implemented ACPI
power management timer.
A platform may choose to set this flag if a internal processor
clock (or clocks in a multi-processor configuration) cannot
provide consistent monotonically non-decreasing counters.
Note: If a value of zero is present, OSPM may arbitrarily
choose to use an internal processor clock or a platform timer
clock for these operations. That is, a zero does not imply that
OSPM will necessarily use the internal processor clock to
generate a monotonically non-decreasing counter to the
system.

S4_RTC_STS_VALID 1 16 A one indicates that the contents of the RTC_STS flag is valid
when waking the system from S4.
See Table 4-16 – PM1 Status Registers Fixed Hardware
Feature Status Bits for more information. Some existing
systems do not reliably set this input today, and this bit allows
OSPM to differentiate correctly functioning platforms from
platforms with this errata.

REMOTE_POWER_ON
_CAPABLE

1 17 A one indicates that the platform is compatible with remote
power- on.
That is, the platform supports OSPM leaving GPE wake
events armed prior to an S5 transition. Some existing
platforms do not reliably transition to S5 with wake events
enabled (for example, the platform may immediately generate
a spurious wake event after completing the S5 transition).
This flag allows OSPM to differentiate correctly functioning
platforms from platforms with this type of errata.

FACP - Flag Bit
Length

Bit
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 123

ACPI Software Programming Model
5.2.9.1 Preferred PM Profile System Types
The following descriptions of preferred power management profile system types are to be used as a
guide for setting the Preferred_PM_Profile field in the FADT. OSPM can use this field to set default
power management policy parameters during OS installation.

Desktop

A single user, full featured, stationary computing device that resides on or near an
individual’s work area. Most often contains one processor. Must be connected to AC
power to function. This device is used to perform work that is considered mainstream
corporate or home computing (for example, word processing, Internet browsing,
spreadsheets, and so on).

Mobile

A single-user, full-featured, portable computing device that is capable of running on
batteries or other power storage devices to perform its normal functions. Most often
contains one processor. This device performs the same task set as a desktop. However
it may have limitations dues to its size, thermal requirements, and/or power source
life.

FORCE_
APIC_CLUSTER_MOD
EL

1 18 A one indicates that all local APICs must be configured for the
cluster destination model when delivering interrupts in logical
mode.
If this bit is set, then logical mode interrupt delivery operation
may be undefined until OSPM has moved all local APICs to
the cluster model.
Note that the cluster destination model doesn’t apply to
Itanium™ Processor Family (IPF) local SAPICs. This bit is
intended for xAPIC based machines that require the cluster
destination model even when 8 or fewer local APICs are
present in the machine.

FORCE_APIC_PHYSIC
AL_DESTINATION_MO
DE

1 19 A one indicates that all local xAPICs must be configured for
physical destination mode. If this bit is set, interrupt delivery
operation in logical destination mode is undefined. On
machines that contain fewer than 8 local xAPICs or that do
not use the xAPIC architecture, this bit is ignored.

HW_REDUCED_ACPI 1 20 A one indicates that the ACPI Hardware Interface (chapter 4)
is not implemented. Software-only alternatives are used for
supported fixed-features defined in chapter 4.

LOW_POWER_S0_IDL
E_CAPABLE

1 21 A one informs OSPM that the platform is able to achieve
power savings in S0 similar to or better than those typically
achieved in S3. In effect, when this bit is set it indicates that
the system will achieve no power benefit by making a sleep
transition to S3.

Reserved 10 22

FACP - Flag Bit
Length

Bit
Offset

Description
124 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Workstation

 A single-user, full-featured, stationary computing device that resides on or near an
individual’s work area. Often contains more than one processor. Must be connected to
AC power to function. This device is used to perform large quantities of computations
in support of such work as CAD/CAM and other graphics-intensive applications.

Enterprise Server

A multi-user, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must
be connected to AC power to function. This device is used to support large-scale
networking, database, communications, or financial operations within a corporation or
government.

SOHO Server

A multi-user, stationary computing device that frequently resides in a separate area or
room in a small or home office. May contain more than one processor. Must be
connected to AC power to function. This device is generally used to support all of the
networking, database, communications, and financial operations of a small office or
home office.

Appliance PC

A device specifically designed to operate in a low-noise, high-availability
environment such as a consumer’s living rooms or family room. Most often contains
one processor. This category also includes home Internet gateways, Web pads, set top
boxes and other devices that support ACPI. Must be connected to AC power to
function. Normally they are sealed case style and may only perform a subset of the
tasks normally associated with today’s personal computers.

Performance Server

A multi-user stationary computing device that frequently resides in a separate, often
specially designed room. Will often contain more than one processor. Must be
connected to AC power to function. This device is used in an environment where
power savings features are willing to be sacrificed for better performance and quicker
responsiveness.

Tablet

A full-featured, highly mobile computing device which resembles writing tablets and
which users interact with primarily through a touch interface. The touch digitizer is
the primary user input device, although a keyboard and/or mouse may be present.
Tablet devices typically run on battery power and are generally only plugged into AC
power in order to charge. This device performs many of the same tasks as Mobile;
however battery life expectations of Tablet devices generally require more aggressive
power savings especially for managing display and touch components.

5.2.9.2 System Type Attributes
This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 125

ACPI Software Programming Model
management and device settings. For example, a system that has the SEALED_CASE bit set may
take a very aggressive low noise policy toward thermal management. In another example an OS
might not load video, keyboard or mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags
This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on
IA-PC platforms. These flags are used by an OS at boot time (before the OS is capable of providing
an operating environment suitable for parsing the ACPI namespace) to determine the code paths to
take during boot. In IA-PC platforms with reduced legacy hardware, the OS can skip code paths for
legacy devices if none are present. For example, if there are no ISA devices, an OS could skip code
that assumes the presence of these devices and their associated resources. These flags are used
independently of the ACPI namespace. The presence of other devices must be described in the ACPI
namespace as specified in Section 6, “Configuration.” These flags pertain only to IA-PC platforms.
On other system architectures, the entire field should be set to 0.

Table 5-36 Fixed ACPI Description Table Boot Architecture Flags

BOOT_ARCH Bit
length

Bit
offset

Description

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are devices
that have end-user accessible connectors (for example, LPT
port), or devices for which the OS must load a device driver so
that an end-user application can use a device. If clear, the OS
may assume there are no such devices and that all devices in the
system can be detected exclusively via industry standard device
enumeration mechanisms (including the ACPI namespace).

8042 1 1 If set, indicates that the motherboard contains support for a port
60 and 64 based keyboard controller, usually implemented as an
8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the VGA
hardware (that responds to MMIO addresses A0000h-BFFFFh
and IO ports 3B0h-3BBh and 3C0h-3DFh) that may cause
machine check on this system. If clear, indicates to OSPM that it
is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCIe ASPM Controls 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

CMOS RTC Not
Present

1 5 If set, indicates that the CMOS RTC is either not implemented, or
does not exist at the legacy addresses. OSPM uses the Control
Method Time and Alarm Namespace device instead.

Reserved 10 6 Must be 0.
126 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.10 Firmware ACPI Control Structure (FACS)
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS
reserves for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For
more information about the FADT FIRMWARE_CTRL field, see Table 5.2.9, “Fixed ACPI
Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address
space. The memory where the FACS structure resides must not be reported as system
AddressRangeMemory in the system address map. For example, the E820 address map reporting
interface would report the region as AddressRangeReserved. For more information about system
address map reporting interfaces, see Section 15, “System Address Map Interfaces.”

Table 5-37 Firmware ACPI Control Structure (FACS)

Field

Byte
Length

Byte
Offset Description

Signature 4 0 ‘FACS’

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control Structure.
This value is 64 bytes or larger.

Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.
This value is calculated by the BIOS on a best effort basis to
indicate the base hardware configuration of the system such
that different base hardware configurations can have different
hardware signature values. OSPM uses this information in
waking from an S4 state, by comparing the current hardware
signature to the signature values saved in the non-volatile sleep
image. If the values are not the same, OSPM assumes that the
saved non-volatile image is from a different hardware
configuration and cannot be restored.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 127

ACPI Software Programming Model
Firmware Waking
Vector

4 12 This field is superseded by the X_Firmware_Waking_Vector
field.
The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address of an
OS-specific wake function. During POST, the platform firmware
first checks if the value of the X_Firmware_Waking_Vector field
is non-zero and if so transfers control to OSPM as outlined in
the X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.
On PCs, the wake function address is in memory below 1 MB
and the control is transferred while in real mode. OSPM’s wake
function restores the processors’ context.
For IA-PC platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps to.
If, for example, the physical address is 0x12345, then the BIOS
must jump to real mode address 0x1234:0x0005. In general this
relationship is
 Real-mode address =
 Physical address>>4 : Physical address and 0x000F
Notice that on IA-PC platforms, A20 must be enabled when the
BIOS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.

Global Lock 4 16 This field contains the Global Lock used to synchronize access
to shared hardware resources between the OSPM environment
and an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM or
the firmware at any one time. When ownership of the lock is
attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has
been released. For example, the Global Lock can be used to
protect an embedded controller interface such that only OSPM
or the firmware will access the embedded controller interface at
any one time. See Section 5.2.10.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags 4 20 Firmware control structure flags. See Table 5-38 for a
description of this field.

Field

Byte
Length

Byte
Offset Description
128 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
X Firmware Waking
Vector

8 24 64-bit physical address of OSPM’s Waking Vector.
Before transitioning the system into a global sleeping state,
OSPM fills in this field and the OSPM Flags field to describe the
waking vector. OSPM populates this field with the physical
memory address of an OS-specific wake function. During
POST, the platform firmware checks if the value of this field is
non-zero and if so transfers control to OSPM by jumping to this
address after creating the appropriate execution environment,
which must be configured as follows:
For 64-bit Itanium™ Processor Family (IPF) -based platforms:
Interrupts must be disabled

The processor must have psr.i set to 0. See the Intel® ItaniumTM
Architecture Software Developer’s Manual for more information.
Memory address translation must be disabled
The processor must have psr.it, psr.dt, and psr.rt set to 0. See

the Intel® ItaniumTM Architecture Software Developer’s Manual
for more information.
For IA 32 and x64 platforms, platform firmware is required to
support a 32 bit execution environment. Platform firmware can
additionally support a 64 bit execution environment. If platform
firmware supports a 64 bit execution environment, firmware
inspects the OSPM Flags during POST. If the 64BIT_WAKE_F
flag is set, the platform firmware creates a 64 bit execution
environment. Otherwise, the platform firmware creates a 32 bit
execution environment.
For 64 bit execution environment:
Interrupts must be disabled
EFLAGS.IF set to 0
Long mode enabled
Paging mode is enabled and physical memory for waking vector
is identity mapped (virtual address equals physical address)
Waking vector must be contained within one physical page
Selectors are set to be flat and are otherwise not used
For 32 bit execution environment:
Interrupts must be disabled
EFLAGS.IF set to 0
Memory address translation / paging must be disabled
4 GB flat address space for all segment registers

Version 1 32 2–Version of this table

Reserved 3 33 This value is zero.

OSPM Flags 4 36 OSPM enabled firmware control structure flags. Platform
firmware must initialize this field to zero. See Table 5-39 for a
description of the OSPM control structure feature flags.

Reserved 24 40 This value is zero.

Field

Byte
Length

Byte
Offset Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 129

ACPI Software Programming Model
Table 5-38 Firmware Control Structure Feature Flags

Table 5-39 OSPM Enabled Firmware Control Structure Feature Flags

5.2.10.1 Global Lock
The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the
ROM BIOS. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the
FACS and is accessed and updated by both the OS environment and the SMI environment in a
defined manner to provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the
actual memory location of the lock. The FACS and Global Lock may be located anywhere in
physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware,
the other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its
attempt to acquire the lock, and waits for the owning environment to signal that the lock has been
released before attempting to acquire the lock again. When releasing the lock, if the pending bit in
the lock is set after the lock is released, a signal is sent via an interrupt mechanism to the other
environment to inform it that the lock has been released. During interrupt handling for the “lock
released” event within the corresponding environment, if the lock ownership were still desired an
attempt to acquire the lock would be made. If ownership is not acquired, then the environment must
again set “pending” and wait for another “lock release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.

FACS – Flag Bit
Length

Bit
Offset

Description

S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the S4 state.

64BIT_WAKE_SUPP
ORTED_F

1 1 Indicates that the platform firmware supports a 64 bit execution
environment for the waking vector. When set and the OSPM
additionally set 64BIT_WAKE_F, the platform firmware will
create a 64 bit execution environment before transferring
control to the X_Firmware_Waking_Vector.

Reserved 30 2 The value is zero.

FACS – Flag Bit
Length

Bit
Offset

Description

64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the
X_Firmware_Waking_Vector requires a 64 bit execution
environment.
This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field.

This bit field has no affect on ItaniumTM Processor Family
(IPF) -based platforms, which require a 64 bit execution
environment.

Reserved 31 1 The value is zero.
130 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-40 Global Lock Structure within the FACS

The following code sequence is used by both OSPM and the firmware to acquire ownership of the
Global Lock. If non-zero is returned by the function, the caller has been granted ownership of the
Global Lock and can proceed. If zero is returned by the function, the caller has not been granted
ownership of the Global Lock, the “pending” bit has been set, and the caller must wait until it is
signaled by an interrupt event that the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
 mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
acq10: mov eax, [ecx] ; Get current value of Global Lock

 mov edx, eax
 and edx, not 1 ; Clear pending bit
 bts edx, 1 ; Check and set owner bit
 adc edx, 0 ; If owned, set pending bit

 lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
 jnz short acq10 ; If not set, try again

 cmp dl, 3 ; Was it acquired or marked pending?
 sbb eax, eax ; acquired = -1, pending = 0

 ret

The following code sequence is used by OSPM and the firmware to release ownership of the Global
Lock. If non-zero is returned, the caller must raise the appropriate event to the other environment to
signal that the Global Lock is now free. Depending on the environment, this signaling is done by
setting the either the GBL_RLS or BIOS_RLS within their respective hardware register spaces. This
signal only occurs when the other environment attempted to acquire ownership while the lock was
owned.

Field Bit Length Bit Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the Global
Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 131

ACPI Software Programming Model
ReleaseGlobalLock:
 mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS
rel10: mov eax, [ecx] ; Get current value of Global Lock

 mov edx, eax
 and edx, not 03h ; Clear owner and pending field

 lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
 jnz short rel10 ; If not set, try again

 and eax, 1 ; Was pending set?

 ; If one is returned (we were pending) the caller must signal that the
 ; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

 ret

Although using the Global Lock allows various hardware resources to be shared, it is important to
notice that its usage when there is ownership contention could entail a significant amount of system
overhead as well as waits of an indeterminate amount of time to acquire ownership of the Global
Lock. For this reason, implementations should try to design the hardware to keep the required usage
of the Global Lock to a minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if
bit 0 is used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that
register needs to be protected under the Global Lock, ensuring that the register’s contents do not
change from underneath one environment while the other is making changes to it. Similarly if the
entire register is shared, as the case might be for the embedded controller interface, access to the
register needs to be protected under the Global Lock.

5.2.11 Definition Blocks
A Definition Block consists of data in AML format (see Section 5.4 “Definition Block Encoding”)
and contains information about hardware implementation details in the form of AML objects that
contain data, AML code, or other AML objects. The top-level organization of this information after
a definition block is loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition
block either as a result of executing the AML Load() or LoadTable() operator or encountering a
table definition during initialization. During initialization, OSPM loads the Differentiated System
Description Table (DSDT), which contains the Differentiated Definition Block, using the DSDT
pointer retrieved from the FADT. OSPM will load other definition blocks during initialization as a
result of encountering Secondary System Description Table (SSDT) definitions in the RSDT/XSDT.
The DSDT and SSDT are described in the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block
to load other Definition Blocks, either statically or dynamically, where they in turn can either define
new system attributes or, in some cases, build on prior definitions. Although this gives the hardware
the ability to vary widely in implementation, it also confines it to reasonable boundaries. In some
cases, the Definition Block format can describe only specific and well-understood variances. In
other cases, it permits implementations to be expressible only by means of a specified set of “built
in” operators. For example, the Definition Block has built in operators for I/O space.
132 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
In theory, it might be possible to define something like PCI configuration space in a Definition
Block by building it from I/O space, but that is not the goal of the definition block. Such a space is
usually defined as a “built in” operator.

Some AML operators perform simple functions, and others encompass complex functions. The
power of the Definition block comes from its ability to allow these operations to be glued together in
numerous ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs
to be easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI
2.0, see Section 19.2.5, “ASL Data Types”. Existing ACPI definition block implementations may
contain an inherent assumption of a 32-bit integer width. Therefore, to maintain backwards
compatibility, OSPM uses the Revision field, in the header portion of system description tables
containing Definition Blocks, to determine whether integers declared within the Definition Block
are to be evaluated as 32-bit or 64-bit values. A Revision field value greater than or equal to 2
signifies that integers declared within the Definition Block are to be evaluated as 64-bit values. The
ASL writer specifies the value for the Definition Block table header’s Revision field via the ASL
Definition Block’s ComplianceRevision field. See Section 19.5.28, “DefinitionBlock (Declare
Definition Block)”, for more information. It is the responsibility of the ASL writer to ensure the
Definition Block’s compatibility with the corresponding integer width when setting the
ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)
The Differentiated System Description Table (DSDT) is part of the system fixed description. The
DSDT is comprised of a system description table header followed by data in Definition Block
format. This Definition Block is like all other Definition Blocks, with the exception that it cannot be
unloaded. See Section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During
initialization, OSPM finds the pointer to the DSDT in the Fixed ACPI Description Table (using the
FADT’s DSDT or X_DSDT fields) and then loads the DSDT to create the ACPI Namespace.

Table 5-41 Differentiated System Description Table Fields (DSDT)

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.

 Length 4 4 Length, in bytes, of the entire DSDT (including the header).

 Revision 1 8 2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the interpreter to use
32-bit integers and math. Values of two and greater will cause the
interpreter to use full 64-bit integers and math.

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 133

ACPI Software Programming Model
5.2.11.2 Secondary System Description Table (SSDT)
Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is
comprised of a system description table header followed by data in Definition Block format. There
can be multiple SSDTs present. After OSPM loads the DSDT to create the ACPI Namespace, each
secondary system description table listed in the RSDT/XSDT with a unique OEM Table ID is
loaded.

Note: Additional tables can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in
other tables. For example, the OEM might put dynamic object definitions into a secondary table such
that the firmware can construct the dynamic information at boot without needing to edit the static
DSDT. A SSDT can only rely on the DSDT being loaded prior to it.

Table 5-42 Secondary System Description Table Fields (SSDT)

5.2.11.3 Persistent System Description Table (PSDT)
The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the
ACPI 1.0 specification. The PSDT was judged to provide no specific benefit and as such has been
deleted from follow-on versions of the ACPI specification. OSPM will evaluate a table with the
“PSDT” signature in like manner to the evaluation of an SSDT as described in Section 5.2.11.2,
“Secondary System Description Table.”

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see Section 5.4, “Definition Block
Encoding”)

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.

 Length 4 4 Length, in bytes, of the entire SSDT (including the header).

 Revision 1 8 2

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The manufacture model ID.

 OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID for the ASL Compiler.

 Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see Section 5.4 , “Definition Block
Encoding”)

Field Byte
Length

Byte
Offset

Description
134 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.12 Multiple APIC Description Table (MADT)
The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT-compatible dual 8259 interrupt
controller, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller
(APIC) and Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC), and, for ARM
processor-based systems, the Generic Interrupt Controller (GIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically
changed by the system firmware; OSPM will choose which model to use and install support for that
model at the time of installation. If a platform supports multiple models, an OS will install support
for only one of the models; it will not mix models. Multi-boot capability is a feature in many modern
operating systems. This means that a system may have multiple operating systems or multiple
instances of an OS installed at any one time. Platform designers must allow for this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides
OSPM with information necessary for operation on systems with APIC, SAPIC or GIC
implementations.

ACPI represents all interrupts as "flat" values known as global system interrupts. Therefore to
support APICs, SAPICs or GICs on an ACPI-enabled system, each used interrupt input must be
mapped to the global system interrupt value used by ACPI. See Section 5.2.13. Global System
Interrupts,” for a description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that implementations
might support (for example, identifying each processor's local interrupt controller ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-43 Multiple APIC Description Table (MADT) Format

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.

 Length 4 4 Length, in bytes, of the entire MADT.

 Revision 1 8 3

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Local Interrupt
Controller Address

4 36 The 32-bit physical address at which each processor can access
its local interrupt controller.

Flags 4 40 Multiple APIC flags. See Section 5-44 for a description of this
field.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 135

ACPI Software Programming Model
Table 5-44 Multiple APIC Flags

Immediately after the Flags value in the MADT is a list of interrupt controller structures that declare
the interrupt features of the machine. The first byte of each structure declares the type of that
structure and the second byte declares the length of that structure.

Table 5-45 APIC Structure Types

Interrupt Controller
Structure[n]

— 44 A list of interrupt controller structures for this implementation. This
list will contain all of the I/O APIC, I/O SAPIC, Local APIC, Local
SAPIC, Interrupt Source Override, Non-maskable Interrupt
Source, Local APIC NMI Source, Local APIC Address Override,
Platform Interrupt Sources, Local x2APIC, Local x2APIC NMI,GIC
and GICD structures needed to support this platform. These
structures are described in the following sections.

Multiple APIC
Flags

Bit
Length

Bit
Offset

Description

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Reserved 31 1 This value is zero.

Value Description

0 Processor Local APIC

1 I/O APIC

2 Interrupt Source Override

3 Non-maskable Interrupt Source (NMI)

4 Local APIC NMI

5 Local APIC Address Override

6 I/O SAPIC

7 Local SAPIC

8 Platform Interrupt Sources

9 Processor Local x2APIC

0xA Local x2APIC NMI

0xB GIC

0xC GICD

0xD-0x7F Reserved. OSPM skips structures of the reserved type.

0x80-0xFF Reserved for OEM use

Field Byte
Length

Byte
Offset

Description
136 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order
OSPM implementations may limit the number of supported processors on multi-processor
platforms. OSPM executes on the boot processor to initialize the platform including other
processors. To ensure that the boot processor is supported post initialization, two guidelines should
be followed. The first is that OSPM should initialize processors in the order that they appear in the
MADT. The second is that platform firmware should list the boot processor as the first processor
entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defines logical processors in an identical manner as physical processors.
To ensure that non multi-threading aware OSPM implementations realize optimal performance on
platforms containing multi-threaded processors, two guidelines should be followed. The first is the
same as above, that is, OSPM should initialize processors in the order that they appear in the
MADT. The second is that platform firmware should list the first logical processor of each of the
individual multi-threaded processors in the MADT before listing any of the second logical
processors. This approach should be used for all successive logical processors.

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in
both unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure
When using the APIC interrupt model, each processor in the system is required to have a Processor
Local APIC record and an ACPI Processor object. OSPM does not expect the information provided
in this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the sleeping state, processors are not allowed to be added, removed, nor can their APIC ID
or Flags change. When a processor is not present, the Processor Local APIC information is either not
reported or flagged as disabled.

Table 5-46 Processor Local APIC Structure

Table 5-47 Local APIC Flags

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Processor Local APIC structure

Length 1 1 8

ACPI
Processor ID

1 2 The ProcessorId for which this processor is listed in the ACPI
Processor declaration operator. For a definition of the Processor
operator, see Section 19.5.100, “Processor (Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-46 for a description of this field.

LocalAPIC Flags Bit
Length

Bit
Offset

Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Reserved 31 1 Must be zero.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 137

ACPI Software Programming Model
5.2.12.3 I/O APIC Structure
In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of
interrupt inputs, referred to as INTIn, where the value of n is from 0 to the number of the last
interrupt input on the I/O APIC. The I/O APIC structure declares which global system interrupts are
uniquely associated with the I/O APIC interrupt inputs. There is one I/O APIC structure for each I/O
APIC in the system. For more information on global system interrupts see Section 5.2.13, “Global
System Interrupts.”

Table 5-48 I/O APIC Structure

5.2.12.4 Platforms with APIC and Dual 8259 Support
Systems that support both APIC and dual 8259 interrupt models must map global system interrupts
0-15 to the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see
Section 5.2.12.5, “Interrupt Source Override Structure” below). This means that I/O APIC interrupt
inputs 0-15 must be mapped to global system interrupts 0-15 and have identical sources as the 8259
IRQs 0-15 unless overrides are used. This allows a platform to support OSPM implementations that
use the APIC model as well as OSPM implementations that use the 8259 model (OSPM will only
use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global
system interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts
greater than 15 are ignored. If OSPM implements APIC support, it will enable the APIC as described
by the APIC specification and will use all reported global system interrupts that fall within the limits
of the interrupt inputs defined by the I/O APIC structures. For more information on hardware
resource configuration see Section 6, “Configuration.”

5.2.12.5 Interrupt Source Override Structure
Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual
8259 interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most
existing APIC designs, however, will contain at least one exception to this assumption. The Interrupt
Source Override Structure is provided in order to describe these exceptions. It is not necessary to
provide an Interrupt Source Override for every ISA interrupt. Only those that are not identity-
mapped onto the APIC interrupt inputs need be described.

Field Byte
Length

Byte
Offset

Description

Type 1 0 1 I/O APIC structure

Length 1 1 12

I/O APIC ID 1 2 The I/O APIC’s ID.

Reserved 1 3 0

I/O APIC Address 4 4 The 32-bit physical address to access this I/O APIC. Each I/O APIC
resides at a unique address.

Global System
Interrupt Base

4 8 The global system interrupt number where this I/O APIC’s interrupt
inputs start. The number of interrupt inputs is determined by the I/O
APIC’s Max Redir Entry register.
138 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA
IRQ 0, but in APIC mode, it is connected to I/O APIC interrupt input 2, then you would need an
Interrupt Source Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-49 Interrupt Source Override Structure

The MPS INTI flags listed in Table 5-50 are identical to the flags used in Table 4-10 of the MPS
version 1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL
bits.

Table 5-50 MPS INTI Flags

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-
standard polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this
IRQ is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if
SCI is connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you

Field Byte
Length

Byte
Offset

Description

Type 1 0 2 Interrupt Source Override

Length 1 1 10

Bus 1 2 0 Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System
Interrupt

4 4 The Global System Interrupt that this bus-relative interrupt source
will signal.

Flags 2 8 MPS INTI flags. See Table 5-50 for a description of this field.

Local APIC -
Flags

Bit
Length

Bit
Offset

Description

Polarity 2 0 Polarity of the APIC I/O input signals:
00 Conforms to the specifications of the bus
(For example, EISA is active-low for level-triggered interrupts)
01 Active high
10 Reserved
11 Active low

Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:
00 Conforms to specifications of the bus
(For example, ISA is edge-triggered)
01 Edge-triggered
10 Reserved
11 Level-triggered

Reserved 12 4 Must be zero.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 139

ACPI Software Programming Model
should have 9 in SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to
INTIN11.

5.2.12.6 Non-Maskable Interrupt Source Structure
This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be
enabled as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-51 Non-maskable Source Structure

5.2.12.7 Local APIC NMI Structure
This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of
the processors in the system where such a connection exists. This information is needed by OSPM to
enable the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if
the platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two
Local APIC NMI entries would be needed in the MADT.

Table 5-52 Local APIC NMI Structure

5.2.12.8 Local APIC Address Override Structure
This optional structure supports 64-bit systems by providing an override of the physical address of
the local APIC in the MADT’s table header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local
SAPICs), rather than the address contained in the MADT’s table header. Only one Local APIC
Address Override Structure may be defined.

Field Byte
Length

Byte
Offset

Description

Type 1 0 3 NMI

Length 1 1 8

Flags 2 2 Same as MPS INTI flags

Global System
Interrupt

4 4 The Global System Interrupt that this NMI will signal.

Field Byte
Length

Byte
Offset

Description

Type 1 0 4 Local APIC NMI Structure

Length 1 1 6

ACPI Processor
ID

1 2 Processor ID corresponding to the ID listed in the processor object.
A value of 0xFF signifies that this applies to all processors in the
machine.

Flags 2 3 MPS INTI flags. See Table 5-50 for a description of this field.

Local APIC LINT# 1 5 Local APIC interrupt input LINTn to which NMI is connected.
140 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-53 Local APIC Address Override Structure

5.2.12.9 I/O SAPIC Structure
The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O_APIC_ID field as defined in the I/O APIC table. The
Vector_Base field remains unchanged but has been moved. The I/O APIC address has been deleted.
A new address and reserved field have been added.

Table 5-54 I/O SAPIC Structure

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the
information from the I/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must
prevent “mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least
as many I/O SAPIC structures as I/O APIC structures and that every I/O APIC structure has a
corresponding I/O SAPIC structure (same APIC ID).

5.2.12.10 Local SAPIC Structure
The Processor local SAPIC structure is very similar to the processor local APIC structure. When
using the SAPIC interrupt model, each processor in the system is required to have a Processor Local
SAPIC record and an ACPI Processor object. OSPM does not expect the information provided in

Field Byte
Length

Byte
Offset

Description

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC
Address

8 4 Physical address of Local APIC. For Itanium™ Processor Family
(IPF)-based platforms, this field contains the starting address of the

Processor Interrupt Block. See the Intel® ItaniumTM Architecture
Software Developer’s Manual for more information.

Field Byte
Length

Byte
Offset

Description

Type 1 0 6 I/O SAPIC Structure

Length 1 1 16

I/O APIC ID 1 2 I/O SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System
Interrupt Base

4 4 The global system interrupt number where this I/O SAPIC’s
interrupt inputs start. The number of interrupt inputs is determined
by the I/O SAPIC’s Max Redir Entry register.

I/O SAPIC
Address

8 8 The 64-bit physical address to access this I/O SAPIC. Each I/O
SAPIC resides at a unique address.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 141

ACPI Software Programming Model
this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the sleeping state, processors are not allowed to be added, removed, nor can their SAPIC
ID or Flags change. When a processor is not present, the Processor Local SAPIC information is
either not reported or flagged as disabled.

Table 5-55 Processor Local SAPIC Structure

5.2.12.11 Platform Interrupt Source Structure
The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs
are connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various

events (similar to SMI in IA-32). The Intel® ItaniumTM architecture permits the I/O SAPIC to send a
vector value in the interrupt message of the PMI type. This value is specified in the I/O SAPIC
Vector field of the Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error
correction), the interrupt input line used to signal such corrected errors is specified by the Global
System Interrupt field in the following table. Some systems may restrict the retrieval of corrected
platform error information to a specific processor. In such cases, the firmware indicates the
processor that can retrieve the corrected platform error information through the Processor ID and
EID fields in the structure below. OSPM is required to program the I/O SAPIC redirection table
entries with the Processor ID, EID values specified by the ACPI system firmware. On platforms

Field Byte
Length

Byte
Offset

Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor
ID

1 2 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Processor statement
by matching the processor object’s ProcessorID value with this
field. For a definition of the Processor object, see Section 19.5.100,
“Processor (Declare Processor).”

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPIC EID 1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-47 for a description of this field.

ACPI Processor
UID Value

4 12 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
numeric value, by matching the numeric value with this field.

ACPI Processor
UID String

>=1 16 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
string, by matching the string with this field. This value is stored as a
null-terminated ASCII string.
142 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
where the retrieval of corrected platform error information can be performed on any processor, the
firmware indicates this capability by setting the CPEI Processor Override flag in the Platform
Interrupt Source Flags field of the structure below. If the CPEI Processor Override Flag is set,
OSPM uses the processor specified by Processor ID, and EID fields of the structure below only as a
target processor hint and the error retrieval can be performed on any processor in the system.
However, firmware is required to specify valid values in Processor ID, EID fields to ensure
backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor
that is targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set,
OSPM can retarget the corrected platform error interrupt to a different processor when the target
processor is ejected.

Note that the _MAT object can return a buffer containing Platform Interrupt Source Structure
entries. It is allowed for such an entry to refer to a Global System Interrupt that is already specified
by a Platform Interrupt Source Structure provided through the static MADT table, provided the
value of platform interrupt source flags are identical.

Refer to the ItaniumTM Processor Family System Abstraction Layer (SAL) Specification for details
on handling the Corrected Platform Error Interrupt.

Table 5-56 Platform Interrupt Sources Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 8 Platform Interrupt Source structure

Length 1 1 16

Flags 2 2 MPS INTI flags. See Table 5-50 for a description of this field.

Interrupt Type 1 4 1 PMI
2 INIT
3 Corrected Platform Error Interrupt
All other values are reserved.

Processor ID 1 5 Processor ID of destination.

Processor EID 1 6 Processor EID of destination.

I/O SAPIC Vector 1 7 Value that OSPM must use to program the vector field of the I/O
SAPIC redirection table entry for entries with the PMI interrupt type.

Global System
Interrupt

4 8 The Global System Interrupt that this platform interrupt will signal.

Platform Interrupt
Source Flags

4 12 Platform Interrupt Source Flags. See Table 5-57 for a description of
this field
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 143

ACPI Software Programming Model
Table 5-57 Platform Interrupt Source Flags

5.2.12.12 Processor Local x2APIC Structure
The Processor X2APIC structure is very similar to the processor local APIC structure. When using
the X2APIC interrupt model, logical processors with APIC ID values of 255 and greater are required
to have a Processor Device object and must convey the processor’s APIC information to OSPM
using the Processor Local X2APIC structure. Logical processors with APIC ID values less than 255
must use the Processor Local APIC structure to convey their APIC information to OSPM. OSPM
does not expect the information provided in this table to be updated if the processor information
changes during the lifespan of an OS boot. While in the sleeping state, logical processors must not be
added or removed, nor can their X2APIC ID or x2APIC Flags change. When a logical processor is
not present, the processor local X2APIC information is either not reported or flagged as disabled.

The format of x2APIC structure is listed in Table 5-58.

Table 5-58 Processor Local x2APIC Structure

5.2.12.13 Local x2APIC NMI Structure
The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that
NMI is connected to for each of the logical processors in the system where such a connection exists.
Each NMI connection to a processor requires a separate NMI structure. This information is needed
by OSPM to enable the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC
NMI structure. NMI connection to a logical processor with an x2APIC ID less than 255 requires a

Platform
Interrupt Source
Flags

Bit
Length

Bit
Offset

Description

CPEI Processor
Override

1 0 When set, indicates that retrieval of error information is allowed
from any processor and OSPM is to use the information provided
by the processor ID, EID fields of the Platform Interrupt Source
Structure (Table 5-56) as a target processor hint.

Reserved 31 1 Must be zero.

Field Byte
Length

Byte
Offset

Description

Type 1 0 9 Processor Local x2APIC structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. SeeTable 5-46 for a description of this
field.

ACPI Processor
UID

4 12 OSPM associates the X2APIC Structure with a processor object
declared in the namespace using the Device statement, when the
_UID child object of the processor device evaluates to a numeric
value, by matching the numeric value with this field
144 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Local APIC NMI structure. For example, if the platform contains 8 logical processors with x2APIC
IDs 0-3 and 256-259 and NMI is connected LINT1 for processor 3, 2, 256 and 257 then two Local
APIC NMI entries and two X2APIC NMI entries must be provided in the MADT.

 The Local APIC NMI structure is used to specify global LINTx for all processors if all logical
processors have x2APIC ID less than 255. If the platform contains any logical processors with an
x2APIC ID of 255 or greater then the Local X2APIC NMI structure must be used to specify global
LINTx for ALL logical processors. The format of x2APIC NMI structure is listed in Table 5-59.

Table 5-59 Local x2APIC NMI Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0AH Local x2APIC NMI Structure

Length 1 1 12

Flags 2 2 Same as MPS INTI flags. See Table 5-50 for a description of this
field.

ACPI Processor
UID

4 4 UID corresponding to the ID listed in the processor Device object. A
value of 0xFFFFFFFF signifies that this applies to all processors in
the machine.

Local x2APIC
LINT#

1 8 Local x2APIC interrupt input LINTn to which NMI is connected.

Reserved 3 9 Reserved - Must be zero.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 145

ACPI Software Programming Model
0 INTI_0 0
.
.
.
23 INTI_23

24 INTI_0 24
.
.
.
39 INTI_15

40 INTI_0 40
.
51 INTI_11
.
55 INTI_23

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Global System Interrupt Vector
(ie ACPI PnP IRQ#)

Interrupt Input Lines
on IOAPIC

‘System Vector Base’
reported in IOAPIC Struc

Figure 5-25 APIC–Global System Interrupts

5.2.12.14 GIC Structure
In the GIC interrupt model, logical processors are required to have a Processor Device object in the
DSDT, and must convey each processor’s local GIC information to the OS using the GIC structure.

The format of the GIC structure is shown in Table 5-60.

Table 5-60 GIC Structure Format

Field Byte
Length

Byte
Offset

Description

Type 1 0 0xB Processor Local GIC structure

Length 1 1 40

Reserved 2 2 Reserved - Must be zero

GIC ID 4 4 The local GIC’s hardware ID.

ACPI Processor
UID

4 8 The OS associates this GIC Structure with a processor device
object in the namespace when the _UID child object of the
processor device evaluates to a numeric value that matches the
numeric value in this field.

Flags 4 12 See Table 5-61.
146 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-61 GIC Flags

Note: GIC descriptor structures are listed immediately after the Flags field in the MADT, one descriptor
for each GIC, followed by one for each GIC Distributor. The Local GIC corresponding to the boot
processor must be the first entry in the Interrupt Controller Structure list.

5.2.12.15 GIC Distributor Structure
ACPI represents all interrupts as “flat” values known as global system interrupts (GSIVs)
(Section 5.2.13). Each GIC Distributor has some number of interrupt inputs corresponding to the
same number of contiguous GSIVs. Therefore, each used interrupt input must be mapped to the
global system interrupt value used by ACPI for that input. This mapping is provided by the GIC
Distributor structure, by setting the base GSIV for each GIC Distributor.

The format of the GIC Distributor structure is listed in Table 5-62 .

Table 5-62 GIC Distributor Structure

Parking Protocol
Version

4 16 Version of the ARM-Processor Parking Protocol implemented. See
See the ACPI Link Document under the heading "ARM-Processor
Parking Protocol Specification".

Performance
Interrupt GSIV

4 20 The GSIV used for Performance Monitoring Interrupts

Parked Address 8 24 The 64-bit physical address of the processor’s Parking Protocol
mailbox

Physical Base
Address

8 32 The 64-bit physical address at which the processor can access this
GIC. If provided, the “Local Interrupt Controller Address” field in the
MADT is ignored by OSPM.

GIC Flags Bit
Length

Bit
Offset

Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Performance
Interrupt Mode

1 1 0 - Level-triggered
1 - Edge-Triggered

Reserved 30 2 Must be zero.

Field Byte
Length

Byte
Offset

Description

Type 1 0 0xC GIC Distributor structure

Length 1 1 24

Reserved 2 2 Reserved - Must be zero

GIC ID 4 4 This GIC Distributor’s hardware ID

Physical Base
Address

8 8 The 64-bit physical address for this Distributor

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 147

ACPI Software Programming Model
5.2.13 Global System Interrupts
Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do
not confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259
interrupts they correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by
each I/O APIC can vary. OSPM determines the mapping of the Global System Interrupts by
determining how many interrupt inputs each I/O APIC supports and by determining the global
system interrupt base for each I/O APIC as specified by the I/O APIC Structure. OSPM determines
the number of interrupt inputs by reading the Max Redirection register from the I/O APIC. The
global system interrupts mapped to that I/O APIC begin at the global system interrupt base and
extending through the number of interrupts specified in the Max Redirection register. This mapping
is depicted in Figure 5-25.

There is exactly one I/O APIC structure per I/O APIC in the system.

Figure 5-26 8259–Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached
to a master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs

System Vector
Base

4 16 The global system interrupt number where this GIC Distributor’s
interrupt inputs start.

Reserved 4 20 Must be zero

Field Byte
Length

Byte
Offset

Description

IRQ0
.
IRQ3
.
IRQ7
IR8
.
IRQ11
.
IRQ15

8259 ISA IRQsGlobal System Interrupt Vector
 (ie ACPI PnP IRQ#)

Master
8259

Slave
8259

0

8

15

7

148 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
and their mappings to the 8259 pair are part of the AT standard and are well defined. This mapping
is depicted in Figure 5-26.

5.2.14 Smart Battery Table (SBST)
If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an
Smart Battery Table (SBST) is present. This table indicates the energy level trip points that the
platform requires for placing the system into the specified sleeping state and the suggested energy
levels for warning the user to transition the platform into a sleeping state. Notice that while Smart
Batteries can report either in current (mA/mAh) or in energy (mW/mWh), OSPM must set them to
operate in energy (mW/mWh) mode so that the energy levels specified in the SBST can be used.
OSPM uses these tables with the capabilities of the batteries to determine the different trip points.
For more precise definitions of these levels, see Section 3.9.3, “Battery Gas Gauge.”

Table 5-63 Smart Battery Description Table (SBST) Format

5.2.15 Embedded Controller Boot Resources Table (ECDT)
This optional table provides the processor-relative, translated resources of an Embedded Controller.
The presence of this table allows OSPM to provide Embedded Controller operation region space
access before the namespace has been evaluated. If this table is not provided, the Embedded
Controller region space will not be available until the Embedded Controller device in the AML
namespace has been discovered and enumerated. The availability of the region space can be detected
by providing a _REG method object underneath the Embedded Controller device.

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.

 Length 4 4 Length, in bytes, of the entire SBST

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Warning Energy
Level

4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
OSPM warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which OSPM will
transition the system to a sleeping state.

Critical Energy
Level

4 44 OEM suggested platform energy level in mWh at which OSPM
performs an emergency shutdown.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 149

ACPI Software Programming Model
Table 5-64 Embedded Controller Boot Resources Table Format

ACPI OSPM implementations supporting Embedded Controller devices must also support the
ECDT. ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The
following example code shows how to detect whether the Embedded Controller operation regions
are available in a manner that is backward compatible with prior versions of ACPI/OSPM.

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.

 Length 4 4 Length, in bytes, of the entire Embedded Controller Table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied OEM
Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller Command/
Status register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

UID 4 60 Unique ID–Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE_BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the embedded
controller triggers.

EC_ID Variable 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC”). Quotes are
omitted in the data field.
150 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Device(EC0) {
 Name(REGC,Ones)
 Method(_REG,2) {
 If(Lequal(Arg0, 3)) {
 Store(Arg1, REGC)
 }
 }
}
Method(ECAV,0) {
 If(Lequal(REGC,Ones)) {
 If(LgreaterEqual(_REV,2)) {
 Return(One)
 }
 Else {
 Return(Zero)
 }
 Return(REGC)
 }
}
To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCI0.EC0.ECAV()) {
 ...regions are available...
}
else {
 ...regions are not available...
}

5.2.16 System Resource Affinity Table (SRAT)
This optional table provides information that allows OSPM to associate processors and memory
ranges, including ranges of memory provided by hot-added memory devices, with system localities /
proximity domains and clock domains. On NUMA platforms, SRAT information enables OSPM to
optimally configure the operating system during a point in OS initialization when evaluation of
objects in the ACPI Namespace is not yet possible. OSPM evaluates the SRAT only during OS
initialization. The Local APIC ID / Local SAPIC ID / Local x2APIC ID of all processors started at
boot time must be present in the SRAT. If the Local APIC ID / Local SAPIC ID / Local x2APIC ID
of a dynamically added processor is not present in the SRAT, a _PXM object must exist for the
processor’s device or one of its ancestors in the ACPI Namespace.

Table 5-65 Static Resource Affinity Table Format

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SRAT’. Signature for the System Resource Affinity Table.

 Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table

 Revision 1 8 3

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 151

ACPI Software Programming Model
5.2.16.1 Processor Local APIC/SAPIC Affinity Structure
The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID
or SAPIC ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-
66 provides the details of the Processor Local APIC/SAPIC Affinity structure.

Table 5-66 Processor Local APIC/SAPIC Affinity Structure

Table 5-67 Flags – Processor Local APIC/SAPIC Affinity Structure

 OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied OEM
Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved to be 1 for backward compatibility

Reserved 8 40 Reserved

Static Resource
Allocation
Structure[n]

--- 48 A list of static resource allocation structures for the platform. See
Section 5.2.16.1,”Processor Local APIC/SAPIC Affinity Structure”,
Section 5.2.16.2 “Memory Affinity Structure”, and Section 5.2.16.3
“Processor Local x2APIC Affinity Structure”.

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure

Length 1 1 16

Proximity Domain
[7:0]

1 2 Bit[7:0] of the proximity domain to which the processor belongs.

APIC ID 1 3 The processor local APIC ID.

Flags 4 4 Flags – Processor Local APIC/SAPIC Affinity Structure. See
Table 5-55 for a description of this field.

Local SAPIC EID 1 8 The processor local SAPIC EID.

Proximity Domain
[31:8]

3 9 Bit[31:8] of the proximity domain to which the processor belongs.

Clock Domain 4 12 The clock domain to which the processor belongs. See
Section 6.2.1, “_CDM (Clock Domain)”.

Field Bit
Lengt
h

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.

Reserved 31 1 Must be zero.
152 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.16.2 Memory Affinity Structure
The Memory Affinity structure provides the following topology information statically to the
operating system:

• The association between a range of memory and the proximity domain to which it belongs

• Information about whether the range of memory can be hot-plugged.

Table 5-68 provides the details of the Memory Affinity structure.

Table 5-68 Memory Affinity Structure

Table 5-69 Flags – Memory Affinity Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain 4 2 Integer that represents the proximity domain to which the
processor belongs

Reserved 2 6 Reserved

Base Address Low 4 8 Low 32 Bits of the Base Address of the memory range

Base Address High 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags – Memory Affinity Structure. Indicates whether the region of
memory is enabled and can be hot plugged. See Table 5-69.

Reserved 8 32 Reserved.

Field Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity
Structure. This allows system firmware to populate the SRAT with
a static number of structures but only enable then as necessary.

Hot Pluggablea 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.
If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this memory
region
If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.
If the Enabled bit is clear, the OSPM will ignore the contents of the
Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 153

ACPI Software Programming Model
5.2.16.3 Processor Local x2APIC Affinity Structure
The Processor Local x2APIC Affinity structure provides the association between the local x2APIC
ID of a processor and the proximity domain to which the processor belongs. Table 5-70 provides the
details of the Processor Local x2APIC Affinity structure.

Table 5-70 Processor Local x2APIC Affinity Structure

 On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift
into PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.

5.2.17 System Locality Distance Information Table (SLIT)
This optional table provides a matrix that describes the relative distance (memory latency) between
all System Localities, which are also referred to as Proximity Domains. Systems employing a Non
Uniform Memory Access (NUMA) architecture contain collections of hardware resources including
for example, processors, memory, and I/O buses, that comprise what is known as a “NUMA node”.
Processor accesses to memory or I/O resources within the local NUMA node is generally faster than
processor accesses to memory or I/O resources outside of the local NUMA node.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to
every other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI
namespace. See Section 6.2.13, “_PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to
System Locality j is the i*N + j entry in the matrix, where N is the number of System Localities.
Except for the relative distance from a System Locality to itself, each relative distance is stored
twice in the matrix. This provides the capability to describe the scenario where the relative distances
for the two directions between System Localities is different.

a.

Field Byte
Length

Byte
Offset

Description

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved – Must be zero

Proximity Domain 4 4 The proximity domain to which the logical processor belongs.

X2APIC ID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags. See
Table 5-67 for a description of this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
Section 6.2.1, “_CDM (Clock Domain)”.

Reserved 4 20 Reserved.
154 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The diagonal elements of the matrix, the relative distances from a System Locality to itself are
normalized to a value of 10. The relative distances for the non-diagonal elements are scaled to be
relative to 10. For example, if the relative distance from System Locality i to System Locality j is
2.4, a value of 24 is stored in table entry i*N+ j and in j*N+ i, where N is the number of System
Localities.

If one locality is unreachable from another, a value of 255 (0xFF) is stored in that table entry.
Distance values of 0-9 are reserved and have no meaning.

Table 5-71 SLIT Format

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘SLIT’. Signature for the System Locality Distance Information
Table.

 Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the System Locality Information Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of System Locality Information Table for supplied
OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For the DSDT, RSDT,
SSDT, and PSDT tables, this is the revision for the ASL
Compiler.

Number of System
Localities

8 36 Indicates the number of System Localities in the system.

Entry[0][0] 1 44 Matrix entry (0,0), contains a value of 10.

…

Entry[0][Number of
System Localities-1]

1 Matrix entry (0, Number of System Localities-1)

Entry[1][0] 1 Matrix entry (1,0)

…… ……

Entry[Number of
System Localities-
1][Number of System
Localities-1]

1 Matrix entry (Number of System Localities-1, Number of
System Localities-1), contains a value of 10
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 155

ACPI Software Programming Model
5.2.18 Corrected Platform Error Polling Table (CPEP)
Platforms may contain the ability to detect and correct certain operational errors while maintaining
platform function. These errors may be logged by the platform for the purpose of retrieval.
Depending on the underlying hardware support, the means for retrieving corrected platform error
information varies. If the platform hardware supports interrupt-based signaling of corrected platform
errors, the MADT Platform Interrupt Source Structure describes the Corrected Platform Error
Interrupt (CPEI). See Section 5.2.12.11,”Platform Interrupt Source Structure”. Alternatively, OSPM
may poll processors for corrected platform error information. Error log information retrieved from a
processor may contain information for all processors within an error reporting group. As such, it
may not be necessary for OSPM to poll all processors in the system to retrieve complete error
information. This optional table provides information that allows OSPM to poll only the processors
necessary for a complete report of the platform’s corrected platform error information.

Table 5-72 Corrected Platform Error Polling Table Format

5.2.18.1 Corrected Platform Error Polling Processor Structure
The Corrected Platform Error Polling Processor structure provides information on the specific
processors OSPM polls for error information. Table 5-73 provides the details of the Corrected
Platform Error Polling Processor structure.

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘CPEP’. Signature for the Corrected Platform Error Polling Table.

 Length 4 4 Length, in bytes, of the entire CPET. The length implies the
number of Entry fields at the end of the table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the Corrected Platform Error Polling Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of Corrected Platform Error Polling Table for
supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

Reserved 8 36 Reserved, must be 0.

CPEP Processor
Structure[n]

--- 44 A list of Corrected Platform Error Polling Processor structures for
the platform. See Section 5.2.18.1,” Corrected Platform Error
Polling Processor Structure”.
156 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-73 Corrected Platform Error Polling Processor Structure

5.2.19 Maximum System Characteristics Table (MSCT)
This section describes the format of the Maximum System Characteristic Table (MSCT), which
provides OSPM with information characteristics of a system’s maximum topology capabilities. If
the system maximum topology is not known up front at boot time, then this table is not present.
OSPM will use information provided by the MSCT only when the System Resource Affinity Table
(SRAT) exists. The MSCT must contain all proximity and clock domains defined in the SRAT.

Table 5-74 Maximum System Characteristics Table (MSCT) Format

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors

Length 1 1 8

Processor ID 1 2 Processor ID of destination.

Processor EID 1 3 Processor EID of destination.

Polling Interval 4 4 Platform-suggested polling interval (in milliseconds)

Field Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘MSCT’ Signature for the Maximum System
Characteristics Table.

 Length 4 4 Length, in bytes, of the entire MSCT.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the MSCT, the table ID is the manufacturer model
ID.

 OEM Revision 4 24 OEM revision of MSCT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Offset to Proximity
Domain Information
Structure
[OffsetProxDomInfo]

4 36 Offset in bytes to the Proximity Domain Information
Structure table entry.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 157

ACPI Software Programming Model
5.2.19.1 Maximum Proximity Domain Information Structure
The Maximum Proximity Domain Information Structure is used to report system maximum
characteristics. It is likely that these characteristics may be the same for many proximity domains,
but they can vary from one proximity domain to another. This structure optimizes to cover the
former case, while allowing the flexibility for the latter as well. These structures must be organized
in ascending order of the proximity domain enumerations. All proximity domains within the
Maximum Number of Proximity Domains reported in the MSCT must be covered by one of these
structures.

Table 5-75 Maximum Proximity Domain Information Structure

Maximum Number of
Proximity Domains

4 40 Indicates the maximum number of Proximity Domains
ever possible in the system. The number reported in this
field is (maximum domains – 1). For example if there are
0x10000 possible domains in the system, this field
would report 0xFFFF.

Maximum Number of
Clock Domains

4 44 Indicates the maximum number of Clock Domains ever
possible in the system. The number reported in this field
is (maximum domains – 1). See Section 6.2.1, “_CDM
(Clock Domain)”.

Maximum Physical
Address

8 48 Indicates the maximum Physical Address ever possible
in the system. Note: this is the top of the reachable
physical address.

Proximity Domain
Information
Structure[Maximum
Number of Proximity
Domains]

— [OffsetProx
DomInfo]

A list of Proximity Domain Information for this
implementation. The structure format is defined in the
Maximum Proximity Domain Information Structure
section.

Field Byte
Length

Byte
Offset

Description

Revision 1 0 1

Length 1 1 22

Proximity Domain
Range (low)

4 2 The starting proximity domain for the proximity domain range that
this structure is providing information.

Proximity Domain
Range (high)

4 6 The ending proximity domain for the proximity domain range that
this structure is providing information.

Maximum
Processor
Capacity

4 10 The Maximum Processor Capacity of each of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain processors. This field must be >=
the number of processor entries for the domain in the SRAT.

Maximum Memory
Capacity

8 14 The Maximum Memory Capacity (size in bytes) of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain memory.

Field Byte
Length

Byte Offset Description
158 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.20 ACPI RAS FeatureTable (RASF)
The following table describes structure of ACPI RAS Feature Table.

Table 5-76 RASF Table format

5.2.20.1 RASF PCC Sub Channel Identifier
RASF PCC Sub Channel Identifier is used by the OSPM to identify the PCC Sub channel structure.
RASF table references its PCC Subspace by this identifier as shown in Table 5-76.

5.2.20.2 Using PCC registers
OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing
a PCC Execute command. See Table 5-78.

To minimize the cost of PCC transactions, OSPM should read or write all registers in the same PCC
subspace via a single read or write command.

5.2.20.3 RASF Communication Channel
RASF Action Entries are defined in the PCC sub channel as below.

Table 5-77 RASF Platform Communication Channel Shared Memory Region

Field Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘RASF’ is Signature for RAS Feature Table

 Length 4 4 Length in bytes for entire RASF. The length
implies the number of Entry fields at the end of
the table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The table ID is the manufacturer model ID

 OEM Revision 4 24 OEM revision of table for supplied OEM Table ID

 Creator ID 4 28 Vendor ID of utility that created the table

 Creator Revision 4 32 Revision of utility that created the table

RASF Specific Entries

RASF Platform
Communication Channel
Identifier

12 36 Identifier of the RASF Platform Communication
Channel. OSPM should use this value to identify
the PCC Sub channel structure in the RASF table

Field Byte Length Byte
Offset

Description

Signature 4 0 The PCC Signature of 0x52415346 (corresponds
to ASCII signature of RASF)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 159

ACPI Software Programming Model
Command 2 4 PCC command field; see Table 5-78 and
Section 14.

Status 2 6 PCC status field, see Section 14.

Communication Space

Version 2 8 Byte 0 – Minor Version
Byte 1 – Major Version

RAS Capabilities 16 10 Bit Map describing the platform RAS capabilities as
shown in Section 5.2.20.4.

The Platform populates this field. The OSPM uses
this field to determine the RAS capabilities of the
platform.

Set RAS Capabilities 16 26 BIT Map of the RAS features for which the OSPM
is invoking the command. The BIT Map is
described in Section 5.2.20.4.
OSPM sets the bit corresponding to a RAS
capability to invoke a command on that capability.
The bitmap implementation allows OSPM to invoke
a command on each RAS feature supported by the
platform at the same time.

Number of RASF Parameter
blocks

2 42 The Number of parameter blocks will depend on
how many RAS Capabilities the Platform Supports.
Typically, there will be one Parameter Block per
RAS Feature, using which that feature can be
managed by OSPM.

Set RAS Capabilities Status 4 44 Status
0000b = Success
0001b = Not Valid
0010b = Not Supported
0011b = Busy
0100b = Failed
0101b = Aborted
0110b = Invalid Data

Parameter Blocks Varies (N
Bytes)

48 Start of the parameter blocks, the structure of
which is shown in Table 5-80.

These parameter blocks are used as
communication mailbox between the OSPM and
the platform, and there is 1 parameter block for
each RAS feature.

NOTE: There can be only on parameter block per
type.

Field Byte Length Byte
Offset

Description
160 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-78 PCC Command Codes used by RASF Platform Communication Channel

5.2.20.4 Platform RAS Capabilities
The following table defines the Platform RAS capabilities:

Table 5-79 Platform RAS capabilities bitmap

5.2.20.5 Parameter Block
The following table describes the Parameter Blocks. The structure is used to pass parameters for
controlling the corresponding RAS Feature.

Each RAS Feature is assigned a TYPE number, which is the bit index into the RAS capabilities
bitmap described in Table 5-79.

Table 5-80 Parameter Block Structure for PATROL_SCRUB

Command Description

0x00 Reserved

0x01 Execute RASF Command.

0x02-0xFF All other values are reserved.

Bit RAS Feature Description

0 Hardware based patrol
scrub supported

Indicates that platform support hardware based patrol scrub of
DRAM memory

1 Hardware based patrol
scrub supported and
exposed to software

Indicates that platform support hardware based patrol scrub of
DRAM memory and platform exposes this capability to software
using this RASF mechanism

2-127 Reserved Reserved for future use

Field Byte Length Byte Offset Description

Type 2 0 0x0000 – Patrol scrub

Version 2 2 BYTE 0 – Minor Version
BYTE 1 – Major Version

Length 2 4 Length, in bytes of the entire parameter
block structure

Patrol Scrub
Command
(INPUT)

2 6 0x01 - GET_PATROL_PARAMETERS
0x02 - START_PATROL_SCRUBBER
0x03 – STOP_PATROL_SCRUBBER
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 161

ACPI Software Programming Model
Requested
Address Range
(INPUT)

16 8 OSPM Specifies the BASE (Bytes 7:0) and
SIZE (Bytes 15:8) of the address range to
be patrol scrubbed.

OSPM sets this parameter for the following
commands
GET_PATROL_PARAMETERS
START_PATROL_SCRUBBER

Actual Address
Range
(OUTPUT)

16 24 The platform returns this value in response
to GET_PATROL_PARAMETERS. The
platform calculates the nearest patrol scrub
boundary address from where it can start.
This range should be a superset of the
Requested Address Range.

BASE (Bytes 7:0) and SIZE (Bytes 15:8) of
the address

Flags (OUTPUT) 2 40 The platform returns this value in response
to GET_PATROL_PARAMETERS

BIT 0: Will be set if patrol scrubber is
already running for address range specified
in “Actual Address Range”

BITs 1-3: Current Patrol Speeds, if BIT 0 is
set
000b – Slow
100b – Medium
111b – Fast
All other combinations are reserved.

BITs 4 – 15: RESERVED

Requested Speed
(INPUT)

1 42 The OSPM Sets this field as follows, for the
START_PATROL_SCRUBBER command

BIT 0: Will be set if patrol scrubber is
already running for address range specified
in “Actual Address Range”

BITs 0-2: Requested Patrol Speeds
000b – Slow
100b – Medium
111b – Fast
All other combinations are reserved.

BITs 3 – 7: RESERVED

Field Byte Length Byte Offset Description
162 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.20.5.1 Sequence of Operations:

The following sequence documents the steps for OSPM to identify whether the platform supports
hardware based patrol scrub and invoke commands to request hardware to patrol scrub the specified
address range.

1. Identify whether the platform supports hardware based patrol scrub and exposes the support to
software by reading the RAS capabilities bitmap in RASF table

2. Call GET_PATROL_PARAMETERS, by setting the Requested Address Range.

3. Platform Returns Actual Address Range and Flags.

4. Based on the above two data, if the OPSM decides to start the patrol scrubber or change the
speed of the patrol scrubber, then the OSPM calls START_PATROL_SCRUBBER, by setting
the Requested Address Range and Requested Speed.

5.2.21 Memory Power StateTable (MPST)
The following table describes the structure of new ACPI memory power state table (MPST). This
table defines the memory power node topology of the configuration, as described earlier in
Section 1. The configuration includes specifying memory power nodes and their associated
information. Each memory power node is specified using address ranges, supported memory power
states. The memory power states will include both hardware controlled and software controlled
memory power states. There can be multiple entries for a given memory power node to support non
contiguous address ranges. MPST table also defines the communication mechanism between OSPM
and BIOS for triggering software controlled memory powerstate transitions implemented in BIOS.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 163

ACPI Software Programming Model
Figure 5-27 below provides structure organization overview of MPST table.

Flag, Mem Power Node Id ,
len etc ..

Address range (low, high
address bits , length low ,

high)

Memory Power State - 0

Memory Power State - M

Header etc..

Memory Power State
Command fields ...

(Memory Power Node
structure) MPN-0

Memory Power State
Characteristics (0)

MPN-Y

Flags

Avg. Power Consumed

 Exit Latency

MPST Top
level Structure

Flag, Mem Power Node Id ,
len etc ..

Address range (low, high
address bits , length low ,

high)

Memory Power State - 0

Memory Power State - M

Memory Power
Node Structure

Memory Power
State Structure

Flags

Avg. Power Consumed

Exit Latency

Memory Power State
Characteristics Structure

Memory Power State
Characteristics (M)

Power State Value
(M0, M1, M2, …)

Power State
Information Index

Power State Value
(m0, M1, M2…)

Power State
Information Index

Figure 5-27 MPST ACPI Table Overview
164 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-81 MPST Table Structure

5.2.21.1 MPST PCC Sub Channel
The MPST PCC Sub Channel Identifier value provided by the platform in this field should be
programmed to the Type field of PCC Communications Subspace Structure. The MPST table
references its PCC Subspace in a given platform by this identifier, as shown in Table 5-81.

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘MPST’. Signature for Memory Power State Table

 Length 4 4 Length in bytes for entire MPST. The length implies the
number of Entry fields at the end of the table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the memory power state table, the table ID is the
manufacturer model ID

 OEM Revision 4 24 OEM revision of memory power state Table for supplied
OEM Table ID

 Creator ID 4 28 Vendor ID of utility that created the table

 Creator Revision 4 32 Revision of utility that created the table

Memory PCC

MPST Platform
Communication Channel
Identifier

1 36 Identifier of the MPST Platform Communication Channel.

Reserved 3 37 Reserved

Memory Power Node

Memory Power Node
Count

2 40 Number of Memory power Node structure entries

Reserved 2 42 Reserved

Memory Power Node
Structure[Memory Power
Node Count]

--- --- This field provides information on the memory power
nodes present in the system. The information includes
memory node id, power states supported & associated
latencies. Further details of this field are specified in
Section 5.2.21.4

Memory Power State
Characteristics

Memory Power State
Characteristics Count

2 --- Number of Memory power State Characteristics
Structure entries

Reserved 2 Reserved

Memory Power State
Characteristics Structure
[m]

--- --- This field provides information of memory power states
supported in the system. The information includes power
consumed, transition latencies, relevant flags.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 165

ACPI Software Programming Model
5.2.21.1.1 Using PCC registers

OSPM will write PCC registers by filling in the register value in PCC sub channel space and issuing
a PCC Execute command. See Table 5-82, below. All other command values are reserved.

Table 5-82 PCC Command Codes used by MPST Platform Communication Channel

Table 5-83 MPST Platform Communication Channel Shared Memory Region

Command Description

0x00-0x02 All other values are reserved.

0x03 Execute MPST Command.

0x04-0xFF All other values are reserved.

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The PCC signature. The signature of a subspace is computed by
a bitwise-or of the value 0x50434300 with the subspace ID. For
example, subspace 3 has signature 0x50434303.

Command 2 4 PCC command field, seeSection 14 and Table 5-82.

Status 2 6 PCC status field, see Section 14

Communication Space

MEMORY_POWER
_COMMAND_REGI
STER

4 8 Memory region for OSPM to write the requested memory power
state.
Write:
1 to this field to GET the memory power state
2 to this field to set the memory power state
3 – GET AVERAGE POWER CONSUMED
4 – GET MEMORY ENERGY CONSUMED
166 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: OSPM should use the ratio of computed memory power consumed to expected average power
consumed in determining the memory power management action.

5.2.21.2 Memory Power State
Memory Power State represents the state of a memory power node (which maps to a memory
address range) while the platform is in the G0 working state. Memory power node could be in active
state named MPS0 or in one of the power manage states MPS1-MPSn.

It should be noted that active memory power state (MPS0) does not preclude memory power
management in that state. It only indicates that any active state memory power management in
MPS0 is transparent to the OSPM and more importantly does not require assist from OSPM in terms
of restricting memory occupancy and activity.

MEMORY_POWER
_STATUS_REGIST
ER

4 12 Bits 3-0: Status (specific to
MEMORY_POWER_COMMAND_REGISTER)
• 0000b = Success

• 0001b = Not Valid

• 0010b = Not Supported

• 0011b = Busy

• 0100b = Failed

• 0101b = Aborted

• 0110b = Invalid Data

• Other values reserved

Bit 4: Background Activity specific to the following
MEMORY_POWER _COMMAND_REGISTER value:
3 - GET AVERAGE POWER CONSUMED
4 - GET MEMORY ENERGY CONSUMED

0b = inactive
1b = background memory activity is in progress

Bits 5-31: Reserved

POWER STATE ID 4 16 On completion of a GET operation, OSPM reads the current
platform state ID from this field. Prior to a SET operation, OSPM
populates this field with the power state value which needs to be
triggered. Power State values will be based on the platform
capability

MEMORY_POWER
_NODE_ID

4 20 This field identifies Memory power node number for the
command.

MEMORY_ENERG
Y_CONSUMED

8 24 This field returns the energy consumed by the memory that
constitutes the MEMORY_POWER_NODE_ID specified in the
previous field. A value of all 1s in this field indicates that platform
does not implement this field.

EXPECTED_AVER
AGE_POWER_CO
NSUMED

8 32 This field returns the expected average power consumption for
the memory constituted by MEMORY_POWER_NODE_ID. A
value of all 1s in this field indicates that platform does not
implement this field.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 167

ACPI Software Programming Model
MPS1-MPSn states are characterized by non-zero exit latency for exit from the state to MPS0. These
states could require explicit OSPM-initiated entry and exit, explicit OSPM-initiated entry but
autonomous exit or autonomous entry and exit. In all three cases, these states require explicit OSPM
action to isolate and free the memory address range for the corresponding memory power node.

Transitions to more aggressive memory power states (for example, from MPS1 to MPS2) can be
entered on progressive idling but require transition through MPS0 (i.e. MPS1MPS0MPS2).
Power state transition diagram is shown in Figure 5-28.

It is possible that after OSPM request a memory power state, a brief period of activity returns the
memory power node to MPS0 state . If platform is capable of returning to a memory power state on
subsequent period of idle, the platform must treat the previously requested memory power state as a
persistent hint.

Figure 5-28 Memory Power State Transitions

The following table enumerates the power state values that a node can transition to.

Table 5-84 Power state Values

Value State Name Description

0 MPS0 This state value maps to active state of memory node (Normal operation).
OSPM can access memory during this state.

1 MPS1 This state value can be mapped to any memory power state depending on
the platform capability. The platform will inform the features of MPS1 state
using the Memory Power State Structure. By convention, it is required that
low value power state will have lower power savings and lower latencies than
the higher valued power states.

2,3…n MPS2,
MPS3, …
MPSn

Same description as MPS1.

MPS0

MPS2 MPSnMPS1

Enter

Exit
Enter

Exit

Exit

Enter
168 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The following provides the list of command status:

Table 5-85 Command Status

5.2.21.3 Action Sequence
SetMemoryPowerState: The following sequence needs to be done to set a memory power state

1. Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

2. Write desired POWER STATE ID value to POWER STATE ID register of PCC sub channel .

3. Write SET (See Table 5-83) to MEMORY_POWER_STATE register of PCC sub channel.

4. Write PCC EXECUTE (See Table 5-82) to PCC Command register for the PCC sub channel.

5. OSPM rings the door bell by writing to Doorbell register.

6. Platform completes the request and will generate SCI to indicate that the command is complete.

7. OSPM reads the Status register for the PCC sub channel and confirms that the command was
successfully completed.

GetMemoryPowerState: The following sequence needs to be done to get the current memory power
state

1. Write target POWER NODE ID value to MEMORY_POWER_NODE_ID register of PCC sub
channel.

2. Write GET (See Table 5-83) to MEMORY_POWER_STATE register of PCC sub channel.

3. Write PCC EXECUTE (See Table 5-82) to PCC Command register for the PCC sub channel.

4. OSPM rings the door bell by writing to Doorbell register.

5. Platform completes the request and will generate SCI to indicate that command is complete.

6. OSPM reads Status register for the PCC sub channel and confirms that the command was
successfully completed.

7. OSPM reads POWER STATE from POWER_STATE_ID register of PCC sub channel.

Field Bit
Length

Bit
Offset

Description

Command
Complete

1 0 If set, the platform has completed processing the last command.

SCI Doorbell 1 1 If set, then this PCC Sub-Channel has signaled the SCI door
bell. In Response to this SCI, OSPM should probe the
Command Complete and the Platform Notification fields to
determine the cause of SCI.

Error 1 2 If set, an error occurred executing the last command.

Platform
Notification

1 3 Indicates that the SCI doorbell was invoked by the platform.

Reserved 12 4 Reserved.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 169

ACPI Software Programming Model
5.2.21.4 Memory Power Node
Memory Power Node is a representation of a logical memory region that needs to be transitioned in
and out of a memory power state as a unit. This logical memory region is made up of one more
system memory address range(s). A Memory Power Node is uniquely identified by Memory Power
Node ID.

Note that memory power node structure defined in Table 5-86 can only represent a single address
range. This address range should be 4K aligned. If a Memory Power Node contains more than one
memory address range (i.e. non-contiguous range), firmware must construct a Memory power Node
structure for each of the memory address ranges but specify the same Memory Power Node ID in all
the structures.

Memory Power Nodes are not hierarchical. However, a given memory address range covered by a
Memory power node could be fully covered by another memory power node if that nodes memory
address range is inclusive of the other node’s range. For example, memory power node MPN0 may
cover memory address range 1G-2G and memory power node MPN1 covers 1-4G. Here MPN1
memory address range also comprehends the range covered by MPN0.

OSPM is expected to identify the memory power node(s) that corresponds to the maximum memory
address range that OSPM is able to power manage at a given time. For example, if MPN0 covers 1G-
2G and MPN1 covers 1-4G and OSPM is able to power manage 1-4G, it should select MPN1. If
MPN0 is in a non-active memory power state, OSPM must move MPN0 to MPS0 (Active state)
before placing MPN1 in desired Memory Power State. Further, MPN1 can support more power
states than MPN0. If MPN1 is in such a state , say MPS3 , that MPN0 does not support, software
must not query MPN0. If queried, MPN0 will return "not Valid" until MPN1 returns to MPS0.

Note: [Implementation Note] In general, memory nodes corresponding to larger address space ranges
correspond to higher memory aggregation (e.g. memory covered by a DIMM vs. memory covered
by a memory channel) and hence typically present higher power saving opportunities.

5.2.21.4.1 Memory Power Node Structure

The following structure specifies the fields used for communicating memory power node
information. Each entry in the MPST table will be having corresponding memory power node
structure defined.

This structure communicates address range, number of power states implemented, information about
individual power states, number of distinct physical components that comprise this memory power
node.

The physical component identifiers can be cross-referenced against the memory topology table
entries.

Table 5-86 Memory Power Node Structure definition

Field Byte
Length

Byte
Offset

Description

 Flag 1 0 The flag describes type of memory node. Refer to
Table 5-87 for details.

Reserved 1 1 For future use
170 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-87 Flag format

 Memory Power Node Id 2 2 This field provides memory power node number.
This is a unique identification for Memory Power
State Command and creation of freelists/cache lists
in OSPM memory manager to bias allocation of non
power managed nodes vs. power managed nodes.

 Length 4 4 Length in bytes for Memory Power Node Structure.
The length implies the number of Entry fields at the
end of the table

Base Address Low 4 8 Low 32 bits of Base Address of the memory range.

Base Address High 4 12 High 32 bits of Base Address of the memory range.

Length Low 4 16 Low 32 bits of Length of the memory range. This
field along with “Length High” field is used to derive
end physical address of this address range.

Length High 4 20 High 32 bits of Length of the memory range.

Number of Power States (n) 4 24 This field indicates number of power states
supported for this memory power node and in turn
determines the number of entries in memory power
state structure.

Number of Physical
Components

4 28 This field indicates the number of distinct Physical
Components that constitute this memory power
node. This field is also used to identify the number of
entries of Physical Component Identifier entries
present at end of this table.

Memory Power State Structure
[n]

--- 32 This field provides information of various power
states supported in the system for a given memory
power node

Physical Component Identifier1 2 --- 2 byte identifier of distinct physical component that
makes up this memory power node

. … …

Physical Component Identifier m 2 --- 2 byte identifier of distinct physical component that
makes up this memory power node

Bit Name Description

0 Enabled If clear, the OSPM ignores this Memory Power Node Structure. This allows
system firmware to populate the MPST with a static number of structures
but enable them as necessary.

1 Power Managed
Flag

1 – Memory node is power managed
0 – Memory node is not power managed. For non power managed node,
OSPM shall not attempt to transition node into low power state. System
behavior is undefined if OSPM attempts this.
NOTE: If the memory range corresponding to the memory node include
BIOS reserved memory that cannot be power managed, platform should
indicate such memory as “not power managed” to OSPM. This allows
OSPM to ignore such ranges from its power optimization.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 171

ACPI Software Programming Model
5.2.21.5 Memory Power State Structure

Table 5-88 Memory Power State Structure definition

5.2.21.6 Memory Power State Characteristics structure
The table below describes the power consumed, exit latency and the characteristics of the memory
power state. This table is referenced by a memory power node.

Table 5-89 Memory Power State Characteristics Structure

2 Hot Pluggable This flag indicates memory node supports hot plug feature. Refer to
Section 5.2.21.10 for interaction with memory hot plug.

3-7 Reserved Reserved for future use

Field Byte
Length

Byte
Offset

Description

Power State Value 1 0 This field provides value of power state. The specific value to be
used is system dependent. However convention needs to be
maintained where higher numbers indicates deeper power states
with higher power savings and higher latencies. For example, a
power state value of 2 will have higher power savings and higher
latencies than a power state value of 1.

Power State
Information Index

1 1 This field provides unique index into the memory power state
characteristics entries which will provide details about the power
consumed, power state characteristics and transition latencies.
The indexing mechanism is to avoid duplication (and hence
reduce potential for mismatch errors) of memory power state
characteristics entries across multiple memory nodes.

Field Byte Length Byte Offset

Power State
Structure ID

1 0 Bit 0:5 = This field describes the format of table Structure

Power State Structure ID Value = 1

Bit 6:7 = Structure Revision
Current revision is 1

Flag 1 1 The flag describes the caveats associated with entering the
specified power state. Refer to Table 5-90 for details.

Reserved 2 2 Reserved

Bit Name Description
172 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-90 Flag format of Memory Power State Characteristics Structure

Average Power
Consumed in
MPS0 state (in
milli watts)

4 4 This field provides average power consumed for this memory
power node in MPS0 state. This power is measured in
milliWatts and signifies the total power consumed by this
memory the given power state as measured in DC watts. Note
that this value should be used as guideline only for estimating
power savings and not as actual power consumed. Also
memory power node can map to single or collection of
RANKs/DIMMs. The actual power consumed is dependent on
DIMM type, configuration and memory load.

Relative Power
Saving to MPS0
state

4 8 This is a percentage of power saved in MPSx state relative to
MPS0 state and should be calculated as ((MPS0 power –
MPSx power)/MPS0 Power)*100. When this entry is
describing MPS0 state itself, OSPM should ignore this field.

Exit Latency (in
ns) (MPSx
MPS0)

8 12 This field provides latency of exiting out of a power state
(MPSx) to active state (MPS0). The unit of this field is
nanoseconds.
When this entry is describing MPS0 state itself, OSPM should
ignore this field.

Reserved 8 20 Reserved for future use.

Bit Name Description

0 Memory Content
Preserved

If Bit 0 is set, it indicates memory contents will be preserved in the
specified power state
If Bit 0 is clear, it indicates memory contents will be lost in the specified
power state (e.g. for states like offline)

1 Autonomous Memory
Power State Entry

If Bit 1 is set, this field indicates that given memory power state entry
transition needs to be triggered explicitly by OSPM by calling the Set
Power State command.
If Bit 1 is clear, this field indicates that given memory power state entry
transition is automatically implemented in hardware and does not
require a OSPM trigger. The role of OSPM in this case is to ensure that
the corresponding memory region is idled from a software standpoint to
facilitate entry to the state.
Not meaningful for MPS0 – write it for this table

2 Autonomous Memory
Power State Exit

If Bit 1 is set, this field indicates that given memory power state exit
needs to be explicitly triggered by the OSPM before the memory can be
accessed. System behavior is undefined if OSPM or other software
agents attempt to access memory that is currently in a low power state.
If Bit 1 is clear, this field indicates that given memory power state is
exited automatically on access to the memory address range
corresponding to the memory power node.

3-7 Reserved Reserved for future use

Field Byte Length Byte Offset
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 173

ACPI Software Programming Model
5.2.21.6.1 Power Consumed

Average Power Consumed in MPS0 state indicates the power in milli Watts for the MPS0 state.
Relative power savings to MPS0 indicates the savings in the MPSx state as a percentage of savings
relative to MPS0 state.

5.2.21.6.2 Exit Latency

Exit Latency provided in the Memory Power Characteristics structure for a specific power state is
inclusive of the entry latency for that state.

Exit latency must always be provided for a memory power state regardless of whether the memory
power state entry and/or exit are autonomous or requires explicit trigger from OSPM.

5.2.21.7 Autonomous Memory Power Management
Not all memory power management states require OSPM to actively transition a memory power
node in and out of the memory power state. Platforms may implement memory power states that are
fully handled in hardware in terms of entry and exit transition. In such fully autonomous states, the
decision to enter the state is made by hardware based on the utilization of the corresponding memory
region and the decision to exit the memory power state is initiated in response to a memory access
targeted to the corresponding memory region.

The role of OSPM software in handling such autonomous memory power states is to vacate the use
of such memory regions when possible in order to allow hardware to effectively save power. No
other OSPM initiated action is required for supporting these autonomously power managed regions.
However, it is not an error for OSPM explicitly initiates a state transition to an autonomous entry
memory power state through the MPST command interface. The platform may accept the command
and enter the state immediately in which case it must return command completion with SUCCESS
(00000b) status. If platform does not support explicit entry, it must return command completion with
NOT SUPPORTED (00010b) status.

5.2.21.8 Handling BIOS Reserved Memory
Platform BIOS may have regions of memory reserved for its own us that are unavailable to OSPM
for allocation. Memory nodes where all or portion of the memory is reserved by BIOS pose a
problem for OSPM because it does not know whether the BIOS reserved memory is in use or not.

If the BIOS reserved memory impacts the ability of the memory power node to enter memory power
state(s), the platform must indicate to OSPM (by clearing the Power Managed Flag – see Table 5-87
for details) that this memory power node cannot be power managed. This allows OSPM to ignore
such ranges from its memory power optimization.

5.2.21.9 Interaction with NUMA processor and memory affinity tables
The memory power state table describes address range for each of the memory power nodes
specified. OSPM can use the address ranges information provided in MPST table and derive
processor affinity of a given memory power node based on the SRAT entries created by the BIOS.
The association of memory power node to proximity domain can be used by OSPM to implement
memory coalescing taking into account NUMA node topology for memory allocation/release and
manipulation of different page lists in memory management code (implementation specific).
174 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
An example of policy which can be implemented in OSPM for memory coalescing is: OSPM can
prefer allocating memory from local memory power nodes before going to remote memory power
nodes. The later sections provide sample NUMA configurations and explain the policy for various
memory power nodes.

5.2.21.10 Interaction with Memory Hot Plug
The hot pluggable memory regions are described using memory device objects in ACPI namespace.
The memory address range of these memory device objects is defined using _CRS method. E.g.
Refer to description of memory device object (MEM0) taken from Section 9.13.2 of ACPI
specifications 3.0b.

Scope (_SB) {
 Device (MEM0) {
 Name (_HID, EISAID (“PNP0C80”))
 Name (_CRS, ResourceTemplate () {
 QwordMemory (
 ResourceConsumer,
 ,
 MinFixed,
 MaxFixed,
 Cacheable,
 ReadWrite,
 0xFFFFFFF,
 0x10000000,
 0x30000000,
 0, , ,
)
 })
 }
}

The memory power state table (MPST) is a static structure created for all memory objects
independent of hot plug status (online or offline) during initialization. The OSPM will populate the
MPST table during the boot. If hot-pluggable flag is set for a given memory power node in MPST
table, OSPM will not use this node till physical presence of memory is communicated through ACPI
notification mechanism.

The association between memory device object (e.g. MEM0) to the appropriate memory power node
id in the MPST table is determined by comparing the address range specified using _CRS method
and address ranges configured in the MPST table entries. This association needs to be identified by
OSPM as part of ACPI memory hot plug implementation. When memory device is hot added, as part
of existing acpi driver for memory hot plug, OSPM will scan device object for _CRS method and
get the relevant address ranges for the given memory object, OSPM will determine the appropriate
memory power node ids based on the address ranges from _CRS and enable it for power
management and memory coalescing.

Similarly when memory is hot removed, the corresponding memory power nodes will be disabled.

5.2.21.11 OS Memory Allocation Considerations
OSes (non-virtualized OS or a hypervisor/VMM) may need to allocate non-migratable memory. It is
recommended that the OSes (if possible) allocate this memory from memory ranges corresponding
to memory power nodes that indicate they are not power manageable. This allows OS to optimize
the power manageable memory power nodes for optimal power savings.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 175

ACPI Software Programming Model
OSes can assume that memory ranges that belong to memory power nodes that are power
manageable (as indicated by the flag) are interleaved in a manner that does no impact the ability of
that range to enter power managed states. For example, such memory is not cacheline interleaved.

Reference to memory in this document always refers to host physical memory. For virtualized
environments, this requires hypervisors to be responsible for memory power management.
Hypervisors also have the ability to create opportunities for memory power management by vacating
appropriate host physical memory through remapping guest physical memory.

OSes can assume that the memory ranges included in MPST always refer to memory store – either
volatile or non-volatile and never to MMIO or MMCFG ranges.

5.2.21.12 Memory Topology Table (PMTT)
This table describes the memory topology of the system to OSPM, where the memory topology can
be logical or physical. The topology is provided to the last level physical component (e.g. DIMM).

Table 5-91 Platform Memory Topology Table

Table 5-92 Common Memory Aggregator Device Structure

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘PMTT’. Signature for Platform Memory Topology Table.

 Length 4 4 Length in bytes of the entire PMTT. The length implies the
number of Memory Aggregator structures at the end of the table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the PMTT, the table ID is the manufacturer model ID

 OEM Revision 4 24 OEM revision of the PMTT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved, must be zero.

Memory Aggregator
Device Structure [n]

--- 40 A list of memory aggregator device structures for the platform.
See Table 5-92.

Field Byte
Length

Byte
Offset

Description

Type 1 0 The field describes type of the Memory Aggregator Device.
0 – Socket
1 – Memory Controller
2 – DIMM
3 – 0xFF - Reserved

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. This length implies the length
of the Type Specific Data at the end of the structure.
176 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-93 Socket Structure

Flags 2 4 Bit 0 – set to 1 to indicate that this is a top level aggregator
device. This device must be counted in the number of top level
aggregator devices in PMTT table and must be surfaces via
PMTT.
Bit 0 – Set to 0 to indicate that this is not a top level aggregator
device.
Bit 1 - set to 1 to indicate physical element of the topology.
Set to 0 to indicate logical element of topology
Bit 2 and 3 –
• If 00, indicates that all components aggregated by this device

implements volatile memory

• If 01, indicates that components aggregated by this device
implements both volatile and non-volatile memory

• If 10, indicates that all components aggregated by this
device implements non-volatile memory

• 11 - Reserved

Bit 4 – Bit 15 Reserved, must be zero

Reserved 2 6 Reserved, must be zero.

Type Specific Data __ 8 Type specific data. Interpretation of this data is specific to the
type of the memory aggregator device. See Table 5-93, Table 5-
94, and Table 5-95.

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 – Socket

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. The length implies the number
of memory controller structures at the end of this structure.

Flags 2 4 Bit 0 – set to 1 to indicate that this is a top level aggregator
device.
Bit 1 – set to 1 since socket is a physical element of the topology
Bit 2 and 3 –
• If 00, indicates that all components aggregated by this device

implements volatile memory

• If 01, indicates that components aggregated by this device
implements both volatile and non-volatile memory

• If 10, indicates that all components aggregated by this
device implements non-volatile memory

• 11 - Reserved

Bit 4 – Bit 15 Reserved, must be zero

Reserved 2 6 Reserved, must be zero.

Socket Identifier 2 8 Uniquely identifies the socket in the system.

Reserved 2 10 Reserved, must be zero.

Memory Controller
Structure [n]

--- 12 A list of Memory Controller Structures.This list provides
information on the memory controllers present in the socket. See
Table 5-94.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 177

ACPI Software Programming Model
Table 5-94 Memory Controller Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 1 – Memory Controller

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure. The length implies the
number of physical component identifier structures at the
end of this structure.

Flag 2 4 Bit 0 – set to 1 to indicate that this is a top level aggregator
device.
Bit 1 – set to 1 to indicate physical element of the topology.
Set to 0 to indicate logical element of topology
Bit 2 and 3 –
• If 00, indicates that all components aggregated by this

device implements volatile memory

• If 01, indicates that components aggregated by this
device implements both volatile and non-volatile memory

• If 10, indicates that all components aggregated by this
device implements non-volatile memory

• 11 - Reserved

Bit 4 – Bit 15 Reserved

Reserved 2 6 Reserved, must be zero.

Read Latency
(typical)

4 8 In nanoseconds as seen at the controller for a cacheline
access.

Write latency (typical) 4 12 In nanoseconds as seen at the controller for a cacheline
access.

Read Bandwidth
(typical)

4 16 In MB/s

Write Bandwidth
(typical)

4 20 In MB/s

Optimal access unit 2 24 In bytes

Optimal access
alignment

2 26 In bytes

Reserved 2 28 Reserved , must be zero.

Number of Proximity
Domains (m)

2 30 Number of Proximity Domains that immediately follow. A
zero in this field indicates that proximity domain information
is not provided by the platform and that no 4-byte domains
follow

Proximity Domain [m] 4*m 32 Proximity domains for memory address space(s) spawned
by this memory controller. Each proximity domain is a 4-byte
entity as defined in the System Resource Allocation Table
(SRAT).

Physical Component
Identifier Structure [n]

__ - A list of Physical Components structures for this memory
controller. See Table 5-95.
178 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-95 Physical Components Identifier Structure

5.2.22 Boot Graphics Resource Table (BGRT)
The Boot Graphics Resource Table (BGRT) is an optional table that provides a mechanism to
indicate that an image was drawn on the screen during boot, and some information about the image.

The table is written when the image is drawn on the screen. This should be done after it is expected
that any firmware components that may write to the screen are done doing so and it is known that the
image is the only thing on the screen. If the boot path is interrupted (e.g. by a key press), the valid
bit within the status field should be changed to 0 to indicate to the OS that the current image is
invalidated.

This table is only supported on UEFI systems.

Field Byte
Length

Byte
Offset

Description

Type 1 0 2– DIMM

Reserved 1 1 Reserved, must be zero.

Length 2 2 Length in bytes for this Structure.

Flag 2 4 Bit 0 – Set 0 to indicate that this is not a top level memory
aggregator. DIMM is typically behind a memory controller or
a socket device or both.
Bit 1 – set to 1 to indicate physical element of the topology.
Set to 0 to indicate logical element of topology
Bit 2 and 3 –
• If 00, indicates that all components aggregated by this

device implements volatile memory

• If 01, indicates that components aggregated by this
device implements both volatile and non-volatile memory

• If 10, indicates that all components aggregated by this
device implements non-volatile memory

• 11 - Reserved

Bit 4 – Bit 15 Reserved

Reserved 2 6 Reserved, must be zero.

Physical Component
Identifier

2 8 Uniquely identifies the physical memory component in the
system.

Reserved 2 10 Reserved, must be zero.

Size of DIMM 4 12 Size in MB of the DIMM device.

SMBIOS Handle 4 16 Refers to Type 17 table handle of corresponding SMBIOS
record. The platform indicates that this field is not valid by
setting a value of 0xFFFFFFFF. If the platform provides a
valid handle, the upper 2 bytes must be 0 (since SMBIOS
handles are 2 bytes only).
NOTE: The use of this handle is for management software to
be able to cross-reference the physical DIMM described in
SMBIOS against the topology described in this table. It is not
expected that OSPM will utilize this field.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 179

ACPI Software Programming Model
Table 5-96 Boot Graphics Resource Table Fields

The BGRT is a dynamic ACPI table that enables boot firmware to provide OPSM with a pointer to
the location in memory where the boot graphics image is stored.

5.2.22.1 Version
The version field identifies which revision of the BGRT table is implemented. The version field
should be set to 1.

5.2.22.2 Status

Table 5-97 Status Description Field

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 “BGRT” Signature for the table.

 Length 4 4 Length, in bytes, of the entire table

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 The table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

 Version 2 36 2-bytes (16 bit) version ID. This value must be 1.

 Status 1 38 1-byte status field indicating current status about the table.
Bits[7:1] = Reserved (must be zero)
Bit [0] = Valid. A one indicates the boot image graphic is valid.

Image Type 1 39 1-byte enumerated type field indicating format of the image.
0 = Bitmap
1 – 255 Reserved (for future use)

 Image Address 8 40 8-byte (64 bit) physical address pointing to the firmware’s in-
memory copy of the image bitmap.

 Image Offset X 4 48 A 4-byte (32-bit) unsigned long describing the display X-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).

Image Offset Y 4 52 A 4-byte (32-bit) unsigned long describing the display Y-offset of
the boot image. (X, Y) display offset of the top left corner of the
boot image. The top left corner of the display is at offset (0, 0).

Offset Field Name

Bit 0 Valid
180 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The status field contains information about the current status of the table. The Valid bit is bit 0 of
the lowest byte. It should be set to 1 when the table is written, and invalidated if there is reason to
expect that the screen state has been changed.

All other bits are reserved.

5.2.22.3 Image Type

Table 5-98 Image Type Description Field

The Image type field contains information about the format of the image being returned. If the
value is 0, the Image Type is Bitmap. The format for a Bitmap is defined atthe reference located in
the ACPI Link Document under the heading "Types of Bitmaps".

All other values not defined in the table are reserved for future use.

5.2.22.4 Image Address
The Image Address contains the location in memory where an in-memory copy of the boot image
can be found. The image should be stored in EfiBootServicesData, allowing the system to reclaim
the memory when the image is no longer needed.

 Implementations must present the image in a 24 bit bitmap with pixel format 0xRRGGBB, or a32-
bit bitmap with the pixel format 0xrrRRGGBB, where ‘rr’ is reserved.

5.2.22.5 Image Offset
The Image Offset contains 2 consecutive 4 byte unsigned longs describing the (X, Y) display offset
of the top left corner of the boot image. The top left corner of the display is at offset (0, 0).

Image

Value Definition

0 Image Type is Bitmap
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 181

ACPI Software Programming Model
Figure 5-29 Image Offset

5.2.23 Firmware Performance Data Table (FPDT)
This section describes the format of the Firmware Performance Data Table (FPDT), which provides
sufficient information to describe the platform initialization performance records. This information
represents the boot performance data relating to specific tasks within the firmware boot process.
The FPDT includes only those mileposts that are part of every platform boot process:

• End of reset sequence (Timer value noted at beginning of BIOS initialization - typically at reset
vector)

• Handoff to OS Loader

This information represents the firmware boot performance data set that would be used to track
performance of each UEFI phase, and would be useful for tracking impacts resulting from changes
due to hardware/software configuration.

All timer values are express in 1 nanosecond increments. For example, if a record indicates an event
occurred at a timer value of 25678, this means that 25.678 microseconds have elapsed from the last
reset of the timer measurement. All timer values will be required to have an accuracy of +/- 10%.

Table 5-99 Firmware Performance Data Table (FPDT) Format

5.2.23.1 Performance Record Format
A performance record is comprised of a sub-header including a record type and length, and a set of
data, which may include a timer. The format of the record layout is specific to the record type. In
this manner, records are only as large as needed to contain the specific type of data to be conveyed.

Field Byte
Length

Byte Offset Description

Header

 Signature 4 0 ‘FPDT’ Signature for the Firmware Performance Data
Table.

 Length 4 4 The length of the table, in bytes, of the entire FPDT.

 Revision 1 8 The revision of the structure corresponding to the
signature field for this table.
For the Firmware Performance Data Table conforming to
this revision of the specification, the revision is 1.

 Checksum 1 9 The entire table, including the checksum field, must add
to zero to be considered valid.

 OEMID 6 10 An OEM-supplied string that identifies the OEM.

 OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify this
particular data table.

 OEM Revision 4 24 An OEM-supplied revision number.

 Creator ID 4 28 The Vendor ID of the utility that created this table.

 Creator Revision 4 32 The revision of the utility that created this table.

Performance Records — 36 The set of Performance Records.
182 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-100 Performance Record Structure

5.2.23.2 Performance Record Types
The table below describes the various types of records contained within the FPDT, and their
associated Performance Record Type. Note that unless otherwise specified, multiple performance
records are permitted in the FPDT for a given type, because some events can occur multiple times
during the boot process.

Table 5-101 Performance Record Types

5.2.23.3 Runtime Performance Record Types
The table below describes the various types of runtime records and their associated Runtime
Performance Record types. These Records are not contained within the FPDT; they are referenced
by their respective pointer records in the FPDT.

Field Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 This value depicts the format and contents of the performance
record.

Record Length 1 2 This value depicts the length of the performance record, in bytes.

Revision 1 3 This value is updated if the format of the record type is extended.
Any changes to a performance record layout must be backwards-
compatible in that all previously defined fields must be maintained
if still applicable, but newly defined fields allow the length of the
performance record to be increased. Previously defined record
fields must not be redefined, but are permitted to be deprecated.

Data — 4 The content of this field is defined by the Performance Record
Type definition.

Record Type
Value

Type Description

0x0000 Firmware
Basic Boot
Performance
Pointer
Record

Record containing a pointer to the Basic Boot Performance Data
Record.

0x0001 S3
Performance
Table Pointer
Record

Record containing a pointer to an S3 Performance Table.

0x0002 – 0x0FFF Reserved Reserved for ACPI specification usage.

0x1000 – 0x1FFF Reserved Reserved for Platform Vendor usage.

0x2000 – 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 – 0x3FFF Reserved Reserved for BIOS Vendor usage.

0x4000 – 0xFFFF Reserved Reserved for future use
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 183

ACPI Software Programming Model
Table 5-102 Runtime Performance Record Types

5.2.23.4 S3 Performance Table Pointer Record
The S3 Performance Table Pointer Record contains a pointer to the S3 Performance Table. The S3
Performance Table itself exists in a range of memory described as ACPI AddressRangeReserved in
the system memory map. The record pointer is a required entry in the FPDT for any system
supporting the S3 state, and the pointer must point to a valid static physical address. Only one of
these records will be produced.

Table 5-103 S3 Performance Table Pointer Record

5.2.23.5 Firmware Basic Boot Performance Pointer Record
The Firmware Basic Boot Performance Pointer Record contains a pointer to the Firmware Basic
Boot Performance Data Record. The Firmware Basic Boot Performance Data Record itself exists in

Record Type
Value

Type Description

0x0000 Basic S3
Resume
Performance
Record

Performance record describing minimal firmware
performance metrics for S3 resume operations

0x0001 Basic S3
Suspend
Performance
Record

Performance record describing minimal firmware
performance metrics for S3 suspend operations

0x0002 Firmware
Basic Boot
Performance
Data Record

Performance record showing basic performance metrics for
critical phases of the firmware boot process.

0x0003 – 0x0FFF Reserved Reserved for ACPI specification usage.

0x1000 – 0x1FFF Reserved Reserved for Platform Vendor usage.

0x2000 – 0x2FFF Reserved Reserved for Hardware Vendor usage.

0x3000 – 0x3FFF Reserved Reserved for BIOS Vendor usage.

0x4000 – 0xFFFF Reserved Reserved for future use

Field Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 1 - S3 Performance Table Record

Record Length 1 2 16 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

S3PT Pointer 8 8 64-bit processor-relative physical address of the S3 Performance
Table
184 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
a range of memory described as ACPI AddressRangeReserved in the system memory map. The
record pointer is a required entry in the FPDT for any system and the pointer must point to a valid
static physical address. Only one of these records will be produced.

Table 5-104 S4 Performance Table Pointer Record

5.2.23.6 S3 Performance Table
The S3 Performance Table resides outside of the FPDT. It includes a header, defined in Table 5-106,
and one or more Performance Records.

All event entries must be initialized to zero during the initial boot sequence, and overwritten during
the BIOS S3 resume sequence. The S3 Performance Table must include the Basic S3 Resume
Performance Record. Other entries are optional.

Table 5-105 S3 Performance Table Header

Table 5-106 Basic S3 Resume Performance Record

Field Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 0 – Firmware Basic Boot Performance Pointer Record

Record Length 1 2 16 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Reserved 4 4 Reserved

FBPT Pointer 8 8 64-bit processor-relative physical address of the Firmware Basic
Boot Performance Table

Field Byte
Length

Byte
Offset

Description

Signature 4 0 ‘S3PT’ is the signature to use.

Length 4 4 Length of the S3 Performance Table. This includes the header and
allocated size of the subsequent records. This size would at
minimum include the size of the header and the Basic S3 Resume
Performance Record.

Field Byte
Length

Byte
Offset

Description

Runtime
Performance
Record Type

2 0 0 - The Basic S3 Resume Performance Record Type. Zero to one
of these records will be produced.

Record Length 1 2 24 - The value depicts the length of this performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

Resume Count 4 4 A count of the number of S3 resume cycles since the last full boot
sequence.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 185

ACPI Software Programming Model
Table 5-107 Basic S3 Suspend Performance Record

5.2.23.7 Firmware Basic Boot Performance Table
The Firmware Basic Boot Performance Table resides outside of the FPDT. It includes a header,
defined in Table 5-108, and one or more Performance Records.

All event entries will be overwritten during the BIOS S4 resume sequence. The Firmware Basic
Boot Performance Table must include the Firmware Basic Boot Performance Table.

Table 5-108 Firmware Basic Boot Performance Table Header

FullResume 8 8 Timer recorded at the end of BIOS S3 resume, just prior to handoff
to the OS waking vector. Only the most recent resume cycle’s time
is retained.

AverageResume 8 16 Average timer value of all resume cycles logged since the last full
boot sequence, including the most recent resume. Note that the
entire log of timer values does not need to be retained in order to
calculate this average. AverageResumenew = (AverageResumeold

* (ResumeCount -1) + FullResume) / ResumeCount

Field Byte
Length

Byte
Offset

Description

Runtime
Performance
Record Type

2 0 1 - The Basic S3 Suspend Performance Record Type. Zero to one
of these records will be produced.

Record Length 1 2 20 - The value depicts the length of this performance record, in
bytes.

Revision 1 3 1 - Revision of this Performance Record

SuspendStart 8 4 Timer value recorded at the OS write to SLP_TYP upon entry to
S3. Only the most recent suspend cycle’s timer value is retained.

SuspendEnd 8 12 Timer value recorded at the final firmware write to SLP_TYP (or
other mechanism) used to trigger hardware entry to S3. Only the
most recent suspend cycle’s timer value is retained.

Field Byte
Length

Byte
Offset

Description

Signature 4 0 ‘FBPT’ is the signature to use.

Length 4 4 Length of the Firmware Basic Boot Performance Table. This
includes the header and allocated size of the subsequent records.
This size would at minimum include the size of the header and the
Firmware Basic Boot Performance Record.

Field Byte
Length

Byte
Offset

Description
186 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.2.23.8 Firmware Basic Boot Performance Data Record
A firmware basic boot performance data record which contains timer information associated with
final OS loader activity as well as the data associated with starting and ending boot time information.
Only one of these records will be produced.

Table 5-109 Firmware Basic Boot Performance Data Record Structure

5.2.24 Generic Timer Description Table (GTDT)
This section describes the format of the Generic Timer Description Table (GTDT), which provides
OSPM with information about a system’s GIT interrupt configuration. The Generic Timer (GIT) is a
standard timer block implemented on ARM processor-based systems. The GIT hardware
specification can be found at the ACPI Link Document under the heading "Generic Timer
Specification". The GTDT provides OSPM with information about a system's GIT interrupt
configuration.

The GIT specification defines the following timers:

• Secure privilege level 1 (PL1) timer,

• Non-Secure PL1 timer,

• Non-Secure privilege level 2 (PL2) timer,

• a virtual timer,

Field Byte
Length

Byte
Offset

Description

Performance
Record Type

2 0 2 – Firmware Basic Boot Performance Data Record

Record Length 1 2 48 - This value depicts the length of the performance record, in
bytes.

Revision 1 3 2 - Revision of this Performance Record

Reserved 4 4 Reserved

Reset End 8 8 Timer value logged at the beginning of firmware image execution.
This may not always be zero or near zero.

OS Loader
LoadImage Start

8 16 Timer value logged just prior to loading the OS boot loader into
memory.
For non-UEFI compatible boots, this field must be zero.

OS Loader
StartImage Start

8 24 Timer value logged just prior to launching the currently loaded OS
boot loader image.
For non-UEFI compatible boots, the timer value logged will be just
prior to the INT 19h handler invocation.

ExitBootServices
Entry

8 32 Timer value logged at the point when the OS loader calls the
ExitBootServices function for UEFI compatible firmware.
For non-UEFI compatible boots, this field must be zero.

ExitBootServices
Exit

8 40 Timer value logged at the point just prior to the OS loader gaining
control back from the ExitBootServices function for UEFI
compatible firmware.
For non-UEFI compatible boots, this field must be zero.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 187

ACPI Software Programming Model
• an optional memory mapped timer.

Table 5-110 GTDT Table Structure

Table 5-111 Global flags

Field Byte
Lengt
h

Byte
Offset

Description

Header

 Signature 4 0 ‘GTDT’. Signature for the Generic Timer Description Table.

 Length 4 4 Length, in bytes, of the entire Generic Timer Description Table.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the Generic Timer Description Table, the table ID is the
manufacturer model ID.

 OEM Revision 4 24 OEM revision of Generic Timer Description Table for supplied
OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table.

 Creator Revision 4 32 Revision of utility that created the table.

 Physical Address 8 36 The 64-bit physical address at which the counter block is
located.

Global Flags 4 44 Global flags (defined below)

 Secure PL1 timer
GSIV

4 48 GSIV for the secure PL1 physical timer interrupt

 Secure PL1 timer
Flags

4 52 Flags for the secure PL1 physical timer (defined below)

 Non-Secure PL1
timer GSIV

4 56 GSIV for the non-secure PL1 timer physical timer interrupt

 Non-Secure PL1
timer Flags

4 60 Flags for the non-secure PL1 physical timer (defined below)

 Virtual timer GSIV 4 64 GSIV for the non-secure virtual timer interrupt

 Virtual Timer Flags 4 68 Flags for the virtual timer (defined below)

 Non-Secure PL2
timer GSIV

4 72 GSIV for the Non-Secure PL2 physical timer

 Non-Secure PL2
timer Flags

4 76 Flags for the Non-Secure PL2 physical timer(defined below)

Bit Field bit
Offset

Number
of bits

Description

Memory mapped
block present

0 1 This bit indicates if the memory mapped block is present or not.
1: memory mapped block is present
0: memory mapped block is not present
188 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Secure PL1 timer Flags, Non-Secure PL1 timer flags, Virtual Time Flags, and PL2 timer Flags have
the same definition.

Table 5-112 Flag Definitions: Virtual Time, PL2 timers, and Secure & Non-Secure PL1 timers

5.3 ACPI Namespace
For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer
to objects. All Definition Blocks load into the same namespace. Although this allows one Definition
Block to reference objects and data from another (thus enabling interaction), it also means that

OEMs must take care to avoid any naming collisions1. Only an unload operation of a Definition
Block can remove names from the namespace, so a name collision in an attempt to load a Definition
Block is considered fatal. The contents of the namespace changes only on a load or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it.
The following naming conventions apply to all names:

• All names are a fixed 32 bits.

• The first byte of a name is inclusive of: ‘A’–‘Z’, ‘_’, (0x41–0x5A, 0x5F).

• The remaining three bytes of a name are inclusive of: ‘A’–‘Z’, ‘0’–‘9’, ‘_’, (0x41–0x5A, 0x30–
0x39, 0x5F).

• By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with
trailing underscores (‘_’). See the language definition for AML NameSeg in Section 17, “ACPI
Source Language Reference.”

• Names beginning with ‘_’ are reserved by this specification. Definition Blocks can only use
names beginning with ‘_’ as defined by this specification.

Interrupt Mode 1 1 1:Edge
0:Level.

Reserved 2 30 Reserved, must be zero.

Bit Field bit
Offset

Number
of bits

Description

Timer interrupt
Mode

0 1 This bit indicates the mode of the timer interrupt

1: Interrupt is Edge triggered
0: Interrupt is Level triggered

Timer Interrupt
polarity

1 1 This bit indicates the polarity of the timer interrupt

1: Interrupt is Active low
0: Interrupt is Active high

Reserved 2 30 Reserved, must be zero.

1. For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where interaction is being
designed are the areas in which extra care must be taken.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 189

ACPI Software Programming Model
• A name proceeded with ‘\’ causes the name to refer to the root of the namespace (‘\’ is not part
of the 32-bit fixed-length name).

• A name proceeded with ‘^’ causes the name to refer to the parent of the current namespace (‘^’
is not part of the 32-bit fixed-length name).

Except for names preceded with a ‘\’, the current namespace determines where in the namespace
hierarchy a name being created goes and where a name being referenced is found. A name is located
by finding the matching name in the current namespace, and then in the parent namespace. If the
parent namespace does not contain the name, the search continues recursively upwards until either
the name is found or the namespace does not have a parent (the root of the namespace). This

indicates that the name is not found1.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a
‘\’ prefix), and a relative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which is a relative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes,
‘^’, the search rules do not apply. If the search rules do not apply to a relative namespace path, the
namespace object is looked up relative to the current namespace. For example:

ABCD //search rules apply

^ABCD //search rules do not apply

XYZ.ABCD //search rules do not apply

\XYZ.ABCD //search rules do not apply

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate
multiple 32-bit fixed-length name components together. This is useful for referring to the name of an
object, such as a control method, that is not in the scope of the current namespace.

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has
been loaded.

1. Unless the operation being performed is explicitly prepared for failure in name resolution, this is considered
an error and may cause the system to stop working.
190 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figure 5-30 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because
of the namespace search rules. An attempt to access a relative object recurses toward the root until
the object is found or the root is encountered. This can cause unintentional results. For example,
using the namespace described in Figure 5.5, attempting to access a _CRS named object from within
the _SB_.PCI0.IDE0 will have different results depending on if an absolute or relative path name is
used. If an absolute pathname is specified (_SB_.PCI0.IDE0._CRS) an error will result since the
object does not exist. Access using a single segment name (_CRS) will actually access the
SB.PCI0._CRS object. Notice that the access will occur successfully with no errors.

5.3.1 Predefined Root Namespaces
The following namespaces are defined under the namespace root.

Table 5-113 Namespaces Defined Under the Namespace Root

Name Description

_GPE General events in GPE register block.

P

R

d

d

Root

_PR

CPU0

\PID0

_STA

_ON

_OFF

_SB

PCI0

_HID

_CRS

IDE0

_ADR

_PR0

_GPE

_L01

_E02

_L03

– Processor Tree

– Processor 0 object

– Power resource for IDE0

– Method to return status of power resourse

– Method to turn on power resourse

– Method to turn off power resourse

– System bus tree

– PCI bus

– Device ID

– Current resources (PCI bus number)

– IDE0 device

– PCI device #, function #

– Power resource requirements for D0

– General purpose events (GP_STS)

– Method to handle level GP_STS.1

– Method to handle edge GP_STS.2

– Method to handle level GP_STS.3

P

R

d

Package

Processor Object

Power Resource
Object

Bus/Device Object

Data Object

Control Method (AML code)

Key
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 191

ACPI Software Programming Model
5.3.2 Objects
All objects, except locals, have a global scope. Local data objects have a per-invocation scope and
lifetime and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any
supported data type, a control method, or system software-provided functions.

Objects may contain a revision field. Successive ACPI specifications define object revisions so that
they are backwards compatible with OSPM implementations that support previous specifications /
object revisions. New object fields are added at the end of previous object definitions. OSPM
interprets objects according to the revision number it supports including all earlier revisions. As
such, OSPM expects that an object’s length can be greater than or equal to the length of the known
object revision. When evaluating objects with revision numbers greater than that known by OSPM,
OSPM ignores internal object fields values that are beyond the defined object field range for the
known revision.

5.4 Definition Block Encoding
This section specifies the encoding used in a Definition Block to define names (load time only),
objects, and packages. The Definition Block is encoded as a stream from beginning to end. The lead
byte in the stream comes from the AML encoding tables shown in Section 19, “ACPI Source
Language (ASL) Reference,” and signifies how to interpret some number of following bytes, where
each following byte can in turn signify how to interpret some number of following bytes. For a full
specification of the AML encoding, see Section 19, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object
declarations (load time), and the other is an object reference (package contents/run-time).

_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined under
this namespace. ACPI allows Processor object definitions under the _SB namespace.
Platforms may maintain the _PR namespace for compatibility with ACPI 1.0 operating
systems. An ACPI-compatible namespace may define Processor objects in either the _SB or
_PR scope but not both.
For more information about defining Processor objects, see Section 8, “Processor
Configuration and Control.”

_SB All Device/Bus Objects are defined under this namespace.

_SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see Section 9.1, _SI System Indicators.”

_TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be defined
under this namespace. Thermal Zone object definitions may now be defined under the _SB
namespace. ACPI-compatible systems may maintain the _TZ namespace for compatibility
with ACPI 1.0 operating systems. An ACPI-compatible namespace may define Thermal Zone
objects in either the _SB or _TZ scope but not both.
For more information about defining Thermal Zone objects, see Section 11, “Thermal
Management.”

Name Description
192 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
All encodings are such that the lead byte of an encoding signifies the type of declaration or reference
being made. The type either has an implicit or explicit length in the stream. All explicit length
declarations take the form shown below, where PkgLength is the length of the inclusive length of the
data for the operation.

Figure 5-31 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested
encodings that, at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits
of byte zero, indicating how many following bytes are in the PkgLength encoding. The next two bits
are only used in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F.
Longer encodings, which do not use these two bits, have a maximum length of the following: two-
byte encodings of 0x0FFF, three-byte encodings of 0x0FFFFF, and four-byte length encodings of
0x0FFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is
contained in another package, then by definition its length must be contained within the outer
package, and similarly for a datum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished
when the system makes a pass over the data and populates the ACPI namespace and initializes
objects accordingly. The namespace for which population occurs is either from the current
namespace location, as defined by all nested packages or from the root if the name is preceded with
‘\’.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package.
This permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be
created in the “root.” Unnamed objects can be used as arguments in control methods.

Control method execution may generate errors when creating objects. This can occur if a Method
that creates named objects blocks and is reentered while blocked. This will happen because all
named objects have an absolute path. This is true even if the object name specified is relative. For
example, the following ASL code segments are functionally identical.

LeadByte PkgLength data... LeadByte ...

PkgLength
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 193

ACPI Software Programming Model
(1)
 Method (DEAD,) {
 Scope (_SB_.FOO) {
 Name (BAR,) // Run time definition
 }
 }

(2)
 Scope (_SB_) {
 Name (_SB_. FOO.BAR,) // Load time definition
 }

Notice that in the above example the execution of the DEAD method will always fail because the
object _SB_.FOO.BAR is created at load time.

5.5 Using the ACPI Control Method Source Language
OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language
(ASL) and use a translator to produce the byte stream encoding described in Section 5.4, “Definition
Block Encoding”. For example, the ASL statements that produce the example byte stream shown in
that earlier section are shown in the following ASL example. For a full specification of the ASL
statements, see Section 19, “ACPI Source Language (ASL) Reference.”
194 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
// ASL Example
DefinitionBlock (
 "forbook.aml", // Output Filename
 "DSDT", // Signature
 0x02, // DSDT Compliance Revision
 "OEM", // OEMID
 "forbook", // TABLE ID
 0x1000 // OEM Revision
)
{ // start of definition block
 OperationRegion(\GIO, SystemIO, 0x125, 0x1)
 Field(\GIO, ByteAcc, NoLock, Preserve) {
 CT01, 1,
 }

 Scope(_SB) // start of scope
 Device(PCI0) { // start of device
 PowerResource(FET0, 0, 0) { // start of pwr
 Method (_ON) {
 Store (Ones, CT01) // assert power
 Sleep (30) // wait 30ms
 }
 Method (_OFF) {
 Store (Zero, CT01) // assert reset#
 }
 Method (_STA) {
 Return (CT01)
 }
 } // end of power
 } // end of device
 } // end of scope
} // end of definition block

5.5.1 ASL Statements
ASL is principally a declarative language. ASL statements declare objects. Each object has three
parts, two of which can be null:

 Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType
must have. It is written as (a, b, c,), where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a
FixedList can have default values, in which case they can be skipped. Some ObjectTypes can have a
null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent.
It is written as {x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType
determines what terms are legal elements of the VariableList. Some ObjectTypes can have a null
variable list.

For a detailed specification of the ASL language, see Section 19, “ACPI Source Language (ASL)
Reference.” For a detailed specification of the ACPI Control Method Machine Language (AML),
upon which the output of the ASL translator is based, see Section 20, “ACPI Machine Language
(AML) Specification.”
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 195

ACPI Software Programming Model
5.5.2 Control Method Execution
OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level
hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at
hand, which can include defined control methods provided by the operating software. Control
Methods can reference any objects anywhere in the Namespace. Interpretation of a Control Method
is not preemptive, but it can block. When a control method does block, OSPM can initiate or
continue the execution of a different control method. A control method can only assume that access
to global objects is exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments
Up to seven arguments can be passed to a control method. Each argument is an object that in turn
could be a “package” style object that refers to other objects. Access to the argument objects is
provided via the ASL ArgTerm (ArgX) language elements. The number of arguments passed to any
control method is fixed and is defined when the control method package is created.

Method arguments can take one of the following forms:

• An ACPI name or namepath that refers to a named object. This includes the LocalX and ArgX
names. In this case, the object associated with the name is passed as the argument.

• An ACPI name or namepath that refers to another control method. In this case, the method is
invoked and the return value of the method is passed as the argument. A fatal error occurs if no
object is returned from the method. If the object is not used after the method invocation it is
automatically deleted.

• A valid ASL expression. In the case, the expression is evaluated and the object that results from
this evaluation is passed as the argument. If this object is not used after the method invocation it
is automatically deleted.

5.5.2.2 Method Calling Convention
The calling convention for control methods can best be described as call-by-reference-constant. In
this convention, objects passed as arguments are passed by “reference”, meaning that they are not
copied to new objects as they are passed to the called control method (A calling convention that
copies objects or object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the
number of buffers that must be copied. This calling convention is appropriate to the low-level nature
of the ACPI subsystem within the kernel of the host operating system where non-paged dynamic
memory is typically at a premium. The ASL programmer must be aware of the calling convention
and the related side effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to
modify arguments is extremely limited. This reduces aliasing issues such as when a called method
unexpectedly modifies a object or variable that has been passed as an argument by the caller. In
effect, the arguments that are passed to control methods are passed as constants that cannot be
modified except under specific controlled circumstances.
196 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Generally, the objects passed to a control method via the ArgX terms cannot be directly written or
modified by the called method. In other words, when an ArgX term is used as a target operand in an
ASL statement, the existing ArgX object is not modified. Instead, the new object replaces the
existing object and the ArgX term effectively becomes a LocalX term.

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference
created via the RefOf ASL operator. In this case, the use of the ArgX term as a target operand will
cause any existing object stored at the ACPI name referred to by the RefOf operation to be
overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to
change the value of an ArgX object. These cases are limited to Buffer and Package objects where the
“value” of the object is represented indirectly. For Buffers, a writable Index or Field can be created
that refers to the original buffer data and will allow the called method to read or modify the data. For
Packages, a writable Index can be created to allow the called method to modify the contents of
individual elements of the Package.

5.5.2.3 Local Variables and Locally Created Data Objects
Control methods can access up to eight local data objects. Access to the local data objects have
shorthand encodings. On initial control method execution, the local data objects are NULL. Access
to local objects is via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result
of the execution of the method. The “caller” must either use the result or save it to a different object
if it wants to preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the
duration of the method execution. They are created when specified by the code and are destroyed on
exit. A method may create dynamic objects outside of the current scope in the NameSpace using the
scope operator or using full path names. These objects will still be destroyed on method exit. Objects
created at load time outside of the scope of the method are static. For example:

Scope (\XYZ) {
 Name (BAR, 5) // Creates \XYZ.BAR
 Method (FOO, 1) {
 Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
 Name (BAR, 7) // Creates \XYZ.FOO.BAR
 Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG
 Name (\XYZ.FOOB, 3) // Creates \XYZ.FOOB
 } // end method
} // end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is
loaded. The object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7)

statement in the FOO method is executed. The object \XYZ.FOOB is a dynamic object created by
the \XYZ.FOO method when the Name (\XYZ.FOOB, 3) statement is executed. Notice that the
\XYZ.FOOB object is destroyed after the \XYZ.FOO method exits.

5.5.2.4 Access to Operation Regions
Control Methods read and write data to locations in address spaces (for example, System memory
and System I/O) by using the Field operator (see Section 19.5.46 Field (Declare Field Objects)”) to
declare a data element within an entity known as an “Operation Region” and then performing
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 197

ACPI Software Programming Model
accesses using the data element name. An Operation Region is a specific region of operation within
an address space that is declared as a subset of the entire address space using a starting address
(offset) and a length (see Section 19.5.96 “OperationRegion (Declare Operation Region)”). Control
methods must have exclusive access to any address accessed via fields declared in Operation
Regions. Control methods may not directly access any other hardware registers, including the ACPI-
defined register blocks. Some of the ACPI registers, in the defined ACPI registers blocks, are
maintained on behalf of control method execution. For example, the GPEx_BLK is not directly
accessed by a control method but is used to provide an extensible interrupt handling model for
control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For
example, because of the slow nature of the embedded controller, an embedded controller
OpRegion field access may block.

There are eight predefined Operation Region types specified by ACPI as described in Table 5-114.

Table 5-114 Operation Region Address Space Identifiers

In addition, OEMs may define Operation Regions Address Space ID types 0x80 to 0xFF.

Operation region access to the SystemMemory, SystemIO, and PCI_Config address spaces is simple
and straightforward. Operation region access to the EmbeddedControl address space is described in
Section 12, “ACPI Embedded Controller Interface Specification”. Operation region access to the
SMBus address space is described in Section 13, “ACPI System Management Bus Interface
Specification”. Operation region access to the CMOS, PCIBARTarget, IPMI, GenericSerialBus and
GeneralPurposeIO address spaces is described in the following sections.

5.5.2.4.1 CMOS Protocols

This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL.
Most computers contain an RTC/CMOS device that can be represented as a linear array of bytes of
non-volatile memory. There is a standard mechanism for accessing the first 64 bytes of non-volatile
RAM in devices that are compatible with the Motorola RTC/CMOS device used in the original IBM
PC/AT. Existing RTC/CMOS devices typically contain more than 64 bytes of non-volatile RAM,
and no standard mechanism exists for access to this additional storage area. To provide access to all

Name (RegionSpace Keyword) Value

SystemMemory 0

SystemIO 1

PCI_Config 2

EmbeddedControl 3

SMBus 4

CMOS 5

PCIBARTarget 6

IPMI 7

GeneralPurposeIO 8

GenericSerialBus 9

Reserved 0x0A-0x7F
198 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
of the non-volatile memory in these devices from AML, PnP IDs exist for each type of extension.
These are PNP0B00, PNP0B01, and PNP0B02. The specific devices that these PnP IDs support are
described in Section 9.15, “PC/AT RTC/CMOS Device”, along with field definition ASL example
code. The drivers corresponding to these device handle operation region accesses to the CMOS
operation region for their respective device types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-
only.

5.5.2.4.2 PCI Device BAR Target Protocols

This section describes how PCI devices’ control registers can be accessed from ASL. PCI devices
each have an address space associated with them called the Configuration Space. At offset 0x10
through offset 0x27, there are as many as six Base Address Registers, (BARs). These BARs contain
the base address of a series of control registers (in I/O or Memory space) for the PCI device. Since a
Plug and Play OS may change the values of these BARs at any time, ASL cannot read and write
from these deterministically using I/O or Memory operation regions. Furthermore, a Plug and Play
OS will automatically assign ownership of the I/O and Memory regions associated with these BARs
to a device driver associated with the PCI device. An ACPI OS (which must also be a Plug and Play
operating system) will not allow ASL to read and write regions that are owned by native device
drivers.

If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device
driver for the associated PCI function. For example, if any of the BARs in a PCI function are
associated with a PCI BAR Target operation region, then the OS will assume that the PCI function is
to be entirely under the control of the ACPI BIOS. No driver will be loaded. Thus, a PCI function
can be used as a platform controller for some task (hot-plug PCI, and so on) that the ACPI BIOS
performs.

5.5.2.4.2.1 Declaring a PCI BAR Target Operation Region

PCI BARs contain the base address of an I/O or Memory region that a PCI device’s control registers
lie within. Each BAR implements a protocol for determining whether those control registers are
within I/O or Memory space and how much address space the PCI device decodes. (See the PCI
Specification for more details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI
device’s PCI configuration space. The BAR determines whether the actual access to the device
occurs through an I/O or Memory cycle, not by the declaration of the operation region. The length of
the region is similarly implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the
BAR within the configuration space of the device. This would be an example of an operation region
that uses the first BAR in the device.

5.5.2.4.2.2 PCI Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI
Header Type of 0. PCI devices with other header types are bridges. The control of PCI bridges is
beyond the scope of ASL.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 199

ACPI Software Programming Model
5.5.2.4.3 Declaring IPMI Operation Regions

This section describes the Intelligent Platform Management Interface (IPMI) address space and the
use of this address space to communicate with the Baseboard Management Controller (BMC)
hardware from AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPMI
address space represent an IPMI command and response pair. Given this uniqueness, IPMI operation
regions include restrictions on their field definitions and require the use of an IPMI-specific data
buffer for all transactions. The IPMI interface presented in this section is intended for use with any
hardware implementation compatible with the IPMI specification, regardless of the system interface
type.

Support of the IPMI generic address space by ACPI-compatible operating systems is optional, and is
contingent on the existence of an ACPI IPMI device, i.e. a device with the “IPI0001” plug and play
ID. If present, OSPM should load the necessary driver software based on the system interface type as
specified by the _IFT (IPMI Interface Type) control method under the device, and register handlers
for accesses into the IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies a single IPMI network function. Operation regions
are defined only for those IPMI network functions that need to be accessed from AML. As with
other regions, IPMI operation regions are only accessible via the Field term (see Section 5.5.2.4.3.1,
“Declaring IPMI Fields”).

This interface models each IPMI network function as having a 256-byte linear address range. Each
byte offset within this range corresponds to a single command value (for example, byte offset 0xC1
equates to command value 0xC1), with a maximum of 256 command values. By doing this, IPMI
address spaces appear linear and can be processed in a manner similar to the other address space
types.

The syntax for the OperationRegion term (from Section 19.5.96, “OperationRegion (Declare
Operation Region]”) is described below.

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this IPMI network function (for example, “POWR”).

• RegionSpace must be set to IPMI (operation region type value 0x07).

• Offset is a word-sized value specifying the network function and initial command value offset
for the target device. The network function address is stored in the high byte and the command
value offset is stored in the low byte. For example, the value 0x3000 would be used for a device
with the network function of 0x06, and an initial command value offset of zero (0).

• Length is set to the 0x100 (256), representing the maximum number of possible command
values, for regions with an initial command value offset of zero (0). The difference of these two
values is used for regions with non-zero offsets. For example, a region with an Offset value of
0x3010 would have a corresponding Length of 0xF0 (0x100 minus 0x10).
200 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
For example, a Baseboard Management Controller will support power metering capabilities at the
network function 0x30, and IPMI commands to query the BMC device information at the network
function 0x06.

The following ASL code shows the use of the OperationRegion term to describe these IPMI
functions:

Device (IPMI)
{
 Name(_HID, "IPI0001") // IPMI device
 Name(_IFT, 0x1) // KCS system interface type
 OperationRegion(DEVC, IPMI, 0x0600, 0x100) // Device info network function
 OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
 :
}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ IPMI device. This ensures the correct operation region handler will be used, based on the
value returned by the _IFT object. Each definition corresponds to a separate network function, and
happens to use an initial command value offset of zero (0).

5.5.2.4.3.1 Declaring IPMI Fields

As with other regions, IPMI operation regions are only accessible via the Field term. Each field
element is assigned a unique command value and represents a virtual command for the targeted
network function.

The syntax for the Field term (from Section 19.5.40, “Event (Declare Event Synchronization
Object]”) is described below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword - BufferAcc
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously defined for the network function.

• AccessType must be set to BufferAcc. This indicates that access to field elements will be done
using a region-specific data buffer. For this access type, the field handler is not aware of the data
buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination, however,
the buffer is passed bi-directionally to allow data to be returned from write operations. The
modified buffer then becomes the response message of that command. This is slightly different
than the normal case in which the execution result is the same as the value written to the
destination. Note that the source is never changed, since it only represents a virtual register for a
particular IPMI command.

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
BMC via IPMI, and NoLock otherwise.

• UpdateRule is not applicable to IPMI operation regions since each virtual register is accessed in
its entirety. This field is ignored for all IPMI field definitions.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 201

ACPI Software Programming Model
IPMI operation regions require that all field elements be declared at command value granularity.
This means that each virtual register cannot be broken down to its individual bits within the field
definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This
limitation is imposed both to simplify the IPMI interface and to maintain consistency with the
physical model defined by the IPMI specification.

Since the system interface used for IPMI communication is determined by the _IFT object under the
IPMI device, there is no need for using of the AccessAs term within the field definition. In fact its
usage will be ignored by the operation handler.

For example, the register at command value 0xC1 for the power meter network function might
represent the command to set a BMC enforced power limit, while the register at command value
0xC2 for the same network function might represent the current configured power limit. At the same
time, the register at command value 0xC8 might represent the latest power meter measurement.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms to represent
these virtual registers:

OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
Field(POWR, BufferAcc, NoLock, Preserve)
{
 Offset(0xC1), // Skip to command value 0xC1
 SPWL, 8, // Set power limit [command value 0xC1]
 GPWL, 8, // Get power limit [command value 0xC2]
 Offset(0xC8), // Skip to command value 0xC8
 GPMM, 8 // Get power meter measurement [command value 0xC8]
}

Notice that command values are equivalent to the field element’s byte offset (for example,
SPWL=0xC1, GPWL=0xC2, GPMM=0xC8).

5.5.2.4.3.2 Declaring and Using IPMI Request and Response Buffer

Since each virtual register in the IPMI operation region represents an individual IPMI command, and
the operation relies on use of bi-directional buffer, a common buffer structure is required to
represent the request and response messages. The use of a data buffer for IPMI transactions allows
AML to receive status and data length values.

The IPMI data buffer is defined as a fixed-length 66-byte buffer that, if represented using a ‘C’-
styled declaration, would be modeled as follows:

typedef struct
{
 BYTE Status; // Byte 0 of the data buffer
 BYTE Length; // Byte 1 of the data buffer
 BYTE[64]Data; // Bytes 2 through 65 of the data buffer
}

Where:

• Status (byte 0) indicates the status code of a given IPMI command. See Section 5.5.2.4.3.3,
“IPMI Status Code,” for more information.

• Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Valid
Length values are 0 through 64. Before the operation is carried out, this value represents the
202 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
length of the request data buffer. Afterwards, this value represents the length of the result
response data buffer.

• Data (bytes 2-65) represents a 64-byte buffer, and is the location where actual data is stored.
Before the operation is carried out, this represents the actual request message payload.
Afterwards, this represents the response message payload as returned by the IPMI command.

For example, the following ASL shows the use of the IPMI data buffer to carry out a command for a
power function. This code is based on the example ASL presented in Section 5.5.2.4.3.1, “Declaring
IPMI Fields,” which lists the operation region and field definitions for relevant IPMI power
metering commands.

/* Create the IPMI data buffer */

Name(BUFF, Buffer(66){}) // Create IPMI data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LENG) // LENG = Length (Byte)
CreateByteField(BUFF, 0x02, MODE) // MODE = Mode (Byte)
CreateByteField(BUFF, 0x03, RESV) // RESV = Reserved (Byte)

Store(0x2, LENG) // Request message is 2 bytes long
Store(0x1, MODE) // Set Mode to 1

Store(Store(BUFF, GPMM), BUFF) // Write the request into the GPMM command,
 // then read the results

CreateByteField(BUFF, 0x02, CMPC) // CMPC = Completion code (Byte)
CreateWordField(BUFF, 0x03, APOW) // APOW = Average power measurement (Word)

If(LAnd(LEqual(STAT, 0x0), LEqual(CMPC, 0x0))) // Successful?
{
 Return(APOW) // Return the average power measurement
}
Else
{
 Return(Ones) // Return invalid
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status,
Length, and Data), where Data (bytes 2-65) is ‘typecast’ into different fields (including the result
completion code).

The example above demonstrates the use of the Store() operator and the bi-directional data buffer to
invoke the actual IPMI command represented by the virtual register. The inner Store() writes the
request message data buffer to the IPMI operation region handler, and invokes the command. The
outer Store() takes the result of that command and writes it back into the data buffer, this time
representing the response message.

5.5.2.4.3.3 IPMI Status Code

Every IPMI command results in a status code returned as the first byte of the response message,
contained in the bi-directional data buffer. This status code can indicate success, various errors, and
possibly timeout from the IPMI operation handler. This is necessary because it is possible for certain
IPMI commands to take up to 5 seconds to carry out, and since an AML Store() operation is
synchronous by nature, it is essential to make sure the IPMI operation returns in a timely fashion so
as not to block the AML interpreter in the OSPM.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 203

ACPI Software Programming Model
Note: This status code is different than the IPMI completion code, which is returned as the first byte of
the response message in the data buffer payload. The completion code is described in the
complete IPMI specification.

Table 5-115 IPMI Status Codes

5.5.2.4.4 Declaring GeneralPurposeIO Operation Regions

For GeneralPurposeIO Operation Regions, the syntax for the OperationRegion term (from section
Section 19.5.96, “OperationRegion (Declare Operation Region]”) is described below.

OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this GeneralPurposeIO region (for example, “GPI1”).

• RegionSpace must be set to GeneralPurposeIO (operation region type value 0x08).

• Offset is ignored for the GeneralPurposeIO RegionSpace.

• Length is the maximum number of GPIO IO pins to be included in the Operation Region,
rounded up to the next byte.

GeneralPurposeIO OpRegions must be declared within the scope of the GPIO controller device
being accessed.

5.5.2.4.4.1 Declaring GeneralPurposeIO Fields

As with other regions, GeneralPurposeIO operation regions are only accessible via the Field term.
Each field element represents a subset of the length bits declared in the OpRegion declaration. The
pins within the OpRegion that are accessed via a given field name are defined by a Connection
descriptor. The total number of defined field bits following a connection descriptor must equal the
number of pins listed in the descriptor.

The syntax for the Field term (from Section 19.5.46) is described below.
Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously declared.

Status Code Name Description

00h IPMI OK Indicates the command has been successfully completed.

07h IPMI Unknown
Failure

Indicates failure because of an unknown IPMI error.

10h IPMI Command
Operation Timeout

Indicates the operation timed out.
204 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• AccessType must be set to ByteAcc.

• LockRule indicates if access to this operation region requires acquisition of the Global Lock
for synchronization. Note that, on HW-reduced ACPI platforms, this field must be set to
NoLock.

• UpdateRule is not applicable to GeneralPurposeIO operation regions since Preserve is
always required. This field is ignored for all GeneralPurposeIO field definitions.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they
apply to GeneralPurposeIO space.

Device(DEVA) //An Arbitrary Device Scope
 {
 ...//Other required stuff for this device
 Name (GMOD, ResourceTemplate () //An existing GPIO Connection (to be used later)
 {
 //2 Outputs that define the Power mode of the device
 GpioIo (Exclusive, PullDown, , , , "_SB.GPI2") {10, 12}
 })
 } //End DEVA

 Device (GPI2) //The OpRegion declaration, and the _REG method, must be in the controller’s
namespace scope
 {
 ...//Other required stuff for the GPIO controller
 OperationRegion(GPO2, GeneralPurposeIO, 0, 1) // Note: length of 1 means region is (or less
than) 1 byte (8 pins) long
 Method(_REG,2) {} // Track availability of GeneralPurposeIO space
 } //End GPI2

 Device (DEVB) //Access some GPIO Pins from this device scope to change the device's power mode
 {
 ...//Other required stuff for this device
 Name(_DEP, Package() {"_SB.GPI2"}) //OpRegion Dependency hint for OSPM
 Field(_SB.GPI2.GPO2, ByteAcc, NoLock, Preserve)
 {
 Connection (GMOD), // Re-Use an existing connection (defined elsewhere)
 MODE, 2, // Power Mode
 Connection (GpioIo(Exclusive, PullUp, , , , "_SB.GPI2") {7}),
 STAT, 1, // e.g. Status signal from the device
 Connection (GpioIo (Exclusive, PullUp, , , , "_SB.GPI2") {9}),
 RSET, 1 // e.g. Reset signal to the device
 }
 Method(_PS3)
 {
 If (1) // Make sure GeneralPurposeIO Region is available
 {
 Store(0x03, MODE) //Set both MODE bits. Power Mode 3
 }
 }
 } //End DEVB

5.5.2.4.5 Declaring GenericSerialBus Operation Regions

For GenericSerialBus Operation Regions, the syntax for the OperationRegion term (from
Section 19.5.96, “OperationRegion (Declare Operation Region]”) is described below.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 205

ACPI Software Programming Model
OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this region (for example, TOP1).

• RegionSpace must be set to GenericSerialBus (operation region type value 0x09).

• Offset specifies the initial command value offset for the target device. For example, the value
0x00 refers to a command value offset of zero (0). Raw protocols ignore this value.

• Length is set to the 0x100 (256), representing the maximum number of possible command
values.

Note: The Operation Region must be declared within the scope of the Serial Bus controller device.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms as they
apply to SPB space.

Scope(_SB.I2C){
 OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at command
 // offset 0x00

Name (SDB0, ResourceTemplate() {
 I2CSerialBus(0x4a,,100000,,”_SB.I2C”,,,,RawDataBuffer(){1,2,3,4,5,6})
})

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(SDB0) // Use the Resource Descriptor defined above
 AccessAs(BufferAcc, AttribWord) // Use the GenericSerialBus Read/Write Word protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8 // Virtual register at command value 1.
}

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,”_SB.I2C”,,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribBytes (16))
 FLD2, 8 // Virtual register at command value 0.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)
}

The Operation Region in this example is defined within the scope of the target controller device,
I2C.

GenericSerialBus regions are only accessible via the Field term (see Section 19.5.46 “Field (Declare
Field Objects)) GenericSerialBus protocols are assigned to field elements using the AccessAs term
(see Section 19.2.4 “ASL Macros”) within the field definition.
206 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-116 Accsessor Type Values

5.5.2.4.5.1 Declaring GenericSerialBus Fields

As with other regions, GenericSerialBus operation regions are only accessible via the Field term.
Each field element is assigned a unique command value and represents a virtual register on the
targeted GenericSerialBus device.

The syntax for the Field term (see Section 19.5.46 “Field (Declare Field Objects)) is described
below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword – ignored for Hardware-reduced ACPI platforms
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously defined for the device.

• AccessType must be set to BufferAcc. This indicates that access to field elements will be done
using a region-specific data buffer. For this access type, the field handler is not aware of the data
buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination, however,
the buffer is passed bi-directionally to allow data to be returned from write operations. The
modified buffer then becomes the execution result of that operation. This is slightly different
than the normal case in which the execution result is the same as the value written to the
destination. Note that the source is never changed, since it could be a read only object (see
Section 5.5.2.4.5.2, “Declaring an GenericSerialBus Data Buffer” and Section 19.1.5, “Opcode
Terms”).

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
GenericSerialBus, and NoLock otherwise. On Hardware-reduced ACPI platforms, there is not a
global lock so this parameter is ignored.

Accessor Type Value Description

AttribQuick 0x02 Read/Write Quick Protocol

AttribSendReceive 0x04 Send/Receive Byte Protocol

AttribByte 0x06 Read/Write Byte Protocol

AttribWord 0x08 Read/Write Word Protocol

AttribBlock 0x0A Read/Write Block Protocol

AttribBytes 0x0B Read/Write N-Bytes Protocol

AttribProcessCall 0x0C Process Call Protocol

AttribBlockProcessCall 0x0D Write Block-Read Block
Process Call Protocol

AttribRawBytes 0x0E Raw Read/Write N-Bytes
Protocol

AttribRawProcessBytes 0x0F Raw Process Call Protocol
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 207

ACPI Software Programming Model
• UpdateRule is not applicable to GenericSerialBus operation regions since each virtual register is
accessed in its entirety. This field is ignored for all GenericSerialBus field definitions.

GenericSerialBus operation regions require that all field elements be declared at command value
granularity. This means that each virtual register cannot be broken down to its individual bits within
the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This
limitation is imposed to simplify the GenericSerialBus interface.

GenericSerialBus protocols are assigned to field elements using the AccessAs term within the field
definition. The syntax for this term (from Section 19.1.3, “ASL Root and SecondaryTerms”) is
described below.

AccessAs(
 AccessType, //AccessTypeKeyword
 AccessAttribute //Nothing | ByteConst | AccessAttribKeyword
)

Where:

• AccessType must be set to BufferAcc.

• AccessAttribute indicates the GenericSerialBus protocol to assign to command values that
follow this term. SeeSection 5.5.2.4.5.3, “Using the GenericSerialBus Protocols,” for a listing of
the GenericSerialBus protocols.

An AccessAs term must appear in a field definition to set the initial GenericSerialBus protocol for
the field elements that follow. A maximum of one GenericSerialBus protocol may be defined for
each field element. Devices supporting multiple protocols for a single command value can be
modeled by specifying multiple field elements with the same offset (command value), where each
field element is preceded by an AccessAs term specifying an alternate protocol.

For GenericSerialBus operation regions, connection attributes must be defined for each set of field
elements. GenericSerialBus resources are assigned to field elements using the Connection term
within the field definition. The syntax for this term (from Section 19.5.15 “Connection (Declare
Field Connection Attributes)”) is described below.

Connection (ConnectionResourceObj)

Where:

• ConnectionResourceObj points to a Serial Bus Resource Connection Descriptor (see
Section 6.4.3.8.2, “Serial Bus Connection Resource Descriptors” for valid types), or a named
object that specifies a buffer field containing the connection resource information.

Each Field definition references the initial command offset specified in the operation region
definition. The offset is iterated for each subsequent field element defined in that respective Field. If
a new connection is described in the same Field definition, the offset will not be returned to its initial
value and a new Field must be defined to inherit the initial command value offset from the operation
region definition. The following example illustrates this point.
208 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) //Initial offset is 0

Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBus(0x5a,,100000,, "_SB.I2C",,,,RawDataBuffer(){1,6}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBytes (4)),
 TFK1, 8, //TFK1 at command value offset 0
 TFK2, 8 //TFK2 at command value offset 1

 Connection(I2CSerialBus(0x5c,,100000,, "_SB.I2C",,,,RawDataBuffer(){3,1}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBytes (12)),
 TS1, 8 //TS1 at command value offset 2
 }

 Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBus(0x5b,,100000,, "_SB.I2C",,,,RawDataBuffer(){2,9}))
 AccessAs(BufferAcc, AttribByte),
 TM1, 8 //TM1 at command value offset 0
 }

5.5.2.4.5.2 Declaring and Using a GenericSerialBus Data Buffer

The use of a data buffer for GenericSerialBus transactions allows AML to receive status and data
length values, as well as making it possible to implement the Process Call protocol. The BufferAcc
access type is used to indicate to the field handler that a region-specific data buffer will be used.

For GenericSerialBus operation regions, this data buffer is defined as an arbitrary length buffer that,
if represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{
 BYTEStatus; // Byte 0 of the data buffer
 BYTELength; // Byte 1 of the data buffer
 BYTE[x-1]Data; // Bytes 2-x of the arbitrary length data buffer,
 } // where x is the last index of the overall buffer

Where:

• Status (byte 0) indicates the status code of a given GenericSerialBus transaction.

• Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Use of
this field is only defined for the Read/Write Block protocol. For other protocols—where the data
length is implied by the protocol—this field is reserved.

• Data (bytes 2-x) represents an arbitrary length buffer, and is the location where actual data is
stored.

For example, the following ASL shows the use of the GenericSerialBus data buffer for performing
transactions to a Smart Battery device.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 209

ACPI Software Programming Model
/* Create the GenericSerialBus data buffer */
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word – Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, DBUF) // DBUF = Data (Block – Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{

 // DATW = Battery temperature in 1/10th degrees Kelvin
}

/* Read the battery manufacturer name */
Store(MFGN, BUFF) // Invoke Read Blocktransaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // LEN = Length of the manufacturer name
 // DBUF = Manufacturer name (as a counted string)
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status,
Length, and Data), where Data (bytes 2-33) is ‘typecast’ as both word (DATW) and block (DBUF)
data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction
to obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in
a 34-byte buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an
additional Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual(STAT, 0x00)) {…} // Transaction successful?

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is
the nature of BufferAcc’s bi-directionality. It should be noted that storing (or parsing) the result of a
GenericSerialBus Write transaction is not required although useful for ascertaining the outcome of a
transaction.

GenericSerialBus Process Call protocols require similar semantics due to the fact that only
destination operands are passed bi-directionally. These transactions require the use of the double-
Store() semantics to properly capture the return results.

5.5.2.4.5.3 Using the GenericSerialBus Protocols

This section provides information and examples on how each of the GenericSerialBus protocols can
be used to access GenericSerialBus devices from AML.

5.5.2.4.5.3.1 Read/Write Quick (AttribQuick)

The GenericSerialBus Read/Write Quick protocol (AttribQuick) is typically used to control simple
devices using a device-specific binary command (for example, ON and OFF). Command values are
not used by this protocol and thus only a single element (at offset 0) can be specified in the field
definition. This protocol transfers no data.
210 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The following ASL code illustrates how a device supporting the Read/Write Quick protocol should
be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at command value
offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribQuick) // Use the GenericSerialBus Read/Write Quick protocol
 FLD0, 8 // Virtual register at command value 0.
}

/* Create the GenericSerialBus data buffer */

Name(BUFF, Buffer(2){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)

/* Signal device (e.g. OFF) */
Store(FLD0, BUFF) // Invoke Read Quick transaction
If(LEqual(STAT, 0x00)) {…} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLD0) // Invoke Write Quick transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s read/
write bit. Access to FLD0 will cause a GenericSerialBus transaction to occur to the device. Reading
the field results in a Read Quick, and writing to the field results in a Write Quick. In either case data
is not transferred—access to the register is simply used as a mechanism to invoke the transaction.

5.5.2.4.5.3.2 Send/Receive Byte (AttribSendReceive)

The GenericSerialBus Send/Receive Byte protocol (AttribSendReceive) transfers a single byte of
data. Like Read/Write Quick, command values are not used by this protocol and thus only a single
element (at offset 0) can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should
be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at command value
offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribSendReceive) // Use the GenericSerialBus Send/Receive Byte protocol
 FLD0, 8 // Virtual register at command value 0.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(3){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)
// Receive a byte of data from the device
Store(FLD0, BUFF) // Invoke a Receive Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Received byte…
}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 211

ACPI Software Programming Model
// Send the byte ‘0x16’ to the device
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD0) // Invoke a Send Byte transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s data
byte. Access to FLD0 will cause a GenericSerialBus transaction to occur to the device. Reading the
field results in a Receive Byte, and writing to the field results in a Send Byte.

5.5.2.4.5.3.3 Read/Write Byte (AttribByte)

The GenericSerialBus Read/Write Byte protocol (AttribByte) also transfers a single byte of data.
But unlike Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized
virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at command value
offset
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribByte) // Use the GenericSerialBus Read/Write Byte protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(3){})
// Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Read a byte of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Byte read from FLD1…
}

// Write the byte ‘0x16’ to the device using command value 2
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause a
GenericSerialBus transaction to occur to the device. Reading FLD1 results in a Read Byte with a
command value of 1, and writing to FLD2 results in a Write Byte with command value 2.

5.5.2.4.5.3.4 Read/Write Word (AttribWord)

The GenericSerialBus Read/Write Word protocol (AttribWord) transfers 2 bytes of data. This
protocol also uses a command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should
be accessed:
212 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at command value
offset 0
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribWord)// Use the GenericSerialBus Read/Write Word protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Read two bytes of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word read from FLD1…
}
// Write the word ‘0x5416’ to the device using command value 2
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause a
GenericSerialBus transaction to occur to the device. Reading FLD1 results in a Read Word with a
command value of 1, and writing to FLD2 results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are
listed as 8 bits each. The actual data size is determined by the protocol. Every field element is
declared with a length of 8 bits so that command values and byte offsets are equivalent.

5.5.2.4.5.3.5 Read/Write Block (AttribBlock)

The GenericSerialBus Read/Write Block protocol (AttribBlock) transfers variable-sized data. This
protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Block protocol should
be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBlock),
 TFK1, 8,
 TFK2, 8
}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 213

ACPI Software Programming Model
// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateBytefield(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x03, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-33)
CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

// Read block of data from the device using command value 0
Store(TFK1, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}
// Read block of data from the device using command value 1
Store(TFK2, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

In this example, two field elements (TFK1, and TFK2) are defined to represent the virtual registers
for command values 0 and 1. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device.

Writing blocks of data requires similar semantics, such as in the following example.

Store(16, LEN) // In bits, so 4 bytes
Store(Store(BUFF, TFK1), BUFF) // Invoke Write Block transaction
If(LEqual(STAT, 0x00)) {…} // Transaction successful?

This accessor is not viable for some SPBs because the bus may not support the appropriate
functionality. In cases that variable length buffers are desired but the bus does not support block
accessors, refer to the SerialBytes protocol.

5.5.2.4.5.3.6 Word	Process	Call	(AttribProcessCall)

The GenericSerialBus Process Call protocol (AttribProcessCall) transfers 2 bytes of data bi-
directionally (performs a Write Word followed by a Read Word as an atomic transaction). This
protocol uses a command value to reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at slave address
0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribProcessCall) // Use the GenericSerialBus Process Call protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(6){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)
214 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
// Process Call with input value ‘0x5416’ to the device using command value 1
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word returned from FLD1…
}

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause a
GenericSerialBus transaction to occur to the device. Reading or writing FLD1 results in a Process
Call with a command value of 1. Notice that unlike other protocols, Process Call involves both a
write and read operation in a single atomic transaction. This means that the Data element of the
GenericSerialBus data buffer is set with an input value before the transaction is invoked, and holds
the output value following the successful completion of the transaction.

5.5.2.4.5.3.7 Block Process Call (AttribBlockProcessCall)

The GenericSerialBus Block Write-Read Block Process Call protocol (AttribBlockProcessCall)
transfers a block of data bi-directionally (performs a Write Block followed by a Read Block as an
atomic transaction). This protocol uses a command value to reference up to 256 block-sized virtual
registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at slave address
0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribBlockProcessCall) // Use the Block Process Call protocol
 FLD0, 8, // Virtual register representing a command value of 0
 FLD1, 8 // Virtual register representing a command value of 1
}

// Create the GenericSerialBus data buffer as BUFF
Name(BUFF, Buffer(35)()) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

// Process Call with input value "ACPI" to the device using command value 1

Store("ACPI", DATA) // Fill in outgoing data
Store(8, LEN) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{

// BUFF now contains information returned from PC
// LEN now equals size of data returned

}

5.5.2.4.5.3.8 Read/Write N Bytes (AttribBytes)

The GenericSerialBus Read/Write N Bytes protocol (AttribBytes) transfers variable-sized data. The
actual number of bytes to read or write is specified as part of the AccessAs attribute.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 215

ACPI Software Programming Model
The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol
should be accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 Offset(0x0),
 AccessAs(BufferAcc, AttribBytes (4)),
 TFK1, 8, //TFK1 at command value 0
 TFK2, 8, //TFK2 at command value 1

 Connection(I2CSerialBus(0x5b,,100000,,"_SB.I2C",,,,RawDataBuffer(){2,9}))
 // same connection attribute, but different vendor data passed to driver
 AccessAs(BufferAcc, AttribByte)
 TM1, 8 //TM1 at command value 2
 }

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateBytefield(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)
CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

// Read block of data from the device using command value 0
Store(TFK1, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

// Write block of data to the device using command value 1
Store(Store(BUFF,TFK2), BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

In this example, two field elements (TFK1, and TFK2) are defined to represent the virtual registers
for command values 0 and 1. Access to any of the field elements will cause a GenericSerialBus
transaction to occur to the device of the length specified in the AccessAttributes.

5.5.2.4.5.3.9 Raw Read/Write N Bytes (AttribRawBytes)

The GenericSerialBus Raw Read/Write N Bytes protocol (AttribRawBytes) transfers variable-sized
data. The actual number of bytes to read or write is specified as part of the AccessAs attribute. The
initial command value specified in the operation region definition is ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Read/Write N Bytes protocol
should be accessed:
216 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)
Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribRawBytes (4))
 TFK1, 8
 }

// Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create SerialBus buf as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF, 0x02, DATW) // DATW = Data (Word - Bytes 2 & 3, or 16 bits)
CreateField(BUFF, 16, 256, DBUF) // DBUF = Data (Bytes 2-34)
CreateField(BUFF, 16, 32, DATD) // DATD = Data (DWord)

Store(0x0B,DATW) //Store appropriate reference data for driver to interpret

//Read from TFK1
Store(TFK1, BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

//Write to TFK1
Store(Store(BUFF,TFK1), BUFF)
If(LNotEqual(STAT, 0x00)) {
 Return(0)
}

Access to any field elements will cause a GenericSerialBus transaction to occur to the device of the
length specified in the AccessAttributes.

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the
device that is being accessed. The protocol may only ensure that the buffer is transmitted to the
appropriate driver, but the driver must be able to interpret the buffer to communicate to a register.

5.5.2.4.5.3.10 Raw Block Process Call (AttribRawProcessBytes)

The GenericSerialBus Raw Write-Read Block Process Call protocol (AttribRawProcessBytes)
transfers a block of data bi-directionally (performs a Write Block followed by a Read Block as an
atomic transaction). The initial command value specified in the operation region definition is
ignored by Raw accesses.

The following ASL code illustrates how a device supporting the Process Call protocol should be
accessed:

OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at slave address
0x42
Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5a,,100000,,"_SB.I2C",,,,RawDataBuffer(){1,6}))
 AccessAs(BufferAcc, AttribRawProcessBytes) // Use the Raw Bytes Process Call protocol
 FLD0, 8
}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 217

ACPI Software Programming Model
// Create the GenericSerialBus data buffer as BUFF
Name(BUFF, Buffer(34)()) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LEN) // LEN = Length (Byte)
CreateWordField(BUFF,0x02, DATW) // Data (Bytes 2 and 3)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

Store(0x0B,DATW) //Store appropriate reference data for driver to interpret

// Process Call with input value "ACPI" to the device

Store("ACPI", DATA) // Fill in outgoing data
Store(8, LEN) // Length of the valid data
Store(Store(BUFF, FLD0), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{
 // BUFF now contains information returned from PC
 // LEN now equals size of data returned
}

Raw accesses assume that the writer has knowledge of the bus that the access is made over and the
device that is being accessed. The protocol may only ensure that the buffer is transmitted to the
appropriate driver, but the driver must be able to interpret the buffer to communicate to a register.

5.6 ACPI Event Programming Model
The ACPI event programming model is based on the SCI interrupt and General-Purpose Event
(GPE) register. ACPI provides an extensible method to raise and handle the SCI interrupt, as
described in this section.

Hardware-reduced ACPI platforms (Section 4.1) use GPIO Interrupt Connections to signal ACPI
Events, described in Section 5.6.5.

5.6.1 ACPI Event Programming Model Components
The components of the ACPI event programming model are the following:

• OSPM

• FADT

• PM1a_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks

• GPE0_BLK and GPE1_BLK register blocks

• GPE register blocks defined in GPE block devices

• SCI interrupt

• ACPI AML code general-purpose event model

• ACPI device-specific model events

• ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following
table.
218 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-117 ACPI Event Programming Model Components

5.6.2 Types of ACPI Events
At the ACPI hardware level, two types of events can be signaled by an SCI interrupt:

• Fixed ACPI events

• General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system.
And, as in the case of the embedded controller, a well-defined second-level event dispatching is
defined to make a third type of typical ACPI event. For the flexibility common in today’s designs,
two first-level general-purpose event blocks are defined, and the embedded controller construct
allows a large number of embedded controller second-level event-dispatching tables to be supported.
Then if needed, the OEM can also build additional levels of event dispatching by using AML code
on a general-purpose event to sub-dispatch in an OEM defined manner.

Component Description

OSPM Receives all SCI interrupts raised (receives all SCI events). Either handles the
event or masks the event off and later invokes an OEM-provided control method to
handle the event. Events handled directly by OSPM are fixed ACPI events;
interrupts handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks on an ACPI-
compatible platform: PM1x_STS and PM1x_EN fixed registers and the GPEx_STS
and GPEx_EN fixed registers.

PM1x_STS and
PM1x_EN fixed
registers

PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit is set, if the
matching PM1x_EN bit is set, the ACPI SCI event is raised.

GPEx_STS and
GPEx_EN fixed
registers

GPEx_STS bits that raise general-purpose events. For every event bit
implemented in GPEx_STS, there must be a comparable bit in GPEx_EN. Up to
256 GPEx_STS bits and matching GPEx_EN bits can be implemented. While a
GPEx_STS bit is set, if the matching GPEx_EN bit is set, then the general-purpose
SCI event is raised.

SCI interrupt A level-sensitive, shareable interrupt mapped to a declared interrupt vector. The
SCI interrupt vector can be shared with other low-priority interrupts that have a low
frequency of occurrence.

ACPI AML code
general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events. This includes using
GPEx_STS events as “wake” sources as well as other general service events
defined by the OEM (“button pressed,” “thermal event,” “device present/not present
changed,” and so on).

ACPI device-specific
model events

Devices in the ACPI namespace that have ACPI-specific device IDs can provide
additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.

ACPI Embedded
Controller event model

A model that allows OEM AML code to use the response from the Embedded
Controller Query command to provide general-service event defined by the OEM.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 219

ACPI Software Programming Model
5.6.3 Fixed Event Handling
When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see Section 4,
“ACPI Hardware Specification.”

Table 5-118 Fixed ACPI Events

5.6.4 General-Purpose Event Handling
When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or
uses an OEM-supplied control method to handle the event. An OEM can implement up to 128
general-purpose event inputs in hardware per GPE block, each as either a level or edge event. It is
also possible to implement a single 256-pin block as long as it’s the only block defined in the
system.

Event Comment

Power
management
timer carry bit
set.

For more information, see the description of the TMR_STS and TMR_EN bits of the PM1x
fixed register block in Section 4.8.3.1, “PM1 Event Grouping,” as well as the TMR_VAL
register in the PM_TMR_BLK in Section 4.8.3.3, “Power Management Timer.”

Power button
signal

A power button can be supplied in two ways. One way is to simply use the fixed status bit,
and the other uses the declaration of an ACPI power device and AML code to determine
the event. For more information about the alternate-device based power button, see
Section 4.8.2.2.1.2, Control Method Power Button.”
Notice that during the S0 state, both the power and sleep buttons merely notify OSPM
that they were pressed.
If the system does not have a sleep button, it is recommended that OSPM use the power
button to initiate sleep operations as requested by the user.

Sleep button
signal

A sleep button can be supplied in one of two ways. One way is to simply use the fixed
status button. The other way requires the declaration of an ACPI sleep button device and
AML code to determine the event.

RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month granularity. The
ACPI status bit for the device is optional. If the ACPI status bit is not present, the RTC
status can be used to determine when an alarm has occurred. For more information, see
the description of the RTC_STS and RTC_EN bits of the PM1x fixed register block in
Section 4.8.3.1, “PM1 Event Grouping.”

Wake status The wake status bit is used to determine when the sleeping state has been completed.
For more information, see the description of the WAK_STS and WAK_EN bits of the
PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”

System bus
master request

The bus-master status bit provides feedback from the hardware as to when a bus master
cycle has occurred. This is necessary for supporting the processor C3 power savings
state. For more information, see the description of the BM_STS bit of the PM1x fixed
register block in Section 4.8.3.1, “PM1 Event Grouping.”

Global release
status

This status is raised as a result of the Global Lock protocol, and is handled by OSPM as
part of Global Lock synchronization. For more information, see the description of the
GBL_STS bit of the PM1x fixed register block in Section 4.8.3.1, “PM1 Event Grouping.”
For more information on Global Lock, see Section 5.2.10.1, “Global Lock.”
220 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
An example of a general-purpose event is specified in Section 4, “ACPI Hardware Specification,”
where EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPI-aware
embedded controller device driver. The EC_STS bit is set when either an interface in the embedded
controller space has generated an interrupt or the embedded controller interface needs servicing.
Notice that if a platform uses an embedded controller in the ACPI environment, then the embedded
controller’s SCI output must be directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and
enable bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded
controller space). For more information, see the specification of the General-Purpose Event Blocks
(GPEx_BLK) in Section 4.8.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not
directly known and is connected into the system by control methods. When OSPM receives a
general-purpose event (the event is from a GPEx_BLK STS bit), OSPM does the following:

1. Disables the interrupt source (GPEx_BLK EN bit).

2. If an edge event, clears the status bit.

3. Performs one of the following:

• Dispatches to an ACPI-aware device driver.

• Queues the matching control method for execution.

• Manages a wake event using device _PRW objects.

4. If a level event, clears the status bit.

5. Enables the interrupt source.

For OSPM to manage the bits in the GPEx_BLK blocks directly:

• Enable bits must be read/write.

• Status bits must be latching.

• Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing
The OEM AML code can perform OEM-specific functions custom to each event the particular
platform might generate by executing a control method that matches the event. For GPE events,
OSPM will execute the control method of the name _GPE._TXX where XX is the hex value format
of the event that needs to be handled and T indicates the event handling type (T must be either ‘E’ for
an edge event or ‘L’ for a level event). The event values for status bits in GPE0_BLK start at zero
(_T00) and end at the (GPE0_BLK_LEN / 2) - 1. The event values for status bits in GPE1_BLK start
at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN / 2) - 1. GPE0_BLK_LEN,
GPE1_BASE, and GPE1_BLK_LEN are all defined in the FADT.

The _Qxx methods are used for the Embedded Controller and SMBus (below.)

5.6.4.1.1 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which
control method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits
in the GPEx_BLK are indexed with a number from 0 through FF. The name of the control method to
queue for an event raised from an enable status bit is always of the form _GPE._Txx where xx is the
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 221

ACPI Software Programming Model
event value and T indicates the event EOI protocol to use (either ‘E’ for edge triggered, or ‘L’ for
level triggered). The event values for status bits in GPE0_BLK start at zero (_T00), end at the
(GPE0_BLK_LEN / 2) - 1, and correspond to each status bit index within GPE0_BLK. The event
values for status bits in GPE1_BLK are offset by GPE_BASE and therefore start at GPE1_BASE
and end at GPE1_BASE + (GPE1_BLK_LEN / 2) - 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPE0_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be
a Method declaration that uses the name _GPE._L04 or \GPE._E04 to handle the event. An example
of a control method declaration using such a name is the following:

Method (_GPE._L04) { // GPE 4 level wake handler
 Notify (_SB.PCIO.COM0, 2)
}

The control method performs whatever action is appropriate for the event it handles. For example, if
the event means that a device has appeared in a slot, the control method might acknowledge the
event to some other hardware register and signal a change notify request of the appropriate device
object. Or, the cause of the general-purpose event can result from more then one source, in which
case the control method for that event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the
embedded controller driver uses another naming convention defined by ACPI for the embedded
controller driver to determine which control method to queue for execution. The queries that the
embedded controller driver exchanges with the embedded controller are numbered from 0 through
FF, yielding event codes 01 through FF. (A query response of 0 from the embedded controller is
reserved for “no outstanding events.”) The name of the control method to queue is always of the
form _Qxx where xx is the number of the query acknowledged by the embedded controller. An
example declaration for a control method that handles an embedded controller query is the
following:

Method(_Q34) { // embedded controller event for thermal
 Notify (_SB.TZ0.THM1, 0x80)
}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution.
When an alarm is received by the SMBus host controller, it generally receives the SMBus address of
the device issuing the alarm and one word of data. On implementations that use SMBALERT# for
notifications, only the device address will be received. The name of the control method to queue is
always of the form _Qxx where xx is the SMBus address of the device that issued the alarm. The
SMBus address is 7 bits long corresponding to hex values 0 through 7F, although some addresses are
reserved and will not be used. The control method will always be queued with one argument that
contains the word of data received with the alarm. An exception is the case of an SMBus using
SMBALERT# for notifications, in this case the argument will be 0. An example declaration for a
control method that handles a SMBus alarm follows:
222 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Method(_Q18, 1) { // Thermal sensor device at address 0011 000

 // Arg0 contains notification value (if any)
 // Arg0 = 0 if device supports only SMBALERT#

 Notify (_SB.TZ0.THM1, 0x80)
}

5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the
device. Such GPEs are dispatched to native OS code to be handled and not to the corresponding
GPE-specific control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for
its device. This driver services the embedded controller device and determines when events are to be
reported by the embedded controller by using the Query command. When an embedded controller
event occurs, the ACPI-aware driver dispatches the requests to other ACPI-aware drivers that have
registered to handle the embedded controller queries or queues control methods to handle each
event. If there is no device driver to handle specific queries, OEM AML code can perform OEM-
specific functions that are customized to each event on the particular platform by including specific
control methods in the namespace to handle these events. For an embedded controller event, OSPM
will queue the control method of the name _QXX, where XX is the hex format of the query code.
Notice that each embedded controller device can have query event control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will
queue control methods to handle these. Methods must be placed under the SMBus device with the
name _QXX where XX is the hex format of the SMBus address of the device sending the alarm.

5.6.4.2 GPE Wake Events
An important use of the general-purpose events is to implement device wake events. The
components of the ACPI event programming model interact in the following way:

• When a device asserts its wake signal, the general-purpose status event bit used to track that
device is set.

• While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

• If the system is sleeping, this will cause the hardware, if possible, to transition the system into
the S0 state.

• Once the system is running, OSPM will dispatch the corresponding GPE handler.

• The handler needs to determine which device object has signaled wake and performs a wake
Notify

• command on the corresponding device object(s) that have asserted wake.

• In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to
service it.

Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input.
The only exception to this rule is made for the special devices below. Only the following devices are
allowed to utilize a single GPE for both wake and runtime events:

1. 1) Button Devices
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 223

ACPI Software Programming Model
• PNP0C0C — Power Button Device

• PNP0C0D — Lid Device

• PNP0C0E — Sleep Button Device

2. 2) PCI Bus Wakeup Event Reporting (PME)

• PNP0A03 — PCI Host Bridge

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for
multiple wake events) must have individual enable and status bits in order to properly handle the
semantics used by the system.

5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects
A device’s _PRW object provides the zero-based bit index into the general-purpose status register
block to indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as
the specific device’s wake mask. Although the hardware must maintain individual device wake
enable bits, the system can have multiple devices using the same general-purpose event bit by using
OEM-specific hardware to provide second-level status and enable bits. In this case, the OEM AML
code is responsible for the second-level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE
and by executing its _PSW control method (which is used to take care of the second-level enables).
When the GPE is asserted, OSPM still executes the corresponding GPE control method that
determines which device wakes are asserted and notifies the corresponding device objects. The
native OS driver is then notified that its device has asserted wake, for which the driver powers on its
device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition
the system into the S0 state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control Methods

After a transition to the S0 state, OSPM may evaluate the _SWS object in the _GPE scope to
determine the index of the GPE that was the source of the transition event. When a single GPE is
shared among multiple devices, the platform provides a _Wxx control method, where xx is GPE
index as described in Section 5.6.2.2.3, that allows the source device of the transition to be
determined . If implemented, the _Wxx control method must exist in the _GPE scope or in the scope
of a GPE block device.

If _Wxx is implemented, either hardware or firmware must detect and save the source device as
described in Section 7.3.5, “_SWS (System Wake Source)”. During invocation, the _Wxx control
method determines the source device and issues a Notify(<device>,0x2) on the device that caused
the system to transition to the S0 state. If the device uses a bus-specific method of arming for
wakeup, then the Notify must be issued on the parent of the device that has a _PRW method. The
_Wxx method must issue a Notify(<device>,0x2) only to devices that contain a _PRW method
within their device scope. OSPM’s evaluation of the _SWS and _Wxx objects is indeterminate. As
such, the platform must not rely on _SWS or _Wxx evaluation to clear any hardware state, including
GPEx_STS bits, or to perform any wakeup-related actions.

If the GPE index returned by the _SWS object is only referenced by a single _PRW object in the
system, it is implied that the device containing that _PRW is the wake source. In this case, it is not
necessary for the platform to provide a _Wxx method.
224 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.6.5 GPIO-signaled ACPI Events
On Hardware-reduced ACPI platforms, ACPI events are signaled when a GPIO Interrupt is received
by OSPM, and that GPIO Interrupt Connection is listed in a GPIO controller device’s _AEI object.
OSPM claims all such GPIO interrupts, and maps them to the appropriate event method required by
the ACPI event model.

5.6.5.1 Declaring GPIO Controller Devices
A GPIO controller is modeled as a device in the namespace, with _HID or _ADR and _CRS objects,
at a minimum. Optionally, the GPIO controller device scope may include GeneralPurposeIO
OpRegion declarations (Section 5.5.2.4.4) and GPIO interrupt-to-ACPI Event mappings
(Section 5.6.5.2). Note that for GPIO-signaled ACPI events, the corresponding event method (e.g.
_Exx, _Lxx, or _EVT) must also appear in the target GPIO controller’s scope. For GPIO event
numbers larger than 255 (0xFF), the _EVT method is used.

Each pin on a GPIO Controller has a configuration (e.g. level-sensitive interrupt, de-bounced input,
high-drive output, etc.), which is described to OSPM in the GPIO Interrupt or GPIO IO Connection
resources claimed by peripheral devices or used in operation region accesses.

5.6.5.2 _AEI Object
The _AEI object designates those GPIO interrupts that shall be handled by OSPM as ACPI events
(See Section 5.6.5). This object appears within the scope of the GPIO controller device whose pins
are to be used as GPIO-signaled events.

Arguments:

None

Return Value:

A resource template Buffer containing only GPIO Interrupt Connection descriptors.

Example:

 Device (_SB.GPI2)
 {
 Name(_HID, “XYZ0003”)
 Name(_UID, 2) //Third instance of this controller on the platform
 Name(_CRS, ResourceTemplate ()
 {
 //Register Interface
 MEMORY32FIXED(ReadWrite, 0x30000000, 0x200,)
 //Interrupt line (GSIV 21)
 Interrupt(ResourceConsumer, Level, ActiveHigh, Exclusive) {21}
 })
 Name(_AEI, ResourceTemplate ()
 {
 //Thermal Zone Event
 GpioInt(Edge, ActiveHigh, Exclusive, PullDown, , " _SB.GPI2") {14}
 //Power Button
 GpioInt(Edge, ActiveLow, ExclusiveAndWake, PullUp, , " _SB.GPI2") {36}
 })
 }
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 225

ACPI Software Programming Model
5.6.5.3 The Event (_EVT) Method for Handling GPIO-signaled Events
GPIO Interrupt Connection Descriptors assign GPIO pins a controller-relative, 0-based pin number.
GPIO Pin numbers can be as large as 65, 535. GPIO Interrupt Connections that are assigned by the
platform to signal ACPI events are listed in the _AEI object under the GPIO controller. Since the
GPIO interrupt connection descriptor also provides the mode of the interrupt associated with an
event, it gives OSPM all the information it needs to invoke a handler method for the event. No
naming convention is required to encode the mode and pin number of the event. Instead, a handler
for a GPIO-signaled event simply needs to have a well-known name and take the pin number of the
event as a parameter. A single instance of the method handles all ACPI events for a given GPIO
controller device.

 For GPIO-signaled events, the Event (_EVT) method is used.

_EVT is defined as follows:

Arguments: (1)

Arg1 - EventNumber. An Integer indicating the event number (Controller-relative zero-based GPIO
pin number) of the current event. Must be in the range 0x0000 - 0xffff.

Return Value:

None

Description
The _EVT method handles a GPIO-signaled event. It must appear within the scope of the GPIO
controller device whose pins are used to signal the event.

OSPM handles GPIO-signaled events as follows:

• The GPIO interrupt is handled by OSPM because it is listed in the _AEI object under a GPIO
controller.

• When the event fires, OSPM handles the interrupt according to its mode and invokes the _EVT
method, passing it the pin number of the event.

• From this point on, handling is exactly like that for GPEs. The _EVT method does a Notify() on
the appropriate device, and OS-specific mechanisms are used to notify the driver of the event.
226 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: For event numbers less than 255, _Exx and _Lxx methods may be used instead. In this case, they
take precedence and _EVT will not be invoked.

Example:
Scope (_SB.GPI2)
{

Method (_EVT) { // Handle all ACPI Events signaled by GPIO Controller GPI2

 Switch (Arg1)
 {
 Case (300) {
 …
 Notify (_SB.DEVX, 0x80)
 }
 Case (1801) {
 …
 Notify (_SB.DEVY, 0x80)
 }
 Case (14…) {
 …
 Notify (_SB.DEVZ, 0x80)
 }
 …
 }
} //End of Method
} //End of Scope

5.6.6 Device Object Notifications
During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal
zone, or processor object and a notification value that signifies the purpose of the notification.
Notification values from 0 through 0x7F are common across all device object types. Notification
values of 0xC0 and above are reserved for definition by hardware vendors for hardware specific
notifications. Notification values from 0x80 to 0xBF are device-specific and defined by each such
device. For more information on the Notify operator, see Section 19.5.91, “Notify (Notify).”

Table 5-119 Device Object Notification Values

Value Description

0 Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform a Plug and Play re-enumeration operation on the device tree starting from
the point where it has been notified. OSPM will typically perform a full enumeration
automatically at boot time, but after system initialization it is the responsibility of the ACPI
AML code to notify OSPM whenever a re-enumeration operation is required. The more
accurately and closer to the actual change in the device tree the notification can be done, the
more efficient the operating system’s response will be; however, it can also be an issue
when a device change cannot be confirmed. For example, if the hardware cannot recognize
a device change for a particular location during a system sleeping state, it issues a Bus
Check notification on wake to inform OSPM that it needs to check the configuration for a
device change.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 227

ACPI Software Programming Model
Below are the notification values defined for specific ACPI devices. For more information
concerning the object-specific notification, see the section on the corresponding device/object.

1 Device Check. Used to notify OSPM that the device either appeared or disappeared. If the
device has appeared, OSPM will re-enumerate from the parent. If the device has
disappeared, OSPM will invalidate the state of the device. OSPM may optimize out re-
enumeration. If _DCK is present, then Notify(object,1) is assumed to indicate an undock
request. If the device is a bridge, OSPM may re-enumerate the bridge and the child bus.

2 Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needs to notify OSPM native device driver for the device. This is only used for
devices that support _PRW.

3 Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM
needs to perform the Plug and Play ejection operation. OSPM will run the _EJx method.

4 Device Check Light. Used to notify OSPM that the device either appeared or disappeared.
If the device has appeared, OSPM will re-enumerate from the device itself, not the parent. If
the device has disappeared, OSPM will invalidate the state of the device.

5 Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the
bus. For example, this would be used if a user tried to hot-plug a 33 MHz PCI device into a
slot that was on a bus running at greater than 33 MHz.

6 Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or
bay that cannot support the device in its current mode of operation. For example, this would
be used if a user tried to hot-plug a PCI device into a slot that was on a bus running in PCI-X
mode.

7 Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state
because of a power fault.

8 Capabilities Check. This notification is performed on a device object to indicate to OSPM
that it needs to re-evaluate the _OSC control method associated with the device.

9 Device _PLD Check. Used to notify OSPM to reevaluate the _PLD object, as the Device’s
connection point has changed.

0xA Reserved.

0xB System Locality Information Update. Dynamic reconfiguration of the system may cause
existing relative distance information to change. The platform sends the System Locality
Information Update notification to a point on a device tree to indicate to OSPM that it needs
to invoke the _SLI objects associated with the System Localities on the device tree starting
from the point notified.

0x0C Graceful Shutdown Request. Used to notify OSPM that a graceful shutdown of the
operating system has been requested. Once the operating system has finished its graceful
shutdown procedure it should initiate a transition to the G2 "soft off" state. See Section 6.3.5
for a description of shutdown processing.

0x0D-0x7F Reserved.

Value Description
228 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-120 Control Method Battery Device Notification Values

Table 5-121 Power Source Object Notification Values

Table 5-122 Thermal Zone Object Notification Values

Table 5-123 Control Method Power Button Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery device
information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.

0x83-0xBF Reserved.

Hex value Description

0x80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.

0x81 Power Source Information Changed. Used to notify OSPM that the power source
information has changed.

0x82-0xBF Reserved.

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone temperature
has changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip points
have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx,
_PSL, _TZD) have changed.

0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that values
in the either the thermal relationship table or the active cooling relationship table have
changed.

0x84-0xBF Reserved.

Hex value Description

0x80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the system is
in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 229

ACPI Software Programming Model
Table 5-124 Control Method Sleep Button Notification Values

Table 5-125 Control Method Lid Notification Values

Table 5-126 Processor Device Notification Values

Table 5-127 User Presence Device Notification Values

Table 5-128 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the system is
in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.

0x81-0xBF Reserved.

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to re-
evaluate the _PPC object. See Section 8 “Processor Configuration and Control,” for more
information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor C
States has changed. This notification causes OSPM to re-evaluate the _CST object. See
Section 8, “Processor Configuration and Control,” for more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the _TPC object. See Section 8, “Processor Configuration and Control,” for more
information.

0x83-0xBF Reserved.

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user presence
has occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF Reserved.

Hex value Description

0x80 ALS Illuminance Changed. Used to notify OSPM that a meaningful change in ambient light
illuminance has occurred, causing OSPM to re-evaluate the _ALI object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in
ambient light color temperature or chromaticity has occurred, causing OSPM to re-evaluate
the _ALT and/or _ALC objects.
230 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 5-129 Power Meter Object Notification Values

Table 5-130 Fan Device Notification Values

Table 5-131 Memory Device Notification Values

5.6.7 Device Class-Specific Objects
Most device objects are controlled through generic objects and control methods and they have
generic device IDs. These generic objects, control methods, and device IDs are specified in
Section 6, through Section 11 . Section 5.6.8, “Predefined ACPI Names for Objects, Methods, and
Resources,” lists all the generic objects and control methods defined in this specification.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF Reserved.

Hex value Description

0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter information
has changed.

0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter trip
points has been crossed.

0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit has
been changed by the platform.

0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit has
been enforced by the platform.

0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power averaging
interval has changed.

0x85-0xBF Reserved.

Hex value Description

0x80 Low Fan Speed. Used to notify OSPM of a low (errant) fan speed. Causes OSPM to re-
evaluate the _FSL object.

0x81-0xBF Reserved.

Hex value Description

0x80 Memory Bandwidth Low Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been reduced by the platform to less than the
low memory bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been increased by the platform to greater than
or equal to the high memory bandwidth threshold.

0x82-0xBF Reserved.

Hex value Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 231

ACPI Software Programming Model
However, certain integrated devices require support for some device-specific ACPI controls. This
section lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that
represent these devices. The table below lists the Plug and Play IDs defined by the ACPI
specification.

Note: Plug and Play IDs that are not defined by the ACPI specification are defined and described in the
ACPI Link Document under the heading "Legacy PNP Guidelines".

Table 5-132 ACPI Device IDs

Plug and
Play ID

Description

PNP0C08 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware
resources consumed by the ACPI fixed register spaces, and the operation regions used by
AML code. It represents the core ACPI hardware itself.

PNP0A05 Generic Container Device. A device whose settings are totally controlled by its ACPI
resource information, and otherwise needs no device or bus-specific driver support. This was
originally known as Generic ISA Bus Device. This ID should only be used for containers that
do not produce resources for consumption by child devices. Any system resources claimed
by a PNP0A05 device’s _CRS object must be consumed by the container itself.

PNP0A06 Generic Container Device. This device behaves exactly the same as the PNP0A05 device.
This was originally known as Extended I/O Bus. This ID should only be used for containers
that do not produce resources for consumption by child devices. Any system resources
claimed by a PNP0A06 device’s _CRS object must be consumed by the container itself.

PNP0C09 Embedded Controller Device. A host embedded controller controlled through an ACPI-
aware driver.

PNP0C0A Control Method Battery. A device that solely implements the ACPI Control Method Battery
functions. A device that has some other primary function would use its normal device ID. This
ID is used when the devices primary function is that of a battery.

PNP0C0B Fan. A device that causes cooling when “on” (D0 device state).

PNP0C0C Power Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is only needed if the power button is not supported
using the fixed register space.

PNP0C0D Lid Device. A device controlled through an ACPI-aware driver that provides lid status
functionality. This device is only needed if the lid state is not supported using the fixed
register space.

PNP0C0E Sleep Button Device. A device controlled through an ACPI-aware driver that provides power
button functionality. This device is optional.

PNP0C0F PCI Interrupt Link Device. A device that allocates an interrupt connected to a PCI interrupt
pin. See Section 6., “Device Configuration,” for more details.

PNP0C80 Memory Device. This device is a memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the
embedded controller-based SMB-HC interface (as specified in Section 12.9 “SMBus Host
Controller Interface via Embedded Controller”) and implementing the SMBus 1.0
Specification.
232 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources
The following table summarizes the predefined names for the ACPI namespace objects, control
methods, and resource descriptor fields defined in this specification. Provided for each name is a
short description and a reference to the section number and page number of the actual definition of
the name. ACPI names that are predefined by other specifications are also listed along with their
corresponding specification reference.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in Section 10, “Power
Source Devices.”

ACPI0003 Power Source Device. The Power Source device specified in Section 10, “Power Source
Devices.” This can represent either an AC Adapter (on mobile platforms) or a fixed Power
Supply.

ACPI0004 Module Device. This device is a container object that acts as a bus node in a namespace. A
Module Device without any of the _CRS, _PRS and _SRS methods behaves the same way
as the Generic Container Devices (PNP0A05 or PNP0A06). If the Module Device contains a
_CRS method, only these resources described in the _CRS are available for consumption by
its child devices. Also, the Module Device can support _PRS and _SRS methods if _CRS is
supported.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the
embedded controller-based SMB-HC interface (as specified in Section 12.9, “SMBus Host
Controller Interface via Embedded Controller”) and implementing the SMBus 2.0
Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks beyond
the two that are described in the FADT.

ACPI0007 Processor Device. This device provides an alternative to declaring processors using the
Processor ASL statement. See Section 8.4, “Declaring Processors”, for more details.

ACPI0008 Ambient Light Sensor Device. This device is an ambient light sensor. See Section 9.2,
“Ambient Light Sensor Device”.

ACPI0009 I/OxAPIC Device. This device is an I/O unit that complies with both the APIC and SAPIC
interrupt models.

ACPI000A I/O APIC Device. This device is an I/O unit that complies with the APIC interrupt model.

ACPI000B I/O SAPIC Device. This device is an I/O unit that complies with the SAPIC interrupt model.

ACPI000C Processor Aggregator Device. This device provides a control point for all processors in the
platform. See Section 8.5, “Processor Aggregator Device”.

ACPI000D Power Meter Device. This device is a power meter. See Section 10.4. “Power Meters”.

ACPI000E Time and Alarm Device. This device is a control method-based real-time clock and wake
alarm. See Section 9.18. “Time and Alarm Device”.

ACPI000F User Presence Detection Device. This device senses user presence (proximity). See
Section 9.16, "User Presence Detection Device")

Plug and
Play ID

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 233

ACPI Software Programming Model
Note: All names that begin with an underscore are reserved for ACPI use only

Table 5-133 Predefined ACPI Names.

Name Description Heading

_ACx Active Cooling – returns the active cooling policy threshold
values.

Section 11.4.1 page 534

_ADR Address – (1) returns the address of a device on its parent
bus.
(2) returns a unique ID for the display output device.
(3) resource descriptor field.

Section 6.1.1
Section B.5.1
Section 19.1.8

page 254
page 887
page 691

_ALC Ambient Light Chromaticity – returns the ambient light color
chromaticity.

Section 9.2.4 page 434

_ALI Ambient Light Illuminance – returns the ambient light
brightness.

Section 9.2.2 page 433

_ALN Alignment – base alignment, resource descriptor field. Section 19.1.8 page 691

_ALP Ambient Light Polling – returns the ambient light sensor
polling frequency.

Section 9.2.6 page 439

_ALR Ambient Light Response – returns the ambient light
brightness to display brightness mappings.

Section 9.2.5 page 435

_ALT Ambient Light Temperature – returns the ambient light color
temperature.

Section 9.2.3 page 434

_ALx Active List – returns a list of active cooling device objects. Section 11.4.2 page 534

_ART Active cooling Relationship Table – returns thermal
relationship information between platform devices and fan
devices.

Section 11.4.3 page 535

_ASI Address Space Id – resource descriptor field. Section 19.1.8 page 792

_ASZ Access Size – resource descriptor field. Section 19.1.8 page 691

_ATT Type-Specific Attribute – resource descriptor field. Section 19.1.8 page 691

_BAS Base Address – range base address, resource descriptor
field.

Section 19.1.8 page 691

_BBN Bios Bus Number – returns the PCI bus number returned by
the BIOS.

Section 6.5.5 page 353

_BCL Brightness Control Levels – returns a list of supported
brightness control levels.

Section B.5.2 page 887

_BCM Brightness Control Method – sets the brightness level of the
display device.

Section B.5.3 page 888

_BCT Battery Charge Time – returns time remaining to complete
charging battery.

Section 10.2.2.9 page 507

_BDN Bios Dock Name – returns the Dock ID returned by the BIOS. Section 6.5.3 page 351

_BFS Back From Sleep – inform AML of a wake event. Section 7.3.1 page 372

_BIF Battery Information – returns a Control Method Battery
information block.

Section 10.2.2.1 page 498

_BIX Battery Information Extended – returns a Control Method
Battery extended information block.

Section 10.2.2.2 page 500
234 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_BLT Battery Level Threshold – set battery level threshold
preferences.

Section 19.5.106 page 432

_BM Bus Master – resource descriptor field. Section 19.1.8 page 691

_BMA Battery Measurement Averaging Interval – Sets battery
measurement averaging interval.

Section 10.2.2.4 page 503

_BMC Battery Maintenance Control – Sets battery maintenance and
control features.

Section 10.2.2.11 page 509

_BMD Battery Maintenance Data – returns battery maintenance,
control, and state data.

Section 10.2.2.10 page 507

_BMS Battery Measurement Sampling Time – Sets the battery
measurement sampling time.

Section 10.2.2.5 page 504

_BQC Brightness Query Current – returns the current display
brightness level.

Section B.5.4 page 880

_BST Battery Status – returns a Control Method Battery status
block.

Section 10.2.2.6 page 504

_BTM Battery Time – returns the battery runtime. Section 10.2.2.8 page 506

_BTP Battery Trip Point – sets a Control Method Battery trip point. Section 10.2.2.7 page 506

_CBA Configuration Base Address – sets the CBA for a PCI Express
host bridge. See the PCI Firmware Specification, Revision 3.0
at the ACPI Link Document under the heading "PCI Sig".

_CDM Clock Domain – returns a logical processor’s clock domain
identifier.

Section 6.2.1 page 268

_CID Compatible ID – returns a device’s Plug and Play Compatible
ID list.

Section 6.1.2 page 255

_CRS Current Resource Settings – returns the current resource
settings for a device.

Section 6.2.2 page 268

_CRT Critical Temperature – returns the shutdown critical
temperature.

Section 11.4.4 page 538

_CSD C State Dependencies – returns a list of C-state
dependencies.

Section 8.4.2.2 page 396

_CST C States – returns a list of supported C-states. Section 8.4.2.1 page 395

_CWS Clear Wake Status – Clears the wake status of a Time and
Alarm Control Method Device.

Section 9.18.6 page 481

_DBT Debounce Timeout -Debounce timeout setting for a GPIO
input connection, resource descriptor field

Section 19.5.53 page 757

_DCK Dock – sets docking isolation. Presence indicates device is a
docking station.

Section 6.5.2 page 350

_DCS Display Current Status – returns status of the display output
device.

Section B.5.6 page 881

_DDC Display Data Current – returns the EDID for the display output
device.

Section B.5.5 page 889

_DDN Dos Device Name – returns a device logical name. Section 6.1.4 page 256

_DEC Decode – device decoding type, resource descriptor field. Section 19.1.8 page 691

Name Description Heading
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 235

ACPI Software Programming Model
_DGS Display Graphics State – return the current state of the output
device.

Section B.5.7 page 882

_DIS Disable – disables a device. Section 6.2.3 page 269

_DLM Device Lock Mutex- Designates a mutex as a Device Lock Section 5.7.5 page 249

_DMA Direct Memory Access – returns a device’s current resources
for DMA transactions.

Section 6.2.4 page 269

_DOD Display Output Devices – enumerate all devices attached to
the display adapter.

Section B.3.2 page 873

_DOS Disable Output Switching – sets the display output switching
mode.

Section B.3.1 page 872

_DPL Device Selection Polarity - The polarity of the Device Selection
signal on a SPISerialBus connection, resource descriptor field

Section 19.5 page 699

_DRS Drive Strength – Drive strength setting for a GPIO output
connection, resource descriptor field

Section 19.5.54 page 758

_DSM Device Specific Method – executes device-specific functions. Section 9.14.1 page 467

_DSS Device Set State – sets the display device state. Section B.5.8 page 882

_DSW Device Sleep Wake – sets the sleep and wake transition
states for a device.

Section 7.2.1 page 361

_DTI Device Temperature Indication – conveys native device
temperature to the platform.

Section 11.4.5 page 538

_Exx Edge GPE – method executed as a result of a general-
purpose event.

Section 5.6.4.1 page 221

_EC Embedded Controller – returns EC offset and query
information.

Section 12.12 page 582

_EDL Eject Device List – returns a list of devices that are dependent
on a device (docking).

Section 6.3.1 page 299

_EJD Ejection Dependent Device – returns the name of dependent
(parent) device (docking).

Section 6.3.2 page 300

_EJx Eject – begin or cancel a device ejection request (docking). Section 6.3.3 page 301

_END Endian-ness – Endian orientation of a UART SerialBus
connection, resource descriptor field

Section 19.5 page 699

_EVT Event Method - Event method for GPIO-signaled events
numbered larger than 255.

Section 5.6.5.3 page 226

_FDE Floppy Disk Enumerate – returns floppy disk configuration
information.

Section 9.9.1 page 448

_FDI Floppy Drive Information – returns a floppy drive information
block.

Section 9.9.2 page 449

_FDM Floppy Drive Mode – sets a floppy drive speed. Section 9.9.3 page 450

_FIF Fan Information – returns fan device information. Section 11.3.1.1 page 530

_FIX Fixed Register Resource Provider – returns a list of devices
that implement FADT register blocks.

Section 6.3.3 page 301

_FLC Flow Control – Flow Control mechanism for a UART SerialBus
connection, resource descriptor field

Section 19.5 page 723

Name Description Heading
236 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_FPS Fan Performance States – returns a list of supported fan
performance states.

Section 11.3.1.2 page 531

_FSL Fan Set Level – Control method that sets the fan device’s
speed level (performance state).

Section 11.3.1.3 page 532

_FST Fan Status – returns current status information for a fan
device.

Section 11.3.1.4 page 532

_GAI Get Averaging Interval – returns the power meter averaging
interval.

Section 10.4.5 page 516

_GCP Get Capabilities – Returns the capabilities of a Time and
Alarm Control Method Device

Section 9.18.2 page 478

_GHL Get Hardware Limit – returns the hardware limit enforced by
the power meter.

Section 10.4.7 page 517

_GL Global Lock – OS-defined Global Lock mutex object. Section 5.7.1 page 244

_GLK Global Lock – returns a device’s Global Lock requirement for
device access.

Section 6.5.7 page 355

_GPD Get Post Data – returns the value of the VGA device that will
be posted at boot.

Section B.3.4 page 876

_GPE General Purpose Events – (1) predefined Scope (_GPE.)
(2) Returns the SCI interrupt associated with the Embedded
Controller.

Section 5.3.1
Section 12.11

page 191
page 580

_GRA Granularity – address space granularity, resource descriptor
field.

Section 19.1.8 page 691

_GRT Get Real Time – Returns the current time from a Time and
Alarm Control Method Device.

Section 9.18.3 page 479

_GSB Global System Interrupt Base – returns the GSB for a I/O
APIC device.

Section 6.2.6 page 273

_GTF Get Task File – returns a list of ATA commands to restore a
drive to default state.

Section 9.8.1.1 page 442

_GTM Get Timing Mode – returns a list of IDE controller timing
information.

Section 9.8.2.1.1 page 445

_GTS Going To Sleep – inform AML of pending sleep. Section 7.3.3 page 373

_GWS Get Wake Status – Gets the wake status of a Time and Alarm
Control Method Device.

Section 9.18.5 page 481

_HE High-Edge – interrupt triggering, resource descriptor field. Section 19.1.8 page 691

_HID Hardware ID – returns a device’s Plug and Play Hardware ID. Section 6.1.5 page 256

_HOT Hot Temperature – returns the critical temperature for sleep
(entry to S4).

Section 11.4.6 page 538

_HPP Hot Plug Parameters – returns a list of hot-plug information for
a PCI device.

Section 6.2.7 page 277

_HPX Hot Plug Parameter Extensions – returns a list of hot-plug
information for a PCI device. Supersedes _HPP.

Section 6.2.8 page 277

_IFT IPMI Interface Type. See the Intelligent Platform Management
Interface Specification at the ACPI Link Document under the
heading "Server Platform Management Interface Table".

Section 19.5 page 723

Name Description Heading
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 237

ACPI Software Programming Model
_INI Initialize – performs device specific initialization. Section 6.5.1 page 350

_INT Interrupts – interrupt mask bits, resource descriptor field. Section 19.1.8 page 691

_IOR IO Restriction – IO restriction setting for a GPIO IO
connection, resource descriptor field

Section 19.5.54 page 758

_IRC Inrush Current – presence indicates that a device has a
significant inrush current draw.

Section 7.2.13 page 367

_Lxx Level GPE – Control method executed as a result of a
general-purpose event.

Section 5.6.4.1 page 221

_LCK Lock – locks or unlocks a device (docking). Section 6.3.4 page 300

_LEN Length – range length, resource descriptor field. Section 19.1.8 page 691

_LID Lid – returns the open/closed status of the lid on a mobile
system.

Section 9.4.1 page 440

_LIN Lines in Use - Handshake lines in use in a UART SerialBus
connection, resource descriptor field

Section 19.5 page 723

_LL Low Level – interrupt polarity, resource descriptor field. Section 19.1.8 page 691

_MAF Maximum Address Fixed – resource descriptor field. Section 19.1.8 page 691

_MAT Multiple Apic Table Entry – returns a list of MADT APIC
structure entries.

Section 6.2.9 page 279

_MAX Maximum Base Address – resource descriptor field. Section 19.1.8 page 691

_MBM Memory Bandwidth Monitoring Data – returns bandwidth
monitoring data for a memory device.

Section 9.12.2.1 page 458

_MEM Memory Attributes – resource descriptor field. Section 19.1.8 page 691

_MIF Minimum Address Fixed – resource descriptor field. Section 19.1.8 page 691

_MIN Minimum Base Address – resource descriptor field. Section 19.1.8 page 691

_MLS Multiple Language String – returns a device description in
multiple languages.

Section 6.1.7 page 254

_MOD Mode –Resource descriptor field Section 19.5,
Section 19.5.53

page 723
page 757

_MSG Message – sets the system message waiting status indicator. Section 9.1.2 page 431

_MSM Memory Set Monitoring – sets bandwidth monitoring
parameters for a memory device.

Section 9.12.2.2 page 459

_MTP Memory Type – resource descriptor field. Section 19.1.8 page 691

_NTT Notification Temperature Threshold – returns a threshold for
device temperature change that requires platform notification.

Section 11.4.7 page 539

_OFF Off – sets a power resource to the off state. Section 7.1.2 page 358

_ON On – sets a power resource to the on state. Section 7.1.3 page 359

_OS Operating System – returns a string that identifies the
operating system.

Section 5.7.3 page 248

_OSC Operating System Capabilities – inform AML of host features
and capabilities.

Section 6.2.10 page 280

_OSI Operating System Interfaces – returns supported interfaces,
behaviors, and features.

Section 5.7.2 page 244

Name Description Heading
238 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_OST Ospm Status Indication – inform AML of event processing
status.

Section 6.3.5 page 300

_PAI Power Averaging Interval – sets the averaging interval for a
power meter.

Section 10.4.4 page 514

_PAR Parity – Parity for a UART SerialBus connection, resource
descriptor field

Section 19.5 page 723

_PCL Power Consumer List – returns a list of devices powered by a
power source.

Section 10.3.2 page 509

_PCT Performance Control – returns processor performance control
and status registers.

Section 8.4.4.1 page 407

_PDC Processor Driver Capabilities – inform AML of processor driver
capabilities.

Section 8.4.1 page 391

_PDL P-state Depth Limit – returns the lowest available performance
P-state.

Section 8.4.4.6 page 414

_PHA Clock Phase – Clock phase for a SPISerialBus connection,
resource descriptor field

Section 19.5 page 723

_PIC PIC – inform AML of the interrupt model in use. Section 5.8.1 page 250

_PIF Power Source Information – returns a Power Source
information block.

Section 10.3.3 page 509

_PIN Pin List – List of GPIO pins described, resource
descriptor field.

Section 19.5.53 page 757

_PLD Physical Device Location – returns a device’s physical location
information.

Section 6.1.8 page 255

_PMC Power Meter Capabilities – returns a list of Power Meter
capabilities info.

Section 10.4.1 page 511

_PMD Power Metered Devices – returns a list of devices that are
measured by the power meter device.

Section 10.4.8 page 516

_PMM Power Meter Measurement – returns the current value of the
Power Meter.

Section 10.4.3 page 514

_POL Polarity – Resource descriptor field Section 19.5,
Section 19.5.53

page 723p
age 757

_PPC Performance Present Capabilites – returns a list of the
performance states currently supported by the platform.

Section 8.4.4.3 page 410

_PPE Polling for Platform Error – returns the polling interval to
retrieve Corrected Platform Error information.

Section 8.4.6 page 427

_PPI Pin Configuration – Pin configuration for a GPIO connection,
resource descriptor field

Section 19.5.53 page 757

_PR Processor – predefined scope for processor objects. Section 5.3.1 page 191

_PR0 Power Resources for D0 – returns a list of dependent power
resources to enter state D0 (fully on).

Section 7.2.8 page 363

_PR1 Power Resources for D1 – returns a list of dependent power
resources to enter state D1.

Section 7.2.9 page 364

Name Description Heading
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 239

ACPI Software Programming Model
_PR2 Power Resources for D2 – returns a list of dependent power
resources to enter state D2.

Section 7.2.10 page 364

_PR3 Power Resources for D3hot – returns a list of dependent
power resources to enter state D3hot.

Section 7.2.11 page 365

_PRE Power Resources for Enumeration - Returns a list of
dependent power resources to enumerate devices on a bus.

Section 7.2.14 page 367

_PRL Power Source Redundancy List – returns a list of power
source devices in the same redundancy grouping.

Section 10.3.4 page 510

_PRS Possible Resource Settings – returns a list of a device’s
possible resource settings.

Section 6.2.11 page 291

_PRT Pci Routing Table – returns a list of PCI interrupt mappings. Section 6.2.12 page 291

_PRW Power Resources for Wake – returns a list of dependent
power resources for waking.

Section 7.2.12 page 365

_PS0 Power State 0 – sets a device’s power state to D0 (device fully
on).

Section 7.2.2 page 362

_PS1 Power State 1 – sets a device’s power state to D1. Section 7.2.3 page 362

_PS2 Power State 2 – sets a device’s power state to D2. Section 7.2.4 page 362

_PS3 Power State 3 – sets a device’s power state to D3 (device off). Section 7.2.5 page 362

_PSC Power State Current – returns a device’s current power state. Section 7.2.6 page 363

_PSD Power State Dependencies – returns processor P-State
dependencies.

Section 8.4.4.5 page 412

_PSE Power State for Enumeration Section 7.2.14 page 367

_PSL Passive List – returns a list of passive cooling device objects. Section 11.4.8 page 539

_PSR Power Source – returns the power source device currently in
use.

Section 10.3.1 page 509

_PSS Performance Supported States – returns a list of supported
processor performance states.

Section 8.4.4.2 page 408

_PSV Passive – returns the passive trip point temperature. Section 11.4.9 page 539

_PSW Power State Wake – sets a device’s wake function. Section 7.2.14 page 367

_PTC Processor Throttling Control – returns throttling control and
status registers.

Section 8.4.3.1 page 399

_PTP Power Trip Points – sets trip points for the Power Meter
device.

Section 10.4.2 page 513

_PTS Prepare To Sleep – inform the platform of an impending sleep
transition.

Section 7.3.2 page 373

_PUR Processor Utilization Request – returns the number of
processors that the platform would like to idle.

Section 8.5.1.1 page 428

_PXM Proximity – returns a device’s proximity domain identifier. Section 6.2.13 page 293

_Qxx Query – Embedded Controller query and SMBus Alarm control
method.

Section 5.6.4.1 page 221

_RBO Register Bit Offset – resource descriptor field. Section 19.1.8 page 691

_RBW Register Bit Width – resource descriptor field. Section 19.1.8 page 691

Name Description Heading
240 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_REG Region – inform AML code of an operation region availability
change.

Section 6.5.4 page 351

_REV Revision – returns the revision of the ACPI specification that is
implemented.

Section 5.7.4 page 248

_RMV Remove – returns a device’s removal ability status (docking). Section 6.3.6 page 308

_RNG Range – memory range type, resource descriptor field. Section 19.1.8 page 691

_ROM Read-Only Memory – returns a copy of the ROM data for a
display device.

Section B.3.3 page 876

_RT Resource Type – resource descriptor field. Section 19.1.8 page 691

_RTV Relative Temperature Values – returns temperature value
information.

Section 11.4.10 page 540

_RW Read-Write Status – resource descriptor field. Section 19.1.8 page 691

_RXL Receive Buffer Size - Size of the receive buffer in a UART
Serialbus connection, resource descriptor field.

Section 19.5 page 723

_S0 S0 System State – returns values to enter the system into the
S0 state.

Section 7.3.4.1 page 377

_S1 S1 System State – returns values to enter the system into the
S1 state.

Section 7.3.4.2 page 377

_S2 S2 System State – returns values to enter the system into the
S2 state.

Section 7.3.4.3 page 378

_S3 S3 System State – returns values to enter the system into the
S3 state.

Section 7.3.4.4 page 378

_S4 S4 System State – returns values to enter the system into the
S4 state.

Section 7.3.4.5 page 379

_S5 S5 System State – returns values to enter the system into the
S5 state.

Section 7.3.4.6 page 380

_S1D S1 Device State – returns the highest D-state supported by a
device when in the S1 state.

Section 7.2.16 page 368

_S2D S2 Device State – returns the highest D-state supported by a
device when in the S2 state.

Section 7.2.17 page 369

_S3D S3 Device State – returns the highest D-state supported by a
device when in the S3 state.

Section 7.2.18 page 369

_S4D S4 Device State – returns the highest D-state supported by a
device when in the S4 state.

Section 7.2.19 page 370

_S0W S0 Device Wake State – returns the lowest D-state that the
device can wake itself from S0.

Section 7.2.20 page 371

_S1W S1 Device Wake State – returns the lowest D-state for this
device that can wake the system from S1.

Section 7.2.21 page 371

_S2W S2 Device Wake State – returns the lowest D-state for this
device that can wake the system from S2.

Section 7.2.22 page 371

_S3W S3 Device Wake State – returns the lowest D-state for this
device that can wake the system from S3.

Section 7.2.23 page 372

Name Description Heading
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 241

ACPI Software Programming Model
_S4W S4 Device Wake State – returns the lowest D-state for this
device that can wake the system from S4.

Section 7.2.24 page 372

_SB System Bus – scope for device and bus objects. Section 5.3.1 page 191

_SBS Smart Battery Subsystem – returns the subsystem
configuration.

Section 10.1.3 page 492

_SCP Set Cooling Policy – sets the cooling policy (active or passive). Section 11.4.11 page 540

_SDD Set Device Data – sets data for a SATA device. Section 9.8.3.3.1 page 448

_SEG Segment – returns a device’s PCI Segment Group number. Section 6.5.6 page 353

_SHL Set Hardware Limit – sets the hardware limit enforced by the
Power Meter.

Section 10.4.6 page 515

_SHR Sharable – interrupt share status, resource descriptor field. Section 19.1.8 page 691

_SI System Indicators – predefined scope. Section 5.3.1 page 191

_SIZ Size – DMA transfer size, resource descriptor field. Section 19.1.8 page 691

_SLI System Locality Information – returns a list of NUMA system
localities.

Section 6.2.14 page 294

_SLV Slave Mode – Slave mode setting for a SeriaBus connection,
resource descriptor field.

Section 19.5 page 723

_SPD Set Post Device – sets which video device will be posted at
boot.

Section B.3.5 page 877

_SPE Connection Speed – Connection speed for a SerialBus
connection, resource descriptor field

Section 19.5 page 723

_SRS Set Resource Settings – sets a device’s resource allocation. Section 6.2.15 page 297

_SRT Set Real Time – Sets the current time to a Time and Alarm
Control Method Device.

Section 9.18.4 page 479

_SRV IPMI Spec Revision. See the Intelligent Platform
Management Interface Specification at the ACPI Link
Document under the heading "Server Platform Management
Interface Table".

_SST System Status – sets the system status indicator. Section 9.1.1 page 431

_STA Status – (1) returns the current status of a device.
(2) Returns the current on or off state of a Power Resource.

Section 6.3.7
Section 7.1.4

page 308
page 359

_STB Stop Bits - Number of stop bits used in a UART SerialBus
connection, resource descriptor field

Section 19.5 page 723

_STM Set Timing Mode – sets an IDE controller transfer timings. Section 9.8.2.1.2 page 446

_STP Set Expired Timer Wake Policy – sets expired timer policies of
the wake alarm device.

Section 9.18.7 page 481

_STR String – returns a device’s description string. Section 6.1.9 page 265

_STV Set Timer Value – set timer values of the wake alarm device. Section 9.18.8 page 482

_SUN Slot User Number – returns the slot unique ID number. Section 6.1.11 page 266

_SWS System Wake Source – returns the source event that caused
the system to wake.

Section 7.3.5 page 378

_T_x Temporary – reserved for use by ASL compilers. Section 19.2.1.1 page 701

Name Description Heading
242 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_TC1 Thermal Constant 1 – returns TC1 for the passive cooling
formula.

Section 11.4.12 page 543

_TC2 Thermal Constant 2 – returns TC2 for the passive cooling
formula.

Section 11.4.13 page 543

_TDL T-State Depth Limit – returns the _TSS entry number of the
lowest power throttling state.

Section 8.4.3.5 page 406

_TIP Expired Timer Wake Policy – returns timer policies of the wake
alarm device.

Section 9.18.9 page 482

_TIV Timer Values – returns remaining time of the wake alarm
device.

Section 9.18.10 page 483

_TMP Temperature – returns a thermal zone’s current temperature. Section 11.4.14 page 544

_TPC Throttling Present Capabilities – returns the current number of
supported throttling states.

Section 8.4.3.3 page 401

_TPT Trip Point Temperature – inform AML that a devices’
embedded temperature sensor has crossed a temperature trip
point.

Section 11.4.15 page 544

_TRA Translation – address translation offset, resource descriptor
field.

Section 19.1.8 page 691

_TRS Translation Sparse – sparse/dense flag, resource descriptor
field.

Section 19.1.8 page 691

_TRT Thermal Relationship Table – returns thermal relationships
between platform devices.

Section 11.4.16 page 544

_TSD Throttling State Dependencies – returns a list of T-state
dependencies.

Section 8.4.3.4 page 402

_TSF Type-Specific Flags – resource descriptor field. Section 19.1.8 page 691

_TSP Thermal Sampling Period – returns the thermal sampling
period for passive cooling.

Section 11.4.17 page 545

_TSS Throttling Supported States – returns supported throttling state
information.

Section 8.4.3.2 page 400

_TST Temperature Sensor Threshold – returns the minimum
separation for a device’s temperature trip points.

Section 11.4.18 page 545

_TTP Translation Type – translation/static flag, resource descriptor
field.

Section 19.1.8 page 691

_TXL Transmit Buffer Size – Size of the transmit buffer in a UART
Serialbus connection, resource descriptor field

Section 19.5 page 723

_TTS Transition To State – inform AML of an S-state transition. Section 7.3.6 page 380

_TYP Type – DMA channel type (speed), resource descriptor field. Section 19.1.8 page 691

_TZ Thermal Zone – predefined scope: ACPI 1.0. Section 5.3.1 page 191

_TZD Thermal Zone Devices – returns a list of device names
associated with a Thermal Zone.

Section 11.4.19 page 546

_TZM Thermal Zone Member – returns a reference to the thermal
zone of which a device is a member.

Section 11.4.20 page 546

Name Description Heading
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 243

ACPI Software Programming Model
5.7 Predefined Objects
The AML interpreter of an ACPI compatible operating system supports the evaluation of a number
of predefined objects. The objects are considered “built in” to the AML interpreter on the target
operating system.

A list of predefined object names are shown in the following table.

Table 5-134 Predefined Object Names

5.7.1 _GL (Global Lock Mutex)
This predefined object is a Mutex object that behaves like a Mutex as defined in Section 19.5.85,
“Mutex (Declare Synchronization/Mutex Object),” with the added behavior that acquiring this
Mutex also acquires the shared environment Global Lock defined in Section 5.2.10.1, “Global
Lock.” This allows Control Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 _OSI (Operating System Interfaces)
This object provides the platform with the ability to query OSPM to determine the set of ACPI
related interfaces, behaviors, or features that the operating system supports.

The _OSI method has one argument and one return value. The argument is an OS vendor defined
string representing a set of OS interfaces and behaviors or an ACPI defined string representing an
operating system and an ACPI feature group of the form, “OSVendorString-FeatureGroupString”.

_TZP Thermal Zone Polling – returns a Thermal zone’s polling
frequency.

Section 11.4.21 page 546

_UID Unique ID – return a device’s unique persistent ID. Section 6.1.12 page 266

_UPC USB Port Capabilities – returns a list of USB port capabilities. Section 9.13 page 461

_UPD User Presence Detect – returns user detection information. Section 9.16.1 page 473

_UPP User Presence Polling – returns the recommended user
presence polling interval.

Section 9.16.2 page 473

_VPO Video Post Options – returns the implemented video post
options.

Section B.3.6 page 878

_VEN Vendor-defined Data – Vendor-defined data for a GPIO or
SerialBus connection, resource descriptor field

Section 19.5.53 page 757

_WAK Wake – inform AML that the system has just awakened. Section 7.3.7 page 380

_Wxx Wake Event – method executed as a result of a wake event. Section 5.6.4.2.2 page 224

Name Description

_GL Global Lock mutex

_OS Name of the operating system

_OSI Operating System Interface support

_REV Revision of the ACPI specification that is implemented

Name Description Heading
244 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments: (1)

Arg0 – A String containing the OS interface / behavior compatibility string or the Feature Group
string, as defined in Section 5-136, or the “OS Vendor String Prefix – OS Vendor Specific String”.
OS Vendor String Prefixes are defined inSection 5-135

Return Value:

An Integer containing a Boolean that indicates whether the requested feature is supported:

 0x0 – The interface, behavior, or feature is not supported

 0xFFFFFFFF – The interface, behavior, or feature is supported

OSPM may indicate support for multiple OS interface / behavior strings if the operating system
supports the behaviors. For example, a newer version of an operating system may indicate support
for strings from all or some of the prior versions of that operating system.

_OSI provides the platform with the ability to support new operating system versions and their
associated features when they become available. OSPM can choose to expose new functionality
based on the _OSI argument string. That is, OSPM can use the strings passed into _OSI to ensure
compatibility between older platforms and newer operating systems by maintaining known
compatible behavior for a platform. As such, it is recommended that _OSI be evaluated by the
_SB.INI control method so that platform compatible behavior or features are available early in
operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required
that OS vendor-defined strings be checked before feature group strings.

Platform developers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating
system and an ACPI feature group are listed in the following tables.

Table 5-135 Operating System Vendor Strings

Table 5-136 Feature Group Strings

Operating System Vendor String Prefix Description

“FreeBSD” Free BSD

“HP-UX” HP Unix Operating Environment

“Linux” GNU/Linux Operating system

“OpenVMS” HP OpenVMS Operating Environment

“Windows” Microsoft Windows

Feature Group String Description

“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision 3.0.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 245

ACPI Software Programming Model
“Extended Address Space
Descriptor”

OSPM supports the Extended Address Space Descriptor

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator
Device”

OSPM supports the declaration of the processor aggregator device in the
namespace using the ACPI000C processor aggregator device HID.

Feature Group String Description
246 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_OSI Example ASL using OS vendor defined string:

Scope (_SB) //Scope
{
 Name (TOOS, 0) // Global variable for type of OS.
 // This methods sets the "TOOS" variable depending on the type of OS
 // installed on the system.
 // TOOS = 1 // Windows 98 & SE
 // TOOS = 2 // Windows Me.
 // TOOS = 3 // Windows 2000 OS or above version.
 // TOOS = 4 // Windows XP OS or above version.
 Method (_INI)
 {
 If (CondRefOf (_OSI,Local0))
 {
 If (_OSI ("Windows 2001"))
 {
 Store(4, TOOS)
 }
 }
 Else
 {
 Store (_OS, local0)
 If (LEqual (local0, "Microsoft Windows NT"))
 {
 Store (3, TOOS)
 }
 ElseIf (LEqual (Local0, "Microsoft Windows"))
 {
 Store (1, TOOS)
 }
 ElseIf (LEqual (Local0, "Microsoft WindowsME:Millennium Edition"))
 {
 Store (2, TOOS)
 }
 }
 }
}

_OSI Example ASL using an ACPI defined string:

Scope (_SB) {
 Method (_INI) {
 If (CondRefOf (_OSI,Local0)) {
 If (_OSI ("Module Device")) {
 //Expose PCI Root Bridge under Module Device
 LoadTable(“OEM1", “OEMID", “Table1",,,)}
 Else {
 // Expose PCI Root Bridge under _SB – OS does not support Module Device
 LoadTable(“OEM1", “OEMID", “Table2",,,)}
 }
 Else {
 // Default Behavior
 LoadTable(“OEM1", “OEMID", “Table2",,,)}
 } //_INI Method
} //_SB scope
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 247

ACPI Software Programming Model
DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
 “OEMID", "Table1", 0) {
 Scope(_SB) {
 Device (_SB.NOD0) {
 Name (_HID, "ACPI0004") // Module device
 Name (_UID, 0)
 Name (_PRS, ResourceTemplate() {...})
 Method (_SRS, 1) {...}
 Method (_CRS, 0) {...}
 Device (PCI0) { // PCI Root Bridge
 Name (_HID, EISAID("PNP0A03"))
 Name (_UID, 0)
 Name (_BBN, 0x00)
 Name (_PRS, ResourceTemplate () {...})
 } // end of PCI Root Bridge
 } // end of Module device
 } // end of _SB Scope
} // end of Definition Block

DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
 “OEMID", "Table2", 0) {
 Scope(_SB) {
 Device (PCI0) { // PCI Root Bridge
 Name (_HID, EISAID("PNP0A03"))
 Name (_UID, 0)
 Name (_BBN, 0x00)
 Name (_PRS, ResourceTemplate () {...})
 } // end of PCI Root Bridge
 } // end of _SB Scope
} // end of Definition Block

5.7.3 _OS (OS Name Object)
This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, _OS evaluates differently for each OS release. This may allow AML code to
accommodate differences in OSPM implementations. This value does not change with different
revisions of the AML interpreter.

Arguments:

None

Return Value:

A String containing the operating system name.

5.7.4 _REV (Revision Data Object)
This predefined object evaluates to the revision of the ACPI Specification that the specified _OS
implements as a DWORD. Larger values are newer revisions of the ACPI specification.

Arguments:

None

Return Value:

An Integer containing the revision of the currently executing ACPI implementation
248 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
5.7.5 _DLM (DeviceLock Mutex)
This object appears in a device scope when AML access to the device must be synchronized with the
OS environment. It is used in conjunction with a standard Mutex object. With _DLM, the standard
Mutex provides synchronization within the AML environment as usual, but also synchronizes with
the OS environment.

_DLM evaluates to a package of packages, each containing a reference to a Mutex and an optional
resource template protected by the Mutex, If only the Mutex name is specified, then the sharing rules
(i.e. which resources are protected by the lock) are defined by a predefined contract between the
AML and the OS device driver. If the resource template is specified, then only those resources
within the resource template are protected.

Arguments:

None

Return Value:

A variable-length Package containing sub-packages of Mutex References and resource templates.
The resource template in each subpackage is optional.

Return Value Information
Package {
 DeviceLockInfo [0] // Package
 . . .
 DeviceLockInfo [n] // Package
}

Each variable-length DeviceLockInfo sub-Package contains either one element or 2 elements, as
described below:

Package {
 DeviceLockMutex // Reference to a Mutex object
 Resources // Buffer or Reference (Resource Template)
}

Table 5-137 DeviceLockInfo Package Values

Element Object Type Description

DeviceLockMutex Reference A reference to the mutex that is to be shared between the AML
code and the host operating system.

Resources Buffer (or
reference to a
Buffer)

Optional. Contains a Resource Template that describes the
resources that are to be protected by the Device Lock Mutex.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 249

file:///_SB.DEV1

ACPI Software Programming Model
Example:
Device (DEV1)
{
 Mutex (MTX1, 0)
 Name (RES1, ResourceTemplate ()
 {
 I2cSerialBus (0x0400, DeviceInitiated, 0x00001000,
 AddressingMode10Bit, "_SB.DEV1",
 0, ResourceConsumer, I2C1)
 })

 Name (_DLM, Package (1)
 {
 Package (2)
 {
 MTX1,
 RES1
 }
 })
}

Device (DEV2)
{
 Mutex (MTX2, 0)
 Mutex (MTX3, 0)
 Name (_DLM, Package (2)
 {
 Package (2)
 {
 \DEV2.MTX2,
 ResourceTemplate ()
 {
 I2cSerialBus (0x0400, DeviceInitiated, 0x00001000,
 AddressingMode10Bit, "_SB.DEV2",
 0, ResourceConsumer, I2C2)
 }
 },
 Package (1) // Optional resource not needed
 {
 \DEV2.MTX3
 }
 })
}

5.8 System Configuration Objects

5.8.1 _PIC Method
The _PIC optional method is used to report to the BIOS the current interrupt model used by the OS.
This control method returns nothing. The argument passed into the method signifies the interrupt
model OSPM has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is
optional for OSPM. If the method is never called, the BIOS must assume PIC mode. It is important
that the BIOS save the value passed in by OSPM for later use during wake operations.

Arguments: (1)

Arg0 – An Integer containing a code for the current interrupt model:
250 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
0 – PIC mode

1 – APIC mode

2 – SAPIC mode

Other values –Reserved

Return Value:
None
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 251

ACPI Software Programming Model
252 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6
Device Configuration

This section specifies the objects OSPM uses to configure devices. There are three types of
configuration objects:

• Device identification objects associate platform devices with Plug and Play IDs.

• Device configuration objects declare and configure hardware resources and characteristics for
devices enumerated via ACPI.

• Device insertion and removal objects provide mechanisms for handling dynamic insertion and
removal of devices.

This section also defines the ACPI device–resource descriptor formats. Device–resource descriptors
are used as parameters by some of the device configuration objects.

6.1 Device Identification Objects
Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed in the table below:

Table 6-138 Device Identification Objects

For any device that is not on an enumerable type of bus (for example, an ISA bus), OSPM
enumerates the devices’ Plug and Play ID(s) and the ACPI BIOS must supply an _HID object (plus
an optional _CID object) for each device to enable OSPM to do that. For devices on an enumerable
type of bus, such as a PCI bus, the ACPI system must identify which device on the enumerable bus
is identified by a particular Plug and Play ID; the ACPI BIOS must supply an _ADR object for each
device to enable this. A device object must contain either an _HID object or an _ADR object, but can
contain both.

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_CLS Object that evaluates to a package of coded device-class information.

_DDN Object that associates a logical software name (for example, COM1) with a device.

_HID Object that evaluates to a device’s Plug and Play hardware ID.

_HRV Object that evaluates to an integer hardware revision number.

_MLS Object that provides a human readable description of a device in multiple languages.

_PLD Object that provides physical location description information.

_SUB Object that evaluates to a device's Plug and Play subsystem ID.

_SUN Object that evaluates to the slot-unique ID number for a slot.

_STR Object that contains a Unicode identifier for a device.

_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 253

Device Configuration
If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region
provider. (_REG methods notify the BIOS of the presence of operation region providers.) When a
control method cannot determine the current state of the hardware due to a lack of operation region
provider, it is recommended that the control method should return the condition that was true at the
time that control passed from the BIOS to the OS. (The control method should return a default, boot
value).

6.1.1 _ADR (Address)
This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object
must be used when specifying the address of any device on a bus that has a standard enumeration
algorithm (see Section 3.7, “Configuration and Plug and Play”, for the situations when these devices
do appear in the ACPI namespace).

Arguments:

None

Return Value:

An Integer containing the address of the device

An _ADR object can be used to provide capabilities to the specified address even if a device is not
present. This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus from the location of the _ADR object’s device package in the ACPI
namespace. For more information about the positioning of device packages in the ACPI namespace,
see Section 19.5.30, “Device (Declare Bus/Device Package)”

_ADR object information must be static and can be defined for the following bus types listed in
Table 6-139.

Table 6-139 ADR Object Address Encodings

BUS Address Encoding

EISA EISA slot number 0–F

Floppy Bus Drive select values used for programming the floppy controller to access the specified
INT13 unit number. The _ADR Objects should be sorted based on drive select encoding
from 0-3.

IDE Controller 0–Primary Channel, 1–Secondary Channel

IDE Channel 0–Master drive, 1–Slave drive

Intel® High
Definition Audio High word – SDI (Serial Data In) ID of the codec that contains the function group.

Low word – Node ID of the function group.

PCI High word–Device #, Low word–Function #. (for example, device 3, function 2 is
0x00030002). To refer to all the functions on a device #, use a function number of FFFF).

PCMCIA Socket #; 0–First Socket

PC CARD Socket #; 0–First Socket
254 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.1.2 _CID (Compatible ID)
This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID.
Use _CID objects when a device has no other defined hardware standard method to report its
compatible IDs.

Arguments:

None

Return Value:

An Integer or String containing a single CID or a Package containing a list of CIDs

A _CID object evaluates to either:

• A single Compatible Device ID

• A package of Compatible Device IDs for the device — in the order of preference, highest
preference first.

Each Compatible Device ID must be either:

• A valid HID value (a 32-bit compressed EISA type ID or a string such as “ACPI0004”).

• A string that uses a bus-specific nomenclature. For example, _CID can be used to specify the
PCI ID. The format of a PCI ID string is one of the following:

“PCI\CC_ccss”
“PCI\CC_ccsspp”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss”
“PCI\VEN_vvvv&DEV_dddd&REV_rr”
“PCI\VEN_vvvv&DEV_dddd”

Where:

cc – hexadecimal representation of the Class Code byte

ss – hexadecimal representation of the Subclass Code byte

pp – hexadecimal representation of the Programming Interface byte

vvvv – hexadecimal representation of the Vendor ID

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port
multiplier, or 0xFFFF if no port multiplier attached. (For example, root port 2 would be
0x0002FFFF. If instead a port multiplier had been attached to root port 2, the ports
connected to the multiplier would be encoded 0x00020000, 0x00020001, etc.) The value
0xFFFFFFFF is reserved.

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must have an _ADR of 0. No other children or
values of _ADR are allowed.

USB Ports Port number (1-n)

SDIO Bus High word - Slot number (0-First Slot)
Low word - Function number (see SD specification for definitions.)

BUS Address Encoding
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 255

Device Configuration
dddd – hexadecimal representation of the Device ID

ssssssss – hexadecimal representation of the Subsystem ID

rr – hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.

Example ASL:

 Device (XYZ) {
 Name (_HID, EISAID ("PNP0303")) // PC Keyboard Controller
 Name (_CID, EISAID ("PNP030B"))
 }

6.1.3 _CLS (Class Code)
This object is used to supply OSPM with the PCI-defined class, subclass and programming interface
for a device. This object is optional but may be useful for generic drivers written for PCI devices that
move off of PCI and are enumerated by ACPI.

Arguments:

None

Return Value:

A Package containing the PCI class information as a list of Integers.

A list of available class codes and programming interface codes is provided by the PCI SIG.

Example ASL:

 Name (_CLS, Package (3) {
 0x3A02,
 0x7780,
 9,
 })

6.1.4 _DDN (DOS Device Name)
This object is used to associate a logical name (for example, COM1) with a device. This name can be
used by applications to connect to the device.

Arguments:

None

Return Value:

A String containing the DOS device name

6.1.5 _HID (Hardware ID)

This object is used to supply OSPM with the device’s Plug and Play hardware ID.1

1. A Plug and Play ID or ACPI ID can be obtained by sending e-mail to pnpid@microsoft.com.
256 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

http://www.pcisig.com/home/

Advanced Configuration and Power Interface Specification
 When describing a platform, use of any _HID objects is optional. However, a _HID object must be
used to describe any device that will be enumerated by OSPM. OSPM only enumerates a device
when no bus enumerator can detect the device ID. For example, devices on an ISA bus are
enumerated by OSPM. Use the _ADR object to describe devices enumerated by bus enumerators
other than OSPM.

Arguments:

None

Return Value:

An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a
string, the format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading
characters.

A valid PNP ID must be of the form "AAA####" where A is an uppercase letter and # is a hex
digit. A valid ACPI ID must be of the form "NNNN####" where N is an uppercase letter or a
digit ('0'-'9') and # is a hex digit. This specification reserves the string "ACPI" for use only
with devices defined herein. It further reserves all strings representing 4 HEX digits for
exclusive use with PCI-assigned Vendor IDs.

Example ASL:
 Name (_HID, EISAID ("PNP0C0C")) // Control-Method Power Button
 Name (_HID, EISAID ("INT0800")) // Firmware Hub
 Name (_HID, "ACPI0003") // AC adapter device
 Name (_HID, "MSFT0003") // Vendor-defined device
 Name (_HID, "80860003") // PCI-assigned device identifier

6.1.6 _HRV (Hardware Revision)
This object is used to supply OSPM with the device’s hardware revision. The use of _HRV is
optional.

Arguments:

None

Return Value:

An Integer (DWORD) containing the hardware revision number

Example ASL:
 Name (_HRV, 0x0003)// Revision number 3 of this hardware device

6.1.7 _MLS (Multiple Language String)
The _MLS object provides OSPM a human readable description of a device in multiple languages.
This information may be provided to the end user when the OSPM is unable to get any other
information about this device. Although this functionality is also provided by the _STR object,
_MLS expands that functionality and provides vendors with the capability to provide multiple
strings in multiple languages. The _MLS object evaluates to a package of packages. Each sub-
package consists of a Language identifier and corresponding unicode string for a given locale.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 257

Device Configuration
Specifying a language identifier allows OSPM to easily determine if support for displaying the
Unicode string is available. OSPM can use this information to determine whether or not to display
the device string, or which string is appropriate for a user’s preferred locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID
for displaying device text.

Arguments:

None

Return Value:

A variable-length Package containing a list of language descriptor Packages as described below.

Return Value Information
Package {
 LanguageDescriptor[0] // Package

 LanguageDescriptor[n] // Package
}

Each Language Descriptor sub-Package contains the elements described below:

Package {
 LanguageId // String
 UnicodeDescription // String
}

LanguageId is a string identifying the language. This string follows the format specified in the
Internet RFC 3066 document (Tags for the Identification of Languages). In addition to supporting
the existing strings in RFC 3066, Table 6-140 lists aliases that are also supported.

Table 6-140 Additional Language ID Alias Strings

UnicodeDescription is a Unicode (UTF-16) string. This string contains the language-specific
description of the device corresponding to the LanguageID.

Example:
Device (XYZ) {
 Name (_ADR, 0x00020001)
 Name (_MLS, Package(){(2){“en”, Unicode("ACME super DVD controller")}})
}

6.1.8 _PLD (Physical Device Location)
This optional object is a method that conveys to OSPM a general description of the physical location
of a device’s external connection point. The _PLD may be child object for any ACPI Namespace

RFC String Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht
258 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
object the system wants to describe. This information can be used by system software to describe to
the user which specific connector or device input mechanism may be used for a given task or may
need user intervention for correct operation. The _PLD should only be evaluated when its parent
device is present as indicated by the device’s presence mechanism (i.e. _STA or other)

An externally exposed device connection point can reside on any surface of a system’s housing. The
respective surfaces of a system’s housing are identified by the “Panel” field (described below). The
_PLD method returns data to describe the location of where the device’s connection point resides
and a Shape (described below) that may be rendered at that position. One physical device may have
several connection points. A _PLD describes the offset and rotation of a single device connection
point from an “origin” that resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the
front of the system. For handheld mobile devices, the front panel is the one holding the display
screen, and its origin is in the lower-left corner when the display is viewed in the Portrait orientation.
For example, the Right Panel is the right side of the system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower left corner when the user is facing the
respective Panel. The Top Panel shall be viewed with the system is viewed resting on its Front Panel,
and the Bottom Panel shall be viewed with the system resting on its Back Panel. All other Panels
shall be viewed with the system resting on its Bottom Panel. Refer to Figure 6-32 for more
information.

Front
Panel

Origin

Left
Panel
Origin

Top
Panel
Origin

Bottom
Panel
Origin

Back
Panel

Origin

Right
Panel
Origin

Top

Bottom

Figure 6-32 System Panel and Panel Origin Positions

 The data bits also assume that if the system is capable of opening up like a laptop that the device
may exist on the base of the laptop system or on the lid. In the case of the latter, the “Lid” bit
(described below) should be set indicating the device connection point is on the lid. If the device is
on the lid, the description describes the device’s connection point location when the system is
opened with the lid up. If the device connection point is not on the lid, then the description describes
the device’s connection point location when the system with the lid closed.

Figure 6-33 Laptop Panel and Panel Origin Positions
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 259

Device Configuration
To render a view of a system Panel, all _PLDs that define the same Panel and Lid values are
collected. The _PLDs are then sorted by the value of their Order field and the view of the panel is
rendered by drawing the shapes of each connection point (in their correct Shape, Color, Horizontal
Offset, Vertical Offset, Width, Height, and Orientation) starting with all Order = 0 _PLDs first.
Refer to Figure 6-35 for an example.

The location of a device connection point may change as a result of the system connecting or
disconnecting to a docking station or a port replicator. As such, Notify event of type 0x08 will cause
OSPM to re-evaluate the _PLD object residing under the particular device notified. If a platform is
unable to detect the change of connecting or disconnecting to a docking station or port replicator, a
_PLD object should not be used to describe the device connection points that will change location
after such an event.

Arguments:

None

Return Value:

A variable-length Package containing a list of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer
entry must be returned using the bit definitions below.

Buffer 0 Return Value:
Bit 6:0 – Revision. The current revision is 0x2

Bit 7 – Ignore Color. If this bit is set, the Color field is ignored, as the color is unknown.

Bit 31:8 – Color – 24bit RGB value for the color of the device connection point. (bits 8:15 = red, bits
16:23 = green, bits 24:31 = blue)

Bit 47:32 – Width: Describes, in millimeters, the width (widest point) of the device connection
point.

Bit 63:48 – Height: Describes, in millimeters, the height (tallest point) of the device connection
point.

Bit 64 – User Visible: Set if the device connection point can be seen by the user without
disassembly.

Bit 65 – Dock: Set if the device connection point resides in a docking station or port replicator.

Bit 66 – Lid: Set if this device connection point resides on the lid of laptop system.

Front
Panel

Lid

Lid
Front Panel

Origin

(base)
Front Panel

 Origin

(base)
Top Panel

 Origin
260 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Bit 69:67 – Panel: Describes which panel surface of the system’s housing the device connection
point resides on.

0 – Top

1 – Bottom

2 – Left

3 – Right

4 – Front

5 – Back

6 – Unknown (Vertical Position and Horizontal Position will be ignored)

Bit 71:70 – Vertical Position on the panel where the device connection point resides.

0 – Upper

1 – Center

2 – Lower

Bit 73:72 – Horizontal Position on the panel where the device connection point resides.

0 – Left

1 – Center

2 – Right

Bit 77:74 – Shape: Describes the shape of the device connection point. The Width and Height fields
may be used to distort a shape, e.g. A Round shape will look like an Oval shape if the Width and
Height are not equal. And a Vertical Rectangle or Horizontal Rectangle may look like a square if
Width and Height are equal. Refer to Figure 6-3.

0 – Round

1 – Oval

2 – Square

3 – Vertical Rectangle

4 – Horizontal Rectangle

5 – Vertical Trapezoid

6 – Horizontal Trapezoid

7 – Unknown – Shape rendered as a Rectangle with dotted lines

8 – Chamfered

15:9 – Reserved
Figure 6-34 Default Shape Definitions
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 261

Device Configuration
H
ei

gh
t

Width
Origin: Lower, Left

Shape = Round/Oval

The Origin of a shape is always in
the in lower left corner.

H
ei

gh
t

Width
Origin: Lower, Left

Shape = Square/
Vertical Rectangle/

Horizontal Rectangle/
Unknown

Width

Origin: Lower, Left

Shape = Trapezoid

Height

Origin: Lower, Left

Shape = Chamfered

Height

Width

Rotation = 0 for all
displayed reference

shapes

Bit 78 – Group Orientation: if Set, indicates vertical grouping, otherwise horizontal is assumed.

Bit 86:79 – Group Token: Unique numerical value identifying a group.

Bit 94:87 – Group Position: Identifies this device connection point’s position in the group (i.e. 1st,

2nd)

Bit 95 – Bay: Set if describing a device in a bay or if device connection point is a bay.

Bit 96 – Ejectable: Set if the device is ejectable. Indicates ejectability in the absence of _EJx objects.

Bit 97 – OSPM Ejection required: Set if OSPM needs to be involved with ejection process. User-
operated physical hardware ejection is not possible.

Bit 105:98 – Cabinet Number. For single cabinet system, this field is always 0.

Bit 113:106 – Card cage Number. For single card cage system, this field is always 0.

Bit 114 – Reference: if Set, this _PLD defines a “reference” shape that is used to help orient the user
with respect to the other shapes when rendering _PLDs.

Bit 118:115 – Rotation: Rotates the Shape clockwise in 45 degree steps around its origin where:

0 – 0°

1 – 45°

2 – 90°

3 – 135°

4 – 180°

5 – 225°

6 – 270°

7 – 315°

Bit 123:119 – Order: Identifies the drawing order of the connection point described by a _PLD.
Order = 0 connection points are drawn before Order = 1 connection points. Order = 1 before Order =
262 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
2, and so on. Order = 31 connection points are drawn last. Order should always start at 0 and be
consecutively assigned.

Bit 127:124 – Reserved, must contain a value of 0.

Bit 143:128 – Vertical Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
0xFFFFFFFF indicates that this field is not supplied.

Bit 159:144 – Horizontal Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
0xFFFFFFFF indicates that this field is not supplied.

All additional buffer entries returned, may contain OEM specific data, but must begin in a {GUID,
data} pair. These additional data may provide complimentary physical location information specific
to certain systems or class of machines.

Buffers 1 – N Return Value (Optional):
Buffer 1 Bit 127:0 – GUID 1

Buffer 2 Bit 127:0 – Data 1

Buffer 3 Bit 127:0 – GUID 2

Buffer 4 Bit 127:0 – Data 2

……

Figure 6-35 provides an example of a rendering of the external device connection points that may be
conveyed to the user by _PLD information. Note that three _PLDs (System Back Panel, Power
Supply, and Motherboard (MB) Connector Area) that are associated with the System Bus tree (_SB)
object. Their Reference flag is set indicating that are used to provide the user with visual queues for
identifying the relative locations of the other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and 0, respectively.
And the Reference flag of the System Back Panel, Power Supply, and MB Connector Area
connection points are set to 1. in this example are used to render Figure 6-35:

Table 6-141 PLD Back Panel Example Settings

N
am

e

Ig
n

o
re

 C
o

lo
r

R G B W
id

th

H
eig

h
t

V
O

ff

H
O

ff

S
h

ap
e

N
o

ta
tio

n

G
o

u
p

 P
o

sitio
n

R
o

ta
-tio

n

Back
Panel

Yes 0 0 0 2032 4318 0 0 V Rect 1 0

MB
Conn
area

Yes 0 0 0 445 1556 1588 127 V Rect 2 0

Power
Supply

Yes 0 0 0 1524 889 3302 127 H Rect 2 0
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 263

Device Configuration
USB
Port 1

No 0 0 0 125 52 2223 159 H Rect C1 3 90

USB
Port 2

No 0 0 0 125 52 2223 254 H Rect C2 3 90

USB
Port 3

No 0 0 0 125 52 2223 350 H Rect C3 3 90

USB
Port 4

No 0 0 0 125 52 2223 445 H Rect C4 3 90

USB
Port 5

No 0 0 0 125 52 2007 159 H Rect C5 3 90

USB
Port 6

No 0 0 0 125 52 2007 254 H Rect C6 3 90

Ethern
et

No 0 0 0 157 171 2007 350 V Rect C7 3 90

Audio
1

No FF FF FF 127 127 1945 151 Round C8 3 90

Audio
2

No 15
1

24
7

12
7

127 127 1945 286 Round C9 3 90

Audio
3

No 0 0 0 127 127 1945 427 Round C10 3 90

SPDIF No 0 0 0 112 126 1756 176 V Trap C11 3 90

Audio
4

No 0 FF 0 127 127 1765 288 Round C12 3 90

Audio
5

No 0 0 FF 127 127 1765 429 Round C13 3 90

SATA No 0 0 0 239 88 3091 159 H Rect C14 3 90

1394 No 0 0 0 112 159 2890 254 H Trap C15 3 0

Coax No 0 0 0 159 159 2842 143 Round C16 3 90

PCI 1 No 0 0 0 1016 127 127 127 H Rect 1 3 0

PCI 2 No 0 0 0 1016 127 334 127 H Rect 2 3 0

PCI 3 No 0 0 0 1016 127 540 127 H Rect 3 3 0

PCI 4 No 0 0 0 1016 127 747 127 H Rect 4 3 0

PCI 5 No 0 0 0 1016 127 953 127 H Rect 5 3 0

PCI 6 No 0 0 0 1016 127 1159 127 H Rect 6 3 0

PCI 7 No 0 0 0 1016 127 1366 127 H Rect 7 3 0

N
am

e

Ig
n

o
re

 C
o

lo
r

R G B W
id

th

H
eig

h
t

V
O

ff

H
O

ff

S
h

ap
e

N
o

tatio
n

G
o

u
p

 P
o

sitio
n

R
o

ta-tio
n

264 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note that the origin is in the lower left hand corner of the Back Panel, where positive Horizontal and
Vertical Offset values are to the right and up, respectively.

Figure 6-35 PLD Back Panel Rendering

6.1.9 _SUB
This object is used to supply OSPM with the device's Subsystem ID. The use of _SUB is optional.

Arguments:

None

Return Value:

A String containing the SUB

A _SUB object evaluates to a string and the format must be a valid PNP or ACPI ID with no asterisk
or other leading characters.

See the definition of _HID (Section 6.1.5) for the definition of PNP and ACPI ID strings.

1

2

3

4

5

6

7

C4C3C2C1

C7C6C5

C
14

C11

C16

C8 C9 C10

C12 C13

Motherboard
connector area

Power Supply

PCI Backpanels

C15

System
Backpanel

Origin
Horizontal Offset0

Vertical
Offset

0

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 265

Device Configuration
Example ASL:
 Name (_SUB, "MSFT3000")// Vendor-defined subsystem

6.1.10 _STR (String)
The _STR object evaluates to a Unicode string that describes the device. It may be used by an OS to
provide information to an end user. This information is particularly valuable when no other
information is available.

Arguments:

None

Return Value:

A Buffer containing a Unicode string that describes the device

Example ASL:
 Device (XYZ) {
 Name (_ADR, 0x00020001)
 Name (_STR, Unicode ("ACME super DVD controller"))
 }

Then, when all else fails, an OS can use the info included in the _STR object to describe the
hardware to the user.

6.1.11 _SUN (Slot User Number)
_SUN is an object that evaluates to the slot-unique ID number for a slot. _SUN is used by OSPM UI
to identify slots for the user. For example, this can be used for battery slots, PCI slots, PCMCIA
slots, or swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates to
an integer that is the number to be used in the user interface.

Arguments:

None

Return Value:

An Integer containing the slot’s unique ID

The _SUN value is required to be unique among the slots of the same type. It is also recommended
that this number match the slot number printed on the physical slot whenever possible.

6.1.12 _UID (Unique ID)
This object provides OSPM with a logical device ID that does not change across reboots. This object
is optional, but is required when the device has no other way to report a persistent unique device ID.
The _UID must be unique across all devices with either a common _HID or _CID. This is because a
device needs to be uniquely identified to the OSPM, which may match on either a _HID or a _CID to
identify the device. The uniqueness match must be true regardless of whether the OSPM uses the
_HID or the _CID. OSPM typically uses the unique device ID to ensure that the device-specific
information, such as network protocol binding information, is remembered for the device even if its
relative location changes. For most integrated devices, this object contains a unique identifier.
266 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A _UID object evaluates to either a numeric value or a string.

Arguments:

None

Return Value:

An Integer or String containing the Unique ID

6.2 Device Configuration Objects
This section describes objects that provide OSPM with device specific information and allow OSPM
to configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated
via ACPI. Device configuration objects provide information about current and possible resource
requirements, the relationship between shared resources, and methods for configuring hardware
resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the
device. It may also call _CRS to find the current resource settings for the device. Using this
information, the Plug and Play system determines what resources the device should consume and
sets those resources by calling the device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for
example, a proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device
are assumed to be taken from the nearest matching resource above the device in the device
hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that
share a resource (resource consumers) must use the extended resource descriptors (0x7-0xA)
described in Section 6.4.3, “Large Resource Data Type.” These descriptors point to a single device
object (resource producer) that claims the shared resource in its _PRS. This allows OSPM to clearly
understand the resource dependencies in the system and move all related devices together if it needs
to change resources. Furthermore, it allows OSPM to allocate resources only to resource producers
when devices that consume that resource appear.

The device configuration objects are listed in Table 6-142

Table 6-142 Device Configuration Objects

Object Description

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies a device’s current resource settings, or a control method that generates
such an object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 267

Device Configuration
6.2.1 _CDM (Clock Domain)
This optional object conveys the processor clock domain to which a processor belongs. A processor
clock domain is a unique identifier representing the hardware clock source providing the input clock
for a given set of processors. This clock source drives software accessible internal counters, such as
the Time Stamp Counter, in each processor. Processor counters in the same clock domain are driven
by the same hardware clock source. In multi-processor platforms that utilize multiple clock domains,
such counters may exhibit drift when compared against processor counters on different clock
domains.

The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock
domain. OSPM assumes that two devices in the same clock domain are connected to the same
hardware clock.

Arguments:

None

Return Value:

An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM via the SRAT or
the _CDM object, OSPM assumes all logical processors to be on a common clock domain. If the
platform defines _CDM object under a logical processor then it must define _CDM objects under all
logical processors whose clock domain information is not provided via the SRAT.

6.2.2 _CRS (Current Resource Settings)
This required object evaluates to a byte stream that describes the system resources currently
allocated to a device. Additionally, a bus device must supply the resources that it decodes and can
assign to its children devices. If a device is disabled, then _CRS returns a valid resource template for

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the
FADT and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration of a
PCI device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug
slot or initial configuration of a PCI device at system boot. Supersedes _HPP.

_MAT Object that evaluates to a buffer of MADT APIC Structure entries.

_OSC An object OSPM evaluates to convey specific software support / capabilities to the platform
allowing the platform to configure itself appropriately.

_PRS An object that specifies a device’s possible resource settings, or a control method that generates
such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SLI Object that provides updated distance information for a system locality.

_SRS Control method that sets a device’s settings.
268 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
the device, but the actual resource assignments in the return byte stream are ignored. If the device is
disabled when _CRS is called, it must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in Section 6.4
“Resource Data Types for ACPI,” a compatible extension of the formats specified in the PNPBIOS

specification.1 The resource data is provided as a series of data structures, with each of the resource
data structures having a unique tag or identifier. The resource descriptor data structures specify the
standard PC system resources, such as memory address ranges, I/O ports, interrupts, and DMA
channels.

Arguments:

None

Return Value:

A Buffer containing a resource descriptor byte stream

6.2.3 _DIS (Disable)
This control method disables a device. When the device is disabled, it must not be decoding any
hardware resources. Prior to running this control method, OSPM will have already put the device in
the D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with
the Disabled bit set.

Arguments:

None

Return Value:

None

6.2.4 _DMA (Direct Memory Access)
This optional object returns a byte stream in the same format as a _CRS object. _DMA is only
defined under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes
on the child-side of its interface. (This is analogous to the _CRS object, which describes the
resources that the bus controller decodes on the parent-side of its interface.) Any ranges described in
the resources of a _DMA object can be used by child devices for DMA or bus master transactions.

The _DMA object is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA
object after an _SRS object has been executed because the _DMA ranges resources may change
depending on how the bridge has been configured.

If the _DMA object is not present for a bus device, the OS assumes that any address placed on a bus
by a child device will be decoded either by a device on the bus or by the bus itself, (in other words,
all address ranges can be used for DMA).

1. Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp., Phoe-
nix Technologies Ltd.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 269

Device Configuration
For example, if a platform implements a PCI bus that cannot access all of physical memory, it has a
_DMA object under that PCI bus that describes the ranges of physical memory that can be accessed
by devices on that bus.

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _SRS method.

Arguments:

None

Return Value:

A Buffer containing a resource descriptor byte stream

_DMA Example ASL:
270 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Device(BUS0)
 {

 //
 // The _DMA method returns a resource template describing the
 // addresses that are decoded on the child side of this
 // bridge. The contained resource descriptors thus indicate
 // the address ranges that bus masters living below this
 // bridge can use to send accesses through the bridge toward a
 // destination elsewhere in the system (e.g. main memory).
 //
 // In our case, any bus master addresses need to fall between
 // 0 and 0x80000000 and will have 0x200000000 added as they
 // cross the bridge. Furthermore, any child-side accesses
 // falling into the range claimed in our _CRS will be
 // interpreted as a peer-to-peer traffic and will not be
 // forwarded upstream by the bridge.
 //
 // Our upstream address decoder will only claim one range from
 // 0x20000000 to 0x5fffffff in the _CRS. Therefore _DMA
 // should return two QWORDMemory descriptors, one describing
 // the range below and one describing the range above this
 // "peer-to-peer" address range.
 //

 Method(_DMA, ResourceTemplate()
 {
 QWORDMemory(
 ResourceConsumer,
 PosDecode, // _DEC
 MinFixed, // _MIF
 MaxFixed, // _MAF
 Prefetchable, // _MEM
 ReadWrite, // _RW
 0, // _GRA
 0, // _MIN
 0x1fffffff, // _MAX
 0x200000000, // _TRA
 0x20000000, // _LEN
 ,
 ,
 ,
)
 QWORDMemory(
 ResourceConsumer,
 PosDecode, // _DEC
 MinFixed, // _MIF
 MaxFixed, // _MAF
 Prefetchable, // _MEM
 ReadWrite, // _RW
 0, // _GRA
 0x60000000, // _MIN
 0x7fffffff, // _MAX
 0x200000000, // _TRA
 0x20000000, // _LEN
 ,
 ,
 ,
)
 })
 }
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 271

Device Configuration
6.2.5 _FIX (Fixed Register Resource Provider)
This optional object is used to provide a correlation between the fixed-hardware register blocks
defined in the FADT and the devices in the ACPI namespace that implement these fixed-hardware
registers. This object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed
EISA type IDs) that correlate to the fixed-hardware register blocks defined in the FADT. The device
under which _FIX appears plays a role in the implementation of the fixed-hardware (for example,
implements the hardware or decodes the hardware’s address). _FIX conveys to OSPM whether a
given device can be disabled, powered off, or should be treated specially by conveying its role in the
implementation of the ACPI fixed-hardware register interfaces. This object takes no arguments.

The _CRS object describes a device’s resources. That _CRS object may contain a superset of the
resources in the FADT, as the device may actually decode resources beyond what the FADT
requires. Furthermore, in a machine that performs translation of resources within I/O bridges, the
processor-relative resources in the FADT may not be the same as the bus-relative resources in the
_CRS.

Arguments:

None

Return Value:

A variable-length Package containing a list of Integers, each containing a PNP ID

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:

PNP0C20 - SMI_CMD
PNP0C21 - PM1a_EVT_BLK / X_ PM1a_EVT_BLK
PNP0C22 - PM1b_EVT_BLK / X_PM1b_EVT_BLK
PNP0C23 - PM1a_CNT_BLK / X_PM1a_CNT_BLK
PNP0C24 - PM1b_CNT_BLK / X_ PM1b_CNT_BLK
PNP0C25 - PM2_CNT_BLK / X_ PM2_CNT_BLK
PNP0C26 - PM_TMR_BLK / X_ PM_TMR_BLK
PNP0C27 - GPE0_BLK / X_GPE0_BLK
PNP0C28 - GPE1_BLK / X_ GPE1_BLK
PNP0B00 – FIXED_RTC
PNP0B01 – FIXED_RTC
PNP0B02 – FIXED_RTC

Example ASL for _FIX usage:
272 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
 Name(_ADR,0) // Device 0 on this bus
 Method (_CRS,0){ // Need current resources for root device
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 Name(_FIX, Package(1) {
 EISAID("PNP0C25")} // PM2 control ID
)

 Device (PX40) { // ISA
 Name(_ADR,0x00070000)
 Name(_FIX, Package(1) {
 EISAID("PNP0C20")} // SMI command port
)
 Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)
 Name(_HID, EISAID("PNP0C02"))
 Name(_FIX, Package(3) {
 EISAID("PNP0C22"), // PM1b event ID
 EISAID("PNP0C24"), // PM1b control ID
 EISAID("PNP0C28")} // GPE1 ID
 }
 } // end PX40

 Device (PX43) { // PM Control
 Name(_ADR,0x00070003)
 Name(_FIX, Package(4) {
 EISAID("PNP0C21"), // PM1a event ID
 EISAID("PNP0C23"), // PM1a control ID
 EISAID("PNP0C26"), // PM Timer ID
 EISAID("PNP0C27")} // GPE0 ID
)
 } // end PX43
 } // end PCI0
} // end scope SB

6.2.6 _GSB (Global System Interrupt Base)
_GSB is an optional object that evaluates to an integer that corresponds to the Global System
Interrupt Base for the corresponding I/O APIC device. The I/O APIC device may either be bus
enumerated (e.g. as a PCI device) or enumerated in the namespace as described in Section 9.17,”I/O
APIC Device”. Any I/O APIC device that either supports hot-plug or is not described in the MADT
must contain a _GSB object.

If the I/O APIC device also contains a _MAT object, OSPM evaluates the _GSB object first before
evaluating the _MAT object. By providing the Global System Interrupt Base of the I/O APIC, this
object enables OSPM to process only the _MAT entries that correspond to the I/O APIC device. See
Section 6.2.9, “_MAT (Multiple APIC Table Entry)”. Since _MAT is allowed to potentially return
all the MADT entries for the entire platform, _GSB is needed in the I/O APIC device scope to enable
OSPM to identify the entries that correspond to that device.

If an I/O APIC device is activated by a device-specific driver, the physical address used to access the
I/O APIC will be exposed by the driver and cannot be determined from the _MAT object. In this
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 273

Device Configuration
case, OSPM cannot use the _MAT object to determine the Global System Interrupt Base
corresponding to the I/O APIC device and hence requires the _GSB object.

The Global System Interrupt Base is a 64-bit value representing the corresponding I/OAPIC device
as defined in Section 5.2.13, “Global System Interrupts”.

Arguments:

None

Return Value:

An Integer containing the interrupt base

Example ASL for _GSB usage for a non-PCI based I/O APIC Device:

Scope(_SB) {
 …
 Device(APIC) { // I/O APIC Device
 Name(_HID, “ACPI0009”) // ACPI ID for I/O APIC
 Name(_CRS, ResourceTemplate()
 { …}) // only one resource pointing to I/O APIC register base
 Method(_GSB){
 Return (0x10) // Global System Interrupt Base for I/O APIC starts at 16
 }
 } // end APIC
} // end scope SB

Example ASL for _GSB usage for a PCI-based I/O APIC Device:

Scope(_SB) {
 Device(PCI0) // Host bridge
 Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
 Name(_ADR, 0)
 Device(PCI1) { // I/O APIC PCI Device
 Name(_ADR,0x00070000)
 Method(_GSB){
 Return (0x18) // Global System Interrupt Base for I/O APIC starts at 24
 }

 } // end PCI1
 } // end PCI0
} // end scope SB

6.2.7 _HPP (Hot Plug Parameters)
This optional object evaluates to a package containing the cache-line size, latency timer, SERR
enable, and PERR enable values to be used when configuring a PCI device inserted into a hot-plug
slot or for performing configuration of a PCI devices not configured by the BIOS at system boot.
The object is placed under a PCI bus where this behavior is desired, such as a bus with hot-plug
slots. _HPP provided settings apply to all child buses, until another _HPP object is encountered.

Arguments:

None

Return Value:

A Package containing the Integer hot-plug parameters
274 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example:

 Method (_HPP, 0) {
 Return (Package(4){
 0x08, // CacheLineSize in DWORDS
 0x40, // LatencyTimer in PCI clocks
 0x01, // Enable SERR (Boolean)
 0x00 // Enable PERR (Boolean)
 })
 }

Table 6-143 HPP Package Contents

6.2.7.1 Example: Using _HPP

Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // _HID for root device
 Name(_ADR,0) // Device 0 on this bus
 Method (_CRS,0){ // Need current resources for root dev
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })

 Device (P2P1) { // First PCI-to-PCI bridge (No Hot Plug slots)
 Name(_ADR,0x000C0000) // Device#Ch, Func#0 on bus PCI0
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 } // end P2P1

 Device (P2P2) { // Second PCI-to-PCI bridge (Bus contains Hot plug slots)
 Name(_ADR,0x000E0000) // Device#Eh, Func#0 on bus PCI0
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })
 Name(_HPP, Package(){0x08,0x40, 0x01, 0x00})

Field Object Type Definition

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 275

Device Configuration
 // Device definitions for Slot 1- HOT PLUG SLOT
 Device (S1F0) { // Slot 1, Func#0 on bus P2P2
 Name(_ADR,0x00020000)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F1) { // Slot 1, Func#1 on bus P2P2
 Name(_ADR,0x00020001)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F2) { // Slot 1, Func#2 on bus P2P2
 Name(_ADR,0x000200 02)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F3) { // Slot 1, Func#3 on bus P2P2
 Name(_ADR,0x00020003)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F4) { // Slot 1, Func#4 on bus P2P2
 Name(_ADR,0x00020004)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F5) { // Slot 1, Func#5 on bus P2P2
 Name(_ADR,0x00020005)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F6) { // Slot 1, Func#6 on bus P2P2
 Name(_ADR,0x00020006)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S1F7) { // Slot 1, Func#7 on bus P2P2
 Name(_ADR,0x00020007)
 Method(_EJ0, 1) { // Remove all power to device}
 }

 // Device definitions for Slot 2- HOT PLUG SLOT
 Device (S2F0) { // Slot 2, Func#0 on bus P2P2
 Name(_ADR,0x00030000)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F1) { // Slot 2, Func#1 on bus P2P2
 Name(_ADR,0x00030001)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F2) { // Slot 2, Func#2 on bus P2P2
 Name(_ADR,0x00030002)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F3) { // Slot 2, Func#3 on bus P2P2
 Name(_ADR,0x00030003)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F4) { // Slot 2, Func#4 on bus P2P2
 Name(_ADR,0x00030004)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F5) { // Slot 2, Func#5 on bus P2P2
 Name(_ADR,0x00030005)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F6) { // Slot 2, Func#6 on bus P2P2
 Name(_ADR,0x00030006)
276 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Method(_EJ0, 1) { // Remove all power to device}
 }
 Device (S2F7) { // Slot 2, Func#7 on bus P2P2
 Name(_ADR,0x00030007)
 Method(_EJ0, 1) { // Remove all power to device}
 }
 } // end P2P2
 } // end PCI0
} // end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size
of 32 (Notice this field is in DWORDs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.8 _HPX (Hot Plug Parameter Extensions)
This optional object provides platform-specific information to the OSPM PCI driver component
responsible for configuring hot-add PCI, PCI-X, or PCI Express devices. The information conveyed
applies to the entire hierarchy downward from the scope containing the _HPX object. If another
_HPX object is encountered downstream, the settings conveyed by the lower-level object apply to
that scope downward.

OSPM uses the information returned by _HPX to determine how to configure PCI devices that are
hot-plugged into the system, and to configure devices not configured by the platform firmware
during initial system boot. The _HPX object is placed within the scope of a PCI-compatible bus (see
the second Note below for restrictions) where this behavior is desired, such as a bus with hot-plug
slots. It returns a single package that contains one or more sub-packages, each containing a single
Setting Record. Each such Setting Record contains a Setting Type (INTEGER), a Revision number
(INTEGER) and type/revision specific contents.

The format of data returned by the _HPX object is extensible. The Setting Type and Revision
number determine the format of the Setting Record. OSPM ignores Setting Records of types that it
does not understand. A Setting Record with higher Revision number supersedes that with lower
revision number, however, the _HPX method can return both together, OSPM shall use the one with
highest revision number that it understands.

_HPX may return multiple types or Record Settings (each setting in a single sub-package.) OSPM is
responsible for detecting the type of hot plugged device and for applying the appropriate settings.
OSPM is also responsible for detecting the device / port type of the PCI Express device and applying
the appropriate settings provided. For example, the Secondary Uncorrectable Error Severity and
Secondary Uncorrectable Error Mask settings of Type 2 record are only applicable to PCI Express to
PCI-X/PCI Bridge whose device / port type is 1000b. Similarly, AER settings are only applicable to
hot plug PCI Express devices that support the optional AER capability.

Arguments:

None

Return Value:

A variable-length Package containing a list of Packages, each containing a single PCI or PCI-X
Record Setting as described below

The _HPX object supersedes the _HPP object. If the _HPP and _HPX objects exist within a device’s
scope, OSPM will only evaluate the _HPX object.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 277

Device Configuration
Note: OSPM may override the settings provided by the _HPX object’s Type2 record (PCI Express
Settings) when OSPM has assumed native control of the corresponding feature. For example, if
OSPM has assumed ownership of AER (via _OSC), OSPM may override AER related settings
returned by _HPX.

Note: The _HPX object may exist under PCI compatible buses including host bridges except when the
host bridge spawns a PCI Express hierarchy. For PCI Express hierarchies, the _HPX object may
only exist under a root port or a switch downstream port.

Note: Since error status registers do not drive error signaling, OSPM is not required to clear error status
registers as part of _HPX handling.

6.2.8.1 PCI Setting Record (Type 0)
The PCI setting record contains the setting type 0, the current revision 1 and the type/revision
specific content: cache-line size, latency timer, SERR enable, and PERR enable values.

Table 6-144 PCI Setting Record Content

If the hot plug device includes bridge(s) in the hierarchy, the above settings apply to the primary side
(command register) of the hot plugged bridge(s). The settings for the secondary side of the bridge(s)
(Bridge Control Register) are assumed to be provided by the bridge driver.

The Type 0 record is applicable to hot plugged PCI, PCI-X and PCI Express devices. OSPM will
ignore settings provided in the Type0 record that are not applicable (for example, Cache-line size
and Latency Timer are not applicable to PCI Express).

6.2.8.2 PCI-X Setting Record (Type 1)
The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision
specific content: the maximum memory read byte count setting, the average maximum outstanding
split transactions setting and the total maximum outstanding split transactions to be used when
configuring PCI-X command registers for PCI-X buses and/or devices.

Table 6-145 PCI-X Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x00: Type 0 (PCI) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.

Field Object Type Definition

Header:

Type Integer 0x01: Type 1 (PCI-X) setting record.
278 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value as the
Maximum Outstanding Split Transactions register value in the PCI-X command register for each
PCI-X device. Another alternative is to use a more sophisticated policy and the Total Maximum
Outstanding Split Transactions Value to gain even more performance. In this case, the OS would
examined each PCI-X device that is directly attached to the host bridge, determine the number of
outstanding split transactions supported by each device, and configure each device accordingly. The
goal is to ensure that the aggregate number of concurrent outstanding split transactions does not
exceed the Total Maximum Outstanding Split Transactions Value: an integer denoting the number of
concurrent outstanding split transactions the host bridge can support (the minimum value is 1).

This object does not address providing additional information that would be used to configure
registers in bridge devices, whether architecturally-defined or specification-defined registers or
device specific registers. It is expected that a driver for a bridge would be the proper implementation
mechanism to address both of those issues. However, such a bridge driver should have access to the
data returned by the _HPX object for use in optimizing its decisions on how to configure the bridge.
Configuration of a bridge is dependent on both system specific information such as that provided by
the _HPX object, as well as bridge specific information.

6.2.8.3 PCI Express Setting Record (Type 2)
The PCI Express setting record contains the setting type 2, the current revision 1 and the type/
revision specific content (the control registers as listed in the table below) to be used when
configuring registers in the Advanced Error Reporting Extended Capability Structure or PCI Express
Capability Structure for the PCI Express devices.

The Type 2 Setting Record allows a PCI Express-aware OS that supports native hot plug to
configure the specified registers of the hot plugged PCI Express device. A PCI Express-aware OS
that has assumed ownership of native hot plug (via _OSC) but does not support or does not have
ownership of the AER register set must use the data values returned by the _HPX object‘s Type 2

Revision Integer 0x01: Revision 1, defining the set of fields below.

Maximum
memory read byte
count

Integer Maximum memory read byte count reported:
Value 0: Maximum byte count 512
Value 1: Maximum byte count 1024
Value 2: Maximum byte count 2048
Value 3: Maximum byte count 4096

Average
maximum
outstanding split
transactions

Integer The following values are defined:
Value 0: Maximum outstanding split transaction 1
Value 1: Maximum outstanding split transaction 2
Value 2: Maximum outstanding split transaction 3
Value 3: Maximum outstanding split transaction 4
Value 4: Maximum outstanding split transaction 8
Value 5: Maximum outstanding split transaction 12
Value 6: Maximum outstanding split transaction 16
Value 7: Maximum outstanding split transaction 32

Total maximum
outstanding split
transactions

Integer See the definition for the average maximum outstanding split
transactions.

Field Object Type Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 279

Device Configuration
record to program the AER registers of a hot-added PCI Express device. However, since the Type 2
record also includes register bits that have functions other than AER, OSPM must ignore values
contained within this setting record that are not applicable.

To support PCIe RsvdP semantics for reserved bits, two values for each register are provided: an
“AND mask” and an “OR mask”. Each bit understood by firmware to be RsvdP shall be set to 1 in
the “AND mask” and 0 in the “OR mask”. Each bit that firmware intends to be configured as 0 shall
be set to 0 in both the “AND mask” and the “OR mask”. Each bit that firmware intends to be
configured a 1 shall be set to 1 in both the “AND mask” and the “OR mask”.

When configuring a given register, OSPM uses the following algorithm:

1. Read the register’s current value, which contains the register’s default value.

2. Perform a bit-wise AND operation with the “AND mask” from the table below.
3. Perform a bit-wise OR operation with the “OR mask” from the table below.
4. Override the computed settings for any bits if deemed necessary. For example, if OSPM is aware of an

architected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to override the
computed setting for that bit. Note that firmware sets the “AND value” to 1 and the “OR value” to 0 for
each bit that it considers to be RsvdP.

5. Write the end result value back to the register.

Note that the size of each field in the following table matches the size of the corresponding PCI
Express register.

Table 6-146 PCI Express Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x02: Type 2 (PCI Express) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Uncorrectable Error Mask Register
AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in the
OSPM algorithm described above.

Uncorrectable Error Mask Register
OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Uncorrectable Error Severity
Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in the
OSPM algorithm described above.

Uncorrectable Error Severity
Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Correctable Error Mask Register
AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in the
OSPM algorithm described above.

Correctable Error Mask Register OR
Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Advanced Error Capabilities and
Control Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in the
OSPM algorithm described above.

Advanced Error Capabilities and
Control Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Device Control Register AND Mask Integer Bits 0 to 15 contain the “AND mask” to be used in the
OSPM algorithm described above.

Device Control Register OR Mask Integer Bits 0 to 15 contain the “OR mask” to be used in the
OSPM algorithm described above.
280 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.2.8.4 _HPX Example
Method (_HPX, 0) {
 Return (Package(2){
 Package(6){ // PCI Setting Record
 0x00, // Type 0
 0x01, // Revision 1
 0x08, // CacheLineSize in DWORDS
 0x40, // LatencyTimer in PCI clocks
 0x01, // Enable SERR (Boolean)
 0x00 // Enable PERR (Boolean)
 },
 Package(5){ // PCI-X Setting Record
 0x01, // Type 1
 0x01, // Revision 1
 0x03, // Maximum Memory Read Byte Count
 0x04, // Average Maximum Outstanding Split Transactions
 0x07 // Total Maximum Outstanding Split Transactions
 }
 })
}

6.2.9 _MAT (Multiple APIC Table Entry)
This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or
processor object definition as processors may contain Local APICs. Specific types of MADT entries
are meaningful to (in other words, is processed by) OSPM when returned via the evaluation of this
object as described below. Other entry types returned by the evaluation of _MAT are ignored by
OSPM.

When _MAT appears under a Processor object, OSPM processes Local APIC (Section 5.2.12.2,
“Processor Local APIC Structure”), Local SAPIC Structure (Section 5.2.12.10, “Local SAPIC
Structure”), and local APIC NMI (Section 5.2.12.7, “Local APIC NMI Structure”) entries returned
from the object’s evaluation. Other entry types are ignored by OSPM. OSPM uses the ACPI
processor ID in the entries returned from the object’s evaluation to identify the entries corresponding
to either the ACPI processor ID of the Processor object or the value returned by the _UID object
under a Processor device.

Link Control Register AND Mask Integer Bits 0 to 15 contain the “AND mask” to be used in the
OSPM algorithm described above.

Link Control Register OR Mask Integer Bits 0 to 15 contain the “OR mask” to be used in the
OSPM algorithm described above.

Secondary Uncorrectable Error
Severity Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in the
OSPM algorithm described above

Secondary Uncorrectable Error
Severity Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above

Secondary Uncorrectable Error Mask
Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in the
OSPM algorithm described above

Secondary Uncorrectable Error Mask
Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above

Field Object Type Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 281

Device Configuration
When _MAT appears under an I/O APIC, OSPM processes I/O APIC (Section 5.2.12.3, “I/O APIC
Structure”), I/O SAPIC (Section 5.2.12.9, “I/O SAPIC Structure”), non-maskable interrupt sources
(Section 5.2.12.6, “Non-Maskable Interrupt Source Structure”), interrupt source overrides
(Section 5.2.12.5 “Interrupt Source Override Structure”), and platform interrupt source structure
(Section 5.2.12.11, “Platform Interrupt Source Structure”) entries returned from the object’s
evaluation. Other entry types are ignored by OSPM.

Arguments:

None

Return Value:

A Buffer containing a list of APIC structure entries

Example ASL for _MAT usage:

Scope(_SB) {
 Device(PCI0) { // Root PCI Bus
 Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
 Name(_ADR,0) // Device 0 on this bus
 Method (_CRS,0){ // Need current resources for root device
 // Return current resources for root bridge 0
 }
 Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
 // Package with PCI IRQ routing table information
 })

 Device (P64A) { // P64A ACPI
 Name(_ADR,0)
 OperationRegion(TABD, SystemMemory, // Physical address of first
 // data byte of multiple ACPI table, Length of tables)
 Field (TABD, ByteAcc, NoLock, Preserve){
 MATD, Length of tables x 8
 }
 Method(_MAT, 0){
 Return (MATD)
 }
 } // end P64A
 } // end PCI0
} // end scope SB

6.2.10 _OSC (Operating System Capabilities)
This optional object is a control method that is used by OSPM to communicate to the platform the
feature support or capabilities provided by a device’s driver. This object is a child object of a device
and may also exist in the _SB scope, where it can be used to convey platform wide OSPM
capabilities. When supported, _OSC is invoked by OSPM immediately after placing the device in
the D0 power state. Device specific objects are evaluated after _OSC invocation. This allows the
values returned from other objects to be predicated on the OSPM feature support / capability
information conveyed by _OSC. OSPM may evaluate _OSC multiple times to indicate changes in
OSPM capability to the device but this may be precluded by specific device requirements. As such,
_OSC usage descriptions in Section 9, “ACPI-Defined Devices and Device Specific Objects”, or
other governing specifications describe superseding device specific _OSC capabilities and / or
preclusions.
282 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_OSC enables the platform to configure its ACPI namespace representation and object evaluations
to match the capabilities of OSPM. This enables legacy operating system support for platforms with
new features that make use of new namespace objects that if exposed would not be evaluated when
running a legacy OS. _OSC provides the capability to transition the platform to native operating
system support of new features and capabilities when available through dynamic namespace
reconfiguration. _OSC also allows devices with Compatible IDs to provide superset functionality
when controlled by their native (For example, _HID matched) driver as appropriate objects can be
exposed accordingly as a result of OSPM’s evaluation of _OSC.

Arguments: (4)

Arg0 – A Buffer containing a UUID

Arg1 – An Integer containing a Revision ID of the buffer format

Arg2 – An Integer containing a count of entries in Arg3

Arg3 – A Buffer containing a list of DWORD capabilities

Return Value:

A Buffer containing a list of capabilities

Argument Information
Arg0: UUID – Universal Unique Identifier (16 Byte Buffer) used by the platform in conjunction
with Revision ID to ascertain the format of the Capabilities buffer.

Arg1: Revision ID – The revision of the Capabilities Buffer format. The revision level is specific to
the UUID.

Arg2: Count – Number of DWORDs in the Capabilities Buffer in Arg3

Arg3: Capabilities Buffer – Buffer containing the number of DWORDs indicated by Count. The first
DWORD of this buffer contains standard bit definitions as described below. Subsequent DWORDs
contain UUID-specific bits that convey to the platform the capabilities and features supported by
OSPM. Successive revisions of the Capabilities Buffer must be backwards compatible with earlier
revisions. Bit ordering cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions.
See Section 9, “ACPI Devices and Device Specific Objects” for any _OSC definitions for ACPI
devices. The format of the Capabilities Buffer and behavior rules may also be specified by OEMs
and IHVs for custom devices and other interface or device governing bodies for example, the PCI
SIG.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD
must always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

• Bit 0- Query Support Flag. If set, the _OSC invocation is a query by OSPM to determine or
negotiate with the platform the combination of capabilities for which OSPM may take control.
In this case, OSPM sets bits in the subsequent DWORDs to specify the capabilities for which
OSPM intends to take control. If clear, OSPM is attempting to take control of the capabilities
corresponding to the bits set in subsequent DWORDs. OSPM may only take control of
capabilities as indicated by the platform by the result of the query.

• Bit 1 – Always clear (0).

• Bit 2 – Always clear (0).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 283

Device Configuration
• Bit 3 – Always clear (0).

• All others – reserved.

Return Value Information
Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a
buffer of DWORDs of the same length. Set bits indicate acknowledgement that OSPM may take
control of the capability and cleared bits indicate that the platform either does not support the
capability or that OSPM may not assume control.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD
must always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

• Bit 0 – Reserved (not used)

• Bit 1 – _OSC failure. Platform Firmware was unable to process the request or query.
Capabilities bits may have been masked.

• Bit 2 – Unrecognized UUID. This bit is set to indicate that the platform firmware does not
recognize the UUID passed in via Arg0. Capabilities bits are preserved.

• Bit 3 – Unrecognized Revision. This bit is set to indicate that the platform firmware does not
recognize the Revision ID passed in via Arg1. Capabilities bits beyond those comprehended by
the firmware will be masked.

• Bit 4 – Capabilities Masked. This bit is set to indicate that capabilities bits set by driver software
have been cleared by platform firmware.

• All others – reserved.

Note: OSPM must not use the results of _OSC evaluation to choose a compatible device driver. OSPM
must use _HID, _CID, or native enumerable bus device identification mechanisms to select an
appropriate driver for a device.

The platform may issue a Notify(device, 0x08) to inform OSPM to re-evaluate _OSC when the
availability of feature control changes. Platforms must not rely, however, on OSPM to evaluate
_OSC after issuing a Notify for proper operation as OSPM cannot guarantee the presence of a target
entity to receive and process the Notify for the device. For example, a device driver for the device
may not be loaded at the time the Notify is signaled. Further, the issuance and processing rules for
notification of changes in the Capabilities Buffer is device specific. As such, the allowable behavior
is governed by device specifications either in Section 9, “ ACPI-Specific Device Objects”, for
ACPI-define devices, or other OEM, IHV, or device governing body’s’ device specifications.

It is permitted for _OSC to return all bits in the Capabilities Buffer cleared. An example of this is
when significant time is required to disable platform-based feature support. The platform may then
later issue a Notify to tell OSPM to re-evaluate _OSC to take over native control. This behavior is
also device specific but may also rely on specific OS capability.

 In general, platforms should support both OSPM taking and relinquishing control of specific feature
support via multiple invocations of _OSC but the required behavior may vary on a per device basis.

Since platform context is lost when the platform enters the S4 sleeping state, OSPM must re-
evaluate _OSC upon wake from S4 to restore the previous platform state. This requirement will vary
depending on the device specific _OSC functionality.
284 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.2.10.1 Rules for Evaluating _OSC
This section defines when and how the OS must evaluate _OSC, as well as restrictions on firmware
implementation.

6.2.10.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when evaluating _OSC,
no hardware settings are permitted to be changed by firmware in the context of the _OSC call. It is
strongly recommended that the OS evaluate _OSC with the Query Support Flag set until _OSC
returns the Capabilities Masked bit clear, to negotiate the set of features to be granted to the OS for
native support; a platform may require a specific combination of features to be supported natively by
an OS before granting native control of a given feature.

6.2.10.1.2 Evaluation Conditions

The OS must evaluate _OSC under the following conditions:

During initialization of any driver that provides native support for features described in the section
above. These features may be supported by one or many drivers, but should only be evaluated by the
main bus driver for that hierarchy. Secondary drivers must coordinate with the bus driver to install
support for these features. Drivers may not relinquish control of features previously obtained (i.e.,
bits set in Capabilities DWORD3 after the negotiation process must be set on all subsequent
negotiation attempts.)

When a Notify(<device>, 8) is delivered to the PCI Host Bridge device.

Upon resume from S4. Platform firmware will handle context restoration when resuming from S1-
S3.

6.2.10.1.3 Sequence of _OSC calls
The following rules govern sequences of calls to _OSC that are issued to the same host bridge and
occur within the same boot.

• The OS is permitted to evaluate _OSC an arbitrary number of times.

• If the OS declares support of a feature in the Status Field in one call to _OSC, then it must
preserve the set state of that bit (declaring support for that feature) in all subsequent calls.

• If the OS is granted control of a feature in the Control Field in one call to _OSC, then it must
preserve the set state of that bit (requesting that feature) in all subsequent calls.

• Firmware may not reject control of any feature it has previously granted control to.

• There is no mechanism for the OS to relinquish control of a feature previously requested and
granted.

6.2.10.2 Platform-Wide OSPM Capabilities
OSPM evaluates _SB._OSC to convey platform-wide OSPM capabilities to the platform.
Argument definitions are as follows:

Arguments: (4)

Arg0 – UUID (Buffer): 0811B06E-4A27-44F9-8D60-3CBBC22E7B48

Arg1 – Revision ID (Integer): 1
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 285

Device Configuration
Arg2 – Count of Entries in Arg3 (Integer): 2

Arg3 – DWORD capabilities (Buffer): First DWORD: as described in Section 6.2.9, Second
DWORD: See Table 6-147

Table 6-147 Platform-Wide _OSC Capabilities DWORD 2

Return Value Information
Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a
buffer of DWORDs of the same length. Set bits indicate acknowledgement and cleared bits indicate
that the platform does not support the capability.

6.2.10.3 OSC Implementation Example for PCI Host Bridge Devices
The following section is an excerpt from the PCI Firmware Specification Revision 3.0 and is
reproduced with the permission of the PCI SIG.

Note: The PCI SIG owns the definition of _OSC behavior and parameter bit definitions for PCI devices.
In the event of a discrepancy between the following example and the PCI Firmware Specification,
the latter has precedence.

The _OSC interface defined in this section applies only to “Host Bridge” ACPI devices that
originate PCI, PCI-X or PCI Express hierarchies. These ACPI devices must have a _HID of (or
_CID including) either EISAID(“PNP0A03”) or EISAID(“PNP0A08”). For a host bridge device that
originates a PCI Express hierarchy, the _OSC interface defined in this section is required. For a host
bridge device that originates a PCI/PCI-X bus hierarchy, inclusion of an _OSC object is optional.

• The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is identified by the following
Universal Uniform Identifier (UUID):
33DB4D5B-1FF7-401C-9657-7441C03DD766

Bits Field Name Definition

0 Processor Aggregator
Device Support

This bit is set if OSPM supports the Processor Aggregator device as
described in Section 8.5, “Processor Aggregator Device”

1 _PPC _OST Processing
Support

This bit is set if OSPM will evaluate the _OST object defined under a
processor as a result of _PPC change notification (Notify 0x80)

2 _PR3 Support This bit is set if OSPM supports reading _PR3and using power
resources to switch power. Note this handshake translates to an
operating model that the platform and OSPM supports both the power
model containing both D3hot and D3.

3 Insertion / Ejection _OST
Processing Support

This bit is set if OSPM will evaluate the _OST object defined under a
device when processing insertion and ejection source event codes.

4 APEI Support This bit is set if OSPM supports the ACPI Platform Error Interfaces.
See Section 18, “ACPI Platform Error Interfaces”.

5 CPC Support This bit is set if OSPM supports controlling processor performance via
the interfaces described in the _CPC object.

31:6 Reserved (must be 0)
286 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A revision ID of 1 encompasses fields defined in this section of this revision of this specification,
comprised of 3 DWORDs, including the first DWORD described by the generic ACPI definition of
_OSC.

The first DWORD in the _OSC Capabilities Buffer contain bits are generic to _OSC and include
status and error information.

The second DWORD in the _OSC capabilities buffer is the Support Field. Bits defined in the
Support Field provide information regarding OS supported features. Contents in the Support Field
are passed one-way; the OS will disregard any changes to this field when returned. See Table 6-145
for descriptions of capabilities bits in this field passed as a parameter into the _OSC control method.

The third DWORD in the _OSC Capabilities Buffer is the Control Field. Bits defined in the Control
Field are used to submit request by the OS for control/handling of the associated feature, typically
(but not excluded to) those features that utilize native interrupts or events handled by an OS-level
driver. See Table 6-147 for descriptions of capabilities bits in this field passed as a parameter into
the _OSC control method. If any bits in the Control Field are returned cleared (masked to zero) by
the _OSC control method, the respective feature is designated unsupported by the platform and must
not be enabled by the OS. Some of these features may be controlled by platform firmware prior to
OS boot or during runtime for a legacy OS, while others may be disabled/inoperative until native OS
support is available. See Table 6-148 for descriptions of capabilities bits in this returned field.

If the _OSC control method is absent from the scope of a host bridge device, then the OS must not
enable or attempt to use any features defined in this section for the hierarchy originated by the host
bridge. Doing so could contend with platform firmware operations, or produce undesired results. It
is recommended that a machine with multiple host bridge devices should report the same capabilities
for all host bridges, and also negotiate control of the features described in the Control Field in the
same way for all host bridges.

Table 6-148 Interpretation of _OSC Support Field

Support Field
bit offset

Interpretation

0 Extended PCI Config operation regions supported
The OS sets this bit to 1 if it supports ASL accesses through PCI Config operation regions
to extended configuration space (offsets greater than 0xFF). Otherwise, the OS sets this bit
to 0.

1 Active State Power Management supported
The OS sets this bit to 1 if it natively supports configuration of Active State Power
Management registers in PCI Express devices. Otherwise, the OS sets this bit to 0.

2 Clock Power Management Capability supported
The OS sets this bit to 1 if it supports the Clock Power Management Capability, and will
enable this feature during a native hot plug insertion event if supported by the newly added
device. Otherwise, the OS sets this bit to 0.
Note: The Clock Power Management Capability is defined in an errata to the PCI Express
Base Specification, 1.0.

3 PCI Segment Groups supported
The OS sets this bit to 1 if it supports PCI Segment Groups as defined by the _SEG object,
and access to the configuration space of devices in PCI Segment Groups as described by
this specification. Otherwise, the OS sets this bit to 0.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 287

Device Configuration
Table 6-149 Interpretation of _OSC Control Field, Passed in via Arg3

4 MSI supported
The OS sets this bit to 1 if it supports configuration of devices to generate message-
signaled interrupts, either through the MSI Capability or the MSI-X Capability. Otherwise,
the OS sets this bit to 0.

5-31 Reserved

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control
The OS sets this bit to 1 to request control over PCI Express native hot plug. If the OS
successfully receives control of this feature, it must track and update the status of hot plug
slots and handle hot plug events as described in the PCI Express Base Specification.

1 SHPC Native Hot Plug control
The OS sets this bit to 1 to request control over PCI/PCI-X Standard Hot-Plug Controller
(SHPC) hot plug. If the OS successfully receives control of this feature, it must track and
update the status of hot plug slots and handle hot plug events as described in the SHPC
Specification.

2 PCI Express Native Power Management Events control
The OS sets this bit to 1 to request control over PCI Express native power management
event interrupts (PMEs). If the OS successfully receives control of this feature, it must
handle power management events as described in the PCI Express Base Specification.

3 PCI Express Advanced Error Reporting control
The OS sets this bit to 1 to request control over PCI Express Advanced Error Reporting. If
the OS successfully receives control of this feature, it must handle error reporting through
the Advanced Error Reporting Capability as described in the PCI Express Base
Specification.

4 PCI Express Capability Structure control
The OS sets this bit to 1 to request control over the PCI Express Capability Structures
(standard and extended) defined in the PCI Express Base Specification version 1.1. These
capability structures are the PCI Express Capability, the virtual channel extended
capability, the power budgeting extended capability, the advanced error reporting extended
capability, and the serial number extended capability. If the OS successfully receives
control of this feature, it is responsible for configuring the registers in all PCI Express
Capabilities in a manner that complies with the PCI Express Base Specification.
Additionally, the OS is responsible for saving and restoring all PCI Express Capability
register settings across power transitions when register context may have been lost.

5-31 Reserved
288 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 6-150 Interpretation of _OSC Control Field, Returned Value

6.2.10.4 ASL Example
A sample _OSC implementation for a mobile system incorporating a PCI Express hierarchy is
shown below:

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control
The firmware sets this bit to 1 to grant control over PCI Express native hot plug interrupts. If
firmware allows the OS control of this feature, then in the context of the _OSC method it
must ensure that all hot plug events are routed to device interrupts as described in the PCI
Express Base Specification. Additionally, after control is transferred to the OS, firmware
must not update the state of hot plug slots, including the state of the indicators and power
controller. If control of this feature was requested and denied or was not requested,
firmware returns this bit set to 0.

1 SHPC Native Hot Plug control
The firmware sets this bit to 1 to grant control over control over PCI/PCI-X Standard Hot-
Plug Controller (SHPC)hot plug. If firmware allows the OS control of this feature, then in the
context of the _OSC method it must ensure that all hot plug events are routed to device
interrupts as described in the SHPC Specification. Additionally, after control is transferred
to the OS, firmware must not update the state of hot plug slots, including the state of the
indicators and power controller. If control of this feature was requested and denied or was
not requested, firmware returns this bit set to 0.

2 PCI Express Native Power Management Events control
The firmware sets this bit to 1 to grant control over control over PCI Express native power
management event interrupts (PMEs). If firmware allows the OS control of this feature, then
in the context of the _OSC method it must ensure that all PMEs are routed to root port
interrupts as described in the PCI Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not update the PME Status field in the Root Status
register or the PME Interrupt Enable field in the Root Control register. If control of this
feature was requested and denied or was not requested, firmware returns this bit set to 0.

3 PCI Express Advanced Error Reporting control
The firmware sets this bit to 1 to grant control over PCI Express Advanced Error Reporting.
If firmware allows the OS control of this feature, then in the context of the _OSC method it
must ensure that error messages are routed to device interrupts as described in the PCI
Express Base Specification. Additionally, after control is transferred to the OS, firmware
must not modify the Advanced Error Reporting Capability. If control of this feature was
requested and denied or was not requested, firmware returns this bit set to 0.

4 PCI Express Capability Structure control
The firmware sets this bit to 1 to grant control over the PCI Express Capability. If the
firmware does not grant control of this feature, firmware must handle configuration of the
PCI Express Capability Structure.
If firmware grants the OS control of this feature, any firmware configuration of the PCI
Express Capability may be overwritten by an OS configuration, depending on OS policy.

5-31 Reserved
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 289

Device Configuration
Device(PCI0) // Root PCI bus
{
 Name(_HID,EISAID("PNP0A08")) // PCI Express Root Bridge
 Name(_CID,EISAID("PNP0A03")) // Compatible PCI Root Bridge
 Name(SUPP,0) // PCI _OSC Support Field value
 Name(CTRL,0) // PCI _OSC Control Field value

 Method(_OSC,4)
 { // Check for proper UUID
 If(LEqual(Arg0,ToUUID("33DB4D5B-1FF7-401C-9657-7441C03DD766")))
 {
 // Create DWord-adressable fields from the Capabilities Buffer
 CreateDWordField(Arg3,0,CDW1)
 CreateDWordField(Arg3,4,CDW2)
 CreateDWordField(Arg3,8,CDW3)

 // Save Capabilities DWord2 & 3
 Store(CDW2,SUPP)
 Store(CDW3,CTRL)

 // Only allow native hot plug control if OS supports:
 // * ASPM
 // * Clock PM
 // * MSI/MSI-X
 If(LNotEqual(And(SUPP, 0x16), 0x16))
 {
 And(CTRL,0x1E,CTRL) // Mask bit 0 (and undefined bits)
 }

 // Always allow native PME, AER (no dependencies)

 // Never allow SHPC (no SHPC controller in this system)
 And(CTRL,0x1D,CTRL)

 If(Not(And(CDW1,1))) // Query flag clear?
 { // Disable GPEs for features granted native control.
 If(And(CTRL,0x01)) // Hot plug control granted?
 {
 Store(0,HPCE) // clear the hot plug SCI enable bit
 Store(1,HPCS) // clear the hot plug SCI status bit
 }
 If(And(CTRL,0x04)) // PME control granted?
 {
 Store(0,PMCE) // clear the PME SCI enable bit
 Store(1,PMCS) // clear the PME SCI status bit
 }
 If(And(CTRL,0x10)) // OS restoring PCIe cap structure?
 { // Set status to not restore PCIe cap structure
 // upon resume from S3
 Store(1,S3CR)
 }
 }

 If(LNotEqual(Arg1,One))
 { // Unknown revision
 Or(CDW1,0x08,CDW1)
 }

 If(LNotEqual(CDW3,CTRL))
 { // Capabilities bits were masked
 Or(CDW1,0x10,CDW1)
290 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 }
 // Update DWORD3 in the buffer
 Store(CTRL,CDW3)
 Return(Arg3)
 } Else {
 Or(CDW1,4,CDW1) // Unrecognized UUID
 Return(Arg3)
 }
 } // End _OSC
} // End PCI0

6.2.11 _PRS (Possible Resource Settings)
This optional object evaluates to a byte stream that describes the possible resource settings for the
device. When describing a platform, specify a _PRS for all the configurable devices. Static (non-
configurable) devices do not specify a _PRS object. The information in this package is used by
OSPM to select a conflict-free resource allocation without user intervention. This method must not
reference any operation regions that have not been declared available by a _REG method.

The format of the data in a _PRS object follows the same format as the _CRS object (for more
information, see the _CRS object definition in Section 6.2.2, “_CRS (Current Resource Settings)”).

If the device is disabled when _PRS is called, it must remain disabled.

Arguments:

None

Return Value:

A Buffer containing a Resource Descriptor byte stream

6.2.12 _PRT (PCI Routing Table)
PCI interrupts are inherently non-hierarchical. PCI interrupt pins are wired to interrupt inputs of the
interrupt controllers. The _PRT object provides a mapping from PCI interrupt pins to the interrupt
inputs of the interrupt controllers. The _PRT object is required under all PCI root bridges. _PRT
evaluates to a package that contains a list of packages, each of which describes the mapping of a PCI
interrupt pin.

Arguments:

None

Return Value:

A Package containing variable-length list of PCI interrupt mapping packages, as described below

Note: The PCI function number in the Address field of the _PRT packages must be 0xFFFF, indicating
“any” function number or “all functions”.

The _PRT mapping packages have the fields listed in Table 6-151.

Table 6-151 Mapping Fields

Field Type Description

Address DWORD The address of the device (uses the same format as _ADR).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 291

Device Configuration
There are two ways that _PRT can be used. Typically, the interrupt input that a given PCI interrupt is
on is configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11
on an 8259 interrupt controller. In this model, each interrupt is represented in the ACPI namespace
as a PCI Interrupt Link Device.

These objects have _PRS, _CRS, _SRS, and _DIS control methods to allocate the interrupt. Then,
OSPM handles the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt
pins. The driver looks up the device’s pins in the _PRT to determine which device objects allocate
the interrupts. To move the PCI interrupt to a different interrupt input on the interrupt controller,
OSPM uses _PRS, _CRS, _SRS, and _DIS control methods for the PCI Interrupt Link Device.

In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt
controller and are not configurable. In this case, the Source field in _PRT does not reference a
device, but instead contains the value zero, and the Source Index field contains the global system
interrupt to which the PCI interrupt is hardwired.

6.2.12.1 Example: Using _PRT to Describe PCI IRQ Routing
The following example describes two PCI slots and a PCI video chip. Notice that the interrupts on
the two PCI slots are wired differently (barber-poled).

Pin BYTE The PCI pin number of the device (0–INTA, 1–INTB, 2–INTC, 3–INTD).

Source NamePath
Or
BYTE

Name of the device that allocates the interrupt to which the above pin is connected.
The name can be a fully qualified path, a relative path, or a simple name segment
that utilizes the namespace search rules. Note: This field is a NamePath and not a
String literal, meaning that it should not be surrounded by quotes. If this field is the
integer constant Zero (or a BYTE value of 0), then the interrupt is allocated from the
global interrupt pool.

Source
Index

DWORD Index that indicates which resource descriptor in the resource template of the
device pointed to in the Source field this interrupt is allocated from. If the Source
field is the BYTE value zero, then this field is the global system interrupt number to
which the pin is connected.

Field Type Description
292 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Scope(_SB) {
 Device(LNKA){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 1)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {10,11} // IRQs 10,11
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKB){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 2)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {11,12} // IRQs 11,12
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKC){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 3)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {12,14} // IRQs 12,14
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(LNKD){
 Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
 Name(_UID, 4)
 Name(_PRS, ResourceTemplate(){
 Interrupt(ResourceProducer,…) {10,15} // IRQs 10,15
 })
 Method(_DIS) {…}
 Method(_CRS) {…}
 Method(_SRS, 1) {…}
 }
 Device(PCI0){
 …
 Name(_PRT, Package{
 Package{0x0004FFFF, 0, _SB_.LNKA, 0}, // Slot 1, INTA // A fully
 Package{0x0004FFFF, 1, _SB_.LNKB, 0}, // Slot 1, INTB // qualified
 Package{0x0004FFFF, 2, _SB_.LNKC, 0}, // Slot 1, INTC // pathname
 Package{0x0004FFFF, 3, _SB_.LNKD, 0}, // Slot 1, INTD // can be used,
 Package{0x0005FFFF, 0, LNKB, 0}, // Slot 2, INTA // or a simple
 Package{0x0005FFFF, 1, LNKC, 0}, // Slot 2, INTB // name segment
 Package{0x0005FFFF, 2, LNKD, 0}, // Slot 2, INTC // utilizing the
 Package{0x0005FFFF, 3, LNKA, 0}, // Slot 2, INTD // search rules
 Package{0x0006FFFF, 0, LNKC, 0} // Video, INTA
 })
 }
}

6.2.13 _PXM (Proximity)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 293

Device Configuration
This optional object is used to describe proximity domains within a machine. _PXM evaluates to an
integer that identifies the device as belonging to a specific proximity domain. OSPM assumes that
two devices in the same proximity domain are tightly coupled. OSPM could choose to optimize its
behavior based on this. For example, in a system with four processors and six memory devices, there
might be two separate proximity domains (0 and 1), each with two processors and three memory
devices. In this case, the OS may decide to run some software threads on the processors in proximity
domain 0 and others on the processors in proximity domain 1. Furthermore, for performance
reasons, it could choose to allocate memory for those threads from the memory devices inside the
proximity domain common to the processor and the memory device rather than from a memory
device outside of the processor’s proximity domain. _PXM can be used to identify any device
belonging to a proximity domain. Children of a device belong to the same proximity domain as their
parent unless they contain an overriding _PXM. Proximity domains do not imply any ejection
relationships.

An OS makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance
between the proximity domains (in other words, proximity domain 1 is not assumed to be closer to
proximity domain 0 than proximity domain 6).

If the Local APIC ID / Local SAPIC ID / Local x2APIC ID of a dynamically added processor is not
present in the System Resource Affinity Table (SRAT), a _PXM object must exist for the
processor’s device or one of its ancestors in the ACPI Namespace.

Arguments:

None

Return Value:

An Integer (DWORD) containing a proximity domain identifier.

6.2.14 _SLI (System Locality Information)
The System Locality Information Table (SLIT) table defined in Section 5.2.17, “System Locality
Distance Information Table (SLIT)” provides relative distance information between all System
Localities for use during OS initialization.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to
every other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI
namespace. See Section 6.2.13, “_PXM (Proximity)” for more information.

Dynamic runtime reconfiguration of the system may cause the distance between System Localities
to change.

_SLI is an optional object that enables the platform to provide the OS with updated relative System
Locality distance information at runtime. _SLI provide OSPM with an update of the relative distance
from System Locality i to all other System Localities in the system.

Arguments:

None
294 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Return Value:
A Buffer containing a system locality information table

If System Locality i ≥ N, where N is the number of System Localities, the _SLI method returns a
buffer that contains these relative distances:

[(i, 0), (i, 1), …, (i, i-1), (i, i), (0, i), (1, i), …(i-1, i), (i, i)]

If System Locality i < N, the _SLI method returns a buffer that contains these relative distances:

[(i, 0), (i, 1), …, (i, i), …,(i, N-1), (0, i), (1, i),…(i, i), …, (N-1, i)]

Note: (i, i) is always a value of 10.

Figure 6-36 System Locality information Table

Figure 6-36diagrams a 4-node system where the nodes are numbered 0 through 3 (Node n = Node 3)
and the granularity is at the node level for the NUMA distance information. In this example we
assign System Localities / Proximity Domain numbers equal to the node numbers (0-3). The NUMA
relative distances between proximity domains as implemented in this system are described in the
matrix represented in Table 6-152. Proximity Domains are represented by the numbers in the top
row and left column. Distances are represented by the values in cells internal in the table from the
domains.

Table 6-152 Example Relative Distances Between Proximity Domains

An example of these distances between proximity domains encoded in a System Locality
Information Table for consumption by OSPM at boot time is described in Table 6-153.

Table 6-153 Example System Locality Information Table

Proximity Domain 0 1 2 3

0 10 15 20 18

1 15 10 16 24

2 20 16 10 12

3 18 24 12 10

Field Byte
Length

Byte
Offset

Description

Header

Node 0 Node 1 Node 2 Node n

Interconnect
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 295

Device Configuration
If a new node, “Node 4”, is added, then Table 6-154 represents the updated system’s NUMA relative
distances of proximity domains.

Table 6-154 Example Relative Distances Between Proximity Domains - 5 Node

 Signature 4 0 ‘SLIT’.

 Length 4 4 60

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID.

 OEM Table ID 8 16 For the System Locality Information Table, the table ID is
the manufacturer model ID.

 OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Number of System
Localities

8 36 4

Entry[0][0] 1 44 10

Entry[0][1] 1 45 15

Entry[0][2] 1 46 20

Entry[0][3] 1 47 18

Entry[1][0] 1 48 15

Entry[1][1] 1 49 10

Entry[1][2] 1 50 16

Entry[1][3] 1 51 24

Entry[2][0] 1 52 20

Entry[2][1] 1 53 16

Entry[2][2] 1 54 10

Entry[2][3] 1 55 12

Entry[3][0] 1 56 18

Entry[3][1] 1 57 24

Entry[3][2] 1 58 12

Entry[3][3] 1 59 10

Proximity Domain 0 1 2 3 4

0 10 15 20 18 17

Field Byte
Length

Byte
Offset

Description
296 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The new node’s _SLI object would evaluate to a buffer containing [17,21,14,23,10,17,21,14,23,10].

Note: Some systems support interleave memory across the nodes. The SLIT representation of these
systems is implementation specific.

6.2.15 _SRS (Set Resource Settings)
This optional control method takes one byte stream argument that specifies a new resource
allocation for a device. The resource descriptors in the byte stream argument must be specified
exactly as listed in the _CRS byte stream – meaning that the identical resource descriptors must
appear in the identical order, resulting in a buffer of exactly the same length. Optimizations such as
changing an IRQ descriptor to an IRQNoFlags descriptor (or vice-versa) must not be performed.
Similarly, changing StartDependentFn to StartDependentFnNoPri is not allowed. A _CRS object
can be used as a template to ensure that the descriptors are in the correct format. For more
information, see the _CRS object definition.

The settings must take effect before the _SRS control method returns.

This method must not reference any operation regions that have not been declared available by a
_REG method.

If the device is disabled, _SRS enables the device at the specified resources. _SRS is not used to
disable a device; use the _DIS control method instead.

Arguments: (1)

Arg0 – A Buffer containing a Resource Descriptor byte stream

Return Value:

None

6.3 Device Insertion, Removal, and Status Objects
The objects defined in this section provide mechanisms for handling dynamic insertion and removal
of devices and for determining device and notification processing status.

Device insertion and removal objects are also used for docking and undocking mobile platforms to
and from a peripheral expansion dock. These objects give information about whether or not devices
are present, which devices are physically in the same device (independent of which bus the devices
live on), and methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection
mechanism instead of a “surprise-style” ejection mechanism. In this system, the eject button for a
device does not immediately remove the device, but simply signals the operating system. OSPM

1 15 10 16 24 21

2 20 16 10 12 14

3 18 24 12 10 23

4 17 21 14 23 10

Proximity Domain 0 1 2 3 4
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 297

Device Configuration
then shuts down the device, closes open files, unloads the driver, and sends a command to the
hardware to eject the device.

1. If the device is physically inserted while the computer is in the working state (in other words, hot
insertion), the hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of
the bus that the new device is on or the device object for the new device. If the Notify command
points to the device object for the new device, the control method must have changed the
device’s status returned by _STA to indicate that the device is now present. The performance of
this process can be optimized by having the object of the Notify as close as possible, in the
namespace hierarchy, to where the new device resides. The Notify command can also be used
from the _WAK control method (for more information about _WAK, see Section 7.3.7 “_WAK
(System Wake)”) to indicate device changes that may have occurred while the computer was
sleeping. For more information about the Notify command, see Section 5.6.3 “Device Object
Notification.”

3. OSPM uses the identification and configuration objects to identify, configure, and load a device
driver for the new device and any devices found below the device in the hierarchy.

4. If the device has a _LCK control method, OSPM may later run this control method to lock the
device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices.
For example, it could point to the PCI-PCI bridge docking connector. OSPM will then load and
configure all devices it found below that bridge. The control method can also point to several
different devices in the hierarchy if the new devices do not all live under the same bus. (in other
words, more than one bus goes through the connector).

For removing devices, ACPI supports both hot removal (system is in the S0 state), and warm
removal (system is in a sleep state: S1-S4). This is done using the _EJx control methods. Devices
that can be ejected include an _EJx control method for each sleeping state the device supports (a
maximum of 2 _EJx objects can be listed). For example, hot removal devices would supply an _EJ0;
warm removal devices would use one of _EJ1-EJ4. These control methods are used to signal the
hardware when an eject is to occur.

The sequence of events for dynamically removing a device goes as follows:

1. The eject button is pressed and generates a general-purpose event. (If the system was in a
sleeping state, it should wake the computer).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which
specific device the user has requested to eject. Notify does not need to be called for every device
that may be ejected, but for the top-level device. Any child devices in the hierarchy or any
ejection-dependent devices on this device (as described by _EJD, below) are automatically
removed.

3. The OS shuts down and unloads devices that will be removed.

4. If the device has a _LCK control method, OSPM runs this control method to unlock the device.

5. The OS looks to see what _EJx control methods are present for the device. If the removal event
will cause the system to switch to battery power (in other words, an undock) and the battery is
low, dead, or not present, OSPM uses the lowest supported sleep state _EJx listed; otherwise it
uses the highest state _EJx. Having made this decision, OSPM runs the appropriate _EJx control
method to prepare the hardware for eject.
298 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6. Warm removal requires that the system be put in a sleep state. If the removal will be a warm
removal, OSPM puts the system in the appropriate Sx state. If the removal will be a hot removal,
OSPM skips to step 8, below.

7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on,
to eject the device. Immediately after ejection, the hardware transitions the computer to S0. If
the system was sleeping when the eject notification came in, the OS returns the computer to a
sleeping state consistent with the user’s wake settings.

8. OSPM calls _STA to determine if the eject successfully occurred. (In this case, control methods
do not need to use the Notify(device,3) command to tell OSPM of the change in _STA) If there
were any mechanical failures, _STA returns 3: device present and not functioning, and OSPM
informs the user of the problem.

Note: This mechanism is the same for removing a single device and for removing several devices, as in
an undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not
recommended because system and data integrity cannot be guaranteed when a surprise-style removal
occurs. Because the OS is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal, a general-
purpose event must be raised. Its associated control method must use the Notify command to
indicate which bus the device was removed from.

The device insertion and removal objects are listed in Table 6-155.

Table 6-155 Device Insertion, Removal, and Status Objects

6.3.1 _EDL (Eject Device List)
This object evaluates to a package of namespace references containing the names of device objects
that depend on the device under which the _EDL object is declared. This is primarily used to support
docking stations. Before the device under which the _EDL object is declared may be ejected, OSPM
prepares the devices listed in the _EDL object for physical removal.

Arguments:

None

Return Value:

A variable-length Package containing a list of namespace references

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing _EDL.

_EJD Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is ejected, the dependent device must receive an ejection notification.

_EJx Control method that ejects a device.

_LCK Control method that locks or unlocks a device.

_OST Control method invoked by OSPM to convey processing status to the platform.

_RMV Object that indicates that the given device is removable.

_STA Control method that returns a device’s status.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 299

Device Configuration
Before OSPM ejects a device via the device’s _EJx methods, all dependent devices listed in the
package returned by _EDL are prepared for removal. Notice that _EJx methods under the dependent
devices are not executed.

When describing a platform that includes a docking station, an _EDL object is declared under the
docking station device. For example, if a mobile system can attach to two different types of docking
stations, _EDL is declared under both docking station devices and evaluates to the packaged list of
devices that must be ejected when the system is ejected from the docking station.

An ACPI-compliant OS evaluates the _EDL method just prior to ejecting the device.

6.3.2 _EJD (Ejection Dependent Device)
This object is used to specify the name of a device on which the device, under which this object is
declared, is dependent. This object is primarily used to support docking stations. Before the device
indicated by _EJD is ejected, OSPM will prepare the dependent device (in other words, the device
under which this object is declared) for removal.

Arguments:

None

Return Value:

A String containing the device name

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by
_EJD will be used to eject all the dependent devices. A device’s dependents will be ejected when the
device itself is ejected.

Note: OSPM will not execute a dependent device’s _EJx methods when the device indicated by _EJD is
ejected.

When describing a platform that includes a docking station, usually more than one _EJD object will
be needed. For example, if a dock attaches both a PCI device and an ACPI-configured device to a
mobile system, then both the PCI device description package and the ACPI-configured device
description package must include an _EJD object that evaluates to the name of the docking station
(the name specified in an _ADR or _HID object in the docking station’s description package). Thus,
when the docking connector signals an eject request, OSPM first attempts to disable and unload the
drivers for both the PCI and ACPI configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This
greatly restricts a table designer’s freedom to describe dynamic dependencies such as those
created in scenarios with multiple docking stations. This restriction is illustrated in the example
below; the _EJD information supplied via and ACPI 1.0-compatible namespace omits the IDE2
device from DOCK2’s list of ejection dependencies. Starting in ACPI 2.0, OSPM is presented with
a more in-depth view of the ejection dependencies in a system by use of the _EDL methods.

Example
An example use of _EJD and _EDL is as follows:
300 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Scope(_SB.PCI0) {

 Device(DOCK1) { // Pass through dock – DOCK1
 Name(_ADR, …)
 Method(_EJ0, 0) {…}
 Method(_DCK, 1) {…}
 Name(_BDN, …)
 Method(_STA, 0) {0xF}
 Name(_EDL, Package() { // DOCK1 has two dependent devices – IDE2 and CB2
 _SB.PCI0.IDE2,
 _SB.PCI0.CB2})
 }
 Device(DOCK2) { // Pass through dock – DOCK2
 Name(_ADR, …)
 Method(_EJ0, 0) {…}
 Method(_DCK, 1) {…}
 Name(_BDN, …)
 Method(_STA, 0) {0x0}
 Name(_EDL, Package() { // DOCK2 has one dependent device – IDE2
 _SB.PCI0.IDE2})
 }

 Device(IDE1) { // IDE Drive1 not dependent on the dock
 Name(_ADR, …)
 }

 Device(IDE2) { // IDE Drive2
 Name(_ADR, …)
 Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1
 }

 Device(CB2) { // CardBus Controller
 Name(_ADR, …)
 Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1
 }
} // end _SB.PCIO

6.3.3 _EJx (Eject)
These control methods are optional and are supplied for devices that support a software-controlled
VCR-style ejection mechanism or that require an action be performed such as isolation of power/
data lines before the device can be removed from the system. To support warm (system is in a sleep
state) and hot (system is in S0) removal, an _EJx control method is listed for each sleep state from
which the device supports removal, where x is the sleeping state supported. For example, _EJ0
indicates the device supports hot removal; _EJ1–EJ4 indicate the device supports warm removal.

Arguments: (1)

Arg0 – An Integer containing a device ejection control

0 – Cancel a mark for ejection request (EJ0 will never be called with this value)

1 – Hot eject or mark for ejection

Return Value:

None

For hot removal, the device must be immediately ejected when OSPM calls the _EJ0 control
method. The _EJ0 control method does not return until ejection is complete. After calling _EJ0,
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 301

Device Configuration
OSPM verifies the device no longer exists to determine if the eject succeeded. For _HID devices,
OSPM evaluates the _STA method. For _ADR devices, OSPM checks with the bus driver for that
device.

For warm removal, the _EJ1–_EJ4 control methods do not cause the device to be immediately
ejected. Instead, they set proprietary registers to prepare the hardware to eject when the system goes
into the given sleep state. The hardware ejects the device only after OSPM has put the system in a
sleep state by writing to the SLP_EN register. After the system resumes, OSPM calls _STA to
determine if the eject succeeded.

A device object may have multiple _EJx control methods. First, it lists an EJx control method for the
preferred sleeping state to eject the device. Optionally, the device may list an EJ4 control method to
be used when the system has no power (for example, no battery) after the eject. For example, a hot-
docking notebook might list _EJ0 and _EJ4.

6.3.4 _LCK (Lock)
This control method is optional and is required only for a device that supports a software-controlled
locking mechanism. When the OS invokes this control method, the associated device is to be locked
or unlocked based upon the value of the argument that is passed. On a lock request, the control
method must not complete until the device is completely locked.

Arguments: (1)

Arg0 – An Integer containing a device lock control

0 – Unlock the device

1 – Lock the device

Return Value:

None

When describing a platform, devices use either a _LCK control method or an _EJx control method
for a device.

6.3.5 _OST (OSPM Status Indication)
This object is an optional control method that is invoked by OSPM to indicate processing status to
the platform. During device ejection, device hot add, or other event processing, OSPM may need to
perform specific handshaking with the platform. OSPM may also need to indicate to the platform its
inability to complete a requested operation; for example, when a user presses an ejection button for a
device that is currently in use or is otherwise currently incapable of being ejected. In this case, the
processing of the ACPI Eject Request notification by OSPM fails. OSPM may indicate this failure
to the platform through the invocation of the _OST control method. As a result of the status
notification indicating ejection failure, the platform may take certain action including reissuing the
notification or perhaps turning on an appropriate indicator light to signal the failure to the user.

Arguments: (3)

Arg0 – An Integer containing the source event

Arg1 – An Integer containing the status code

Arg2 – A Buffer containing status information
302 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Return Value:

None

Argument Information:
Arg0 – source_event: DWordConst

If the value of source_event is <= 0xFF, this argument is the ACPI notification value whose
processing generated the status indication. This is the value that was passed into the Notify operator.

If the value of source_event is 0x100 or greater then the OSPM status indication is a result of an
OSPM action as indicated in Table 6-156. For example, a value of 0x103 will be passed into _OST
for this argument upon the failure of a user interface invoked device ejection.

If OSPM is unable to identify the originating notification value, OSPM invokes _OST with a value
that contains all bits set (ones) for this parameter.

Arg1 – Status Code: DWordConst. OSPM indicates a notification value specific status. See Table 6-
157, Table 6-158, and Table 6-160 for status code descriptions.

Arg2 – A buffer containing detailed OSPM-specific information about the status indication. This
argument may be null.

Table 6-156 OST Source Event Codes

Table 6-157 General Processing Status Codes

Table 6-158 Operating System Shutdown Processing (Source Events : 0x100) Status Codes

Source Event Code Description

0-0xFF Reserved for Notification Values

0x100 Operation System Shutdown Processing

0x101-0x102 Reserved

0x103 Ejection Processing

0x104-0x1FF Reserved

0x200 Insertion Processing

0x201-0xFFFFFFFF Reserved

Status Code Description

0 Success

1 Non-specific failure

2 Unrecognized Notify Code

3-0x7F Reserved

0x80-0xFFFFFFFF Notification value specific status codes

Status Code Description

0x80 OS Shutdown Request denied

0x81 OS Shutdown in progress

0x82 OS Shutdown completed
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 303

Device Configuration
6.3.5.1 Processing Sequence for Graceful Shutdown Request:
Following receipt of the Graceful Shutdown Request (see Table 5-119, value 0x0C) the OS will be
responsible for responding with one of the following status codes:

• 0x80 (OS Shutdown Request denied) –This value will be sent if the OS is not capable of
performing a graceful shutdown.

• 0x81 (OS Shutdown in progress) – The OS has initiated the graceful shutdown procedure.

• 0x83 (OS Graceful Shutdown not supported) – The OS does not support the Graceful Shutdown
Request.

If the OS does initiate a graceful shutdown it should continue to generate the “OS Shutdown in
progress” message (_OST source event 0x100 status code 0x81) every 10 seconds. This functions as
a heartbeat so that the service which requested the graceful shutdown knows that the request is
currently being processed. The platform should assume that the OS shutdown is not proceeding if it
does not receive the “OS Shutdown in progress” message for 60 seconds.

When the graceful shutdown procedure has completed the OSPM will send the “OS Shutdown
completed” message and then transition the platform to the G2 “soft-off” power state.

Table 6-159 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status
Codes

Table 6-160 Insertion Processing (Source Event: 0x200) Status Codes

0x83 OS Graceful Shutdown not supported

0x84-0xFFFFFFFF Reserved

Status Code Description

0x80 Device ejection not supported by OSPM

0x81 Device in use by application

0x82 Device Busy

0x83 Ejection dependency is busy or not supported for ejection by OSPM

0x84 Ejection is in progress (pending)

0x85-0xFFFFFFFF Reserved

Status Code Description

0x80 Device insertion in progress (pending)

0x81 Device driver load failure

0x82 Device insertion not supported by OSPM

0x83-0x8F Reserved

0x90-0x9F Insertion failure – Resources Unavailable as described by the following bit encodings:
Bit[3] Bus Numbers
Bit[2] Interrupts
Bit[1] I/O
Bit[0] Memory

Status Code Description
304 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
It is possible for the platform to issue multiple notifications to OSPM and for OSPM to process the
notifications asynchronously. As such, OSPM may invoke _OST for notifications independent of the
order the notification are conveyed by the platform or by software to OSPM.

The figure below provides and example event flow of device ejection on a platform employing the
_OST object.

0xA0-0xFFFFFFFF Reserved

Status Code Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 305

Device Configuration
Figure 6-37 Device Ejection Flow Example Using _OST

User interacts with
OSPM to request
device ejection

OSPM evaluates
_OST(0x103,84,””)

OSPM Processes
Ejection Request

OS Ejection
Successful ?

Evaluate _EJx

OSPM evaluates
_OST(0x103,81,””)

or
_OST(0x03,81,””)

Application connections to device closed .

Yes

No

Platform turns off
Ejection Progress
Light and turns on
Ejection Failure

Light

Platform blinks
Ejection Progress

Light

Platform ejection
occurs

Yes

OSPM places
system into sleep

state
x = 0 in _EJx? No Platform wakeup

occurs

Platform turns off
Ejection Progress

Light

Done

Done

User Presses
Hardware Eject

Button

OSPM evaluation of GPE
Status method generates

Notify(device,3(eject))

Platform generates GPE/SCI
306 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: To maintain compatibility with OSPM implementations of previous revisions of the ACPI
specification, the platform must not rely on OSPM’s evaluation of the _OST object for proper
platform operation.

Example ASL for _OST usage:
External (_SB.PCI4, DeviceObj)

Scope(_SB.PCI4) {
 OperationRegion(LED1, SystemIO, 0x10C0, 0x20)
 Field(LED1, AnyAcc, NoLock, Preserve)
 { // LED controls
 S0LE, 1, // Slot 0 Ejection Progress LED
 S0LF, 1, // Slot 0 Ejection Failure LED
 S1LE, 1, // Slot 1 Ejection Progress LED
 S1LF, 1, // Slot 1 Ejection Failure LED
 S2LE, 1, // Slot 2 Ejection Progress LED
 S2LF, 1, // Slot 2 Ejection Failure LED
 S3LE, 1, // Slot 3 Ejection Progress LED
 S3LF, 1 // Slot 3 Ejection Failure LED
 }

 Device(SLT3) { // hot plug device
 Name(_ADR, 0x000C0003)
 Method(_OST, 3, Serialized) { // OS calls _OST with notify code 3 or 0x103
 // and status codes 0x80-0x83
 // to indicate a hot remove request failure.
 // Status code 0x84 indicates an ejection
 // request pending.

 If(LEqual(Arg0,Ones)) // Unspecified event
 {
 // Perform generic event processing here
 }

 Switch(And(Arg0,0xFF)) // Mask to retain low byte
 {
 Case(0x03) // Ejection request
 {
 Switch(Arg1)
 {
 Case(Package(){0x80, 0x81, 0x82, 0x83})
 { // Ejection Failure for some reason
 Store(Zero, ^^S3LE) // Turn off Ejection Progress LED
 Store(One, ^^S3LF) // Turn on Ejection Failure LED
 }
 Case(0x84) // Eject request pending
 {
 Store(One, ^^S3LE) // Turn on Ejection Request LED
 Store(Zero, ^^S3LF) // Turn off Ejection Failure LED
 }
 }
 }
 }
 } // end _OST
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 307

Device Configuration
 Method(_EJ0, 1) // Successful ejection sequence
 {
 Store(Zero, ^^S3LE) // Turn off Ejection Progress LED
 }
 } // end SLT3
} // end scope _SB.PCI4

Scope (_GPE)
{
 Method(_E13)
 {
 Store(One, _SB.PCI4.S3LE) // Turn on ejection request LED
 Notify(_SB.PCI4.SLT3, 3) // Ejection request driven from GPE13
 }
}

6.3.6 _RMV (Remove)
The optional _RMV object indicates to OSPM whether the device can be removed while the system
is in the working state and does not require any ACPI system firmware actions to be performed for
the device to be safely removed from the system (in other words, any device that only supports
surprise-style removal). Any such removable device that does not have _LCK or _EJx control
methods must have an _RMV object. This allows OSPM to indicate to the user that the device can be
removed and to provide a way for shutting down the device before removing it. OSPM will
transition the device into D3 before telling the user it is safe to remove the device.

This method is reevaluated after a device-check notification.

Arguments:

None

Return Value:

An Integer containing the device removal status

0 – The device cannot be removed

1 – The device can be removed

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
device is removable.

6.3.7 _STA (Status)
This object returns the current status of a device, which can be one of the following: enabled,
disabled, or removed.

OSPM evaluates the _STA object before it evaluates a device _INI method. The return values of the
Present and Functioning bits determines whether _INI should be evaluated and whether children of
the device should be enumerated and initialized. See Section 6.5.1, “_INI (Init)”.

If a device object (including the processor object) does not have an _STA object, then OSPM
assumes that the device is present, enabled, shown in the UI, and functioning.

This method must not reference any operation regions that have not been declared available by a
_REG method.
308 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments:

None

Return Value:

An Integer containing a device status bitmap:

Bit 0 – Set if the device is present.

Bit 1 – Set if the device is enabled and decoding its resources.

Bit 2 – Set if the device should be shown in the UI.

Bit 3 – Set if the device is functioning properly (cleared if device failed its diagnostics).

Bit 4 – Set if the battery is present.

Bits 5–31 – Reserved (must be cleared).

Return Value Information
If bit 0 is cleared, then bit 1 must also be cleared (in other words, a device that is not present cannot
be enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not
present (bit 0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

If a device is present in the machine, but should not be displayed in OSPM user interface, bit 2 is
cleared. For example, a notebook could have joystick hardware (thus it is present and decoding its
resources), but the connector for plugging in the joystick requires a port replicator. If the port
replicator is not plugged in, the joystick should not appear in the UI, so bit 2 is cleared.

_STA may return bit 0 clear (not present) with bit 3 set (device is functional). This case is used to
indicate a valid device for which no device driver should be loaded (for example, a bridge device.)
Children of this device may be present and valid. OSPM should continue enumeration below a
device whose _STA returns this bit combination.

If a device object (including the processor object) does not have an _STA object, then OSPM
assumes that all of the above bits are set (i.e., the device is present, enabled, shown in the UI, and
functioning).

6.4 Resource Data Types for ACPI
The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the
resource requirements of devices.

6.4.1 ASL Macros for Resource Descriptors
ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is
defined in Section 19.5, “ASL Operator Reference”, along with the other ASL operators.

6.4.2 Small Resource Data Type
A small resource data type may be 2 to 8 bytes in size and adheres to the following format:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 309

Device Configuration
Table 6-161 Small Resource Data Type Tag Bit Definitions

The following small information items are currently defined for Plug and Play devices:

Table 6-162 Small Resource Items

6.4.2.1 IRQ Descriptor

Type 0, Small Item Name 0x4, Length = 2 or 3

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits
set indicating the levels implemented in this device. For standard PC-AT implementation there are
15 possible interrupts so a two-byte field is used. This structure is repeated for each separate
interrupt required.

Table 6-163 IRQ Descriptor Definition

Offset Field

Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]

Type–0 (Small item) Small item name Length–n bytes

Bytes 1 to n Data bytes (Length 0 – 7)

Small Item Name Value

Reserved 0x00-0x03

IRQ Format Descriptor 0x04

DMA Format Descriptor 0x05

Start Dependent Functions Descriptor 0x06

End Dependent Functions Descriptor 0x07

I/O Port Descriptor 0x08

Fixed Location I/O Port Descriptor 0x09

Fixed DMA Descriptor 0x0A

Reserved 0x0B–0x0D

Vendor Defined Descriptor 0x0E

End Tag Descriptor 0x0F

Offset Field Name

Byte 0 Value = 0x22 or 0x23 (0010001nB) – Type = 0, Small item name = 0x4, Length = 2 or 3

Byte 1 IRQ mask bits[7:0], _INT
Bit[0] represents IRQ0, bit[1] is IRQ1, and so on.

Byte 2 IRQ mask bits[15:8], _INT
Bit[0] represents IRQ8, bit[1] is IRQ9, and so on.
310 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work is beyond the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See Section 19.5.63, “IRQ (Interrupt Resource Descriptor Macro),” and Section 19.5.64,
“IRQNoFlags (Interrupt Resource Descriptor Macro),” for a description of the ASL macros that
create an IRQ descriptor.

6.4.2.2 DMA Descriptor

Type 0, Small Item Name 0x5, Length = 2

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits
set indicating the channels actually implemented in this device. This structure is repeated for each
separate channel required.

Table 6-164 DMA Descriptor Definition

Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of
interrupt. (Optional—if not included then assume edge sensitive, high true interrupts.) These bits
can be used both for reporting and setting IRQ resources.
Note: This descriptor is meant for describing interrupts that are connected to PIC-compatible
interrupt controllers, which can only be programmed for Active-High-Edge-Triggered or Active-
Low-Level-Triggered interrupts. Any other combination is invalid. The Extended Interrupt
Descriptor can be used to describe other combinations.
Bit[7:6] Reserved (must be 0)
Bit[5:4] Interrupt Sharing and Wake, _SHR

 0x0 = Exclusive: This interrupt is not shared with other devices.
 0x1 = Shared: This interrupt is shared with other devices.
 0x2 = ExclusiveAndWake: This interrupt is not shared with other devices and is
 capable of waking the system from a low-power idle state or a system
 sleep state.
 0x3 = SharedAndWake: This interrupt is shared with other devices and is capable
 of waking the system from a low-power idle state or a system sleep state

Bit[3] Interrupt Polarity, _LL
 0 Active-High – This interrupt is sampled when the signal is high, or true
 1 Active-Low – This interrupt is sampled when the signal is low, or false.
Bit[2:1] Ignored
Bit[0] Interrupt Mode, _HE
 0 Level-Triggered – Interrupt is triggered in response to signal in a low state.
 1 Edge-Triggered – Interrupt is triggered in response to a change in signal state from
 low to high.

Offset Field Name

Byte 0 Value = 0x2A (00101010B) – Type = 0, Small item name = 0x5, Length = 2

Byte 1 DMA channel mask bits[7:0] (channels 0 – 7), _DMA
Bit[0] is channel 0, etc.

Offset Field Name
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 311

Device Configuration
See Section 19.5.32, “DMA (DMA Resource Descriptor Macro),” for a description of the ASL
macro that creates a DMA descriptor.

6.4.2.3 Start Dependent Functions Descriptor

Type 0, Small Item Name 0x6, Length = 0 or 1

Each logical device requires a set of resources. This set of resources may have interdependencies
that need to be expressed to allow arbitration software to make resource allocation decisions about
the logical device. Dependent functions are used to express these interdependencies. The data
structure definitions for dependent functions are shown here. For a detailed description of the use of
dependent functions refer to the next section.

Table 6-165 Start Dependent Functions Descriptor Definition

Start Dependent Function fields may be of length 0 or 1 bytes. The extra byte is optionally used to
denote the compatibility or performance/robustness priority for the resource group following the
Start DF tag. The compatibility priority is a ranking of configurations for compatibility with legacy
operating systems. This is the same as the priority used in the PNPBIOS interface. For example, for
compatibility reasons, the preferred configuration for COM1 is IRQ4, I/O 3F8-3FF. The
performance/robustness performance is a ranking of configurations for performance and robustness
reasons. For example, a device may have a high-performance, bus mastering configuration that may
not be supported by legacy operating systems. The bus-mastering configuration would have the
highest performance/robustness priority while its polled I/O mode might have the highest
compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This
byte is defined as:

Byte 2 Bit[7] Reserved (must be 0)
Bits[6:5] DMA channel speed supported, _TYP
 00 Indicates compatibility mode
 01 Indicates Type A DMA as described in the EISA
 10 Indicates Type B DMA
 11 Indicates Type F
Bits[4:3] Ignored
Bit[2] Logical device bus master status, _BM
 0 Logical device is not a bus master
 1 Logical device is a bus master
Bits[1:0] DMA transfer type preference, _SIZ
 00 8-bit only
 01 8- and 16-bit
 10 16-bit only
 11 Reserved

Offset Field Name

Byte 0 Value = 0x30 or 0x31 (0011000nB) – Type = 0, small item name = 0x6, Length = 0 or 1

Offset Field Name
312 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 6-166 Start Dependent Function Priority Byte Definition

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by
the order in which they appear in the resource data structure. The Dependent Function that appears
earliest (nearest the beginning) in the structure has the highest priority, and so on.

See Section 19.5.120, “StartDependentFn (Start Dependent Function Resource Descriptor Macro),”
for a description of the ASL macro that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions Descriptor

Type 0, Small Item Name 0x7, Length = 0

Only one End Dependent Function item is allowed per logical device. This enforces the fact that
Dependent Functions cannot be nested.

Table 6-167 End Dependent Functions Descriptor Definition

See Section 19.5.39, “EndDependentFn (End Dependent Function Resource Descriptor Macro,” for
a description of the ASL macro that creates an End Dependent Functions descriptor.

6.4.2.5 I/O Port Descriptor

Type 0, Small Item Name 0x8, Length = 7

There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for
programmable devices. The second descriptor is a minimal descriptor for old ISA cards with fixed I/
O requirements that use a 10-bit ISA address decode. The first type descriptor can also be used to
describe fixed I/O requirements for ISA cards that require a 16-bit address decode. This is
accomplished by setting the range minimum base address and range maximum base address to the
same fixed I/O value.

Bits Definition

1:0 Compatibility priority. Acceptable values are:
 0 Good configuration: Highest Priority and preferred configuration
 1 Acceptable configuration: Lower Priority but acceptable configuration
 2 Sub-optimal configuration: Functional configuration but not optimal
 3 Reserved

3:2 Performance/robustness. Acceptable values are:
 0 Good configuration: Highest Priority and preferred configuration
 1 Acceptable configuration: Lower Priority but acceptable configuration
 2 Sub-optimal configuration: Functional configuration but not optimal
 3 Reserved

7:4 Reserved (must be 0)

Offset Field Name

Byte 0 Value = 0x38 (00111000B) – Type = 0, Small item name = 0x7, Length =0
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 313

Device Configuration
Table 6-168 I/O Port Descriptor Definition

See Section 19.5.62, “IO (IO Resource Descriptor Macro,” for a description of the ASL macro that
creates an I/O Port descriptor.

6.4.2.6 Fixed Location I/O Port Descriptor

Type 0, Small Item Name 0x9, Length = 3

This descriptor is used to describe 10-bit I/O locations.

Table 6-169 Fixed-Location I/O Port Descriptor Definition

See Section 19.5.50, “FixedIO (Fixed I/O Resource Descriptor Macro,” for a description of the ASL
macro that creates a Fixed I/O Port descriptor.

Offset Field Name Definition

Byte 0 I/O Port Descriptor Value = 0x47 (01000111B) –
Type = 0, Small item name = 0x8, Length = 7

Byte 1 Information Bits[7:1] Reserved and must be 0
Bit[0] (_DEC)
 1 The logical device decodes 16-bit addresses
 0 The logical device only decodes address bits[9:0]

Byte 2 Range minimum base
address, _MIN bits[7:0]

Address bits[7:0] of the minimum base I/O address that the card may
be configured for.

Byte 3 Range minimum base
address, _MIN bits[15:8]

Address bits[15:8] of the minimum base I/O address that the card may
be configured for.

Byte 4 Range maximum base
address, _MAX bits[7:0]

Address bits[7:0] of the maximum base I/O address that the card may
be configured for.

Byte 5 Range maximum base
address, _MAX bits[15:8]

Address bits[15:8] of the maximum base I/O address that the card
may be configured for.

Byte 6 Base alignment, _ALN Alignment for minimum base address, increment in 1-byte blocks.

Byte 7 Range length, _LEN The number of contiguous I/O ports requested.

Offset Field Name Definition

Byte 0 Fixed Location I/O Port
Descriptor

Value = 0x4B (01001011B) –
Type = 0, Small item name = 0x9, Length = 3

Byte 1 Range base address,
_BAS bits[7:0]

Address bits[7:0] of the base I/O address that the card may be
configured for. This descriptor assumes a 10-bit ISA address decode.

Byte 2 Range base address,
_BAS bits[9:8]

Address bits[9:8] of the base I/O address that the card may be
configured for. This descriptor assumes a 10-bit ISA address decode.

Byte 3 Range length, _LEN The number of contiguous I/O ports requested.
314 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.4.2.7 Fixed DMA Descriptor

Type 0, Small Item Name 0xA, Length = 5

The Fixed DMA descriptor provides a means for platforms to statically assign DMA request lines
and channels to devices connected to a shared DMA controller. This descriptor differs from the
DMA descriptor in that it supports many more DMA request lines and DMA controller channels, as
well as a flexible mapping between the two. The width of the bus used for transfers to the device is
also provided. This structure is repeated for each separate request line/channel pair required, and can
only be used in the _CRS object. (Dynamic arbitration of Fixed DMA resource is not supported.)

Table 6-170 Fixed DMA Resource Descriptor

6.4.2.8 Vendor-Defined Descriptor

Type 0, Small Item Name 0xE, Length = 1 to 7

The vendor defined resource data type is for vendor use.

Table 6-171 Vendor-Defined Resource Descriptor Definition

See VendorShort (page 809) for a description of the ASL macro that creates a short vendor-defined
resource descriptor.

Offset Field Name

Byte 0 Value = 0x55 (01010101B) – Type = 0, Small item name = 0xA, Length = 0x5

Byte 1 DMA Request Line bits [7:0] _DMA[7:0]. A platform-relative number uniquely identifying the
request line assigned. Request line-to-Controller mapping is done in a controller-specific OS
driver.

Byte 2 DMA Request Line bits [15:8] _DMA[15:8]

Byte 3 DMA Channel bits[7:0] _TYP[7:0]. A controller-relative number uniquely identifying the
controller’s logical channel assigned. Channel numbers can be shared by multiple request lines.

Byte 4 DMA Channel bits[15:8] _TYP[15:8]

Byte 5 DMA Transfer Width. _SIZ. Bus width that the device connected to this request line supports.
 0x00 8-bit
 0x01 16-bit
 0x02 32-bit
 0x03 64-bit
 0x04 128-bit
 0x05 256-bit
 0x06-0xFF Reserved

Offset Field Name

Byte 0 Value = 0x71 – 0x77 (01110nnnB) – Type = 0, small item name = 0xE, Length = 1–7

Byte 1 to 7 Vendor defined
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 315

Device Configuration
6.4.2.9 End Tag

Type 0, Small Item Name 0xF, Length = 1

The End tag identifies an end of resource data.

Note: If the checksum field is zero, the resource data is treated as if the checksum operation
succeeded. Configuration proceeds normally.

Table 6-172 End Tag Definition

The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate
statement.

6.4.3 Large Resource Data Type
To allow for larger amounts of data to be included in the configuration data structure the large
format is shown below. This includes a 16-bit length field allowing up to 64 KB of data.

Table 6-173 Large Resource Data Type Tag Bit Definitions

The following large information items are currently defined:

Table 6-174 Large Resource Items

Offset Field Name

Byte 0 Value = 0x79 (01111001B) – Type = 0, Small item name = 0xF, Length = 1

Byte 1 Checksum covering all resource data after the serial identifier. This checksum is generated
such that adding it to the sum of all the data bytes will produce a zero sum.

Offset Field Name

Byte 0 Value = 1xxxxxxxB – Type = 1 (Large item), Large item name = xxxxxxxB

Byte 1 Length of data items bits[7:0]

Byte 2 Length of data items bits[15:8]

Bytes 3 to
(Length + 2)

Actual data items

Large Item Name Value

Reserved 0x00

24-bit Memory Range Descriptor 0x01

Generic Register Descriptor 0x02

Reserved 0x03

Vendor Defined Descriptor 0x04

32-bit Memory Range Descriptor 0x05

32-bit Fixed Location Memory Range Descriptor 0x06

DWORD Address Space Descriptor 0x07

WORD Address Space Descriptor 0x08
316 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.4.3.1 24-Bit Memory Range Descriptor

Type 1, Large Item Name 0x1

The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit
address space

Table 6-175 24-bit Memory Range Descriptor Definition.

Extended IRQ Descriptor 0x09

QWORD Address Space Descriptor 0x0A

Extended Address Space Descriptor 0x0B

GPIO Connection Descriptor 0x0C

Reserved 0x0D

GenericSerialBus Connection Descriptor 0x0E

Reserved 0x0F – 0x7F

Offset Field Name, ASL Field
Name

Definition

Byte 0 24-bit Memory Range
Descriptor

Value = 0x81 (10000001B) – Type = 1, Large item name = 0x01

Byte 1 Length, bits[7:0] Value = 0x09 (9)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.
Bit[7:1] Ignored
Bit[0] Write status, _RW
 1 writeable (read/write)
 0 non-writeable (read-only)

Byte 4 Range minimum base
address, _MIN, bits[7:0]

Address bits[15:8] of the minimum base memory address for which
the card may be configured.

Byte 5 Range minimum base
address, _MIN, bits[15:8]

Address bits[23:16] of the minimum base memory address for
which the card may be configured

Byte 6 Range maximum base
address, _MAX, bits[7:0]

Address bits[15:8] of the maximum base memory address for
which the card may be configured.

Byte 7 Range maximum base
address, _MAX, bits[15:8]

Address bits[23:16] of the maximum base memory address for
which the card may be configured

Byte 8 Base alignment, _ALN,
bits[7:0]

This field contains the lower eight bits of the base alignment. The
base alignment provides the increment for the minimum base
address. (0x0000 = 64 KB)

Byte 9 Base alignment, _ALN,
bits[15:8]

This field contains the upper eight bits of the base alignment. The
base alignment provides the increment for the minimum base
address. (0x0000 = 64 KB)

Byte 10 Range length, _LEN,
bits[7:0]

This field contains the lower eight bits of the memory range length.
The range length provides the length of the memory range in 256
byte blocks.

Large Item Name Value
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 317

Device Configuration
Note: Address bits [7:0] of memory base addresses are assumed to be 0.

Note: A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

Note: 24-bit Memory Range descriptors are used for legacy devices.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See Section 19.5.78, “Memory24 (Memory Resource Descriptor Macro),” for a description of the
ASL macro that creates a 24-bit Memory descriptor.

6.4.3.2 Vendor-Defined Descriptor

Type 1, Large Item Name 0x4

The vendor defined resource data type is for vendor use.

Table 6-176 Large Vendor-Defined Resource Descriptor Definition

ACPI 3.0 defines the UUID specific descriptor subtype field and the UUID field to address potential
collision of the use of this descriptor. It is strongly recommended that all newly defined vendor
descriptors use these fields prior to Vendor Defined Data.

See VendorLong (page 809) for a description of the ASL macro that creates a long vendor-defined
resource descriptor.

6.4.3.3 32-Bit Memory Range Descriptor

Type 1, Large Item Name 0x5

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Byte 11 Range length, _LEN,
bits[15:8]

This field contains the upper eight bits of the memory range length.
The range length field provides the length of the memory range in
256 byte blocks.

Offset Field Name Definition

Byte 0 Vendor Defined Descriptor Value = 0x84 (10000100B) – Type = 1, Large item name
= 0x04

Byte 1 Length, bits[7:0] Lower eight bits of data length (UUID and vendor data)

Byte 2 Length, bits[15:8] Upper eight bits of data length (UUID and vendor data)

Byte 3 UUID specific descriptor sub type UUID specific descriptor sub type value

Byte 4-19 UUID UUID Value

Byte 20-
(Length+20)

Vendor Defined Data Vendor defined data bytes

Offset Field Name, ASL Field
Name

Definition
318 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 6-177 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 32-bit Memory Range Descriptor Value = 0x85 (10000101B) – Type = 1, Large item name =
0x05

Byte 1 Length, bits[7:0] Value = 0x11 (17)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.
Bit[7:1] Ignored
Bit[0] Write status, _RW
 1 writeable (read/write)
 0 non-writeable (read-only)

Byte 4 Range minimum base address,
_MIN, bits[7:0]

Address bits[7:0] of the minimum base memory address for
which the card may be configured.

Byte 5 Range minimum base address,
_MIN, bits[15:8]

Address bits[15:8] of the minimum base memory address for
which the card may be configured.

Byte 6 Range minimum base address,
_MIN, bits[23:16]

Address bits[23:16] of the minimum base memory address for
which the card may be configured.

Byte 7 Range minimum base address,
_MIN, bits[31:24]

Address bits[31:24] of the minimum base memory address for
which the card may be configured.

Byte 8 Range maximum base address,
_MAX, bits[7:0]

Address bits[7:0] of the maximum base memory address for
which the card may be configured.

Byte 9 Range maximum base address,
_MAX, bits[15:8]

Address bits[15:8] of the maximum base memory address for
which the card may be configured.

Byte
10

Range maximum base address,
_MAX, bits[23:16]

Address bits[23:16] of the maximum base memory address
for which the card may be configured.

Byte
11

Range maximum base address,
_MAX, bits[31:24]

Address bits[31:24] of the maximum base memory address
for which the card may be configured.

Byte
12

Base alignment, _ALN bits[7:0]

This field contains Bits[7:0] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte
13

Base alignment, _ALN bits[15:8]

This field contains Bits[15:8] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte
14

Base alignment, _ALN bits[23:16]

This field contains Bits[23:16] of the base alignment. The
base alignment provides the increment for the minimum base
address.

Byte
15

Base alignment, _ALN bits[31:24]

This field contains Bits[31:24] of the base alignment. The
base alignment provides the increment for the minimum base
address.

Byte
16

Range length, _LEN bits[7:0]

This field contains Bits[7:0] of the memory range length. The
range length provides the length of the memory range in 1-
byte blocks.

Byte
17

Range length, _LEN bits[15:8]

This field contains Bits[15:8] of the memory range length. The
range length provides the length of the memory range in 1-
byte blocks.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 319

Device Configuration
Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See Section 19.5.79, “Memory32 (Memory Resource Descriptor Macro),” for a description of the
ASL macro that creates a 32-bit Memory descriptor.

6.4.3.4 32-Bit Fixed Memory Range Descriptor

Type 1, Large Item Name 0x6

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-178 32-bit Fixed-Location Memory Range Descriptor Definition

Byte
18

Range length, _LEN bits[23:16]

This field contains Bits[23:16] of the memory range length.
The range length provides the length of the memory range in
1-byte blocks.

Byte
19

Range length, _LEN bits[31:24]

This field contains Bits[31:24] of the memory range length.
The range length provides the length of the memory range in
1-byte blocks.

Offset Field Name Definition

Byte 0 32-bit Fixed Memory
Range Descriptor

Value = 0x86 (10000110B) – Type = 1, Large item name = 0x06

Byte 1 Length, bits[7:0] Value = 0x09 (9)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.
Bit[7:1] Ignored
Bit[0] Write status, _RW
 1 writeable (read/write)
 0 non-writeable (read-only))

Byte 4 Range base address,
_BAS bits[7:0]

Address bits[7:0] of the base memory address for which the card may
be configured.

Byte 5 Range base address,
_BAS bits[15:8]

Address bits[15:8] of the base memory address for which the card may
be configured.

Byte 6 Range base address,
_BAS bits[23:16]

Address bits[23:16] of the base memory address for which the card
may be configured.

Byte 7 Range base address,
_BAS bits[31:24]

Address bits[31:24] of the base memory address for which the card
may be configured.

Byte 8 Range length, _LEN
bits[7:0]

This field contains Bits[7:0] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte 9 Range length, _LEN
bits[15:8]

This field contains Bits[15:8] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte
10

Range length, _LEN
bits[23:16]

This field contains Bits[23:16] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte
11

Range length, _LEN
bits[31:24]

This field contains Bits[31:24] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Offset Field Name Definition
320 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See Section 19.5.80, “Memory32Fixed (Memory Resource Descriptor),” for a description of the
ASL macro that creates a 32-bit Fixed Memory descriptor.

6.4.3.5 Address Space Resource Descriptors
The QWORD, DWORD, WORD, and Extended Address Space Descriptors are general-purpose
structures for describing a variety of types of resources. These resources also include support for
advanced server architectures (such as multiple root buses), and resource types found on some RISC
processors. These descriptors can describe various kinds of resources. The following table defines
the valid combination of each field and how they should be interpreted.

Table 6-179 Valid combination of Address Space Descriptors fields

6.4.3.5.1 QWord Address Space Descriptor

Type 1, Large Item Name 0xA

The QWORD address space descriptor is used to report resource usage in a 64-bit address space
(like memory and I/O).

Table 6-180 QWORD Address Space Descriptor Definition

_LEN _MIF _MAF Definition

0 0 0 Variable size, variable location resource descriptor for _PRS.
If _MIF is set, _MIN must be a multiple of (_GRA+1). If _MAF is set, _MAX must be
(a multiple of (_GRA+1))-1.
OS can pick the resource range that satisfies following conditions:
If _MIF is not set, start address is a multiple of (_GRA+1) and greater or equal to
_MIN. Otherwise, start address is _MIN.
If _MAF is not set, end address is (a multiple of (_GRA+1))-1 and less or equal to
_MAX. Otherwise, end address is _MAX.

0 0 1

0 1 0

0 1 1 (Invalid combination)

> 0 0 0 Fixed size, variable location resource descriptor for _PRS.
_LEN must be a multiple of (_GRA+1).
OS can pick the resource range that satisfies following conditions:
Start address is a multiple of (_GRA+1) and greater or equal to _MIN.
End address is (start address+_LEN-1) and less or equal to _MAX.

> 0 0 1 (Invalid combination)

> 0 1 0 (Invalid combination)

> 0 1 1 Fixed size, fixed location resource descriptor.
_GRA must be 0 and _LEN must be (_MAX - _MIN +1).

Offset Field Name Definition

Byte 0 QWORD Address Space
Descriptor

Value = 0x8A (10001010B) – Type = 1, Large item name = 0x0A

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x2B (43)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 321

Device Configuration
Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:
 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved
 192-255 Hardware Vendor Defined

Byte 4 General Flags Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:
 1 The specified maximum address is fixed
 0 The specified maximum address is not fixed
 and can be changed
Bit[2] Min Address Fixed,_MIF:
 1 The specified minimum address is fixed
 0 The specified minimum address is not fixed
 and can be changed
Bit[1] Decode Type, _DEC:
 1 This bridge subtractively decodes this address
 (top level bridges only)
 0 This bridge positively decodes this address
Bit[0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space
granularity, _GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. That is, the
value of the full Address Space Granularity field (all 64 bits) must

be a number (2n-1).

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address space
granularity, _GRA
bits[23:16]

Byte 9 Address space
granularity, _GRA
bits[31:24]

Byte 10 Address space
granularity, _GRA
bits[39:32]

Byte 11 Address space
granularity, _GRA
bits[47:40]

Byte 12 Address space
granularity, _GRA
bits[55:48]

Offset Field Name Definition
322 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Byte 13 Address space
granularity, _GRA
bits[63:56]

Byte 14 Address range minimum,
_MIN bits[7:0]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.

Byte 15 Address range minimum,
_MIN bits[15:8]

Byte 16 Address range minimum,
_MIN bits[23:16]

Byte 17 Address range minimum,
_MIN bits[31:24]

Byte 18 Address range minimum,
_MIN bits[39:32]

Byte 19 Address range minimum,
_MIN bits[47:40]

Byte 20 Address range minimum,
_MIN bits[55:48]

Byte 21 Address range minimum,
_MIN bits[63:56]

Byte 22 Address range maximum,
_MAX bits[7:0]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.

Byte 23 Address range maximum,
_MAX bits[15:8]

Byte 24 Address range maximum,
_MAX bits[23:16]

Byte 25 Address range maximum,
_MAX bits[31:24]

Byte 26 Address range maximum,
_MAX bits[39:32]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.

Byte 27 Address range maximum,
_MAX bits[47:40]

Byte 28 Address range maximum,
_MAX bits[55:48]

Byte 29 Address range maximum,
_MAX bits[63:56]

Byte 30 Address Translation
offset, _TRA bits[7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must
list 0 for all Address Translation offset bits.

Byte 31 Address Translation
offset, _TRA bits[15:8]

Byte 32 Address Translation
offset, _TRA bits[23:16]

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 323

Device Configuration
See QWordIO (page 786), QWordMemory (page 788) and ASL_QWordAddressSpace for a
description of the ASL macros that creates a QWORD Address Space descriptor.

6.4.3.5.2 DWord Address Space Descriptor

Type 1, Large Item Name 0x7

The DWORD address space descriptor is used to report resource usage in a 32-bit address space
(like memory and I/O).

Byte 33 Address Translation
offset, _TRA bits[31:24]

Byte 34 Address Translation
offset, _TRA bits[39:32]

Byte 35 Address Translation
offset, _TRA bits[47:40]

Byte 36 Address Translation
offset, _TRA bits[55:48]

Byte 37 Address Translation
offset, _TRA bits[63:56]

Byte 38 Address length, _LEN
bits[7:0]

Byte 39 Address length, _LEN,
bits[15:8]

Byte 40 Address length, _LEN
bits[23:16]

Byte 41 Address length, _LEN
bits[31:24]

Byte 42 Address length, _LEN
bits[39:32]

Byte 43 Address length, _LEN
bits[47:40]

Byte 44 Address length, _LEN
bits[55:48]

Byte 45 Address length, _LEN
bits[63:56]

Byte 46 Resource Source Index (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes
its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool. If not present, the device consumes this resource from
its hierarchical parent.

Offset Field Name Definition
324 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 6-181 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Space
Descriptor

Value = 0x87 (10000111B) – Type = 1, Large item name = 0x07

Byte 1 Length, bits[7:0] Variable: Value = 23 (minimum)

Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:
 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved
 192-255 Hardware Vendor Defined

Byte 4 General Flags Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:
 1 The specified maximum address is fixed
 0 The specified maximum address is not fixed
 and can be changed
Bit[2] Min Address Fixed,_MIF:
 1 The specified minimum address is fixed
 0 The specified minimum address is not fixed
 and can be changed
Bit[1] Decode Type, _DEC:
 1 This bridge subtractively decodes this address
 (top level bridges only)
 0 This bridge positively decodes this address
Bit[0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space
granularity, _GRA
bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. (in other
words, the value of the full Address Space Granularity field (all 32

bits) must be a number (2n-1).

Byte 7 Address space
granularity, _GRA
bits[15:8]

Byte 8 Address space
granularity, _GRA bits
[23:16]

Byte 9 Address space
granularity, _GRA bits
[31:24]

Byte 10 Address range minimum,
_MIN bits [7:0]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 325

Device Configuration
See DWordIO (page 737), DWordMemory (page 739) and ASL_DWordAddressSpace for a
description of the ASL macro that creates a DWORD Address Space descriptor

Byte 11 Address range minimum,
_MIN bits [15:8]

Byte 12 Address range minimum,
_MIN bits [23:16]

Byte 13 Address range minimum,
_MIN bits [31:24]

Byte 14 Address range maximum,
_MAX bits [7:0]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.

Byte 15 Address range maximum,
_MAX bits [15:8]

Byte 16 Address range maximum,
_MAX bits [23:16]

Byte 17 Address range maximum,
_MAX bits [31:24]

Byte 18 Address Translation
offset, _TRAbits [7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list
0 for all Address Translation offset bits.

Byte 19 Address Translation
offset, _TRA bits [15:8]

Byte 20 Address Translation
offset, _TRA bits [23:16]

Byte 21 Address Translation
offset, _TRA bits [31:24]

Byte 22 Address Length, _LEN,
bits [7:0]

Byte 23 Address Length, _LEN,
bits [15:8]

Byte 24 Address Length, _LEN,
bits [23:16]

Byte 25 Address Length, _LEN,
bits [31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes
its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool.
If not present, the device consumes this resource from its
hierarchical parent.

Offset Field Name Definition
326 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.4.3.5.3 Word Address Space Descriptor

Type 1, Large Item Name 0x8

The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and I/O).

Note: This descriptor is exactly the same as the DWORD descriptor specified in Table 6-167; the only
difference is that the address fields are 16 bits wide rather than 32 bits wide.

Table 6-182 WORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 WORD Address Space
Descriptor

Value = 0x88 (10001000B) – Type = 1, Large item name = 0x08

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x0D (13)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Resource Type Indicates which type of resource this descriptor describes.
Defined values are:
 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved
 192-255 Hardware Vendor Defined

Byte 4 General Flags
Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:
 1 The specified maximum address is fixed
 0 The specified maximum address is not fixed
 and can be changed
Bit[2] Min Address Fixed,_MIF:
 1 The specified minimum address is fixed
 0 The specified minimum address is not fixed
 and can be changed
Bit[1] Decode Type, _DEC:
 1 This bridge subtractively decodes this address
 (top level bridges only)
 0 This bridge positively decodes this address
Bit[0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. (In other
words, the value of the full Address Space Granularity field (all 16

bits) must be a number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 327

Device Configuration
See WordIO (page 812), WordBusNumber (page 811) and ASL_WordAddressSpace for a
description of the ASL macros that create a Word address descriptor.

6.4.3.5.4 Extended Address Space Descriptor

Type 1, Large Item Name 0xB

The Extended Address Space descriptor is used to report resource usage in the address space (like
memory and I/O).

Table 6-183 Extended Address Space Descriptor Definition

Byte 8 Address range minimum,
_MIN, bits [7:0]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.

Byte 9 Address range minimum,
_MIN, bits [15:8]

Byte 10 Address range maximum,
_MAX, bits [7:0]

For bridges that translate addresses, this is the address space on
the secondary side of the bridge.

Byte 11 Address range maximum,
_MAX, bits [15:8]

Byte 12 Address Translation offset,
_TRA, bits [7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must
list 0 for all Address Translation offset bits.

Byte 13 Address Translation offset,
_TRA, bits [15:8]

Byte 14 Address Length, _LEN, bits
[7:0]

Byte 15 Address Length, _LEN, bits
[15:8]

Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is present.
This field gives an index to the specific resource descriptor that
this device consumes from in the current resource template for
the device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor
consumes its resources from the resources produced by the
named device object. If not present, the device consumes its
resources out of a global pool. If not present, the device
consumes this resource from its hierarchical parent.

Offset Field Name Definition

Byte 0 Extended Address Space
Descriptor

Value = 0x8B (10001011B) – Type = 1, Large item name = 0x0B

Byte 1 Length, bits[7:0] Value = 0x35 (53)

Byte 2 Length, bits[15:8] Value = 0x00

Offset Field Name Definition
328 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Byte 3 Resource Type Indicates which type of resource this descriptor describes.
Defined values are:
 0 Memory range
 1 I/O range
 2 Bus number range
 3–191 Reserved
 192-255 Hardware Vendor Defined

Byte 4 General Flags Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:
 1 The specified maximum address is fixed
 0 The specified maximum address is not fixed
 and can be changed
Bit[2] Min Address Fixed,_MIF:
 1 The specified minimum address is fixed
 0 The specified minimum address is not fixed
 and can be changed
Bit[1] Decode Type, _DEC:
 1 This bridge subtractively decodes this address
 (top level bridges only)
 0 This bridge positively decodes this address
Bit[0] Consumer/Producer:
 1–This device consumes this resource
 0–This device produces and consumes this resource

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above). For the Memory Resource Type, the definition is
defined in Section 6.4.3.5.5. For other Resource Types, refer to
the existing definitions for the Address Space Descriptors.

Byte 6 Revision ID Indicates the revision of the Extended Address Space descriptor.
For ACPI 3.0, this value is 1.

Byte 7 Reserved 0

Byte 8 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. That is,
the value of the full Address Space Granularity field (all 64 bits)

must be a number (2n-1).

Byte 9 Address space granularity,
_GRA bits[15:8]

Byte 10 Address space granularity,
_GRA bits[23:16]

Byte 11 Address space granularity,
_GRA bits[31:24]

Byte 12 Address space granularity,
_GRA bits[39:32]

Byte 13 Address space granularity,
_GRA bits[47:40]

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 329

Device Configuration
Byte 14 Address space granularity,
_GRA bits[55:48]

Byte 15 Address space granularity,
_GRA bits[63:56]

Byte 16 Address range minimum,
_MIN bits[7:0]

For bridges that translate addresses, this is the address space
on the secondary side of the bridge.

Byte 17 Address range minimum,
_MIN bits[15:8]

Byte 18 Address range minimum,
_MIN bits[23:16]

Byte 19 Address range minimum,
_MIN bits[31:24]

Byte 20 Address range minimum,
_MIN bits[39:32]

Byte 21 Address range minimum,
_MIN bits[47:40]

Byte 22 Address range minimum,
_MIN bits[55:48]

Byte 23 Address range minimum,
_MIN bits[63:56]

Byte 24 Address range maximum,
_MAX bits[7:0]

For bridges that translate addresses, this is the address space
on the secondary side of the bridge.

Byte 25 Address range maximum,
_MAX bits[15:8]

Byte 26 Address range maximum,
_MAX bits[23:16]

Byte 27 Address range maximum,
_MAX bits[31:24]

Byte 28 Address range maximum,
_MAX bits[39:32]

For bridges that translate addresses, this is the address space
on the secondary side of the bridge.

Byte 29 Address range maximum,
_MAX bits[47:40]

Byte 30 Address range maximum,
_MAX bits[55:48]

Byte 31 Address range maximum,
_MAX bits[63:56]

Byte 32 Address Translation offset,
_TRA bits[7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side
to obtain the address on the primary side. Non-bridge devices
must list 0 for all Address Translation offset bits.

Byte 33 Address Translation offset,
_TRA bits[15:8]

Offset Field Name Definition
330 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Byte 34 Address Translation offset,
_TRA bits[23:16]

Byte 35 Address Translation offset,
_TRA bits[31:24]

Byte 36 Address Translation offset,
_TRA bits[39:32]

Byte 37 Address Translation offset,
_TRA bits[47:40]

Byte 38 Address Translation offset,
_TRA bits[55:48]

Byte 39 Address Translation offset,
_TRA bits[63:56]

Byte 40 Address length, _LEN
bits[7:0]

Byte 41 Address length, _LEN,
bits[15:8]

Byte 42 Address length, _LEN
bits[23:16]

Byte 43 Address length, _LEN
bits[31:24]

Byte 44 Address length, _LEN
bits[39:32]

Byte 45 Address length, _LEN
bits[47:40]

Byte 46 Address length, _LEN
bits[55:48]

Byte 47 Address length, _LEN
bits[63:56]

Byte 48 Type Specific Attribute,
_ATT bits[7:0]

Attributes that are specific to each resource type. The meaning of
the attributes in this field depends on the value of the Resource
Type field (see above). For the Memory Resource Type, the
definition is defined section <ref>. For other Resource Types, this
field is reserved to 0.

Byte 49 Type Specific Attribute,
_ATT bits[15:8]

Byte 50 Type Specific Attribute,
_ATT bits[23:16]

Byte 51 Type Specific Attribute,
_ATT bits[31:24]

Byte 52 Type Specific Attribute,
_ATT bits[39:32]

Byte 53 Type Specific Attribute,
_ATT bits[47:40]

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 331

Device Configuration
See Section 19.5.43, “ExtendedSpace (Extended Address Space Resource Descriptor Macro),” for a
description of the ASL macro that creates an Extended Address Space descriptor.

6.4.3.5.4.1 Type Specific Attributes

The meaning of the Type Specific Attributes field of the Extended Address Space Descriptor
depends on the value of the Resource Type field in the descriptor. When Resource Type = 0
(memory resource), the Type Specific Attributes field values are defined as follows:

// These attributes can be "ORed" together as needed.

#define ACPI_MEMORY_UC 0x0000000000000001
#define ACPI_MEMORY_WC 0x0000000000000002
#define ACPI_MEMORY_WT 0x0000000000000004
#define ACPI_MEMORY_WB 0x0000000000000008
#define ACPI_MEMORY_UCE 0x0000000000000010
#define ACPI_MEMORY_NV 0x0000000000008000

ACPI_MEMORY_UC – Memory cacheability attribute. The memory region supports being
configured as not cacheable.

ACPI_MEMORY_WC – Memory cacheability attribute. The memory region supports being
configured as write combining.

ACPI_MEMORY_WT – Memory cacheability attribute. The memory region supports being
configured as cacheable with a "write through "policy. Writes that hit in the cache will also be
written to main memory.

ACPI_MEMORY_WB – Memory cacheability attribute. The memory region supports being
configured as cacheable with a "write back "policy. Reads and writes that hit in the cache do not
propagate to main memory. Dirty data is written back to main memory when a new cache line is
allocated.

ACPI_MEMORY_UCE – Memory cacheability attribute. The memory region supports being
configured as not cacheable, exported, and supports the "fetch and add "semaphore mechanism.

ACPI_MEMORY_NV – Memory non-volatile attribute. The memory region is non-volatile. Use of
memory with this attribute is subject to characterization.

Note: These bits are defined so as to match the UEFI definition when applicable.

6.4.3.5.5 Resource Type Specific Flags

The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends
on the value of the Resource Type field in the descriptor. The flags for each resource type are
defined in the following tables:

Byte 54 Type Specific Attribute,
_ATT bits[55:48]

Byte 55 Type Specific Attribute,
_ATT bits[63:56]

Offset Field Name Definition
332 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 6-184 Memory Resource Flag (Resource Type = 0) Definitions

Table 6-185 I/O Resource Flag (Resource Type = 1) Definitions

Bits Meaning

Bits[7:6] Reserved (must be 0)

Bit[5] Memory to I/O Translation,
_TTP
 1 TypeTranslation: This resource, which is memory on the secondary side of the bridge, is
I/O on the primary side of the bridge.
 0 TypeStatic: This resource, which is memory on the secondary side of the bridge, is also
memory on the primary side of the bridge.

Bits[4:3] Memory attributes,
_MTP. These bits are only defined if this memory resource describes system RAM. For a
definition of the labels described here, see Section 16, “System Address Map Interfaces.”
 0 AddressRangeMemory
 1 AddressRangeReserved
 2 AddressRangeACPI
 3 AddressRangeNVS

Bits[2:1] Memory attributes,
_MEM
 0 The memory is non-cacheable.
 1 The memory is cacpage 327page 310heable.
 2 The memory is cacheable and supports write combining.
 3 The memory is cacheable and prefetchable.
(Notice: OSPM ignores this field in the Extended address space descriptor. Instead it uses the
Type Specific Attributes field to determine memory attributes)

Bit[0] Write status,
_RW
 1 This memory range is read-write.
 0 This memory range is read-only.

Bits Meaning

Bits[7:6] Reserved (must be 0)

Bit[5] Sparse Translation,
_TRS. This bit is only meaningful if Bit[4] is set.
 1 SparseTranslation: The primary-side memory address of any specific I/O port within the
secondary-side range can be found using the following function.

 address = (((port & 0xFFFc) << 10) || (port & 0xFFF)) + _TRA

 In the address used to access the I/O port, bits[11:2] must be
identical to
 bits[21:12], this gives four bytes of I/O ports on each 4 KB page.
 0 DenseTranslation: The primary-side memory address of any specific I/O port within the
secondary-side range can be found using the following function.

 address = port + _TRA
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 333

Device Configuration
Table 6-186 Bus Number Range Resource Flag (Resource Type = 2) Definitions

6.4.3.6 Extended Interrupt Descriptor

Type 1, Large Item Name 0x9

The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for
systems that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendors to list an array of possible
interrupt numbers, any one of which can be used.

Table 6-187 Extended Interrupt Descriptor Definition

Bit[4] I/O to Memory Translation,
_TTP
 1 TypeTranslation: This resource, which is I/O on the secondary side of the bridge, is
memory on the primary side of the bridge.
 0 TypeStatic: This resource, which is I/O on the secondary side of the bridge, is also I/O on
the primary side of the bridge.

Bit[3:2] Reserved (must be 0)

Bit[1:0] _RNG
 3 Memory window covers the entire range
 2 ISARangesOnly. This flag is for bridges on systems with multiple bridges. Setting this bit
means the memory window specified in this descriptor is limited to the ISA I/O addresses that fall
within the specified window. The ISA I/O ranges are: n000-n0FF, n400-n4FF, n800-n8FF, nC00-
nCFF. This bit can only be set for bridges entirely configured through ACPI namespace.

 1 NonISARangesOnly. This flag is for bridges on systems with multiple bridges. Setting this
bit means the memory window specified in this descriptor is limited to the non-ISA I/O addresses
that fall within the specified window. The non-ISA I/O ranges are: n100-n3FF, n500-n7FF, n900-
nBFF, nD00-nFFF. This bit can only be set for bridges entirely configured through ACPI
namespace.
 0 Reserved

Bits Meaning

Bit[7:0] Reserved (must be 0)

Offset Field Name Definition

Byte 0 Extended Interrupt
Descriptor

Value = 0x89 (10001001B) – Type = 1, Large item name = 0x09

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x06

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Bits Meaning
334 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Byte 3 Interrupt Vector
Flags

Interrupt Vector Information.
Bit[7:5] Reserved (must be 0)
Bit[4:3] Interrupt Sharing and Wake, _SHR

 0x0 = Exclusive: This interrupt is not shared with other devices.
 0x1 = Shared: This interrupt is shared with other devices.
 0x2 = ExclusiveAndWake: This interrupt is not shared with
 other devices and is capable of waking the system from
 a low-power idle state or a system sleep state.
 0x3 = SharedAndWake: This interrupt is shared with other
 devices and is capable of waking the system from a
 low-power idle state or a system sleep state.

Bit[2] Interrupt Polarity, _LL
 0 Active-High: This interrupt is sampled when the signal is high, or
true.
 1 Active-Low: This interrupt is sampled when the signal is low, or
false.
Bit[1] Interrupt Mode, _HE
 0 Level-Triggered: Interrupt is triggered in response to the signal
being in either a high or low state.
 1 Edge-Triggered: This interrupt is triggered in response to a
change in signal state, either high to low or low to high.
Bit[0] Consumer/Producer:
 1 This device consumes this resource
 0 This device produces and consumes this resource

Byte 4 Interrupt table
length

Indicates the number of interrupt numbers that follow. When this descriptor
is returned from _CRS, or when OSPM passes this descriptor to _SRS, this
field must be set to 1.

Byte
4n+5

Interrupt Number,
_INT bits [7:0]

Interrupt number

Byte
4n+6

Interrupt Number,
_INT bits [15:8]

Byte
4n+7

Interrupt Number,
_INT bits [23:16]

Byte
4n+8

Interrupt Number,
_INT bits [31:24]

… … Additional interrupt numbers

Byte x Resource Source
Index

(Optional) Only present if Resource Source (below) is present. This field
gives an index to the specific resource descriptor that this device consumes
from in the current resource template for the device object pointed to in
Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes its
resources from the resources produces by the named device object. If not
present, the device consumes its resources out of a global pool.
If not present, the device consumes this resource from its hierarchical
parent.

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 335

Device Configuration
Note: Low true, level sensitive interrupts may be electrically shared, the process of how this might work
is beyond the scope of this specification.

If the OS is running using the 8259 interrupt model, only interrupt number values of 0-15 will be
used, and interrupt numbers greater than 15 will be ignored.

See Interrupt (page 764) for a description of the ASL macro that creates an Extended Interrupt
descriptor.

6.4.3.7 Generic Register Descriptor

Type 1, Large Item Name 0x2

The generic register descriptor describes the location of a fixed width register within any of the
ACPI-defined address spaces.

Table 6-188 Generic Register Descriptor Definition

Offset Field Name, ASL Field Name Definition

Byte 0 Generic Register Descriptor Value = 0x82 (10000010B)
Type = 1, Large item name = 0x02

Byte 1 Length, bits[7:0] Value = 0x0C (12)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Address Space ID,
_ASI

The address space where the data structure or register
exists. Defined values are:
 0x00 System Memory
 0x01 System I/O
 0x02 PCI Configuration Space
 0x03 Embedded Controller
 0x04 SMBus
 0x0A PCC
 0x7F Functional Fixed Hardware

Byte 4 Register Bit Width,
_RBW

Indicates the register width in bits.

Byte 5 Register Bit Offset,
_RBO

Indicates the offset to the start of the register in bits from
the Register Address.

Byte 6 Address Size, _ASZ Specifies access size.
 0 - Undefined (legacy reasons)
 1 - Byte access
 2 - Word access
 3 - Dword access
 4 - QWord access

Byte 7 Register Address,
_ADR bits[7:0]

Register Address

Byte 8 Register Address, _ADR bits[15:8]

Byte 9 Register Address, _ADR bits[23:16]

Byte
10

Register Address, _ADR bits[31:24]
336 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
See Register (page 792) for a description of the ASL macro that creates a Generic Register resource
descriptor.

6.4.3.8 Connection Descriptors
General-purpose I/O (GPIO) and Simple Peripheral Bus (SPB) controllers are hardware resources
provided in silicon solutions to enable flexible configuration of a broad range of system designs.
These controllers can provide input, output, interrupt and serial communication connections to
arbitrary devices in a system. The function to which one of these connections is put depends on the
specific device involved and the needs of the platform design. In order to support mobile platform
architectures, ACPI abstracts these connections as resources.

6.4.3.8.1 GPIO Connection Descriptor

Type 1, Large Item Name 0xC

The GPIO Connection Descriptor describes connections between GPIO controllers and peripheral
devices. Two types of GPIO connections can be described: IO connections and Interrupt
connections, distinguished by the GPIO Connection Type value in the descriptor. GPIO controllers
and the devices that connect to them may be located anywhere in the namespace, but the connection
must be described in the peripheral device's resource objects (PRS, _CRS, etc.).

Table 6-189 GPIO Connection Descriptor Definition

Byte
11

Register Address, _ADR bits[39:32]

Byte
12

Register Address, _ADR bits[47:40]

Byte
13

Register Address, _ADR bits[55:48]

Byte
14

Register Address, _ADR bits[63:56]

Offset Field Name Definition

Byte 0 GPIO
Connection
Descriptor

Value = 0x8C, (10001100B) – Type = 1, Large item name =
0x0C

Byte 1 Length,
bits[7:0]

Variable length, minimum value = 0x16 + L (22 + length of the
Resource Source Name string)

Byte 2 Length,
bits[15:8]

Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the GPIO interrupt descriptor. This
value must be 1.

Byte 4 GPIO
Connection
Type

Indicates the type of the descriptor:
• 0x00 = Interrupt Connection

• 0x01 = IO Connection

• 0x02 - 0xFF Reserved
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 337

Device Configuration
Byte 5 General Flags,
bits [7:0]

Flags.
Bit[7:1] Reserved (must be 0)
Bit[0] Consumer/Producer:
• 0x0 = This device produces and consumes this resource

• 0x1 = This device consumes this resource

Byte 6 General Flags,
bits [15:8]

Bit[15:8] Reserved (must be 0).

Offset Field Name Definition
338 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Byte 7 Interrupt and IO
Flags, bits [7:0]

For Interrupt Connections:
Bit[7:5] Reserved (must be 0)
Bit[4:3] Interrupt Sharing and Wake, _SHR
• 0x0 = Exclusive: This interrupt is not shared with other

devices.

• 0x1 = Shared: This interrupt is shared with other devices.

• 0x2 = ExclusiveAndWake: This interrupt is not shared with
other devices and is capable of waking the system from a
low-power idle state or a system sleep state.

• 0x3 = SharedAndWake: This interrupt is shared with other
devices and is capable of waking the system from a low-
power idle state or a system sleep state.

Bit[2:1] Interrupt Polarity, _POL
• 0x0 = Active-High: This interrupt is sampled when the

signal is high, or true.

• 0x1 = Active-Low: This interrupt is sampled when the signal
is low, or false.

• 0x2 = Active-Both: This interrupt is sampled on both rising
and falling edges. Interrupt mode must be set to Edge-
triggered.

• 0x3 – Reserved (do not use)

Bit[0] Interrupt Mode, _MOD
• 0x0 = Level-Triggered: Interrupt is triggered in response to

the signal being in either a high or low state.

• 0x1 = Edge-Triggered: This interrupt is triggered in
response to a change in signal state, either high to low or
low to high.

For IO Connections:
Bit[7:4] Reserved (must be 0)
Bit[3] IO Sharing, _SHR
• 0x0 = Exclusive: This interrupt is not shared with other

devices.

• 0x1 = Shared: This interrupt is shared with other devices.

Bit[2] Reserved (must be 0)
Bit[1:0] IO Restriction _IOR
• 0x0 = This pin or pins can be used for either Input or

Output.

• 0x1 = This pin or pins can only be used for Input, and the
pin configuration must be preserved while not in use.

• 0x2 = This pin or pins can only be used for Output, and the
pin configuration must be preserved while not in use.

• 0x3 = This pin or pins can be used for either input or output,
but the configuration must be preserved until explicitly
changed.

Byte 8 Interrupt and IO
Flags, bits
[15:8]

Bit[15:8] Reserved (must be 0)

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 339

Device Configuration
Byte 9 Pin
Configuration

_PPI
0x00 = Default Configuration (no configuration is applied)
0x01 = Pull-up
0x02 = Pull-down
0x03 = No Pull
0x04 – 0x7F ; Reserved (do not use)
0x80 – 0xFF ; Vendor-defined values

Byte 10 Output Drive
Strength, bits
[7:0]

The output-drive capability, in hundredths of milliamperes, to
be applied when configuring the pin for output (high byte).
_DRS[7:0]

Byte 11 Output Drive
Strength, bits
[15:8]

The output-drive capability, in hundredths of milliamperes, to
be applied when configuring the pin for output (high byte).
_DRS[15:8]

Byte 12 Debounce
timeout, bits
[7:0]

The debounce timeout, in hundredths of milliseconds, to be
applied when configuring the pin for interrupt (low byte).
_DBT[7:0]

Byte 13 Debounce
timeout, bits
[15:8]

The debounce timeout, in hundredths of milliseconds, to be
applied when configuring the pin for interrupt (high byte).
_DBT [15:8]

Byte 14 Pin Table
Offset[7:0]

Offset to the start of the pin table (low byte). The offset is
relative to the start of this descriptor.
NOTE: The number of pins in the table can be calculated from
PinCount = (Resource Source Name Offset – Pin Table
Offset) / 2

Byte 15 Pin Table
Offset[15:8]

Offset to the start of the pin table (high byte). The offset is
relative to the start of this descriptor.

Byte 16 Resource
Source Index

Reserved for future use. This field must be 0.

Byte 17 Resource
Source Name
Offset[7:0]

Offset to the start of the resource source name (low byte). The
offset is relative to the start of this descriptor.
NOTE: The length of the ResourceSource name string can be
calculated from Length L = Vendor Data Offset – Resource
Source Name Offset. The length includes the string’s
terminating NULL character (if present)

Byte 18 Resource
Source Name
Offset[15:8]

Offset to the start of the resource source name (high byte).
The offset is relative to the start of this descriptor.

Byte 19 Vendor Data
Offset[7:0]

(low byte) Offset to the start of the Vendor-defined Data (the
last byte of the ResourceSource + 1). This value must always
be valid to allow for length calculations. In the case where
there is no Vendor Data, this offset still must refer to the last
byte of the ResourceSource + 1.
The offset is relative to the start of this descriptor.

Offset Field Name Definition
340 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.4.3.8.2 Serial Bus Connection Descriptors

Type 1, Large Item Name 0x0E

All Serial Bus Resource descriptors utilize the following format. For specific bus types, the type-
specific fields are used.

Table 6-190 Serial Bus Connection Descriptor

Byte 20 Vendor Data
Offset[15:8]

(high byte) Offset to the start of the Vendor-defined Data .(the
last byte of the ResourceSource + 1). This value must always
be valid to allow for length calculations. In the case where
there is no Vendor Data, this offset still must refer to the last
byte of the ResourceSource + 1.
The offset is relative to the start of this descriptor.

Byte 21 Vendor Data
Length [7:0]

Length of Vendor-defined Data (low-byte).

Byte 22 Vendor Data
Length [15:8]

Length of Vendor-defined Data (high-byte).

Byte
PinTableOffset[15:0] +
2n (n is the index into
the pin table)

Pin Number,
bits [7:0]

GPIO controller-relative pin number (low byte). _PIN[7:0]. Pin
numbers are zero-based.
Pin number 0xFFFF = No Pin. OSPM will ignore this pin
number.

Byte
PinTableOffset[15:0] +
2n + 1 (n is the index
into the pin table)

Pin Number,
bits [15:8]

GPIO controller-relative pin number (high byte). _PIN[15:8].
Pin numbers are zero-based.
Pin number 0xFFFF = No Pin. OSPM will ignore this pin
number.

Byte
ResourceSourceNameO
ffset[15:0]

Resource
Source (length
= L)

Name of the GPIO controller device to which this descriptor
applies. The name can be a fully-qualified name, a relative
name or a name segment that utilizes the namespace search
rules.

Byte
VendorDataOffset[15:0]

Vendor-defined
Data

(Optional) Data specific to the GPIO controller device supplied
by a vendor. This data is provided to the device driver for this
GPIO Controller. _VEN.

Offset Field Name Definition

Byte 0 Serial Bus Type Value = 0x8E (10001110B) – Type = 1, Large item
name = 0x0E

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x0B

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision of the Serial Bus Connection
Descriptor. This value is 1.

Byte 4 Resource Source Index Reserved (must be 0)

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 341

Device Configuration
Byte 5 Serial Bus Type Serial Bus Type

Indicates which type of serial bus connection this
descriptor describes. Defined values are:
0
1
Reserved
I2C

2 SPI

3 UART

4-191 Reserved

192-255 Hardware Vendor Defined

Byte 6 General Flags [7:0] Flags that are common to all serial bus connection
types.
Bits[7:2]
Reserved. Must be 0.

Bit[1]
Consumer/Producer:
• 0x1: This device consumes this resource

• 0x0: This device produces and consumes this
resource

Bit[0]
Slave Mode.
• 0x0: The communication over this connection is

initiated by the controller.

• 0x1: The communication over this connection is
initiated by the device.

Byte 7 Type Specific Flags, bits[7:0] Flags specific to the indicated Serial Bus Type (see
above).

Byte 8 Type Specific Flags, bits[15:8] Flags specific to the indicated Serial Bus Type (see
above).

Byte 9 Type Specific Revision ID Revision ID for the data describing the serial bus
connection specified by Serial Bus Type (see
above).

Byte 10 Type Data Length, bits[7:0] Variable length, minimum size depends on the
indicated Serial Bus Type (see above).

Byte 11 Type Data Length, bits [15:8] Variable length, minimum size depends on the
indicated Serial Bus Type (see above).

Byte 12 Type Specific Data (Optional) Data specific to the serial bus connection
type indicated in Serial Bus Type (see above).

Offset Field Name Definition
342 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.4.3.8.2.1 I2C Serial Bus Connection Resource Descriptor

Table 6-191 I2C Serial Bus Connection Descriptor

… … Additional data specific to the serial bus connection
type.

String Resource Source Name of the serial bus controller device to which
this connection descriptor applies. The name can be
a fully qualified path, a relative path, or a simple
name segment that utilizes the namespace search
rules.

Offset Field Name Definition

Byte 0 I2C Bus Connection
Descriptor

Value = 0x8E (10001110B) – Type = 1, Large item name
= 0x0E

Byte 1 Length, bits [7:0] Variable length, minimum value = 0xF + L (15 +
ResourceSource string length)

Byte 2 Length, bits [15:8] Variable, length minimum value = 0x00

Byte 3 Revision ID Indicates the revision for the I2C Resource Descriptor.
This value is 1.

Byte 4 Resource Source Index Reserved (must be 0)

Byte 5 Serial Bus Type Serial Bus Type value must be 1 for I2C

Byte 6 General Flags [7:0] Flags that are common to all serial bus connection types.
Bits[7:2]
Reserved. Must be 0.

Bit[1]

Consumer/Producer:
• 0x1: This device consumes this resource

• 0x0: This device produces and consumes this
resource

Bit[0]
Slave Mode. _SLV
• 0x0: The communication over this connection is

initiated by the controller.

• 0x1: The communication over this connection is
initiated by the device.

Byte 7 Type Specific Flags, bits[7:0] Bits[7:1]
Reserved. Must be 0.

Bit[0]
10-bit addressing mode. _MOD
• 0x1: The connection uses 10-bit addressing

• 0x0: The connection uses 7-bit addressing.

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 343

Device Configuration
Byte 8 Type Specific Flags,
bits[15:8]

Reserved. Must be 0.

Byte 9 Type Specific Revision ID Indicates the revision of the I2C-specific Serial Bus
Connection Descriptor Data. This value is 1.

Byte 10 Type Data Length, bits[7:0] Variable length, minimum value = 0x6 (6).

Byte 11 Type Data Length, bits [15:8] Variable length, minimum size = 0x0 (0)

Byte 12 Connection Speed, bits [7:0] Connection speed bits [7:0] of the maximum speed in
hertz supported by this connection. _SPE[7:0]

Byte 13 Connection Speed, bits [15:8] Connection speed bits [15:8] of the maximum speed in
hertz supported by this connection. _SPE[15:8]

Byte 14 Connection Speed, bits
[23:16]

Connection speed bits [23:16] of the maximum speed in
hertz supported by this connection. _SPE[23:16]

Byte 15 Connection Speed, bits
[31:24]

Connection speed bits [31:24] of the maximum speed in
hertz supported by this connection. _SP[31:24]

Byte 16 Slave Address, bits [7:0] Lower eight bits of the I2C bus address for this
connection. _ADR[7:0]
Bit[7]
In 7-bit addressing mode this is reserved and must be 0.
In 10-bit addressing mode this is bit 7 of the address.

Bits[6:0]
The lowest 7 bits of the address. In 7-bit addressing
mode this represents the complete address.

Byte 17 Slave Address, bits[15:8] Upper eight bits of the I2C bus address for this
connection. The upper eight bits are to support 10-bit
addressing and should be set to 0 if 7-bit addressing is
being used. _ADR[15:8]
Bits[15:10]
Reserved. Must be 0.

Bits[9:8]
In 7-bit addressing mode these are reserved and must be
0. In 10-bit addressing mode these are the highest two
bits of the address.

Byte 18 Vendor-defined Data (Optional) Data specific to the controller device supplied
by a vendor. The number of bytes in this field is Type
Data Length – 6.

… … (Optional) Additional vendor supplied data.

String Resource Source (Length =
L)

Name of the serial bus controller device to which this
connection descriptor applies. The name can be a fully
qualified path, a relative path, or a simple name segment
that utilizes the namespace search rules

Offset Field Name Definition
344 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.4.3.8.2.2 SPI Serial Bus Connection Resource Descriptor

Table 6-192 SPI Serial Bus Connection Descriptor

Offset Field Name Definition

Byte 0 SPI Bus Connection
Descriptor

Value = 0x8E (10001111B) – Type = 1, Large item name =
0x0E

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x12 + L (18 + Resource
Source string length)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision of the Serial Bus Connection Descriptor.
This value is 1.

Byte 4 Resource Source Index Reserved (must be 0)

Byte 5 Serial Bus Type Serial Bus Type value must be 2 for SPI

Byte 6 General Flags[7:0] Flags that are common to all serial bus connection types.
Bits[7:2]
Reserved. Must be 0.

Bit[1]
Consumer/Producer:
• 0x1: This device consumes this resource

• 0x0: This device produces and consumes this resource

Bit[0]
Slave Mode. _SLV
• 0x0: The communication over this connection is initiated by

the controller.

• 0x1: The communication over this connection is initiated by
the device.

Byte 7 Type Specific Flags,
bits[7:0]

Bits [7:2]
Reserved (must be 0)
Bit [1]: Device Polarity. _DPL
1 – The device selection line is active high
0 – The device selection line is active low
Bit [0]: Wire Mode. _MOD
1 – The connection is over 3 wires
0 – The connection is over 4 wires

Byte 8 Type Specific Flags,
bits[15:8]

Reserved. Must be 0.

Byte 9 Type Specific Revision ID Indicates the revision of the SPI-specific Serial Bus
Connection Descriptor Data. This value must be 1.

Byte 10 Type Data Length, bits[7:0] Variable length, minimum value = 0x9 (9).

Byte 11 Type Data Length, bits
[15:8]

Variable length, minimum size = 0x0 (0)

Byte 12 Connection Speed, bits
[7:0]

Connection speed bits [7:0] of the maximum speed in hertz
supported by this connection. _SPE[7:0]

Byte 13 Connection Speed, bits
[15:8]

Connection speed bits [15:8] of the maximum speed in hertz
supported by this connection. _SPE[15:8]
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 345

Device Configuration
6.4.3.8.2.3 UART Serial Bus Connection Resource Descriptor

Table 6-193 UART Serial Bus Connection Descriptor

Byte 14 Connection Speed, bits
[23:16]

Connection speed bits [23:16] of the maximum speed in hertz
supported by this connection. _SPE[23:16]

Byte 15 Connection Speed, bits
[31:24]

Connection speed bits [31:24] of the maximum speed in hertz
supported by this connection. _SPE[31:24]

Byte 16 Data Bit Length The size in bits of the smallest transfer unit. _LEN

Byte 17 Phase The phase (CPHA) of the clock pulse on which to capture data
(the other being used to transmit). _PHA
0 – First phase
1 – Second phase

Byte 18 Polarity The polarity of the clock (CPOL). This value indicates if the
clock is low or high during the first phase (see Phase above).
_POL
0 –Start Low

1 –Start High

Byte 19 Device Selection, bits [7:0] Lower eight bits of the device selection value. This value is
specific to the device and may refer to a chip-select line, GPIO
line or other line selection mechanism. _ADR[7:0]

Byte 20 Device Selection, bits
[15:8]

Upper eight bits of the device selection value. This value is
specific to the device and may refer to a chip-select line, GPIO
line or other line selection mechanism. _ADR[15:8]

Byte 21 Vendor Defined Data (Optional) Data specific to the controller device supplied by a
vendor. The number of bytes in this field is Type Data Length
– 9.

… … (Optional) Additional vendor supplied data.

String Resource Source (Length
= L)

Name of the serial bus controller device to which this
connection descriptor applies. The name can be a fully
qualified path, a relative path, or a simple name segment that
utilizes the namespace search rules.

Offset Field Name Definition

Byte 0 Serial Bus Connection
Descriptor

Value = 0x8E (10001110B) – Type = 1, Large item name =
0x0E

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x13 + L (17 + Resource
Source string length)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Revision ID Indicates the revision of the Serial Bus Connection Descriptor.
This value is 1.

Byte 4 Resource Source Index Reserved (must be 0)

Byte 5 Serial Bus Type Serial Bus Type value must be 3 for UART

Offset Field Name Definition
346 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Byte 6 General Flags [7:0] Flags that are common to all serial bus connection types.
Bits[17:2]
Reserved. Must be 0.

Bit[1

Consumer/Producer:
• 0x1: This device consumes this resource

• 0x0: This device produces and consumes this
resource

Bit[0]
Slave Mode. _SLV
• 0x0: The communication over this connection is initiated by

the controller.

• 0x1: The communication over this connection is initiated by
the device.

Byte 7 Type Specific Flags,
bits[7:0]

Bit [7] – Endian-ness. _END
Little Endian = 0
Big Endian = 1
Bit [6:4] – Data bits. Number of bits per byte. _LEN
• 000B – 5 bits

• 001B – 6 bits

• 010B – 7 bits

• 011B – 8 bits

• 100B – 9 bits

Bits [3:2] – Stop Bits. Number of stop bits per character.
_STB
• 00B (0) – none

• 01B (1) – 1

• 10B (2) – 1.5

• 11B (3) – 2

Bits [1:0] – Flow control. Indicates type of flow control for the
connection. _FLC
• 00B (0) – None

• 01B (1) – Hardware flow control

• 10B (2) – XON/XOFF

Byte 8 Type Specific Flags,
bits[15:8] Reserved. Must be 0.

Byte 9 Type Specific Revision ID Indicates the revision of the UART-specific Serial Bus
Connection Descriptor Data. This value must be 1.

Byte 10 Type Data Length, bits[7:0] Variable length, minimum value = 0x0A (10).

Byte 11 Type Data Length, bits
[15:8]

Variable length, minimum size = 0x0 (0)

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 347

Device Configuration
Byte 12 Default Baud rate, bits[7:0] Default baud rate of connection, in bits-per-second.
_SPE[7:0]
Bits [7:0]

Byte 13 Default Baud rate,
bits[15:8]

Default baud rate of connection, in bits-per-second.
_SPE[15:8]
Bits[15:8]

Byte 14 Default Baud rate,
bits[23:16]

Default baud rate of connection, in bits-per-second.
_SPE[23:16]
Bits[23:16]

Byte 15 Default Baud rate,
bits[31:24]

Default baud rate of connection, in bits-per-second.
_SPE[31:24]
Bits[31:24].

Byte 16 Rx FIFO, bits[7:0] Maximum receive buffer, in bytes, supported by this
connection. _RXL[7:0]
Bits[7:0]

Byte 17 Rx FIFO, bits[15:8] Maximum receive buffer, in bytes, supported by this
connection. _RXL[15:8]
Bits[15:8]

Byte 18 Tx FIFO, bits[7:0] Maximum receive buffer, in bytes, supported by this
connection. _TXL[7;0]
Bits[7:0]

Byte 19 Tx FIFO, bits[15:8] Maximum receive buffer, in bytes, supported by this
connection. _TXL[15:8]
Bits[15:8]

Byte 20 Parity Parity. _PAR
None = 0x00
Even = 0x01
Odd = 0x02
Mark = 0x03
Space = 0x04

Byte 21 Serial Lines Enabled Serial lines enabled (Enabled = 1, Disabled = 0). _LIN
Bit[7] – Request to Send (RTS)
Bit[6] – Clear to Send (CTS)
Bit[5] – Data Terminal Ready (DTR)
Bit[4] – Data Set Ready (DSR)
Bit[3] – Ring Indicator (RI)
Bit[2] – Data Carrier Detect (DTD)
Bit[1] – Reserved. Must be 0.
Bit[0] – Reserved. Must be 0

Byte 22 Vendor Defined Data (Optional) Data specific to the controller device supplied by a
vendor. The number of bytes in this field is Type Data Length
– 10.

… … (Optional) Additional vendor supplied data.

Offset Field Name Definition
348 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.5 Other Objects and Control Methods

Table 6-194 Other Objects and Methods

6.5.1 _INI (Init)
_INI is a device initialization object that performs device specific initialization. This control method
is located under a device object and is run only when OSPM loads a description table. There are
restrictions related to when this method is called and governing writing code for this method. The
_INI method must only access Operation Regions that have been indicated to available as defined by
the _REG method. The _REG method is described in Section 6.5.4, “_REG (Region).” This control
method is run before _ADR, _CID, _HID, _SUN, and _UID are run.

Arguments:

None

Return Value:

None

Before evaluating the _INI object, OSPM evaluates the _STA object for the device. If the _STA
object does not exist for the device, the device is assumed to be both present and functional. If the
_STA method indicates that the device is present, OSPM will evaluate the _INI for the device (if the
_INI method exists) and will examine each of the children of the device for _INI methods. If the
_STA method indicates that the device is not present and is not functional, OSPM will not run the
_INI and will not examine the children of the device for _INI methods. If the _STA object
evaluation indicates that the device is not present but is functional, OSPM will not evaluate the _INI
object, but will examine each of the children of the device for _INI objects (see the description of
_STA for the explanation of this special case.) If the device becomes present after the table has
already been loaded, OSPM will not evaluate the _INI method, nor examine the children for _INI
methods.

String Resource Source (Length
= L)

Name of the serial bus controller device to which this
connection descriptor applies. The name can be a fully
qualified path, a relative path, or a simple name segment that
utilizes the namespace search rules.

Object Description

_INI Device initialization method that is run shortly after ACPI has been enabled.

_DCK Indicates that the device is a docking station.

_BDN Correlates a docking station between ACPI and legacy interfaces.

_REG Notifies AML code of a change in the availability of an operation region.

_BBN PCI bus number set up by the BIOS.

_SEG Indicates a bus segment location.

_GLK Indicates the Global Lock must be acquired when accessing a device.

Offset Field Name Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 349

Device Configuration
The OSPM performed _INI object actions based upon the _STA Present and Functional bits are
summarized in the table below.

Table 6-195 OSPM _INI Object Actions

The _INI control method is generally used to switch devices out of a legacy operating mode. For
example, BIOSes often configure CardBus controllers in a legacy mode to support legacy operating
systems. Before enumerating the device with an ACPI operating system, the CardBus controllers
must be initialized to CardBus mode. For such systems, the vendor can include an _INI control
method under the CardBus controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an _INI object under the _SB
namespace, if present, at the beginning of namespace initialization.

6.5.2 _DCK (Dock)
This control method is located in the device object that represents the docking station (that is, the
device object with all the _EJx control methods for the docking station). The presence of _DCK
indicates to the OS that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS to prepare for
docking before the bus is activated and devices appear on the bus.

Arguments: (1)

Arg0 – An Integer containing a docking action code

 0 – Undock (isolate from connector)

 1 – Dock (remove isolation from connector)

Return Value:

An Integer containing the docking status code

1 – Successful

0 – Failed

Note: When _DCK is called with 0, OSPM will ignore the return value. The _STA object that follows the
_EJx control method will notify whether or not the portable has been ejected.

6.5.3 _BDN (BIOS Dock Name)
_BDN is used to correlate a docking station reported via ACPI and the same docking station reported
via legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

_STA Present Bit _STA Functional Bit Actions

0 0 Do not run _INI, do not examine device children

0 1 Do not run _INI, examine device children

1 0 Run _INI, examine device children

1 1 Run _INI, examine device children
350 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments:

None

Return Value:

An Integer that contains the EISA Dock ID

_BDN must appear under a device object that represents the dock, that is, the device object with
_Ejx methods. This object must return a DWORD that is the EISA-packed DockID returned by the
Plug and Play BIOS Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 _REG (Region)
The OS runs _REG control methods to inform AML code of a change in the availability of an
operation region. When an operation region handler is unavailable, AML cannot access data fields in
that region. (Operation region writes will be ignored and reads will return indeterminate data.).

Arguments: (2)

Arg0 – An Integer containing the Operation Region address space ID

Arg1 – An Integer containing the handler connection code

 0 – disconnect the handler

 1 – connect the handler

Return Value:

None

Valid Operation Region address space IDs:

0 – SystemMemory

1 – SystemIO

2 – PCI_Config

3 – Embedded Controller

4 – SMBus

5 – CMOS

6 – PCIBARTarget

7 – IPMI

8 - GeneralPurposeIO

9 - GenericSerialBus

0x08-0x7F –Reserved

0x80-0xFF –OEM (custom) region space

Except for the cases shown below, control methods must assume all operation regions inaccessible
until the _REG(RegionSpace, 1) method is executed. Once _REG has been executed for a particular
operation region, indicating that the operation region handler is ready, a control method can access
fields in the operation region. Conversely, control methods must not access fields in operation
regions when _REG method execution has not indicated that the operation region handler is ready.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 351

Device Configuration
For example, until the Embedded Controller driver is ready, the control methods cannot access the
Embedded Controller. Once OSPM has run _REG(EmbeddedControl, 1), the control methods can
then access operation regions in Embedded Controller address space. Furthermore, if OSPM
executes _REG(EmbeddedControl, 0), control methods must stop accessing operation regions in the
Embedded Controller address space.

The exceptions for this rule are:

1. OSPM must guarantee that the following operation regions must always be accessible:

• PCI_Config operation regions on a PCI root bus containing a _BBN object.

• I/O operation regions.

• Memory operation regions when accessing memory returned by the System Address Map
reporting interfaces.

2. OSPM must make Embedded Controller operation regions, accessed via the Embedded
Controllers described in ECDT, available before executing any control method. These operation
regions may become inaccessible after OSPM runs _REG(EmbeddedControl, 0).

Place _REG in the same scope as operation region declarations. The OS will run the _REG in a
given scope when the operation regions declared in that scope are available for use.

Example:

Scope(_SB.PCI0) {
 OperationRegion(OPR1, PCI_Config, ...)
 Method(_REG, 2) {...} // OSPM executes this when PCIO operation region handler
 // status changes
 Device(PCI1) {
 Method(_REG, 2) {...}
 Device(ETH0) {
 OperationRegion(OPR2, PCI_Config, ...)
 Method(_REG,2) {...}
 }
 }
 Device(ISA0) {
 OperationRegion(OPR3, I/O, ...)
 Method(_REG, 2) {...} // OSPM executes this when ISAO operation region handler
 // status changes

 Device(EC0) {
 Name(_HID, EISAID("PNP0C09"))
 OperationRegion(OPR4, EC, ...)
 Method(_REG, 2) {...} // OSPM executes this when EC operation region
 // handler status changes

 }
 }
}

When the PCI0 operation region handler is ready, OSPM will run the _REG method declared in
PCI0 scope to indicate that PCI Config space operation region access is available within the PCI0
scope (in other words, OPR1 access is allowed). When the ISA0 operation handler is ready, OSPM
will run the _REG method in the ISA0 scope to indicate that the I/O space operation region access is
available within that scope (in other words, OPR3 access is allowed). Finally, when the Embedded
Controller operation region handler is ready, OSPM will run the _REG method in the EC0 scope to
352 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
indicate that EC space operation region access is available within the EC0 scope (in other words,
OPR4 access is allowed). It should be noted that PCI Config Space Operation Regions are ready as
soon the host controller or bridge controller has been programmed with a bus number. PCI1’s _REG
method would not be run until the PCI-PCI bridge has been properly configured. At the same time,
the OS will also run ETH0’s _REG method since its PCI Config Space would be also available. The
OS will again run ETH0’s _REG method when the ETH0 device is started. Also, when the host
controller or bridge controller is turned off or disabled, PCI Config Space Operation Regions for
child devices are no longer available. As such, ETH0’s _REG method will be run when it is turned
off and will again be run when PCI1 is turned off.

Note: The OS only runs _REG methods that appear in the same scope as operation region declarations
that use the operation region type that has just been made available. For example, _REG in the
EC device would not be run when the PCI bus driver is loaded since the operation regions
declared under EC do not use any of the operation region types made available by the PCI driver
(namely, config space, I/O, and memory).

6.5.5 _BBN (Base Bus Number)
For multi-root PCI platforms, the _BBN object evaluates to the PCI bus number that the BIOS
assigns. This is needed to access a PCI_Config operation region for the specific bus. The _BBN
object is located under a PCI host bridge and must be unique for every host bridge within a segment
since it is the PCI bus number.

Arguments:

None

Return Value:

An Integer that contains the PCI bus number

6.5.6 _SEG (Segment)
The optional _SEG object is located under a PCI host bridge and evaluates to an integer that
describes the PCI Segment Group (see PCI Firmware Specification v3.0). If _SEG does not exist,
OSPM assumes that all PCI bus segments are in PCI Segment Group 0.

Arguments:

None

Return Value:

An Integer that contains the PCI segment group

PCI Segment Group is purely a software concept managed by system firmware and used by OSPM.
It is a logical collection of PCI buses (or bus segments). There is no tie to any physical entities. It is
a way to logically group the PCI bus segments and PCI Express Hierarchies. _SEG is a level higher
than _BBN.

PCI Segment Group supports more than 256 buses in a system by allowing the reuse of the PCI bus
numbers. Within each PCI Segment Group, the bus numbers for the PCI buses must be unique. PCI
buses in different PCI Segment Group are permitted to have the same bus number.

A PCI Segment Group contains one or more PCI host bridges.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 353

Device Configuration
The lower 16 bits of _SEG returned integer is the PCI Segment Group number. Other bits are
reserved.

6.5.6.1 Example
Device(ND0) { // this is a node 0
 Name(_HID, “ACPI0004”)

 // Returns the "Current Resources"
 Name(_CRS,
 ResourceTemplate() {
 …
 }
)
 Device(PCI0) {
 Name(_HID, EISAID(“PNP0A03”))
 Name(_ADR, 0x00000000)
 Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
 …
 Name(_BBN, 0)
 …
 }
 Device(PCI1) {
 …
 Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
 …
 Name(_BBN, 16)
 …
 }
 …
 }
 Device(ND1) { // this is a node 1
 Name(_HID, “ACPI0004”)

 // Returns the "Current Resources"
 Name(_CRS,
 ResourceTemplate() {
 …
 }
)
 Device(PCI0) {
 Name(_HID, EISAID(“PNP0A03”))
 Name(_ADR, 0x00000000)
 Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
 …
 Name(_BBN, 0)
 …
 }
 Device(PCI1) {
 …
 Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
 …
 Name(_BBN, 16)
 …
 }
}

354 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
6.5.7 _GLK (Global Lock)
This optional named object is located within the scope of a device object. This object returns a value
that indicates to any entity that accesses this device (in other words, OSPM or any device driver)
whether the Global Lock must be acquired when accessing the device. OS-based device accesses
must be performed while in acquisition of the Global Lock when potentially contentious accesses to
device resources are performed by non-OS code, such as System Management Mode (SMM)-based
code in Intel architecture-based systems.

Note: Default behavior: if _GLK is not present within the scope of a given device, then the Global Lock is
not required for that device.

Arguments:

None

Return Value:

An Integer that contains the Global Lock requirement code

0 – The Global Lock is not required for this device

1 – The Global lock is required for this device

An example of device resource contention is a device driver for an SMBus-based device contending
with SMM-based code for access to the Embedded Controller, SMB-HC, and SMBus target device.
In this case, the device driver must acquire and release the Global Lock when accessing the device to
avoid resource contention with SMM-based code that accesses any of the listed resources.

6.5.8 _DEP (Operation Region Dependencies)
_DEP evaluates to a package and designates device objects that OSPM should assign a higher
priority in start ordering due to future operation region accesses.

To increase the likelihood that an SPB operation region handler is available when needed, OSPM
needs to know in advance which methods will access it -- _DEP provides OSPM with this
information. While the _DEP keyword may be used to determine start ordering, only the _REG
method (Section 6.5.4) callbacks can be relied upon to determine whether a region is accessible at a
given point in time.

Arguments:

None.

Return Value:

A variable-length Package containing object references.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 355

Device Configuration
6.5.8.1 Example
Device(_SB.TC3) {
 …
 OperationRegion(OPRG,
 GenericSerialBus,
 0x00,
 0x100)
 …
}

Device(_SB.TP1) {
 …
 Name (_DEP, Package() {_SB.TC3})
 …
}

356 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
7
Power and Performance Management

This section specifies the device power management objects and system power management objects.
OSPM uses these objects to manage the platform by achieving a desirable balance between
performance and energy conservation goals.

Device performance states (Px states) are power consumption and capability states within the active
(D0) device power state. Performance states allow OSPM to make tradeoffs between performance
and energy conservation. Device performance states have the greatest impact when the
implementation is such that the states invoke different device efficiency levels as opposed to a linear
scaling of performance and energy consumption. Since performance state transitions occur in the
active device states, care must be taken to ensure that performance state transitions do not adversely
impact the system.

Device performance state objects, when necessary, are defined on a per device class basis as
described in the device class specifications (See Appendix A).

The system state indicator objects are also specified in this section.

7.1 Declaring a Power Resource Object
An ASL PowerResource statement is used to declare a PowerResource object. A Power Resource
object refers to a software-controllable power plane, clock plane, or other resource upon which an
integrated ACPI power-managed device might rely. Power resource objects can appear wherever is
convenient in namespace.

The syntax of a PowerResource statement is:

PowerResource (resourcename, systemlevel, resourceorder) {NamedList}

where the systemlevel parameter is a number and the resourceorder parameter is a numeric constant
(a WORD). For a formal definition of the PowerResource statement syntax, see Section 19, “ACPI
Source Language Reference.”

Systemlevel is the lowest power system sleep level OSPM must maintain to keep this power resource
on (0 equates to S0, 1 equates to S1, and so on).

Each power-managed ACPI device lists the resources it requires for its supported power levels.
OSPM multiplexes this information from all devices and then enables and disables the required
Power Resources accordingly. The resourceorder field in the Power Resource object is a unique
value per Power Resource, and it provides the system with the order in which Power Resources must
be enabled or disabled. Power Resources are enabled from low values to high values and are
disabled from high values to low values. The operating software enables or disables all affected
Power Resources in any one resourceorder level at a time before moving on to the next ordered
level. Putting Power Resources in different order levels provides power sequencing and serialization
where required.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 357

Power and Performance Management
A Power Resource can have named objects under its Namespace location. For a description of the
ACPI-defined named objects for a Power Resource, see Section 7.2, “Device Power Management
Objects.”

The following block of ASL sample code shows a use of PowerResource.

PowerResource(PIDE, 0, 0) {
 Method(_STA) {
 Return (Xor (GIO.IDEI, One, Zero)) // inverse of isolation
 }
 Method(_ON) {
 Store (One, GIO.IDEP) // assert power
 Sleep (10) // wait 10ms
 Store (One, GIO.IDER) // de-assert reset#
 Stall (10) // wait 10us
 Store (Zero, GIO.IDEI) // de-assert isolation
 }
 Method(_OFF) {
 Store (One, GIO.IDEI) // assert isolation
 Store (Zero, GIO.IDER) // assert reset#
 Store (Zero, GIO.IDEP) // de-assert power
 }
}

7.1.1 Defined Child Objects for a Power Resource
Each power resource object is required to have the following control methods to allow basic control
of each power resource. As OSPM changes the state of device objects in the system, the power
resources that are needed will also change causing OSPM to turn power resources on and off. To
determine the initial power resource settings the _STA method can be used.

Table 7-196 Power Resource Child Objects

7.1.2 _OFF
This power resource control method puts the power resource into the OFF state. The control method
does not complete until the power resource is off. OSPM only turns on or off one resource at a time,
so the AML code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or
OFF) method to cause the proper sequencing delays between operations on power resources.

Arguments:

None

Return Value:

None

Object Description

_OFF Set the resource off.

_ON Set the resource on.

_STA Object that evaluates to the current on or off state of the Power Resource. 0–OFF, 1–ON
358 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
7.1.3 _ON
This power resource control method puts the power resource into the ON state. The control method
does not complete until the power resource is on. OSPM only turns on or off one resource at a time,
so the AML code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or
OFF) method to cause the proper sequencing delays between operations on power resources.

Arguments:

None

Return Value:

None

7.1.4 _STA (Status)
Returns the current ON or OFF status for the power resource.

Arguments:

None

Return Value:

An Integer containing the current power status of the device

0 – The power resource is currently off

1 – The power resource is currently on

7.2 Device Power Management Objects
For a device that is power-managed using ACPI, a Definition Block contains one or more of the
objects found in the table below. Power management of a device is done using two different
paradigms:

• Power Resource control

• Device-specific control

Power Resources are resources that could be shared amongst multiple devices. The operating
software will automatically handle control of these devices by determining which particular Power
Resources need to be in the ON state at any given time. This determination is made by considering
the state of all devices connected to a Power Resource.

By definition, a device that is OFF does not have any power resource or system power state
requirements. Therefore, device objects do not list power resources for the OFF power state.

For OSPM to put the device in the D3 state, the following must occur:

• All Power Resources no longer referenced by any device in the system must be in the OFF state.

• If present, the _PS3 control method is executed to set the device into the D3 device state.

The only transition allowed from the D3 device state is to the D0 device state.

For many devices the Power Resource control is all that is required; however, device objects may
include their own device-specific control method.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 359

Power and Performance Management
These two types of power management controls (through Power Resources and through specific
devices) can be applied in combination or individually as required.

For systems that do not control device power states through power plane management, but whose
devices support multiple D-states, more information is required by the OS to determine the S-state to
D-state mapping for the device. The ACPI BIOS can give this information to OSPM by way of the
_SxD methods. These methods tell OSPM for S-state “x”, the highest D-state supported by the
device is “y.” OSPM is allowed to pick a lower D-state for a given S-state, but OSPM is not allowed
to exceed the given D-state.

Further rules that apply to device power management objects are:

• For a given S-state, a device cannot be in a higher D-state than its parent device.

• If there exists an ACPI Object to turn on a device (either through _PSx or _PRx objects), then a
corresponding object to turn the device off must also be declared and vice versa.

• If there exists an ACPI Object that controls power (_PSx or _PRx, where x =0, 1, 2, or 3), then
methods to set the device into D0 and D3 device states must be present.

• If a mixture of _PSx and _PRx methods is declared for the device, then the device states
supported through _PSx methods must be identical to the device states supported through _PRx
methods. ACPI system firmware may enable device power state control exclusively through
_PSx (or _PRx) method declarations.

When controlling power to devices which must wake the system during a system sleeping state:

• The device must declare its ability to wake the system by declaring either the _PRW or _PSW
object.

• If _PR0 is present, then OSPM must choose a sleeping state which is less than or equal to the
sleeping state specified.

• After OSPM has called _PTS, it must call the device’s _PSW to enable wake.

• OSPM must transition the device into a D-state which is greater than or equal that specified by
the device’s _SxD object, but less than or equal to that specified by the device’s _SxW object.

• OSPM may transition the system to the specified sleep state.

Table 7-197 Device Power Management Child Objects

Object Description

_DSW Control method that enables or disables the device’s wake function for device-only wake.

_PS0 Control method that puts the device in the D0 device state (device fully on).

_PS1 Control method that puts the device in the D1 device state.

_PS2 Control method that puts the device in the D2 device state.

_PS3 Control method that puts the device in the D3 device state (device off).

_PSC Object that evaluates to the device’s current power state.

_PR0 Object that evaluates to the device’s power requirements in the D0 device state (device fully on).

_PR1 Object that evaluates to the device’s power requirements in the D1 device state. The only
devices that supply this level are those that can achieve the defined D1 device state according to
the related device class.
360 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
7.2.1 _DSW (Device Sleep Wake)
In addition to _PRW, this control method can be used to enable or disable the device’s ability to
wake a sleeping system. This control method can only access Operation Regions that are either
always available while in a system working state or that are available when the Power Resources
referenced by the _PRW object are all ON. For example, do not put a power plane control for a bus
controller within configuration space located behind the bus. The method should enable the device
only for the last system state/device state combination passed in by OSPM. OSPM will only pass in
combinations allowed by the _SxD and _SxW objects.

The arguments provided to _DSW indicate the eventual Device State the device will be transitioned
to and the eventual system state that the system will be transitioned to. The target system state is
allowed to be the system working state (S0). The _DSW method will be run before the device is
placed in the designated state and also before the system is placed in the designated system state.

Compatibility Note: The _PSW method is deprecated in ACPI 3.0. The _DSW method should be
used instead. OSPM will only use the _PSW method if OSPM does not support _DSW or if the
_DSW method is not present.

Arguments: (3)

Arg0 – An Integer that contains the device wake capability control

0 – Disable the device’s wake capabilities

1 – Enable the device’s wake capabilities

Arg1 – An Integer that contains the target system state (0-4)

Arg2 – An Integer that contains the target device state

0 – The device will remain in state D0

_PR2 Object that evaluates to the device’s power requirements in the D2 device state. The only
devices that supply this level are those that can achieve the defined D2 device state according to
the related device class.

_PR3 Object that evaluates to the device’s power requirements in the D3hot device state.

_PRW Object that evaluates to the device’s power requirements in order to wake the system from a
system sleeping state.

_PSW Control method that enables or disables the device’s wake function.

_IRC Object that signifies the device has a significant inrush current draw.

_S1D Highest D-state supported by the device in the S1 state

_S2D Highest D-state supported by the device in the S2 state

_S3D Highest D-state supported by the device in the S3 state

_S4D Highest D-state supported by the device in the S4 state

_S0W Lowest D-state supported by the device in the S0 state which can wake the device

_S1W Lowest D-state supported by the device in the S1 state which can wake the system.

_S2W Lowest D-state supported by the device in the S2 state which can wake the system.

_S3W Lowest D-state supported by the device in the S3 state which can wake the system.

_S4W Lowest D-state supported by the device in the S4 state which can wake the system.

Object Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 361

Power and Performance Management
1 – The device will be placed in either state D0 or D1

2 – The device will be placed in either state D0, D1, or D2

3 – The device will be placed in either state D0, D1, D2, or D3

Return Value:

None

7.2.2 _PS0 (Power State 0)
This Control Method is used to put the specific device into its D0 state. This Control Method can
only access Operation Regions that are either always available while in a system working state or
that are available when the Power Resources references by the _PR0 object are all ON.

Arguments:

None

Return Value:

None

7.2.3 _PS1 (Power State 1)
This control method is used to put the specific device into its D1 state. This control method can only
access Operation Regions that are either always available while in a system working state or that are
available when the Power Resources references by the _PR1 object are all ON.

Arguments:

None

Return Value:

None

7.2.4 _PS2 (Power State 2)
This control method is used to put the specific device into its D2 state. This control method can only
access Operation Regions that are either always available while in a system working state or that are
available when the Power Resources references by the _PR2 object are all ON.

Arguments:

None

Return Value:

None

7.2.5 _PS3 (Power State 3)
This control method is used to put the specific device into its D3hot or D3 state. This control method
can only access Operation Regions that are always available while in a system working state.

A device in the D3 state must no longer be using its resources (for example, its memory space and I/
O ports are available to other devices).
362 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments:

None

Return Value:

None

7.2.6 _PSC (Power State Current)
This control method evaluates to the current device state. This control method is not required if the
device state can be inferred by the Power Resource settings. This would be the case when the device
does not require a _PS0, _PS1, _PS2, or _PS3 control method.

Arguments:

None

Return Value:

An Integer that contains a code for the current device state

The device state codes are shown in Table 7-198.

Table 7-198 PSC Device State Codes

7.2.7 _PSE (Power State for Enumeration)
This control method is used to put a device into a powered mode appropriate for enumeration by its
parent bus. This control method can only access Operation Regions that are either always available
while in a system working state or that are available when the Power Resources referenced by the
_PRE object are all ON.

Arguments: (1)

Arg1 – An Integer indicating whether Enumeration power has been turned ON or will be turned
OFF.

 0 – OFF

 1 – ON

Return Value:

None

7.2.8 _PR0 (Power Resources for D0)
This object evaluates to a list of power resources that are dependent on this device. For OSPM to put
the device in the D0 device state, the following must occur:

Return Value Device State

0 D0

1 D1

2 D2

3 D3
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 363

Power and Performance Management
1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the _PS0 control method is executed to set the device into the D0 device state.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

This object returns a package as defined below:

Table 7-199 Power Resource Requirements Package

_PR0 must return the same data each time it is evaluated. All power resources referenced must exist
in the namespace.

7.2.9 _PR1 (Power Resources for D1)
This object evaluates to a list of power resources that are dependent on this device. For OSPM to put
the device in the D1 device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the _PS1 control method is executed to set the device into the D1 device state.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

This object evaluates to a package as defined in Table 7-199.

_PR1 must return the same data each time it is evaluated. All power resources referenced must exist
in the namespace.

7.2.10 _PR2 (Power Resources for D2)
This object evaluates to a list of power resources that are dependent on this device. For OSPM to put
the device in the D2 device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the _PS2 control method is executed to set the device into the D2 device state.

Element Object Description

1 object reference Reference to required Power Resource #0

N object reference Reference to required Power Resource #N
364 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

_PR2 must return the same data each time it is evaluated. All power resources referenced must exist
in the namespace.

7.2.11 _PR3 (Power Resources for D3hot)
This object evaluates to a list of power resources that are dependent on this device. For OSPM to put
the device in the D3hot device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. 2. All Power Resources no longer referenced by any device in the system must be in the OFF
state.

3. 3. If present, the _PS3 control method is executed to set the device into the D3hot device state.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources

_PR3 must return the same data each time it is evaluated. All power resources referenced must exist
in the namespace.

Interaction between _PR3 and entry to D3/D3hot (only applicable if platform and OSPM have
performed the necessary handshake via _OSC):

• Platform/drivers must assume that the device will have power completely removed when the
device is place into “D3” via _PS3

• It is up to OSPM to determine whether to use D3 or D3hot. If there is a _PR3 for the device, it is
up to OSPM to decided whether or not to keep those power resources on/off after executing
_PS3. The decision may be based on other factors (e.g. being armed for wake, etc).

7.2.12 _PRE (Power Resources for Enumeration)
This object appears under a device and evaluates to a list of power resources that are required for
enumeration of the device by its parent bus. For the bus driver to enumerate any devices while they
are in the D3Cold device state, OSPM must ensure that the following occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. If present, the _PSE control method is executed to perform any actions on the device to make it
accessible for enumeration.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power resources.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 365

Power and Performance Management
_PRE must return the same data each time it is evaluated. All power resources referenced must exist
in the namespace.

7.2.13 PRW (Power Resources for Wake)
This object evaluates to a list of power resources that are dependent on this device and additional
information needed for wake, including wake GPE and sleep state information. _PRW is only
required for devices that have the ability to wake the system from a system sleeping state.

Two types of general purpose events are supported:

• GPEs that are defined by a GPE block described within the FADT.

• GPEs that are defined by a GPE Block Device.

The two types of GPEs are differentiated by the type of the GpeInfo object in the returned package.
For FADT-based GPEs, GpeInfo is an Integer containing a bit index. For Block Device-based
GPEs, GpeInfo is a Package containing a Reference to the parent block device and an Integer
containing a bit index.

For HW-Reduced ACPI platforms, the GpeInfo structure is ignored by OSPM. Therefore, _PRW is
only required on such platforms if power resources for wakeup must be managed by OSPM (e.g. the
_PRW provides a list of Power Resources). Instead, for a device to wake the system, its interrupt
must be wake-capable and enabled by the driver. See Section 3.11.1.1"Interrupt-based Wake
Events".

Arguments:

None

Return Value:

A variable-length Package containing wake information and a list of References to power resources

Return Value Information

Package {
 GpeInfo // Integer or Package
 LowestSleepState // Integer
 PowerResource [0] // Reference
 . . .
 PowerResource [n] // Reference
}

If GpeInfo is a Package, it contains GPE block device information as described below:

Package {
 GpeDeviceName // Reference
 BitIndex // Integer
}

GpeInfo may be either an Integer or a Package, depending on the GPE type:

• If it is an Integer, then it contains the bit index of the wake GPE within the FADT-based GPE
enable register.
366 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• If it is a Package, then the package contains GPE info for a event within a GPE block device. It
contains a Reference to the GPE block device and an Integer containing the bit index of the
wake GPE within the Block Device-based GPE enable register.

LowestSleepState is an Integer that contains the lowest power system sleeping state that can be
entered while still providing wake functionality.

PowerResource 0-n are References to required power resource objects.

Additional Information
For OSPM to have the defined wake capability properly enabled for the device, the following must
occur:

1. All Power Resources referenced by elements 2 through N are put into the ON state.

a If present, the _PSW control method is executed to set the device-specific registers to enable
the wake functionality of the device.

b The D-state being entered must be at least that specified in the _SxD state but no greater
than that specified in the _SxW state.

Then, if the system enters a sleeping state OSPM must ensure:

1. Interrupts are disabled.

2. The sleeping state being entered must be less than or equal to the power state declared in
element 1 of the _PRW object.

3. The proper general-purpose register bits are enabled.

The system sleeping state specified must be a state that the system supports (in other words, a
corresponding _Sx object must exist in the namespace).

_PRW must return the same data each time it is evaluated. All power resources referenced must exist
in the namespace.

7.2.14 _PSW (Power State Wake)
In addition to the _PRW control method, this control method can be used to enable or disable the
device’s ability to wake a sleeping system. This control method can only access Operation Regions
that are either always available while in a system working state or that are available when the Power
Resources references by the _PRW object are all ON. For example, do not put a power plane control
for a bus controller within configuration space located behind the bus.

Note: Regarding compatability--The _PSW method is deprecated in ACPI 3.0. OSPM must use _DSW if
it is present. Otherwise, it may use _PSW.

Arguments: (1)

Arg0 – An Integer containing a wake capability control

0 – Disable the device’s wake capabilities

1 – Enable the device’s wake capabilities

Return Value:

None
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 367

Power and Performance Management
7.2.15 _IRC (In Rush Current)
Indicates that this device can cause a significant in-rush current when transitioning to state D0.

Arguments:

None

Return Value:

None

The presence of this object signifies that transitioning the device to its D0 state causes a system-
significant in-rush current load. In general, such operations need to be serialized such that multiple
operations are not attempted concurrently. Within ACPI, this type of serialization can be
accomplished with the ResourceOrder parameter of the device’s Power Resources; however, this
does not serialize ACPI-controlled devices with non-ACPI controlled devices. _IRC is used to
signify this fact outside of OSPM to OSPM such that OSPM can serialize all devices in the system
that have in-rush current serialization requirements.

OSPM can only transition one device containing an _IRC object within its device scope to the D0
state at a time.

It is important to note that OSPM does not evaluate the _IRC object. It has no defined input
arguments nor does it return any value. OSPM derives meaning simply from the existence of the
_IRC object.

7.2.16 _S1D (S1 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S1 system sleeping state. _S1D must return the same integer each
time it is evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from
the device’s power resource declarations. See Table 7-198 for valid return values.

Arguments:

None

Return Value:

An Integer containing the highest D-state supported in state S1

If the device can wake the system from the S1 system sleeping state (see _PRW) then the device
must support wake in the D-state returned by this object. However, OSPM cannot assume wake from
the S1 system sleeping state is supported in any lower D-state unless specified by a corresponding
_S1W object. The table below provides a mapping from Desired Actions to Resultant D-state
entered based on the values returned from the _S1D, _PRW, and _S1W objects if they exist . (D/C
means Don’t Care – evaluation is irrelevant, and N/A means Non Applicable – object does not
exist).

Table 7-200 S1 Action / Result Table

Desired Action _S1D _PRW _S1W Resultant D-state

Enter S1 D/C D/C D/C OSPM decides

Enter S1, No Wake 2 D/C D/C Enter D2 or D3
368 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
7.2.17 _S2D (S2 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S2 system sleeping state. _S2D must return the same integer each
time it is evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from
the device’s power resource declarations. See Table 7-198 for valid return values.

Arguments:

None

Return Value:

An Integer containing the highest D-state supported in state S2

If the device can wake the system from the S2 system sleeping state (see _PRW) then the device
must support wake in the D-state returned by this object. However, OSPM cannot assume wake from
the S2 system sleeping state is supported in any lower D-state unless specified by a corresponding
_S2W object. The table below provides a mapping from Desired Actions to Resultant D-state
entered based on the values returned from the _S2D, _PRW, and _S2W objects if they exist . (D/C
means Don’t Care – evaluation is irrelevant, and N/A means Non Applicable – object does not
exist).

Table 7-201 S2 Action / Result Table

7.2.18 _S3D (S3 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S3 system sleeping state. _S3D must return the same integer each
time it is evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from
the device’s power resource declarations. See Table 7-198 for valid return values.

Arguments:

None

Return Value:

An Integer containing the highest D-state supported in state S3

Enter S1, Wake 2 1 N/A Enter D2

Enter S1, Wake 2 1 3 Enter D2 or D3

Enter S1, Wake N/A 1 2 Enter D0,D1 or D2

Desired Action _S2D _PRW _S2W Resultant D-state

Enter S2 D/C D/C D/C OSPM decides

Enter S2, No Wake 2 D/C D/C Enter D2 or D3

Enter S2, Wake 2 2 N/A Enter D2

Enter S2, Wake 2 2 3 Enter D2 or D3

Enter S2, Wake N/A 2 2 Enter D0,D1 or D2
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 369

Power and Performance Management
If the device can wake the system from the S3 system sleeping state (see _PRW) then the device
must support wake in the D-state returned by this object. However, OSPM cannot assume wake from
the S3 system sleeping state is supported in any lower D-state unless specified by a corresponding
_S3W object. The table below provides a mapping from Desired Actions to Resultant D-state
entered based on the values returned from the _S3D, _PRW, and _S3W objects if they exist . (D/C
means Don’t Care – evaluation is irrelevant, and N/A means Non Applicable – object does not
exist).

Table 7-202 S3 Action / Result Table

7.2.19 _S4D (S4 Device State)
This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S4 system sleeping state. _S4D must return the same integer each
time it is evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from
the device’s power resource declarations. See Table 7-3 for valid return values.

Arguments:

None

Return Value:

An Integer containing the highest D-state supported in state S4

If the device can wake the system from the S4 system sleeping state (see _PRW) then the device
must support wake in the D-state returned by this object. However, OSPM cannot assume wake from
the S4 system sleeping state is supported in any lower D-state unless specified by a corresponding
_S4W object. The table below provides a mapping from Desired Actions to Resultant D-state
entered based on the values returned from the _S4D, _PRW, and _S4W objects if they exist . (D/C
means Don’t Care – evaluation is irrelevant, and N/A means Non Applicable – object does not
exist).

Table 7-203 S4 Action / Result Table

Desired Action _S3D _PRW _S3W Resultant D-state

Enter S3 N/A D/C N/A OSPM decides

Enter S3, No Wake 2 D/C D/C Enter D2 or D3

Enter S3, Wake 2 3 N/A Enter D2

Enter S3, Wake 2 3 3 Enter D2 or D3

Enter S3, Wake N/A 3 2 Enter D0, D1 or D2

Desired Action _S4D _PRW _S4W Resultant D-state

Enter S4 N/A D/C N/A OSPM decides

Enter S4, No Wake 2 D/C D/C Enter D2 or D3

Enter S4, Wake 2 4 N/A Enter D2

Enter S4, Wake 2 4 3 Enter D2 or D3

Enter S4, Wake N/A 4 2 Enter D0, D1 or D2
370 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
7.2.20 _S0W (S0 Device Wake State)
This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S0 system sleeping state where the device can wake itself.

Arguments:

None

Return Value:

An Integer containing the lowest D-state supported in state S0. If OSPM has not indicated that it
supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.10.2), then the value
"3" corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the
value "4" represents D3cold.

_S0W must return the same integer each time it is evaluated. This value allows OSPM to choose the
lowest power D-state and still achieve wake functionality. If object evaluates to zero, then the device
cannot wake itself from any lower sleeping state.

7.2.21 _S1W (S1 Device Wake State)
This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S1 system sleeping state which can wake the system.

Arguments:

None

Return Value:

An Integer containing the lowest D-state supported in state S1. If OSPM has not indicated that it
supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.10.2), then the value
"3" corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the
value "4" represents D3cold.

_S1W must return the same integer each time it is evaluated. This value allows OSPM to choose a
lower S-state to D-state mapping than specified by _S1D. This value must always be greater than or
equal to _S1D, if _S1D is present.

7.2.22 _S2W (S2 Device Wake State)
This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S2 system sleeping state which can wake the system.

Arguments:

None

Return Value:

An Integer containing the lowest D-state supported in state S2. If OSPM has not indicated that it
supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.10.2), then the value
"3" corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the
value "4" represents D3cold.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 371

Power and Performance Management
_S2W must return the same integer each time it is evaluated. This value allows OSPM to choose a
lower S-state to D-state mapping than specified by _S2D. This value must always be greater than or
equal to _S2D, if _S2D is present.

7.2.23 _S3W (S3 Device Wake State)
This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S3 system sleeping state which can wake the system.

Arguments:

None

Return Value:

An Integer containing the lowest D-state supported in state S3. If OSPM has not indicated that it
supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.10.2), then the value
"3" corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the
value "4" represents D3cold.

_S3W must return the same integer each time it is evaluated. This value allows OSPM to choose a
lower S-state to D-state mapping than specified by _S3D. This value must always be greater than or
equal to _S3D, if _S3D is present.

7.2.24 _S4W (S4 Device Wake State)
This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S4 system sleeping state which can wake the system.

Arguments:

None

Return Value:

An Integer containing the lowest D-state supported in state S4. If OSPM has not indicated that it
supports _PR3 through the OSPM Platform-Wide Capabilities (see Section 6.2.10.2), then the value
"3" corresponds to D3. If it has indicated _PR3 support, the value "3" represents D3hot and the
value "4" represents D3cold.

_S4W must return the same integer each time it is evaluated. This value allows OSPM to choose a
lower S-state to D-state mapping than specified by _S4D. This value must always be greater than or
equal to _S4D, if _S4D is present.

7.3 OEM-Supplied System-Level Control Methods
An OEM-supplied Definition Block provides some number of controls appropriate for system-level
management. These are used by OSPM to integrate to the OEM-provided features. The following
table lists the defined OEM system controls that can be provided.

Table 7-204 BIOS-Supplied Control Methods for System-Level Functions

Object Description

_BFS Control method executed immediately following a wake event.
372 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
7.3.1 _BFS (Back From Sleep)
_BFS is an optional control method. If it exists, OSPM must execute the _BFS method immediately
following wake from any sleeping state S1, S2, S3, or S4. _BFS allows ACPI system firmware to
perform any required system specific functions when returning a system sleep state. OSPM will
execute the _BFS control method before performing any other physical I/O or enabling any interrupt
servicing upon returning from a sleeping state. A value that indicates the sleeping state from which
the system was awoken (in other words, 1=S1, 2=S2, 3=S3, 4=S4) is passed as an argument to the
_BFS control method.

Arguments (1):

Arg0 – An Integer containing the value of the previous sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

None

7.3.2 _PTS (Prepare To Sleep)
The _PTS control method is executed by the OS during the sleep transition process for S1, S2, S3,
S4, and for orderly S5 shutdown. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5
soft-off state) is passed to the _PTS control method. This method is called after OSPM has notified
native device drivers of the sleep state transition and before the OSPM has had a chance to fully
prepare the system for a sleep state transition. Thus, this control method can be executed a relatively
long time before actually entering the desired sleeping state. If OSPM aborts the sleep state
transition, OSPM should run the _WAK method to indicate this condition to the platform.

Arguments (1):

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

None

The _PTS control method cannot modify the current configuration or power state of any device in
the system. For example, _PTS would simply store the sleep type in the embedded controller in
sequencing the system into a sleep state when the SLP_EN bit is set.

_PTS Control method used to notify the platform of impending sleep transition.

_GTS Control method executed just prior to setting the sleep enable (SLP_EN) bit.

_S0 Package that defines system _S0 state mode.

_S1 Package that defines system _S1 state mode.

_S2 Package that defines system _S2 state mode.

_S3 Package that defines system _S3 state mode.

_S4 Package that defines system _S4 state mode.

_S5 Package that defines system _S5 state mode.

_TTS Control method used to prepare to sleep and run once awakened

_WAK Control method run once awakened.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 373

Power and Performance Management
The platform must not make any assumptions about the state of the machine when _PTS is called.
For example, operation region accesses that require devices to be configured and enabled may not
succeed, as these devices may be in a non-decoding state due to plug and play or power management
operations.

7.3.3 _GTS (Going To Sleep)
_GTS is an optional control method. If it exists, OSPM must execute the _GTS control method just
prior to setting the sleep enable (SLP_EN) bit in the PM1 control register when entering the S1, S2,
S3, and S4 sleeping states and when entering S5 for orderly shutdown. _GTS allows ACPI system
firmware to perform any required system specific functions prior to entering a system sleep state.
OSPM will set the sleep enable (SLP_EN) bit in the PM1 control register immediately following the
execution of the _GTS control method without performing any other physical I/O or allowing any
interrupt servicing. The sleeping state value (1, 2, 3, 4, or 5) is passed as an argument to the _GTS
control method. The _GTS method must not attempt to directly place the system into a sleeping
state. OSPM performs this function by setting the sleep enable bit upon return from _GTS. In the
case of entry into the S5 soft off state however, _GTS may indeed perform operations that place the
system into the S5 state as OSPM will not regain control.

Arguments (1):

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

None

The _GTS method must be self-contained (not call other methods). Additionally, _GTS may only
access OpRegions that are currently available (see the _REG method for details).

7.3.4 System _Sx states
All system states supported by the system must provide a package containing the DWORD value of
the following format in the static Definition Block. The system states, known as S0–S5, are
referenced in the namespace as _S0–_S5 and for clarity the short Sx names are used unless
specifically referring to the named _Sx object. For each Sx state, there is a defined system behavior.

Arguments:

None

Return Value:

A Package containing an Integer containing register values for sleeping

Table 7-205 System State Package

Byte
Length

Byte
Offset

Description

1 0 Value for PM1a_CNT.SLP_TYP register to enter this system state. On HW-reduced
platforms, this is the HW-reduced Sleep Type value for
SLEEP_CONTROL_REG.SLP_TYP.
374 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
States S1–S4 represent some system sleeping state. The S0 state is the system working state.
Transition into the S0 state from some other system state (such as sleeping) is automatic, and, by
virtue that instructions are being executed, OSPM assumes the system to be in the S0 state.
Transition into any system sleeping state is only accomplished by the operating software directing
the hardware to enter the appropriate state, and the operating software can only do this within the
requirements defined in the Power Resource and Bus/Device Package objects.

All run-time system state transitions (for example, to and from the S0 state), except S4 and S5, are
done similarly such that the code sequence to do this is the following:

1 1 Value for PM1b_CNT.SLP_TYP register to enter this system state. To enter any
given state, OSPM must write the PM1a_CNT.SLP_TYP register before the
PM1b_CNT.SLP_TYP register. On HW-reduced platforms, this value is ignored.

2 2 Reserved
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 375

Power and Performance Management
/*
 * Intel Architecture SetSleepingState example
 */

 ULONG
 SetSystemSleeping (
 IN ULONG NewState
)
 {
 PROCESSOR_CONTEXT Context;
 ULONG PowerSeqeunce;
 BOOLEAN FlushCaches;
 USHORT SlpTyp;

// Required environment: Executing on the system boot
// processor. All other processors stopped. Interrupts
// disabled. All Power Resources (and devices) are in
// corresponding device state to support NewState.

 // Get h/w attributes for this system state
 FlushCaches = SleepType[NewState].FlushCache;
 SlpTyp = SleepType[NewState].SlpTyp & SLP_TYP_MASK;

 _asm {
 lea eax, OsResumeContext
 push eax ; Build real mode handler the resume
 push offset sp50 ; context, with eip = sp50
 call SaveProcessorState

 mov eax, ResumeVector ; set firmware’s resume vector
 mov [eax], offset OsRealModeResumeCode

 mov edx, PM1a_STS ; Make sure wake status is clear
 mov ax, WAK_STS ; (cleared by asserting the bit
 out dx, ax ; in the status register)

 mov edx, PM1b_STS ;
 out dx, ax ;

 and eax, not SLP_TYP_MASK
 or eax, SlpTyp ; set SLP_TYP
 or ax, SLP_EN ; set SLP_EN

 cmp FlushCaches, 0
 jz short sp10 ; If needed, ensure no dirty data in
376 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 call FlushProcessorCaches ; the caches while sleeping

sp10: mov edx, PM1a_SLP_TYP ; get address for PM1a_SLP_TYP
 out dx, ax ; start h/w sequencing
 mov edx, PM1b_SLP_TYP ; get address for PM1b_SLP_TYP
 out dx, ax ; start h/w sequencing

 mov edx, PM1a_STS ; get address for PM1x_STS
 mov ecx, PM1b_STS

sp20: in ax, dx ; wait for WAK status
 xchg edx, ecx
 test ax, WAK_STS
 jz short sp20

sp50:
}
 // Done..
 *ResumeVector = NULL;
 return 0;
 }

On HW-reduced ACPI platforms all run-time system state transitions (for example, to and from the
S0 state) are done similarly, but include the following instead of PM1*_BLK register bit
manipulation:

After ensuring that any desired wake-capable interrupts are enabled, OSPM writes the HW-
reduced Sleep Type value to the Sleep Control Register and spins waiting for the WAK_STS bit
of the Sleep Status Register to be set, indicating a platform transition to the Working state.

7.3.4.1 System _S0 State (Working)
While the system is in the S0 state, it is in the system working state. The behavior of this state is
defined as:

• The processors are in the C0, C1, C2, or C3 states. The processor-complex context is maintained
and instructions are executed as defined by any of these processor states.

• Dynamic RAM context is maintained and is read/write by the processors.

• Devices states are individually managed by the operating software and can be in any device state
(D0, D1, D2, D3hot, or D3).

• Power Resources are in a state compatible with the current device states.

Transition into the S0 state from some system sleeping state is automatic, and by virtue that
instructions are being executed OSPM, assumes the system to be in the S0 state.

7.3.4.2 System _S1 State (Sleeping with Processor Context Maintained)
While the system is in the S1 sleeping state, its behavior is the following:

• The processors are not executing instructions. The processor-complex context is maintained.

• Dynamic RAM context is maintained.

• Power Resources are in a state compatible with the system S1 state. All Power Resources that
supply a System-Level reference of S0 are in the OFF state.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 377

Power and Performance Management
• Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can be in that device

state. In all other cases, the device is in the D3 (off) state1.

• Devices that are enabled to wake the system and that can do so from their current device state
can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to continue execution where it left off.

To transition into the S1 state, the OSPM must flush all processor caches.

7.3.4.3 System _S2 State
The S2 sleeping state is logically lower than the S1 state and is assumed to conserve more power.
The behavior of this state is defined as:

• The processors are not executing instructions. The processor-complex context is not maintained.

• Dynamic RAM context is maintained.

• Power Resources are in a state compatible with the system S2 state. All Power Resources that
supply a System-Level reference of S0 or S1 are in the OFF state.

• Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can be in that device
state. In all other cases, the device is in the D3 (off) state.

• Devices that are enabled to wake the system and that can do so from their current device state
can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to begin execution at its boot location. The BIOS performs initialization of core
functions as needed to exit an S2 state and passes control to the firmware resume vector. See
Section 16.3.2, “BIOS Initialization of Memory,” for more details on BIOS initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires
that the operating software flush all dirty cache to dynamic RAM (DRAM).

7.3.4.4 System _S3 State
The S3 state is logically lower than the S2 state and is assumed to conserve more power. The
behavior of this state is defined as follows:

• The processors are not executing instructions. The processor-complex context is not maintained.

• Dynamic RAM context is maintained.

• Power Resources are in a state compatible with the system S3 state. All Power Resources that
supply a System-Level reference of S0, S1, or S2 are in the OFF state.

• Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can be in that device
state. In all other cases, the device is in the D3 (off) state.

1. Or it is at least assumed to be in the D3 state by its device driver. For example, if the device doesn’t explic-
itly describe how it can stay in some state non-off state while the system is in a sleeping state, the operating software
must assume that the device can lose its power and state.
378 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• Devices that are enabled to wake the system and that can do so from their current device state
can initiate a hardware event that transitions the system state to S0. This transition causes the
processor to begin execution at its boot location. The BIOS performs initialization of core
functions as necessary to exit an S3 state and passes control to the firmware resume vector. See
Section 16.3.2, “BIOS Initialization of Memory,” for more details on BIOS initialization.

From the software viewpoint, this state is functionally the same as the S2 state. The operational
difference can be that some Power Resources that could be left ON to be in the S2 state might not be
available to the S3 state. As such, additional devices may need to be in a logically lower D0, D1, D2,
or D3 state for S3 than S2. Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires
that the operating software flush all dirty cache to DRAM.

7.3.4.5 System _S4 State
While the system is in this state, it is in the system S4 sleeping state. The state is logically lower than
the S3 state and is assumed to conserve more power. The behavior of this state is defined as follows:

• The processors are not executing instructions. The processor-complex context is not maintained.

• DRAM context is not maintained.

• Power Resources are in a state compatible with the system S4 state. All Power Resources that
supply a System-Level reference of S0, S1, S2, or S3 are in the OFF state.

• Devices states are compatible with the current Power Resource states. In other words, all devices
are in the D3 state when the system state is S4.

• Devices that are enabled to wake the system and that can do so from their device state in S4 can
initiate a hardware event that transitions the system state to S0. This transition causes the
processor to begin execution at its boot location.

After OSPM has executed the _PTS control method and has put the entire system state into main
memory, there are two ways that OSPM may handle the next phase of the S4 state transition; saving
and restoring main memory. The first way is to use the operating system’s drivers to access the disks
and file system structures to save a copy of memory to disk and then initiate the hardware S4
sequence by setting the SLP_EN register bit. When the system wakes, the firmware performs a
normal boot process and transfers control to the OS via the firmware_waking_vector loader. The OS
then restores the system’s memory and resumes execution.

The alternate method for entering the S4 state is to utilize the BIOS via the S4BIOS transition. The
BIOS uses firmware to save a copy of memory to disk and then initiates the hardware S4 sequence.
When the system wakes, the firmware restores memory from disk and wakes OSPM by transferring
control to the FACS waking vector.

The S4BIOS transition is optional, but any system that supports this mechanism must support
entering the S4 state via the direct OS mechanism. Thus the preferred mechanism for S4 support is
the direct OS mechanism as it provides broader platform support. The alternate S4BIOS transition
provides a way to achieve S4 support on operating systems that do not have support for the direct
method.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 379

Power and Performance Management
7.3.4.6 System _S5 State (Soft Off)
 The S5 state is similar to the S4 state except that OSPM does not save any context. The system is in
the soft off state and requires a complete boot when awakened (BIOS and OS). Software uses a
different state value to distinguish between this state and the S4 state to allow for initial boot
operations within the BIOS to distinguish whether or not the boot is going to wake from a saved
memory image. OSPM does not disable wake events before setting the SLP_EN bit when entering
the S5 system state. This provides support for remote management initiatives by enabling Remote
Start capability. An ACPI-compliant OS must provide an end user accessible mechanism for
disabling all wake devices, with the exception of the system power button, from a single point in the
user interface.

7.3.5 _SWS (System Wake Source)
This object provides a means for OSPM to definitively determine the source of an event that caused
the system to enter the S0 state. General-purpose event and fixed-feature hardware registers
containing wake event sources information are insufficient for this purpose as the source event
information may not be available after transitions to the S0 state from all other system states (S1-
S5).

To determine the source event that caused the system to transition to the S0 state, OSPM will
evaluate the _SWS object, when it exists, under the _GPE scope (for all fixed-feature general-
purpose events from the GPE Blocks), under the _SB scope (for fixed-feature hardware events), and
within the scope of a GPE Block device (for GPE events from this device). _SWS objects may exist
in any or all of these locations as necessary for the platform to determine the source event that
caused the system to transition to the S0 state.

Arguments:

None

Return Value:

An Integer containing the Source Event as described below

The value of the Source Event is dependent on the location of the _SWS object:

1. If _SWS is evaluated under the _GPE scope, Source Event is the index of the GPE that caused
the system to transition to S0.

2. If _SWS is evaluated within the scope of a GPE block device, Source Event is the index of the
GPE that caused the system to transition to S0. In this case, the index is relative to the GPE
block device and is not unique system-wide.

3. If _SWS is evaluated under the _SB scope, Source Event is the the index in the PM1 status
register that caused the system to transition to S0.

In all cases above, if the cause of the S0 transition cannot be determined, _SWS returns Ones (-1).

To enable OSPM to determine the source of the S0 state transition via the _SWS object,the hardware
or firmware should detect and save the event that caused the transition so that it can be returned
during _SWS object evaluation. The single wake source for the system may be latched in hardware
during the transition so that no false wake events can be returned by _SWS. An implementation that
does not use hardware to latch a single wake source for the system and instead uses firmware to save
the wake source must do so as quickly as possible after the wakeup event occurs, so that _SWS does
not return values that correspond to events that occurred after the sleep-to-wake transition. Such an
380 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
implementation must also take care to ensure that events that occur subsequent to the wakeup source
being saved do not overwrite the original wakeup source.

The source event data returned by _SWS must be determined for each transition into the S0 state.
The value returned by _SWS must also be persistent during the system’s residency in the S0 state as
OSPM may evaluate _SWS multiple times. In this case, the platform must return the same source
event information for each invocation.

After evaluating an _SWS object within the _GPE scope or within the scope of a GPE block device,
OSPM will invoke the _Wxx control method corresponding to the GPE index returned by _SWS if it
exists. This allows the platform to further determine source event if the GPE is shared among
multiple devices. See Section 5.6.4.2.2 for details.

7.3.6 _TTS (Transition To State)
The _TTS control method is executed by the OSPM at the beginning of the sleep transition process
for S1, S2, S3, S4, and orderly S5 shutdown. OSPM will invoke _TTS before it has notified any
native mode device drivers of the sleep state transition. The sleeping state value (For example,
1, 2, 3, 4 or 5 for the S5 soft-off state) is passed to the _TTS control method.

The _TTS control method is also executed by the OSPM at the end of any sleep transition process
when the system transitions to S0 from S1, S2, S3, or S4. OSPM will invoke _TTS after it has
notified any native mode device drivers of the end of the sleep state transition. The working state
value (0) is passed to the _TTS control method.

Arguments: (1)

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

None

If OSPM aborts the sleep transition process, OSPM will still run _TTS for an S0 transition to
indicate the OSPM has returned to the S0 state. The platform must assume that if OSPM invokes the
_TTS control method for an S1, S2, S3, or S4 transition, that OSPM will invoke _TTS control
method for an S0 transition before returning to the S0 state.

The platform must not make any assumptions about the state of the machine when _TTS is called.
For example, operation region accesses that require devices to be configured and enabled may not
succeed, as these devices may be in a non-decoding state due to plug and play or power management
operations.

7.3.7 _WAK (System Wake)
After the system wakes from a sleeping state, it will invoke the _WAK method and pass the
sleeping state value that has ended. This operation occurs asynchronously with other driver
notifications in the system and is not the first action to be taken when the system wakes. The AML
code for this control method issues device, thermal, and other notifications to ensure that OSPM
checks the state of devices, thermal zones, and so on, that could not be maintained during the system
sleeping state. For example, if the system cannot determine whether a device was inserted or
removed from a bus while in the S2 state, the _WAK method would issue a devicecheck type of
notification for that bus when issued with the sleeping state value of 2 (for more information about
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 381

Power and Performance Management
types of notifications, see Section 5.6.6, “Device Object Notifications”). Notice that a device check

notification from the _SB node will cause OSPM to re-enumerate the entire tree1.

Hardware is not obligated to track the state needed to supply the resulting status; however, this
method must return status concerning the last sleep operation initiated by OSPM. The return values
can be used to provide additional information to OSPM or user.

Arguments: (1)

Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:

A Package containing two Integers containing status and the power supply S-state

Return Value Information
_WAK returns a package with the following format:

Element 0 – An Integer containing a bitfield that represents conditions that occurred during sleep.

0x00000000 – Wake was signaled and was successful

0x00000001 – Wake was signaled but failed due to lack of power

0x00000002 – Wake was signaled but failed due to thermal condition

Other values – Reserved

Element 1 – An Integer containing the power supply S-state.

If non-zero, this is the effective S-state the power supply that was actually entered.
This value is used to detect when the targeted S-state was not entered because of too
much current being drawn from the power supply. For example, this might occur
when some active device’s current consumption pushes the system’s power
requirements over the low power supply mark, thus preventing the lower power mode
from being entered as desired.

7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS
OSPM will invoke _GTS, _PTS, _TTS, _WAK, and _BFS in the following order:

1. OSPM decides (through a policy scheme) to place the system into a sleeping state

2. _TTS(Sx) is run, where Sx is the desired sleep state to enter

3. OSPM notifies all native device drivers of the sleep state transition

4. _PTS is run

5. OSPM readies system for the sleep state transition

6. _GTS is run

7. OSPM writes the sleep vector and the system enters the specified Sx sleep state

8. System Wakes up

1. Only buses that support hardware-defined enumeration methods are done automatically at run-time. This
would include ACPI-enumerated devices.
382 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Working State

Sleeping State

Working State

Sleeping State

_TTS()

__PTS()

_GTS()

_TTS()

__WAK()

_BFS()

9. BFS is run

10. OSPM readies system for the return from the sleep state transition

11. _WAK is run

12. OSPM notifies all native device drivers of the return from the sleep state transition

13. _TTS(0) is run to indicate the return to the S0 state

Figure 7-38 Working / Sleeping State object evaluation flow
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 383

Power and Performance Management
384 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8
Processor Configuration and Control

This section describes the configuration and control of the processor’s power and performance
states. The major controls over the processors are:

• Processor power states: C0, C1, C2, C3, … Cn

• Processor clock throttling

• Processor performance states: P0, P1, … Pn

These controls are used in combination by OSPM to achieve the desired balance of the following
sometimes conflicting goals:

• Performance

• Power consumption and battery life

• Thermal requirements

• Noise-level requirements

Because the goals interact with each other, the operating software needs to implement a policy as to

when and where tradeoffs between the goals are to be made1. For example, the operating software
would determine when the audible noise of the fan is undesirable and would trade off that
requirement for lower thermal requirements, which can lead to lower processing performance. Each
processor configuration and control interface is discussed in the following sections along with how
controls interacts with the various goals.

8.1 Processor Power States

ACPI defines the power state of system processors while in the G0 working state2 as being either
active (executing) or sleeping (not executing). Processor power states include are designated C0, C1,
C2, C3, …Cn. The C0 power state is an active power state where the CPU executes instructions. The
C1 through Cn power states are processor sleeping states where the processor consumes less power
and dissipates less heat than leaving the processor in the C0 state. While in a sleeping state, the
processor does not execute any instructions. Each processor sleeping state has a latency associated
with entering and exiting that corresponds to the power savings. In general, the longer the entry/exit
latency, the greater the power savings when in the state. To conserve power, OSPM places the
processor into one of its supported sleeping states when idle. While in the C0 state, ACPI allows the
performance of the processor to be altered through a defined “throttling” process and through

1. A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce perfor-
mance), but a critical thermal alert does not occur.

2. Notice that these CPU states map into the G0 working state. The state of the CPU is undefined in the G3
sleeping state, the Cx states only apply to the G0 state.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 385

Processor Configuration and Control
transitions into multiple performance states (P-states). A diagram of processor power states is
provided
below.

Interrupt
Interrupt

HLT

P_LVL2

THT_EN=1
and

DTY=value

THT_EN=0

Performance
State Px Throttling

C1 C2 C3

P_LVL3,
ARB_DIS=1

Interrupt or
BM Access

G0
Working

C0

Figure 8-39 Processor Power States

ACPI defines logic on a per-CPU basis that OSPM uses to transition between the different processor
power states. This logic is optional, and is described through the FADT table and processor objects
(contained in the hierarchical namespace). The fields and flags within the FADT table describe the
symmetrical features of the hardware, and the processor object contains the location for the
particular CPU’s clock logic (described by the P_BLK register block and _CST objects).

The P_LVL2 and P_LVL3 registers provide optional support for placing the system processors into
the C2 or C3 states. The P_LVL2 register is used to sequence the selected processor into the C2
state, and the P_LVL3 register is used to sequence the selected processor into the C3 state.
Additional support for the C3 state is provided through the bus master status and arbiter disable bits
(BM_STS in the PM1_STS register and ARB_DIS in the PM2_CNT register). System software
reads the P_LVL2 or P_LVL3 registers to enter the C2 or C3 power state. The Hardware must put
the processor into the proper clock state precisely on the read operation to the appropriate P_LVLx
register. The platform may alternatively define interfaces allowing OSPM to enter C-states using the
_CST object, which is defined in Section 8.4.2.1, “_CST (C States)”.

Processor power state support is symmetric when presented via the FADT and P_BLK interfaces;
OSPM assumes all processors in a system support the same power states. If processors have non-
386 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
symmetric power state support, then the BIOS will choose and use the lowest common power states
supported by all the processors in the system through the FADT table. For example, if the CPU0
processor supports all power states up to and including the C3 state, but the CPU1 processor only
supports the C1 power state, then OSPM will only place idle processors into the C1 power state
(CPU0 will never be put into the C2 or C3 power states). Notice that the C1 power state must be
supported. The C2 and C3 power states are optional (see the PROC_C1 flag in the FADT table
description in Section 5.2.6, “System Description Table Header”).

The following sections describe processor power states in detail.

8.1.1 Processor Power State C0
While the processor is in the C0 power state, it executes instructions. While in the C0 power state,
OSPM can generate a policy to run the processor at less than maximum performance. The clock
throttling mechanism provides OSPM with the functionality to perform this task in addition to
thermal control. The mechanism allows OSPM to program a value into a register that reduces the
processor’s performance to a percentage of maximum performance.

Figure 8-40 Throttling Example

The FADT contains the duty offset and duty width values. The duty offset value determines the
offset within the P_CNT register of the duty value. The duty width value determines the number of
bits used by the duty value (which determines the granularity of the throttling logic). The
performance of the processor by the clock logic can be expressed with the following equation:

Figure 8-41 Equation 1 Duty Cycle Equation

duty width

duty value
clock on time

clock off time

P_CNT

duty offset duty width

duty value

% *P erfo rm a n ce
d u tyse ttin g

d u tyw id th
2

1 0 0 %
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 387

Processor Configuration and Control
Nominal performance is defined as “close as possible, but not below the indicated performance
level.” OSPM will use the duty offset and duty width to determine how to access the duty setting
field. OSPM will then program the duty setting based on the thermal condition and desired power of
the processor object. OSPM calculates the nominal performance of the processor using the equation
expressed in Equation 1. Notice that a dutysetting of zero is reserved.For example, the clock logic
could use the stop grant cycle to emulate a divided processor clock frequency on an IA processor
(through the use of the STPCLK# signal). This signal internally stops the processor’s clock when
asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK# pin
could be asserted as follows (to emulate the different frequency settings):

Figure 8-42 Example Control for the STPCLK#

To start the throttling logic OSPM sets the desired duty setting and then sets the THT_EN bit HIGH.
To change the duty setting, OSPM will first reset the THT_EN bit LOW, then write another value to
the duty setting field while preserving the other unused fields of this register, and then set the
THT_EN bit HIGH again.

The example logic model is shown below:

Figure 8-43 ACPI Clock Logic (One per Processor)

Implementation of the ACPI processor power state controls minimally requires the support a single
CPU sleeping state (C1). All of the CPU power states occur in the G0/S0 system state; they have no
meaning when the system transitions into the sleeping state(S1-S4). ACPI defines the attributes

0 - Reserved Value

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
dutysetting

Duty Width (3-bits)

S
T

P
C

L
K

S

ig
n

al

CPU Clock Running
CPU Clock Stopped

-- duty width

THTL_DTY
P_CNT.x

P_LVL3
Read

P_LVL2
Read

THT_EN
P_CNT.4

Clock Logic
System
Arbiter

ARB_DIS
PM2_CNT

BM_STS
PM1x_STS.4

BM_RLD
PM1x_CNT.1
388 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
(semantics) of the different CPU states (defines four of them). It is up to the platform
implementation to map an appropriate low-power CPU state to the defined ACPI CPU state.

ACPI clock control is supported through the optional processor register block (P_BLK). ACPI
requires that there be a unique processor register block for each CPU in the system. Additionally,
ACPI requires that the clock logic for multiprocessor systems be symmetrical when using the
P_BLK and FADT interfaces; if the P0 processor supports the C1, C2, and C3 states, but P1 only
supports the C1 state, then OSPM will limit all processors to enter the C1 state when idle.

The following sections define the different ACPI CPU sleeping states.

8.1.2 Processor Power State C1
All processors must support this power state. This state is supported through a native instruction of
the processor (HLT for IA 32-bit processors), and assumes no hardware support is needed from the
chipset. The hardware latency of this state must be low enough that OSPM does not consider the
latency aspect of the state when deciding whether to use it. Aside from putting the processor in a
power state, this state has no other software-visible effects. In the C1 power state, the processor is
able to maintain the context of the system caches.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to
be presented to the processor.

8.1.3 Processor Power State C2
This processor power state is optionally supported by the system. If present, the state offers
improved power savings over the C1 state and is entered by using the P_LVL2 command register for
the local processor or an alternative mechanism as indicated by the _CST object. The worst-case
hardware latency for this state is declared in the FADT and OSPM can use this information to
determine when the C1 state should be used instead of the C2 state. Aside from putting the processor
in a power state, this state has no other software-visible effects. OSPM assumes the C2 power state
has lower power and higher exit latency than the C1 power state.

The C2 power state is an optional ACPI clock state that needs chipset hardware support. This clock
logic consists of an interface that can be manipulated to cause the processor complex to precisely
transition into a C2 power state. In a C2 power state, the processor is assumed capable of keeping its
caches coherent; for example, bus master and multiprocessor activity can take place without
corrupting cache context.

The C2 state puts the processor into a low-power state optimized around multiprocessor and bus
master systems. OSPM will cause an idle processor complex to enter a C2 state if there are bus
masters or Multiple processor activity (which will prevent OSPM from placing the processor
complex into the C3 state). The processor complex is able to snoop bus master or multiprocessor
CPU accesses to memory while in the C2 state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt
is to be presented to the processor.

8.1.4 Processor Power State C3
This processor power state is optionally supported by the system. If present, the state offers
improved power savings over the C1 and C2 state and is entered by using the P_LVL3 command
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 389

Processor Configuration and Control
register for the local processor or an alternative mechanism as indicated by the _CST object. The
worst-case hardware latency for this state is declared in the FADT, and OSPM can use this
information to determine when the C1 or C2 state should be used instead of the C3 state. While in
the C3 state, the processor’s caches maintain state but the processor is not required to snoop bus
master or multiprocessor CPU accesses to memory.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to
be presented to the processor or when BM_RLD is set and a bus master is attempting to gain access
to memory.

OSPM is responsible for ensuring that the caches maintain coherency. In a uniprocessor
environment, this can be done by using the PM2_CNT.ARB_DIS bus master arbitration disable
register to ensure bus master cycles do not occur while in the C3 state. In a multiprocessor
environment, the processors’ caches can be flushed and invalidated such that no dynamic
information remains in the caches before entering the C3 state.

There are two mechanisms for supporting the C3 power state:

• Having OSPM flush and invalidate the caches prior to entering the C3 state.

• Providing hardware mechanisms to prevent masters from writing to memory (uniprocessor-only
support).

In the first case, OSPM will flush the system caches prior to entering the C3 state. As there is
normally much latency associated with flushing processor caches, OSPM is likely to only support
this in multiprocessor platforms for idle processors. Flushing of the cache is accomplished through
one of the defined ACPI mechanisms (described below in Section 8.2, “Flushing Caches”).

In uniprocessor-only platforms that provide the needed hardware functionality (defined in this
section), OSPM will attempt to place the platform into a mode that will prevent system bus masters
from writing into memory while the processor is in the C3 state. This is accomplished by disabling
bus masters prior to entering a C3 power state. Upon a bus master requesting an access, the CPU will
awaken from the C3 state and re-enable bus master accesses.

OSPM uses the BM_STS bit to determine the power state to enter when considering a transition to or
from the C2/C3 power state. The BM_STS is an optional bit that indicates when bus masters are
active. OSPM uses this bit to determine the policy between the C2 and C3 power states: a lot of bus
master activity demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master
activity promotes the CPU power state to the C3 power state. OSPM keeps a running history of the
BM_STS bit to determine CPU power state policy.

The last hardware feature used in the C3 power state is the BM_RLD bit. This bit determines if the
Cx power state is exited as a result of bus master requests. If set, then the Cx power state is exited
upon a request from a bus master. If reset, the power state is not exited upon bus master requests. In
the C3 state, bus master requests need to transition the CPU back to the C0 state (as the system is
capable of maintaining cache coherency), but such a transition is not needed for the C2 state. OSPM
can optionally set this bit when using a C3 power state, and clear it when using a C1 or C2 power
state.

8.1.5 Additional Processor Power States
ACPI introduced optional processor power states beyond C3 starting in ACPI 2.0. These power
states, C4… Cn, are conveyed to OSPM through the _CST object defined in Section 8.4.2.1, “_CST
390 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
(C-States).” These additional power states are characterized by equivalent operational semantics to
the C1 through C3 power states, as defined in the previous sections, but with different entry/exit
latencies and power savings. See Section 8.4.2.1, “_CST (C-States),” for more information.

8.2 Flushing Caches
To support the C3 power state without using the ARB_DIS feature, the hardware must provide
functionality to flush and invalidate the processors’ caches (for an IA processor, this would be the
WBINVD instruction). To support the S1, S2 or S3 sleeping states, the hardware must provide
functionality to flush the platform caches. Flushing of caches is supported by one of the following
mechanisms:

• Processor instruction to write back and invalidate system caches (WBINVD instruction for IA
processors).

• Processor instruction to write back but not invalidate system caches (WBINVD instruction for
IA processors and some chipsets with partial support; that is, they don’t invalidate the caches).

The ACPI specification expects all platforms to support the local CPU instruction for flushing
system caches (with support in both the CPU and chipset), and provides some limited “best effort”
support for systems that don’t currently meet this capability. The method used by the platform is
indicated through the appropriate FADT fields and flags indicated in this section.

ACPI specifies parameters in the FADT that describe the system’s cache capabilities. If the platform
properly supports the processor’s write back and invalidate instruction (WBINVD for IA
processors), then this support is indicated to OSPM by setting the WBINVD flag in the FADT.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 391

Processor Configuration and Control
If the platform supports neither of the first two flushing options, then OSPM can attempt to manually
flush the cache if it meets the following criteria:

• A cache-enabled sequential read of contiguous physical memory of not more than 2 MB will
flush the platform caches.

• There are two additional FADT fields needed to support manual flushing of the caches:

• FLUSH_SIZE, typically twice the size of the largest cache in the system.

• FLUSH_STRIDE, typically the smallest cache line size in the system.

8.3 Power, Performance, and Throttling State Dependencies
Cost and complexity trade-off considerations have driven into the platform control dependencies
between logical processors when entering power, performance, and throttling states. These
dependencies exist in various forms in multi-processor, multi-threaded processor, and multi-core
processor-based platforms. These dependencies may also be hierarchical. For example, a multi-
processor system consisting of processors containing multiple cores containing multiple threads may
have various dependencies as a result of the hardware implementation.

Unless OSPM is aware of the dependency between the logical processors, it might lead to scenarios
where one logical processor is implicitly transitioned to a power, performance, or throttling state
when it is unwarranted, leading to incorrect / non-optimal system behavior. Given knowledge of the
dependencies, OSPM can coordinate the transitions between logical processors, choosing to initiate
the transition when doing so does not lead to incorrect or non-optimal system behavior. This OSPM
coordination is referred to as Software (SW) Coordination. Alternately, it might be possible for the
underlying hardware to coordinate the state transition requests on multiple logical processors,
causing the processors to transition to the target state when the transition is guaranteed to not lead to
incorrect or non-optimal system behavior. This scenario is referred to as Hardware (HW)
coordination. When hardware coordinates transitions, OSPM continues to initiate state transitions as
it would if there were no dependencies. However, in this case it is required that hardware provide
OSPM with a means to determine actual state residency so that correct / optimal control policy can
be realized.

Platforms containing logical processors with cross-processor dependencies in the power,
performance, or throttling state control areas use ACPI defined interfaces to group logical processors
into what is referred to as a dependency domain. The Coordination Type characteristic for a domain
specifies whether OSPM or underlying hardware is responsible for the coordination. When OSPM
coordinates, the platform may require that OSPM transition ALL (0xFC) or ANY ONE (0xFD) of
the processors belonging to the domain into a particular target state. OSPM may choose at its
discretion to perform coordination even though the underlying hardware supports hardware
coordination. In this case, OSPM must transition all logical processors in the dependency domain to
the particular target state.

There are no dependencies implied between a processor’s C-states, P-states or T-states. Hence, for
example it is possible to use the same dependency domain number for specifying dependencies
between P-states among one set of processors and C-states among another set of processors without
any dependencies being implied between the P-State transitions on a processor in the first set and C-
state transitions on a processor in the second set.
392 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8.4 Declaring Processors
Each processor in the system must be declared in the ACPI namespace in either the _SB or _PR
scope but not both. Declaration of processors in the _PR scope is required for platforms desiring
compatibility with ACPI 1.0-based OSPM implementations. Processors are declared either via the
ASL Processor statement or the ASL Device statement. A Processor definition declares a processor
object that provides processor configuration information and points to the processor register block
(P_BLK). A Device definition for a processor is declared using the ACPI0007 hardware identifier
(HID). In this case, processor configuration information is provided exclusively by objects in the
processor device’s object list.

When the platform uses the APIC interrupt model, OSPM associates processors declared in the
namespace with entries in the MADT. Prior to ACPI 3.0, this was accomplished using the processor
object’s ProcessorID and the ACPI Processor ID fields in MADT entries. UID fields were added to
MADT entries in ACPI 3.0. By expanding processor declaration using Device definitions, UID
object values under a processor device are used to associate processor devices with entries in the
MADT. This removes the previous 256 processor declaration limit.

The platform may declare processors with IDs in the range of 0-254 for APIC/x2APIC
implementations and 0-255 for SAPIC implementations using either the ASL Processor statement
or the ASL Device statement but not both. Processors with IDs outside these ranges must be
declared using the ASL Device statement.

Processor-specific objects may be included in the processor object’s optional object list or declared
within the processor device’s scope. These objects serve multiple purposes including providing
alternative definitions for the registers described by the processor register block (P_BLK) and
processor performance state control. Other ACPI-defined device-related objects are also allowed in
the processor object’s object list or under the processor device’s scope (for example, the unique
identifier object _UID).

With device-like characteristics attributed to processors, it is implied that a processor device driver
will be loaded by OSPM to, at a minimum, process device notifications. OSPM will enumerate
processors in the system using the ACPI Namespace, processor-specific native identification
instructions, and optionally the _HID method.

OSPM will ignore definitions of ACPI-defined objects in an object list of a processor object declared
under the _PR scope.

For more information on the declaration of the processor object, see Section 19.5.100, “Processor
(Declare Processor).” Processor-specific objects are described in the following sections.

8.4.1 _PDC (Processor Driver Capabilities)
This optional object is a method that is used by OSPM to communicate to the platform the level of
processor power management support provided by OSPM. This object is a child object of the
processor. OSPM evaluates _PDC prior to evaluating any other processor power management
objects returning configuration information.

The _PDC object provides OSPM a mechanism to convey to the platform the capabilities supported
by OSPM for processor power management. This allows the platform to modify the ACPI
namespace objects returning configuration information for processor power management based on
the level of support provided by OSPM. Using this method provides a mechanism for OEMs to
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 393

Processor Configuration and Control
provide support for new technologies on legacy OSes, while also allowing OSPM to leverage new
technologies on platforms capable of supporting them. This method is evaluated once during
processor device initialization, and will not be re-evaluated during resume from a sleep state
transition. The platform must preserve state information across S1-S3 sleep state transitions.

Arguments: (1)

Arg0 – A variable-length Buffer containing a list of capabilities as described below

Return Value:

None

The buffer argument contains a list of DWORDs in the following format:

RevisionId – Revision of the buffer format

Count – The number of capability values in the capabilities array

Capabilities[Count] – Capabilities array

Each DWORD entry in the capabilities array is a bitfield that defines capabilities and features
supported by OSPM for processor configuration and power management as specified by the CPU
manufacturer.

The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC. For backwards compatibility, _PDC
may be implemented using _OSC as follows:

Method(_PDC,1)
{
 CreateDWordField (Arg0, 0, REVS)
 CreateDWordField (Arg0, 4, SIZE)

 //
 // Local0 = Number of bytes for Arg0
 //
 Store (SizeOf (Arg0), Local0)

 //
 // Local1 = Number of Capabilities bytes in Arg0
 //
 Store (Subtract (Local0, 8), Local1)

 //
 // TEMP = Temporary field holding Capability DWORDs
 //
 CreateField (Arg0, 64, Multiply (Local1, 8), TEMP)

 //
 // Create the Status (STS0) buffer with the first DWORD = 0
 // This is required to return errors defined by _OSC.
 //
 Name (STS0, Buffer () {0x00, 0x00, 0x00, 0x00})

 //
 // Concatenate the _PDC capabilities bytes to the STS0 Buffer
 // and store them in a local variable for calling OSC
 //
 Concatenate (STS0, TEMP, Local2)
394 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 //
 // Note: The UUID passed into _OSC is CPU vendor specific. Consult CPU
 // vendor documentation for UUID and Capabilities Buffer bit definitions
 //
 _OSC (ToUUID("4077A616-290C-47BE-9EBD-D87058713953"), REVS, SIZE, Local2)
}

Section 6.2.9, “_OSC (Operating System Capabilities)”, describes the _OSC object, which can be
used to convey processor related OSPM capabilities to the platform. Consult CPU vendor specific
documentation for the UUID and Capabilities Buffer bit definitions used by _OSC for a specific
processor.

8.4.2 Processor Power State Control
ACPI defines two processor power state (C state) control interfaces. These are:

1. The Processor Register Block’s (P_BLK’s) P_LVL2 and P_LVL3 registers coupled with FADT
P_LVLx_LAT values and

2. The _CST object in the processor’s object list.

P_BLK based C state controls are described in Section 4, “ACPI Hardware Specification” and
Section 8.1, “Processor Power States”. _CST based C state controls expand the functionality of the
P_BLK based controls allowing the number and type of C states to be dynamic and accommodate
CPU architecture specific C state entry and exit mechanisms as indicated by registers defined using
the Functional Fixed Hardware address space.

8.4.2.1 _CST (C States)
_CST is an optional object that provides an alternative method to declare the supported processor
power states (C States). Values provided by the _CST object override P_LVLx values in P_BLK and
P_LVLx_LAT values in the FADT. The _CST object allows the number of processor power states
to be expanded beyond C1, C2, and C3 to an arbitrary number of power states. The entry semantics
for these expanded states, (in other words), the considerations for entering these states, are conveyed
to OSPM by the C-state Type field and correspond to the entry semantics for C1, C2, and C3 as
described in Section 8.1.2 through Section 8.1.4. _CST defines ascending C-states characterized by
lower power and higher entry/exit latency.

Arguments:

None

Return Value:

A variable-length Package containing a list of C-state information Packages as described below

Return Value Information
_CST returns a variable-length Package that contains the following elements:

Count An Integer that contains the number of CState sub-packages that follow

CStates[] A list of Count CState sub-packages
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 395

Processor Configuration and Control
Package {
 Count // Integer
 CStates[0] // Package
 ….
 CStates[Count-1] // Package
}

Each fixed-length Cstate sub-Package contains the elements described below:

Package {
 Register // Buffer (Resource Descriptor)
 Type // Integer (BYTE)
 Latency // Integer (WORD)
 Power // Integer (DWORD)
}

Table 8-206 Cstate Package Values

The platform must expose a _CST object for either all or none of its processors. If the _CST object
exists, OSPM uses the C state information specified in the _CST object in lieu of P_LVL2 and
P_LVL3 registers defined in P_BLK and the P_LVLx_LAT values defined in the FADT. Also
notice that if the _CST object exists and the _PTC object does not exist, OSPM will use the
Processor Control Register defined in P_BLK and the C_State_Register registers in the _CST
object.

The platform may change the number or type of C States available for OSPM use dynamically by
issuing a Notify event on the processor object with a notification value of 0x81. This will cause
OSPM to re-evaluate any _CST object residing under the processor object notified. For example, the
platform might notify OSPM that the number of supported C States has changed as a result of an
asynchronous AC insertion / removal event.

The platform must specify unique C_State_Register addresses for all entries within a given _CST
object.

_CST eliminates the ACPI 1.0 restriction that all processors must have C State parity. With _CST,
each processor can have its own characteristics independent of other processors. For example,
processor 0 can support C1, C2 and C3, while processor 1 supports only C1.

The fields in the processor structure remain for backward compatibility.

Element Object Type Description

Register Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the register that OSPM must read to place the processor in the
corresponding C state.

Type Integer
(BYTE)

The C State type (1=C1, 2=C2, 3=C3, etc.). This field conveys the semantics
to be used by OSPM when entering/exiting the C state. Zero is not a valid
value.

Latency Integer
(WORD)

The worst-case latency to enter and exit the C State (in microseconds). There
are no latency restrictions.

Power Integer
(DWORD)

The average power consumption of the processor when in the corresponding
C State (in milliwatts).
396 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen
{
Name(_CST, Package()
{
4, // There are four C-states defined here with three semantics
 // The third and fourth C-states defined have the same C3 entry semantics
Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x163)}, 3, 100, 250}
})
}

Notice in the example above that OSPM should anticipate the possibility of a _CST object providing
more than one entry with the same C_State_Type value. In this case OSPM must decide which
C_State_Register it will use to enter that C state.

Example
This is an example usage of the _CST object using the typical values as defined in ACPI 1.0.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBLK system IO address
6) // PBLK Len
{
Name(_CST, Package()
{
2, // There are two C-states defined here – C2 and C3
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x124)}, 2, 2, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x125)}, 3, 65, 500}
})
}

The platform will issue a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate this object when
the number of available processor power states changes.

8.4.2.2 _CSD (C-State Dependency)
 This optional object provides C-state control cross logical processor dependency information to
OSPM. The _CSD object evaluates to a packaged list of information that correlates with the C-state
information returned by the _CST object. Each packaged list entry identifies the C-state for which
the dependency is being specified (as an index into the _CST object list), a dependency domain
number for that C-state, the coordination type for that C-state and the number of logical processors
belonging to the domain for the particular C-state. It is possible that a particular C-state may belong
to multiple domains. That is, it is possible to have multiple entries in the _CSD list with the same
CStateIndex value.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 397

Processor Configuration and Control
Arguments:

None

Return Value:

A variable-length Package containing a list of C-state dependency Packages as described below.

Return Value Information

Package {
 CStateDependency[0] // Package
 ….
 CStateDependency[n] // Package
}

Each CstateDependency sub-Package contains the elements described below:

Package {
 NumEntries // Integer
 Revision // Integer (BYTE)
 Domain // Integer (DWORD)
 CoordType // Integer (DWORD)
 NumProcessors // Integer (DWORD)
 Index // Integer (DWORD)
}

Table 8-207 CStateDependency Package Values

Given that the number or type of available C States may change dynamically, ACPI supports Notify
events on the processor object, with Notify events of type 0x81 causing OSPM to re-evaluate any

Element Object Type Description

NumEntries Integer The number of entries in the CStateDependency package including this field.
Current value is 6.

Revision Integer
(BYTE)

The revision number of the CStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this C state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as a
result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether OSPM is
responsible for coordinating the C-state transitions among processors with
dependencies (and needs to initiate the transition on all or any processor in
the domain) or whether the hardware will perform this coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for the particular C-state.
OSPM will not start performing power state transitions to a particular C-state
until this number of processors belonging to the same domain for the
particular C-state have been detected and started.

Index Integer
(DWORD)

Indicates the index of the C-State entry in the _CST object for which the
dependency applies.
398 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
_CST objects residing under the particular processor object notified. On receipt of Notify events of
type 0x81, OSPM should re-evaluate any present _CSD objects also.

Example
This is an example usage of the _CSD structure in a Processor structure in the namespace. The
example represents a two processor configuration. The C1-type state can be independently entered
on each processor. For the C2-type state, there exists dependence between the two processors, such
that one processor transitioning to the C2-type state, causes the other processor to transition to the
C2-type state. A similar dependence exists for the C3-type state. OSPM will be required to
coordinate the C2 and C3 transitions between the two processors. Also OSPM can initiate a
transition on either processor to cause both to transition to the common target C-state.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen
{
Name (_CST, Package()
{
 3, // There are three C-states defined here with three semantics
 Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500}
})
Name(_CSD, Package()
{
 Package(){6, 0, 0, 0xFD, 2, 1} , // 6 entries,Revision 0,Domain 0,OSPM Coordinate
 // Initiate on Any Proc,2 Procs, Index 1 (C2-type)
 Package(){6, 0, 0, 0xFD, 2, 2} // 6 entries,Revision 0 Domain 0,OSPM Coordinate
 // Initiate on Any Proc,2 Procs, Index 2 (C3-type)
})
}
Processor (
_SB.CPU1, // Processor Name
2, // ACPI Processor number
, // PBlk system IO address
) // PBlkLen
{
Name(_CST, Package()
{
 3, // There are three C-states defined here with three semantics
 Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
 Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500}
})
Name(_CSD, Package()
{
 Package(){6, 0, 0, 0xFD, 2, 1}, // 6 entries,Revision 0,Domain 0,OSPM Coordinate
 // Initiate on any Proc,2 Procs, Index 1 (C2-type)
 Package(){6, 0, 0, 0xFD, 2, 2} // 6 entries,Revision 0,Domain 0,OSPM Coordinate
 // Initiate on any Proc,2 Procs,Index 2 (C3-type)
})
}

When the platform issues a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate _CST when
the number of available processor power states changes, OSPM should also evaluate _CSD.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 399

Processor Configuration and Control
8.4.3 Processor Throttling Controls
ACPI defines two processor throttling (T state) control interfaces. These are:

• The Processor Register Block’s (P_BLK’s) P_CNT register, and

• The combined _PTC, _TSS, and _TPC objects in the processor’s object list.

P_BLK based throttling state controls are described in Section 4, “ACPI Hardware Specification”
and Section 8.1.1, “Processor Power State C0”. Combined _PTC, _TSS, and _TPC based throttling
state controls expand the functionality of the P_BLK based control allowing the number of T states
to be dynamic and accommodate CPU architecture specific T state control mechanisms as indicated
by registers defined using the Functional Fixed Hardware address space. While platform definition
of the _PTC, _TSS, and _TPC objects is optional, all three objects must exist under a processor for
OSPM to successfully perform processor throttling via these controls.

8.4.3.1 _PTC (Processor Throttling Control)
_PTC is an optional object that defines a processor throttling control interface alternative to the I/O
address spaced-based P_BLK throttling control register (P_CNT) described in Section 4, “ACPI
Hardware Specification”. The processor throttling control register mechanism remains as defined in
Section 8.1.1, “Processor Power State C0.”

OSPM performs processor throttling control by writing the Control field value for the target
throttling state (T-state), retrieved from the Throttling Supported States object (_TSS), to the
Throttling Control Register (THROTTLE_CTRL) defined by the _PTC object. OSPM may select
any processor throttling state indicated as available by the value returned by the _TPC control
method.

Success or failure of the processor throttling state transition is determined by reading the Throttling
Status Register (THROTTLE_STATUS) to determine the processor’s current throttling state. If the
transition was successful, the value read from THROTTLE_STATUS will match the “Status” field
in the _TSS entry that corresponds to the targeted processor throttling state.

Arguments:

None

Return Value:

A Package as described below

Return Value Information
Package
{
 ControlRegister // Buffer (Resource Descriptor)
 StatusRegister // Buffer (Resource Descriptor)
}

Table 8-208 PTC Package Values

Element Object Type Description

Control
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the throttling control register.
400 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The platform must expose a _PTC object for either all or none of its processors. Notice that if the
_PTC object exists, the specified register is used instead of the P_CNT register specified in the
Processor term. Also notice that if the _PTC object exists and the _CST object does not exist, OSPM
will use the processor control register from the _PTC object and the P_LVLx registers from the
P_BLK.

Example
This is an example usage of the _PTC object in a Processor object list:

Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 { // Object List

 Name(_PTC, Package () // Processor Throttling Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // Throttling_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // Throttling_STATUS
 }) // End of _PTC object
 } // End of Object List

Example
This is an example usage of the _PTC object using the values defined in ACPI 1.0. This is an
illustrative example to demonstrate the mechanism with well-known values.

 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBLK system IO address
 6) // PBLK Len
 { // Object List

 Name(_PTC, Package () // Processor Throttling Control object –
 // 32 bit wide IO space-based register at the <P_BLK> address
 {
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS
 }) // End of _PTC object
 } // End of Object List

8.4.3.2 _TSS (Throttling Supported States)
This optional object indicates to OSPM the number of supported processor throttling states that a
platform supports. This object evaluates to a packaged list of information about available throttling
states including percentage of maximum internal CPU core frequency, maximum power dissipation,
control register values needed to transition between throttling states, and status register values that
allow OSPM to verify throttling state transition status after any OS-initiated transition change
request. The list is sorted in descending order by power dissipation. As a result, the zeroth entry

Status
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the throttling status register.

Element Object Type Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 401

Processor Configuration and Control
describes the highest performance throttling state (no throttling applied) and the ‘nth’ entry describes
the lowest performance throttling state (maximum throttling applied).

When providing the _TSS, the platform must supply a _TSS entry whose Percent field value is 100.
This provides a means for OSPM to disable throttling and achieve maximum performance.

Arguments:

None

Return Value:

A variable-length Package containing a list of Tstate sub-packages as described below

Return Value Information

Package {
 TState [0] // Package – Throttling state 0
 ….
 TState [n] // Package – Throttling state n
}

Each Tstate sub-Package contains the elements described below:

Package {
 Percent // Integer (DWORD)
 Power // Integer (DWORD)
 Latency // Integer (DWORD)
 Control // Integer (DWORD)
 Status // Integer (DWORD)
}

Table 8-209 TState Package Values

Element Object Type Description

Percent Integer
(DWORD)

Indicates the percent of the core CPU operating frequency that will be available
when this throttling state is invoked. The range for this field is 1-100. This
percentage applies independent of the processor’s performance state (P-state).
That is, this throttling state will invoke the percentage of maximum frequency
indicated by this field as applied to the CoreFrequency field of the _PSS entry
corresponding to the P-state for which the processor is currently resident.

Power Integer
(DWORD)

Indicates the throttling state’s maximum power dissipation (in milliWatts). OSPM
ignores this field on platforms the support P-states, which provide power
dissipation information via the _PSS object.

Latency Integer
(DWORD)

Indicates the worst-case latency in microseconds that the CPU is unavailable
during a transition from any throttling state to this throttling state.

Control Integer
(DWORD)

Indicates the value to be written to the Processor Control Register
(THROTTLE_CTRL) in order to initiate a transition to this throttling state.
402 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8.4.3.3 _TPC (Throttling Present Capabilities)
This optional object is a method that dynamically indicates to OSPM the number of throttling states
currently supported by the platform. This method returns a number that indicates the _TSS entry
number of the highest power throttling state that OSPM can use at a given time. OSPM may choose
the corresponding state entry in the _TSS as indicated by the value returned by the _TPC method or
any lower power (higher numbered) state entry in the _TSS.

Arguments:

None

Return Value:

An Integer containing the number of states supported:

0 – states 0 ... nth state available (all states available)

1 – state 1 ... nth state available

2 – state 2 ... nth state available

…

n – state n available only

In order to support dynamic changes of _TPC object, Notify events on the processor object of type
0x82 will cause OSPM to reevaluate any _TPC object in the processor’s object list. This allows
AML code to notify OSPM when the number of supported throttling states may have changed as a
result of an asynchronous event. OSPM ignores _TPC Notify events on platforms that support P-
states unless the platform has limited OSPM’s use of P-states to the lowest power P-state. OSPM
may choose to disregard any platform conveyed T-state limits when the platform enables OSPM
usage of other than the lowest power P-state.

8.4.3.4 _TSD (T-State Dependency)
This optional object provides T-state control cross logical processor dependency information to
OSPM. The _TSD object evaluates to a packaged list of information that correlates with the T-state
information returned by the _TSS object. Each packaged list entry identifies a dependency domain
number for the logical processor’s T-states, the coordination type for that T-state, and the number of
logical processors belonging to the domain.

Arguments:

None

Status Integer
(DWORD)

Indicates the value that OSPM will compare to a value read from the Throttle
Status Register (THROTTLE_STATUS) to ensure that the transition to the
throttling state was successful. OSPM may always place the CPU in the lowest
power throttling state, but additional states are only available when indicated by
the _TPC control method. A value of zero indicates the transition to the
Throttling state is asynchronous, and as such no status value comparison is
required.

Element Object Type Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 403

Processor Configuration and Control
Return Value:

A variable-length Package containing a list of T-state dependency Packages as described below.

Return Value Information

Package {
 TStateDependency[0] // Package
 ….
 TStateDependency[n] // Package
}
Each TStateDependency sub-Package contains the elements described below:

Package {
 NumEntries // Integer
 Revision // Integer (BYTE)
 Domain // Integer (DWORD)
 CoordType // Integer (DWORD)
 NumProcessors // Integer (DWORD)
}

Table 8-210 TStateDependency Package Values

Example
This is an example usage of the _TSD structure in a Processor structure in the namespace. The
example represents a two processor configuration with three T-states per processor. For all T-states,
there exists dependence between the two processors, such that one processor transitioning to a
particular T-state, causes the other processor to transition to the same T-state. OSPM will be
required to coordinate the T-state transitions between the two processors and can initiate a transition
on either processor to cause both to transition to the common target T-state.

Element Object Type Description

NumEntries Integer The number of entries in the TStateDependency package including this field.
Current value is 5.

Revision Integer
(BYTE)

The revision number of the TStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this T state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as a
result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether OSPM is
responsible for coordinating the T-state transitions among processors with
dependencies (and needs to initiate the transition on all or any processor in
the domain) or whether the hardware will perform this coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for this logical
processor’s T-states. OSPM will not start performing power state transitions
to a particular T-state until this number of processors belonging to the same
domain have been detected and started.
404 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 { //Object List

 Name(_PTC, Package () // Processor Throttling Control object –
 // 32 bit wide IO space-based register at the <P_BLK> address
 {
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS
 }) // End of _PTC object

 Name (_TSS, Package()
 {
 Package() {
 0x64, // Frequency Percentage (100%, Throttling OFF state)
 0x0, // Power
 0x0, // Transition Latency
 0x7, // Control THT_EN:0 THTL_DTY:111
 0x0, // Status
 }

 Package() {
 0x58, // Frequency Percentage (87.5%)
 0x0, // Power
 0x0, // Transition Latency
 0xF, // Control THT_EN:1 THTL_DTY:111
 0x0, // Status
 }

 Package() {
 0x4B, // Frequency Percentage (75%)
 0x0, // Power
 0x0, // Transition Latency
 0xE, // Control THT_EN:1 THTL_DTY:110
 0x0, // Status
 }
 })

 Name (_TSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0,
 // OSPM Coordinate, 2 Procs
 }) // End of _TSD object

 Method (_TPC, 0) // Throttling Present Capabilities method
 {
 If (_SB.AC)
 {
 Return(0) // All Throttle States are available for use.
 }
 Else
 {
 Return(2) // Throttle States 0 an 1 won’t be used.
 }
 } // End of _TPC method
 } // End of processor object list

 Processor (
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 405

Processor Configuration and Control
 _SB.CPU1, // Processor Name
 2, // ACPI Processor number
 , // PBlk system IO address
) // PBlkLen
 { //Object List

 Name(_PTC, Package () // Processor Throttling Control object –
 // 32 bit wide IO space-based register at the
 // <P_BLK> address
 {
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
 ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS
 }) // End of _PTC object

 Name (_TSS, Package()
 {
 Package() {
 0x64, // Frequency Percentage (100%, Throttling OFF state)
 0x0, // Power
 0x0, // Transition Latency
 0x7, // Control THT_EN:0 THTL_DTY:111
 0x0, // Status
 }

 Package() {
 0x58, // Frequency Percentage (87.5%)
 0x0, // Power
 0x0, // Transition Latency
 0xF, // Control THT_EN:1 THTL_DTY:111
 0x0, // Status
 }`

 Package() {
 0x4B, // Frequency Percentage (75%)
 0x0, // Power
 0x0, // Transition Latency
 0xE, // Control THT_EN:1 THTL_DTY:110
 0x0, // Status
 }
 })

 Name (_TSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0,
 // OSPM Coordinate, 2 Procs
 }) // End of _TSD object

 Method (_TPC, 0) // Throttling Present Capabilities method
 {
 If (_SB.AC)
 {
 Return(0) // All Throttle States are available for use.
 }
 Else
 {
 Return(2) // Throttle States 0 an 1 won’t be used.
 }
 } // End of _TPC method
 } // End of processor object list
406 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8.4.3.5 _TDL (T-state Depth Limit)
This optional object evaluates to the _TSS entry number of the lowest power throttling state that
OSPM may use. _TDL enables the platform to limit the amount of performance reduction that
OSPM may invoke using processor throttling controls in an attempt to alleviate an adverse thermal
condition. OSPM may choose the corresponding state entry in the _TSS as indicated by the value
returned by the _TDL object or a higher performance (lower numbered) state entry in the _TSS
down to and including the _TSS entry number returned by the _TPC object or the first entry in the
table (if _TPC is not implemented). The value returned by the _TDL object must be greater than or
equal to the value returned by the _TPC object or the corresponding value to the last entry in the
_TSS if _TPC is not implemented. In the event of a conflict between the values returned by the
evaluation of the _TDL and _TPC objects, OSPM gives precedence to the _TPC object, limiting
power consumption.

Arguments:

None

Return Value:

An Integer containing the Throttling Depth Limit _TSS entry number:

0 – throttling disabled.

1 – state 1 is the lowest power T-state available.

2 – state 2 is the lowest power T-state available.

…

n – state n is the lowest power T-state available.

In order for the platform to dynamically indicate the limit of performance reduction that is available
for OSPM use, Notify events on the processor object of type 0x82 will cause OSPM to reevaluate
any _TDL object in the processor’s object list. This allows AML code to notify OSPM when the
number of supported throttling states may have changed as a result of an asynchronous event. OSPM
ignores _TDL Notify events on platforms that support P-states unless the platform has limited
OSPM’s use of P-states to the lowest power P-state. OSPM may choose to disregard any platform
conveyed T-state depth limits when the platform enables OSPM usage of other than the lowest
power P-state.

8.4.4 Processor Performance Control
Processor performance control is implemented through three optional objects whose presence
indicates to OSPM that the platform and CPU are capable of supporting multiple performance states.
The platform must supply all three objects if processor performance control is implemented. The
platform must expose processor performance control objects for either all or none of its processors.
The processor performance control objects define the supported processor performance states, allow
the processor to be placed in a specific performance state, and report the number of performance
states currently available on the system.

In a multiprocessing environment, all CPUs must support the same number of performance states
and each processor performance state must have identical performance and power-consumption
parameters. Performance objects must be present under each processor object in the system for
OSPM to utilize this feature.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 407

Processor Configuration and Control
Processor performance control objects include the ‘_PCT’ package, ‘_PSS’ package, and the ‘_PPC’
method as detailed below.

8.4.4.1 _PCT (Performance Control)
This optional object declares an interface that allows OSPM to transition the processor into a
performance state. OSPM performs processor performance transitions by writing the performance
state–specific control value to a Performance Control Register (PERF_CTRL).

OSPM may select a processor performance state as indicated by the performance state value
returned by the _PPC method, or any lower power (higher numbered) state. The control value to
write is contained in the corresponding _PSS entry’s “Control” field.

Success or failure of the processor performance transition is determined by reading a Performance
Status Register (PERF_STATUS) to determine the processor’s current performance state. If the
transition was successful, the value read from PERF_STATUS will match the “Status” field in the
_PSS entry that corresponds to the desired processor performance state.

Arguments:

None

Return Value:

A Package as described below

Return Value Information

Package
{
 ControlRegister // Buffer (Resource Descriptor)
 StatusRegister // Buffer (Resource Descriptor)
}

Table 8-211 PCT Package Values

Example

Name (_PCT, Package()
{
 ResourceTemplate(){Perf_Ctrl_Register}, //Generic Register Descriptor
 ResourceTemplate(){Perf_Status_Register} //Generic Register Descriptor
}) // End of _PCT

8.4.4.2 _PSS (Performance Supported States)
This optional object indicates to OSPM the number of supported processor performance states that
any given system can support. This object evaluates to a packaged list of information about available

Element Object Type Description

Control
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the performance control register.

Status
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the performance status register.
408 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
performance states including internal CPU core frequency, typical power dissipation, control
register values needed to transition between performance states, and status register values that allow
OSPM to verify performance transition status after any OS-initiated transition change request. The
list is sorted in descending order by typical power dissipation. As a result, the zeroth entry describes
the highest performance state and the ‘nth’ entry describes the lowest performance state.

Arguments:

None

Return Value:

A variable-length Package containing a list of Pstate sub-packages as described below

Return Value Information
Package {
 PState [0] // Package – Performance state 0
 ….
 PState [n] // Package – Performance state n
}

Each Pstate sub-Package contains the elements described below:

Package {
 CoreFrequency // Integer (DWORD)
 Power // Integer (DWORD)
 Latency // Integer (DWORD)
 BusMasterLatency // Integer (DWORD)
 Control // Integer (DWORD)
 Status // Integer (DWORD)
}

Table 8-212 PState Package Values

Element Object Type Description

Core
Frequency

Integer
(DWORD)

Indicates the core CPU operating frequency (in MHz).

Power Integer
(DWORD)

Indicates the performance state’s maximum power dissipation (in milliwatts).

Latency Integer
(DWORD)

Indicates the worst-case latency in microseconds that the CPU is unavailable
during a transition from any performance state to this performance state.

Bus Master
Latency

Integer
(DWORD)

Indicates the worst-case latency in microseconds that Bus Masters are
prevented from accessing memory during a transition from any performance
state to this performance state.

Control Integer
(DWORD)

Indicates the value to be written to the Performance Control Register
(PERF_CTRL) in order to initiate a transition to the performance state.

Status Integer
(DWORD)

Indicates the value that OSPM will compare to a value read from the
Performance Status Register (PERF_STATUS) to ensure that the transition to
the performance state was successful. OSPM may always place the CPU in
the lowest power state, but additional states are only available when indicated
by the _PPC method.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 409

Processor Configuration and Control
8.4.4.3 _PPC (Performance Present Capabilities)
This optional object is a method that dynamically indicates to OSPM the number of performance
states currently supported by the platform. This method returns a number that indicates the _PSS
entry number of the highest performance state that OSPM can use at a given time. OSPM may
choose the corresponding state entry in the _PSS as indicated by the value returned by the _PPC
method or any lower power (higher numbered) state entry in the _PSS.

Arguments:

None

Return Value:

An Integer containing the range of states supported

0 – States 0 through nth state are available (all states available)

1 – States 1 through nth state are available

2 – States 2 through nth state are available

…

n – State n is available only

In order to support dynamic changes of _PPC object, Notify events on the processor object are
allowed. Notify events of type 0x80 will cause OSPM to reevaluate any _PPC objects residing under
the particular processor object notified. This allows AML code to notify OSPM when the number of
supported states may have changed as a result of an asynchronous event (AC insertion/removal,
docked, undocked, and so on).

8.4.4.3.1 OSPM _OST Evaluation

When processing of the _PPC object evaluation completes, OSPM evaluates the _OST object, if
present under the Processor device, to convey _PPC evaluation status to the platform. _OST
arguments specific to _PPC evaluation are described below.

Arguments: (2)

Arg0 – Source Event (Integer) : 0x80

Arg1 – Status Code (Integer) : see below

Return Value:

None

Argument Information:
Arg1 – Status Code

0: Success – OSPM is now using the performance states specified

1: Failure – OSPM has not changed the number of performance states in use.

8.4.4.4 Processor Performance Control Example

Example
This is an example of processor performance control objects in a processor object list.
410 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
In this example, a uniprocessor platform that has processor performance capabilities with support for
three performance states as follows:

1. 500 MHz (8.2W) supported at any time

2. 600 MHz (14.9W) supported only when AC powered

3. 650 MHz (21.5W) supported only when docked

It takes no more than 500 microseconds to transition from one performance state to any other
performance state.

During a performance transition, bus masters are unable to access memory for a maximum of 300
microseconds.

The PERF_CTRL and PERF_STATUS registers are implemented as Functional Fixed Hardware.

The following ASL objects are implemented within the system:

_SB.DOCK: Evaluates to 1 if system is docked, zero otherwise.

_SB.AC: Evaluates to 1 if AC is connected, zero otherwise.
 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 {
 Name(_PCT, Package () // Performance Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
 }) // End of _PCT object

 Name (_PSS, Package()
 {
 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)
 }) // End of _PSS object

 Method (_PPC, 0) // Performance Present Capabilities method
 {
 If (_SB.DOCK)
 {
 Return(0) // All _PSS states available (650, 600, 500).
 }
 If (_SB.AC)
 {
 Return(1) // States 1 and 2 available (600, 500).
 }
 Else
 {
 Return(2) // State 2 available (500)
 }
 } // End of _PPC method
 } // End of processor object list

The platform will issue a Notify(_SB.CPU0, 0x80) to inform OSPM to re-evaluate this object when
the number of available processor performance states changes.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 411

Processor Configuration and Control
8.4.4.5 _PSD (P-State Dependency)
This optional object provides P-state control cross logical processor dependency information to
OSPM. The _PSD object evaluates to a packaged list of information that correlates with the P-state
information returned by the _PSS object. Each packaged list entry identifies a dependency domain
number for the logical processor’s P-states, the coordination type for that P-state, and the number of
logical processors belonging to the domain.

Arguments:

None

Return Value:

A variable-length Package containing a list of P-state dependency Packages as described below.

Return Value Information

Package {
 PStateDependency[0] // Package
 ….
 PStateDependency[n] // Package
}

Each PStateDependency sub-Package contains the elements described below:

Package {
 NumEntries // Integer
 Revision // Integer (BYTE)
 Domain // Integer (DWORD)
 CoordType // Integer (DWORD)
 NumProcessors // Integer (DWORD)
}

Table 8-213 PStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the PStateDependency package including this field.
Current value is 5.

Revision Integer
(BYTE)

The revision number of the PStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this P state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as a
result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether OSPM is
responsible for coordinating the P-state transitions among processors with
dependencies (and needs to initiate the transition on all or any processor in
the domain) or whether the hardware will perform this coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for this logical
processor’s P-states. OSPM will not start performing power state transitions
to a particular P-state until this number of processors belonging to the same
domain have been detected and started.
412 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example
This is an example usage of the _PSD structure in a Processor structure in the namespace. The
example represents a two processor configuration with three performance states per processor. For
all performance states, there exists dependence between the two processors, such that one processor
transitioning to a particular performance state, causes the other processor to transition to the same
performance state. OSPM will be required to coordinate the P-state transitions between the two
processors and can initiate a transition on either processor to cause both to transition to the common
target P-state.

 Processor (
 _SB.CPU0, // Processor Name
 1, // ACPI Processor number
 0x120, // PBlk system IO address
 6) // PBlkLen
 {
 Name(_PCT, Package () // Performance Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
 }) // End of _PCT object

 Name (_PSS, Package()
 {
 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)
 }) // End of _PSS object

 Method (_PPC, 0) // Performance Present Capabilities method
 {
 } // End of _PPC method

 Name (_PSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0), Domain 0, OSPM
 // Coordinate, Initiate on any Proc, 2 Procs
 }) // End of _PSD object
 } // End of processor object list

 Processor (
 _SB.CPU1, // Processor Name
 2, // ACPI Processor number
 , // PBlk system IO address
) // PBlkLen
 {
 Name(_PCT, Package () // Performance Control object
 {
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
 ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS
 }) // End of _PCT object
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 413

Processor Configuration and Control
 Name (_PSS, Package()
 {
 Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
 Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
 Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)
 }) // End of _PSS object

 Method (_PPC, 0) // Performance Present Capabilities method
 {
 } // End of _PPC method

 Name (_PSD, Package()
 {
 Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0, OSPM
 // Coordinate, Initiate on any Proc, 2 Procs
 }) // End of _PSD object
 } // End of processor object list

8.4.4.6 _PDL (P-state Depth Limit)
This optional object evaluates to the _PSS entry number of the lowest performance P-state that
OSPM may use when performing passive thermal control. OSPM may choose the corresponding
state entry in the _PSS as indicated by the value returned by the _PDL object or a higher
performance (lower numbered) state entry in the _PSS down to and including the _PSS entry
number returned by the _PPC object or the first entry in the table (if _PPC is not implemented). The
value returned by the _PDL object must be greater than or equal to the value returned by the _PPC
object or the corresponding value to the last entry in the _PSS if _PPC is not implemented. In the
event of a conflict between the values returned by the evaluation of the _PDL and _PPC objects,
OSPM gives precedence to the _PPC object, limiting power consumption.

Arguments:

None

Return Value:

An Integer containing the P-state Depth Limit _PSS entry number:

0 – P0 is the only P-state available for OSPM use

1 – state 1 is the lowest power P-state available

2 – state 2 is the lowest power P-state available

…

n – state n is the lowest power P-state available

In order for the platform to dynamically indicate a change in the P-state depth limit, Notify events on
the processor object of type 0x80 will cause OSPM to reevaluate any _PDL object in the processor’s
object list. This allows AML code to notify OSPM when the number of supported performance
states may have changed as a result of an asynchronous event.\

8.4.5 Collaborative Processor Performance Control
Collaborative processor performance control defines an abstracted and flexible mechanism for
OSPM to collaborate with an entity in the platform to manage the performance of the processor. In
this scheme, the platform entity is responsible for creating and maintaining a performance definition
that backs a continuous, abstract, unit-less performance scale. During runtime, OSPM requests
414 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
performance on this abstract scale and the platform entity is responsible for translating the OSPM
performance requests into actual hardware performance states.

Prior processor performance controls (P-states and T-states) have described their effect on processor
performance in terms of processor frequency. While processor frequency is a rough approximation
of the speed at which the processor completes work, workload performance isn’t guaranteed to scale
with frequency. Therefore, rather than prescribe a specific metric for processor performance,
Collaborative Processor Performance Control leaves the definition of the exact performance metric
to the platform. The platform may choose to use a single metric such as processor frequency, or it
may choose to blend multiple hardware metrics to create a synthetic measure of performance. In this
way the platform is free to deliver the OSPM requested performance level without necessarily
delivering a specific processor frequency. OSPM must make no assumption about the exact meaning
of the performance values presented by the platform, or how they may correlate to specific hardware
metrics like processor frequency.

The control mechanisms are abstracted by the _CPC object method, which describes how to control
and monitor processor performance in a generic manner. The register methods may be implemented
in the Platform Communications Channel (PCC) interface (see Section 14). This provides sufficient
flexibility that the entity OSPM communicates with may be the processor itself, the platform chipset,
or a separate entity (e.g., a BMC).

8.4.5.1 _CPC (Continuous Performance Control)
This optional object declares an interface that allows OSPM to transition the processor into a
performance state based on a continuous range of allowable values. OSPM writes the desired
performance value to the Desired Performance Register, and the platform maps the desired
performance to an internal performance state.

Package
{
 NumEntries, // Integer
 Revision, // Integer
 HighestPerformance, // Integer or Buffer (Resource Descriptor)
 NominalPerformance, // Integer or Buffer (Resource Descriptor)
 LowestNonlinearPerformance, // Integer or Buffer (Resource Descriptor)
 LowestPerformance, // Integer or Buffer (Resource Descriptor)
 GuaranteedPerformanceRegister, // Buffer (Resource Descriptor)
 DesiredPerformanceRegister, // Buffer (Resource Descriptor)
 MinimumPerformanceRegister, // Buffer (Resource Descriptor)
 MaximumPerformanceRegister, // Buffer (Resource Descriptor)
 PerformanceReductionToleranceRegister, // Buffer (Resource Descriptor)
 TimeWindowRegister, // Buffer (Resource Descriptor)
 CounterWraparoundTime, // Integer or Buffer (Resource Descriptor)
 NominalCounterRegister, // Buffer (Resource Descriptor)
 DeliveredCounterRegister, // Buffer (Resource Descriptor)
 PerformanceLimitedRegister, // Buffer (Resource Descriptor)
 EnableRegister // Buffer (Resource Descriptor)
}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 415

Processor Configuration and Control
Table 8-214 Continuous Performance Control Package Values

Element Object
Type

Description

NumEntries Integer The number of entries in the _CPC package, including this one.
Current value is 17.

Revision Integer
(BYTE)

The revision number of the _CPC package format. Current value is 1.

Highest Performance Integer
(DWORD)
or Buffer

Indicates the highest level of performance the processor is
theoretically capable of achieving, given ideal operating conditions. If
this element is an Integer, OSPM reads the integer value directly. If
this element is a Buffer, it must contain a Resource Descriptor with a
single Register() to read the value from.

Nominal Performance Integer
(DWORD)
or Buffer

Indicates the highest sustained performance level of the processor. If
this element is an Integer, OSPM reads the integer value directly. If
this element is a Buffer, it must contain a Resource Descriptor with a
single Register() to read the value from.

Lowest Nonlinear
Performance

Integer
(DWORD)
or Buffer

Indicates the lowest performance level of the processor with non-
linear power savings. If this element is an Integer, OSPM reads the
integer value directly. If this element is a Buffer, it must contain a
Resource Descriptor with a single Register() to read the value from.

Lowest Performance Integer
(DWORD)
or Buffer

Indicates the lowest performance level of the processor. If this
element is an Integer, OSPM reads the integer value directly. If this
element is a Buffer, it must contain a Resource Descriptor with a
single Register() to read the value from.

Guaranteed
Performance Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to read the current
guaranteed performance from. See the section “Performance Limiting”
for more details.

Desired Performance
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to write the desired performance level to.

Minimum
Performance Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the minimum
allowable performance level to. The value 0 is equivalent to Lowest
Performance (no limit).

Maximum
Performance Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the maximum
allowable performance level to. All 1s is equivalent to Highest
Performance (no limit).

Performance
Reduction Tolerance
Register

Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the
performance reduction tolerance.

Time Window Register Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes the register to write the nominal
length of time (in ms) between successive reads of the platform’s
delivered performance register. See the section “Time Window
Register” for more details.
416 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The _CPC object provides OSPM with platform-specific performance capabilities / thresholds and
control registers that OSPM uses to control and the platform’s processor performance settings.
These are described in the following sections. While the platform may specify register sizes within
an allowable range, the size of the capabilities / thresholds registers must be compatible with the size
of the control registers. If the platform supports CPPC, the _CPC object must exist under all
processor objects. That is, OSPM is not expected to support mixed mode (CPPC & legacy PSS,
_PCT, _PPC) operation.

8.4.5.1.1 Performance Capabilities / Thresholds

Performance-based controls operate on a continuous range of processor performance levels, not
discrete processor states. As a result, platform capabilities and OSPM requests are specified in terms
of performance thresholds. Figure 8-44 outlines the static performance thresholds of the platform
and the dynamic guaranteed performance threshold.

Counter Wraparound
Time

Integer
(DWORD)
or Buffer

Optional. If supported, indicates the minimum time to counter
wraparound, in seconds. If this element is an Integer, OSPM reads the
integer value directly. If this element is a Buffer (and supported), it
must contain a Resource Descriptor with a single Register() to read
the value from.

Nominal Counter
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to read a counter that accumulates at a rate
proportional the nominal performance of the processor.

Delivered Counter
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to read a counter that accumulates at a rate
proportional to the delivered performance of the processor.

Performance Limited
Register

Buffer Contains a resource descriptor with a single Register() descriptor that
describes the register to read to determine if performance was limited.
A nonzero value indicates performance was limited. This register is
sticky, and will remain set until reset or OSPM clears it by writing 0.
See the section “Performance Limiting” for more details.

EnableRegister Buffer Optional. If supported, contains a resource descriptor with a single
Register() descriptor that describes a register to which OSPM writes a
One to enable CPPC on this processor. Before this register is set, the
processor will be controlled by legacy mechanisms (ACPI P-states,
firmware, etc.).

Element Object
Type

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 417

Processor Configuration and Control

0

Lowest Performance

Lowest Nonlinear Performance

Nominal Performance

Highest Performance

Guaranteed Performance
Allowed Range

Figure 8-44 Platform performance thresholds

Note that not all performance levels need be unique. A platform's nominal performance level may
also be its highest performance level, for example.

8.4.5.1.1.1 Highest performance

Register or DWORD
Register Location: PCC
Attribute: Read
Size: 8-32 bits

Highest performance is the absolute maximum performance an individual processor may reach,
assuming ideal conditions. This performance level may not be sustainable for long durations, and
may only be achievable if other platform components are in a specific state; for example, it may
require other processors be in an idle state.

8.4.5.1.1.2 Nominal Performance

Register or DWORD
Register Location: PCC
Attribute: Read
Size: 8-32 bits

Nominal performance is the maximum sustained performance level of the processor, assuming
ideal operating conditions. In absence of an external constraint (power, thermal, etc.) this is the
performance level the platform is expected to be able to maintain continuously. All processors are
expected to be able to sustain their nominal performance state simultaneously.
418 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8.4.5.1.1.3 Lowest Nonlinear Performance

Register or DWORD
Register Location: PCC
Attribute: Read
Size: 8-32 bits

Lowest Nonlinear Performance is the lowest performance level at which nonlinear power savings
are achieved, for example, due to the combined effects of voltage and frequency scaling. Above this
threshold, lower performance levels should be generally more energy efficient than higher
performance levels. In traditional terms, this represents the P-state range of performance levels.

8.4.5.1.1.4 Lowest Performance

Register or DWORD
Register Location: PCC
Attribute: Read
Size: 8-32 bits

Lowest Performance is the absolute lowest performance level of the platform. Selecting a
performance level lower than the lowest nonlinear performance level may actually cause an
efficiency penalty, but should reduce the instantaneous power consumption of the processor. In
traditional terms, this represents the T-state range of performance levels.

8.4.5.1.1.5 Guaranteed Performance Register

Optional
Register Location: PCC
Attribute: Read
Size: 8-32 bits

Guaranteed Performance Register conveys to OSPM a Guaranteed Performance level, which is
the current maximum sustained performance level of a processor, taking into account all known
external constraints (power budgeting, thermal constraints, AC vs DC power source, etc.). All
processors are expected to be able to sustain their guaranteed performance levels simultaneously.
The guaranteed performance level is required to fall in the range [Lowest Performance, Nominal
performance], inclusive.

If this register is not implemented, guaranteed performance is assumed to always equal nominal
performance.

Notify events of type 0x83 to the processor device object will cause OSPM to re-evaluate the
Guaranteed Performance Register. Changes to guaranteed performance should not be more frequent
than once per second. If the platform is not able to guarantee a given performance level for a
sustained period of time (greater than one second), it should guarantee a lower performance level
and opportunistically enter the higher performance level as requested by OSPM and allowed by
current operating conditions.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 419

Processor Configuration and Control
8.4.5.1.2 Performance Controls

Under CPPC, OSPM has several performance settings it may use in conjunction to control the performance of
the platform. These control inputs are outlined in Figure 8-45.

Minimum Performance

Desired Performance

Maximum Performance

Instantaneous Performance

Allowed Range

Figure 8-45 OSPM performance controls

OSPM may select any performance value within the continuous range of values supported by the
platform. Internally, the platform may implement a small number of discrete performance states and
may not be capable of operating at the exact performance level desired by OSPM. If a platform-
internal state does not exist that matches OSPM’s desired performance level, the platform should
round desired performance as follows:

• If OSPM has selected a desired performance level greater than or equal to guaranteed
performance, the platform may round up or down. The result of rounding must not be less than
guaranteed performance.

• If OSPM has selected a desired performance level less than guaranteed performance and a
maximum performance level not less than guaranteed performance, the platform must round up.

If OSPM has selected both desired performance level and maximum performance level less than
guaranteed performance, the platform must round up if rounding up does not violate the maximum
performance level. Otherwise, round down. OSPM must tolerate the platform rounding down if it
chooses to set the maximum performance level less than guaranteed performance.This approach
favors performance, except in the case where performance has been limited due to a platform or
OSPM constraint.
420 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8.4.5.1.2.1 Maximum Performance Register

Optional
Register Location: PCC
Attribute: Read/Write
Size: 8-32 bits

Maximum Performance Register conveys the absolute maximum instantaneous performance level
the platform may run at. Maximum performance may be set to any performance value in the range
[Lowest Performance, Highest Performance], inclusive.

The platform must implement either both the Minimum Performance and Maximum Performance
registers or neither register. If neither register is implemented, the platform must always deliver the
desired performance.

8.4.5.1.2.2 Minimum Performance Register

Optional
Register Location: PCC
Attribute: Read/Write
Size: 8-32 bits

Minimum Performance Register conveys the absolute minimum instantaneous performance level
the platform may run at. Minimum performance may be set to any performance value in the range
[Lowest Performance, Guaranteed Performance], inclusive. Minimum performance must never be
set to a value higher than maximum performance.

The platform must implement either both the Minimum Performance and Maximum Performance
registers or neither register. If neither register is implemented, the platform must always deliver the
desired performance.

8.4.5.1.2.3 Desired Performance Register

Register Location: PCC
Attribute: Read/Write
Size: 8-32 bits

Desired Performance Register conveys the performance level OSPM is requesting from the
platform. Desired performance may be set to any performance value in the range [Minimum
Performance, Maximum Performance], inclusive. Desired performance may take one of two
meanings, depending on whether the desired performance is above or below the guaranteed
performance level.

• Below the guaranteed performance level, desired performance expresses the average
performance level the platform must provide subject to the Performance Reduction Tolerance.

• Above the guaranteed performance level, the platform must provide the guaranteed performance
level. The platform should attempt to provide up to the desired performance level, if current
operating conditions allow for it, but it is not required to do so.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 421

Processor Configuration and Control
8.4.5.1.2.4 Performance Reduction Tolerance Register

Optional
Register Location: PCC
Attribute: Read/Write
Size: 8-32 bits

The Performance Reduction Tolerance Register is used by OSPM to convey the deviation below
the Desired Performance that is tolerable. It is expressed by OSPM as an absolute value on the
performance scale. Performance Tolerance must be less than or equal to the Desired Performance. If
the platform supports the Time Window Register, the Performance Reduction Tolerance conveys the
minimal performance value that may be delivered on average over the Time Window. If this register
is not implemented, the platform must assume Performance Reduction Tolerance = Desired
Performance.

8.4.5.1.2.5 Time Window Register

Optional
Register Location: PCC
Attribute: Read/Write
Size: 8-32 bits
Units: milliseconds

OSPM may write a value to the Time Window Register to indicate a time window over which the
platform must provide the desired performance level (subject to the Performance Reduction
Tolerance). OSPM sets the time window when electing a new desired performance The time
window represents the minimum time duration for OSPM’s evaluation of the platform’s delivered
performance (see Section 8.4.5.1.3.1 “Performance Counters” for details on how OSPM computes
delivered performance). If OSPM evaluates delivered performance over an interval smaller than the
specified time window, it has no expectations of the performance delivered by the platform. For any
evaluation interval equal to or greater than the time window, the platform must deliver the OSPM
desired performance within the specified tolerance bound.

If OSPM specifies a time window of zero or if the platform does not support the time window
register, the platform must deliver performance within the bounds of Performance Reduction
Tolerance irrespective of the duration of the evaluation interval.

8.4.5.1.3 Performance Feedback

The platform provides performance feedback via set of performance counters, and a performance
limited indicator.

8.4.5.1.3.1 Performance Counters

To determine the actual performance level delivered over time, OSPM may read a set of
performance counters from the Nominal Counter Register and the Delivered Counter Register.

OSPM calculates the delivered performance over a given time period by taking a beginning and
ending snapshot of both the nominal and delivered performance counters, and calculating:
422 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The delivered performance should always fall in the range [Lowest Performance, Highest
Performance], inclusive. OSPM may use the delivered performance counters as a feedback
mechanism to refine the desired performance state it selects.

There are constraints that govern how and when the performance delivered by the platform may
deviate from the OSPM Desired Performance. Corresponding to OSPM setting a Desired
Performance: at any time after that, the following constraints on delivered performance apply

• Delivered performance can be higher than the OSPM requested desired performance if the
platform is able to deliver the higher performance at same or lower energy than if it were
delivering the desired performance.

• Delivered performance may be higher or lower than the OSPM desired performance if the
platform has discrete performance states and needed to round down performance to the nearest
supported performance level in accordance to the algorithm prescribed in the OSPM controls
section.

• Delivered performance may be lower than the OSPM desired performance if the platform’s
efficiency optimizations caused the delievered performance to be less than desired performance.
However, the delivered performance should never be lower than the OSPM specified.

• Performance Reduction Tolerance. The Performance Reduction Tolerance provides a bound to
the platform on how aggressive it can be when optimizing performance delivery. The platform
should not perform any optimization that would cause delivered performance to be lower than
the OSPM specified Performance Reduction Tolerance.

8.4.5.1.3.1.1 Nominal Performance Register

Register Location: PCC
Attribute: Read
Size: 32 or 64 bits

The nominal counter register counts at a fixed rate any time the processor is active. It is not affected
by changes to Desired Performance, processor throttling, etc

8.4.5.1.3.1.2 Delivered Performance Register

Register Location: PCC
Attribute: Read
Size: 32 or 64 bits

The delivered performance counter increments any time the processor is active, at a rate proportional
to the current performance level, taking into account changes to Desired Performance. When the
processor is operating at its nominal performance level, the delivered performance counter must
increment at the same rate as the nominal performance counter.

8.4.5.1.3.1.3 Counter Wraparound Time

Optional
Register or DWORD
Register Location: PCC
Attribute: Read
Size: 32 or 64 bits
Units: seconds

Counter Wraparound Time provides a means for the platform to specify a rollover time for the
Nominal/Delivered performance counters. If greater than this time period elapses between OSPM
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 423

Processor Configuration and Control
querying the feedback counters, the counters may wrap without OSPM being able to detect that they
have done so.

If not implemented (or zero), the performance counters are assumed to never wrap during the
lifetime of the platform.

8.4.5.1.3.2 Performance Limited Register

Register Location: PCC
Attribute: Read/Write
Size: >=1 bit(s)

The platform indicates predictable limitations to the performance it can deliver via the Guaranteed
Performance Register. In the event that the platform must constrain the delivered performance to
less than the desired performance (or, less than the guaranteed performance, if desired performance
is greater than guaranteed performance) due to an unpredictable event, the platform must set the
performance limited indicator to a non-zero value. This indicates to OSPM that an unpredictable
event has limited processor performance, and the delivered performance may be less than desired
performance. The performance limited indicator is sticky, and will remain non-zero until OSPM
clears it by writing a 0 to the register.

The performance limited register should only be used to report short term, unpredictable events (e.g.,
PROCHOT being asserted). If the platform is capable of identifying longer term, predictable events
that limit processor performance, it should use the guaranteed performance limit to notify OSPM of
this limitation. Changes to guaranteed performance should not be more frequent than once per
second. If the platform is not able to guarantee a given performance level for a sustained period of
time (greater than one second), it should guarantee a lower performance level and opportunistically
enter the higher performance level as requested by OSPM and allowed by current operating
conditions.

8.4.5.1.4 Enable Register

Optional
Register Location: System I/O, PCC
Attribute: Read/Write
Size: >=1 bit(s)

If supported by the platform, OSPM writes a one to this register to enable CPPC on this processor.

If not implemented, OSPM assumes the platform always has CPPC enabled.

8.4.5.1.5 OSPM Control Policy

8.4.5.1.5.1 In-Band Thermal Control

A processor using performance controls may be listed in a thermal zone’s _PSL list. If it is and the
thermal zone engages passive cooling as a result of passing the _PSV threshold, OSPM will apply
the ∆P[%] to modify the value in the desired performance register. Any time that passive cooling is
engaged, OSPM must also set the maximum performance register equal to the desired performance
register, to enforce the platform does not exceed the desired performance opportunistically.

8.4.5.1.6 Using PCC Registers

If the PCC register space is used, all PCC registers must be defined to be in the same subspace.
OSPM will write registers by filling in the register value and issuing a PCC write command (see
424 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 8-215). It may read static registers, counters, and the performance limited register by issuing a
read command (see Table 8-215). To amortize the cost of PCC transactions, OSPM should read or
write all PCC registers via a single read or write command when possible.

Table 8-215 PCC Commands Codes used by Collaborative Processor Performance Control

8.4.5.1.7 Relationship to other ACPI-defined Objects and Notifications

 If _CPC is present, its use supersedes the use of the following existing ACPI objects:

• The P_BLK P_CNT register

• _PTC

• _TSS

• _TPC

• _TSD

• _TDL

• _PCT

• _PSS

• _PPC

• _PDL

• Notify 0x80 on the processor device

• Notify 0x82 on the processor device

The _PSD object may be used to specify domain dependencies between processors.

8.4.5.1.8 _CPC Implementation Example

This example shows a two processor implementation of the _CPC interface via the PCC interface, in
PCC subspace 2. This implementation uses registers to describe the processor’s capabilities, and
does not support the Minimum Performance, Maximum Performance, or Time Window registers.

Command Description

0x00 Read registers. Executed to request the platform update all registers for all enabled

processors with their current value.
0x01 Write registers. Executed to notify the platform one or more read/write registers for an

enabled processor has been updated.

0x02-0xFF All other values are reserved.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 425

Processor Configuration and Control
Processor (
 _SB.CPU0,
 1,
 0,
 0)
{
 Name(_CPC, Package()
 {
 17, // NumEntries
 1, // Revision
 ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 // Highest Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 // Nominal Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 // Lowest Nonlinear Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 // Lowest Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 // Guaranteed Performance Register
 ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 // Desired Performance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Minimum Performance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Maximum Performance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Performance Reduction Tolerance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Time Window Register
 ResourceTemplate(){Register(PCC, 8, 0, 0x11B, 2)},
 // Counter Wraparound Time
 ResourceTemplate(){Register(PCC, 32, 0, 0x114, 2)},
 // Nominal Counter Register
 ResourceTemplate(){Register(PCC, 32, 0, 0x116, 2)},
 // Delivered Counter Register
 ResourceTemplate(){Register(PCC, 8, 0, 0x11A, 2)}
 // Performance Limited Register
 ResourceTemplate(){Register(PCC, 1, 0, 0x100, 2)}
 // Enable Register
 })

}

Processor (
 _SB.CPU1,
 2,
 0,
 0)
{
 Name(_CPC, Package()
 {
 17, // NumEntries
 1, // Revision
 ResourceTemplate(){Register(PCC, 32, 0, 0x220, 2)},
 // Highest Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x224, 2)},
 // Nominal Performance

ResourceTemplate(){Register(PCC, 32, 0, 0x228, 2)},
 // Lowest Nonlinear Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x22C, 2)},
426 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 // Lowest Performance
 ResourceTemplate(){Register(PCC, 32, 0, 0x230, 2)},
 // Guaranteed Performance Register
 ResourceTemplate(){Register(PCC, 32, 0, 0x210, 2)},
 // Desired Performance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Minimum Performance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Maximum Performance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Performance Reduction Tolerance Register
 ResourceTemplate(){Register(0, 0, 0, 0, 0)},
 // Time Window Register
 ResourceTemplate(){Register(PCC, 8, 0, 0x21B, 2)},
 // Counter Wraparound Time
 ResourceTemplate(){Register(PCC, 32, 0, 0x214, 2)},
 // Nominal Counter Register
 ResourceTemplate(){Register(PCC, 32, 0, 0x216, 2)},
 // Delivered Counter Register
 ResourceTemplate(){Register(PCC, 8, 0, 0x21A, 2)}
 // Performance Limited Register
 ResourceTemplate(){Register(PCC, 1, 0, 0x200, 2)}
 // Enable Register
 })

}

8.4.6 _PPE (Polling for Platform Errors)
This optional object, when present, is evaluated by OSPM to determine if the processor should be
polled to retrieve corrected platform error information. This object augments /overrides information
provided in the CPEP , if supplied. See Section 5.2.18 “Corrected Platform Error Polling Table
(CPEP)”.

Arguments:

None

Return Value:

An Integer containing the recommended polling interval in milliseconds.

0 – OSPM should not poll this processor.

Other values – OSPM should poll this processor at <= the specified interval.

OSPM evaluates the _PPE object during processor object initialization and Bus Check notification
processing.

8.5 Processor Aggregator Device
The following section describes the definition and operation of the optional Processor Aggregator
device. The Processor Aggregator Device provides a control point that enables the platform to
perform specific processor configuration and control that applies to all processors in the platform.

The Plug and Play ID of the Processor Aggregator Device is ACPI000C.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 427

Processor Configuration and Control
Table 8-216 Processor Aggregator Device Objects

8.5.1 Logical Processor Idling
In order to reduce the platform’s power consumption, the platform may direct OSPM to remove a
logical processor from the operating system scheduler’s list of processors where non-processor
affinitized work is dispatched. This capability is known as Logical Processor Idling and provides a
means to reduce platform power consumption without undergoing processor ejection / insertion
processing overhead. Interrupts directed to a logical processor and processor affinitized workloads
will impede the effectiveness of logical processor idling in reducing power consumption as OSPM is
not expected to retarget this work when a logical processor is idled.

8.5.1.1 PUR (Processor Utilization Request)
The _PUR object is an optional object that may be declared under the Processor Aggregator Device
and provides a means for the platform to indicate to OSPM the number of logical processors to be
idled. OSPM evaluates the _PUR object as a result of the processing of a Notify event on the
Processor Aggregator device object of type 0x80.

Arguments:

None

Return Value:

A Package as described below.

Return Value Information

Package
{
 RevisionID // Integer: Current value is 1
 NumProcessors // Integer
}

The NumProcessors package element conveys the number of logical processors that the platform
wants OSPM to idle. This number is an absolute value. OSPM increments or decrements the number
of logical processors placed in the idle state to equal the NumProcessors value as possible. A
NumProcessors value of zero causes OSPM to place all logical processor in the active state as
possible.

OSPM uses internal logical processor to physical core and package topology knowledge to idle
logical processors successively in an order that maximizes power reduction benefit from idling
requests. For example, all SMT threads constituting logical processors on a single processing core
should be idled to allow the core to enter a low power state before idling SMT threads constituting
logical processors on another core.

Object Description

_PUR Requests a number of logical processors to be placed in an idle state
428 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
8.5.2 OSPM _OST Evaluation
When processing of the _PUR object evaluation completes, OSPM evaluates the _OST object, if
present under the Processor Aggregator device, to convey _PUR evaluation status to the platform.
_OST arguments specific to _PUR evaluation are described below.

Arguments: (3)

Arg0 – Source Event (Integer) : 0x80

Arg1 – Status Code (Integer) : see below

Arg2 – Idled Procs (Buffer) : see below

Return Value:

None

Argument Information:
Arg1 – Status Code

0: success – OSPM idled the number of logical processors indicated by the value of Arg2
1: no action was performed

Arg2 – A 4-byte buffer that represents a DWORD that is the number of logical processors that are
now idled)

The platform may request a number of logical processors to be idled that exceeds the available
number of logical processors that can be idled from an OSPM context for the following reasons:

• The requested number is larger than the number of logical processors currently defined.

• Not all the defined logical processors were onlined by the OS (for example. for licensing
reasons)

Logical processors critical to OS function (for example, the BSP) cannot be idled.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 429

Processor Configuration and Control
430 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
9
ACPI-Defined Devices and Device-Specific

Objects

This section describes ACPI defined devices and device-specific objects. The system status indicator
objects, declared under the _SI scope in the ACPI Namespace, are also specified in this section.

9.1 _SI System Indicators
ACPI provides an interface for a variety of simple and icon-style indicators on a system. All
indicator controls are in the _SI portion of the namespace. The following table lists all defined
system indicators. (Notice that there are also per-device indicators specified for battery devices).

Table 9-217 System Indicator Control Methods

9.1.1 _SST (System Status)
This optional object is a control method that OSPM invokes to set the system status indicator as
desired.

Arguments: (1)

Arg0 – An Integer containing the system status indicator identifier

0 – No system state indication. Indicator off

1 – Working

2 – Waking

3 – Sleeping. Used to indicate system state S1, S2, or S3

4 – Sleeping with context saved to non-volatile storage

Return Value:

None

9.1.2 _MSG (Message)
This control method sets the system’s message-waiting status indicator.

Arguments: (1)

Arg0 – An Integer containing the number of waiting messages

Object Description

_SST System status indicator

_MSG Messages waiting indicator

_BLT Battery Level Threshold
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 431

ACPI-Defined Devices and Device-Specific Objects
Return Value:

None

9.1.3 _BLT (Battery Level Threshold)
This optional control method is used by OSPM to indicate to the platform the user’s preference for
various battery level thresholds. This method allows platform battery indicators to be synchronized
with OSPM provided battery notification levels. Note that if _BLT is implemented on a multi-
battery system, it is required that the power unit for all batteries must be the same. See Section 10.2
for more details on battery levels.

Arguments: (3)

Arg0 – An Integer containing the preferred threshold for the battery warning level

Arg1 – An Integer containing the preferred threshold for the battery low level

Arg2 – An Integer containing the preferred threshold for the battery wake level

Return Value:

None

Additional Information
The battery warning level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh,
depending on the Power Units value) is the user’s preference for battery warning. If the level
specified is less than the design capacity of warning, it may be ignored by the platform so that the
platform can ensure a successful wake on low battery.

The battery low level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending
on the Power Units value) is the user’s preference for battery low. If this level is less than the design
capacity of low, it may be ignored by the platform.

The battery wake level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh,
depending on the Power Units value) is the user’s preference for battery wake. If this level is less
than the platform’s current wake on low battery level, it may be ignored by the platform. If the
platform does not support a configurable wake on low battery level, this may be ignored by the
platform.

9.2 Ambient Light Sensor Device
The following section illustrates the operation and definition of the control method-based Ambient
Light Sensor (ALS) device.

The ambient light sensor device can optionally support power management objects (e.g. _PS0,
_PS3) to allow the OS to manage the device’s power consumption.

The Plug and Play ID of an ACPI control method ambient light sensor device is ACPI0008.

Table 9-218 Control Method Ambient Light Sensor Device

Object Description

_ALI The current ambient light illuminance reading in lux (lumen per square meter). [Required]
432 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
9.2.1 Overview
This definition provides a standard interface by which the OS may query properties of the ambient
light environment the system is currently operating in, as well as the ability to detect meaningful
changes in these values when the environment changes. Two ambient light properties are currently
supported by this interface: illuminance and color.

Ambient light illuminance readings are obtained via the _ALI method. Illuminance readings indicate
the amount of light incident upon (falling on) a specified surface area. Values are specified in lux
(lumen per square meter) and give an indication of how “bright” the environment is. For example, an
overcast day is roughly 1000 lux, a typical office environment 300-400 lux, and a dimly-lit
conference room around 10 lux.

A possible use of ambient light illuminance data by the OS is to automatically adjust the brightness
(or luminance) of the display device – e.g. increase display luminance in brightly-lit environments
and decrease display luminance in dimly-lit environments. Note that Luminance is a measure of
light radiated (reflected, transmitted, or emitted) by a surface, and is typically measured in nits. The
_ALR method provides a set of ambient light illuminance to display luminance mappings that can be
used by an OS to calibrate its policy for a given platform configuration.

Ambient light color readings are obtained via the _ALT and/or _ALC methods. Two methods are
defined to allow varying types/complexities of ambient light sensor hardware to be used. _ALT
returns color temperature readings in degrees Kelvin. Color temperature values correlate a light
source to a standard black body radiator and give an indication of the type of light source present in
a given environment (e.g. daylight, fluorescent, incandescent). ALC returns color chromaticity
readings per the CIE Yxy color model. Chromaticity x and y coordinates provide a more
straightforward indication of ambient light color characteristics. Note that the CIE Yxy color model
is defined by the International Commission on Illumination (abbreviated as CIE from its French title
Commission Internationale de l'Eclairage) and is based on human perception instead of absolute
color.

A possible use of ambient light color data by the OS is to automatically adjust the color of displayed
images depending on the environment the images are being viewed in. This may be especially
important for reflective/transflective displays where the type of ambient light may have a large
impact on the colors perceived by the user.

9.2.2 _ALI (Ambient Light Illuminance)
This control method returns the current ambient light illuminance reading in lux (lumen per square
meter). Expected values range from ~1 lux for a dark room, ~300 lux for a typical office
environment, and 10,000+ lux for daytime outdoor environments – although readings may vary

_ALC The current ambient light color chromaticity reading, specified using x and y coordinates per the
CIE Yxy color model. [Optional]

_ALT The current ambient light color temperature reading in degrees Kelvin. [Optional]

_ALR Returns a set of ambient light illuminance to display brightness mappings that can be used by an
OS to calibrate its ambient light policy. [Required]

_ALP Ambient light sensor polling frequency in tenths of seconds. [Optional]
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 433

ACPI-Defined Devices and Device-Specific Objects
depending on the location of the sensor to the light source. Special values are reserved to indicate out
of range conditions (see below).

Arguments:

None

Return Value:

An Integer containing the ambient light brightness in lux (lumens per square meter)

0 – The current reading is below the supported range or sensitivity of
the sensor

Ones (-1) – The current reading is above the supported range or sensitivity of
the sensor

Other values – The current ambient light brightness in lux (lumens per square
meter)

9.2.3 _ALT (Ambient Light Temperature)
This optional control method returns the current ambient light color temperature reading in degrees
Kelvin (°K). Lower color temperatures imply warmer light (emphasis on yellow and red); higher
color temperatures imply a colder light (emphasis on blue). This value can be used to gauge various
properties of the lighting environment – for example, the type of light source. Expected values range
from ~1500°K for candlelight, ~3000°K for a 200-Watt incandescent bulb, and ~5500°K for full
sunlight on a summer day – although readings may vary depending on the location of the sensor to
the light source. Special values are reserved to indicate out of range conditions (see below).

Arguments:

None

Return Value:

An Integer containing the ambient light temperature in degrees Kelvin

0 – The current reading is below the supported range or sensitivity of

 the sensor

Ones (-1) – The current reading is above the supported range or sensitivity of

 the sensor

Other values –The current ambient light temperature in degrees Kelvin

9.2.4 _ALC (Ambient Light Color Chromaticity)
This optional control method returns the current ambient light color chromaticity readings per the

CIE Yxy color model. The x and y (chromaticity) coordinates are specified using a fixed 10-4

notation due to the lack of floating point values in ACPI. Valid values are within the range 0
(0x0000) through 1 (0x2710). A single 32-bit integer value is used, where the x coordinate is stored
in the high word and the y coordinate in the low word. For example, the value 0x0C370CDA would
be used to specify the white point for the CIE Standard Illuminant D65 (a standard representation of
average daylight) with x = 0.3127 and y = 0.3290. Special values are reserved to indicate out of
range conditions (see below).
434 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments:

None

Return Value:

An Integer containing the ambient light temperature in degrees Kelvin

0 – The current reading is below the supported range or sensitivity of

 the sensor

Ones (-1) – The current reading is above the supported range or sensitivity of

 the sensor

Other values – The current ambient light color chromaticity x and y coordinate

 values, per the CIE Yxy color model

9.2.5 _ALR (Ambient Light Response)
This object evaluates to a package of ambient light illuminance to display luminance mappings that
can be used by an OS to calibrate its ambient light policy for a given sensor configuration. The OS
can use this information to extrapolate an ALS response curve - noting that these values may be
treated differently depending on the OS implementation but should be used in some form to calibrate
ALS policy.

Arguments:

None

Return Value:

A variable-length Package containing a list of luminance mapping Packages. Each mapping
package consists of two Integers.

The return data is specified as a package of packages, where each tuple (inner package) consists of
the pair of Integer values of the form:

{<display luminance adjustment>, <ambient light illuminance>}

Package elements should be listed in monotonically increasing order based upon the ambient light
illuminance value (the Y-coordinate on the graph) to simplify parsing by the OS.

Ambient light illuminance values are specified in lux (lumens per square meter). Display luminance
(or brightness) adjustment values are specified using relative percentages in order simplify the
means by which these adjustments are applied in lieu of changes to the user’s display brightness
preference. A value of 100 is used to indicate no (0%) display brightness adjustment given the lack
of signed data types in ACPI. Values less than 100 indicate a negative adjustment (dimming); values
greater than 100 indicate a positive adjustment (brightening). For example, a display brightness
adjustment value of 75 would be interpreted as a -25% adjustment, and a value of 110 as a +10%
adjustment.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 435

ACPI-Defined Devices and Device-Specific Objects
0%-10%-20%-30% +10%

Baseline

5

90

350

1200

20

0

Disp lay Lu mina n ce (Br ig h tne ss) Ad ju s tme n t

A
m

b
ie

n
t

L
ig

h
t

Il
lu

m
in

a
n

c
e

 (
L

u
x

)

...

MaxMin

+50%

Typical
Office

(100,300)

(85,80)

Dimly-Lit
Conference

Room

(73,10)

(70,0)

Brightly-Lit
Café

(150,1000)

Figure 9-46 A five-point ALS Response Curve

Figure 9-46 illustrates the use of five points to approximate an example response curve, where the
dotted line represents an approximation of the desired response (solid curve). Extrapolation of the
values between these points is OS-specific – although for the purposes of this example we’ll assume
a piecewise linear approximation. The ALS response curve (_ALR) would be specified as follows:

 Name(_ALR, Package() {
 Package{70, 0}, // Min (-30% adjust at 0 lux)
 Package{73, 10}, // (-27% adjust at 10 lux)
 Package{85, 80}, // (-15% adjust at 80 lux)
 Package{100,300}, // Baseline (0% adjust at 300 lux)
 Package{150,1000} // Max (+50% adjust at 1000 lux)
 })

Within this data set exist three points of particular interest: baseline, min, and max. The baseline
value represents an ambient light illuminance value (in lux) for the environment where this system is
most likely to be used. When the system is operating in this ambient environment the ALS policy
will apply no (0%) adjustment to the default display brightness setting. For example, given a system
with a 300 lux baseline, operating in a typical office ambient environment (~300 lux), configured
with a default display brightness setting of 50% (e.g. 60 nits), the ALS policy would apply no
backlight adjustment, resulting in an absolute display brightness setting of 60 nits.

Min and max are used to indicate cutoff points in order to prevent an over-zealous response by the
ALS policy and to influence the policy’s mode of operation. For example, the min and max points
from the figure above would be specified as (70,0) and (150,1000) respectively – where min
indicates a maximum negative adjustment of 30% and max represents a maximum positive
adjustment of 50%. Using a large display brightness adjustment for max allows an ALS response
436 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
that approaches a fully-bright display (100% absolute) in very bright ambient environments
regardless of the user’s display brightness preference. Using a small value for max (e.g. 0% @ 300
lux) would influence the ALS policy to limit the use of this technology solely as a power-saving
feature (never brighten the display). Conversely, setting min to a 0% adjustment instructs ALS
policy to brighten but never dim.

A minimum of two data points are required in the return package, interpreted as min and max. Note
that the baseline value does not have to be explicitly stated; it can be derived from the response
curve. Addition elements can be provided to fine-tune the response between these points. Figure 9-
47 illustrates the use of two data points to achieve a response similar to (but simpler than) that
described in Figure 9-46 .

0%-10%-20%-30% +10%

Baseline

5

90

350

1200

20

0

Disp lay Lu mina nce (Br ig h tne ss) Ad jus tmen t

A
m

b
ie

n
t

L
ig

h
t

Il
lu

m
in

a
n

c
e

 (
L

u
x

)

Dimly-Lit
Conference

Room

(70,0)

...

Brightly-Lit
Café

(150,1000)

MaxMin

+50%

(70,30)

Typical
Office

Figure 9-47 A two-point ALS Response Curve

This example lacks an explicit baseline and includes a min with an ambient light value above 0 lux.
The baseline can easily be extrapolated by ALS Policy (e.g. 0% adjustment at ~400 lux). All
ambient light brightness settings below min (20 lux) would be treated in a similar fashion by ALS
policy (e.g. -30% adjustment). This two-point response curve would be modeled as:

 Name(_ALR, Package() {
 Package{70, 30}, // Min (-30% adjust at 30 lux)
 Package{150,1000} // Max (+50% adjust at 1000 lux)
 })

This model can be used to convey a wide range of ambient light to display brightness responses. For
example, a transflective display – a technology where illumination of the display can be achieved by
reflecting available ambient light, but also augmented in dimly-lit environments with a backlight –
could be modeled as illustrated in Figure 9-48.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 437

ACPI-Defined Devices and Device-Specific Objects
0% +40% +80%

5

90

350

1200

20

0

Disp lay Lu mina nce (Br ig h tne ss) Ad jus tmen t

A
m

b
ie

n
t

L
ig

h
t

Il
lu

m
in

a
n

c
e

 (
L

u
x

)

(70,0)

Brightly-Lit
Café

Min,
Baseline

+100%

Typical
Office

(0,1000)

Dimly-Lit
Conference

Room

(180,0)

Max

(200,30)

Figure 9-48 Example Response Curve for a Transflective Display

This three-point approximation would result in an ALS response that allows the backlight to increase
as the ambient lighting decreases. In this example, no backlight adjustment is needed in bright
environments (1000+ lux), maximum backlight may be needed in dim environments (~30 lux), but a
lower backlight setting may be used in a very-dark room (~0 lux) – resulting in an elbow around 30
lux. This response would be modeled in _ALR as follows:

 Name(_ALR, Package() {
 Package{180, 0} (+80% adjust at 0 lux)
 Package{200, 30}, // Max (+100% adjust at 30 lux)
 Package{0, 1000}, // Min (0% adjust at 1,000 lux)
 })

Note the ordering of package elements: monotonically increasing from the lowest ambient light
value (0 lux) to the highest ambient light value (1000 lux).

The transflective display example also highlights the need for non-zero values for the user’s display
brightness preference – which we’ll refer to as the reference display brightness value. This
requirement is derived from the model’s use of relative adjustments. For example, applying any
adjustment to a 0% reference display brightness value always results in a 0% absolute display
brightness setting. Likewise, using a very small reference display brightness (e.g. 5%) results in a
muted response (e.g. +30% of 5% = 6.5% absolute). The solution is to apply a reasonably large
value (e.g. 50%) as the reference display brightness setting – even in the case where no backlight is
applied. This allows relative adjustments to be applied in a meaningful fashion while conveying to
the user that the display is still usable (via reflected light) under typical ambient conditions.
438 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The OS derives the user’s display brightness preference (this reference value) either from the
Brightness Control Levels (_BCL) object or another OS-specific mechanism. See Section 9.2.8,
“Relationship to Backlight Control Methods”, for more information.

9.2.6 _ALP (Ambient Light Polling)
This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this
ambient light sensor. A value of zero – or the absence of this object when other ALS objects are
defined – indicates that OSPM does not need to poll the sensor in order to detect meaningful changes
in ambient light (the hardware is capable of generating asynchronous notifications).

The use of polling is allowed but strongly discouraged by this specification. OEMs should design
systems that asynchronously notify OSPM whenever a meaningful change in the ambient light
occurs—relieving the OS of the overhead associated with polling.

This value is specified as tenths of seconds. For example, a value of 10 would be used to indicate a 1
second polling frequency. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

Arguments:

None

Return Value:

An Integer containing the recommended polling frequency in tenths of seconds

0 – Polling by the host OS is not required

Other – The recommended polling frequency in tenths of seconds

9.2.7 Ambient Light Sensor Events
To communicate meaningful changes in ALS illuminance to OSPM, AML code should issue a
Notify(als_device, 0x80) whenever the lux reading changes more than 10% (from the last
reading that resulted in a notification). OSPM receives this notification and evaluates the _ALI
control method to determine the current ambient light status. The OS then adjusts the display
brightness based upon its ALS policy (derived from _ALR).

The definition of what constitutes a meaningful change is left to the system integrator, but should be
at a level of granularity that provides an appropriate response without overly taxing the system with
unnecessary interrupts. For example, an ALS configuration may be tuned to generate events for all
changes in ambient light illuminance that result in a minimum ±5% display brightness response (as
defined by _ALR).

To communicate meaningful changes in ALS color temperature to OSPM, AML code should issue a
Notify(als_device, 0x81) whenever the lux reading changes more than 10% (from the last
reading that resulted in a notification). OSPM receives this notification and evaluates the _ALT and
_ALC control method to determine the current ambient light color temperature.

To communicate meaningful changes in ALS response to OSPM, AML code should issue a
Notify(als_device, 0x82) whenever the set of points used to convey ambient light
response has changed. OSPM receives this notification and evaluates the _ALR object to determine
the current response points.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 439

ACPI-Defined Devices and Device-Specific Objects
9.2.8 Relationship to Backlight Control Methods
The Brightness Control Levels (_BCL) method – described in section 0 – can be used to indicate
user-selectable display brightness levels. The information provided by this method indicates the
available display brightness settings, the recommended default brightness settings for AC and DC
operation, and the absolute maximum and minimum brightness settings. These values indirectly
influence the operation of the OSPM’s ALS policy.

Display brightness adjustments produced by ALS policy are relative to the current user backlight
setting, and the resulting absolute value must be mapped (rounded) to one of the levels specified in
_BCL. This introduces the requirement for fine-grain display brightness control in order to achieve a
responsive ALS system – which typically materializes as a need for additional entries in the _BCL
list in order to provide reasonable resolution to the OS (e.g. 3-10% granularity). Note that user
brightness controls (e.g. hotkeys) are not required to make use of all levels specified in _BCL.

9.3 Battery Device
A battery device is required to either have an ACPI Smart Battery Table or a Control Method Battery
interface. In the case of an ACPI Smart Battery Table, the Definition Block needs to include a Bus/
Device Package for the SMBus host controller. This will install an OS specific driver for the SMBus,
which in turn will locate the Smart Battery System Manager or Smart Battery Selector and Smart
Battery Charger SMBus devices.

The Control Method Battery interface is defined in section 10.2, “Control Method Batteries.”

9.4 Control Method Lid Device
Platforms containing lids convey lid status (open / closed) to OSPM using a Control Method Lid
Device.

To implement a control method lid device, AML code should issue a Notify(lid_device,
0x80) for the device whenever the lid status has changed. The _LID control method for the lid
device must be implemented to report the current state of the lid as either opened or closed.

The lid device can support _PRW and _PSW methods to select the wake functions for the lid when
the lid transitions from closed to opened.

The Plug and Play ID of an ACPI control method lid device is PNP0C0D.

Table 9-219 Control Method Lid Device

9.4.1 _LID
Evaluates to the current status of the lid.

Arguments:

None

Object Description

_LID Returns the current status of the lid.
440 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Return Value:

An Integer containing the current lid status

0 – The lid is closed

Non-zero – The lid is open

9.5 Control Method Power and Sleep Button Devices
The system’s power or sleep button can either be implemented using the fixed register space as
defined in Section 4.8.2.2, “Buttons,” or implemented in AML code as a control method power
button device. In either case, the power button override function or similar unconditional system
power or reset functionality is still implemented in external hardware.

To implement a control method power-button or sleep-button device, implement AML code that
delivers two types of notifications concerning the device. The first is Notify(Object, 0x80) to signal
that the button was pressed while the system was in the S0 state to indicate that the user wants the
machine to transition from S0 to some sleeping state. The other notification is Notify(Object, 0x2) to
signal that the button was pressed while the system was in an S1 to S4 state and to cause the system
to wake. When the button is used to wake the system, the wake notification (Notify(Object, 0x2))
must occur after OSPM actually wakes, and a button-pressed notification (Notify(Object, 0x80))
must not occur.

The Wake Notification indicates that the system is awake because the user pressed the button and
therefore a complete system resume should occur (for example, turn on the display immediately, and
so on).

9.6 Embedded Controller Device
Operation of the embedded controller host controller register interface requires that the embedded
controller driver has ACPI-specific knowledge. Specifically, the driver needs to provide an
“operational region” of its embedded controller address space, and needs to use an ACPI event to
service the host controller interface. For more information about an ACPI-compatible embedded
controller device, see Section 12, “ACPI Embedded Controller Interface Specification.”

The embedded controller device object provides the _HID of an ACPI-integrated embedded
controller device of PNP0C09 and the host controller register locations using the device standard
methods. In addition, the embedded controller must be declared as a named device object that
includes a set of control methods. For more information, see Section 12.11, “Defining an Embedded
Controller Device in ACPI Namespace”).

9.7 Generic Container Device
A generic container device is a bridge that does not require a special OS driver because the bridge
does not provide or require any features not described within the normal ACPI device functions. The
resources the bridge requires are specified via normal ACPI resource mechanisms. Device
enumeration for child devices is supported via ACPI namespace device enumeration and OS drivers
require no other features of the bus. Such a bridge device is identified with the Plug and Play ID of
PNP0A05 or PNP0A06.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 441

ACPI-Defined Devices and Device-Specific Objects
A generic bus bridge device is typically used for integrated bridges that have no other means of
controlling them and that have a set of well-known devices behind them. For example, a portable
computer can have a “generic bus bridge” known as an EIO bus that bridges to some number of
Super-I/O devices. The bridged resources are likely to be positively decoded as either a function of
the bridge or the integrated devices. In this example, a generic bus bridge device would be used to
declare the bridge then child devices would be declared below the bridge; representing the integrated
Super-I/O devices.

9.8 ATA Controller Devices
There are two types of ATA Controllers: IDE controllers (also known as ATA controllers) and Serial
ATA (SATA) controllers. IDE controllers are those using the traditional IDE programming
interface, and may support Parallel ATA (P-ATA) or SATA connections. SATA controllers may be
designed to operate in emulation mode only, native mode only, or they may be designed to support
both native and non-native SATA modes. Regardless of the mode supported, SATA controllers are
designed to work solely with drives supporting the Serial ATA physical interface. As described
below, SATA controllers are treated similarly but not identically to traditional IDE controllers.

Platforms that contain controllers that support native and non-native SATA modes must take steps to
ensure the proper objects are placed in the namespace for the mode in which they are operating.

Table 9-220 ATA Specific Objects

9.8.1 Objects for Both ATA and SATA Controllers

9.8.1.1 _GTF (Get Task File)

This optional object returns a buffer containing the ATA commands used to restore the drive to boot
up defaults (that is, the state of the drive after POST). The returned buffer is an array with each
element in the array consisting of seven 8-bit register values (56 bits) corresponding to ATA task
registers 1F1 thru 1F7. Each entry in the array defines a command to the drive.

Arguments:

None

Return Value:

A Buffer containing a byte stream of ATA commands for the drive

Object Description Controller
Type

_GTF Optional object that returns the ATA task file needed to re-initialize the drive to
boot up defaults.

Both

_GTM Optional object that returns the IDE controller timing information. IDE-only

_STM Optional control method that sets the IDE controller’s transfer timing settings. IDE-only

_SDD Optional control method that informs the platform of the type of device
attached to a port.

SATA-only
442 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
This object may appear under SATA port device objects or under IDE channel objects.

ATA task file array definition:

• Seven register values for command 1
— Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)

• Seven register values for command 2
— Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)

• Seven register values for command 3
— Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)

• Etc.

After powering up the drive, OSPM will send these commands to the drive, in the order specified.
On SATA HBAs, OSPM evaluates _SDD before evaluating _GTF. The IDE driver may modify
some of the feature commands or append its own to better tune the drive for OSPM features before
sending the commands to the drive.

This Control Method is listed under each drive device object. OSPM must evaluate the _STM object
or the _SDD object before evaluating the _GTF object.

Example of the return from _GTF:

Method(_GTF, 0x0, NotSerialized)
{
 Return(GTF0)
}
Name(GTF0, Buffer(0x1c)
{
 0x03, 0x00, 0x00, 0x00, 0x00, 0xa0, 0xef, 0x03, 0x00, 0x00, 0x00, 0x00,
 0xa0, 0xef, 0x00, 0x10, 0x00, 0x00, 0x00, 0xa0, 0xc6, 0x00, 0x00, 0x00,
 0x00, 0x00, 0xa0, 0x91
}

9.8.2 IDE Controller Device
Most device drivers can save and restore the registers of their device. For IDE controllers and drives,
this is not true because there are several drive settings for which ATA does not provide mechanisms
to read. Further, there is no industry standard for setting timing information for IDE controllers.
Because of this, ACPI interface mechanisms are necessary to provide the operating system
information about the current settings for the drive and channel, and for setting the timing for the
channel.

OSPM and the IDE driver will follow these steps when powering off the IDE subsystem:

1. The IDE driver will call the _GTM control method to get the current transfer timing settings for
the IDE channel. This includes information about DMA and PIO modes.

2. The IDE driver will call the standard OS services to power down the drives and channel.

3. As a result, OSPM will execute the appropriate _PS3 methods and turn off unneeded power
resources.

To power on the IDE subsystem, OSPM and the IDE driver will follow these steps:

1. The IDE driver will call the standard OS services to turn on the drives and channel.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 443

ACPI-Defined Devices and Device-Specific Objects
2. As a result, OSPM will execute the appropriate _PS0 methods and turn on required power
resources.

3. The IDE driver will call the _STM control method passing in transfer timing settings for the
channel, as well as the ATA drive ID block for each drive on the channel. The _STM control
method will configure the IDE channel based on this information.

4. For each drive on the IDE channel, the IDE driver will run the _GTF to determine the ATA
commands required to reinitialize each drive to boot up defaults.

5. The IDE driver will finish initializing the drives by sending these ATA commands to the drives,
possibly modifying or adding commands to suit the features supported by the operating system.

The following shows the namespace for these objects:

_SB // System bus
 PCI0 // PCI bus
 IDE1 // First IDE channel
 _ADR // Indicates address of the channel on the PCI bus
 _GTM // Control method to get current IDE channel settings
 _STM // Control method to set current IDE channel settings
 _PR0 // Power resources needed for D0 power state
 DRV1 // Drive 0
 _ADR // Indicates address of master IDE device
 _GTF // Control method to get task file
 DRV2 // Drive 1
 _ _ADR // Indicates address of slave IDE device
 _ _GTF // Control method to get task file
 IDE2 // Second IDE channel
 _ADR // Indicates address of the channel on the PCI bus
 _GTM // Control method to get current IDE channel settings
 _STM // Control method to set current IDE channel settings
 _PR0 // Power resources needed for D0 power state
 DRV1 // Drive 0
 _ADR // Indicates address of master IDE device
 _GTF // Control method to get task file
 DRV2 // Drive 1
 _ADR // Indicates address of slave IDE device
 _GTF // Control method to get task file

The sequential order of operations is as follows:

Powering down:
• Call _GTM.

• Power down drive (calls _PS3 method and turns off power planes).

Powering up:
• Power up drive (calls _PS0 method if present and turns on power planes).

• Call _STM passing info from _GTM (possibly modified), with ID data from

• each drive.

• Initialize the channel.

• May modify the results of _GTF.

• For each drive:
444 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
— Call _GTF.
— Execute task file (possibly modified).

9.8.2.1 IDE Controller-specific Objects

9.8.2.1.1 _GTM (Get Timing Mode)

This Control Method exists under each channel device object and returns the current settings for the
IDE channel.

Arguments:

None

Return Value:

A Buffer containing the current IDE channel timing information block as described in Table 9-221
below.

_GTM returns a buffer with the following format

Buffer (){
 PIO Speed 0 //DWORD
 DMA Speed 0 //DWORD
 PIO Speed 1 //DWORD
 DMA Speed 1 //DWORD
 Flags //DWORD
}

Table 9-221 GTM Method Result Codes

Field Format Description

PIO Speed 0 DWORD The PIO bus-cycle timing for drive 0 in nanoseconds. 0xFFFFFFFF
indicates that this mode is not supported by the channel. If the chipset
cannot set timing parameters independently for each drive, this field
represents the timing for both drives.

DMA Speed 0 DWORD The DMA bus-cycle for drive 0 timing in nanoseconds. If Bit 0 of the Flags
register is set, this DMA timing is for UltraDMA mode, otherwise the timing is
for multi-word DMA mode. 0xFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing parameters
independently for each drive, this field represents the timing for both drives.

PIO Speed 1 DWORD The PIO bus-cycle timing for drive 1 in nanoseconds. 0xFFFFFFFF
indicates that this mode is not supported by the channel. If the chipset
cannot set timing parameters independently for each drive, this field must be
0xFFFFFFFF.

DMA Speed 1 DWORD The DMA bus-cycle timing for drive 1 in nanoseconds. If Bit 0 of the Flags
register is set, this DMA timing is for UltraDMA mode, otherwise the timing is
for multi-word DMA mode. 0xFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing parameters
independently for each drive, this field must be 0xFFFFFFFF.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 445

ACPI-Defined Devices and Device-Specific Objects
9.8.2.1.2 _STM (Set Timing Mode)

This Control Method sets the IDE channel’s transfer timings to the setting requested. The AML code
is required to convert and set the nanoseconds timing to the appropriate transfer mode settings for
the IDE controller. _STM may also make adjustments so that _GTF control methods return the
correct commands for the current channel settings.

This control method takes three arguments: Channel timing information (as described in Table 9-6),
and the ATA drive ID block for each drive on the channel. The channel timing information is not
guaranteed to be the same values as returned by _GTM; the OS may tune these values as needed.

Arguments: (3)

Arg0 – A Buffer containing a channel timing information block (described in Table 9-6)

Arg1 – A Buffer containing the ATA drive ID block for channel 0

Arg2 – A Buffer containing the ATA drive ID block for channel 1

Return Value:

None

The ATA drive ID block is the raw data returned by the Identify Drive ATA command, which has
the command code “0ECh.” The _STM control method is responsible for correcting for drives that
misreport their timing information.

9.8.3 Serial ATA (SATA) Controller Device

9.8.3.1 Definitions
HBA Host Bus Adapter

Native SATA aware Refers to system software (BIOS, option ROM, operating system,
etc) that comprehends a particular SATA HBA implementation
and understands its programming interface and power
management behavior.

Non-native SATA aware Refers to system software (BIOS, option ROM, operating system,
etc) that does not comprehend a particular SATA HBA
implementation and does not understand its programming
interface or power management behavior. Typically, non-native
SATA aware software will use a SATA HBA’s emulation
interface (e.g. task file registers) to control the HBA and access
its devices.

Flags DWORD Mode flags
Bit[0]: 1 indicates using UltraDMA on drive 0
Bit[1]: 1 indicates IOChannelReady is used on drive 0
Bit[2]: 1 indicates using UltraDMA on drive 1
Bit[3]: 1 indicates IOChannelReady is used on drive 1
Bit[4]: 1 indicates chipset can set timing independently for each drive
Bits[5-31]: reserved (must be 0)

Field Format Description
446 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Emulation mode Optional mode supported by a SATA HBA. Allows non-native
SATA aware software to access SATA devices via traditional
task file registers.

Native mode Optional mode supported by a SATA HBA. Allows native SATA
aware software to access SATA devices via registers that are
specific to the HBA.

Hybrid Device Refers to a SATA HBA that implements both an emulation and a
native programming interface.

9.8.3.2 Overview
A SATA HBA differs from an IDE controller in a number of ways. First, it can save its complete
device context. Second, it replaces IDE channels, which may support up to 2 attached devices, with
ports, which support only a single attached device, unless a port multiplier is present. See the SATA
spec at the ACPI Link Document under the heading "SATA Specification"for more information.
Finally, SATA does not require timing information from the platform, allowing a simplification in
how SATA controllers are represented in ACPI. (_GTM and _STM are replaced by the simpler
_SDD method.)

All ports, even those attached off a port multiplier, are represented as children directly under the
SATA controller device. This is practical because the SATA specification does not allow a port
multiplier to be attached to a port multiplier. Each port’s _ADR indicates to which root port they are
connected, as well as the port multiplier location, if applicable. (See Table 6-2 for _ADR format.)

Since this specification only covers the configuration of motherboard devices, it is also the case that
the control methods defined in this section cannot be used to send taskfiles to devices attached via
either an add-in SATA HBA, or attached via a motherboard SATA HBA, if used with a port
multiplier that is not also on the motherboard.

The following shows an example SATA namespace:

_SB - System bus
 PCI0 - PCI bus
 SATA - SATA Controller device
 ADR - Indicates address of the controller on the PCI bus
 PR0 - Power resources needed for D0 power state
 PRT0 - Port 0 device
 _ADR - Indicates physical port and port multiplier topology
 _SDD - Identify information for drive attached to this port
 _GTF - Control method to get task file
 PRTn - Port n device
 _ADR - Indicates physical port and port multiplier topology
 _SDD - Identify information for drive attached to this port
 _GTF - Control method to get task file

9.8.3.3 SATA controller-specific control methods
In order to ensure proper interaction between OSPM, the firmware, and devices attached to the
SATA controller, it is a requirement that OSPM execute the _SDD and _GTF control methods when
certain events occur. OSPM’s response to events must be as follows:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 447

ACPI-Defined Devices and Device-Specific Objects
COMRESET, Initial OS load, device insertion, HBA D3 to D0 transition,
asynchronous loss of signal:

1. OSPM sends IDENTIFY DEVICE or IDENTIFY PACKET DEVICE command to the attached
device.

2. OS executes _SDD. _SDD control method requires 1 argument that consists of the data block
received from an attached device as a result of a host issued IDENTIFY DEVICE or IDENTIFY
PACKET DEVICE command.

3. After the _SDD method completes, the OS executes the _GTF method. Using the task file
information provided by _GTF, the OS then sends the _GTF taskfiles to the attached device.

Device removal and HBA D0 to D3 transition:
1. No OSPM action required.

9.8.3.3.1 _SDD (Set Device Data)

This optional object is a control method that conveys to the platform the type of device connected to
the port. The _SDD object may exist under a SATA port device object. The platform typically uses
the information conveyed by the _SDD object to construct the values returned by the _GTF object.

OSPM conveys to the platform the ATA drive ID block, which is the raw data returned by the
Identify (Packet) Device, ATA command (command code “0ech.”). Please see the ATA/ATAPI-6
specification for more details.

Arguments: (1)

Arg0 – A Buffer containing an ATA drive identify block, contents described by the ATA
specification

Return Value:

None

9.9 Floppy Controller Device Objects

9.9.1 _FDE (Floppy Disk Enumerate)
Enumerating devices attached to a floppy disk controller is a time-consuming function. In order to
speed up the process of floppy enumeration, ACPI defines an optional enumeration object that is
defined directly under the device object for the floppy disk controller. It returns a buffer of five 32-
bit values. The first four values are Boolean values indicating the presence or absence of the four
floppy drives that are potentially attached to the controller. A non-zero value indicates that the
floppy device is present. The fifth value returned indicates the presence or absence of a tape
controller. Definitions of the tape presence value can be found in Table 9-222.

Arguments:

None

Return Value:

A Buffer containing a floppy drive information block, as decribed below
448 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Buffer (){
 Floppy 0 // Boolean DWORD
 Floppy 1 // Boolean DWORD
 Floppy 2 // Boolean DWORD
 Floppy 3 // Boolean DWORD
 Tape // DWORD – See table below
}

Table 9-222 Tape Presence

9.9.2 _FDI (Floppy Disk Information)
This object returns information about a floppy disk drive. This information is the same as that
returned by the INT 13 Function 08H on IA-PCs.

Arguments:

None

Return Value:

A Package containing the floppy disk information as a list of Integers

Package {
 Drive Number // Integer (BYTE)
 Device Type // Integer (BYTE)
 Maximum Cylinder Number // Integer (WORD)
 Maximum Sector Number // Integer (WORD)
 Maximum Head Number // Integer (WORD)
 disk_specify_1 // Integer (BYTE)
 disk_specify_2 // Integer (BYTE)
 disk_motor_wait // Integer (BYTE)
 disk_sector_siz // Integer (BYTE)
 disk_eot // Integer (BYTE)
 disk_rw_gap // Integer (BYTE)
 disk_dtl // Integer (BYTE)
 disk_formt_gap // Integer (BYTE)
 disk_fill // Integer (BYTE)
 disk_head_sttl // Integer (BYTE)
 disk_motor_strt // Integer (BYTE)
}

Table 9-223 ACPI Floppy Drive Information

Value Description

0 Device presence is unknown or unavailable

1 Device is present

2 Device is never present

>2 Reserved

Package Element Element Object Type Actual Valid Data Width

00 – Drive Number Integer BYTE

01 – Device Type Integer BYTE

02 – Maximum Cylinder Number Integer WORD
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 449

ACPI-Defined Devices and Device-Specific Objects
9.9.3 _FDM (Floppy Disk Drive Mode)
This control method switches the mode (300 RPM or 360 RPM) of all floppy disk drives attached to
this controller. If this control method is implemented, the platform must reset the mode of all drives
to 300RPM mode after a Dx to D0 transition of the controller.

Arguments: (1)

Arg0 – An Integer containing the new drive mode

0 – Set the mode of all drives to 300 RPM mode

1 – Set the mode of all drives to 360 RPM mode

Return Value:

None

9.10 GPE Block Device
The GPE Block device is an optional device that allows a system designer to describe GPE blocks
beyond the two that are described in the FADT. Control methods associated with the GPE pins of
GPE block devices exist as children of the GPE Block device, not within the _GPE namespace.

A GPE Block device consumes I/O or memory address space, as specified by its _PRS or _CRS
child objects. The interrupt vector used by the GPE block does not need to be the same as the
SCI_INT field. The interrupt used by the GPE block device is specified in the _CRS and _PRS
methods associated with the GPE block. The _CRS of a GPE Block device may only specify a single
register address range, either I/O or memory. This range contains two registers: the GPE status and
enable registers. Each register’s length is defined as half of the length of the _CRS-defined register
address range.

A GPE Block device must have a _HID or a _CID of “ACPI0006.”

03 – Maximum Sector Number Integer WORD

04 – Maximum Head Number Integer WORD

05 – Disk_specify_1 Integer BYTE

06 – Disk_specify_2 Integer BYTE

07 – Disk_motor_wait Integer BYTE

08 – Disk_sector_siz Integer BYTE

09 – Disk_eot Integer BYTE

10 – Disk_rw_gap Integer BYTE

11 – Disk_dtl Integer BYTE

12 – Disk_formt_gap Integer BYTE

13 – Disk_fill Integer BYTE

14 – Disk_head_sttl Integer BYTE

15 – Disk_motor_strt Integer BYTE

Package Element Element Object Type Actual Valid Data Width
450 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: A system designer must describe the GPE block necessary to bootstrap the system in the FADT
as a GPE0/GPE1 block. GPE Block devices cannot be used to implement these GPE inputs.

A GPE Block Device must contain the _Lxx, _Exx, _Wxx, _CRS, _PRS, and _SRS methods
required to use and program that block.

To represent the GPE block associated with the FADT, the system designer shouldinclude in the
namespace a Device object with the ACPI0006 _HID that contains no _CRS, _PRS, _SRS, _Lxx,
_Exx, or _Wxx methods. OSPM assumes that the first such ACPI0006 device is the GPE Block
Device that is associated with the FADT GPEs. (See the example below).

// ASL example of a standard GPE block device
Device(_SB.PCI0.GPE1) {
 Name(_HID, ”ACPI0006”)
 Name(_UID, 2)
 Name(_CRS, Buffer () {
 IO(Decode16, FC00, FC03, 4, 4,)
 IRQ(Level, ActiveHigh, Shared,) { 5 }
 })

 Method(_L02) { … }
 Method(_E07) { … }
 Method(_W04) { … }
}

// ASL example of a GPE block device that refers to the FADT GPEs.
// Cannot contain any _Lxx, _Exx, _Wxx, _CRS, _PRS, or. _SRS methods.
Device(_SB.PCI0.GPE0) {
 Name(_HID,”ACPI0006”)
 Name(_UID,1)
}

Notice that it is legal to replace the I/O descriptors with Memory descriptors if the register is
memory mapped.

If the system must run any GPEs to bootstrap the system (for example, when Embedded Controller
events are required), the associated block of GPEs must be described in the FADT. This register
block is not relocatable and will always be available for the life of the operating system boot.

A GPE block associated with the ACPI0006 _HID can be stopped, ejected, reprogrammed, and so
on. The system can also have multiple such GPE blocks.

9.10.1 Matching Control Methods for Events in a GPE Block Device
When a GPE Device raises an interrupt, OSPM executes a corresponding control method (as
described in Section 5.6.4.1.1, “Queuing the Matching Control Method for Execution”). These
control methods (of the form _Lxx, _Exx, and _Wxx) for GPE Devices are not within the _GPE
namespace. They are children of the GPE Block device.

For example:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 451

ACPI-Defined Devices and Device-Specific Objects
Device(GPE5) {
 Name(_HID, “ACPI0006”)

 Method(_L02) { … }
 Method(_E07) { … }
 Method(_W04) { … }
}

9.11 Module Device
This optional device is a container object that acts as a bus node in a namespace. It may contain child
objects that are devices or buses. The module device is declared using the ACPI0004 hardware
identifier (HID).

If the module device contains a _CRS object, the “bus” described by this object is assumed to have
these resources available for consumption by its child devices. If a _CRS object is present, any
resources not produced in the module device’s _CRS object may not be allocated to child devices.

Providing a _CRS object is undesirable in some module devices. For example, consider a module
device used to describe an add-in board containing multiple host bridges without any shared
resource decoding logic. In this case the resource ranges available to the host bridges are not
controlled by any entity residing on the add-in board, implying that a _CRS object in the associated
module device would not describe any real feature of the underlying hardware. A_CRS object must
exist with a module device if the device contains PCI host bridge devices (See Section 9.11.1
“Describing PCI Bus and Segment Group Numbers under Module Devices”).

To account for cases like this, the system designer may optionally omit the module device’s _CRS
object. If no _CRS object is present, OSPM will assume that the module device is a simple container
object that does not produce the resources consumed by its child devices. In this case, OSPM will
assign resources to the child devices as if they were direct children of the module device's parent
object.

For an example with a module device _CRS object present, consider a Module Device containing
three child memory devices. If the _CRS object for the Module Device contains memory from 2 GB
through 6 GB, then the child memory devices may only be assigned addresses within this range.
452 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example:

Device (_SB.NOD0) {
 Name (_HID, "ACPI0004") // Module device
 Name (_UID, 0)
 Name (_PRS, ResourceTemplate() {
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x8000) // _LEN
 DWordMemory (
 ResourceProducer,, // For Main Memory + PCI
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 Method (_SRS, 1) { ... }
 Method (_CRS, 0) { ... }

 Device (MEM0) { // Main Memory (256MB module)
 Name (_HID, EISAID("PNP0C80"))
 Name (_UID, 0)
 Method (_STA, 0) { // If memory not present --> Return(0x00)
 // Else if memory is disabled --> Return(0x0D)
 // Else --> Return(0x0F)
 }
 Name (_PRS, ResourceTemplate () {
 DWordMemory (,,,,
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x10000000) // _LEN
 })
 Method (_CRS, 0) { ... }
 Method (_SRS, 1) { ... }
 Method (_DIS, 0) { ... }
 }
 Device (MEM1) { // Main Memory (512MB module)
 Name (_HID, EISAID("PNP0C80"))
 Name (_UID, 1)
 Method (_STA, 0) { // If memory not present --> Return(0x00)
 // Else if memory is disabled --> Return(0x0D)
 // Else --> Return(0x0F)
 }
 Name (_PRS, ResourceTemplate () {
 DWordMemory (,,,,
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 453

ACPI-Defined Devices and Device-Specific Objects
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x1FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x20000000) // _LEN
 })
 Method (_CRS, 0) { ... }
 Method (_SRS, 1) { ... }
 Method (_DIS, 0) { ... }
 }
 Device (PCI0) { // PCI Root Bridge
 Name (_HID, EISAID("PNP0A03"))
 Name (_UID, 0)
 Name (_BBN, 0x00)
 Name (_PRS, ResourceTemplate () {
 WordBusNumber (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,, // _MAF
 0x00, // _GRA
 0x00, // _MIN
 0x7F, // _MAX
 0x0, // _TRA
 0x80) // _LEN
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x0CF7, // _MAX
 0x0, // _TRA
 0x0CF8) // _LEN
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0D00, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x7300) // _LEN

 DWordMemory (
 ResourceProducer,,
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 NonCacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 Method (_CRS, 0) { ... }
 Method (_SRS, 1) { ... }
 }
}

454 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
9.11.1 Describing PCI Bus and Segment Group Numbers under Module
Devices

If a module device exposes one or more PCI root busses, OSPM must be able to determine what PCI
bus and segment group numbers are defined for the module device. A module device may be a
container for root buses in multiple segment groups. Because the _SEG method can only return a
single number, _SEG cannot adequately describe this case. To properly convey this information to
OSPM, the PCI bus number resource descriptor in the module device must include both the bus and
segment resources produced by the module device. To describe this in systems that implement
multiple PCI segment groups, the segment group resources produced by a module device must be
encoded in bits 8 and higher of the module device’s WordBusNumber resource descriptor. For
systems that do not expose multiple PCI segment groups, bits 8 and higher of the module device’s
WordBusNumber resource descriptor must be zero.

Note: The range of PCI segment groups reported in the _CRS of module devices cover both assigned
and unassigned PCI root bridges. In the case of hot add of a PCI root bridge, OSPM does not re-
evaluate the _CRS of its parent module device as its resources are not expected to change in this
case.

For an example of a module device encoding PCI segment group ranges with PCI bus number
resources, consider a module device that describes two PCI root bridges as child devices. The _CRS
for the module device describes 2 PCI root bridges as child devices, where each PCI root bridge
consumes its own PCI segment.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 455

ACPI-Defined Devices and Device-Specific Objects
Example:

Device (_SB.NOD0) {
 Name (_HID, "ACPI0004") // Module device
 Name (_UID, 0)
 Name (_CRS, ResourceTemplate() {
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x8000) // _LEN
 DWordMemory (
 ResourceProducer,, // For Main Memory + PCI
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 Cacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 WordBusNumber (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,, // _MAF
 0x00, // _GRA
 0x0000, // _MIN (indicates minimum segment number 0)
 0x01FF, // _MAX (indicates maximum segment of 1)
 0x0, // _TRA
 0x80) // _LEN

 })
 Device (PCI0) { // PCI Root Bridge
 Name (_HID, EISAID("PNP0A03"))
 Name (_UID, 0)
 Name (_BBN, 0x00)
 Name (_SEG, 0x00) // assign segment 0 of module device to PCI0
 Name (_CRS, ResourceTemplate () {
 WordBusNumber (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,, // _MAF
 0x00, // _GRA
 0x00, // _MIN
 0xFF, // _MAX
 0x0, // _TRA
 0x80) // _LEN
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,,, // _MAF
 0x0000, // _GRA
 0x0000, // _MIN
 0x0CF7, // _MAX
 0x0, // _TRA
456 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 0x0CF8) // _LEN
 DWordMemory (
 ResourceProducer,,
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 NonCacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x40000000, // _MIN
 0x5FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 }
}
 Device (PCI1) { // PCI Root Bridge
 Name (_HID, EISAID("PNP0A03"))
 Name (_UID, 0)
 Name (_BBN, 0x00)
 Name (_SEG, 0x01) // assign segment 1 of module device to PCI1
 Name (_CRS, ResourceTemplate () {
 WordBusNumber (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed,, // _MAF
 0x00, // _GRA
 0x00, // _MIN
 0x7F, // _MAX
 0x0, // _TRA
 0x80) // _LEN
 WordIO (
 ResourceProducer,
 MinFixed, // _MIF
 MaxFixed, // _MAF
 0x0000, // _GRA
 0x0D00, // _MIN
 0x7FFF, // _MAX
 0x0, // _TRA
 0x7300) // _LEN

 DWordMemory (
 ResourceProducer,
 MinNotFixed, // _MIF
 MaxNotFixed, // _MAF
 NonCacheable, // _MEM
 ReadWrite, // _RW
 0x0FFFFFFF, // _GRA
 0x60000000, // _MIN
 0x7FFFFFFF, // _MAX
 0x0, // _TRA
 0x00000000) // _LEN
 })
 }
}

9.12 Memory Devices
Memory devices allow a platform to convey dynamic properties of memory to OSPM and are
required when a platform supports the addition or removal of memory while the system is active or
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 457

ACPI-Defined Devices and Device-Specific Objects
when the platform supports memory bandwidth monitoring and reporting (see Section 9.12.2,
“Memory Bandwidth Monitoring and Reporting). Memory devices may describe exactly the same
physical memory that the System Address Map interfaces describe (see section 14, “System Address
Map Interfaces”). They do not describe how that memory is, or has been, used. If a region of
physical memory is marked in the System Address Map interface as AddressRangeReserved or
AddressRangeNVS and it is also described in a memory device, then it is the responsibility of the
OS to guarantee that the memory device is never disabled.

It is not necessary to describe all memory in the system with memory devices if there is some
memory in the system that is static in nature. If, for instance, the memory that is used for the first 16
MB of system RAM cannot be ejected, inserted, or disabled, that memory may only be represented
by the System Address Map interfaces. But if memory can be ejected, inserted, or disabled, or if the
platform supports memory bandwidth monitoring and reporting, the memory must be represented by
a memory device.

9.12.1 Address Decoding
Memory devices must provide a _CRS object that describes the physical address space that the
memory decodes. If the memory can decode alternative ranges in physical address space, the devices
may also provide _PRS, _SRS and _DIS objects. Other device objects may also apply if the device
can be ejected.

9.12.2 Memory Bandwidth Monitoring and Reporting
During platform operation, an adverse condition external to the platform may arise whose remedy
requires a reduction in the platform’s available memory bandwidth. For example, a server
management controller’s detection of an adverse thermal condition or the need to reduce the total
power consumption of platforms in the data center to stay within acceptable limits. Providing OSPM
with knowledge of a platform induced reduction of memory bandwidth enables OSPM to provide
more robust handling of the condition. The following sections describe objects OSPM uses to
configure platform-based memory bandwidth monitoring and to ascertain available memory
bandwidth when the platform performs memory bandwidth throttling.

9.12.2.1 _MBM (Memory Bandwidth Monitoring Data)
The optional _MBM object provides memory bandwidth monitoring information for the memory
device.

Arguments:

None

Return Value:

A Package containing memory device status information as described in Table 9-224 below

Return Value Information:
_MBM evaluation returns a package of the following format:
458 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Package (){
 Revision, // Integer
 WindowSize, // Integer DWORD
 SamplingInterval, // Integer DWORD
 MaximumBandwidth, // Integer DWORD
 AverageBandwidth, // Integer DWORD
 LowBandwidth, // Integer DWORD
 LowNotficationThreshold, // Integer DWORD
 HighNotificationThreshold // Integer DWORD
}

Table 9-224 MBM Package Details

9.12.2.2 _MSM (Memory Set Monitoring)
This optional object sets the memory bandwidth monitoring parameters described in Table 9-224.

Arguments: (4)

Arg0 – WindowSize (Integer(DWORD)): indicates the window size in seconds.

Arg1 – SamplingInterval (Integer(DWORD)): indicates the sampling interval in seconds.

Arg2 – LowNotificationThreshold (Integer(DWORD)): indicates the low notification threshold in
percent. Must be <= HighNotificationThreshold.

Arg3 – HighNotificationThreshold (Integer(DWORD)): indicates the high notification threshold in
percent. Must be >= LowNotificationThreshold.

Return Value:

An Integer (DWORD) containing a bit encoded result code as follows:

0x00000000 – Succeeded to set all memory bandwidth monitoring parameters.

Field Format Description

Revision Integer Current revision is: 0

Window Size Integer
(DWORD)

This field indicates the size of the averaging window (in seconds) that
the platform uses to report average bandwidth.

Sampling Interval Integer
(DWORD)

This field indicates the sampling interval (in seconds) that the platform
uses to record bandwidth during the averaging window.

Maximum
Bandwidth

Integer
(DWORD)

This field indicates the maximum memory bandwidth (in megabytes
per second) for the memory described by this memory device.

Average Bandwidth Integer
(DWORD)

This field indicates the moving average memory bandwidth (in
percent) for the averaging window.

Low Bandwidth Integer
(DWORD)

This field indicates the lowest memory bandwidth (in percent)
recorded for the averaging window.

Low Notification
Threshold

Integer
(DWORD)

The platform to issues a Notify (0x80) on the memory device when the
moving average memory bandwidth value (in percent) falls below the
value indicated by this field.

High Notification
Threshold

Integer
(DWORD)

The platform to issues a Notify (0x81) on the memory device when the
moving average memory bandwidth value (in percent) increases to or
exceeds the value indicated by this field.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 459

ACPI-Defined Devices and Device-Specific Objects
Non-Zero – At least one memory bandwith monitoring parameter value could not be set as
follows:

Table 9-225 MSM Result Encoding

9.12.3 _OSC Definition for Memory Device
OSPM evaluates _OSC under the Memory Device to convey OSPM capabilities to the platform.
Argument definitions are as follows:

Arguments: (4)

Arg0 – UUID (Buffer): 03B19910-F473-11DD-87AF-0800200C9A66

Arg1 – Revision ID (Integer): 1

Arg2 – Count of Entries in Arg3 (Integer): 2

Arg3 – DWORD capabilities (Buffer): First DWORD: as described in Section 6.2.9, Second
DWORD: See Table 6-181.

Return Value:

A Buffer containing platform capabilities

Table 9-226 Memory Device _OSC Capabilities DWORD number 2

Return Value Information
Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a

buffer of DWORDs of the same length. Set bits indicate acknowledgement and cleared bits
indicate that the platform does not support the capability.

Bits Definition

0 If clear indicates WindowSize was set successfully. If set, indicates invalid WindowSize
argument.

1 If clear indicates SamplingInterval was set successfully. If set, indicates invalid
SamplingInterval argument.

2 If clear indicates LowNotificationThreshold was set successfully. If set, indicates invalid
LowNotificationThreshold argument.

3 If clear indicates HighNotificationThreshold was set successfully. If set, indicates invalid
HighNotificationThreshold argument.

31:4 Reserved (must be 0)

Bits Field Name Definition

0 Memory
Bandwidth
Change
Notifications

This bit is set if OSPM supports the processing of memory bandwidth change
notifications. If the platform supports the ability to issue a notification when
Memory Bandwidth changes, it may only do so after _OSC has been evaluated
with this bit set. _OSC evaluation with this bit clear will cause the platform to
cease issuing notifications if previously enabled.

31:1 Reserved (must be 0)
460 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
9.12.4 Example: Memory Device

Scope (_SB){
 Device (MEM0) {
 Name (_HID, EISAID (“PNP0C80”))
 Name (_CRS, ResourceTemplate () {
 QWordMemory
 ResourceConsumer,
 ,
 MinFixed,
 MaxFixed,
 Cacheable,
 ReadWrite,
 0xFFFFFFF,
 0x10000000,
 0x30000000,
 0,
 ,,)
 }
 }
}

9.13 _UPC (USB Port Capabilities)
This optional object is a method that allows the platform to communicate to the operating system,
certain USB port capabilities that are not provided for through current USB host bus adaptor
specifications (e.g. UHCI, OHCI and EHCI). If implemented by the platform, this object will be
present for each USB port (child) on a given USB host bus adaptor; operating system software can
examine these characteristics at boot time in order to gain knowledge about the system’s USB
topology, available USB ports, etc. This method is applicable to USB root hub ports as well as ports
that are implemented through integrated USB hubs.

Arguments:

None

Return Value:

A Package as described below

Return Value Information:

Package {
 Connectable // Integer (BYTE)
 Type // Integer (BYTE)
 Reserved0 // Integer
 Reserved1 // Integer)
}

Table 9-227 UPC Return Package Values

Element Object Type Description

Connectable Integer
(BYTE)

If this value is non-zero, then the port is connectable. If this value is zero, then
the port is not connectable.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 461

ACPI-Defined Devices and Device-Specific Objects
Additional Notes:
The definition of a 'connectable' port is dependent upon the implementation of the USB port within a
particular platform. For example,

• If a USB port is user visible (as indicated by the _PLD object) and connectable, then an end user
can freely connect and disconnect USB devices to the USB port.

• If a USB port is not user visible and is connectable, then an end user cannot freely connect and
disconnect USB devices to the USB port. A USB device that is directly "hard-wired" to a USB
port is an example of a USB port that is not user visible and is connectable.

• If a USB port is not user visible and is not connectable, then the USB port is physically
implemented by the USB host controller, but is not being used by the platform and therefore
cannot be accessed by an end user.

A USB port cannot be specified as both visible and not connectable.

Example
The following is an example of a port characteristics object implemented for a USB host controller’s
root hub where:

• Three Ports are implemented; Port 1 is not user visible/not connectable and Ports 2 and 3 are
user visible and connectable.

• Port 2 is located on the back panel

• Port 3 has an integrated 2 port hub. Note that because this port hosts an integrated hub, it is
therefore not sharable with another host controller (e.g. If the integrated hub is a USB2.0 hub,
the port can never be shared with a USB1.1 companion controller).

• The ports available through the embedded hub are located on the front panel and are adjacent to
one another.

Type Integer
(BYTE)

Specifies the host connector type. It is ignored by OSPM if the port is not user
visible:
0x00: Type ‘A’ connector
0x01: Mini-AB connector
0x02: ExpressCard
0x03: USB 3 Standard-A connector
0x04: USB 3 Standard-B connector
0x05: USB 3 Micro-B connector
0x06: USB 3 Micro-AB connector
0x07: USB 3 Power-B connector
0x08 – 0xFE: Reserved
0xFF: Proprietary connector

Reserved0 Integer This value is reserved for future use and must be zero.

Reserved1 Integer This value is reserved for future use and must be zero.

Element Object Type Description
462 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figure 9-49 USB ports

//
// Root hub device for this host controller. This controller implements 3 root hub ports.
//
Device(RHUB) {
 Name(_ADR, 0x00000000) // Value of 0 is reserved for root HUB
 // Root hub, port 1
 Device(PRT1) {
 // Address object for port 1. This value must be 1
 Name(_ADR, 0x00000001)
 // USB port capabilities object. This object returns the system
 // specific USB port configuration information for port number 1
 // Because this port is not connectable it is assumed to be not visible.
 // Therefore a _PLD descriptor is not required.
 Name(_UPC, Package(){
 0x00, // Port is not connectable
 0xFF, // Connector type (N/A for non-visible ports)
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 – must be zero
 } // Device(PRT1)

 //
 // Root Hub, Port 2
 //
 Device(PRT2) {
 // Address object for port 2. This value must be 2
 Name(_ADR, 0x00000002)
 Name(_UPC, Package(){
 0xFF, // Port is connectable
 0x00, // Connector type – Type ‘A’
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 – must be zero

 // provide physical port location info
 Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type
 // connector

USB Host Controller

Root Hub

Port 3

Integrated Hub

Port 1

Port 1

Port 2

Port 2
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 463

ACPI-Defined Devices and Device-Specific Objects
 0x69,0x0c,0x00,0x00, // User visible, Back panel, Vertical
 // Center, shape = vert. rectangle
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied
} // Device(PRT2)

 //
 // Root Hub, Port 3
 //
 Device(PRT3) {
 // This device is the integrated USB hub.
 // Address object for port 3. This value must be 3
 Name(_ADR, 0x00000003)
 // Because this port is not connectable it is assumed to be not visible.
 // Therefore a _PLD descriptor is not required.
 Name(_UPC, Package(){
 0x00, // Port is not connectable
 0xFF, // Connector type (N/A for non-visible ports)
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 - must be zero

 //
 // Integrated hub, port 1
 //
 Device(PRT1) {
 // Address object for the port. Because the port is implemented on
 // integrated hub port #1, this value must be 1
 Name(_ADR, 0x00000001)
 // USB port characteristics object. This object returns the system
 // specific USB port configuration information for integrated hub port
 // number 1
 Name(_UPC, Package(){
 0xFF, // Port is connectable
 0x00, // Connector type – Type ‘A’
 0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

 // provide physical port location info
 Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00,, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type
 // connector

 0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. Left, shape = horz. rectangle
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied
 } // Device(PRT1)

 //
 // Integrated hub, port 2
 //
 Device(PRT2) {
 // Address object for the port. Because the port is implemented on
 // integrated hub port #2, this value must be 2
 Name(_ADR, 0x00000002)
 // USB port characteristics object. This object returns the system
 // specific USB port configuration information for integrated hub port
 // number 2
464 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Name(_UPC, Package(){
 0xFF, // Port is connectable
 0x00, // Connector type – Type ‘A’
 0x00000000, // Reserved 0 – must be zero
 0x00000000}) // Reserved 1 – must be zero
 Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type
 // connector

 0xa1,0x12,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. right, shape = horz. rectangle
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF}) // Vert. and Horiz. Offsets not supplied
 } // Device(PRT2)
 } // Device(PRT3)
} // Device(RHUB)

9.13.1 USB 2.0 Host Controllers and _UPC and _PLD
Platforms implementing USB2.0 host controllers that consist of one or more USB1.1 compliant
companion controllers (e.g. UHCI or OHCI) must implement a _UPC and a _PLD object for each
port USB port that can be routed between the EHCI host controller and its associated companion
controller. This is required because a USB Port Capabilities object implemented for a port that is a
child of an EHCI host controller may not be available if the OSPM disables the parent host
controller. For example, if root port 1 on an EHCI host controller is routable to root port 1 on its
companion controller, then the namespace must provide a _UPC and a _PLD object under each host
controller’s associated port 1 child object.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 465

ACPI-Defined Devices and Device-Specific Objects
Example

Scope(_SB) {
…
Device(PCI0) {
…
 // Host controller (EHCI)
Device(USB0) {
 // PCI device#/Function# for this HC. Encoded as specified in the ACPI
 // specification
Name(_ADR, 0xyyyyzzzz)
 // Root hub device for this HC #1.
Device(RHUB) {
Name(_ADR, 0x00000000) // must be zero for USB root hub
 // Root hub, port 1
Device(PRT1) {
Name(_ADR, 0x00000001)

 // USB port configuration object. This object returns the system
// specific USB port configuration information for port number 1
// Must match the _UPC declaration for USB1.RHUB.PRT1 as it is this
// host controller’s companion
Name(_UPC, Package(){
0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// provide physical port location info for port 1
// Must match the _UPC declaration for USB1.RHUB.PRT1 as it is this
// host controller’s companion
Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’
 // type connector

 0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. Left, shape = horz. Rect.
 0x03,0x00,0x00,0x00, // ejectable, needs OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT1)
 //
 // Define other ports, control methods, etc
…
…
} // Device(RHUB)
} // Device(USB0)

 // Companion Host controller (OHCI or UHCI)
Device(USB1) {
 // PCI device#/Function# for this HC. Encoded as specified in the ACPI
 // specification
Name(_ADR, 0xyyyyzzzz)
 // Root hub device for this HC #1.
Device(RHUB) {
Name(_ADR, 0x00000000) // must be zero for USB root hub
 // Root hub, port 1
466 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Device(PRT1) {
Name(_ADR, 0x00000001)
// USB port configuration object. This object returns the system
// specific USB port configuration information for port number 1
// Must match the _UPC declaration for USB0.RHUB.PRT1 as this host
// controller is a companion to the EHCI host controller
// provide physical port location info for port 1
Name(_UPC, Package(){
0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// Must match the _PLD declaration for USB0.RHUB.PRT1 as this host
// controller is a companion to the EHCI host controller
Name(_PLD, Package(1) {
 Buffer(0x14) {
 0x82,0x00,0x00,0x00, // Revision 2, Ignore color
 // Color (ignored), width and height not
 0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’
 // type connector

 0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
 // lower, horz. Left, shape = horz. Rect.
 0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
 0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied
} // Device(PRT1)
 //
 // Define other ports, control methods, etc
…
…
} // Device(RHUB)
} // Device(USB1)
} // Device(PCI0)
} // Scope(_\SB)

9.14 Device Object Name Collision
Devices containing both _HID and _CID may have device specific control methods pertaining to
both the device ID in the _HID and the device ID in the _CID. These device specific control
methods are defined by the device owner (a standard body or a vendor or a group of vendor
partners). Since these object names are not controlled by a central authority, there is a likelihood that
the names of objects will conflict between two defining parties. The _DSM object described in the
next section solves this conflict.

9.14.1 _DSM (Device Specific Method)
This optional object is a control method that enables devices to provide device specific control
functions that are consumed by the device driver.

Arguments: (4)

Arg0 – A Buffer containing a UUID

Arg1 – An Integer containing the Revision ID

Arg2 – An Integer containing the Function Index
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 467

ACPI-Defined Devices and Device-Specific Objects
Arg3 – A Package that contains function-specific arguments

Return Value:

If Function Index = 0, a Buffer containing a function index bitfield. Otherwise, the return value and
type depends on the UUID and revision ID (see below).

Argument Information:
Arg0: UUID – A Buffer containing the Universal Unique Identifier (16 Bytes)

Arg1: Revision ID – the function’s revision. This revision is specific to the UUID.

Arg2: Function Index – Represents a specific function whose meaning is specific to the UUID
and Revision ID. Function indices should start with 1. Function number zero is a query function (see
the special return code defined below).

Arg3: Arguments – a package containing the parameters for the function specified by the UUID,
Revision ID and Function Index. Successive revisions of Function Arguments must be backward
compatible with earlier revisions. See Section 9 “ACPI Devices and Device Specific Objects”, for
any _DSM definitions for ACPI devices. New UUIDs may also be created by OEMs and IHVs for
custom devices and other interface or device governing bodies (e.g. the PCI SIG), as long as the
UUID is different from other published UUIDs. Only the issuer of a UUID can authorize a new
Function Index, Revision ID or Function Argument for that UUID.

Return Value Information:
If Function Index is zero, the return is a buffer containing one bit for each function index, starting
with zero. Bit 0 indicates whether there is support for any functions other than function 0 for the
specified UUID and Revision ID. If set to zero, no functions are supported (other than function zero)
for the specified UUID and Revision ID. If set to one, at least one additional function is supported.
For all other bits in the buffer, a bit is set to zero to indicate if that function index is not supported for
the specific UUID and Revision ID. (For example, bit 1 set to 0 indicates that function index 1 is not
supported for the specific UUID and Revision ID.)

If the bit representing a particular function index would lie outside of the buffer, it should be
assumed to be 0 (that is, not supported).

If Function index is non-zero, the return is any data object. The type and meaning of the returned
data object depends on the UUID and Revision ID.

Implementation Note
Since the purpose of the _DSM method is to avoid the namespace collision, the implementation of
this method shall not use any other method or data object which is not defined in this specification
unless its driver and usage is completely under the control of the platform vendor.
468 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example:

// _DSM – Device Specific Method
//
// Arg0: UUID Unique function identifier
// Arg1: Integer Revision Level
// Arg2: Integer Function Index (0 = Return Supported Functions)
// Arg3: Package Parameters
Function(_DSM,{IntObj,BuffObj},{BuffObj, IntObj, IntObj, PkgObj})
{
 //
 // Switch based on which unique function identifier was passed in
 //
 switch(Arg0)
 {
 //
 // First function identifier
 //
 case(ToUUID(“893f00a6-660c-494e-bcfd-3043f4fb67c0”))
 {
 switch(Arg2)
 {
 //
 // Function 0: Return supported functions, based on revision
 //
 case(0)
 {
 switch(Arg1)
 {
 // revision 0: functions 1-4 are supported
 case(0) {return (Buffer() {0x1F})}
 // revision 1: functions 1-5 are supported
 case(1) {return (Buffer() {0x3F})}
 }
 // revision 2+: functions 1-7 are supported
 return (Buffer() {0xFF})
 }
 //
 // Function 1:
 //
 case(1)
 {
 … function 1 code …
 Return(Zero)
 }
 //
 // Function 2:
 //
 case(2)
 {
 … function 2 code …
 Return(Buffer(){0x00})
 }
 case(3) { … function 3 code …}
 case(4) { … function 4 code …}
 case(5) { if (LLess(Arg1,1) BreakPoint; … function 5 code … }
 case(6) { if (LLess(Arg1,2) BreakPoint; … function 6 code …)
 case(7) { if (LLess(Arg1,3) BreakPoint; … function 7 code …)
 default {BreakPoint }
 }
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 469

ACPI-Defined Devices and Device-Specific Objects
 }
 //
 // Second function identifier
 //
 case(ToUUID(“107ededd-d381-4fd7-8da9-08e9a6c79644”))
 {
 //
 // Function 0: Return supported functions (there is only one revision)
 //
 if (LEqual(Arg2,Zero))
 return (Buffer() {0x3}) // only one function supported
 //
 // Function 1
 //
 if (LEqual(Arg2,One))
 {
 … function 1 code …
 Return(Unicode(“text”))
 }
 //
 // Function 2+: Runtime Error
 //
 else
 BreakPoint;
 }
 }
 //
 // If not one of the function identifiers we recognize, then return a buffer
 // with bit 0 set to 0 indicating no functions supported.
 //
 return(Buffer(){0})
}

9.15 PC/AT RTC/CMOS Devices
Most computers contain an RTC device which also contains battery-backed RAM represented as a
linear array of bytes. There is a standard mechanism for accessing the first 64 bytes of non-volatile
RAM in devices that are compatible with the Motorola RTC/CMOS device that was in the IBM PC/
AT. Newer devices usually contain at least 128 bytes of battery-backed RAM. New PNP IDs were
assigned for these devices.

Certain bytes within the battery-backed RAM have pre-defined values. In particular, the time, date,
month, year, century, alarm time and RTC periodic interrupt are read-only.

9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)
The standard PC/AT-compatible RTC/CMOS device is denoted by the PnP ID PNP0B00. If an
ACPI platform uses a device that is compatible with this device, it may describe this in its ACPI
namespace. ASL may then read and write this as a linear 64-byte array. If PNP0B00 is used, ASL
and ACPI operating systems may not assume that any extensions to the CMOS exist.
470 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: This means that the CENTURY field in the Fixed ACPI Description Table may only contain values
between 0 and 63.

Example:
This is an example of how this device could be described:

Device (RTC0) {
 Name(_HID, EISAID("PNP0B00"))

Name (_FIX, Package(1) {
EISAID("PNP0B00") }
)
Name(_CRS, ResourceTemplate() {
 IO(Decode16, 0x70, 0x70, 0x1, 0x2)
}

 OperationRegion(CMS1, CMOS, 0, 0x40)

 Field(CMS1, ByteAcc, NoLock, Preserve) {
 AccessAs(ByteAcc, 0),
 CM00, 8,
 ,256,
 CM01, 8,
 CM02, 16,
 , 216,
 CM03, 8
 }

9.15.2Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)
The Intel PIIX4 contains an RTC/CMOS device that is compatible with the one in the PC/AT. But it
contains 256 bytes of non-volatile RAM. The first 64 bytes are accessed via the same mechanism as
the 64 bytes in the PC/AT. The upper 192 bytes are accessed through an interface that is only used
on Intel chips. (See 82371AB PCI-TO-ISA / IDEXCELERATOR (PIIX4) for details.)

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B01.
This will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the
programming interface of the PIIX4. Thus, the array of bytes that ASL can read and write with this
device is 256 bytes long.

Note: This also means that the CENTURY field in the Fixed ACPI Description Table may contain values
between 0 and 255.

Example:
This is an example of how this device could be described:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 471

ACPI-Defined Devices and Device-Specific Objects
Device (RTC0) {
 Name(_HID, EISAID("PNP0B01"))

Name (_FIX, Package(1) {
EISAID("PNP0B01") }
)
 Name(_CRS, ResourceTemplate() {
 IO(Decode16, 0x70, 0x70, 0x1, 0x2)
 IO(Decode16, 0x72, 0x72, 0x1, 0x2)
 }

 OperationRegion(CMS1, CMOS, 0, 0x100)

 Field(CMS1, ByteAcc, NoLock, Preserve) {
 AccessAs(ByteAcc, 0),
 CM00, 8,
 ,256,
 CM01, 8,
 CM02, 16,
 , 224,
 CM03, 8,
 , 184,
 CENT, 8
 }

9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices
(PNP0B02)

Dallas Semiconductor RTC/CMOS devices are compatible with the one in the PC/AT, but they
contain 256 bytes of non-volatile RAM or more. The first 64 bytes are accessed via the same
mechanism as the 64 bytes in the PC/AT. The upper bytes are accessed through an interface that is
only used on Dallas Semiconductor chips.

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B02.
This will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the Dallas
Semiconductor programming interface. Thus, the array of bytes that ASL can read and write with
this device is 256 bytes long.

Description of these devices is similar to the PIIX4 example above, and the CENTURY field of the
FADT may also contain values between 0 and 255.

9.16 User Presence Detection Device
The following section illustrates the operation and definition of the control method-based User
Presence Detection (UPD) device.

The user presence detection device can optionally support power management objects (e.g. _PS0,
_PS3) to allow the OS to manage the device’s power consumption.

The Plug and Play ID of an ACPI control method user presence detection device is ACPI000F.
472 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 9-228 User Presence Detection Device

9.16.1 _UPD (User Presence Detect)
This control method returns the user presence detection reading, indicating whether or not the user is
currently present from the perspective of this sensor. Three states are currently defined for UPD
sensor readings: absent, present, and unknown, represented by the values 0x00, 0x01, and 0xFF
respectively. The unknown state is used to convey that the sensor is currently unable to determine
user presence due to some environmental or other transient factor. All other values are reserved.

Arguments:

None

Return Value:

An Integer containing the user presence code:

0x00 –Absent: A user is not currently detected by this sensor.

0x01 –Present: A user is currently detected by this sensor.

0xFF –Unknown: The sensor is currently unable to determine if a user is present or absent.

9.16.2 _UPP (User Presence Polling)
This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this
user presence sensor. A value of zero – or the absence of this object when other UPD objects are
defined – indicates that the OS does not need to poll the sensor in order to detect meaningful changes
in user presence (the hardware is capable of generating asynchronous notifications).

Arguments:

None

Return Value:

An Integer containing the recommended polling frequency in tenths of seconds. A value of zero
indicates that polling is not required.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design
systems that asynchronously notify OSPM whenever a meaningful change in user presence occurs—
relieving the OS of the overhead associated with polling.

This value is specified as tenths of seconds. For example, a value of 10 would be used to indicate a 1
second polling frequency. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

Object Description

_UPD The current user presence detection reading. [Required]

_UPP User presence detection polling frequency in tenths of seconds. [Optional]
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 473

ACPI-Defined Devices and Device-Specific Objects
9.16.3 User Presence Sensor Events
To communicate changes in user presence to OSPM, AML code should issue a
Notify(upd_device, 0x80) whenever a change in user presence has occurred. The OS
receives this notification and calls the _UPD control method to determine the current user presence
status.

UPD notifications should be generated whenever a transition occurs between one of the user
presence states (absent, present, or unknown) – but at a level of granularity that provides an
appropriate response without overly taxing the system with unnecessary interrupts.

9.17 I/O APIC Device
This optional device describes a discrete I/O APIC device that is not bus enumerated (e.g., as a PCI
device). Describing such a device in the ACPI namespace is only necessary if hot plug of this device
is supported. If hot plug of this device is not supported, an MADT I/O APIC (Section 5.2.12.3,”I/O
APIC Structure”) entry or I/O SAPIC (Section 5.2.12.9, “I/O SAPIC Structure”) entry is sufficient
to describe this device.

An I/O APIC device is an I/O unit that complies with either of the APIC interrupt models supported
by ACPI. These interrupt models are described Section 5.2.12.3,”I/O APIC Structure” and
Section 5.2.12.9,”I/O SAPIC Structure”. If the device is an I/O unit that complies with the APIC
interrupt model, it is declared using the ACPI000A identifier. If this device is an I/O unit that
complies with the SAPIC interrupt model, it is declared using the ACPI000B identifier. If this device
complies with both the APIC and SAPIC interrupt models (I/OxAPIC), it is declared using the
ACPI0009 identifier.

An I/O APIC device declared using any of the above identifiers must contain a _GSB object as
defined inSection 6.2.6, “_GSB (Global System Interrupt Base)” to report its Global System
Interrupt Base. It must also contain a _CRS object that reports the base address of the I/O APIC
device. The _CRS object is required to contain only one resource, a memory resource pointing to the
I/O APIC register base.

Note: Because the _CRS and _GSB methods provide sufficient information, it is not necessary to
provide _MAT under an I/O APIC device.

For an I/O APIC device that is described both in the MADT and in the namespace, the base address
described in the MADT entry must be the same as the base address in the IO APIC device _CRS at
boot time. OSPM must use the information from the MADT until such a time as the _CRS and
_GSB methods in the namespace device can be processed. At this point OSPM must ignore the
MADT entry.

9.18 Time and Alarm Device
The following sections define the operation and definition of the optional control method-based
Time and Alarm device, which provides a hardware independent abstraction and a more robust
alternative to the Real Time Clock (RTC), See Section 9.15, "PC/AT RTC/CMOS Devices".

The time capabilities of the time and alarm device maintain the time of day information across
platform power transitions, and keep track of time even when the platform is turned off. It is
474 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
expected that the time on the platform will be consistent when different firmware interfaces are used
to query the platform time. For example, a UEFI call to get the time should return the same time as if
the OSPM used the time and alarm device at the same point in time.

The Time and Alarm device can optionally support power management objects (e.g. _PS0, _PS3) to
allow the OS to manage the device's power consumption.

The Time andAlarm device must support control method _PRW for being enabled to wake up the
system. It might support _DSW or _PSW to provide the functionality to enable or disable the
device's ability to wake a sleep system. On Hardware-reduced ACPI platforms, _PRW is only
required if the device depends on ACPI-defined power resources. _PRW’s GPEInfo structure is
ignored by OSPM. For enabling Wakeup, _DSW and _SxW are used, and the wakeup event is
signaled by the GPIO-signaled ACPI event mechanism (Section 5.6.5).

The Plug and Play ID of the Time and Wake Alarm device is ACPI000E.

Table 9-229 Time and Alarm Device

9.18.1Overview
The Time and Alarm device provides an alternative to the real time clock (RTC), which is defined as
a fixed feature hardware device. The wake timers allow the system to transition from the S3 (or
optionally S4/S5) state to S0 state after a time period elapses. In comparison with the Real Time
Clock (RTC) Alarm, the Time and Alarm device provides a larger scale of flexibility in the
operation of the wake timers, and allows the implementation of the time source to be abstracted from
the OSPM.

Time and Alarm device provides the OSPM with a firmware abstraction of time and alarm services
that can be applicable to a variety of hardware designs. The methods for setting and getting real time
provide an alternative to the (RTC). In addition the device provides two different levels of wake
services, depending on the platform capabilities, AC/DC wake or AC wake.

Time and Alarm devices that implement AC/DC wake service contain two programmable timers that
can be configured to wake the system depending on the platform's current power source (AC or DC)
when the timers expire. The two timers, which are referred to as the AC timer and the DC timer, are
independent in that they are individually programmable and applicable without interfering each
other. Each of the timers can be programmed with the number of seconds to elapse from the time the
timer is programmed until a wake is requested. When a timer expires, the Time and Alarm device

Object Description

_GCP Get the capabilities of the time and alarm device

_GRT Get the Real time

_SRT Set the Real time

_GWS Get Wake status

_CWS Clear Wake Status

_STP Sets expired timer wake policy for the specified timer.

_STV Sets the value in the specified timer.

_TIP Returns the current expired timer policy setting of the specified timer.

_TIV Returns the remaining time of the specified timer.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 475

ACPI-Defined Devices and Device-Specific Objects
decides whether to wake the system based on the current power source. If the current power source
is consistent with the timer type that expired, a wake signal will be asserted. Otherwise, the wake
signal will not be asserted.

Time and Alarm devices that implement the AC only (power independent) wake contain one
programmable timer that can be configured to wake up the system regardless of the platform's power
source when the timer expires. To simplify the programming interface the AC wake will use the AC
timer portion of the AC/DC wake; writes to the DC timer when AC only wake is supported will be
ignored.

To simplify the programming interface for the time and alarm device, timer expiration events will
persist. This means that if the OSPM programs a wake timer that expires before the OSPM
completes the transition into S3 (or S4/S5 if supported) the time and alarm device will wake the
system immediately after the OSPM completes the transition. Figure 9-51 illustrates this behavior.

Figure 9-50 Persistence of expired timer events

The time and alarm device will provide the OSPM with an interface to query the status of the wake
timers and discover what timers have expired. This interface enables the OSPM to discover the wake
source. The status of wake timers can be reset by setting the wake alarm; the OSPM may clear the
alarm status using the clear wake status method. All expired wake timer must be cleared if the
OSPM requires the platform to stay in S3 (S4/S5), otherwise the expired timers will immediately
wake up the system.

For the AC/DC wake services, and in case the current power source is inconsistent with the timer
type that expires, an expired timer wake policy value, in units of seconds, is defined that enables the
time and alarm device to wake the system when the power source corresponding to the expired timer
becomes active (wake either immediately, after some time period, or never). The expired timer wake
policy is applicable only on devices that support AC/DC wake and only when the timer expires and

S0

S3

OSPM programs
the wake timer

Wake timer
expires

OSPM

completes
transition
into S3

Wake device

immediately
wakes the
system

Time
476 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
the power source is not consistent with the timer type. The expired timer policy is applied in
conjunction with expired timer persistence described earlier.

For example, if a mobile platform programs the AC timer to be 2 hours long and DC timer to be 4
hours long and then transitions from the S0 state to S3 state at 1:00 AM, the AC timer is set to expire
at 3:00 AM and the DC timer is set to expire at 5:00 AM. For the AC Timer, a expired timer wake
policy value is programmed as 60 seconds.

If the platform is unplugged from AC power at 1:40 AM and remains unplugged, the Time and
Alarm Device will not wake up the system at 3:00 AM. If the platform remains on DC power until
5:00 AM when the DC timer expires, a wake signal will then be asserted. The following graph
illustrates the above example.

Figure 9-51 System transitions with WakeAlarm -- Timer

If the AC power is plugged in again at 4:00 AM, then the system will be woken up at 4:01 AM due
to the AC expired timer wake policy value setting. The following graph illustrates this.

Go to S3 AC timer expires DC timer expires

Time

4 hours

2 hours

S0

S3

AC

DC

1:00 AM 1:40 AM 3:00 AM 5:00 AM
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 477

ACPI-Defined Devices and Device-Specific Objects
Figure 9-52 System transitions with WakeAlarm -- Policy

The Time and Alarm device can support a range of services, the OSPM evaluates the _GCP object to
get the supported capabilities of the device. If the capabilities indicate that the device supports time
services, the OSPM evaluates the _GRT and _SRT objects to get and set time respectively.

If alarm services are supported by the device, the OSPM evaluates the _STV object to program both
the AC and DC timer values. The values, which are in units of seconds, indicate the elapsed time
before the timer expires. OSPM evaluates the _TIV object to read the current AC and DC timer
values (seconds remaining until expiration).

OSPM evaluates the _STP object to set timer policies for both the AC and DC timers OSPM reads
the current timer policy by evaluating the _TIP object, which return policy settings for both the AC
and DC timer.

The OSPM evaluates the _GWS object to identify expired timers that may have waked the platform.
The OSPM must evaluate the _CWS object to clear any expired timer events that can prevent the
system from performing a sleep transition according the expired timer wake policy, and the expired
timer persistence described above.

The Time and Alarm device, if implemented with wake support, must support waking up the system
from S3. Waking from S4/S5 support is optional. If the Time and Alarm device support AC/DC
wake, Wake support for any power state must be made available on both AC and DC power sources.

9.18.2 _GCP (Get Capability)
This object is required and provides the OSPM with a bit mask of the device capabilities. The device
can implement the time function in addition to the wake function. The capabilities bitmask will
indicate to the OSPM what support is implemented. If the platform implements both AC and DC
timers then it is capable of waking up based on the power source

Go to S3 AC timer expires DC timer expires

Time

4 hours

2 hours

S0

S3

AC

DC

1:00 AM 1:40 AM 3:00 AM 5:00 AM

4:00 AM
478 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments: (0)

Return Value:

A 32-bit integer containing a result bitmask as follows:

Bit 0 - 1 = AC wake implemented, 0 = not supported

Bit 1 - 1 = DC wake implemented, 0 = not supported

Bit 2 - 1 = Get/Set real time features implemented, 0 = not supported

Bit 3 - 1 = Real time accuracy in milliseconds, 0 = Real time accuracy in seconds

Bit 4 to 31 are reserved and must be 0.

9.18.3 _GRT (Get Real Time)
This object is required if the capabilities bit 2 is set to 1. The OSPM can use this object to get time.
The return value is a buffer containing the time information as described below.

Arguments: (0)

Return Value:

A buffer containing the time information, in the following format
Buffer(){
UINT16 Year; // 1900 - 9999
UINT8 Month; // 1 - 12
UINT8 Day; // 1 - 31
UINT8 Hour; // 0 - 23
UINT8 Minute; // 0 - 59
UINT8 Second; // 0 - 59
UINT8 Valid; // 0 - Time is not valid (request failed); 1 - Time is valid
UINT16 milliseconds, // 1-1000
INT16 TimeZone; // -1440 to 1440 or 2047 (unspecified)
UINT8 Daylight;
UINT8 Pad2[3]; // Reserved, must be zero
}

9.18.4 _SRT (Set Real Time)
This object is required if the capabilities bit 2 is set to 1. The OSPM can use this object to set the
time. The argument is a buffer containing the time information, as defined above.

Arguments: (1)

A buffer containing the time information, in the following format:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 479

ACPI-Defined Devices and Device-Specific Objects
Buffer (){
UINT16 Year; // 1900 - 9999
UINT8 Month; // 1 - 12
UINT8 Day; // 1 - 31
UINT8 Hour; // 0 - 23
UINT8 Minute; // 0 - 59
UINT8 Second; // 0 - 59
UINT8 Pad1;
UINT16 milliseconds, // 1-1000
INT16 TimeZone; // -1440 to 1440 or 2047 (unspecified)
UINT8 Daylight;
UINT8 Pad2[3];
}

Return Value:

An Integer:

0 - success

0xFFFFFFFF- Failed

Note: Time is maintained using a battery backed time device (e.g. a real time clock)

Note: The time will always be local time; the time zone value can be used to determine the offset from
UTC.

Note: Time zone field is the number of minutes that the local time lags behind the UTC time. (i.e. time
zone = UTC - local time)

Note: Time zone value of 2047, means that time zone value is not specified, and no relation to UTC can
be inferred.

Note: Daylight is a bitmask containing the daylight savings time information for the time, as follows:

Bit0: 1 = the time is affected by daylight savings time, 0= time is not affected by daylight savings.
This value does not indicate that the time has been adjusted for daylight savings time. It
indicates only that it should be adjusted when the time enters daylight savings time.

Bit1: 1= the time has been adjusted for daylight savings time, 0= the time hasn't been adjusted for
daylight savings.

All other bits must be zero.

When entering daylight saving time, if the time is affected, but hasn't been adjusted (DST = 1), use
the new calculation:

• The date/time should be increased by the appropriate amount.

• The TimeZone should be decreased by the appropriate amount (EX: +480 changes to +420 when
moving from PST to PDT).

• The Daylight value changes to 3.

When exiting daylight saving time, if the time is affected and has been adjusted (DST = 3), use the
new calculation:

• The date/time should be decreased by the appropriate amount.

• The TimeZone should be increased by the appropriate amount.

• The Daylight value changes to 1.
480 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
9.18.5 _GWS (Get Wake alarm status)
This object is required and enables the OSPM to read the status of wake alarms. Expired wake timers
will wake the platform even if the transition to a sleep state was completed after the wake timer has
expired. This method enables the OSPM to retrieve the status of wake timers and clear any of them if
needed.

Arguments: (1)

Arg0 - Timer Identifier (Integer (DWORD)): indicates the timer to be cleared:

0x00000000 - AC Timer

0x00000001 - DC Timer

Return Value:

An Integer (DWORD) containing current expired timers in bit field

Bit 0- 1 = timer expired, 0 = timer did not expired

Bit 1- 1= timer caused a platform wake, 0 = timer did not cause a platform wake

Bit 2-31 reserved and should be 0.

9.18.6 _CWS (Clear Wake alarm status)
This object is required and enables the OSPM to clear the status of wake alarms. Expired wake
timers will wake the platform even if the transition to a sleep state was completed after the wake
timer has expired. This method enables the OSPM to clear the status of expired wake timers.

 Arguments: (1)

Arg0 - Timer Identifier (Integer (DWORD)): indicates the timer to be cleared:

0x00000000 - AC Timer

0x00000001 - DC Timer

Return Value:

An Integer (DWORD) containing current expired timer wake policy:

0x00000000 - Success

0x00000001 - Failure

9.18.7 _STP (Set Expired Timer Wake Policy)
This object is required and sets the expired timer wake policy. The policy is applied when a
corresponding timer expired but the wake signal was not asserted as a result of the power source.
The platform accumulates elapsed time on the power source and asserts the wake signal when the
elapsed timer on the power source exceeds the expired timer wake policy value. Power source
transitions do not reset the expired timer wake policy values. When the Wake Alarm device asserts
the wake, the expired timer wake policy values of both the AC timer and DC timer are reset to
0xFFFFFFFF automatically by hardware.

Arguments: (2)

Arg0 – TimerIdentifier (Integer(DWORD)): indicates the timer to be set:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 481

ACPI-Defined Devices and Device-Specific Objects
0x00000000 – AC Timer

0x00000001 – DC Timer

Arg1 – ExpiredTimerWakePolicy (Integer(DWORD)): indicates the expired timer wake policy:

0x00000000 – The timer will wake up the system instantly after the power source changes.

0x00000001 – 0xFFFFFFFE: time between the power source changes and the timer wakes up the
system (in units of second).

0xFFFFFFFF – The timer will never wake up the system after the power source changes.

Return Value:

An Integer containing a result code as follows:

0x00000000 – Succeeded to set the expired timer wake policy.

0x00000001 – Failed to set the timer policy. Actual timer policy unknown.

9.18.8 _STV (Set Timer Value)
This object is required and sets the timer to the specified value. As defined in _TIV, the value
indicates the number of seconds between the time when the timer is programmed and the time when
it expires. When the Wake Alarm device asserts the wake signal, the timer value is automatically
reset to 0xFFFFFFFF (disabled).

Arguments: (2)

Arg0 – TimerIdentifier (Integer (DWORD)): indicates the timer to be set:

0x00000000 – AC Timer

0x00000001 – DC Timer

Arg1 – TimerValue (Integer): indicates the value to be set.

Return Value:

An Integer containing a result code as follows:

0x00000000 – Succeeded to set timer value.

0x00000001 – Failed to set timer value. Actual timer value unknown.

9.18.9 _TIP (Expired Timer Wake Policy)
This object is required and returns the current expired timer wake policy setting of the specified
timer.

Arguments: (1)

Arg0 – TimerIdentifier (Integer (DWORD)): indicates the timer to be read:

0x00000000 – AC Timer

0x00000001 – DC Timer

Return Value:

An Integer (DWORD) containing current expired timer wake policy:

0x00000000 – The timer will wake up the system instantly after the power source changes
482 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
0x00000001 – 0xFFFFFFFE: Time between the power source changes and the timer wakes up the
system (in units of seconds)

0xFFFFFFFF – The timer will never wake up the system after the power source changes

9.18.10 _TIV (Timer Values)
This object is required and returns the remaining time of the specified timer before it expires.

Arguments: (1)

Arg0 – TimerIdentifier (Integer(DWORD)): indicates the timer to be read:

0x00000000 – AC Timer

0x00000001 – DC Timer

Return Value:

An Integer containing the current timer value. A value of 0xFFFFFFFF indicates that the timer is
disabled.

9.18.11 ACPI Wakeup Alarm Events
The Wake Alarm, device as a generic hardware, supports control methods _PSW and _PRW to wake
up the system and issues a Notify(<device>, 0x2) on the wakeup alarm device.

9.18.12 Relationship to Real Time Clock Alarm
Though both of the devices support wakeup timers to wake up system from sleeping state, they work
independently. The Real Time Clock Alarm is defined as a fixed feature hardware whereas Time and
Alarm device is defined as a generic hardware and can replace or coexist with the real time clock.
OSPM may choose which device to utilize to provide timed wake capability.

9.18.13 Time and Alarm device as a replacement to the RTC
The Time and Alarm device can be an alternative to the RTC on some platforms where the legacy
RTC hardware is not available, on these platforms the OSPM can use the Time and Alarm device to
obtain time and set wake alarms. For platforms that don't require AC/DC wake service (e.g. a
platform that have one power source only) the AC timer can be used to provide all the functions that
were traditionally provided by the RTC. Using the capabilities object the Time and Alarm device
can provide a scalable range of services to the OSPM.

9.18.14 Relationship to UEFI time source
The Time and Alarm device must be driven from the same time source as UEFI time services. This
ensures that the platform has a consistent value of real time (time of day) and wake alarms. The
OSPM can interact with this value using either ACPI or UEFI.

• OSPM must use only one runtime interface to configure/query the platform alarm(s); undefined
behavior may occur if the two wakeup interfaces are used on the same hardware.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 483

ACPI-Defined Devices and Device-Specific Objects
• If OSPM is trying to set an alarm using EFI runtime services, the alarm should be honored
regardless of the power source (i.e. if the platform has an independent timer for each power
source, they should both be configured with that alarm).

9.18.15 Example ASL code
The following ASL code serves as an example of how the Time and Alarm Device could be
implemented. It is beyond the capability and the scope of this specification to provide a complete
hardware implementation example.
484 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example 1: Define an ACPI Wake Alarm device

Device(_SB.AWAK){
Name(_HID, "ACPI000E") //device ID
Name(_PRW, Package(){...})//enable or disable to wake up the system
OperationRegion(CMOP, EmbeddedControl, ...)
Field(CMOP, ByteAcc, ...){
…….. //timer status and policies
}
Method(_GCP) {
Return (0x03) //Both AC and DC alarms are implemented; Time capability is NOT supported
}
Method(_STP, 2){
If(LEqual(Arg0, 0) {
Store(Arg1, …) //Set AC timer policy
}
Else {
Store(Arg1, …) //Set DC timer policy
}
Return(0)
}
Method(_TIP, 1){
If(LEqual(Arg0, 1) {
Store(…, Local0) //Get DC timer policy
}
Else {
Store(…, Local0) //Get AC timer policy
}
Return (Local0)
}
Method(_STV, 2){
If(LEqual(Arg0, 0) {
Store(Arg1, …) //Set AC timer value
}
Else {
Store(Arg1, …) //Set DC timer value
}
Return(0)
}

Method(_TIV, 1){
If(LEqual(Arg0, 1) {
Store(…, Local0) //Get DC timer value
}
Else {
Store(…, Local0) //Get AC timer value
}
Return (Local0)
}
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 485

ACPI-Defined Devices and Device-Specific Objects
Method(_GWS, 1){
If(LEqual(Arg0, 1) {
Store(…, Local0) //Get DC timer wake status
}
Else {
Store(…, Local0) //Get AC timer wake status
}
Return (Local0)
}
Method(_CWS, 2){
If(LEqual(Arg0, 0) {
Store(0, …) //Clear AC Wake status
}
Else {
Store(0, …) //Clear DC Wake status
}
Return(0)
}
} // end of ACPI Wake Alarm device object
Scope(_GPE) { // Root level event handlers
Method(_Lxx){
Store(One, ...)
Notify(_SB.AWA, 0x2) //notify the OSPM of device wake
}
} // end of _GPE scope

Example 2: Define an ACPI Real Time device on a HW-Reduced ACPI
platform

Device(_SB.I2C1) //The controller used to access the RTC hardware
{
 Name (_HID, ...)
 ...// Other objects required for this I2C controller
 // Track status of SPB OpRegion availability for this controller
 Name(AVBL, 0)
 Method(_REG,2)
 {
 /* 9 is the OpRegion type for SPB. (8 == GPIO, etc) */
 If (Lequal(Arg0, 9))
 {
 Store(Arg1, ^AVBL)
 }
 }
}
Device(_SB.TAAD) //The Time and Alarm Device
{
 Name (_HID, "ACPI000E")
 Scope(_SB.I2C1) //OpRegion declaration must appear under the controller
 {
 OperationRegion(TOP1, GenericSerialBus, 254, 0x100)
 Field(TOP1, BufferAcc, NoLock, Preserve)
 {
 Connection(I2CSerialBus(0x4a,,400000,,"_SB.I2C1",,,,)), //Connection to the
controller for the following field accesses
 AccessAs(BufferAcc, AttribWord), //AccessProtocol for the following field(s)
 Y, 8,
 AccessAs(BufferAcc, AttribByte),
 M, 8,
 D, 8,
486 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 H, 8,
 Mi,8,
 S, 8,
 P, 8,
 AccessAs(BufferAcc, AttribWord),
 Ms, 8,
 Tz, 8,
 AccessAs(BufferAcc, AttribByte),
 Dl, 8,
 P2, 8
 }
 }
 Method (_GCP, 0x0, NotSerialized)
 {
 Return(0x4) //Implements Real Time interface, but no alarms
 }
 Method(_GRT, 0x0, NotSerialized)
 {
 If(LNotEqual(_SB.TC1.AVBL, 1)) // Verify that SPB OpRegion is available for this
access
 {
 Return(0)
 }
 Name(BUFF, Buffer(4){}) // Create SerialBus data buffer as BUFF
 CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
 CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Byte)
 Name(BUF2,Buffer(0x10){}) // Create buffer to hold the Real Time structure as BUF2
 CreateWordField(BUF2, 0x0,Y) //year
 CreateByteField(BUF2,0x2,M) //Month
 ...
 CreateByteField(BUF2,0xc,Dl) //Dl
 CreateByteField(BUF2,0xd,P2) //Pad2
 Store(_SB.I2C1.Y, BUFF) //Get each member from the OpRegion and store in the structure
 Store(DATA,Y)
 Store(_SB.I2C1.M, BUFF)
 Store(DATA,M)
 ...
 Store(_SB.I2C1.Dl, BUFF)
 Store(DATA,Dl)
 Store(_SB.I2C1.P2, BUFF)
 Store(DATA,P2)
 Return(BUF2) // Success -> return what was last in buffer
 }
 Method(_SRT,0x1, NotSerialized)
 {
 Name(BUFF, Buffer(4){}) // Create SerialBus data buffer as BUFF
 CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
 CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Byte)
 // Verify that SPB OpRegion is available for this access
 If(LNotEqual(_SB.I2C1.AVBL, 1))
 {
 Return(0)
 }
 CreateWordField(Arg0,0x0,Y) //Create Fields to access each member of the input data
 ...
 CreateByteField(Arg0,0xd,P2)

 Store(Store(Y, _SB.I2C1.Y), BUFF) //Store each input member into the hardware, and
 //set the transaction status into BUFF
 If(LEqual(STAT, 0x00)) //Transaction was _NOT_successful
 {
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 487

ACPI-Defined Devices and Device-Specific Objects
 Return(0xFFFFFFFF)
 }

 ...
 Store(Store(P2, _SB.I2C1.P2), BUFF)
 If(LEqual(STAT, 0x00)) //Transaction was _NOT_successful
 {
 Return(0xFFFFFFFF)
 }
 }
 Name(_DEP, Package() {"_SB.I2C1"}) //Identify the OpRegion dependency for this device
}

488 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
10
Power Source and Power Meter Devices

This section specifies the battery, AC adapter, and power source device objects OSPM uses to
manage power resources, as well as the power meter device objects OSPM uses to measure power
consumption.

A battery device is required to either have a Smart Battery subsystem or a Control Method Battery
interface as described in this section. OSPM is required to be able to connect and manage a battery
on either of these interfaces. This section describes these interfaces.

In the case of a compatible ACPI Smart Battery Table, the Definition Block needs to include a Bus/
Device package for the SMB-HC. This will install an OS-specific driver for the SMBus, which in
turn will locate the components of the Smart Battery subsystem. In addition to the battery or
batteries, the Smart Battery subsystem includes a charger and a manager device to handle
subsystems with multiple batteries.

The Smart Battery System Manager is one implementation of a manager device that is capable of
arbitrating among the available power sources (AC power and batteries) for a system. It provides a
superset of the Smart Battery Selector functionality, such as safely responding to power events (AC
versus battery power), inserting and removing batteries and notifying the OS of all such changes.
Additionally, the Smart Battery System Manager is capable of handling configurations including
simultaneous charging and discharging of multiple batteries. Unlike the Smart Battery Selector that
shares responsibility for configuring the battery system with OSPM, the Smart Battery System
Manager alone controls the safe configuration of the battery system and simply issues status changes
to OSPM when the configuration changes. Smart Battery System Manager is the recommended
solution for handling multiple-battery systems.

A Power Meter device is the logical representation of a platform sensor that measures the power
consumption of one or more devices in the system. A basic platform implementation implements
interfaces that query the current power consumption and get the currently configured power
consumption hardware limit, while more advance power meter device implementations provide
interfaces that support OSPM configurable power consumption trip points that trigger SCI events, or
enable configuration of the underlying hardware to enforce a hard limit on the maximum amount of
power that can be consumed.

10.1 Smart Battery Subsystems
The Smart Battery subsystem is defined by the:

• System Management Bus Specification (SMBS)

• Smart Battery Data Specification (SBDS)

• Smart Battery Charger Specification (SBCS)

• Smart Battery System Manager Specification (SBSM)

• Smart Battery Selector Specification (SBSS)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 489

Power Source and Power Meter Devices
An ACPI-compatible Smart Battery subsystem consists of:

• An SMB-HC (CPU to SMB-HC) interface

• At least one Smart Battery

• A Smart Battery Charger

• Either a Smart Battery System Manager or a Smart Battery Selector if more than one Smart
Battery is supported

In such a subsystem, a standard way of communicating with a Smart Battery and Smart Battery
Charger is through the SMBus physical protocols. The Smart Battery System Manager or Smart
Battery Selector provides event notification (battery insertion/removal, and so on) and charger
SMBus routing capability for any Smart Battery subsystem. A typical Smart Battery subsystem is
illustrated below:
490 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figure 10-53 Typical Smart Battery Subsystem (SBS)

SMBus defines a fixed 7-bit slave address per device. This means that all batteries in the system
have the same address (defined to be 0xB). The slave addresses associated with Smart Battery
subsystem components are shown in the following table.

Table 10-230 Example SMBus Device Slave Addresses

Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’s
Command value. SMBus devices are addressed by providing the slave address with the desired
register’s Command value. Each SMBus register can have non-linear registers; that is, command
register 1 can have a 32-byte string, while command register 2 can have a byte, and command
register 3 can have a word.

The SMBus host slave interface provides a standard mechanism for the host CPU to generate
SMBus protocol commands that are required to communicate with SMBus devices (in other words,
the Smart Battery components). ACPI defines such an SMB-HC that resides in embedded controller
address space; however, an OS can support any SMB-HC that has a native SMB-HC device driver.

• Event notification for battery insertion and removal

• Event notification for AC power connected or disconnected

• Status of which Smart Battery is communicating with the SMB-HC

• Status of which Smart Battery(s) are powering the system

• Status of which Smart Battery(s) are connected to the charger

• Status of which Smart Batteries are present in the system

SMBus Device Description SMBus Slave Address (A0-A6)

SMBus Host Slave Interface 0x8

Smart Battery Charger/Charger Selector or Charger System Manager 0x9

Smart Battery System Manager or Smart Battery Selector 0xA

Smart Battery 0xB

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

SBS
Battery3

0xB

SMBus

SMBus

SMBus

SMBus

SMBus

SMBus

Host
Interface
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 491

Power Source and Power Meter Devices
• Event notification when the Smart Battery System Manager switches from one power source to
another

• Hardware-switching to an alternate Smart Battery when the Smart Battery supplying power runs
low

• Hardware switching between battery-powered and AC-powered powered operation

•

The Smart Battery System Manager function can reside in a standalone SMBus slave device (Smart
Battery System Manager that responds to the 0xA slave address), may be present within a smart
charger device (Smart Battery Charger that responds to the 0x9 slave address), or may be combined
within the embedded controller (that responds to the 0xA slave address). If both a Smart Battery
Charger and a standalone Smart Battery System Manager are present in the same Smart Battery
subsystem, then the driver assumes that the standalone Smart Battery System Manager is wired to
the batteries.

The Smart Battery charger is an SMBus device that provides a standard programming model to
control the charging of Smart Batteries present in a Smart Battery subsystem. For single battery
systems, the Smart Battery Charger is also responsible for notifying the system of the battery and
AC status.

The Smart Battery provides intelligent chemistry-independent power to the system. The Smart
Battery is capable of informing the Smart Battery charger of its charging requirements (which
provides chemistry independence) and providing battery status and alarm features needed for
platform battery management.

10.1.1 ACPI Smart Battery Status Change Notification Requirements
The Smart Battery System Manager, the Smart Battery Selector, and the Smart Battery Charger each
have an optional mechanism for notifying the system that the battery configuration or AC status has
changed. ACPI requires that this interrupt mechanism be through the SMBus Alarm Notify
mechanism.

For systems using an embedded controller as the SMBus host, a battery system device issues a status
change notification by either mastering the SMBus to send the notification directly to the SMBus
host, or by emulating it in the embedded controller. In either case, the process is the same. After the
notification is received or emulated, the embedded controller asserts an SCI. The source of the SCI is
identified by a GPE that indicates the SCI was caused by the embedded controller. The embedded
controller’s status register alarm bit is set, indicating that the SMBus host received an alarm
message. The Alarm Address Register contains the address of the SMBus device that originated the
alarm and the Alarm Data Registers contain the contents of that device’s status register.

10.1.1.1 Smart Battery Charger
This requires a Smart Battery Charger, on a battery or AC status change, to generate an SMBus
Alarm Notify. The contents of the Smart Battery Charger’s ChargerStatus() command register
(0x13) is placed in the embedded controller’s Alarm Data Registers, the Smart Battery Charger’s
492 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
slave address1 (0x09) is placed in the embedded controller’s Alarm Address Register and the EC’s
Status Register’s Alarm bit is set. The embedded controller then asserts an SCI.

10.1.1.2 Smart Battery Charger with optional System Manager or Selector
A Smart Battery Charger that contains the optional System Manager or Selector function (as
indicated by the ChargerSpecInfo() command register, 0x11, bit 4) is required to generate an SMBus
Alarm Notify on a battery or AC status change. The content of the Smart Battery Charger with an
optional System Manager, the BatterySystemState() command register (0x21) (or in the case of an
optional Selector, the SelectorState() (0x01)), is placed in the EC’s Alarm Data Registers, the Smart
Battery Charger’s slave address (0x09) is placed in the embedded controller’s Alarm Address
Register, and the embedded controller’s Status Register’s Alarm bit is set. The embedded controller
then asserts an SCI.

10.1.1.3 Smart Battery System Manager
The Smart Battery System Manager is required to generate an SMBus Alarm Notify on a battery or
AC status change. The content of the Smart Battery System Manager’s BatterySystemState()
command register (0x01) is placed in the EC’s Alarm Data Registers, the Smart Battery System
Manager’s slave address (0x0A) is placed in the EC’s Alarm Address Register, and the embedded
controller’s Status Register’s Alarm bit is set. The embedded controller then asserts an SCI.

10.1.1.4 Smart Battery Selector
The requirements for the Smart Battery Selector are the same as the requirements for the Smart
Battery System Manager, with the exception that the contents of the SelectorState() command
register (0x01) are used instead of BatterySystemState(). The Smart Battery Selector is a subset of
the Smart Battery System Manager and does not have the added support for simultaneous charge/
discharge of multiple batteries. The System Manager is the preferred implementation.

10.1.2 Smart Battery Objects
The Smart Battery subsystem requires a number of objects to define its interface. These are
summarized below:

Table 10-231 Smart Battery Objects

1. Notice that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address”
written into the command field of the host controller. In this case, the slave address is actually the combination of the
7-bit slave address and the Write protocol bit. Therefore, bit 0 of the initiating device’s slave address is aligned to bit
1 of the host controller’s slave command register, bit 1 of the slave address is aligned to bit 2 of the controller’s slave
command register, and so on.

Object Description

_HID This is the hardware ID named object that contains a string. For Smart Battery subsystems, this
object returns the value of “ACPI0002.” This identifies the Smart Battery subsystem to the Smart
Battery driver.

_SBS This is the Smart Battery named object that contains a DWORD. This named object returns the
configuration of the Smart Battery.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 493

Power Source and Power Meter Devices
10.1.3 _SBS (Smart Battery Subsystem)
The _SBS control method returns the configuration of the Smart Battery subsystem. This named
object returns a DWORD value with a number from 0 to 4. If the number of batteries is greater than
0, then the Smart Battery driver assumes that a Smart Battery System Manager or Smart Battery
Selector is present. If 0, then the Smart Battery driver assumes a single Smart Battery and neither a
Smart Battery System Manager nor Smart Battery Selector is present.

The DWORD returned by _SBS is encoded as follows:

• 0 – Maximum of one Smart Battery and no Smart Battery System Manager or Smart Battery
Selector.

• 1 – Maximum of one Smart Battery and a Smart Battery System Manager or Smart Battery
Selector.

• 2 – Maximum of two Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

• 3 – Maximum of three Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

• 4 – Maximum of four Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

Arguments:

None

Return Value:

An Integer containing the Smart Battery subsystem configuration:

0 – Maximum 1 Smart Battery, system manager/selector not present

1 – Maximum 1 Smart Battery, system manager/selector present

2 – Maximum 2 Smart Batteries, system manager/selector present

3 – Maximum 3 Smart Batteries, system manager/selector present

4 – Maximum 4 Smart Batteries, system manager/selector present

The maximum number of batteries is for the entire system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then this field should
return 4. Notice that a value of 0 indicates a maximum support of one battery and there is no Smart
Battery System Manager or Smart Battery Selector present in the system

As the SMBus is not an enumerable bus, all devices on the bus must be declared in the ACPI name-
space. As the Smart Battery driver understands Smart Battery, Smart Battery Charger, and Smart
Battery System Manager or Smart Battery Selector; only a single device needs to be declared per
Smart Battery subsystem. The driver gets information about the subsystem through the hardware ID
(which defines a Smart Battery subsystem) and the number of Smart Batteries supported on this
subsystem (_SBS named object). The ACPI Smart Battery table indicates the energy levels of the
platform at which the system should warn the user and then enter a sleeping state. The Smart Battery
driver then reflects these as threshold alarms for the Smart Batteries.

A Smart Battery device declaration in the ACPI namespace requires the _GLK object if potentially
contentious accesses to device resources are performed by non-OS code. See Section 6.5.7 “_GLK
(Global Lock),” for details about the _GLK object.
494 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
10.1.3.1 Example: Single Smart Battery Subsystem
This section illustrates how to define a Smart Battery subsystem containing a single Smart Battery
and charger. The platform implementation is illustrated below:

Figure 10-54 Single Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and
meets the ACPI standard for an embedded controller interface and SMB-HC interface. The
embedded controller interface sits at system I/O port addresses 0x62 and 0x66. The SMB-HC is at
base address 0x80 within embedded controller address space (as defined by the ACPI embedded
controller specification) and responds to events on query value 0x30.

In this example the Smart Battery subsystem only supports a single Smart Battery. The ASL code for
describing this interface is shown below:

Device (EC0) {
 Name (_HID, EISAID("PNP0C09"))
 Name (_CRS,
 ResourceTemplate () { // port 0x62 and 0x66
 IO (Decode16, 0x62, 0x62, 0, 1),
 IO (Decode16, 0x66, 0x66, 0, 1)
 }
)
 Name (_GPE, 0)
 Device (SMB0) {
 Name (_HID, "ACPI0001") // Smart Battery Host Controller
 Name (_EC, 0x8030) // EC offset (0x80), Query (0x30)
 Device (SBS0){ // Smart Battery Subsystem
 Name (_HID, "ACPI0002") // Smart Battery Subsystem ID
 Name(_SBS, 0x1) // Indicates support for one battery
 } // end of SBS0
 } // end of SMB0
} // end of EC

10.1.3.2 Multiple Smart Battery Subsystem: Example
This section illustrates how to define a Smart Battery subsystem that contains three Smart Batteries,
a Smart Battery System Manager, and a Smart Battery Charger. The platform implementation is
illustrated below:

Embedded

Controller
Ports: 0x62, 0x66

Offset: 0x80
Query: 0x30

SMBus
Host

Controller
(0x8) SBS

Charger
0x9

SBS
Battery

0xB

SMBus
Host

Interface
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 495

Power Source and Power Meter Devices
Figure 10-55 Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and
meets the ACPI standard for an embedded controller interface and SMB-HC interface. The
embedded controller interface sits at system I/O port addresses 0x100 and 0x101. The SMB-HC
resides at base address 0x90 within embedded controller address space (as defined by the ACPI
embedded controller specification) and responds to events on query value 0x31.

In this example the Smart Battery subsystem supports three Smart Batteries. The Smart Battery
Charger and Smart Battery System Manager reside within the embedded controller, meet the Smart
Battery System Manager and Smart Battery Charger interface specification, and respond to their 7-
bit addresses (0xA and 0x9 respectively). The ASL code for describing this interface is shown
below:

Device (EC1) {

Name (_HID, EISAID("PNP0C09"))
 Name (_CRS,
 ResourceTemplate () { // port 0x100 and 0x101
 IO(Decode16, 0x100, 0x100, 0, 2)
 }
)
 Name (_GPE, 1)
 Device (SMB1) {
 Name (_HID, "ACPI0001") // Smart Battery Host Controller
 Name (_EC, 0x9031) // EC offset (0x90), Query (0x31)
 Device (SBS1){ // Smart Battery Subsystem
 Name (_HID, "ACPI0002") // Smart Battery Subsystem ID
 Name (_SBS, 0x3) // Indicates support for three batteries
 } // end of SBS1
 } // end of SMB1
} // end of EC

10.2 Control Method Batteries
The following section illustrates the operation and definition of the Control Method Battery.

Embedded Controller
Ports: 0x100, 0x101
Offset: 0x90
Query: 0x31

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

Virtual
SMBus

Virtual
SMBus

SMBus

SMBus

SMBus

Host
Interface
496 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
10.2.1 Battery Events
The AML code handling an SCI for a battery event notifies the system of which battery’s status may
have changed. The OS uses the _BST control method to determine the current status of the batteries
and what action, if any, should be taken (for more information about the _BST control method, see
Section 10.2.2, “Battery Control Methods”). The typical action is to notify applications monitoring
the battery status to provide the user with an up-to-date display of the system battery state. But in
some cases, the action may involve generating an alert or even forcing a system into a sleeping state.
In any case, any changes in battery status should generate an SCI in a timely manner to keep the
system power state UI consistent with the actual state of the system battery (or batteries).

Unlike most other devices, when a battery is inserted or removed from the system, the device itself
(the battery bay) is still considered to be present in the system. For most systems, the _STA for this
device will always return a value with bits 0-3 set and will toggle bit 4 to indicate the actual presence
of a battery (see Section 6.3.7, “_STA [Status]”). When this insertion or removal occurs, the AML
code handler for this event should issue a Notify(battery_device, 0x81) to indicate that the static
battery information has changed. For systems that have battery slots in a docking station or batteries
that cannot be surprise-removed, it may be beneficial or necessary to indicate that the entire device
has been removed. In this case, the standard methods and notifications described in Section 6.3,
“Device Insertion, Removal, and Status Objects,” should be used.

When the present state of the battery has changed or when the trip point set by the _BTP control
method is reached or crossed, the hardware will assert a general purpose event. The AML code
handler for this event issues a Notify(battery_device, 0x80) on the battery device. This notification
is also sent when the Status Flags returned from _BMD change.

In the case where the remaining battery capacity becomes critically low, the AML code handler
issues a Notify(battery_device, 0x80) and reports the battery critical flag in the _BST object. The OS
performs an emergency shutdown. For a full description of the critical battery state, see
Section 3.9.4, “Low Battery Levels.”

Sometimes the value to be returned from _BST or _BIF will be temporarily unknown. In this case,
the method may return the value 0xFFFFFFFF as a placeholder. When the value becomes known,
the appropriate notification (0x80 for _BST or 0x81 for BIF) should be issued, in like manner to any
other change in the data returned by these methods. This will cause OSPM to re-evaluate the
method—obtaining the correct data value.

When one or more of the status flags returned by the _BMD control method change, AML code
issues a Notify(battery_device, 0x82) on the battery device unless this change occurs during a call to
_BMC and the value of the status flags in _BMD match the value passed in to _BMC. If the value of
the status bits cannot be set to reflect the action requested by the executing _BMC, the AML code
will issue this notification. For example, calling _BMC with bit 0 set to initiate a calibration cycle
while AC power is not available will cause AML to issue a Notify(battery_device, 0x82).

10.2.2 Battery Control Methods
The Control Method Battery is a battery with an AML code interface between the battery and the
host PC. The battery interface is completely accessed by AML code control methods, allowing the
OEM to use any type of battery and any kind of communication interface supported by ACPI.
OSPM requires accurate battery data to perform optimal power management policy and to provide
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 497

Power Source and Power Meter Devices
the end user with a meaningful estimation of remaining battery life. As such, control methods that
return battery information should calculate this information rather than return hard coded data.

A Control Method Battery is described as a device object. Each device object supporting the Control
Method Battery interface contains the following additional control methods. When there are two or
more batteries in the system, each battery will have an independent device object in the namespace.

Table 10-232 Battery Control Methods

A Control Method Battery device declaration in the ACPI namespace requires the _GLK object if
potentially contentious accesses to device resources are performed by non-OS code. See
Section 6.5.7, “_GLK (Global Lock),” for details about the _GLK object.

10.2.2.1 _BIF (Battery Information)
This object returns the static portion of the Control Method Battery information. This information
remains constant until the battery is changed. This object is deprecated in ACPI 4.0. The _BIX
object provides expanded battery information and includes all of the information provide by _BIF.
See Section 10.2.2.2, “Battery Information Extended”).

Arguments:

None

Return Value:

A Package containing the battery information as described below

Object Description

_BIF Returns static information about a battery (in other words, model number, serial number, design
voltage, and so on).

_BIX Returns extended static information about a battery (in other words, model number, serial number,
design voltage, and so on).

_OSC OSPM Capabilities conveyance for batteries.

_BMA Sets the averaging interval of the battery capacity measurement, in milliseconds.

_BMS Sets the sampling time of the battery capacity measurement, in milliseconds.

_BST Returns the current battery status (in other words, dynamic information about the battery, such as
whether the battery is currently charging or discharging, an estimate of the remaining battery
capacity, and so on).

_BTP Sets the Battery Trip point, which generates an SCI when batterycapacity reaches the specified
point.

_PCL List of pointers to the device objects representing devices powered by the battery.

_STA Returns general status of the battery (for a description of the _STA control method, see
Section 6.3.7, “_STA (Status]”).

_BTM Returns battery estimated runtime at the present average rate of drain, or the runtime at a specified
rate.

_BCT Returns battery estimated charging time.

_BMD Returns battery information related to battery recalibration and charging control.

_BMC Control calibration and charging.
498 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Return Value Information:
_BIF returns a package in the format below

Package {
 Power Unit // Integer (DWORD)
 Design Capacity // Integer (DWORD)
 Last Full Charge Capacity // Integer (DWORD)
 Battery Technology // Integer (DWORD)
 Design Voltage // Integer (DWORD)
 Design Capacity of Warning // Integer (DWORD)
 Design Capacity of Low // Integer (DWORD)
 Battery Capacity Granularity 1 // Integer (DWORD)
 Battery Capacity Granularity 2 // Integer (DWORD)
 Model Number // String (ASCIIZ)
 Serial Number // String (ASCIIZ)
 Battery Type // String (ASCIIZ)
 OEM Information // String (ASCIIZ)
}

Table 10-233 BIF Return Package Values

Field Format Description

Power Unit Integer
(DWORD)

Indicates the units used by the battery to report its capacity and charge/
discharge rate information to the OS.
0x00000000 – Capacity information is reported in [mWh] and charge/
discharge rate information in [mW].
0x00000001 – Capacity information is reported in [mAh] and charge/
discharge rate information in [mA].

Design Capacity Integer
(DWORD)

Battery’s design capacity. Design Capacity is the nominal capacity of a
new battery. The Design Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.
0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown design capacity

Last Full Charge
Capacity

Integer
(DWORD)

Predicted battery capacity when fully charged. The Last Full Charge
Capacity value is expressed as power (mWh) or current (mAh) depending
on the Power Unit value.
0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

Integer
(DWORD)

0x00000000 – Primary (for example, non-rechargeable)
0x00000001 – Secondary (for example, rechargeable)

Design Voltage Integer
(DWORD)

Nominal voltage of a new battery.
0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown design voltage

Design capacity
of Warning

Integer
(DWORD)

OEM-designed battery warning capacity. See Section 3.9.4, “Low

Battery Levels.”
0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity
of Low

Integer
(DWORD)

OEM-designed low battery capacity. See Section 3.9.4, “Low Battery

Levels.”
0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 499

Power Source and Power Meter Devices
Additional Notes:
• A secondary-type battery should report the corresponding capacity (except for Unknown).

• On a multiple-battery system, all batteries in the system should return the same granularity.

• Operating systems prefer these control methods to report data in terms of power (watts).

• On a multiple-battery system, all batteries in the system must use the same power unit.

• The definition of battery capacity granularity has been clarified. For OSPM to determine if
systems support the clarified definition of battery capacity granularity, OSPM may evaluate an
_OSC method at the battery scope to indicate support for this capability, and for the platform to
indicate if it supports these extended capabilities.

10.2.2.2 _BIX (Battery Information Extended)
The _BIX object returns the static portion of the Control Method Battery information. This
information remains constant until the battery is changed. The _BIX object returns all information
available via the _BIF object plus additional battery information. The _BIF object is deprecated in
lieu of _BIX in ACPI 4.0.

Arguments:

None

Return Value:

A Package containing the battery information as described below

Return Value Information:
_BIX returns a package in the format below

Battery Capacity
Granularity 1

Integer
(DWORD)

Battery capacity granularity between low and warning in [mAh] or [mWh].
That is, this is the smallest increment in capacity that the battery is
capable of measuring. See note below for more details

Battery Capacity
Granularity 2

Integer
(DWORD)

Battery capacity granularity between warning and Full in [mAh] or [mWh].
That is, this is the smallest increment in capacity that the battery is
capable of measuring. This may be a different value than Battery Capacity
Granularity 1 to accommodate systems where the granularity accuracy
may change depending on the battery level. See note below for more
details.

Model Number String
(ASCIIZ)

OEM-specific Control Method Battery model number

Serial Number String
(ASCIIZ)

OEM-specific Control Method Battery serial number

Battery Type String
(ASCIIZ)

The OEM-specific Control Method Battery type

OEM Information String
(ASCIIZ)

OEM-specific information for the battery that the UI uses to display the
OEM information about the Battery. If the OEM does not support this
information, this field should contain a NULL string.

Field Format Description
500 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Package {
 // ASCIIZ is ASCII character string terminated with a 0x00.
 Revision //Integer
 Power Unit //Integer (DWORD)
 Design Capacity //Integer (DWORD)
 Last Full Charge Capacity //Integer (DWORD)
 Battery Technology //Integer (DWORD)
 Design Voltage //Integer (DWORD)
 Design Capacity of Warning //Integer (DWORD)
 Design Capacity of Low //Integer (DWORD)
 Cycle Count //Integer (DWORD)

 Measurement Accuracy //Integer (DWORD)
 Max Sampling Time //Integer (DWORD)
 Min Sampling Time //Integer (DWORD)
 Max Averaging Interval //Integer (DWORD)
 Min Averaging Interval //Integer (DWORD)

 Battery Capacity Granularity 1 //Integer (DWORD)
 Battery Capacity Granularity 2 //Integer (DWORD)
 Model Number //String (ASCIIZ)
 Serial Number //String (ASCIIZ)
 Battery Type //String (ASCIIZ)
 OEM Information //String (ASCIIZ)
}

Table 10-234 BIX Return Package Values

Field Format Description

Revision Integer Current revision is: 0

Power Unit Integer
(DWORD)

Indicates the units used by the battery to report its capacity and charge/
discharge rate information to the OS.
• 0x00000000 – Capacity information is reported in [mWh] and charge/

discharge rate information in [mW].

• 0x00000001 – Capacity information is reported in [mAh] and charge/
discharge rate information in [mA].

Design Capacity Integer
(DWORD)

Battery’s design capacity. Design Capacity is the nominal capacity of a
new battery. The Design Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.
• 0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])

• 0xFFFFFFFF – Unknown design capacity

Last Full Charge
Capacity

Integer
(DWORD)

Predicted battery capacity when fully charged. The Last Full Charge
Capacity value is expressed as power (mWh) or current (mAh) depending
on the Power Unit value.
• 0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])

• 0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

Integer
(DWORD)

• 0x00000000 – Primary (for example, non-rechargeable)

• 0x00000001 – Secondary (for example, rechargeable)

Design Voltage Integer
(DWORD)

Nominal voltage of a new battery.
• 0x000000000 – 0x7FFFFFFF in [mV]

• 0xFFFFFFFF – Unknown design voltage
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 501

Power Source and Power Meter Devices
Design capacity
of Warning

Integer
(DWORD)

OEM-designed battery warning capacity. See Section 3.9.4, “Low

Battery Levels.”
• 0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity
of Low

Integer
(DWORD)

OEM-designed low battery capacity. See Section 3.9.4, “Low Battery

Levels.”
• 0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Battery Capacity
Granularity 1

Integer
(DWORD)

Battery capacity granularity between low and warning in [mAh] or [mWh].
That is, this is the smallest increment in capacity that the battery is
capable of measuring. See note below for more details

Battery Capacity
Granularity 2

Integer
(DWORD)

Battery capacity granularity between warning and Full in [mAh] or [mWh].
That is, this is the smallest increment in capacity that the battery is
capable of measuring. This may be a different value than Battery
Capacity Granularity 1 to accommodate systems where the granularity
accuracy may change depending on the battery level. See note below for
more details.

Cycle Count Integer
(DWORD)

The number of cycles the battery has experienced. A cycle is defined as:
An amount of discharge approximately equal to the value of Design
Capacity.
• 0x000000000 – 0xFFFFFFFE

• 0xFFFFFFFF – Unknown cycle count

Measurement
Accuracy

Integer
(DWORD)

The accuracy of the battery capacity measurement, in thousandth of a
percent. (0% - 100.000%) For example, The value 80000 would mean
80% accuracy.

Max Sampling
Time

Integer
(DWORD)

The sampling time is the duration between two consecutive
measurements of the battery’s capacities specified in _BST, such as
present rate and remaining capacity. If the OSPM makes two succeeding
readings through _BST beyond the duration, two different results will be
returned.
The Max Sampling Time is the maximum sampling time the battery can
support, in milliseconds.
0xFFFFFFFF is returned if the information is unavailable.

Min Sampling
Time

Integer
(DWORD)

The Min Sampling Time is the minimum sampling time the battery can
support, in milliseconds.
0xFFFFFFFF is returned if the information is unavailable.

Max Averaging
Interval

Integer
(DWORD)

The Average Interval is the length of time (in milliseconds) within which
the battery averages the capacity measurements specified in _BST, such
as remaining capacity and present rate.
The Sampling time specifies the frequency of measurements, and the
average interval specifies the width of the time window of every
measurement.
This field indicates the maximum Average Interval that the battery
supports.

Min Averaging
Interval

Integer
(DWORD)

This field indicates the minimum Average Interval that the battery
supports

Model Number String
(ASCIIZ)

OEM-specific Control Method Battery model number

Field Format Description
502 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: A secondary-type battery should report the corresponding capacity (except for Unknown).

Note: On a multiple-battery system, all batteries in the system should return the same granularity.

Note: Operating systems prefer these control methods to report data in terms of power (watts).

Note: On a multiple-battery system, all batteries in the system must use the same power unit.

Note: The definition of battery capacity granularity has been clarified. For OSPM to determine if systems
support the clarified definition of battery capacity granularity, OSPM may evaluate an _OSC
method at the battery scope to indicate support for this capability, and for the platform to indicate if
it supports these extended capabilities.

10.2.2.3 _OSC Definition for Control Method Battery
_OSC for control method battery is uniquely identified by the UUID:

F18FC78B-0F15-4978-B793-53F833A1D35B

The Revision 1 capabilities described under this _OSC are defined in Table 10-235.

Table 10-235 Control Method Battery _OSC Capabilities DWORD2 Bit Definitions

Bits defined in Capabilities DWORD2 provide information regarding OS supported features.
Contents in DWORD2 are passed one-way; the OS will disregard the corresponding bits of
DWORD2 in the Return Code.

10.2.2.4 _BMA (Battery Measurement Averaging Interval)
This object is used to set the averaging interval of the battery capacity measurement, in milliseconds.
The Battery Measurement Averaging Interval is the length of time within which the battery averages
the capacity measurements specified in _BST, such as remaining capacity and present rate.

Serial Number String
(ASCIIZ)

OEM-specific Control Method Battery serial number

Battery Type String
(ASCIIZ)

The OEM-specific Control Method Battery type

OEM Information String
(ASCIIZ)

OEM-specific information for the battery that the UI uses to display the
OEM information about the Battery. If the OEM does not support this
information, this field should contain a NULL string.

Capabilities
DWORD2 bits

Interpretation

0 0 – OS does not support revised battery granularity definition.
1 – OS supports revised battery granularity definition.

1 0 – OS does not support specifying wake on low battery user preference.
1 – OS supports specifying wake on low battery user preference, See Section 9.1.3,
_BLT Battery Level Threshold) for more information.

2-31 Reserved

Field Format Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 503

Power Source and Power Meter Devices
The OSPM may read the Max Average Interval and Min Average Interval with _BIX during boot
time, and set a specific average interval within the range with _BMA.

Arguments: (1)

Arg0 – AveragingInterval (Integer(DWORD)) the averaging interval of battery capacity
measurement:

0x00000001 – 0xFFFFFFFF (in units of millisecond)

Return Value:

An Integer (DWORD) containing a result code as follows:

0x00000000 – Success.

0x00000001 – Failure to set Battery Measurement Averaging Interval because it is out of the
battery’s measurement capability.

0x00000002 – 0xFFFFFFFF – Reserved.

10.2.2.5 _BMS (Battery Measurement Sampling Time)
This object is used to set the sampling time of the battery capacity measurement, in milliseconds.

The Sampling Time is the duration between two consecutive measurements of the battery’s
capacities specified in _BST, such as present rate and remaining capacity. If the OSPM makes two
succeeding readings through _BST beyond the duration, two different results will be returned.

The OSPM may read the Max Sampling Time and Min Sampling Time with _BIX during boot time,
and set a specific sampling time within the range with _BMS.

Arguments: (1)

Arg0 – SamplingTime (Integer(DWORD)) the sampling time of battery capacity measurement:

0x00000001 – 0xFFFFFFFF (in units of millisecond)

Return Value:

An Integer (DWORD) containing a result code as follows:

0x00000000 – Success.

0x00000001 – Failure to set Battery Measurement Sampling Time because it is out of the battery’s
measurement capability.

0x00000002 – 0xFFFFFFFF – Reserved.

10.2.2.6 _BST (Battery Status)
This object returns the present battery status. Whenever the Battery State value changes, the system
will generate an SCI to notify the OS.

Arguments:

None

Return Value:

A Package containing the battery status as described below
504 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Return Value Information:
_BST returns a package in the format below

Package {
 Battery State // Integer (DWORD)
 Battery Present Rate // Integer (DWORD)
 Battery Remaining Capacity // Integer (DWORD)
 Battery Present Voltage // Integer (DWORD)
}

Table 10-236 BST Return Package Values

Notice that when the battery is a primary battery (a non-rechargeable battery such as an Alkaline-
Manganese battery) and cannot provide accurate information about the battery to use in the
calculation of the remaining battery life, the Control Method Battery can report the percentage
directly to OS. It does so by reporting the Last Full Charged Capacity =100 and
BatteryPresentRate=0xFFFFFFFF. This means that Battery Remaining Capacity directly reports the
battery’s remaining capacity [%] as a value in the range 0 through 100 as follows:

Element Format Description

Battery
State

Integer
(DWORD)

Bit values. Notice that the Charging bit and the Discharging bit are mutually
exclusive and must not both be set at the same time. Even in critical state,
hardware should report the corresponding charging/discharging state.
• Bit0 – 1 indicates the battery is discharging.

• Bit1 – 1 indicates the battery is charging.

• Bit2 – 1 indicates the battery is in the critical energy state (see Section 3.9.4,
“Low Battery Levels”). This does not mean battery failure.

Battery
Present
Rate

Integer
(DWORD)

Returns the power or current being supplied or accepted through the battery’s
terminals (direction depends on the Battery State value). The Battery Present
Rate value is expressed as power [mWh] or current [mAh] depending on the
Power Unit value.
Batteries that are rechargeable and are in the discharging state are required to
return a valid Battery Present Rate value.
• 0x00000000 – 0x7FFFFFFF in [mW] or [mA]

0xFFFFFFFF – Unknown rate

Battery
Remaining
Capacity

Integer
(DWORD)

Returns the estimated remaining battery capacity. The Battery Remaining
Capacity value is expressed as power [mWh] or current [mAh] depending on the
Power Unit value.
Batteries that are rechargeable are required to return a valid Battery Remaining
Capacity value.
• 0x00000000 – 0x7FFFFFFF in [mWh] or [mAh]

• 0xFFFFFFFF – Unknown capacity

Battery
Present
Voltage

Integer
(DWORD)

Returns the voltage across the battery’s terminals.
Batteries that are rechargeable must report Battery Present Voltage.
• 0x000000000 – 0x7FFFFFFF in [mV]

• 0xFFFFFFFF – Unknown voltage

Note: Only a primary battery can report unknown voltage.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 505

Power Source and Power Meter Devices
Figure 10-56 Remaining Battery Percent Formula

Figure 10-57 Remaining Battery Life Formula

10.2.2.7 _BTP (Battery Trip Point)
This object is used to set a trip point to generate an SCI whenever the Battery Remaining Capacity
reaches or crosses the value specified in the _BTP object. Specifically, if Battery Remaining
Capacity is less than the last argument passed to _BTP, a notification must be issued when the value
of Battery Remaining Capacity rises to be greater than or equal to this trip-point value. Similarly, if
Battery Remaining Capacity is greater than the last argument passed to _BTP, a notification must be
issued when the value of Battery Remaining Capacity falls to be less than or equal to this trip-point
value. The last argument passed to _BTP will be kept by the system.

If the battery does not support this function, the _BTP control method is not located in the
namespace. In this case, the OS must poll the Battery Remaining Capacity value.

Arguments: (1)

Arg0 – An Integer containing the new battery trip point

0 – Clear the trip point

1 – 0x7FFFFFFF – New trip point, in units of mWh or mAh depending on the Power Units value

Return Value:

None

10.2.2.8 _BTM (Battery Time)
This optional object returns the estimated runtime of the battery while it is discharging.

Arguments: (1)

Arg0 – An Integer containing the rate at which the battery is expected to discharge

0 – Indicates that the battery will continue discharging at the current rate. The rate should be based
on the average rate of drain, not the current rate of drain.

1 – 0x7FFFFFFFThe discharge rate (in mA or mW)

Return Value:

An Integer containing the estimated remaining runtime

0 – The input discharge rate (Arg0) is too large for the battery or batteries to supply. If the input
argument was 0, this value indicates that the battery is critical.

1 – 0xFFFFFFFE –Estimated runtime in seconds

0xFFFFFFFF –Runtime is unknown

Remaining Battery Percentage[%] =
Battery Remaining Capacity [=0 ~ 100]

Last Full Charged Capacity [=100]
* 100

Remaining Battery Life [h] =
Battery Remaining Capacity [mAh/mWh]

Battery Present Rate [=0xFFFFFFFF]
= unknown
506 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
10.2.2.9 _BCT (Battery Charge Time)
When the battery is charging, this optional object returns the estimated time from present to when it
is charged to a given percentage of Last Full Charge Capacity.

Arguments:

Arg0 – ChargeLevel (Integer (DWORD)): The queried charge level in units of percent of Last Full
Charge Capacity. For example: 96 refers to 96% of Last Full Charge Capacity. Valid values are 1 –
100 (0x00000001 – 0x00000064).

Return Value:

An Integer (DWORD) containing a result code as follows:

0x00000000 –Specified targeted charging capacity is smaller than the current remaining capacity
or larger than 100% of Last Full Charge Capacity.

0x00000001 –0xFFFFFFFE – Estimated charging time in seconds

0xFFFFFFFF –Charging time is unknown

10.2.2.10 _BMD (Battery Maintenance Data)
This optional object returns information about the battery’s capabilities and current state in relation
to battery calibration and charger control features. If the _BMC object (defined below) is present
under a battery device, this object must also be present. Whenever the Status Flags value changes,
AML code will issue a Notify(battery_device, 0x82). In addition, AML will issue a
Notify(battery_device, 0x82) if evaluating _BMC did not result in causing the Status Flags to be set
as indicated in that argument to _BMC. AML is not required to issue Notify(battery_device, 0x82) if
the Status Flags change while evaluating _BMC unless the change does not correspond to the
argument passed to _BMC.

Arguments:

None

Return Value:

A Package containing the battery maintenance data as described below

Return Value Information:
_BMD returns a package in the format below:

Package {
 Status Flags // Integer (DWORD)
 Capability Flags // Integer (DWORD)
 Recalibrate Count // Integer (DWORD)
 Quick Recalibrate Time // Integer (DWORD)
 Slow Recalibrate Time // Integer (DWORD)
}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 507

Power Source and Power Meter Devices
Table 10-237 BMD Return Package Values

Field Format Description

Status
Flags

Integer
(DWORD)

Bit values. Bit0 is mutually exclusive with Bit1 and Bit2. If the charger is being
manually controlled, there cannot be an AML controlled calibration cycle.
• Bit0 – 1 indicates the battery is running an AML controlled calibration cycle

• Bit1 – 1 indicates that charging has been disabled.

• Bit2 – 1 indicates the battery is configured to discharge while AC power is
available.

• Bit3 – 1 indicates that the battery should be recalibrated.

• Bit4 – 1 indicates that the OS should put the system into standby to speed
charging during a calibration cycle. This is optional (based on user
preference) if “Slow Recalibrate Time” is not equal to 0x00000000.

• Bit5 – Bit31 – reserved.

Capability
Flags

Integer
(DWORD)

Bit values that describe the capabilities of the battery system. These bits allows
a battery system with more limited capabilities to still be calibrated by OSPM.
• Bit0 – 1 indicates that an AML controlled calibration cycle is supported.

• Bit1 – 1 indicates that disabling the charger is supported.

• Bit2 – 1 indicates that discharging while running on AC is supported.

• Bit3 – 1 indicates that calling _BMC for one battery will affect the state of all
batteries in the system. This is for battery systems that cannot control
batteries individually.

• Bit4 – 1 indicates that calibration should be done by first fully charging the
battery and then discharging it. Not setting this bit will indicate that calibration
can be done by simply discharging the battery.

• Bit4 – Bit31 – reserved.

Recalibrate
Count

Integer
(DWORD)

This is used by battery systems that can’t detect when calibration is required,
but wish to recommend that the battery should be calibrated after a certain
number of cycles. Counting the number of cycles and partial cycles is done by
the OS.
• 0x00000000 – Only calibrate when Status Flag bit 3 is set.

• 0x00000000 – 0xFFFFFFFF – calibrate battery after detecting this many
battery cycles.

Quick
Recalibrate
Time

Integer
(DWORD)

Returns the estimated time it will take to calibrate the battery if the system is put
into standby whenever Status Flags Bit4 is set. While the AML controlled
calibration cycle is in progress, this returns the remaining time in the calibration
cycle.
• 0x000000000 – indicates that standby while calibrating the battery is not

supported. The system should remain in S0 until calibration is completed.

• 0x00000001 – 0xFFFFFFFE – estimated recalibration time in seconds.

• 0xFFFFFFFF – indicates that the estimated time to recalibrate the battery is
unknown.

Slow
Recalibrate
Time

Integer
(DWORD)

Returns the estimated time it will take to calibrate the battery if Status Flag Bit4
is ignored. While the AML controlled calibration cycle is in progress, this returns
the remaining time in the calibration cycle.
• 0x000000000 – indicates that battery calibration may not be successful if

Status Flags Bit4 is ignored.

• 0x00000001 – 0xFFFFFFFE – estimated recalibration time in seconds.

• 0xFFFFFFFF – indicates that the estimated time to recalibrate the battery is
unknown.
508 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
See Section 3.9.5, “Battery Calibration” for an overview of Battery Calibration.

The Capability Flags and Recalibration Count are used to indicate what functions are controlled by
AML and what functions are controlled by OSPM as described in section 3.9.5, “Battery
Calibration”. If the system does not implement an AML controlled calibration cycle (bit 0), it may
indicate using bit 1 and bit 2 that the OS can control a generic calibration cycle without prompting
the user to remove the power cord. Recalibration Count may be used to indicate that the BIOS
cannot determine when calibration should be preformed so bit 3 of the Status Flags will never be set.
In that case, OSPM will attempt to count the number of cycles.

Bit3 is used by systems that do not have individual control over the batteries and can only perform
calibration on all batteries in the system at once. On such a system, if one battery requests calibration
and another battery does not, the OS may suggest that the user remove the battery that doesn’t need
calibration, before initiating the calibration cycle. When this bit is set, reading the Recalibrate Time
from either battery should give the time to recalibrate all batteries present in the system.

10.2.2.11 _BMC (Battery Maintenance Control)
This object is used to initiate calibration cycles or to control the charger and whether or not a battery
is powering the system. This object is only present under a battery device if the _BMD Capabilities
Flags field has bit 0, 1, or 2 set.

Arguments: (1)

Arg0 – An Integer containing feature control flags

Bit0 – Set to initiate an AML controlled calibration cycle. Clear to end the calibration cycle

Bit1 – Set to disable charging. Clear to enable charging

Bit2 – Set to allow the battery to discharge while AC power is available. Clear to prevent
discharging while AC power is available

Return Value:

None

See Section 3.9.5 for an overview of Battery Calibration.

Evaluating this object with bit0 set will initiate an AML controlled recalibration cycle if _BMD
indicates that this is supported. The calibration cycle is controlled by the platform and will typically
include disabling the AC adapter and discharging the battery, then charging the battery. While the
battery is charging, the BIOS should set Bit4 of the Status flags returned by _BMD if it is possible to
put the system into standby during calibration to speed up charging. Evaluating this with Bit0 equal
to 0 will abort the calibration cycle if one is in process. If the BIOS determines that the calibration
cycle must be aborted (for example AC power is lost), or the calibration completes successfully, the
BIOS will end the cycle automatically, clear the _BMD Status Flag Bit0, and send a notify 0x82.
While the calibration cycle is in process, the battery will report data normally, so the OS must
disable battery alarms.

Bit1 and Bit2 may not be used in conjunction with the AML controlled calibration cycle. Having
Bit0 set will override Bit1 and Bit2. Bit1 will prevent the battery from charging even though AC
power is connected. Bit2 will allow the system to draw its power from the battery even though AC
power is available. When the battery is no longer capable of delivering current, this setting is
automatically cleared, and the system will continue running off AC power without interruption. In
addition, if AC power is lost this bit will be cleared. When AC power comes back, the OS must set
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 509

Power Source and Power Meter Devices
the bit again if the user wants to continue discharging. When the system clears this bit automatically,
it will result in a change in the Status Flags returned by _BMD. This will cause a notify 0x82. Bit1 is
only cleared automatically if an AML controlled calibration cycle is initiated.

When a battery is discharging because Bit2 is set, the _PSR method of the AC adapter device will
report that AC is offline because the system is not running off of the AC adapter. If the batteries are
controlled individually (Bit3 of the _BMD Capabilities Flags), setting either battery to discharge
will cause _PSR to report AC offline. If more than one battery in the system has Bit2 set to discharge
the battery, it is up to the system to decide which battery to discharge, so only on a system that
discharges the batteries one at a time, a battery with Bit2 set may not be discharging if another
battery in the system is being discharged.

If Batteries are not controlled individually, calling _BMC will initiate calibration, disable charge,
and/or allow discharge on all batteries in the system. The state of these batteries will be reflected in
the _BMD Status Flags for all batteries.

10.3 AC Adapters and Power Source Objects
The Power Source objects describe the system’s power source. These objects may be defined under
a Power Source device which is declared using a hardware identifier (_HID) of “ACPI0003”.
Typically there will be a power source device for each physical power supply contained within the
system. However, in cases where the power supply is shared, as in a blade server configuration, this
may not be possible. Instead the firmware can choose to expose a virtual power supply that
represents one or more of the physical power supplies.

Table 10-238 Power Source Objects

10.3.1 _PSR (Power Source)
Returns whether the power source device is currently in use. This can be used to determine if system
is running off this power supply or adapter. On mobile systes this will report that the system is not
running on the AC adapter if any of the batteries in the system is being forced to discharge. In
systems that contains multiple power sources, this object reports the power source’s online or offline
status.

Arguments:

None

Return Value:

An Integer containing the power source status

0 – Off-line (not on AC power)

Object Description

_PSR Returns whether this power source device is currently online.

_PCL List of pointers to devices this power source is powering.

_PIF Returns static information about a power source.

_PRL List of pointers to all the other power source devices that belong in the same redundancy group
of which the power supply device is a member.
510 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
1 – On-line

10.3.2 _PCL (Power Consumer List)
This object evaluates to a list of pointers, each pointing to a device or a bus powered by the power
source device. Pointing to a bus indicates that all devices under the bus are powered by the power
source device.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to devices or buses

10.3.3 _PIF (Power Source Information)
This object returns information about the Power Source, which remains constant until the Power
Source is changed. When the power source changes, the platform issues a Notify(0x0) (Bus Check)
to the Power Source device to indicate that OSPM must re-evaluate the _PIF object.

Arguments:

None

Return Value:

A Package with the following format:

Package {
 Power Source State // Integer (DWORD)
 Maximum Output Power // Integer (DWORD)
 Maximum Input Power // Integer (DWORD)
 Model Number // String (ASCIIZ)
 Serial Number // String (ASCIIZ)
 OEM Information // String (ASCIIZ)
}

Table 10-239 PIF Method Result Codes

Element Object Type Description

Power Source
State

Integer
(DWORD)

Bit values that describe the type of this Power Source. These bits are
especially useful in server scenarios.
Bit0 – indicates the power source is a redundant one. If this bit is set,
this Power Source device should have a _PRL object.
Bit1 – indicates the power source is being shared across multiple
machines.
Bit2 – Bit31 – Reserved.

Maximum Output
Power

Integer
(DWORD)

The maximum rated output wattage of the power source device. [mW]
 0xFFFFFFFF is returned if the information is unavailable.

Maximum Input
Power

Integer
(DWORD)

The maximum rated input wattage of the power source device. [mW]
0xFFFFFFFF is returned if the information is unavailable.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 511

Power Source and Power Meter Devices
10.3.4 _PRL (Power Source Redundancy List)
This optional object evaluates to a list of Power Source devices that are in the same redundancy
grouping as Power Source device under which this object is defined. A redundancy grouping is a
group of power supplies that together provide redundancy. For example, on a system that contains
two power supplies that each could independently power the system, both power supplies would be
part of the same redundancy group. This is used in conjunction with the Power Source State values
specified by the _PIF object.

The entries should be in the format of a fully qualified ACPI namespace path.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to power source devices. It has the
following format:

Package {
 Power source[0], // Reference
 Power source[1], // Reference

 Power source[n] // Reference
}

10.4 Power Meters
The following section describes Power Metering objects. These objects may be defined under a
Power Meter device which is declared using the ACPI000D hardware identifier (_HID).

Table 10-240 Power Meter Objects

Model Number String
(ASCIIZ)

OEM-specific Power Source model number. This element is optional
and an empty string (a null character) should be used if this is not
supported.

Serial Number String
(ASCIIZ)

OEM-specific Power Source serial number. This element is optional
and an empty string (a null character) should be used if this is not
supported.

OEM Information String
(ASCIIZ)

OEM-specific information that the UI uses to display about the Power
Source device. This element is optional and a NULL string should be
used if this is not supported.

Object Description

_GAI Gets the averaging interval used by the power meter.

_GHL Gets the hardware power consumption limit that is enforced by the Power Meter.

_PAI Sets the power averaging interval used by the Power Meter.

_PMC Returns Power Meter capabilities.

_PMD Returns a list of devices whose power consumption is measured by the Power Meter.

_PMM Returns the power consumption measured by the Power Meter.
512 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
10.4.1 _PMC (Power Meter Capabilities)
This object returns the capabilities of a power meter. This information remains constant unless either
the power meter’s firmware or the BMC hardware changes, at which time the platform is required to
send Notify(power_meter, 0x80) for the OSPM to re-evaluate _PMC.

Arguments:

None

Return Value:

A Package with the following format:
Package {
 Supported Capabilities // Integer (DWORD)
 Measurement Unit // Integer (DWORD)
 Measurement Type // Integer (DWORD)
 Measurement Accuracy // Integer (DWORD)
 Measurement Sampling Time // Integer (DWORD)
 Minimum Averaging Interval // Integer (DWORD)
 Maximum Averaging Interval // Integer (DWORD)
 Hysteresis Margin // Integer (DWORD)
 Hardware Limit Is Configurable // Boolean (DWORD)
 Min Configurable Hardware Limit // Integer (DWORD)
 Max Configurable Hardware Limit // Integer (DWORD)
 Model Number // String
 Serial Number // String
 OEM Information // String
}

Table 10-241 PMC Method Result Codes

_PTP Sets Power Meter device trip points.

_SHL Sets the hardware power consumption limit that is enforced by the Power Meter.

Element Object
Type

Description

Supported
Capabilities

Integer
(DWORD)

A bitmask that represents the capability flags:
Bit0 – indicates the power meter supports measurement.
Bit1 – indicates the power meter supports trip points.
Bit2 – indicates the power meter supports hardware enforced limit.
Bit3 – indicates that the power meter supports notifications when the
hardware limit is enforced.
Bit4 – Bit7 – reserved.
Bit8 – indicates the power meter only reports data when discharging. This
applies to power meters that are battery-type devices.

Measurement
Unit

Integer
(DWORD)

The units used by the power meter to report measurement and configure trip
points and hardware enforced limits.
0x00000000 – indicates measurements are reported in [mW].

Measurement
Type

Integer
(DWORD)

The type of measurement the power meter is measuring. A power meter may
measure either input or output power, not both.
0x00000000 – indicates the power meter is measuring input power.
0x00000001 – indicates the power meter is measuring output power.

Object Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 513

Power Source and Power Meter Devices
10.4.2 _PTP (Power Trip Points)
This object sets the upper and lower trip points for the power meter device. These 2 trip points define
a hysteresis range for which the OSPM can tolerate without re-reading the current measurement via
_PMM. When the power meter draw goes outside the range, a Notify(power_meter, 0x81) should be
sent to notify the OSPM, at which time the OSPM should re-evaluate _PMM and also set a pair of

Measurement
Accuracy

Integer
(DWORD)

The accuracy of the power meter device, in thousandth of a percent. (0% -
100.000%) For example, The value 80000 would mean 80% accuracy.

Measurement
Sampling
Time

Integer
(DWORD)

The sampling time of the power meter device, in milliseconds. This is the
minimum amount of time at which the measurement value will change. In
other words, the same reading will be returned by _PMM if OSPM makes 2
consecutive reads within a measurement sampling time. 0xFFFFFFFF is
returned if the information is unavailable.

Minimum
Averaging
Interval

Integer
(DWORD)

This is the minimum length of time (in milliseconds) within which the power
meter firmware is capable of averaging the measurements within it.

Maximum
Averaging
Interval

Integer
(DWORD)

This is the maximum length of time (in milliseconds) within which the power
meter firmware is capable of averaging the measurements within it.

Hysteresis
Margin

Integer
(DWORD)

The margin used by the BMC for hysteresis, in the unit of [Measurement Unit
/ Measurement Sampling Time]. This indicates the margin built around the
trip points and hardware limit notifications. This margin prevents unnecessary
notifies to the OSPM when the reading is fluctuating very close to one of the
trip points or the hardware limit. 0xFFFFFFFF is returned if the information is
unavailable.

Hardware
Limit Is
Configurable

Integer
(DWORD)

This boolean value represents whether hardware enforced limit is
configurable by the OSPM.
0x00000000 (zeros) – indicates the limit is read-only.
0xFFFFFFFF (ones) – indicates the limit is writable.

Minimum
Configurable
Hardware
Limit

Integer
(DWORD)

The minimum value that can be configured into the hardware enforced limit,
expressed in the units as specified by Measurement Unit.

Maximum
Configurable
Hardware
Limit

Integer
(DWORD)

The maximum value that can be configured into the hardware enforced limit,
expressed in the units as specified by Measurement Unit.

Model
Number

String
(ASCIIZ)

OEM-specific Power meter model number. This element is optional and an
empty string (a null character) should be used if this is not supported.

Serial
Number

String
(ASCIIZ)

OEM-specific Power meter serial number. This element is optional and an
empty string (a null character) should be used if this is not supported.

OEM
Information

String
(ASCIIZ)

OEM-specific information that the UI uses to display about the Power meter
device. This element is optional and a NULL string should be used if this is
not supported.

Element Object
Type

Description
514 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
trip points around the newest reading. If the latest value measured by the power meter is outside of
the range defined by the trip points by the time _PTP is called, a result code is returned.

Arguments: (2)

Arg0 (Integer) : Upper Trip Point

Arg1 (Integer) : Lower Trip Point

Return Value:

An Integer containing the status of the operation:

0x00000000 – Success

0x00000001 – Failure to set trip points because latest measurement is out of range

0x00000002 – Failure to set trip points due to hardware timeout

0x00000003 – Failure to set trip points due to unknown hardware error

0x00000004 – 0xFFFFFFFF - Reserved

10.4.3 _PMM (Power Meter Measurement)
This object returns the latest measurement reading from the power meter device. The value returned
represents real power (i.e. power factor is included in the value). In most cases this is a rolling
average value that is computed by the firmware over an averaging interval. On systems where this
interval can be configured, the _PAI object should be present under the power meter device (see
Section 10.4.4).

Arguments:

None

Return Value:

An Integer is returned to represent the latest measurement reading from the power meter device.
This value should be in the unit specified in the power meter capabilities (typically in milliwatts),
and is required to be the RMS value if the power meter is measuring in AC. If an error occurs while
obtaining the meter reading or if the value is not available then an Integer with all bits set is returned.

10.4.4 _PAI (Power Averaging Interval)
This object sets the averaging interval used by the power meter. The averaging interval is the total
time the power meter will take instantaneous measurement samples for, before averaging them to
produce the average power measurement as returned by _PMM. If the platform changes the
averaging interval independently from OSPM, the platform must issue a Notify(power_meter, 0x84)
to indicate the change to the OSPM. Upon receiving the notification, OSPM evaluates the _GAI
object to read the new averaging interval.

Arguments: (1)

Arg0 – An Integer that represents the desired value OSPM chose to be the power averaging interval,
in milliseconds. This value needs to be within the minimum and maximum averaging interval as
specified by _PMC. Otherwise, a failure result code is returned.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 515

Power Source and Power Meter Devices
Return Value:

An Integer containing the status of the operation:

0x00000000 – Success

0x00000001 – Failure to set power averaging interval because it is out of range

0x00000002 – Failure to set power averaging interval due to hardware timeout

0x00000003 – Failure to set power averaging interval due to unknown hardware error

0x00000004 – 0xFFFFFFFF - Reserved

10.4.5 _GAI (Get Averaging Interval)
This object gets the averaging interval used by the power meter. The averaging interval is the total
time the power meter will take instantaneous measurement samples for, before averaging them to
produce the average power measurement as returned by _PMM. If the platform changes the
averaging interval independently from OSPM, the platform must issue a Notify(power_meter, 0x84)
to indicate the change to the OSPM. Upon receiving the notification, OSPM evaluates the _GAI
object to read the new averaging interval.

Arguments:

None

Return Value:

An Integer containing the currently configured power averaging interval, in milliseconds. If an error
occurs while obtaining the averaging interval or if the value is not available then an Integer with all
bits set is returned.

10.4.6_SHL (Set Hardware Limit)
This object sets the hardware limit enforced by the power meter. This limit, if supported, will be
enforced by the circuitry on the platform hardware, to the best of its effort. This value is typically
also configurable via other out-of-band management mechanism. When the enforcement happens,
the platform should send a Notify(power_meter, 0x83) to the OSPM.

Arguments: (1)

Arg0 – An Integer value that represent the desired value OSPM chose as the hardware enforced
limit of this power meter, in the unit specified in _PMC. This value needs to be within the minimum
and maximum hardware limit as specified by _PMC. Otherwise, a failure result code is returned.

Return Value:

An Integer containing the status of the operation:

0x00000000 – Success

0x00000001 – Failure to set hardware limit because it is out of range

0x00000002 – Failure to set hardware limit due to the hardware timeout

0x00000003 – Failure to set hardware limit due to unknown hardware error

0x00000004 – 0xFFFFFFFF - Reserved
516 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
10.4.7_GHL (Get Hardware Limit)
This object gets the hardware limit enforced by the power meter. This limit can be changed by either
the OSPM or by the platform through some out-of-band mechanism. When this value is changed, a
Notify(power_meter, 0x82) should be sent to notify the OSPM to re-read the hardware limit. If an
error occurs while obtaining the hardware limit or if the value is not available then an Integer with all
bits set is returned.

Arguments:

None

Return Value:

An Integer is returned to represent the currently configured hardware enforced limit of the power
meter, in the unit specified in _PMC.

10.4.8 _PMD (Power Metered Devices)
This object evaluates to a package of device names. Each name corresponds to a device in the ACPI
namespace that is being measured by the power meter device. The measurement reported by the
power meter is roughly correspondent to the total power draw of all the devices returned.

If this control method is present, the package needs to contain at least 1 device. On a system that
supports power metering, a system power meter that measures the power draw of the entire system
should always be present and have a _PMD that contains _SB as its sole entry.

Arguments:

None

Return Value:

A variable-length Package consisting of references to devices being measured by the power meter.

Package {
 Power Meter[0] // NamePath
 Power Meter[1] // NamePath
 ...
 Power Meter[n] // NamePath
}

10.5 Example: Power Source and Power Meter Namespace
Figure 10-58 below shows the ACPI namespace for a computer with a power meter, AC adapter and
two batteries associated with a docking station which itself has an AC adapter.

d

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 517

Power Source and Power Meter Devices
Figure 10-58 Power Meter and Power Source/Docking Namespace Example

PMD

d

\ (Root)

_SB

PMT1

_PMC

_PMM

_GAI

_PMD

_PAI

_PTP

_GHL

_SHL

Power Consumer List

d

d

d

_BTP

_PCL

_BST

_BIX

_STA

_HID

_BTP

_PCL

_BST

_BIX

PCI0

DOCK

_PSR

ADP2

_PCL

BAT1

d

_STA

_HID

BAT2

d

_PCL

_PSR

ADP1

Power Source Type

Power Source Type

Power Consumer List

AC Adapter #1

Battery #2

Plug and Play ID for BAT2

Battery 2 Device Status

Battery 2 Information

Battery 2 Status

Battery 2 Trip Point

Power Consumer List

PCI Root Bridge #0

Docking Station

AC Adapter #2

Battery #1

Plug and Play ID for BAT1

Battery 1 Device Status

Battery 1 Information

Battery 1 Status

Battery 1 Trip Point

Power Consumer List

Set Hardware Limit

Get Hardware Limit

Power Meter Capabilities
Power Metered Device List

System Bus

ACPI Namespace Root

Power Meter Measurement

Power Meter #1

Power Averaging Interval

Power Trip Points

PAI
518 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11
Thermal Management

This section describes the ACPI thermal model and specifies the ACPI Namespace objects OSPM
uses for thermal management of the platform.

11.1 Thermal Control
ACPI defines interfaces that allow OSPM to be proactive in its system cooling policies. With OSPM
in control of the operating environment, cooling decisions can be made based on the system’s
application load, the user’s preference towards performance or energy conservation, and thermal
heuristics. Graceful shutdown of devices or the entire system at critical heat levels becomes possible
as well. The following sections describe the ACPI thermal model and the ACPI Namespace objects
available to OSPM to apply platform thermal management policy.

The ACPI thermal model is based around conceptual platform regions called thermal zones that
physically contain devices, thermal sensors, and cooling controls. Generally speaking, the entire
platform is one large thermal zone, but the platform can be partitioned into several ACPI thermal
zones if necessary to enable optimal thermal management.

ACPI Thermal zones are a logical collection of interfaces to temperature sensors, trip points, thermal
property information, and thermal controls. Thermal zone interfaces apply either thermal zone wide
or to specific devices, including processors, contained within the thermal zone. ACPI defines
namespace objects that provide the thermal zone-wide interfaces in Section 11.3, “Thermal
Objects”. A subset of these objects may also be defined under devices. OS implementations
compatible with the ACPI 3.0 thermal model, interface with these objects but also support OS native
device driver interfaces that perform similar functions at the device level. This allows the integration
of devices with embedded thermal sensors and controls, perhaps not accessible by AML, to
participate in the ACPI thermal model through their inclusion in the ACPI thermal zone. OSPM is
responsible for applying an appropriate thermal policy when a thermal zone contains both thermal
objects and native OS device driver interfaces for thermal control.

Some devices in a thermal zone may be comparatively large producers of thermal load in relation to
other devices in the thermal zone. Devices may also have varying degrees of thermal sensitivity. For
example, some devices may tolerate operation at a significantly higher temperature than other
devices. As such, the platform can provide OSPM with information about the platform’s device
topology and the resulting influence of one device’s thermal load generation on another device. This
information must be comprehended by OSPM for it to achieve optimal thermal management through
the application of cooling controls.

ACPI expects all temperatures to be represented in tenths of degrees. This resolution is deemed
sufficient to enable OSPM to perform robust platform thermal management.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 519

Thermal Management
Figure 11-59 ACPI Thermal Zone

11.1.1 Active, Passive, and Critical Policies
There are three cooling policies that OSPM uses to control the thermal state of the hardware. The
policies are active, passive and critical.

• Active Cooling. OSPM takes a direct action such as turning on one or more fans. Applying
active cooling controls typically consume power and produce some amount of noise, but are able
to cool a thermal zone without limiting system performance. Active cooling temperature trip
points declare the temperature thresholds OSPM uses to decide when to start or stop different
active cooling devices.

• Passive Cooling. OSPM reduces the power consumption of devices to reduce the temperature of
a thermal zone, such as slowing (throttling) the processor clock. Applying passive cooling
controls typically produces no user-noticeable noise. Passive cooling temperature trip points
specify the temperature thresholds where OSPM will start or stop passive cooling.

• Critical Trip Points. These are threshold temperatures at which OSPM performs an orderly, but
critical, shutdown of a device or the entire system. The _HOT object declares the critical
temperature at which OSPM may choose to transition the system into the S4 sleeping state, if
supported, The _CRT object declares the critical temperature at which OSPM must perform a
critical shutdown.

T

Processor

T

Device

T

Represents a Temperature Sensor

Thermal Zone-wide active
cooling device (Fan)

Device with embedded temperature
sensor and local active cooling device

(Fan)

T

Thermal Zone-wide
temperature sensor

Processor with embedded
temperature sensor

Thermal Zone
520 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
When a thermal zone appears in the ACPI Namespace or when a new device becomes a member of a
thermal zone, OSPM retrieves the temperature thresholds (trip points) at which it executes a cooling
policy. When OSPM receives a temperature change notification, it evaluates the thermal zone’s
temperature interfaces to retrieve current temperature values. OSPM compares the current
temperature values against the temperature thresholds. If any temperature is greater than or equal to
a corresponding active trip point then OSPM will perform active cooling . If any temperature is
greater than or equal to a corresponding passive trip point then OSPM will perform passive cooling.
If the _TMP object returns a value greater than or equal to the value returned by the _HOT object
then OSPM may choose to transition the system into the S4 sleeping state, if supported. If the _TMP
object returns a value greater than or equal to the value returned by the _CRT object then OSPM
must shut the system down. Embedded Hot and Critical trip points may also be exposed by
individual devices within a thermal zone. Upon passing of these trip points, OSPM must decide
whether to shut down the device or the entire system based upon device criticality to system
operation. OSPM must also evaluate the thermal zone’s temperature interfaces when any thermal
zone appears in the namespace (for example, during system initialization) and must initiate a cooling
policy as warranted independent of receipt of a temperature change notification. This allows OSPM
to cool systems containing a thermal zone whose temperature has already exceeded temperature
thresholds at initialization time.

An optimally designed system that uses several thresholds can notify OSPM of thermal increase or
decrease by raising an event every several degrees. This enables OSPM to anticipate thermal trends
and incorporate heuristics to better manage the system’s temperature.

To implement a preference towards performance or energy conservation, OSPM can request that the
platform change the priority of active cooling (performance) versus passive cooling (energy
conservation/silence) by evaluating the _SCP (Set Cooling Policy) object for the thermal zone or a
corresponding OS-specific interface to individual devices within a thermal zone.

11.1.2 Dynamically Changing Cooling Temperature Trip Points
The platform or its devices can change the active and passive cooling temperature trip points and
notify OSPM to reevaluate the trip point interfaces to establish the new policy threshold settings.
The following are the primary uses for this type of thermal notification:

• When OSPM changes the platform’s cooling policy from one cooling mode to another.

• When a swappable bay device is inserted or removed. A swappable bay is a slot that can
accommodate several different devices that have identical form factors, such as a CD-ROM
drive, disk drive, and so on. Many mobile PCs have this concept already in place.

• After the crossing of an active or passive trip point is signaled to implement hysteresis.

In each situation, OSPM must be notified to re-evaluate the thermal zone’s trip points via the AML
code execution of a Notify(thermal_zone, 0x81) statement or via an OS specific interface invoked
by device drivers for zone devices participating in the thermal model.

11.1.2.1 OSPM Change of Cooling Policy
When OSPM changes the platform’s cooling policy from one cooling mode to the other, the
following occurs:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 521

Thermal Management
1. OSPM notifies the platform of the new cooling mode by running the Set Cooling Policy (_SCP)
control method in all thermal zones and invoking the OS-specific Set Cooling Policy interface to
all participating devices in each thermal zone.

2. Thresholds are updated in the hardware and OSPM is notified of the change.

3. OSPM re-evaluates the active and passive cooling temperature trip points for the zone and all
devices in the zone to obtain the new temperature thresholds.

11.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion or
Removal

The platform can adjust the thermal zone temperature to accommodate the maximum operating
temperature of a bay device as necessary. For example:

1. Hardware detects that a device was inserted into or removed from the bay, updates the
temperature thresholds, and then notifies OSPM of the thermal policy change and device
insertion events.

2. OSPM re-enumerates the devices and re-evaluates the active and passive cooling temperature
trip points.

11.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis
An OEM can build hysteresis into platform thermal design by dynamically resetting cooling
temperature thresholds. For example:

1. When the temperature increases to the designated threshold, OSPM will turn on the associated
active cooling device or perform passive cooling.

2. The platform resets the threshold value to a lower temperature (to implement hysteresis) and
notifies OSPM of the change. Because of this new threshold value, the fan will be turned off at a
lower temperature than when it was turned on (therefore implementing a negative hysteresis).

3. When the temperature hits the lower threshold value, OSPM will turn off the associated active
cooling device or cease passive cooling. The hardware will reset _ACx to its original value and
notify OSPM that the trip points have once again been altered.

11.1.3 Detecting Temperature Changes
The ability of the platform and its devices to asynchronously notify an ACPI-compatible OS of
meaningful changes in the thermal zone’s temperature is a highly desirable capability that relieves
OSPM from implementing a poll-based policy and generally results in a much more responsive and
optimal thermal policy implementation. Each notification instructs OSPM to evaluate whether a trip
point has been crossed and allows OSPM to anticipate temperature trends for the thermal zone.

It is recognized that much of the hardware used to implement thermal zone functionality today is not
capable of generating ACPI-visible notifications (SCIs) or only can do so with wide granularity (for
example, only when the temperature crosses the critical threshold). In these environments, OSPM
must poll the thermal zone's temperature periodically to implement an effective policy.

While ACPI specifies a mechanism that enables OSPM to poll thermal zone temperature, platform
reliance on thermal zone polling is strongly discouraged by this specification. OEMs should design
systems that asynchronously notify OSPM whenever a meaningful change in the zone’s temperature
occurs – relieving OSPM of the overhead associated with polling. In some cases, embedded
522 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
controller firmware can overcome limitations of existing thermal sensor capabilities to provide the
desired asynchronous notification.

Notice that the _TZP (thermal zone polling) object is used to indicate whether a thermal zone must
be polled by OSPM, and if so, a recommended polling frequency. See Section 11.4.21, “_TZP,” for
more information.

11.1.3.1 Temperature Change Notifications
Thermal zone-wide temperature sensor hardware that supports asynchronous temperature change
notifications does so using an SCI. The AML code that responds to this SCI must execute a
Notify(thermal_zone, 0x80) statement to inform OSPM that a meaningful change in temperature has
occurred. Alternatively, devices with embedded temperature sensors may signal their associated
device drivers and the drivers may use an OS-specific interface to signal OSPM’s thermal policy
driver. A device driver may also invoke a device specific control method that executes a
Notify(thermal_zone, 0x80) statement. When OSPM receives this thermal notification, it will
evaluate the thermal zone’s temperature interfaces to evaluate the current temperature values. OSPM
will then compare the values to the corresponding cooling policy trip point values (either zone-wide
or device-specific). If the temperature has crossed over any of the policy thresholds, then OSPM will
actively or passively cool (or stop cooling) the system, or shut the system down entirely.

Both the number and granularity of thermal zone trip points are OEM-specific. However, it is
important to notice that since OSPM can use heuristic knowledge to help cool the system, the more
events OSPM receives the better understanding it will have of the system’s thermal characteristic.

Figure 11-60 Thermal Events

For example, the simple thermal zone illustrated above includes hardware that will generate a
temperature change notification using a 5 Celsius granularity. All thresholds (_PSV, _AC1, _AC0,
and _CRT) exist within the monitored range and fall on 5 boundaries. This granularity is appropriate
for this system as it provides sufficient opportunity for OSPM to detect when a threshold is crossed
as well as to understand the thermal zone’s basic characteristics (temperature trends).

Note: The ACPI specification defines Kelvin as the standard unit for absolute temperature values. All
thermal zone objects must report temperatures in Kelvin when reporting absolute temperature

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Temperature Change
Events (SCIs)

_CRT: Critical shutdown threshold

_AC0: Fan high speed threshold

_AC1: Fan low speed threshold

_PSV: Passive cooling threshold
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 523

Thermal Management
values. All figures and examples in this section of the specification use Celsius for reasons of
clarity. ACPI allows Kelvin to be declared in precision of 1/10th of a degree (for example, 310.5).
Kelvin is expressed as /K = TC + 273.2.

11.1.3.2 Polling
Temperature sensor hardware that is incapable of generating thermal change events, or that can do
so for only a few thresholds should inform OSPM to implement a poll-based policy. OSPM does this
to ensure that temperature changes across threshold boundaries are always detectable.

Polling can be done in conjunction with hardware notifications. For example, thermal zone hardware
that only supports a single threshold might be configured to use this threshold as the critical
temperature trip point. Assuming that hardware monitors the temperature at a finer granularity than
OSPM would, this environment has the benefit of being more responsive when the system is
overheating.

A thermal zone advertises the need to be polled by OSPM via the _TZP object. See Section 11.4.21,
“_TZP,” for more information.

11.1.4 Active Cooling
Active cooling devices typically consume power and produce some amount of noise when enabled.
These devices attempt to cool a thermal zone through the removal of heat rather than limiting the
performance of a device to address an adverse thermal condition.

The active cooling interfaces in conjunction with the active cooling lists or the active cooling
relationship table (_ART) allow the platform to use an active device that offers varying degrees of
cooling capability or multiple cooling devices. The active cooling temperature trip points designate
the temperature where Active cooling is engaged or disengaged (depending upon the direction in
which the temperature is changing). For thermal zone-wide active cooling controls, the _ALx object
evaluates to a list of devices that actively cool the zone or the _ART object evaluates to describe the
entire active cooling relationship of various devices. For example:

• If a standard single-speed fan is the Active cooling device, then _AC0 evaluates to the
temperature where active cooling is engaged and the fan is listed in _AL0.

• If the zone uses two independently controlled single-speed fans to regulate the temperature, then
_AC0 will evaluate to the maximum cooling temperature using two fans, and _AC1 will
evaluate to the standard cooling temperature using one fan.

• If a zone has a single fan with a low speed and a high speed, the _AC0 will evaluate to the
temperature associated with running the fan at high-speed, and _AC1 will evaluate to the
temperature associated with running the fan at low speed. _AL0 and _AL1 will both point to
different device objects associated with the same physical fan, but control the fan at different
speeds.

• If the zone uses two independently controlled multiple-speed fans to regulate the temperature,
_AC0 of the target devices evaluates to the temperature at which OSPM will engage fan devices
described by the _ART object as needed up to a maximum capability level.

For ASL coding examples that illustrate these points, see Section 11.6, “Thermal Zone Interface
Requirements,” and Section 11.7, “Thermal Zone Examples.”
524 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11.1.5 Passive Cooling
Passive cooling controls are able to cool a thermal zone without creating noise and without
consuming additional power (actually saving power), but do so by decreasing the performance of the
devices in the zone .

11.1.5.1 Processor Clock Throttling
The processor passive cooling threshold (_PSV) in conjunction with the processor list (_PSL) allows
the platform to indicate the temperature at which a passive control, for example clock throttling, will
be applied to the processor(s) residing in a given thermal zone. Unlike other cooling policies, during
passive cooling of processors OSPM may take the initiative to actively monitor the temperature in
order to cool the platform.

On an ACPI-compatible platform that properly implements CPU throttling, the temperature
transitions will be similar to the following figure, in a coolable environment, running a coolable
workload:

Figure 11-61 Temperature and CPU Performance Versus Time

The following equation should be used by OSPM to assess the optimum CPU performance change
necessary to lower the thermal zone’s temperature:

Equation #1:
P [%] = _TC1 * (Tn - Tn-1) + _TC2 * (Tn - Tt)

Where:

Tn = current temperature

Tt = target temperature (_PSV)

The two coefficients _TC1 and _TC2 and the sampling period _TSP are hardware-dependent
constants the OEM must supply to OSPM (for more information, see Section 11.4, “Thermal

C
P

U
 P

e
rfo

rm
a

n
ce

Time

T
e
m

p
e
ra

tu
re

P

_TSP (Sampling period)

100%

50%

Tt

Tn - 1

Tn
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 525

Thermal Management
Objects”). The _TSP object contains a time interval that OSPM uses to poll the hardware to sample
the temperature. Whenever the time value returned by _TSP has elapsed, OSPM will evaluate _TMP
to sample the current temperature (shown as Tn in the above equation). Then OSPM will use the
sampled temperature and the passive cooling temperature trip point (_PSV) (which is the target
temperature Tt) to evaluate the equation for P. The granularity of P is determined by the CPU
duty width of the system.

Note: Equation #1 has an implied formula.

Equation #2:

Pn = Pn-1 + HW[- P] where 0% <= Pn <= 100%

For Equation #2, whenever Pn-1 + P lies outside the range 0-100%, then Pn will be truncated to 0-
100%. For hardware that cannot assume all possible values of Pn between 0 and 100%, a hardware-
specific mapping function HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as follows:

For absolute temperatures:

1. If the right hand side of Equation #1 is negative, HW[P] is rounded to the next available higher
setting of frequency.

2. If the right hand side of Equation #1 is positive, HW[P] is rounded to the next available lower
setting of frequency.

For relative temperatures:

1. If the right hand side of Equation #1 is positive, HW[P] is rounded to the next available higher
setting of frequency.

2. If the right hand side of Equation #1 is negative, HW[P] is rounded to the next available lower
setting of frequency.

• The calculated Pn becomes Pn-1 during the next sampling period.

• For more information about CPU throttling, see Section 8.1.1, Processor Power State C0.” A
detailed explanation of this thermal feedback equation is beyond the scope of this specification.

11.1.6 Critical Shutdown
When the thermal zone-wide temperature sensor value reaches the threshold indicated by _CRT,
OSPM must immediately shut the system down. The system must disable the power either after the
temperature reaches some hardware-determined level above _CRT or after a predetermined time has
passed. Before disabling power, platform designers should incorporate some time that allows OSPM
to run its critical shutdown operation. There is no requirement for a minimum shutdown operation
window that commences immediately after the temperature reaches _CRT. This is because:

• Temperature might rise rapidly in some systems and slowly on others, depending on casing
design and environmental factors.

• Shutdown can take several minutes on a server and only a few seconds on a hand-held device.

Because of this indistinct discrepancy and the fact that a critical heat situation is a remarkably rare
occurrence, ACPI does not specify a target window for a safe shutdown. It is entirely up to the OEM
to build in a safe buffer that it sees fit for the target platform.
526 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11.2 Cooling Preferences
A robust OSPM implementation provides the means for the end user to convey a preference (or a
level of preference) for either performance or energy conservation to OSPM. Allowing the end user
to choose this preference is most critical to mobile system users where maximizing system run-time
on a battery charge often has higher priority over realizing maximum system performance. For
example, if a user is taking notes on her PC in a quiet environment, such as a library or a corporate
meeting, she may want the system to emphasize passive cooling so that the system operates quietly,
even at the cost of system performance.

A user preference towards performance corresponds to the Active cooling mode while a user’s
preference towards energy conservation or quiet corresponds to the Passive cooling mode. ACPI
defines an interface to convey the cooling mode to the platform. Active cooling can be performed
with minimal OSPM thermal policy intervention. For example, the platform indicates through
thermal zone parameters that crossing a thermal trip point requires a fan to be turned on. Passive
cooling requires OSPM thermal policy to manipulate device interfaces that reduce performance to
reduce thermal zone temperature.

Either cooling mode will be activated only when the thermal condition requires it. When the thermal
zone is at an optimal temperature level where it does not warrant any cooling, both modes result in a
system operating at its maximum potential with all fans turned off.

Thermal zones supporting the Set Cooling Policy interface allow the user to switch the system’s
cooling mode emphasis. See Section 11.4.11, “_SCP,” for more information.

Figure 11-62 Active and Passive Threshold Values

As illustrated in Figure 11-62, the platform must convey the value for each threshold to instruct
OSPM to initiate the cooling policies at the desired target temperatures. The platform can emphasize
active or passive cooling modes by assigning different threshold values. Generally, if _ACx is set
lower than _PSV, then the system emphasizes active cooling. Conversely, if _PSV is set lower than
_ACx, then the emphasis is placed on passive cooling.

For example, a thermal zone that includes a processor and one single-speed fan may use _PSV to
indicate the temperature value at which OSPM would enable passive cooling and _AC0 to indicate
the temperature at which the fan would be turned on. If the value of _PSV is less than _AC0 then the

Active Cooling Thresholds (_ACx) Passive Cooling Threshold (_PSV)

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 527

Thermal Management
system will favor passive cooling (for example, CPU clock throttling). On the other hand, if _AC0 is
less than _PSV the system will favor active cooling (in other words, using the fan). See Figure 11-63
below.

Figure 11-63 Cooling Preferences

The example on the left enables active cooling (for example, turn on a fan) when OSPM detects the
temperature has risen above 50. If for some reason the fan does not reduce the system temperature,
then at 75 OSPM will initiate passive cooling (for example, CPU throttling) while still running the
fan. If the temperature continues to climb, OSPM will quickly shut the system down when the
temperature reaches 90C. The example on the right is similar but the _AC0 and _PSV threshold
values have been swapped to emphasize passive cooling.

The ACPI thermal model allows flexibility in the thermal zone design. An OEM that needs a less
elaborate thermal implementation may consider using only a single threshold (for example, _CRT).
Complex thermal implementations can be modeled using multiple active cooling thresholds and
devices, or through the use of additional thermal zones.

11.2.1 Evaluating Thermal Device Lists
The Notify(thermal_zone, 0x82) statement is used to inform OSPM that a change has been made to
the thermal zone device lists. This thermal event instructs OSPM to re-evaluate the _ALx, _PSL, and
_TZD objects.

For example, a system that supports the dynamic insertions of processors might issue this
notification to inform OSPM of changes to _PSL following the insertion or removal of a processor.
OSPM would re-evaluate all thermal device lists and adjust its policy accordingly.

Notice that this notification can be used with the Notify(thermal_zone, 0x81) statement to inform
OSPM to both re-evaluate all device lists and all thresholds.

_CRT

_PSV

_AC0

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Active Cooling
Preference

_CRT

_AC0

_PSV

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Passive Cooling
Preference
528 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Alternatively, devices may include the _TZM (Thermal Zone Member) object their device scope to
convey their thermal zone association to OSPM. Section 11.4.20, “_TZM (Thermal Zone Member)”,
for more information.

11.2.2 Evaluating Device Thermal Relationship Information
The Notify(thermal_zone, 0x83) statement is used to inform OSPM that a change has been made to
the thermal relationship information. This thermal event instructs OSPM to re-evaluate the _TRT
and _ART objects. The thermal influence between devices may change when active cooling moves
air across device packages as compared to when only passive cooling controls are applied. Similarly,
the active cooling relationship may change as various fans are engaged to actively cool a platform or
if user preferences change.

11.2.3Fan Device Notifications
Notify events of type 0x80 will cause OSPM to evaluate the _FST object to evaluate the fan’s
current speed.

11.3 Fan Device
ACPI 1.0 defined a simple fan device that is assumed to be in operation when it is in the D0 state.
Thermal zones reference fan device(s) as being responsible primarily for cooling within that zone.
Notice that multiple fan devices can be present for any one thermal zone. They might be actual
different fans, or they might be used to implement one fan of multiple speeds (for example, by
turning both “fans” on the one fan will run full speed).

ACPI 4.0 defines additional fan device interface objects enabling OSPM to perform more robust
active cooling thermal control. These objects are summarized in Table 11-242. OSPM requires that
all of the objects listed in Table 11-242 be defined under a fan device to enable advanced active
cooling control. The absence of any of these objects causes OSPM to perform ACPI 1.0 style simple
fan control .

The Plug and Play ID of a fan device is PNP0C0B.

Table 11-242 Fan Specific Objects

While the Fan Device and its associated objects are optional, if the Fan Device is implemented by
the platform, all objects listed in Table 11-242 are required and must be provided.

Object Description

_FIF Returns fan device information.

_FPS Returns a list of supported fan performance states.

_FSL Control method that sets the fan device’s speed level (performance state).

_FST Returns current status information for a fan device.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 529

Thermal Management
11.3.1 Fan Objects

11.3.1.1 _FIF (Fan Information)
The optional _FIF object provides OSPM with fan device capability information.

Arguments:

None

Return Value:

A Package containing the fan device parameters as described in Table 11-243 below

_FIF evaluation returns a package of the following format:

Package (){
 Revision, // Integer
 FineGrainControl, // Integer Boolean
 StepSize // Integer DWORD
 LowSpeedNotificationSupport // Integer Boolean
}

Table 11-243 FIF Package Details

If a fan device supports fine-grained control, OSPM may evaluate a fan device’s _FSL object with
any Level argument value that is less than or equal to the Control field value specified in the package
of the _FPS object’s package list that corresponds to the active cooling trip point that has been
exceeded. This capability provides OSPM access to one hundred fan speed settings thus enabling
fine-grained fan speed control. The platform uses the StepSize field to help OSPM optimize its fan
level selection policy by fine-grained fan speed control. The platform uses the StepSize field to help
OSPM optimize its fan level selection policy by indicating recommended increments in the fan
speed level value that are appropriate for the fan when one percent increments are not optimal. In the
event OSPM’s incremental selections of Level using the StepSize field value do not sum to 100%,
OSPM may select an appropriate ending Level increment to reach 100%. OSPM should use the
same residual step value first when reducing Level.

Field Format Description

Revision Integer Current revision is: 0

Fine Grain
Control

Integer
(Boolean)

A non zero value in this field indicates OSPM may evaluate the fan device’s
_FSL object with a Level argument value in the range of 0-100, which
represents a percentage of maximum speed. A zero value in this field
indicates that OSPM may evaluate the fan device’s _FSL object with a Level
argument value that is a Control field value from a package in the _FPS
object’s package list only.

Step Size Integer
(DWORD)

The recommended minimum step size in percentage points to be used
when OSPM performs fine-grained fan speed control. OSPM may utilize the
value of this field if the FineGrainControl field is non-zero the value in this
field is between 1 and 9.

Low Speed
Notification
Support

Integer
(Boolean)

A non zero value in this field indicates that the platform will issue a Notify
(0x80) to the fan device if a low (errant) fan speed is detected.
530 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11.3.1.2 _FPS (Fan Performance States)
The optional _FPS object evaluates to a variable-length package containing a list of packages that
describe the fan device’s performance states. A temperature reading above an active cooling trip
point defined by an _ACx object in a thermal zone or above a native active cooling trip point of a
device within the thermal zone causes OSPM thermal control to engage the appropriate
corresponding fan performance state from the list of fan performance states described by the _FPS
object if the fan device is present in the corresponding _ALx device list or if an entry exists for the
fan and trip point in the active cooling relationship table (_ART).

OSPM assumes a linear relationship for the acoustic impact and power consumption values between
successive entries in the fan performance state list. Notice that the acoustic impact measurement unit
(Decibels) is inherently non-linear. As such, the platform should populate _FPS entries as necessary
to enable OSPM to achieve optimal results.

Arguments:

None

Return Value:

A variable-length Package containing a Revision ID and a list of Packages that describe the fan
device’s performance states as described in Table 11-244 below.

Return Value Information

Package {
 Revision, // Integer - Current revision is: 0
 FanPState[0], // Package
 ….
 FanPState[n] // Package
}

Each FanPState sub-Package contains the elements described below:

Package () // Fan P-State
{
 Control, // Integer DWORD
 TripPoint, // Integer DWORD
 Speed, // Integer DWORD
 NoiseLevel, // Integer DWORD
 Power // Integer DWORD
}

Table 11-244 FPS FanPstate Package Details

Field Format Description

Control Integer
(DWORD)

Indicates the value to be used to set the fan speed to a specific level using the
_FSL object.
If the fan device supports fine-grained control as indicated by the _FIF object,
this value is a percentage (0-100) of maximum speed level.
If the fan device does not support fine-grained control, this field is an opaque
value that OSPM must simply use in its evaluation of the _FSL object to set the
level to this performance state.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 531

Thermal Management
11.3.1.3 FSL (Fan Set Level)
The optional _FSL object is a control method that OSPM evaluates to set a fan device’s speed
(performance state) to a specific level

Arguments: (1)

Arg0 – Level (Integer): conveys to the platform the fan speed level to be set.

Return Value:

None

Argument Information
Arg0: Level. If the fan supports fine-grained control, Level is a percentage of maximum level (0-
100) that the platform is to engage the fan. If the fan does not support fine-grained control, Level is a
Control field value from a package in the _FPS object’s package list. A Level value of zero causes
the platform to turn off the fan.

11.3.1.4 _FST (Fan Status)
The optional _FST object provides status information for the fan device.

Arguments:

None

Return Value:

A Package containing fan device status information as described in Table 11-245 below

_FST evaluation returns a package of the following format:

TripPoint Integer
(DWORD)

0-9: The active cooling trip point number that corresponds to this performance
state. If the _ART object is defined, OSPM may optionally use information
provided by the _ART object and _FPS objects to select alternative fan
performance states. Only one entry per unique trip point number is allowed in
the _FPS.
0x0A- 0xFFFFFFFE: Reserved
0x0FFFFFFFF: Indicates that this performance state does not correspond with
a specific active cooling trip point.

Speed Integer
(DWORD)

Indicates the speed of the fan in revolutions per minute in this performance
state.

NoiseLevel Integer
(DWORD)

This optional field indicates the audible noise emitted by the fan in this
performance state. The value represents the noise in 10ths of decibels. For
example, if the fan emits noise at 28.3dB in this performance state, the value of
this field would be 283. A value of 0xFFFFFFFF indicates that this field is not
populated.

Power Integer
(DWORD)

This optional field indicates the power consumption (in milliwatts) of the fan in
this performance state. For example, if the fan consumes .5W in this
performance state, the value of this field would be 500. A value of
0xFFFFFFFF indicates that this field is not populated.

Field Format Description
532 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Package (){
 Revision, // Integer
 Control, // Integer DWORD
 Speed // Integer DWORD
}

Table 11-245 FST Package Details

11.4 Thermal Objects
Objects related to thermal management are listed in the following table.

Table 11-246 Thermal Objects

Field Format Description

Revision Integer Current revision is: 0

Control Integer
(DWORD)

The current control value used to operate the Fan. If the fan is not operating
Control will be zero. If the fan is operating, Control is the Level argument passed
in the evaluation of the _FSL object.

Speed Integer
(DWORD)

The current fan speed in revolutions per minute at which the fan is rotating. A
value of 0xFFFFFFFF indicates that the fan does not support speed reporting.

Object Description

_ACx Returns active cooling policy threshold values in tenths of degrees.

_ALx List of active cooling device objects.

_ART Table of values that convey the Active Cooling Relationship between devices

_CRT Returns critical trip point in tenths of degrees where OSPM must perform a critical shutdown.

_HOT Returns critical trip point in tenths of degrees where OSPM may choose to transition the system
into S4.

_NTT Returns the temperature change threshold for devices containing native temperature sensors to
cause evaluation of the _TPT object

_PSL List of processor device objects for clock throttling.

_PSV Returns the passive cooling policy threshold value in tenths of degrees.

_RTV Conveys whether temperatures are expressed in terms of absolute or relative values.

_SCP Sets platform cooling policy (active or passive).

_TC1 Thermal constant for passive cooling.

_TC2 Thermal constant for passive cooling.

_TMP Returns the thermal zone’s current temperature in tenths of degrees.

_TPT Conveys the temperature of a devices internal temperature sensor to the platform when a
temperature trip point is crossed or a meaningful change in temperature occurs.

_TRT Table of values that convey the Thermal Relationship between devices

_TSP Thermal sampling period for Passive cooling in tenths of seconds.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 533

Thermal Management
With the exception of _TPT, _TST, and the _TZM objects, the objects described in the following
sections may exist under a thermal zone. Devices with embedded thermal sensors and controls may
contain static cooling temperature trip points or dynamic cooling temperature trip points that must be
programmed by the device’s driver. In this case, thermal objects defined under a device serve to
convey the platform specific values for these settings to the devices driver.

11.4.1 _ACx (Active Cooling)
This optional object, if present under a thermal zone, returns the temperature trip point at which
OSPM must start or stop Active cooling, where x is a value between 0 and 9 that designates multiple
active cooling levels of the thermal zone. If the Active cooling device has one cooling level (that is,
“on”) then that cooling level must be defined as _AC0. If the cooling device has two levels of
capability, such as a high fan speed and a low fan speed, then they must be defined as _AC0 and
_AC1 respectively. The smaller the value of x, the greater the cooling strength _ACx represents. In
the above example, _AC0 represents the greater level of cooling (the faster fan speed) and _AC1
represents the lesser level of cooling (the slower fan speed). For every _ACx method, there must be
a matching _ALx object or a corresponding entry in an _ART object’s active cooling relationship
list.

If this object it present under a device, the device’s driver evaluates this object to determine the
device’s corresponding active cooling temperature trip point. This value may then be used by the
device’s driver to program an internal device temperature sensor trip point. When this object is
present under a device, the device must contain a native OS device driver interface supporting a
corresponding active cooling control, a matching _ALx object under the thermal zone of which the
device is a member must exist, or a corresponding entry in an _ART object’s active cooling
relationship list must.

Arguments:

None

Return Value:

An Integer containing the active cooling temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents tenths of degrees Kelvin. For example, 300.0K is
represented by the integer 3000.

11.4.2 _ALx (Active List)
This object is defined under a thermal zone and evaluates to a list of Active cooling devices to be
turned on when the corresponding _ACx temperature threshold is exceeded. For example, these
devices could be fans.

_TST Conveys the minimum separation for a devices’ programmable temperature trip points.

_TZD List of devices whose temperature is measured by this thermal zone.

_TZM Returns the thermal zone for which a device is a member.

_TZP Thermal zone polling frequency in tenths of seconds.

Object Description
534 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments:

None

Return Value:

A variable-length Package containing a list of References to active cooling devices

The return value is a package consisting of references to all active cooling devices that should be
engaged when the associated active cooling threshold (_ACx) is exceeded.

When the returned package consists of references to an active cooling device that is a fan device and
the fan device implements _FPS and _FSL objects, OSPM activates the identified fan at a capability
level matching the level identified by this object. For example, if the system has a fan that
implements _FPS object with 5 levels, and if _AL3 is evaluated by the OSPM causing it to return
this fan’s reference, then the fan is activated by evaluating _FSL with the value from the Control
field of an _FPS entry whose TripPoint field value equals 3.

If a thermal zone has the _ART object defined, then it is not necessary to have any _ALx objects
implemented.

Note: If a thermal zone has _ART object defined as well as _ALx defined, the OSPM ignores _ALx
objects and uses _ART exclusively.

11.4.3 _ART (Active Cooling Relationship Table)
The optional _ART object evaluates to a variable-length package containing a list of packages each
of which describes the active cooling relationship between a device within a thermal zone and an
active cooling device. OSPM uses the combined information about the active cooling relationships
of all devices in the thermal zone to make active cooling policy decisions.

If _ART is implemented within a thermal zone, OSPM ignores all _ALx objects as _ART conveys a
mapping for each of the _ACx trip points to active cooling devices.

The platform can dynamically change the _ART object by notifying the thermal zone object with a
Notify code of 0x83, which will cause OSPM to re-evaluate both the _TRT and _ART objects. This
allows the platform to change the capability level mapping to various _ACx trip points dynamically
at run time.

Arguments:

None

Return Value:

A variable-length Package containing a Revision ID and a list of Active Relationship Packages as
described below:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 535

Thermal Management
Return Value Information

Package {
 Revision, // Integer – Current revision is: 0
 ActiveRelationship[0] // Package
 ….
 ActiveRelationship[n] // Package
}

Each ActiveRelationship sub-Package contains the elements described below:

Package {
 SourceDevice, // Object Reference to a Fan Device Object
 TargetDevice, // Object Reference to a Device Object
 Weight, // Integer
 AC0MaxLevel, // Integer
 AC1MaxLevel, // Integer
 AC2MaxLevel, // Integer
 AC3MaxLevel, // Integer
 AC4MaxLevel, // Integer
 AC5MaxLevel, // Integer
 AC6MaxLevel, // Integer
 AC7MaxLevel, // Integer
 AC8MaxLevel, // Integer
 AC9MaxLevel // Integer
}

Table 11-247 Thermal Relationship Package Values

Element Object Type Description

SourceDevice Reference
(to a device)

The fan device that has an impact on the cooling of the device indicated
by TargetDevice.

TargetDevice Reference
(to a device)

The device that is impacted by the fan device indicated by SourceDevice.

Weight Integer Indicates the SourceDevice’s contribution to the platform’s TargetDevice
total cooling capability when the fans of all entries in the _ART with the
same target device are engaged at their highest (maximum capability)
performance state. This is represented as a percentage value (0-100).

AC0MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC0 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC1MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC1 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.
536 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
In the case multiple active cooling trip points have been exceeded and _ART entries indicate various
maximum limits for the same SourceDevice, OSPM may operate the SourceDevice up to the highest
ACxMaxLevel value indicated for all exceeded trip points.

AC2MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC2 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC3MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC3 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC4MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC4 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC5MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC5 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC6MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC6 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC7MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC7 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC8MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC8 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

AC9MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC9 trip point value.
A value of 0xFFFFFFFF in this field indicates that the SourceDevice is not
to be engaged for the trip point.

Element Object Type Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 537

Thermal Management
11.4.4 _CRT (Critical Temperature)
This object, when defined under a thermal zone, returns the critical temperature at which OSPM
must shutdown the system. If this object it present under a device, the device’s driver evaluates this
object to determine the device’s critical cooling temperature trip point. This value may then be used
by the device’s driver to program an internal device temperature sensor trip point.

Arguments:

None

Return Value:

An Integer containing the critical temperature threshold in tenths of degrees Kelvin

The result is an integer value that represents the critical shutdown threshold in tenths of degrees. For
example, 300.0K is represented by the integer 3000.

11.4.5 _DTI (Device Temperature Indication)
This optional object may be present under a device and is evaluated by OSPM when the device’s
native (driver managed) temperature sensor has crossed a cooling temperature trip point or when a
meaningful change in temperature (as indicated by evaluation of the _NTT object) has occurred.
OSPM evaluation of the _DTI object enables the platform to take action as a result of these events.
For example, the platform may choose to implement fan control hysteresis based on the conveyed
value or signal the revaluation of the _TDL or _PDL objects.

Arguments: (1)

Arg0 – An Integer containing the current value of the temperature sensor (in tenths Kelvin)

Return Value:

None

11.4.6 _HOT (Hot Temperature)
This optional object, when defined under a thermal zone, returns the critical temperature at which
OSPM may choose to transition the system into the S4 sleeping state. The platform vendor should
define _HOT to be far enough below _CRT so as to allow OSPM enough time to transition the
system into the S4 sleeping state. While dependent on the amount of installed memory, on typical
platforms OSPM implementations can transition the system into the S4 sleeping state in tens of
seconds. If this object it present under a device, the device’s driver evaluates this object to determine
the device’s hot cooling temperature trip point. This value may then be used by the device’s driver to
program an internal device temperature sensor trip point.

Arguments:

None

Return Value:

An Integer containing the critical temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents the critical sleep threshold tenths of degrees Kelvin. For
example, 300.0K is represented by the integer 3000.
538 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11.4.7 _NTT (Notification Temperature Threshold)
This optional object may be defined under devices containing native temperature sensors and
evaluates to the temperature change threshold for the device where the platform requires notification
of the change via evaluation of the _TPT object.

Arguments:

None

Return Value:

An Integer containing the temperature threshold in tenths of degrees Kelvin.

The return value is an integer that represents the amount of change in device temperature that is
meaningful to the platform and for which the platform requires notification via evaluation of the
_TPT object.

11.4.8 _PSL (Passive List)
This object is defined under a thermal zone and evaluates to a list of processor objects to be used for
passive cooling.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to processor objects

The return value is a package consisting of references to all processor objects that will be used for
passive cooling when the zone’s passive cooling threshold (_PSV) is exceeded.

11.4.9 _PSV (Passive)
This optional object, if present under a thermal zone, evaluates to the temperature at which OSPM
must activate passive cooling policy.

Arguments:

None

Return Value:

An Integer containing the passive cooling temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents tenths of degrees Kelvin. For example, 300.0 Kelvin is
represented by 3000.

If this object it present under a device, the device’s driver evaluates this object to determine the
device’s corresponding passive cooling temperature trip point. This value may then be used by the
device’s driver to program an internal device temperature sensor trip point. When this object is
present under a device, the device must contain a native OS device driver interface supporting a
passive cooling control.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 539

Thermal Management
11.4.10 _RTV (Relative Temperature Values)
This optional object may be present under a device or a thermal zone and is evaluated by OSPM to
determine whether the values returned by temperature trip point and current operating temperature
interfaces under the corresponding device or thermal zone represent absolute or relative temperature
values.

Arguments:

None

Return Value:

An Integer containing a relative versus absolute indicator

0 Temperatures are absolute

Other Temperatures are relative

The return value is an integer that indicates whether values returned by temperature trip point and
current operating temperature interfaces represent absolute or relative temperature values.

If the _RTV object is not present or is present and evaluates to zero then OSPM assumes that all
values returned by temperature trip point and current operating temperature interfaces under the
device or thermal zone represent absolute temperature values expressed in tenths of degrees Kelvin.

If the _RTV object is present and evaluates to a non zero value then all values returned by
temperature trip point and current operating temperature interfaces under the corresponding device
or thermal zone represent temperature values relative to a zero point that is defined as the maximum
value of the device’s or thermal zone’s critical cooling temperature trip point. In this case,
temperature trip point and current operating temperature interfaces return values in units that are
tenths of degrees below the zero point.

OSPM evaluates the _RTV object before evaluating any other temperature trip point or current
operating temperature interfaces.

11.4.11 _SCP (Set Cooling Policy)
This optional object is a control method that OSPM invokes to set the platform’s cooling mode
policy setting. The platform may use the evaluation of _SCP to reassign _ACx and _PSV
temperature trip points according to the mode or limits conveyed by OSPM. OSPM will
automatically evaluate _ACx and _PSV objects after executing _SCP. This object may exist under a
thermal zone or a device.

Arguments: (3)

Arg0 – Mode An Integer containing the cooling mode policy code

Arg1 – AcousticLimit An Integer containing the acoustic limit

Arg2 – PowerLimit An Integer containing the power limit

Return Value:

None

Argument Information:
Mode – 0 = Active, 1 = Passive
540 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Acoustic Limit – Specifies the maximum acceptable acoustic level that active cooling devices may
generate. Values are 1 to 5 where 1 means no acoustic tolerance and 5 means maximum
acoustic tolerance.

Power Limit – Specifies the maximum acceptable power level that active cooling devices may
consume. Values are from 1 to 5 where 1 means no power may be used to cool and 5 means
maximum power may be used to cool.

Example:
// Fan Control is defined as follows:
// Speed 1 (Fan is Off): Acoustic Limit 1, Power Limit 1, <= 64C
// Speed 2: Acoustic Limit 2, Power Limit 2, 65C - 74C
// Speed 3: Acoustic Limit 3, Power Limit 3, 75C - 84C
// Speed 4: Acoustic Limit 4, Power Limit 4, 85C - 94C
// Speed 5: Acoustic Limit 5, Power Limit 5, >= 95C

// _SCP Notifies the platform the current cooling mode.
// Arg0 = Mode
// 0 - Active cooling
// 1 - Passive cooling
// Arg1 = Acoustic Limit
// 1 = No acoustic tolerance
// ...
// 5 = maximum acoustic tolerance
// Arg2 = Power Limit
// 1 = No power may be used to cool
// ...
// 5 = maximum power may be used to cool

Method(_SCP,3,Serialized)
{
 // Store the Cooling Mode in NVS and use as needed in
 // the rest of the ASL Code.
 Store(Arg0, CTYP)

 // Set PSVT to account for a Legacy OS that does not pass
 // in either the acoustic limit or Power Limit.
 If(Arg0)
 {
 Store(60,PSVT)
 }
 Else
 {
 Store(97,PSVT)
 }
 If (CondRefOf (_OSI,Local0))
 {
 If (_OSI ("3.0 _SCP Extensions"))
 {
 // Determine Power Limit.
 //
 // NOTE1: PSVT = Passive Cooling Trip Point stored
 // in NVS in Celsius.
 //
 // NOTE2: 4 Active Cooling Trips Points correspond to 5
 // unique Power Limit regions and 5 unique acoustic limit
 // regions.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 541

Thermal Management
 //
 // NOTE3: This code will define Passive cooling so that
 // CPU throttling will be initiated within the Power Limit
 // Region passed in such that the next higher Power Limit
 // Region will not be reached.
 Switch(Arg2)
 {

 Case(1) // Power Limit = 1.
 {
 // Stay in Acoustic Limit 1.
 Store(60,PSVT) // Passive = 60C.
 }
 Case(2) // Power Limit = 2.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1 or 2).
 Store(70,PSVT)
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 }
 Case(3) // Power Limit = 3.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1, 2, or 3).
 Store(80,PSVT)
 If(Lequal(Arg1,2))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(70,PSVT)
 }
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 }
 Case(4) // Power Limit = 4.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1, 2, 3, or 4).
 Store(90,PSVT)
 If(Lequal(Arg1,3))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(80,PSVT)
 }
 If(Lequal(Arg1,2))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(70,PSVT)
 }
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 }
542 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Case(5) // Power Limit = 5.
 {
 // Store Highest supported Acoustic Level
 // at this Power Limit (1, 2, 3, 4, or 5).
 Store(97,PSVT)
 If(Lequal(Arg1,4))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(90,PSVT)
 }
 If(Lequal(Arg1,3))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(80,PSVT)
 }
 If(Lequal(Arg1,2))
 {
 // Stay in Acoustic Level 1 or 2.
 Store(70,PSVT)
 }
 If(Lequal(Arg1,1))
 {
 // Stay in Acoustic Level 1.
 Store(60,PSVT)
 }
 } // Case 5
 } // Switch Arg 2
 } // _OSI - Extended _SCP
 } // CondRefOf _OSI
} // Method _SCP

11.4.12 _TC1 (Thermal Constant 1)
This object evaluates to the constant _TC1 for use in the Passive cooling formula:

Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 * (Tn. - Tt)

Arguments:

None

Return Value:

An Integer containing Thermal Constant #1

11.4.13 _TC2 (Thermal Constant 2)
This object evaluates to the constant _TC2 for use in the Passive cooling formula:

Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 *(Tn - Tt)

Arguments:

None

Return Value:

An Integer containing Thermal Constant #2
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 543

Thermal Management
11.4.14 _TMP (Temperature)
This control method returns the thermal zone’s current operating temperature.

Arguments:

None

Return Value:

An Integer containing the current temperature of the thermal zone (in tenths of degrees Kelvin)

The return value is the current temperature of the thermal zone in tenths of degrees Kelvin. For
example, 300.0K is represented by the integer 3000.

11.4.15 _TPT (Trip Point Temperature)
This optional object may be present under a device and is invoked by OSPM to indicate to the
platform that the devices’ embedded temperature sensor has crossed a cooling temperature trip
point. After invocation, OSPM immediately evaluates the devices’ Active and Passive cooling
temperature trip point values. This enables the platform to implement hysteresis.

Arguments: (1)

Arg0 – An Integer containing the current value of the temperature sensor (in tenths Kelvin)

Return Value:

None

The _TPT object is deprecated in ACPI 4.0. The _DTI object , Section 11.4.5 “_DTI (Device
Temperature Indication)”, should be used instead.

11.4.16 _TRT (Thermal Relationship Table)
This object evaluates to a package of packages each of which describes the thermal relationship
between devices within a thermal zone. OSPM uses the combined information about the thermal
relationships of all devices in the thermal zone to make thermal policy decisions.

Arguments:

None

Return Value:

A variable-length Package containing a list of Thermal Relationship Packages as described below

Return Value Information

Package {
 ThermalRelationship[0] // Package
 ….
 ThermalRelationship[n] // Package
}

Each ThermalRelationship sub-Package contains the elements described below:
544 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Package {
 SourceDevice, // Object Reference to a Device Object
 TargetDevice, // Object Reference to a Device Object
 Influence, // Integer
 SamplingPeriod, // Integer
 Reserved1, // Integer
 Reserved2, // Integer
 Reserved3, // Integer
 Reserved4 // Integer
},

Table 11-248 Thermal Relationship Package Values

11.4.17 _TSP (Thermal Sampling Period)
This object evaluates to a thermal sampling period (in tenths of seconds) used by OSPM to
implement the Passive cooling equation. This value, along with _TC1 and _TC2, will enable OSPM
to provide the proper hysteresis required by the system to accomplish an effective passive cooling
policy.

Arguments:

None

Return Value:

An Integer containing the sampling period in tenths of seconds

The granularity of the sampling period is 0.1 seconds. For example, if the sampling period is 30.0
seconds, then _TSP needs to report 300; if the sampling period is 0.5 seconds, then it will report 5.
OSPM can normalize the sampling over a longer period if necessary.

11.4.18 _TST (Temperature Sensor Threshold)
This optional object may be present under a device and is evaluated by OSPM to determine the
minimum separation for a devices’ programmable temperature trip points. When a device contains
multiple programmable temperature trip points, it may not be necessary for OSPM to poll the

Element Object Type Description

Source
Device

Reference
(to a device)

The device that is influencing the device indicated by TargetDevice.

Target
Device

Reference
(to a device)

The device that is influenced by the device indicated by SourceDevice.

Influence Integer The thermal influence of SourceDevice on TargetDevice - represented as
tenths of degrees Kelvin that the device indicated by SourceDevice raises the
temperature of the device indicated by TargetDevice per watt of thermal load
that SourceDevice generates.

Sampling
Period

Integer The minimum period of time in tenths of seconds that OSPM should wait after
applying a passive control to the device indicated by SourceDevice to detect
its impact on the device indicated by TargetDevice.

Reserved
(1-4)

Integer Reserved for future use.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 545

Thermal Management
device’s temperature after crossing a temperature trip point when performing passive cooling control
policy.

Arguments:

None

Return Value:

An Integer containing the sensor threshold (in tenths of degrees Kelvin)

To eliminate polling, the device can program intermediate trip points of interest (higher or lower
than the current temperature) and signal the crossing of the intermediate trip points to OSPM. The
distance between the current temperature and these intermediate trip points may be platform specific
and must be set far enough away from the current temperature so as to not to miss the crossing of a
meaningful temperature point. The _TST object conveys the recommended minimum separation
between the current temperature and an intermediate temperature trip point to OSPM.

11.4.19 _TZD (Thermal Zone Devices)
This optional object evaluates to a package of device names. Each name corresponds to a device in
the ACPI namespace that is associated with the thermal zone. The temperature reported by the
thermal zone is roughly correspondent to that of each of the devices.

Arguments:

None

Return Value:

A variable-length Package containing a list of References to thermal zone devices

The list of devices returned by the control method need not be a complete and absolute list of devices
affected by the thermal zone. However, the package should at least contain the devices that would
uniquely identify where this thermal zone is located in the machine. For example, a thermal zone in
a docking station should include a device in the docking station, a thermal zone for the CD-ROM
bay, should include the CD-ROM.

11.4.20 _TZM (Thermal Zone Member)
This optional object may exist under any device definition and evaluates to a reference to the thermal
zone of which the device is a member.

Arguments:

None

Return Value:

A Reference to the parent device

11.4.21 _TZP (Thermal Zone Polling)
This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this
thermal zone. A value of zero indicates that OSPM does not need to poll the temperature of this
546 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
thermal zone in order to detect temperature changes (the hardware is capable of generating
asynchronous notifications).

Arguments:

None

Return Value:

An Integer containing the recommended polling frequency in tenths of seconds

The return value contains the recommended polling frequency, in tenths of seconds. A value of zero
indicates that polling is not necessary.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design
systems that asynchronously notify OSPM whenever a meaningful change in the zone’s temperature
occurs—relieving the OS of the overhead associated with polling. See Section 11.1.3, “Detecting
Temperature Changes,” for more information.

This value is specified as tenths of seconds with a 1 second granularity. A minimum value of 30
seconds (_TZP evaluates to 300) and a maximum value of 300 seconds (in other words, 5 minutes)
(_TZP evaluates to 3000) may be specified. As this is a recommended value, OSPM will consider
other factors when determining the actual polling frequency to use.

11.5 Native OS Device Driver Thermal Interfaces
OS implementations compatible with the ACPI 3.0 thermal model, interface with the thermal objects
of a thermal zone but also comprehend the thermal zone devices’ OS native device driver interfaces
that perform similar functions to the thermal objects at the device level.

The recommended native OS device driver thermal interfaces that enable OSPM to perform optimal
performance / thermal management include:

• Reading a value from a device’s embedded thermal sensor

• Reading a value that indicates whether temperature and trip point values are reported in absolute
or relative temperatures

• Setting the platform’s cooling mode policy setting

• Reading the embedded thermal sensor’s threshold

• Reading the device’s active and passive cooling temperature trip points

• Reading the device’s association to a thermal zone

• Signaling the crossing of a thermal trip point

• Reading the desired polling frequency at which to check the devices temperature if the device
cannot signal OSPM or signal OSPM optimally (both before and after a temperature trip point is
crossed)

• Setting / limiting a device’s performance / throttling states

• Engaging / disengaging a device’s active cooling controls

These interfaces are OS specific and as such the OS vendor defines the exact interface definition for
each target operating system.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 547

Thermal Management
11.6 Thermal Zone Interface Requirements
While not all thermal zone interfaces are required to be present in each thermal zone, OSPM levies
conditional requirements for the presence of specific thermal zone interfaces based on the existence
of other related thermal zone interfaces. These interfaces may be implemented by thermal zone-wide
objects or by OS-specific device driver exposed thermal interfaces. The requirements are outlined
below:

• A thermal zone must contain at least one temperature interface; either the _TMP object or a
member device temperature interface.

• A thermal zone must contain at least one trip point (critical, near critical, active, or passive).

• If _ACx is defined then an associated _ALx must be defined (e.g. defining _AC0 requires _AL0
also be defined).

• If _PSV is defined then either the _PSL or _TZD objects must exist. The _PSL and _TZD
objects may both exist.

• If _PSL is defined then:
— If a linear performance control register is defined (via either P_BLK or the _PTC, _TSS,

_TPC objects) for a processor defined in _PSL or for a processor device in the zone as
indicated by _TZM then the _TC1, _TC2, and objects must exist. The _TSP object must also
be defined if the device requires polling.

— If a linear performance control register is not defined (via either P_BLK or the _PTC, _TSS,
_TPC objects) for a processor defined in _PSL or for a processor device in the zone as
indicated by _TZM then the processor must support processor performance states (in other
words, the processor’s processor object must include _PCT, _PSS, and _PPC).

• If _PSV is defined and _PSL is not defined then at least one device in thermal zone, as indicated
by either the _TZD device list or devices’ _TZM objects, must support device performance
states.

• _SCP is optional.

• _TZD is optional outside of the _PSV requirement outlined above.

• If _HOT is defined then the system must support the S4 sleeping state.

11.7 Thermal Zone Examples

11.7.1 Example: The Basic Thermal Zone
The following ASL describes a basic configuration where the entire system is treated as a single
thermal zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan.
This is an example only.

Notice that this thermal zone object (TZ0) is defined in the _SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For
example, a thermal zone that is isolated to a docking station should be defined within the scope of
the docking station device. Besides providing for a well-organized namespace, this configuration
allows OSPM to dynamically adjust its thermal policy as devices are added or removed from the
system.
548 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Scope(_SB) {
 Processor(
 CPU0,
 1, // unique number for this processor
 0x110, // system IO address of Pblk Registers
 0x06 // length in bytes of PBlk
) {}

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for this EC
 Name(_CRS, ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC

 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN, 1, // fan power (on/off)
 , 6, // reserved
 TMP, 16, // current temp
 AC0, 16, // active cooling temp (fan high)
 , 16, // reserved
 PSV, 16, // passive cooling temp
 HOT 16, // critical S4 temp
 CRT, 16 // critical temp
 }

 // following is a method that OSPM will schedule after
 // it receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } // end of Notify method

 // fan cooling on/off - engaged at AC0 temp
 PowerResource(PFAN, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN) } // turn on fan
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN) } // turn off fan
 }

 // Create FAN device object
 Device (FAN) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 // list power resource for the fan
 Name(_PR0, Package(){PFAN})
 }

 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
 Name(_AL0, Package(){_SB.PCI0.ISA0.EC0.FAN}) // fan is act cool dev
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
 Name(_PSL, Package (){_SB.CPU0}) // passive cooling devices
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 549

Thermal Management
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get critical temp
 Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TC1, 4) // bogus example constant
 Name(_TC2, 3) // bogus example constant
 Name(_TSP, 150) // passive sampling = 15 sec
 Name(_TZP, 0) // polling not required
 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope-

} // end of _SB scope

11.7.2 Example: Multiple-Speed Fans
The following ASL describes a thermal zone consisting of a processor and one dual-speed fan. As
with the previous example, this thermal zone object (TZ0) is defined in the _SB scope and
represents the entire system. This is an example only.

Scope(_SB) {
 Processor(
 CPU0,
 1, // unique number for this processor
 0x110, // system IO address of Pblk Registers
 0x06 // length in bytes of PBlk
) {}

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC
 // current resource description for this EC
 Name(_CRS, ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })
 Name(_GPE, 0) // GPE index for this EC

 // create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN0, 1, // fan strength high/off
 FAN1, 1, // fan strength low/off
 , 5, // reserved
 TMP, 16, // current temp
 AC0, 16, // active cooling temp (high)
 AC1, 16, // active cooling temp (low)
 PSV, 16, // passive cooling temp
 HOT 18, // critical S4 temp
 CRT, 16 // critical temp
 }

 // following is a method that OSPM will schedule after it
 // receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } end of Notify method
550 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 // fan cooling mode high/off - engaged at AC0 temp
 PowerResource(FN10, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) } // turn off fan
 }

 // fan cooling mode low/off - engaged at AC1 temp
 PowerResource(FN11, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN1) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN1) } // turn on fan at low
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN1) } // turn off fan
}

 // Following is a single fan with two speeds. This is represented
 // by creating two logical fan devices. When FN2 is turned on then
 // the fan is at a low speed. When FN1 and FN2 are both on then
 // the fan is at high speed.
 //
 // Create FAN device object FN1
 Device (FN1) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 0)
 Name(_PR0, Package(){FN10, FN11})
 }

 // Create FAN device object FN2
 Device (FN2) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 1)
 Name(_PR0, Package(){FN10})
 }

 // create a thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
 Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan low temp
 Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling (high)
 Name(_AL1, Package() {_SB.PCI0.ISA0.EC0.FN2}) // active cooling (low)
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
 Name(_PSL, Package() {_SB.CPU0}) // passive cooling devices
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
 Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TC1, 4) // bogus example constant
 Name(_TC2, 3) // bogus example constant
 Name(_TSP, 150) // passive sampling = 15 sec
 Name(_TZP, 0) // polling not required
 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope

} // end of _SB scope
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 551

Thermal Management
11.7.3 Example: Thermal Zone with Multiple Devices

Scope(_SB) {
 Device(CPU0) {

 Name(_HID, "ACPI0007")
 Name(_UID, 0)

 //
 // Load additional objects if 3.0 Thermal model support is available
 //
 Method(_INI, 0) {
 If (_OSI("3.0 Thermal Model")) {
 LoadTable("OEM1", "PmRef", "Cpu0", "_SB.CPU0") // 3.0 Thermal Model
 }
 }

 // For brevity, most processor objects have been excluded
 // from this example (such as _PSS, _CST, _PCT, _PPC, etc.)

 // Processor Throttle Control object
 Name(_PTC, ResourceTemplate() {
 Register(SystemIO, 32, 0, 0x120) // Processor Control
 Register(SystemIO, 32, 0, 0x120) // Processor Status
 })

 // Throttling Supported States
 // The values shown are for exemplary purposes only
 Name(_TSS, Package() {
 // Read: freq percentage, power, latency, control, status
 Package() {0x64, 1000, 0x0, 0x7, 0x0}, // Throttle off (100%)
 Package() {0x58, 800, 0x0, 0xF, 0x0}, // 87.5%
 Package() {0x4B, 600, 0x0, 0xE, 0x0}, // 75%
 Package() {0x3F, 400, 0x0, 0xD, 0x0} // 62.5%
 })

 // Throttling Present Capabilities
 // The values shown are for exemplary purposes only
 Method(_TPC) {
 If(_SB.AC) {
 Return(0) // All throttle states available
 } Else {
 Return(2) // Throttle states >= 2 are available
 }
 }
 } // end of CPU0 scope

 Device(CPU1) {

 Name(_HID, "ACPI0007")
 Name(_UID, 1)

 //
 // Load additional objects if 3.0 Thermal model support is available
 //
 Method(_INI, 0) {
 If (_OSI("3.0 Thermal Model")) {
 LoadTable("OEM1", "PmRef", "Cpu1", "_SB.CPU1") // 3.0 Thermal Model
 }
 }
552 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 // For brevity, most processor objects have been excluded
 // from this example (such as _PSS, _CST, _PCT, _PPC, _PTC, etc.)

 // Processor Throttle Control object
 Name(_PTC, ResourceTemplate() {
 Register(SystemIO, 32, 0, 0x120) // Processor Control
 Register(SystemIO, 32, 0, 0x120) // Processor Status
 })

 // Throttling Supported States
 // The values shown are for exemplary purposes only
 Name(_TSS, Package() {
 // Read: freq percentage, power, latency, control, status
 Package() {0x64, 1000, 0x0, 0x7, 0x0}, // Throttle off (100%)
 Package() {0x58, 800, 0x0, 0xF, 0x0}, // 87.5%
 Package() {0x4B, 600, 0x0, 0xE, 0x0}, // 75%
 Package() {0x3F, 400, 0x0, 0xD, 0x0} // 62.5%
 })

 // Throttling Present Capabilities
 // The values shown are for exemplary purposes only
 Method(_TPC) {
 If(_SB.AC) {
 Return(0) // All throttle states available
 } Else {
 Return(2) // Throttle states >= 2 are available
 }
 }
 } // end of CPU1 scope

Scope(_SB.PCI0.ISA0) {
 Device(EC0) {
 Name(_HID, EISAID("PNP0C09")) // ID for this EC

 //
 // Load additional objects if 3.0 Thermal model support is available
 //
 Method(_INI, 0) {
 If (_OSI("3.0 Thermal Model")) {
 LoadTable("OEM1", "PmRef", "Tz3", "_SB.PCI0.ISA0.EC0") // 3.0 Tz
 }
 }

 // Current resource description for this EC
 Name(_CRS,
 ResourceTemplate() {
 IO(Decode16,0x62,0x62,0,1)
 IO(Decode16,0x66,0x66,0,1)
 })

 Name(_GPE, 0) // GPE index for this EC

 // Create EC's region and field for thermal support
 OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
 Field(EC0, ByteAcc, Lock, Preserve) {
 MODE, 1, // thermal policy (quiet/perform)
 FAN0, 1, // fan strength high/off
 , 6, // reserved
 TMP, 16, // current temp
 AC0, 16, // active cooling temp
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 553

Thermal Management
 PSV, 16, // passive cooling temp
 HOT, 16, // critical S4 temp
 CRT, 16 // critical temp
 }

 // Following is a method that OSPM will schedule after it
 // fan cooling mode high/off - engaged at AC0 temp
 PowerResource(FN10, 0, 0) {
 Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
 Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
 Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) } // turn off fan
 }

 // Following is a single fan with one speed.
 // Create FAN device object FN1
 Device (FN1) {
 // Device ID for the FAN
 Name(_HID, EISAID("PNP0C0B"))
 Name(_UID, 0)
 Name(_PR0, Package(){FN10})
 }

 // Receives an SCI and queries the EC to receive value 7
 Method(_Q07) {
 Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
 } // end of Notify method

 // Create standard specific thermal zone
 ThermalZone (TZ0) {
 Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
 Name(_PSL, Package() {_SB.CPU0, _SB.CPU1}) // passive cooling devices
 Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling
 Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan temp (high)
 Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan temp (low)
 Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
 Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
 Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
 Name(_TC1, 4) // bogus example constant
 Name(_TC2, 3) // bogus example constant
 Method(_SCP, 1) { Store (Arg0, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
 Name(_TSP, 150) // passive sampling = 15 sec
 } // end of TZ0

 } // end of ECO
} // end of _SB.PCI0.ISA0 scope
} // end of _SB scope

//
// ACPI 3.0 Thermal Model SSDT
//
DefinitionBlock (
 "TZASSDT.aml",
 "OEM1",
 0x01,
 "PmRef",
 "Tz3",
 0x3000
)
{
 External(_SB.PCI0.ISA0.EC0, DeviceObj)
 External(_SB.CPU0, DeviceObj)
554 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 External(_SB.CPU1, DeviceObj)

 Scope(_SB.PCI0.ISA0.EC0)
 {
 // Create an ACPI 3.0 specific thermal zone
 ThermalZone (TZ0) {
 // This TRT is for exemplary purposes only
 Name(_TRT, Package() {
 // Thermal relationship package data. A package is generated for
 // each permutation of device sets. 2 devices = 4 entries.
 // Read: source, target, thermal influence, sampling period, 4 reserved
 Package () {_SB.CPU0, _SB.CPU0, 20, 1, 0, 0, 0, 0},
 Package () {_SB.CPU0, _SB.CPU1, 10, 15, 0, 0, 0, 0},
 Package () {_SB.CPU1, _SB.CPU0, 10, 15, 0, 0, 0, 0},
 Package () {_SB.CPU1, _SB.CPU1, 20, 1, 0, 0, 0, 0}
 }) // end of TRT
 } // end of TZ0
 } // end of EC0 Scope
} // end of SSDT

//
// CPU0 3.0 Thermal Model SSDT
//
DefinitionBlock (
 "CPU0SSDT.aml",
 "OEM1",
 0x01,
 "PmRef",
 "CPU0",
 0x3000
)
{
 External(_SB.CPU0, DeviceObj)
 External(_SB.PCI0.ISA0.TZ0, ThermalZoneObj)

 Scope(_SB.CPU0)
 {
 //
 // Add the objects required for 3.0 extended thermal support
 //
 // Create a region and fields for thermal support; the platform
 // fills in the values and traps on writes to enable hysteresis.
 // The Operation Region location is invalid
 OperationRegion(CP00, SystemMemory, 0x00000000, 0xA)
 Field(CP00, ByteAcc, Lock, Preserve) {
 SCP, 1, // thermal policy (passive/active)
 RTV, 1, // absolute or relative temperature
 , 6, // reserved
 AC0, 16, // active cooling temp
 PSV, 16, // passive cooling temp
 CRT, 16, // critical temp
 TPT, 16, // Temp trip point crossed
 TST, 8 // Temp sensor threshold
 }

 Method(_TZM, 0) { Return(_SB.PCI0.ISA0.TZ0) } // thermal zone member

 // Some thermal zone methods are now located under the
 // thermal device participating in the 3.0 thermal model.
 // These methods provide device specific thermal information
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 555

Thermal Management
 Method(_SCP, 1) { Store (Arg0, _SB.CPU0.SCP) } // set cooling mode
 Method(_RTV) { Return (_SB.CPU0.RTV) } // absolute or relative temp
 Method(_AC0) { Return (_SB.CPU0.AC0) } // active cooling (fan) temp
 Method(_PSV) { Return (_SB.CPU0.PSV) } // passive cooling temp
 Method(_CRT) { Return (_SB.CPU0.CRT) } // critical temp
 Name(_TC1, 4) // thermal constant 1 (INVALID)
 Name(_TC2, 3) // thermal constant 2 (INVALID)
 Method(_TPT, 1) { Store (Arg0, _SB.CPU0.TPT)} // trip point temp
 Method(_TST) { Return (_SB.CPU0.TST) } // temp sensor threshold

 } // end of CPU0 scope
} // end of SSDT

//
// CPU1 3.0 Thermal Model SSDT
//
DefinitionBlock (
 "CPU1SSDT.aml",
 "OEM1",
 0x01,
 "PmRef",
 "CPU1",
 0x3000
)
{
 External(_SB.CPU1, DeviceObj)
 External(_SB.PCI0.ISA0.TZ0, ThermalZoneObj)

 Scope(_SB.CPU1)
 {
 //
 // Add the objects required for 3.0 extended thermal support
 //
 // Create a region and fields for thermal support; the platform
 // fills in the values and traps on writes to enable hysteresis.
 // The Operation Region location is invalid
 OperationRegion(CP01, SystemIO, 0x00000008, 0xA)
 Field(CP01, ByteAcc, Lock, Preserve) {
 SCP, 1, // thermal policy (passive/active)
 RTV, 1, // absolute or relative temperature
 , 6, // reserved
 AC0, 16, // active cooling temp
 PSV, 16, // passive cooling temp
 CRT, 16, // critical temp
 TPT, 16, // Temp trip point crossed
 TST, 8 // Temp sensor threshold
 }

 Method(_TZM, 0) { Return(_SB.PCI0.ISA0.TZ0) } // thermal zone member

 // Some thermal zone methods are now located under the
 // thermal device participating in the 3.0 thermal model.
 // These methods provide device specific thermal information
 Method(_SCP, 1) { Store (Arg0, _SB.CPU1.SCP) } // set cooling mode
 Method(_RTV) { Return (_SB.CPU1.RTV) } // absolute or relative temp
 Method(_AC0) { Return (_SB.CPU1.AC0) } // active cooling (fan) temp
 Method(_PSV) { Return (_SB.CPU1.PSV) } // passive cooling temp
 Method(_CRT) { Return (_SB.CPU1.CRT) } // critical temp
 Name(_TC1, 4) // thermal constant 1 (INVALID)
 Name(_TC2, 3) // thermal constant 2 (INVALID)
556 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Method(_TPT, 1) { Store (Arg0, _SB.CPU1.TPT)} // trip point temp
 Method(_TST) { Return (_SB.CPU1.TST) } // temp sensor threshold

 } // end of CPU1 scope
} // end of SSDT
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 557

Thermal Management
558 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
12
ACPI Embedded Controller Interface

Specification

ACPI defines a standard hardware and software communications interface between an OS driver and
an embedded controller. This allows any OS to provide a standard driver that can directly
communicate with an embedded controller in the system, thus allowing other drivers within the
system to communicate with and use the resources of system embedded controllers. This in turn
enables the OEM to provide platform features that the OS OSPM and applications can take
advantage of.

ACPI also defines a standard hardware and software communications interface between an OS
driver and an Embedded Controller-based SMB-HC (EC-SMB-HC).

The ACPI standard supports multiple embedded controllers in a system, each with its own resources.
Each embedded controller has a flat byte-addressable I/O space, currently defined as 256 bytes.
Features implemented in the embedded controller have an event “query” mechanism that allows
feature hardware implemented by the embedded controller to gain the attention of an OS driver or
ASL/AML code handler. The interface has been specified to work on the most popular embedded
controllers on the market today, only requiring changes in the way the embedded controller is
“wired” to the host interface.

Two interfaces are specified:

• A private interface, exclusively owned by the embedded controller driver.

• A shared interface, used by the embedded controller driver and some other driver.

This interface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller as
the keyboard controller function, but the ECI requires its own unique host resources (interrupt event
and access registers).

This interface does support sharing the ECI with an inter-environment interface (such as SMI) and
relies on the ACPI-defined “Global Lock” protocol. Note, however, that HW-reduced ACPI
platforms, which do not support the Global Lock, cannot share the EC interface. For information
about the Global Lock interface, see Section 5.2.10.1, “Global Lock.” Both the shared and private
EC interfaces are described in the following sections.

The ECI has been designed such that a platform can use it in either the legacy or ACPI modes with
minimal changes between the two operating environments. This is to encourage standardization for
this interface to enable faster development of platforms as well as opening up features within these
controllers to higher levels of software.

12.1 Embedded Controller Interface Description
Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations. The ACPI specification supports embedded controllers in any platform design, as
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 559

ACPI Embedded Controller Interface Specification
long as the microcontroller conforms to one of the models described in this section. The embedded
controller is a unique feature in that it can perform complex low-level functions through a simple
interface to the host microprocessor(s).

Although there is a large variety of microcontrollers in the market today, the most commonly used
embedded controllers include a host interface that connects the embedded controller to the host data
bus, allowing bi-directional communications. A bi-directional interrupt scheme reduces the host
processor latency in communicating with the embedded controller.

Currently, the most common host interface architecture incorporated into microcontrollers is
modeled after the standard IA-PC architecture keyboard controller. This keyboard controller is
accessed at 0x60 and 0x64 in system I/O space. Port 0x60 is termed the data register, and allows bi-
directional data transfers to and from the host and embedded controller. Port 0x64 is termed the
command/status register; it returns port status information upon a read, and generates a command
sequence to the embedded controller upon a write. This same class of controllers also includes a
second decode range that shares the same properties as the keyboard interface by having a
command/status register and a data register. The following diagram graphically depicts this
interface.

Figure 12-64 Shared Interface

The diagram above depicts the general register model supported by the ACPI Embedded Controller
Interface.

EC STATUS
REGISTER

EC OUTPUT
BUFFER

EC INPUT
BUFFER

INTERFACE
ARBITRATION

CODE

SMI
INTERFACE

CODE

SCI
INTERFACE

CODE

COMMAND WRITE (SMI/SCI)

DATA WRITE (SMI/SCI)

DATA READ (SMI/SCI)

STATUS READ (SMI/SCI)

EC_SCI_EN

EC_SMI_EN

EC_SMI_STS

EC_SCI_STS

EC_SMI

EC_SCI

I/O
MAIN

FIRMWARE
560 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The first method uses an embedded controller interface shared between OSPM and the system
management code, which requires the Global Lock semaphore overhead to arbitrate ownership. The
second method is a dedicated embedded controller decode range for sole use by OSPM driver. The
following diagram illustrates the embedded controller architecture that includes a dedicated ACPI
interface.

Figure 12-65 Private Interface

SCI
INTERFACE

CODE

I/O

EC_SCI_EN

EC_SCI_STS

EC_SCI

SCI STATUS
REGISTER

SCI OUTPUT
BUFFER

SCI INPUT
BUFFER

COMMAND WRITE (SCI)

DATA WRITE (SCI)

DATA READ (SCI)

STATUS READ (SCI)

SMI STATUS
REGISTER

SMI OUTPUT
BUFFER

SMI INPUT
BUFFER

SMI
INTERFACE

CODE

COMMAND WRITE (SMI)

DATA WRITE (SMI)

DATA READ (SMI)

STATUS READ (SMI)

EC_SMI_EN

EC_SMI_STS

EC_SMI

MAIN
FIRMWARE
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 561

ACPI Embedded Controller Interface Specification
The private interface allows OSPM to communicate with the embedded controller without the
additional software overhead associated with using the Global Lock. Several common system
configurations can provide the additional embedded controller interfaces:

• Non-shared embedded controller. This will be the most common case where there is no need for
the system management handler to communicate with the embedded controller when the system
transitions to ACPI mode. OSPM processes all normal types of system management events, and
the system management handler does not need to take any actions.

• Integrated keyboard controller and embedded controller. This provides three host interfaces as
described earlier by including the standard keyboard controller in an existing component (chip
set, I/O controller) and adding a discrete, standard embedded controller with two interfaces for
system management activities.

• Standard keyboard controller and embedded controller. This provides three host interfaces by
providing a keyboard controller as a distinct component, and two host interfaces are provided in
the embedded controller for system management activities.

• Two embedded controllers. This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host interfaces,
and one controller for keyboard controller functions providing up to two host interfaces.

• Embedded controller and no keyboard controller. Future platforms might provide keyboard
functionality through an entirely different mechanism, which would allow for two host
interfaces in an embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a
method is available to make the embedded controller a shareable resource between multiple tasks
running under the operating system’s control and the system management interrupt handler. This
method, as described in this section, requires several changes:

• Additional external hardware

• Embedded controller firmware changes

• System management interrupt handler firmware changes

• Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between
the operating system’s use of the interface and the system management handler’s use of the
interface. This is done using the Global Lock as described in Section 5.2.10.1, “Global Lock", but is
not supported on HW-reduced ACPI platforms.

This interface sharing protocol also requires embedded controller firmware changes, in order to
ensure that collisions do not occur at the interface. A collision could occur if a byte is placed in the
system output buffer and an interrupt is then generated. There is a small window of time when the
incorrect recipient could receive the data. This problem is resolved by ensuring that the firmware in
the embedded controller does not place any data in the output buffer until it is requested by OSPM or
the system management handler.

More detailed algorithms and descriptions are provided in the following sections.
562 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
12.2 Embedded Controller Register Descriptions
The embedded controller contains three registers at two address locations: EC_SC and EC_DATA.
The EC_SC, or Embedded Controller Status/Command register, acts as two registers: a status
register for reads to this port and a command register for writes to this port. The EC_DATA
(Embedded Controller Data register) acts as a port for transferring data between the host CPU and
the embedded controller.

12.2.1 Embedded Controller Status, EC_SC (R)
This is a read-only register that indicates the current status of the embedded controller interface.

Table 12-249 Read only register table

Where:

Table 12-250 Register details

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of data
into the command or data port but the host has not yet read it. After the host reads the status byte and
sees the OBF flag set, the host reads the data port to get the byte of data that the embedded controller
has written. After the host reads the data byte, the OBF flag is cleared automatically by hardware.
This signals the embedded controller that the data has been read by the host and the embedded
controller is free to write more data to the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or
data port, but the embedded controller has not yet read it. After the embedded controller reads the
status byte and sees the IBF flag set, the embedded controller reads the data port to get the byte of
data that the host has written. After the embedded controller reads the data byte, the IBF flag is

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IGN SMI_EVT SCI_EVT BURST CMD IGN IBF OBF

IGN: Ignored

SMI_EVT: 1 – Indicates SMI event is pending (requesting SMI query).

0 – No SMI events are pending.

SCI_EVT: 1 – Indicates SCI event is pending (requesting SCI query).

0 – No SCI events are pending.

BURST: 1 – Controller is in burst mode for polled command processing.

0 – Controller is in normal mode for interrupt-driven command processing.

CMD: 1 – Byte in data register is a command byte (only used by controller).

0 – Byte in data register is a data byte (only used by controller).

IBF: 1 – Input buffer is full (data ready for embedded controller).

0 – Input buffer is empty.

OBF: 1 – Output buffer is full (data ready for host).

0 – Output buffer is empty.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 563

ACPI Embedded Controller Interface Specification
automatically cleared by hardware. This is the signal to the host that the data has been read by the
embedded controller and that the host is free to write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event
that requires the operating system’s attention. The embedded controller sets this bit in the status
register, and generates an SCI to OSPM. OSPM needs this bit to differentiate command-complete
SCIs from notification SCIs. OSPM uses the query command to request the cause of the SCI_EVT
and take action. For more information, see Section 12.3, “Embedded Controller Command Set.”)

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event
that requires the system management interrupt handler's attention. The embedded controller sets this
bit in the status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable
command from the host, has halted normal processing, and is waiting for a series of commands to be
sent from the host. This allows OSPM or system management handler to quickly read and write
several bytes of data at a time without the overhead of SCIs between the commands.

12.2.2 Embedded Controller Command, EC_SC (W)
This is a write-only register that allows commands to be issued to the embedded controller. Writes to
this port are latched in the input data register and the input buffer full flag is set in the status register.
Writes to this location also cause the command bit to be set in the status register. This allows the
embedded controller to differentiate the start of a command sequence from a data byte write
operation.

12.2.3 Embedded Controller Data, EC_DATA (R/W)
This is a read/write register that allows additional command bytes to be issued to the embedded
controller, and allows OSPM to read data returned by the embedded controller. Writes to this port by
the host are latched in the input data register, and the input buffer full flag is set in the status register.
Reads from this register return data from the output data register and clear the output buffer full flag
in the status register.

12.3 Embedded Controller Command Set
The embedded controller command set allows OSPM to communicate with the embedded
controllers. ACPI defines the commands and their byte encodings for use with the embedded
controller that are shown in the following table.

Table 12-251 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding

Read Embedded Controller (RD_EC) 0x80

Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller (BE_EC) 0x82

Burst Disable Embedded Controller (BD_EC) 0x83

Query Embedded Controller (QR_EC) 0x84
564 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
12.3.1 Read Embedded Controller, RD_EC (0x80)
This command byte allows OSPM to read a byte in the address space of the embedded controller.
This command byte is reserved for exclusive use by OSPM, and it indicates to the embedded
controller to generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC
Status Register), rather than SMIs. This command consists of a command byte written to the
Embedded Controller Command register (EC_SC), followed by an address byte written to the
Embedded Controller Data register (EC_DATA). The embedded controller then returns the byte at
the addressed location. The data is read at the data port after the OBF flag is set.

12.3.2 Write Embedded Controller, WR_EC (0x81)
This command byte allows OSPM to write a byte in the address space of the embedded controller.
This command byte is reserved for exclusive use by OSPM, and it indicates to the embedded
controller to generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC
Status Register), rather than SMIs. This command allows OSPM to write a byte in the address space
of the embedded controller. It consists of a command byte written to the Embedded Controller
Command register (EC_SC), followed by an address byte written to the Embedded Controller Data
register (EC_DATA), followed by a data byte written to the Embedded Controller Data Register
(EC_DATA); this is the data byte written at the addressed location.

12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
This command byte allows OSPM to request dedicated attention from the embedded controller and
(except for critical events) prevents the embedded controller from doing tasks other than receiving
command and data from the host processor (either the system management interrupt handler or
OSPM). This command is an optimization that allows the host processor to issue several commands
back to back, in order to reduce latency at the embedded controller interface. When the controller is
in the burst mode, it should transition to the burst disable state if the host does not issue a command
within the following guidelines:

• First Access – 400 microseconds

• Subsequent Accesses – 50 microseconds each

• Total Burst Time – 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process a critical
event. If the embedded controller disables burst mode for any reason other than the burst disable
command, it should generate an SCI to OSPM to indicate the change.

While in burst mode, the embedded controller follows these guidelines for OSPM driver:

SCIs are generated as normal, including IBF=0 and OBF=1.

Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

OSPM driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then
the Embedded Controller will prepare to enter the Burst mode. This includes processing any routine
activities such that it should be able to remain dedicated to OSPM interface for ~ 1 microsecond.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 565

ACPI Embedded Controller Interface Specification
The Embedded Controller sets the Burst bit of the Embedded Controller Status Register, puts the
Burst Acknowledge byte (0x90) into the SCI output buffer, sets the OBF bit, and generates an SCI to
signal OSPM that it is in Burst mode.

Burst mode is exited the following manner:

OSPM driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and
then the Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded
Controller Status register and generating an SCI signal (due to IBF=0).

The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)
This command byte releases the embedded controller from a previous burst enable command and
allows it to resume normal processing. This command is sent by OSPM or system management
interrupt handler after it has completed its entire queued command sequence to the embedded
controller.

12.3.5 Query Embedded Controller, QR_EC (0x84)
OSPM driver sends this command when the SCI_EVT flag in the EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to OSPM, it first sets
the SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for OSPM to send the
query (QR_EC) command. OSPM detects the embedded controller SCI, sees the SCI_EVT flag set,
and sends the query command to the embedded controller. Upon receipt of the QR_EC command
byte, the embedded controller places a notification byte with a value between 0-255, indicating the
cause of the notification. The notification byte indicates which interrupt handler operation should be
executed by OSPM to process the embedded controller SCI. The query value of zero is reserved for
a spurious query result and indicates “no outstanding event.”

12.4 SMBus Host Controller Notification Header (Optional),
OS_SMB_EVT

This query command notification header is the special return code that indicates events with an
SMBus controller implemented within an embedded controller. These events include:

• Command completion

• Command error

• Alarm reception

The actual notification value is declared in the EC-SMB-HC device object in the ACPI Namespace.

12.5 Embedded Controller Firmware
The embedded controller firmware must obey the following rules in order to be ACPI-compatible:

• SMI Processing. Although it is not explicitly stated in the command specification section, a
shared embedded controller interface has a separate command set for communicating with each
environment it plans to support. In other words, the embedded controller knows which
566 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
environment is generating the command request, as well as which environment is to be notified
upon event detection, and can then generate the correct interrupts and notification values. This
implies that a system management handler uses commands that parallel the functionality of all
the commands for ACPI including query, read, write, and any other implemented specific
commands.

• SCI/SMI Task Queuing. If the system design is sharing the interface between both a system
management interrupt handler and OSPM, the embedded controller should always be prepared
to queue a notification if it receives a command. The embedded controller only sets the
appropriate event flag in the status (EC_SC) register if the controller has detected an event that
should be communicated to the OS or system management handler. The embedded controller
must be able to field commands from either environment without loss of the notification event.
At some later time, the OS or system management handler issues a query command to the
embedded controller to request the cause of the notification event.

• Notification Management. The use of the embedded controller means using the query
(QR_EC) command to notify OSPM of system events requiring action. If the embedded
controller is shared with the operating system, the SMI handler uses the SMI_EVT flag and an
SMI query command (not defined in this document) to receive the event notifications. The
embedded controller doesn’t place event notifications into the output buffer of a shared interface
unless it receives a query command from OSPM or the system management interrupt handler.

12.6 Interrupt Model
The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt is
firmware generated using an EC general-purpose output and has the waveform shown in Figure 12-
66. The embedded controller SCI is always wired directly to a GPE input or a GPIO pin, and OSPM
driver treats this as an edge event (the EC SCI cannot be shared).

Figure 12-66 Interrupt Model

12.6.1 Event Interrupt Model
The embedded controller must generate SCIs for the events listed in the following table.

T
HOLD

Interrupt detected

Interrupt serviced
and cleared
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 567

ACPI Embedded Controller Interface Specification
Table 12-252 Events for Which Embedded Controller Must Generate SCIs

12.6.2 Command Interrupt Model
The embedded controller must generate SCIs for commands as follows:

Table 12-253 Read Command (3 Bytes)

Table 12-254 Write Command (3 Bytes)

Table 12-255 Query Command (2 Bytes

Table 12-256 Burst Enable Command (2 Bytes)

Table 12-257 Burst Disable Command (1 Byte)

12.7 Embedded Controller Interfacing Algorithms
To initiate communications with the embedded controller, OSPM or system management handler
acquires ownership of the interface. This ownership is acquired through the use of the Global Lock
(described in Section 5.2.10.1, “Global Lock”), or is owned by default by OSPM as a non-shared
resource (and the Global Lock is not required for accessibility).

Event Description

IBF=0 Signals that the embedded controller has read the last command or data from the input
buffer and the host is free to send more data.

OBF=1 Signals that the embedded controller has written a byte of data into the output buffer and
the host is free to read the returned data.

SCI_EVT=1 Signals that the embedded controller has detected an event that requires OS attention.
OSPM should issue a query (QR_EC) command to find the cause of the event.

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to read) No Interrupt

Byte #3 (Data read to host) Interrupt on OBF=1

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to write) Interrupt on IBF=0

Byte #3 (Data to read) Interrupt on IBF=0

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Query value to host) Interrupt on OBF=1

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Burst acknowledge byte) Interrupt on OBF=1

Byte #1 (Command byte Header) Interrupt on IBF=0
568 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
After ownership is acquired, the protocol always consists of the passing of a command byte. The
command byte will indicate the type of action to be taken. Following the command byte, zero or
more data bytes can be exchanged in either direction. The data bytes are defined according to the
command byte that is transferred.

The embedded controller also has two status bits that indicate whether the registers have been read.
This is used to ensure that the host or embedded controller has received data from the embedded
controller or host. When the host writes data to the command or data register of the embedded
controller, the input buffer flag (IBF) in the status register is set within 1 microsecond. When the
embedded controller reads this data from the input buffer, the input buffer flag is reset. When the
embedded controller writes data into the output buffer, the output buffer flag (OBF) in the status
register is set. When the host processor reads this data from the output buffer, the output buffer flag
is reset.

12.8 Embedded Controller Description Information
Certain aspects of the embedded controller’s operation have OEM-definable values associated with
them. The following is a list of values that are defined in the software layers of the ACPI
specification:

• Status flag indicating whether the interface requires the use of the Global Lock.

• Bit position of embedded controller interrupt in general-purpose status register.

• Decode address for command/status register.

• Decode address for data register.

• Base address and query value of any EC-SMBus controller.

For implementation details of the above listed information, see Section 12.11, “Defining an
Embedded Controller Device in ACPI Namespace,” and Section 12.12, “Defining an EC SMBus
Host Controller in ACPI Namespace.”

An embedded controller will require the inclusion of the GLK method in its ACPI namespace if
potentially contentious accesses to device resources are performed by non-OS code. See
Section 6.5.7, “_GLK (Global Lock)” for details about the _GLK method.

12.9 SMBus Host Controller Interface via Embedded
Controller

This section specifies a standard interface that an ACPI-compatible OS can use to communicate with
embedded controller-based SMBus host controllers (EC-SMB-HC). This interface allows the host
processor (under control of OSPM) to manage devices on the SMBus. Typical devices residing on
the SMBus include Smart Batteries, Smart Battery Chargers, contrast/backlight control, and
temperature sensors.

The EC-SMB-HC interface consists of a block of registers that reside in embedded controller space.
These registers are used by software to initiate SMBus transactions and receive SMBus
notifications. By using a well-defined register set, OS software can be written to operate with any
vendor’s embedded controller hardware.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 569

ACPI Embedded Controller Interface Specification
Certain SMBus segments have special requirements that the host controller filters certain SMBus
commands (for example, to prevent an errant application or virus from potentially damaging the
battery subsystem). This is most easily accomplished by implementing the host interface controller
through an embedded controller—as embedded controller can easily filter out potentially
problematic commands.

Notice that an EC-SMB-HC interface will require the inclusion of the GLK method in its ACPI
namespace if potentially contentious accesses to device resources are performed by non-OS code.
See Section 6.5.7, “_GLK (Global Lock)” for details on using the _GLK method.

12.9.1 Register Description
The EC-SMBus host interface is a flat array of registers that are arranged sequentially in the
embedded controller address space.

12.9.1.1 Status Register, SMB_STS
This register indicates general status on the SMBus. This includes SMB-HC command completion
status, alarm received status, and error detection status (the error codes are defined later in this
section). This register is cleared to zeroes (except for the ALRM bit) whenever a new command is
issued using a write to the protocol (SMB_PRTCL) register. This register is always written with the
error code before clearing the protocol register. The SMB-HC query event (that is, an SMB-HC
interrupt) is raised after the clearing of the protocol register.

Note: OSPM must ensure the ALRM bit is cleared after it has been serviced by writing ‘00’ to the
SMB_STS register.

Where:

Table 12-258 SMBus Status Codes

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DONE ALRM RES STATUS

DONE: Indicates the last command has completed and no error.

ALRM: Indicates an SMBus alarm message has been received.

RES: Reserved

STATUS: Indicates SMBus communication status for one of the reasons listed in the following
table.

Status
Code

Name Description

00h SMBus OK Indicates the transaction has been successfully completed.

07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.

10h SMBus Device Address
Not Acknowledged

Indicates the transaction failed because the slave device address
was not acknowledged.

11h SMBus Device Error
Detected

Indicates the transaction failed because the slave device signaled
an error condition.
570 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
All other error codes are reserved.

12.9.1.2 Protocol Register, SMB_PRTCL
This register determines the type of SMBus transaction generated on the SMBus. In addition to
indicating the protocol type to the SMB-HC, a write to this register initiates the transaction on the
SMBus. Notice that bit 7 of the protocol value is used to indicate whether packet error checking
should be employed. A value of 1 (one) in this bit indicates that PEC format should be used for the
specified protocol, and a value of 0 (zero) indicates the standard (non-PEC) format should be used.

Where:

12h SMBus Device Command
Access Denied

Indicates the transaction failed because the SMBus host does not
allow the specific command for the device being addressed. For
example, the SMBus host might not allow a caller to adjust the
Smart Battery Charger’s output.

13h SMBus Unknown Error Indicates the transaction failed because the SMBus host
encountered an unknown error.

17h SMBus Device Access
Denied

Indicates the transaction failed because the SMBus host does not
allow access to the device addressed. For example, the SMBus
host might not allow a caller to directly communicate with an SMBus
device that controls the system’s power planes.

18h SMBus Timeout Indicates the transaction failed because the SMBus host detected a
timeout on the bus.

19h SMBus Host Unsupported
Protocol

Indicates the transaction failed because the SMBus host does not
support the requested protocol.

1Ah SMBus Busy Indicates that the transaction failed because the SMBus host
reports that the SMBus is presently busy with some other
transaction. For example, the Smart Battery might be sending
charging information to the Smart Battery Charger.

1Fh SMBus PEC (CRC-8)
Error

Indicates that a Packet Error Checking (PEC) error occurred during
the last transaction.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PEC PROTOCOL

PROTOCOL: 0x00 – Controller Not In Use

0x01 – Reserved

0x02 – Write Quick Command

0x03 – Read Quick Command

0x04 – Send Byte

0x05 – Receive Byte

0x06 – Write Byte

Status
Code

Name Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 571

ACPI Embedded Controller Interface Specification
For example, the protocol value of 0x09 would be used to communicate to a device that supported
the standard read word protocol. If this device also supported packet error checking for this protocol,
a value of 0x89 (read word with PEC) could optionally be used. See the SMBus specification for
more information on packet error checking.

When OSPM initiates a new command such as write to the SMB_PRTCL register, the SMBus
controller first updates the SMB_STS register and then clears the SMB_PRTCL register. After the
SMB_PRTCL register is cleared, the host controller query value is raised.

All other protocol values are reserved.

12.9.1.3 Address Register, SMB_ADDR
This register contains the 7-bit address to be generated on the SMBus. This is the first byte to be sent
on the SMBus for all of the different protocols.

Where:

12.9.1.4 Command Register, SMB_CMD
This register contains the command byte that will be sent to the target device on the SMBus and is
used for the following protocols: send byte, write byte, write word, read byte, read word, process
call, block read and block write. It is not used for the quick commands or the receive byte protocol,
and as such, its value is a “don’t care” for those commands.

0x07 – Read Byte

0x08 – Write Word

0x09 – Read Word

0x0A – Write Block

0x0B – Read Block

0x0C – Process Call

0x0D –

Block Write-Block Read Process Call

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

RES: Reserved

ADDRESS: 7-bit SMBus address. This address is not zero aligned (in other words, it is only a 7-bit
address (A6:A0) that is aligned from bit 1-7).

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

COMMAND

PROTOCOL: 0x00 – Controller Not In Use
572 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Where:

12.9.1.5 Data Register Array, SMB_DATA[i], i=0-31

This bank of registers contains the remaining bytes to be sent or received in any of the different
protocols that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol
basis and, as such, provide efficient use of register space.

Where:

12.9.1.6 Block Count Register, SMB_BCNT
This register contains the number of bytes of data present in the SMB_DATA[i] registers preceding
any write block and following any read block transaction. The data size is defined on a per protocol
basis.

12.9.1.7 Alarm Address Register, SMB_ALRM_ADDR
This register contains the address of an alarm message received by the host controller, at slave
address 0x8, from the SMBus master that initiated the alarm. The address indicates the slave address
of the device on the SMBus that initiated the alarm message. The status of the alarm message is
contained in the SMB_ALRM_DATAx registers. Once an alarm message has been received, the
SMB-HC will not receive additional alarm messages until the ALRM status bit is cleared.

Where:

12.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0], SMB_ALRM_DATA[1]
These registers contain the two data bytes of an alarm message received by the host controller, at
slave address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the

COMMAND: Command byte to be sent to SMBus device.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA

DATA: One byte of data to be sent or received (depending upon protocol).

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

RES BCNT

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

RES: Reserved

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 573

ACPI Embedded Controller Interface Specification
specific reason for the alarm message, such that OSPM can take actions. Once an alarm message has
been received, the SMB-HC will not receive additional alarm messages until the ALRM status bit is
cleared.

Where:

The alarm address and alarm data registers are not read by OSPM until the alarm status bit is set.
OSPM driver then reads the 3 bytes, and clears the alarm status bit to indicate that the alarm registers
are now available for the next event.

12.9.2 Protocol Description
This section describes how to initiate the different protocols on the SMBus through the interface
described in Section 12.9.1, “Register Descriptions.” The registers should all be written with the
appropriate values before writing the protocol value that starts the SMBus transaction. All
transactions can be completed in one pass.

12.9.2.1 Write Quick

Data Sent:

Data Returned:

12.9.2.2Read Quick

Data Sent:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA (D7:D0)

DATA: Data byte received in alarm message.

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x02 to initiate the write quick protocol.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x03 to initiate the read quick protocol.
574 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Data Returned:

12.9.2.3 Send Byte

Data Sent:

Data Returned:

12.9.2.4 Receive Byte

Data Sent:

Data Returned:

12.9.2.5 Write Byte

Data Sent:

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x04 to initiate the send byte protocol, or 0x84 to initiate the send byte protocol
with PEC.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x05 to initiate the receive byte protocol, or 0x85 to initiate the receive byte
protocol with PEC.

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Data byte to be sent.

SMB_PRTCL: Write 0x06 to initiate the write byte protocol, or 0x86 to initiate the write byte protocol
with PEC.

SMB_STS: Status code for transaction.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 575

ACPI Embedded Controller Interface Specification
12.9.2.6 Read Byte

Data Sent:

Data Returned:

12.9.2.7 Write Word

Data Sent:

Data Returned:

12.9.2.8 Read Word

Data Sent:

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x07 to initiate the read byte protocol, or 0x87 to initiate the read byte protocol
with PEC.

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x08 to initiate the write word protocol, or 0x88 to initiate the write word protocol
with PEC.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x09 to initiate the read word protocol, or 0x89 to initiate the read word protocol
with PEC.
576 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Data Returned:

12.9.2.9 Write Block

Data Sent:

Data Returned:

12.9.2.10 Read Block

Data Sent:

Data Returned:

12.9.2.11 Process Call

Data Sent:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-32).

SMB_BCNT: Number of data bytes (1-32) to be sent.

SMB_PRTCL: Write 0x0A to initiate the write block protocol, or 0x8A to initiate the write block
protocol with PEC.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_STS: Status code for transaction.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x0B to initiate the read block protocol, or 0x8B to initiate the read block
protocol with PEC.

SMB_BCNT: Number of data bytes (1-32) received.

SMB_DATA[0-31]: Data bytes received (1-32).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 577

ACPI Embedded Controller Interface Specification
Data Returned:

12.9.2.12 Block Write-Block Read Process Call

Data Sent:

Data Returned:

Note: The following restrictions apply: The aggregate data length of the write and read blocks must not
exceed 32 bytes and each block (write and read) must contain at least 1 byte of data.

12.9.2.13 SMBus Register Set
The register set for the SMB-HC has the following format. All registers are 8 bit.

Table 12-259 SMB EC Interface

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x0C to initiate the process call protocol, or 0x8C to initiate the process call
protocol with PEC.

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-31).

SMB_BCNT: Number of data bytes (1-31) to be sent.

SMB_PRTCL: Write 0x0D to initiate the write block-read block process call protocol, or 0x8D to
initiate the write block-read block process call protocol with PEC.

SMB_BCNT: Number of data bytes (1-31) received.

SMB_DATA[0-31]: Data bytes received (1-31).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

Location Register Name Description

BASE+0 SMB_PRTCL Protocol register

BASE+1 SMB_STS Status register

BASE+2 SMB_ADDR Address register

BASE+3 SMB_CMD Command register

BASE+4 SMB_DATA[0] Data register zero
578 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
12.10 SMBus Devices
The embedded controller interface provides the system with a standard method to access devices on
the SMBus. It does not define the data and/or access protocol(s) used by any particular SMBus

BASE+5 SMB_DATA[1] Data register one

BASE+6 SMB_DATA[2] Data register two

BASE+7 SMB_DATA[3] Data register three

BASE+8 SMB_DATA[4] Data register four

BASE+9 SMB_DATA[5] Data register five

BASE+10 SMB_DATA[6] Data register six

BASE+11 SMB_DATA[7] Data register seven

BASE+12 SMB_DATA[8] Data register eight

BASE+13 SMB_DATA[9] Data register nine

BASE+14 SMB_DATA[10] Data register ten

BASE+15 SMB_DATA[11] Data register eleven

BASE+16 SMB_DATA[12] Data register twelve

BASE+17 SMB_DATA[13] Data register thirteen

BASE+18 SMB_DATA[14] Data register fourteen

BASE+19 SMB_DATA[15] Data register fifteen

BASE+20 SMB_DATA[16] Data register sixteen

BASE+21 SMB_DATA[17] Data register seventeen

BASE+22 SMB_DATA[18] Data register eighteen

BASE+23 SMB_DATA[19] Data register nineteen

BASE+24 SMB_DATA[20] Data register twenty

BASE+25 SMB_DATA[21] Data register twenty-one

BASE+26 SMB_DATA[22] Data register twenty-two

BASE+27 SMB_DATA[23] Data register twenty-three

BASE+28 SMB_DATA[24] Data register twenty-four

BASE+29 SMB_DATA[25] Data register twenty-five

BASE+30 SMB_DATA[26] Data register twenty-six

BASE+31 SMB_DATA[27] Data register twenty-seven

BASE+32 SMB_DATA[28] Data register twenty-eight

BASE+33 SMB_DATA[29] Data register twenty-nine

BASE+34 SMB_DATA[30] Data register thirty

BASE+35 SMB_DATA[31] Data register thirty-one

BASE+36 SMB_BCNT Block Count Register

BASE+37 SMB_ALRM_ADDR Alarm address

BASE+38 SMB_ALRM_DATA[0] Alarm data register zero

BASE+39 SMB_ALRM_DATA[1] Alarm data register one

Location Register Name Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 579

ACPI Embedded Controller Interface Specification
device. Further, the embedded controller can (and probably will) serve as a gatekeeper to prevent
accidental or malicious access to devices on the SMBus.

Some SMBus devices are defined by their address and a specification that describes the data and the
protocol used to access that data. For example, the Smart Battery System devices are defined by a
series of specifications including:

• Smart Battery Data specification

• Smart Battery Charger specification

• Smart Battery Selector specification

• Smart Battery System Manager specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

12.10.1 SMBus Device Access Restrictions
In some cases, the embedded controller interface will not allow access to a particular SMBus device.
Some SMBus devices can and do communicate directly between themselves. Unexpected accesses
can interfere with their normal operation and cause unpredictable results.

12.10.2 SMBus Device Command Access Restriction
There are cases where part of an SMBus device’s commands are public while others are private.
Extraneous attempts to access these commands might cause interference with the SMBus device’s
normal operation.

The Smart Battery and the Smart Battery Charger are good examples of devices that should not have
their entire command set exposed. The Smart Battery commands the Smart Battery Charger to
supply a specific charging voltage and charging current. Attempts by anyone to alter these values
can cause damage to the battery or the mobile system. To protect the system’s integrity, the
embedded controller interface can restrict access to these commands by returning one of the
following error codes: Device Command Access Denied (0x12) or Device Access Denied (0x17).

12.11 Defining an Embedded Controller Device in ACPI
Namespace

An embedded controller device is created using the named device object. The embedded controller’s
device object requires the following elements:
580 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 12-260 Embedded Controller Device Object Control Methods

12.11.1 Example: EC Definition ASL Code
Example ASL code that defines an embedded controller device is shown below:

Device(EC0) {
 // PnP ID
 Name(_HID, EISAID(“PNP0C09”))
 // Returns the “Current Resources” of EC
 Name(_CRS,
 ResourceTemplate(){ // port 0x62 and 0x66
 IO(Decode16, 0x62, 0x62, 0, 1),
 IO(Decode16, 0x66, 0x66, 0, 1)
 /* For HW-Reduced ACPI Platforms, include a GPIO Interrupt Connection resource,
 e.g. GPIO controller #2, pin 43.
 GpioInt(Edge, ActiveHigh, ExclusiveAndWake,PullUp 0, “_SB.GPI2”){43}
 */
 }
)

Object Description

_CRS Named object that returns the Embedded Controller’s current resource settings. Embedded
Controllers are considered static resources; hence only return their defined resources. The
embedded controller resides only in system I/O or memory space.
The first address region returned is the data port, and the second address region returned is the
status/command port for the embedded controller. If the EC is used on a HW-Reduced ACPI
platform, a third resource is required, which is the GPIO Interrupt Connection resource for the
EC's SCI Interrupt.

CRS is a standard device configuration control method defined in Section 6.2.2, “_CRS (Current
Resource Settings).”

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. This value is set
to PNP0C09. _HID is a standard device configuration control method defined in Section 6.1.5,
“_HID (Hardware ID).”

_GPE Named Object that evaluates to either an integer or a package. If _GPE evaluates to an integer,
the value is the bit assignment of the SCI interrupt within the GPEx_STS register of a GPE block
described in the FADT that the embedded controller will trigger.
If _GPE evaluates to a package, then that package contains two elements. The first is an object
reference to the GPE Block device that contains the GPE register that will be triggered by the
embedded controller. The second element is numeric (integer) that specifies the bit assignment
of the SCI interrupt within the GPEx_STS register of the GPE Block device referenced by the
first element in the package. This control method is specific to the embedded controller.

This method is not required on Hardware-reduced ACPI platforms.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 581

ACPI Embedded Controller Interface Specification
 // Define that the EC SCI is bit 0 of the GP_STS register
 Name(_GPE, 0) // Not required for HW-Reduced ACPI platforms

 OperationRegion(ECOR, EmbeddedControl, 0, 0xFF)
 Field(ECOR, ByteAcc, Lock, Preserve) {
 // Field definitions go here
 }
 }

12.12 Defining an EC SMBus Host Controller in ACPI
Namespace

An EC-SMB-HC device is defined using the named device object. The EC-SMB- HC’s device
object requires the following elements:

Table 12-261 EC SMBus HC Device Objects

12.12.1 Example: EC SMBus Host Controller ASL-Code
Example ASL code that defines an SMB-HC from within an embedded controller device is shown
below:

Device(EC0)
{
 Name(_HID, EISAID("PNP0C09"))
 Name(_CRS, ResourceTemplate()
 {
 IO(Decode16, 0x62, 0x62, 0, 1), // Status port
 IO(Decode16, 0x66, 0x66, 0, 1) // command port
 })
 Name(_GPE, 0)

 Device (SMB0)
 {
 Name(_HID, "ACPI0001") // EC-SMB-HC
 Name(_UID, 0) // Unique device identifier
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
 }

Object Description

_HID Named object that provides the EC-SMB- HC’s Plug and Play identifier. This value is be set to
ACPI0001. _HID is a standard device configuration control method defined in Section 6.1.5,
“_HID (Hardware ID).”

_EC Named object that evaluates to a WORD that defines the SMBus attributes needed by the
SMBus driver. _EC is the Embedded Controller Offset Query Control Method. The most
significant byte is the address offset in embedded controller space of the SMBus controller; the
least significant byte is the query value for all SMBus events.
582 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Device (SMB1)
 {
 Name(_HID, "ACPI0001") // EC-SMB-HC
 Name(_UID, 1) // Unique device identifier
 Name(_EC, 0x8031) // EC offset 0x80, query bit 0x31
 :
 }
} // end of EC0.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 583

ACPI Embedded Controller Interface Specification
584 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
13
ACPI System Management Bus Interface

Specification

This section describes the System Management Bus (SMBus) generic address space and the use of
this address space to access SMBus devices from AML.

Unlike other address spaces, SMBus operation regions are inherently non-linear, where each offset
within an SMBus address space represents a variable-sized (from 0 to 32 bytes) field. Given this
uniqueness, SMBus operation regions include restrictions on their field definitions and require the
use of an SMBus-specific data buffer for all transactions.

The SMBus interface presented in this section is intended for use with any hardware implementation
compatible with the SMBus specification. SMBus hardware is broadly classified as either non-EC–
based or EC-based. EC-based SMBus implementations comply with the standard register set defined
in Section 12, ACPI Embedded Controller Interface Specification.”

Non-EC SMBus implementations can employ any hardware interface and are typically used for their
cost savings when SMBus security is not required. Non–EC-based SMBus implementations require
the development of hardware specific drivers for each OS implementation. See Section 13.2.1,
“Declaring SMBus Host Controller Objects,” for more information.

Support of the SMBus generic address space by ACPI-compatible operating systems is optional. As
such, the Smart Battery System Implementer’s Forum (SBS-IF) has defined an SMBus interface
based on a standard set of control methods. This interface is documented in the SMBus Control
Method Interface Specification, available at the ACPI Link Document under the heading "Smart
Battery System Components and SMBus Specification"..

13.1 SMBus Overview
SMBus is a two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that
provides positive addressing for devices, as well as bus arbitration. For more information, refer to
the complete set of SMBus specifications published by the SBS-IF.

13.1.1 SMBus Slave Addresses
Slave addresses are specified using a 7-bit non-shifted notation. For example, the slave address of
the Smart Battery Selector device would be specified as 0x0A (1010b), not 0x14 (10100b) as might
be found in other documents. These two different forms of addresses result from the format in which
addresses are transmitted on the SMBus.

During transmission over the physical SMBus, the slave address is formatted in an 8-bit block with
bits 7-1 containing the address and bit 0 containing the read/write bit. ASL code, on the other hand,
presents the slave address simply as a 7-bit value making it the responsibility of the OS (driver) to
shift the value if needed. For example, the ASL value would have to be shifted left 1 bit before being
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 585

ACPI System Management Bus Interface Specification
written to the SMB_ADDR register in the EC based SMBus as described in Section 12.9.1.3,
“Address Register, SMB_ADDR.”

13.1.2 SMBus Protocols
There are seven possible command protocols for any given SMBus slave device, and a device may
use any or all of the protocols to communicate. The protocols and associated access type indicators
are listed below. Notice that the protocols values are similar to those defined for the EC-based
SMBus in Section 12.9.1.2, “Protocol Register, SMB_PRTCL,” except that protocol pairs (for
example, Read Byte, Write Byte) have been joined.

Table 13-262 SMBus Protocol Types

All other protocol values are reserved.

Notice that bit 7 of the protocol value is used by this interface to indicate to the SMB-HC whether or
not packet error checking (PEC) should be employed for a transaction. Packet error checking is
described in section 7.4 of the System Management Bus Specification, Version 1.1. This highly
desirable capability improves the reliability and robustness of SMBus communications.

The bit encoding of the protocol value is shown below. For example, the value 0x86 would be used
to specify the PEC version of the SMBus Read/Write Byte protocol.

Figure 13-67 Bit Encoding Example

Notice that bit 0 of the protocol value is always zero (even number hexadecimal values). In a manner
similar to the slave address, software that implements the SMBus interface is responsible for setting
this bit to indicate whether the transaction is a read (for example, Read Byte) or write (for example,
Write Byte) operation.

For example, software implanting this interface for EC-SMBus segments would set bit 0 for read
transactions. For the SMBByte protocol (0x06), this would result in the value 0x07 being placed into
the SMB_PRTCL register (or 0x87 if PEC is requested) for write transactions.

Value Type Description

0x02 SMBQuick SMBus Read/Write Quick Protocol

0x04 SMBSendReceive SMBus Send/Receive Byte Protocol

0x06 SMBByte SMBus Read/Write Byte Protocol

0x08 SMBWord SMBus Read/Write Word Protocol

0x0A SMBBlock SMBus Read/Write Block Protocol

0x0C SMBProcessCall SMBus Process Call Protocol

0x0D SMBBlockProcessCall SMBus Write Block-Read Block Process Call Protocol

Bit 7 = Packet Error Checking

Bits 6:0 = Protocol

45 12367 0
586 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
13.1.3 SMBus Status Codes
The use of status codes helps AML determine whether an SMBus transaction was successful. In
general, a status code of zero indicates success, while a non-zero value indicates failure. The SMBus
interface uses the same status codes defined for the EC-SMBus (see Section 12.9.1.1, “Status
Register, SMB_STS”).

13.1.4 SMBus Command Values
SMBus devices may optionally support up to 256 device-specific commands. For these devices,
each command value supported by the device is modeled by this interface as a separate virtual
register. Protocols that do not transmit a command value (for example, Read/Write Quick and Send/
Receive Byte) are modeled using a single virtual register (with a command value = 0x00).

13.2 Accessing the SMBus from ASL Code
The following sections demonstrate how to access and use the SMBus from ASL code.

13.2.1 Declaring SMBus Host Controller Objects
EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in
Section 12.11, “Defining an Embedded Controller SMBus Host Controller in ACPI Namespace.”
An example definition is given below. Using the HID value “ACPI0001” identifies that this SMB-
HC is implemented on an embedded controller using the standard SMBus register set defined in
Section 12.9, SMBus Host Controller Interface via Embedded Controller.”

Device (SMB0)
{
 Name(_HID, "ACPI0001") // EC-based SMBus 1.0 compatible Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
}

EC-based SMBus 2.0-compatible host controllers should be defined similarly in the namespace as
follows:

Device (SMB0)
{
 Name(_HID, "ACPI0005") // EC-based SMBus 2.0 compatible Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
 :
}

Non–EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An
example definition is given below. These devices use a vendor-specific hardware identifier (HID) to
specify the type of SMB-HC (do not use “ACPI0001” or “ACPI0005”). Using a vendor-specific
HID allows the correct software to be loaded to service this segment’s SMBus address space.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 587

ACPI System Management Bus Interface Specification
Device(SMB0)
{
 Name(_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
 :
}

Regardless of the type of hardware, some OS software element (for example, the SMBus HC driver)
must register with OSPM to support all SMBus operation regions defined for the segment. This
software allows the generic SMBus interface defined in this section to be used on a specific
hardware implementation by translating between the conceptual (for example, SMBus address
space) and physical (for example, process of writing/reading registers) models. Because of this
linkage, SMBus operation regions must be defined immediately within the scope of the
corresponding SMBus device.

13.2.2 Declaring SMBus Devices
The SMBus, as defined by the SMBus 1.0 Specification, is not an enumerable bus. As a result, an
SMBus 1.0-compatible SMB-HC driver cannot discover child devices on the SMBus and load the
appropriate corresponding device drivers. As such, SMBus 1.0-compatible devices are declared in
the ACPI namespace, in like manner to other motherboard devices, and enumerated by OSPM.

The SMBus 2.0 specification adds mechanisms enabling device enumeration on the bus while
providing compatibility with existing devices. ACPI defines and associates the “ACPI0005” HID
value with an EC-based SMBus 2.0-compatible host controller. OSPM will enumerate SMBus 1.0-
compatible devices when declared in the namespace under an SMBus 2.0-compatible host
controller.

The responsibility for the definition of ACPI namespace objects, required by an SMBus 2.0-
compatible host controller driver to enumerate non–bus-enumerable devices, is relegated to the
Smart Battery System Implementers Forum. See the ACPI Link Document under the heading "Smart
Battery System Components and SMBus Specification"..

Starting in ACPI 2.0, _ADR is used to associate SMBus devices with their lowest SMBus slave
address.

13.2.3 Declaring SMBus Operation Regions
Each SMBus operation region definition identifies a single SMBus slave address. Operation regions
are defined only for those SMBus devices that need to be accessed from AML. As with other
regions, SMBus operation regions are only accessible via the Field term (see Section 13.2.2,
“Declaring SMBus Fields”).

This interface models each SMBus device as having a 256-byte linear address range. Each byte
offset within this range corresponds to a single command value (for example, byte offset 0x12
equates to command value 0x12), with a maximum of 256 command values. By doing this, SMBus
address spaces appear linear and can be processed in a manner similar to the other address space
types.

The syntax for the OperationRegion term (from Section 19.5.96, “OperationRegion (Declare
Operation Region]”) is described below.
588 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg=>Integer
 Length // TermArg=>Integer
)

Where:

• RegionName specifies a name for this slave device (for example, “SBD0”).

• RegionSpace must be set to SMBus (operation region type value 0x04).

• Offset is a word-sized value specifying the slave address and initial command value offset for
the target device. The slave address is stored in the high byte and the command value offset is
stored in the low byte. For example, the value 0x4200 would be used for an SMBus device
residing at slave address 0x42 with an initial command value offset of zero (0).

• Length is set to the 0x100 (256), representing the maximum number of possible command
values, for regions with an initial command value offset of zero (0). The difference of these two
values is used for regions with non-zero offsets. For example, a region with an Offset value of
0x4210 would have a corresponding Length of 0xF0 (0x100 minus 0x10).

For example, the Smart Battery Subsystem (illustrated below) consists of the Smart Battery Charger
at slave address 0x09, the Smart Battery System Manager at slave address 0x0A, and one or more
batteries (multiplexed) at slave address 0x0B. (Notice that Figure 13-2 represents the logical
connection of a Smart Battery Subsystem. The actual physical connections of the Smart Battery(s)
and the Smart Battery Charger are made through the Smart Battery System Manager.) All devices
support the Read/Write Word protocol. Batteries also support the Read/Write Block protocol.

Figure 13-68 Smart Battery Subsystem Devices

The following ASL code shows the use of the OperationRegion term to describe these SMBus
devices:

EC

'SMB0'

Smart Battery
System Manager

[0x0A]

[0x0B]
Smart Battery

Device(s)

[0x09]
Smart Battery

Charger
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 589

ACPI System Management Bus Interface Specification
Device (SMB0)
{
 Name(_HID, "ACPI0001") // EC-SMBus Host Controller
 Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30

OperationRegion(SBC0, SMBus, 0x0900, 0x100) // Smart Battery Charger
OperationRegion(SBS0, SMBus, 0x0A00, 0x100) // Smart Battery Selector
OperationRegion(SBD0, SMBus, 0x0B00, 0x100) // Smart Battery Device(s)
 :
}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ EC-SMBus device. Each definition corresponds to a separate slave address (device), and
happens to use an initial command value offset of zero (0).

13.2.4 Declaring SMBus Fields
As with other regions, SMBus operation regions are only accessible via the Field term. Each field
element is assigned a unique command value and represents a virtual register on the targeted SMBus
device.

The syntax for the Field term (from Section 19.5.40, “Event (Declare Event Synchronization
Object]”) is described below.

Field(
 RegionName, // NameString=>OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword – ignored
) {FieldUnitList}

Where:

• RegionName specifies the operation region name previously defined for the device.

• AccessType must be set to BufferAcc. This indicates that access to field elements will be done
using a region-specific data buffer. For this access type, the field handler is not aware of the data
buffer’s contents which may be of any size. When a field of this type is used as the source
argument in an operation it simply evaluates to a buffer. When used as the destination, however,
the buffer is passed bi-directionally to allow data to be returned from write operations. The
modified buffer then becomes the execution result of that operation. This is slightly different
than the normal case in which the execution result is the same as the value written to the
destination. Note that the source is never changed, since it could be a read only object (see
Section 13.2.5, “Declaring an SMBus Data Buffer” and Section 19.1.5, “Opcode Terms”).

• LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the
SMBus, and NoLock otherwise.

• UpdateRule is not applicable to SMBus operation regions since each virtual register is accessed
in its entirety. This field is ignored for all SMBus field definitions.
590 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
SMBus operation regions require that all field elements be declared at command value granularity.
This means that each virtual register cannot be broken down to its individual bits within the field
definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This
limitation is imposed both to simplify the SMBus interface and to maintain consistency with the
physical model defined by the SMBus specification.

SMBus protocols are assigned to field elements using the AccessAs term within the field definition.
The syntax for this term (from Section 19.1.3, “ASL Root and SecondaryTerms”) is described
below.

AccessAs(
 AccessType, //AccessTypeKeyword
 AccessAttribute //Nothing | ByteConst | AccessAttribKeyword
)

Where:

• AccessType must be set to BufferAcc.

• AccessAttribute indicates the SMBus protocol to assign to command values that follow this
term. See Section 13.1.2, “SMBus Protocols,” for a listing of the SMBus protocol types and
values.

An AccessAs term must appear as the first entry in a field definition to set the initial SMBus protocol
for the field elements that follow. A maximum of one SMBus protocol may be defined for each field
element. Devices supporting multiple protocols for a single command value can be modeled by
specifying multiple field elements with the same offset (command value), where each field element
is preceded by an AccessAs term specifying an alternate protocol.

For example, the register at command value 0x08 for a Smart Battery device (illustrated below)
represents a word value specifying the battery temperature (in degrees Kelvin), while the register at
command value 0x20 represents a variable-length (0 to 32 bytes) character string specifying the
name of the company that manufactured the battery.

Figure 13-69 Smart Battery Device Virtual Registers

RemainingCapacityAlarm()

Smart Battery Device

0x00 (Word)

0x01 (Word)

0x08 (Word)

0x20 (Block)

0x21 (Block)

:

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 ... Byte 31

Byte 0 ... Byte 31

:

Command Value Register

ManufacturerAccess()

Temperature()

ManufacturerName()

DeviceName()

:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 591

ACPI System Management Bus Interface Specification
The following ASL code shows the use of the OperationRegion, Field, AccessAs, and Offset terms
to represent these Smart Battery device virtual registers:

OperationRegion(SBD0, SMBus, 0x0B00, 0x0100)
Field(SBD0, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBWord) // Use the SMBWord protocol for the following…
 MFGA, 8, // ManufacturerAccess() [command value 0x00]
 RCAP, 8, // RemainingCapacityAlarm() [command value 0x01]
 Offset(0x08) // Skip to command value 0x08…
 BTMP, 8, // Temperature() [command value 0x08]
 Offset(0x20) // Skip to command value 0x20…
 AccessAs(BufferAcc, SMBBlock) // Use the SMBBlock protocol for the following…
 MFGN, 8, // ManufacturerName() [command value 0x20]
 DEVN, 8 // DeviceName() [command value 0x21]
}

Notice that command values are equivalent to the field element’s byte offset (for example,
MFGA=0, RCAP=1, BTMP=8). The AccessAs term indicates which SMBus protocol to use for
each command value.

13.2.5 Declaring and Using an SMBus Data Buffer
The use of a data buffer for SMBus transactions allows AML to receive status and data length
values, as well as making it possible to implement the Process Call protocol. As previously
mentioned, the BufferAcc access type is used to indicate to the field handler that a region-specific
data buffer will be used.

For SMBus operation regions, this data buffer is defined as a fixed-length 34-byte buffer that, if
represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{
 BYTE Status; // Byte 0 of the data buffer
 BYTE Length; // Byte 1 of the data buffer
 BYTE[32] Data; // Bytes 2 through 33 of the data buffer
}

Where:

• Status (byte 0) indicates the status code of a given SMBus transaction. See Section 13.1.3,
“SMBus Status Code,” for more information.

• Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Use of
this field is only defined for the Read/Write Block protocol, where valid Length values are 0
through 32. For other protocols—where the data length is implied by the protocol—this field is
reserved.

• Data (bytes 2-33) represents a 32-byte buffer, and is the location where actual data is stored.

For example, the following ASL shows the use of the SMBus data buffer for performing transactions
to a Smart Battery device. This code is based on the example ASL presented in Section 13.2.4,
“Declaring SMBus Fields,” which lists the operation region and field definitions for the Smart
Battery device.
592 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)
CreateByteField(BUFF, 0x01, OB2) // OB2 = Length (Byte)
CreateWordField(BUFF, 0x02, OB3) // OB3 = Data (Word – Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, OB4) // OB4 = Data (Block – Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual(OB1, 0x00)) // Successful?
{

 // OB3 = Battery temperature in 1/10th degrees Kelvin
}

/* Read the battery manufacturer name */
Store(MFGN, BUFF) // Invoke Read Block transaction
If(LEqual(OB1, 0x00)) // Successful?
{
 // OB2 = Length of the manufacturer name
 // OB4 = Manufacturer name (as a counted string)
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status,
Length, and Data), where Data (bytes 2-33) is ‘typecast’ as both word (OB3) and block (OB4) data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction
to obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in
a 34-byte buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an
additional Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual(OB1, 0x00)) {…} // Transaction successful?

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is
the nature of BufferAcc’s bi-directionality described in Section 13.2.4, “Declaring SMBus Fields” It
should be noted that storing (or parsing) the result of an SMBus Write transaction is not required
although useful for ascertaining the outcome of a transaction.

SMBus Process Call protocols require similar semantics due to the fact that only destination
operands are passed bi-directionally. These transactions require the use of the double-Store()
semantics to properly capture the return results.

13.3 Using the SMBus Protocols
This section provides information and examples on how each of the SMBus protocols can be used to
access SMBus devices from AML.

13.3.1 Read/Write Quick (SMBQuick)
The SMBus Read/Write Quick protocol (SMBQuick) is typically used to control simple devices
using a device-specific binary command (for example, ON and OFF). Command values are not used
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 593

ACPI System Management Bus Interface Specification
by this protocol and thus only a single element (at offset 0) can be specified in the field definition.
This protocol transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should
be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBQuick) // Use the SMBus Read/Write Quick protocol
 FLD0, 8 // Virtual register at command value 0.
}

/* Create the SMBus data buffer */

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)

/* Signal device (e.g. OFF) */
Store(FLD0, BUFF) // Invoke Read Quick transaction
If(LEqual(OB1, 0x00)) {…} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLD0) // Invoke Write Quick transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s read/
write bit. Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field
results in a Read Quick, and writing to the field results in a Write Quick. In either case data is not
transferred—access to the register is simply used as a mechanism to invoke the transaction.

13.3.2 Send/Receive Byte (SMBSendReceive)
The SMBus Send/Receive Byte protocol (SMBSendReceive) transfers a single byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only a single element (at
offset 0) can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should
be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBSendReceive) // Use the SMBus Send/Receive Byte protocol
 FLD0, 8 // Virtual register at command value 0.
}

// Create the SMBus data buffer

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)
594 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
// Receive a byte of data from the device
Store(FLD0, BUFF) // Invoke a Receive Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Received byte…
}

// Send the byte ‘0x16’ to the device
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD0) // Invoke a Send Byte transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s data
byte. Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field
results in a Receive Byte, and writing to the field results in a Send Byte.

13.3.3 Read/Write Byte (SMBByte)
The SMBus Read/Write Byte protocol (SMBByte) also transfers a single byte of data. But unlike
Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual
registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBByte) // Use the SMBus Read/Write Byte protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

 // Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Read a byte of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Byte read from FLD1…
}

// Write the byte ‘0x16’ to the device using command value 2
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus
transaction to occur to the device. Reading FLD1 results in a Read Byte with a command value of 1,
and writing to FLD2 results in a Write Byte with command value 2.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 595

ACPI System Management Bus Interface Specification
13.3.4 Read/Write Word (SMBWord)
The SMBus Read/Write Word protocol (SMBWord) transfers 2 bytes of data. This protocol also
uses a command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should
be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBWord) // Use the SMBus Read/Write Word protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Read two bytes of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word read from FLD1…
}
// Write the word ‘0x5416’ to the device using command value 2
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus
transaction to occur to the device. Reading FLD1 results in a Read Word with a command value of 1,
and writing to FLD2 results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are
listed as 8 bits each. The actual data size is determined by the protocol. Every field element is
declared with a length of 8 bits so that command values and byte offsets are equivalent.

13.3.5 Read/Write Block (SMBBlock)
The SMBus Read/Write Block protocol (SMBBlock) transfers variable-sized (0-32 bytes) data. This
protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Block protocol should
be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBBlock) // Use the SMBus Read/Write Block protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

596 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // DATA = Data (Block)

// Read block data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Block transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // SIZE = Size (number of bytes) of the block data read from FLD1…
 // DATA = Block data read from FLD1…
}

// Write the block ‘TEST’ to the device using command value 2
Store(“TEST”, DATA) // Save “TEST” into the data buffer
Store(4, SIZE) // Length of valid data in the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus
transaction to occur to the device. Reading FLD1 results in a Read Block with a command value of
1, and writing to FLD2 results in a Write Block with command value 2.

13.3.6 Word Process Call (SMBProcessCall)
The SMBus Process Call protocol (SMBProcessCall) transfers 2 bytes of data bi-directionally
(performs a Write Word followed by a Read Word as an atomic transaction). This protocol uses a
command value to reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBProcessCall) // Use the SMBus Process Call protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.
 FLD2, 8 // Virtual register at command value 2.
}

 // Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Process Call with input value ‘0x5416’ to the device using command value 1
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual(STAT, 0x00)) // Successful?
{
 // DATA = Word returned from FLD1…
}

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual
registers for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus
transaction to occur to the device. Reading or writing FLD1 results in a Process Call with a
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 597

ACPI System Management Bus Interface Specification
command value of 1. Notice that unlike other protocols, Process Call involves both a write and read
operation in a single atomic transaction. This means that the Data element of the SMBus data buffer
is set with an input value before the transaction is invoked, and holds the output value following the
successful completion of the transaction.

13.3.7 Block Process Call (SMBBlockProcessCall)
The SMBus Block Write-Read Block Process Call protocol (SMBBlockProcessCall) transfers a
block of data bi-directionally (performs a Write Block followed by a Read Block as an atomic
transaction). The maximum aggregate amount of data that may be transferred is limited to 32 bytes.
This protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMbus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{
 AccessAs(BufferAcc, SMBBlockProcessCall) // Use the Block Process Call protocol
 FLD0, 8, // Virtual register representing a command value of 0
 FLD1, 8 // Virtual register representing a command value of 1
}

// Create the SMBus data buffer as BUFF
Name(BUFF, Buffer(34)()) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

// Process Call with input value "ACPI" to the device using command value 1

Store("ACPI", DATA) // Fill in outgoing data
Store(8, SIZE) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{
 // BUFF now contains information returned from PC
 // SIZE now equals size of data returned
}

598 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
14
Platform Communications Channel (PCC)

The platform communication channel is a generic mechanism for OSPM to communicate with an
entity in the platform (e.g., a Baseboard Management Controller (BMC)). Neither the entity that
OSPM communicates with, nor any aspects of the information passed back and forth is defined in
this section. That information is defined by the actual interface that that employs PCC register
address space as the communication channel.

PCC defines a new address space type (PCC Space, 0xA), which is implemented as one or more
independent communications channels, or subspaces. The interface is described in the following
ACPI system description table.

14.1 Platform Communications Channel Table

Table 14-263 Platform Communications Channel Table (PCCT)

Field Byte
Length

Byte
Offset

Description

Header

 Signature 4 0 ‘PCCT’ Signature for the Platform Communications Channel
Table.

 Length 4 4 Length, in bytes, of the entire PCCT.

 Revision 1 8 1

 Checksum 1 9 Entire table must sum to zero.

 OEMID 6 10 OEM ID

 OEM Table ID 8 16 For the PCCT, the table ID is the manufacturer model ID.

 OEM Revision 4 24 OEM revision of PCCT for supplied OEM Table ID.

 Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

 Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Flags 4 36 Platform Communications Channel Global flags, described in
Table 14-264.

Reserved 8 40 Reserved

PCC Subspace
Structure[n]
(n = subspace ID)

— 48 A list of Platform Communications Channel Subspace structures
for this platform. This structure is described in the following
section. At most 256 subspaces are supported.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 599

Platform Communications Channel (PCC)
14.1.1 Platform Communications Channel Global Flags

Table 14-264 Platform Communications Channel Global Flags

14.1.2 Platform Communications Channel Subspace Structures
PCC Subspaces are described by the PCC Subspace structure in the PCCT table. The subspace ID of
a PCC subspace is its index in the array of subspace structures, starting with subspace 0. All
subspaces have a common header, followed by a set of type-specific fields:

Table 14-265 Generic PCC Subspace Structure

This specification defines subspace type 0, the Generic Communications Subspace. All other
subspace types are reserved.

14.1.3 Generic Communications Subspace Structure (type 0)

Table 14-266 PCC Subspace Structure type 0 (Generic Communications Subspace)

PCC Flags Bit
Length

Bit
Offset

Description

SCI Doorbell 1 0 If set, the platform is capable of generating a generic SCI to
indicate completion of a command.

Reserved 31 1 Must be zero.

Field Byte
Length

Byte
Offset

Description

Type 1 0 The type of subspace.

Length 1 1 Length of the subspace structure, in bytes. The next subspace
structure begins length bytes after the start of this one.

Type specific fields variable 2 See specific subspace types for more details

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 (Generic Communications Subspace)

Length 1 1 62

Reserved 6 2 Reserved

Base Address 8 8 Base Address of the shared memory range, described in
Table 14-267.

Length 8 16 Length of the memory range. Must be > 8.

Doorbell Register 12 24 Contains the processor relative address, represented in Generic
Address Structure format, of the PCC doorbell.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

Doorbell Preserve 8 36 Contains a mask of bits to preserve when writing the doorbell
register.
600 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: Inaccurate values for the Maximum Periodic Access Rate and Minimum Request Turnaround
Time fields can result in punitive side effects for features that rely on the PCC interface. The
Platform should report accurate values that allow for maximum channel efficiency while
maintaining maximum channel stability.

Note: The Maximum Periodic Access Rate is used by OSPM to determine the maximum rate for periodic
evaluation of commands. Infrequent, event driven commands are not restricted by the maximum
periodic access rate.

14.2 Generic Communications Channel Shared Memory
Region

Table 14-267 Generic Communications Channel Shared Memory Region

14.2.1 Generic Communications Channel Command Field
This 16-bit field is used to select one of the defined commands for the platform to perform. OSPM is
responsible for populating this field before each command invocation.

Doorbell Write 8 44 Contains a mask of bits to set when writing the doorbell register.

Nominal Latency 4 52 Expected latency to process a command, in microseconds.

Maximum Periodic
Access Rate

4 56 The maximum number of periodic requests that the subspace
channel can support, reported in commands per minute. 0
indicates no limitation.

Minimum Request
Turnaround Time

2 60 The minimum amount of time that OSPM must wait after the
completion of a command before issuing the next command, in
microseconds.

Field Byte
Length

Byte
Offset

Description

Signature 4 0 The PCC signature. The signature of a subspace is computed by
a bitwise-or of the value 0x50434300 with the subspace ID. For
example, subspace 3 has the signature 0x50434303.

Command 2 4 PCC command field, described in Table 14-268.

Status 2 4 PCC status field, described in Table 14-269.

Communication
Space

— 8 Memory region for reading/writing PCC data. The size of this
region is 8 bytes smaller than the size of the shared memory
region (specified in the General Communications Subspace
structure). The first byte of this field represents PCC address 0.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 601

Platform Communications Channel (PCC)
Table 14-268 Generic Communications Channel Command Field

14.2.2 Generic Communications Channel Status Field

Table 14-269 Generic Communications Channel Status Field

Note: OSPM (either in an SCI handler or via polling) is required to detect that the Command Complete
bit has been set and to clear it before issuing another command. While waiting for this bit to be set,
OSPM must not modify any portion of the shared memory region.

Note: The SCI doorbell bit is required to be cleared in OSPM’s SCI handler so that a new event can be
detected.

14.3 Doorbell Protocol
The doorbell is used by OSPM to notify the platform that the shared memory region contains a valid
command that is ready to be processed. A doorbell consists of a hardware register that is accessed
via I/O or memory mapped I/O, abstracted in the doorbell field of the PCC subspace structure.
OSPM rings the doorbell by performing a read/modify/write cycle on the specified register,
preserving and setting the bits specified in the preserve and write mask of the PCC subspace
structure.

 To ensure consistency of the shared memory region, the shared memory region is exclusively
owned by OSPM or the platform at any point in time. After being initialized by the platform, the
region is owned by OSPM. Writing the doorbell register transfers ownership of the memory region

Field Bit
Length

Bit
Offset

Description

Command 8 0 Command code to execute. Command codes are application
specific and defined by the consumer of this interface.

Reserved 7 8 Reserved.

Generate SCI 1 15 If set, the platform should generate an SCI interrupt at the
completion of this command.

If the SCI Doorbell bit is not set in the PCC global flags, this bit
must be cleared.

Field Bit
Length

Bit
Offset

Description

Command
Complete

1 0 If set, the platform has completed processing the last command.

SCI Doorbell 1 1 If set, the platform has issued an SCI to this subspace. OSPM must
check the Command Complete and Platform Notification fields to
determine the cause of the SCI.

Error 1 2 If set, an error occurred executing the last command.

Platform
Notification

1 3 If set, indicates the platform is issuing an asynchronous notification
to OSPM.

Reserved 12 4 Reserved.
602 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
to the platform. The platform transfers ownership back by setting the Command Complete bit in the
Status field.

14.4 Platform Notification
The doorbell protocol is a synchronous notification from OSPM to the platform to process a
command. If the platform wants to notify OSPM of an event asynchronously, it may set the SCI
Doorbell and Platform Notification status bits and issue an SCI. OSPM will service the SCI, clear
the SCI Doorbell and Platform Notification bits, and service the platform notification. The meaning
of the platform notification and the steps required to service it are defined by the individual
components utilizing the PCC interface.

The platform must wait until OSPM has issued a consumer defined command that serves to notify
the platform that OSPM is ready to service Platform Notifications. The command is subspace
specific and may not be supported by all subspaces. Platform Notifications must be used in
conjunction with an SCI interrupt. Polling for Platform Notifications is not supported.

The platform may not modify any portion of the shared memory region other than the status field
when issuing a platform notification.

14.5 Referencing the PCC address space
PCC address space may be referenced by one of the address space resource descriptors (QWORD,
DWORD, WORD, or Extended) by using the address space id PCC (0x8). The specific subspace
referred to is encoded as an 8 bit value in the Type Specific Flags field.

Note: PCC addresses are never translated, and are always relative to the start of the given subspace.

As an example, the following resource template refers to the fixed address range 0x100-0x1ff in
PCC subspace 5:

ResourceTemplate()
{
DWordSpace (
PCC, //ResourceType
, //ResourceUsage
, //Decode
1, //IsMinFixed
1, //IsMaxFixed
5, //TypeSpecificFlags (subspace ID)
0, //AddressGranularity
0x100, //AddressMinimum
0x1ff, //AddressMaximum
0, //AddressTranslation
0x100 //RangeLength
)
}

An individual PCC register may be referenced by the Generic Address Structure or in a Generic
Register Descriptor by using the address space id PCC (0xA). When using the PCC address space,
the Access Size field is redefined to Subspace ID, and identifies which PCC subspace the descriptor
refers to.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 603

Platform Communications Channel (PCC)
As an example, the following resource template refers to the field occupying bits 8 through 15 at
address 0x30 in PCC subspace 9:

ResourceTemplate()
{
Register (
PCC, //AddressSpaceKeyword
8, //RegisterBitWidth
8, //RegisterBitOffset
0x30, //RegisterAddress
9 //AccessSize (subspace ID)
)
}

Note that the PCC address space may not be used in any resource template or register unless the
register/resource field explicitly allows the use of the PCC address space.
604 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
15
System Address Map Interfaces

This section explains how an ACPI-compatible system conveys its memory resources/type
mappings to OSPM. There are three ways for the system to convey memory resources /mappings to
OSPM. The first is an INT 15 BIOS interface that is used in IA-PC–based systems to convey the
system’s initial memory map. UEFI enabled systems use the UEFI GetMemoryMap() boot services
function to convey memory resources to the OS loader. These resources must then be conveyed by
the OS loader to OSPM. See the UEFI Specification for more information on UEFI services.

Lastly, if memory resources may be added or removed dynamically, memory devices are defined in
the ACPI Namespace conveying the resource information described by the memory device (see
Section 9.12, “Memory Devices”).

ACPI defines five address range types; AddressRangeMemory, AddressRangeACPI,
AddressRangeNVS, AddressRangeUnusable, and AddressRangeReserved as described in the table
below:

Table 15-270 Address Range Types

The BIOS can use the AddressRangeReserved address range type to block out various addresses as
not suitable for use by a programmable device. Some of the reasons a BIOS would do this are:

• The address range contains system ROM.

• The address range contains RAM in use by the ROM.

• The address range is in use by a memory-mapped system device.

• The address range is, for whatever reason, unsuitable for a standard device to use as a device
memory space.

Value Mnemonic Description

1 AddressRangeMemory This range is available RAM usable by the operating system.

2 AddressRangeReserved This range of addresses is in use or reserved by the system and is not
to be included in the allocatable memory pool of the operating
system's memory manager.

3 AddressRangeACPI ACPI Reclaim Memory. This range is available RAM usable by the OS
after it reads the ACPI tables.

4 AddressRangeNVS ACPI NVS Memory. This range of addresses is in use or reserve by
the system and must not be used by the operating system. This range
is required to be saved and restored across an NVS sleep.

5 AddressRangeUnusuable This range of addresses contains memory in which errors have been
detected. This range must not be used by OSPM.

6 AddressRangeDisabled This range of addresses contains memory that is not enabled. This
range must not be used by OSPM.

Other Undefined Undefined. Reserved for future use. OSPM must treat any range of
this type as if the type returned was AddressRangeReserved.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 605

System Address Map Interfaces
• The address range is within an NVRAM device where reads and writes to memory locations are
no longer successful, that is, the device was worn out.

Note: OSPM will not save or restore memory reported as AddressRangeReserved,
AddressRangeUnusable, or AddressRangeDisabled when transitioning to or from the S4 sleeping
state.

15.1 INT 15H, E820H - Query System Address Map
This interface is used in real mode only on IA-PC-based systems and provides a memory map for all
of the installed RAM, and of physical memory ranges reserved by the BIOS. The address map is
returned through successive invocations of this interface; each returning information on a single
range of physical addresses. Each range includes a type that indicates how the range of physical
addresses is to be treated by the OSPM.

If the information returned from E820 in some way differs from INT-15 88 or INT-15 E801, the
information returned from E820 supersedes the information returned from INT-15 88 or INT-15
E801. This replacement allows the BIOS to return any information that it requires from INT-15 88
or INT-15 E801 for compatibility reasons. For compatibility reasons, if E820 returns any
AddressRangeACPI or AddressRangeNVS memory ranges below 16 MB, the INT-15 88 and INT-
15 E801 functions must return the top of memory below the AddressRangeACPI and
AddressRangeNVS memory ranges.

The memory map conveyed by this interface is not required to reflect any changes in available
physical memory that have occurred after the BIOS has initially passed control to the operating
system. For example, if memory is added dynamically, this interface is not required to reflect the
new system memory configuration.

Table 15-271 Input to the INT 15h E820h Call

Register Contents Description

EAX Function
Code

E820h

EBX Continuation Contains the continuation value to get the next range of physical memory. This is
the value returned by a previous call to this routine. If this is the first call, EBX
must contain zero.

ES:DI Buffer
Pointer

Pointer to an Address Range Descriptor structure that the BIOS fills in.

ECX Buffer Size The length in bytes of the structure passed to the BIOS. The BIOS fills in the
number of bytes of the structure indicated in the ECX register, maximum, or
whatever amount of the structure the BIOS implements. The minimum size that
must be supported by both the BIOS and the caller is 20 bytes. Future
implementations might extend this structure.

EDX Signature ‘SMAP’ Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.
606 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 15-272 Output from the INT 15h E820h Call

Table 15-273 Address Range Descriptor Structure

The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of this range. The base
address is the physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of this range. The length is the
physical contiguous length in bytes of a range being specified.

The Type field describes the usage of the described address range as defined in Table 15-270.

Table 15-274 Extended Attributes for Address Range Descriptor Structure

Register Contents Description

CF Carry Flag Non-Carry – Indicates No Error

EAX Signature ‘SMAP.’ Signature to verify correct BIOS revision.

ES:DI Buffer
Pointer

Returned Address Range Descriptor pointer. Same value as on input.

ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor. The
minimum size structure returned by the BIOS is 20 bytes.

EBX Continuation Contains the continuation value to get the next address range descriptor. The
actual significance of the continuation value is up to the discretion of the BIOS.
The caller must pass the continuation value unchanged as input to the next
iteration of the E820 call in order to get the next Address Range Descriptor. A
return value of zero means that this is the last descriptor.
Note: the BIOS can also indicate that the last descriptor has already been
returned during previous iterations by returning the carry flag set. The caller will
ignore any other information returned by the BIOS when the carry flag is set.

Offset in Bytes Name Description

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

8 LengthLow Low 32 Bits of Length in Bytes

12 LengthHigh High 32 Bits of Length in Bytes

16 Type Address type of this range

20 Extended Attributes See Table 14-5

Bit Mnemonic Description

0 Reserved Reserved, must be set to 1.

1 AddressRangeNonVolatile If set, the Address Range Descriptor represents non-volatile memory.
Memory reported as non-volatile may require characterization to
determine its suitability for use as conventional RAM.

2 AddressRangeSlowAccess If set, accesses to the described range may incur considerable
latencies

3 AddressRangeErrorLog If set, the address range descriptor represents memory used for
logging hardware errors.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 607

System Address Map Interfaces
15.2 E820 Assumptions and Limitations
• The BIOS returns address ranges describing baseboard memory.

• The BIOS does not return a range description for the memory mapping of PCI devices, ISA
Option ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect
them.

• The BIOS returns chip set-defined address holes that are not being used by devices as reserved.

• Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are returned
as reserved.

• All occurrences of the system BIOS are mapped as reserved, including the areas below 1 MB, at
16 MB (if present), and at end of the 4-GB address space.

• Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF
physical addresses are not described by this function. The range from E0000 to EFFFF is
specific to the baseboard and is reported as it applies to that baseboard.

• All of lower memory is reported as normal memory. The OS must handle standard RAM
locations that are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS
data area (40:0).

15.3 UEFI GetMemoryMap() Boot Services Function
EFI enabled systems use the UEFI GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM.

The GetMemoryMap interface is only available at boot services time. It is not available as a run-time
service after OSPM is loaded. The OS or its loader initiates the transition from boot services to run-
time services by calling ExitBootServices(). After the call to ExitBootServices() all system memory
map information must be derived from objects in the ACPI Namespace.

The GetMemoryMap() interface returns an array of UEFI memory descriptors. These memory
descriptors define a system memory map of all the installed RAM, and of physical memory ranges
reserved by the firmware. Each descriptor contains a type field that dictates how the physical address
range is to be treated by the operating system. The table below describes the memory types returned
by the UEFI GetMemoryMap() interface along with a mapping from UEFI memory type to ACPI
address range types. See the UEFI Specification for more information on UEFI memory types.

Table 15-275 UEFI Memory Types and mapping to ACPI address range types

4-31 Reserved Reserved for future use.

Type Mnemonic Description ACPI Address Range
Type

0 EfiReservedMemoryType Not used. AddressRangeReserved

Bit Mnemonic Description
608 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
15.4 UEFI Assumptions and Limitations
• The firmware returns address ranges describing the current system memory configuration.

1 EfiLoaderCode The Loader and/or OS may use this
memory as they see fit.
Note: the OS loader that called
ExitBootServices() is executing out of
one or more EfiLoaderCode sections.

AddressRangeMemory

2 EfiLoaderData The Loader and/or OS may use this
memory as they see fit.
Note: the OS loader that called
ExitBootServices() is utilizing out of one
or more EfiLoaderData sections.

AddressRangeMemory

3 EfiBootServicesCode Memory available for general use. AddressRangeMemory

4 EfiBootServicesData Memory available for general use. AddressRangeMemory

5 EfiRuntimeServiceCode The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeReserved

6 EfiRuntimeServicesData The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeReserved

7 EfiConventionalMemory Memory available for general use. AddressRangeMemory

8 EfiUnusableMemory Memory that should not be used by the
OS. For example, memory that failed
UEFI memory test.

AddressRangeReserved

9 EfiACPIReclainMemory The memory is to be preserved by the
loader and OS until ACPI in enabled.
Once ACPI is enabled, the memory in
this range is available for general use.

AddressRangeACPI

10 EfiACPIMemoryNVS The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeNVS

11 EfiMemoryMappedIO The OS does not use this memory. All
system memory-mapped I/O port space
information should come from ACPI
tables.

AddressRangeReserved

12 EfiMemoryMappedIOPort
Space

The OS does not use this memory. All
system memory-mapped I/O port space
information should come from ACPI
tables.

AddressRangeReserved

13 EfiPalCode The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeReserved

Type Mnemonic Description ACPI Address Range
Type
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 609

System Address Map Interfaces
• The firmware does not return a range description for the memory mapping of PCI devices, ISA
Option ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect
them.

• The firmware returns chip set-defined address holes that are not being used by devices as
reserved.

• Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are returned
as reserved.

• All occurrences of the system firmware are mapped as reserved, including the areas below 1
MB, at 16 MB (if present), and at end of the 4-GB address space. This can include PAL code on
Itanium™ Processor Family (IPF)- based platforms.

• Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF
physical addresses are not described by this function. The range from E0000 to EFFFF is
specific to the baseboard and is reported as it applies to that baseboard.

• All of lower memory is reported as normal memory. The OS must handle standard RAM
locations that are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS
data area (40:0).

• EFI contains descriptors for memory mapped I/O and memory mapped I/O port space to allow
for virtual mode calls to UEFI run-time functions. The OS must never use these regions.

15.5 Example Address Map
This sample address map (for an Intel processor-based system) describes a machine that has 128 MB
of RAM, 640 KB of base memory and 127 MB of extended memory. The base memory has 639 KB
available for the user and 1 KB for an extended BIOS data area. A 4-MB Linear Frame Buffer (LFB)
is based at 12 MB. The memory hole created by the chip set is from 8 MB to 16 MB.
Memory-mapped APIC devices are in the system. The I/O Unit is at FEC00000 and the Local Unit is
at FEE00000. The system BIOS is remapped to 1 GB–64 KB.

The 639-KB endpoint of the first memory range is also the base memory size reported in the BIOS
data segment at 40:13. The following table shows the memory map of a typical system.

Table 15-276 Sample Memory Map

Base (Hex) Length Type Description

0000 0000 639 KB AddressRangeMemory Available Base memory. Typically the same value as
is returned using the INT 12 function.

0009 FC00 1 KB AddressRangeReserved Memory reserved for use by the BIOS(s). This area
typically includes the Extended BIOS data area.

000F 0000 64 KB AddressRangeReserved System BIOS

0010 0000 7 MB AddressRangeMemory Extended memory, which is not limited to the 64-MB
address range.

0080 0000 4 MB AddressRangeReserved Chip set memory hole required to support the LFB
mapping at 12 MB.

0100 0000 120 MB AddressRangeMemory Baseboard RAM relocated above a chip set memory
hole.
610 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
15.6 Example: Operating System Usage
The following code segment illustrates the algorithm to be used when calling the Query System
Address Map function. It is an implementation example and uses non-standard mechanisms.

E820Present = FALSE;
 Reg.ebx = 0;
 do {
 Reg.eax = 0xE820;
 Reg.es = SEGMENT (&Descriptor);
 Reg.di = OFFSET (&Descriptor);
 Reg.ecx = sizeof (Descriptor);
 Reg.edx = 'SMAP';

 _int(15, regs);

 if ((Regs.eflags & EFLAG_CARRY) || Regs.eax != 'SMAP') {
 break;
 }

 if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {
 // bug in bios - all returned descriptors must be
 // at least 20 bytes long, and cannot be larger then
 // the input buffer.

 break;
 }

 E820Present = TRUE;
 .
 .
 .
 Add address range Descriptor.BaseAddress through
 Descriptor.BaseAddress + Descriptor.Length
 as type Descriptor.Type
 .
 .
 .

 } while (Regs.ebx != 0);

 if (!E820Present) {
 .
 .
 .
 call INT-15 88 and/or INT-15 E801 to obtain old style
 memory information
 .
 .

FEC0 0000 4 KB AddressRangeReserved I/O APIC memory mapped I/O at FEC00000.

FEE0 0000 4 KB AddressRangeReserved Local APIC memory mapped I/O at FEE00000.

FFFF 0000 64 KB AddressRangeReserved Remapped System BIOS at end of address space.

Base (Hex) Length Type Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 611

System Address Map Interfaces
 .
 }

.

612 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
16
Waking and Sleeping

ACPI defines a mechanism to transition the system between the working state (G0) and a sleeping
state (G1) or the soft-off (G2) state. During transitions between the working and sleeping states, the
context of the user’s operating environment is maintained. ACPI defines the quality of the G1
sleeping state by defining the system attributes of four types of ACPI sleeping states (S1, S2, S3, and
S4). Each sleeping state is defined to allow implementations that can tradeoff cost, power, and wake
latencies. Additionally, ACPI defines the sleeping states such that an ACPI platform can support
multiple sleeping states, allowing the platform to transition into a particular sleeping state for a
predefined period of time and then transition to a lower power/higher wake latency sleeping state

(transitioning through the G0 state) 1.

ACPI defines a programming model that provides a mechanism for OSPM to initiate the entry into a

sleeping or soft-off state (S1-S5); this consists of a 3-bit field SLP_TYPx2 that indicates the type of
sleep state to enter, and a single control bit SLP_EN to start the sleeping process. On HW-reduced
ACPI systems, the register described by the SLEEP_CONTROL_REG field in the FADT is used
instead of the fixed SLP_TYPx and SLP_EN register bit fields.

Note: Systems containing processors without a hardware mechanism to place the processor in a low-
power state may additionally require the execution of appropriate native instructions to place the
processor in a low-power state after OSPM sets the SLP_EN bit. The hardware may implement a
number of low-power sleeping states and then associate these states with the defined ACPI
sleeping states (through the SLP_TYPx fields). The ACPI system firmware creates a sleeping
object associated with each supported sleeping state (unsupported sleeping states are identified
by the lack of the sleeping object). Each sleeping object contains two constant 3-bit values that
OSPM will program into the SLP_TYPa and SLP_TYPb fields (in fixed register space), or, on HW-
reduced ACPI platforms, a single 3-bit value that OSPM will write to the register specified by the
FADT's SLEEP_CONTROL_REG field.

On systems that are not HW-reduced ACPI platforms, an alternate mechanism for entering and
exiting the S4 state is defined. This mechanism passes control to the BIOS to save and restore
platform context. Context ownership is similar in definition to the S3 state, but hardware saves and
restores the context of memory to non-volatile storage (such as a disk drive), and OSPM treats this
as an S4 state with implied latency and power constraints. This alternate mechanism of entering the
S4 state is referred to as the S4BIOS transition.

1. OSPM uses the RTC wakeup feature or the Time and Alarm Namespace device to program in the time tran-
sition delay. Prior to sleeping, OSPM will program the alarm to the closest (in time) wakeup event: either a transition
to a lower power sleeping state, or a calendar event (to run some application).

2. Notice that there can be two fixed PM1x_CNT registers, each pointing to a different system I/O space
region. Normally a register grouping only allows a bit or bit field to reside in a single register group instance (a or b);
however, each platform can have two instances of the SLP_TYP (one for each grouping register: a and b). The _Sx
control method gives a package with two values: the first is the SLP_TYPa value and the second is the SLP_TYPb
value.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 613

Waking and Sleeping
Prior to entering a sleeping state (S1-S4), OSPM will execute OEM-specific AML/ASL code
contained in the _PTS (Prepare To Sleep) control method. One use of the _PTS control method is
that it can indicate to the embedded controller what sleeping state the system will enter. The
embedded controller can then respond by executing the proper power-plane sequencing upon sleep
state entry.

Immediately prior to entering a system sleeping state, OSPM will execute the _GTS (Going To
Sleep) control method. _GTS allows ACPI system firmware to perform any necessary system
specific functions prior to entering a system sleeping state.

Upon waking, OSPM will execute the _BFS (Back From Sleep) control method. This allows ACPI
system firmware to perform any necessary system specific functions prior to returning control to
OSPM. The _WAK (Wake) control method is then executed. This control method again contains
OEM-specific AML/ASL code. One use of the _WAK control method requests OSPM to check the
platform for any devices that might have been added or removed from the system while the system
was asleep. For example, a PC Card controller might have had a PC Card added or removed, and
because the power to this device was off in the sleeping state, the status change event was not
generated.

This section discusses the system initialization sequence of an ACPI-enabled platform. This includes
the boot sequence, different wake scenarios, and an example to illustrate how to use the system
address map reporting interfaces. This sequence is part of the ACPI event programming model.

Note: HW-reduced ACPI platforms do not implement the Legacy Mode nor the S4BIOS state described
below.

For detailed information on the power management control methods described above, see Section 7,
“Power and Performance Management.”
614 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
16.1 Sleeping States
The illustration below shows the transitions between the working state, the sleeping states, and the
Soft Off state.

SLP_TYPx=S1
and

SLP_EN

S1
Sleeping

S2
Sleeping

S3
Sleeping

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

S4
Sleeping

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=S2
and

SLP_EN

SLP_TYPx=S3
and

SLP_EN

SLP_TYPx=S4
and

SLP_EN

G0 (S0) -
Working

G1

S4BIOS_REQ
to

SMI_CMD

OEM S4 BIOS
Handler

SLP_TYPx=S4
and

SLP_EN

Figure 16-70 Example Sleeping States

ACPI defines distinct differences between the G0 and G1 system states.

• In the G0 state, work is being performed by the OS/application software and the hardware. The
CPU or any particular hardware device could be in any one of the defined power states (C0-C3
or D0-D3); however, some work will be taking place in the system.

• In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state, OSPM
will place devices in a device power state compatible with the system sleeping state to be
entered; if a device is enabled to wake the system, then OSPM will place these devices into the
lowest Dx state from which the device supports wake. This is defined in the power resource
description of that device object. This definition of the G1 state implies:

• The CPUs execute no instructions in the G1 state.

• Hardware devices are not operating (except possibly to generate a wake event).

• If not HW-reduced, ACPI registers are affected as follows:

• Wake event bits are enabled in the corresponding fixed or general-purpose registers according to
enabled wake options.

• PM1 control register is programmed for the desired sleeping state.

• WAK_STS is set by hardware in the sleeping state.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 615

Waking and Sleeping
All sleeping states have these specifications. ACPI defines additional attributes that allow an ACPI
platform to have up to four different sleeping states, each of which has different attributes. The
attributes were chosen to allow differentiation of sleeping states that vary in power, wake latency,
and implementation cost tradeoffs.

Running processors at reduced levels of performance is not an ACPI sleeping state (G1); this is a
working (G0) state–defined event.

The CPU cannot execute any instructions when in the sleeping state; OSPM relies on this fact. A
platform designer might be tempted to support a sleeping system by reducing the clock frequency of
the system, which allows the platform to maintain a low-power state while at the same time
maintaining communication sessions that require constant interaction (as with some network
environments). This is definitely a G0 activity where an OS policy decision has been made to turn
off the user interface (screen) and run the processor in a reduced performance mode. This type of
reduced performance state as a sleeping state is not defined by the ACPI specification; ACPI
assumes no code execution during sleeping states.

ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Notice that S4 and S5 are very
similar from a hardware standpoint.) ACPI-compatible platforms can support multiple sleeping
states. ACPI specifies that a 3-bit binary number be associated with each sleeping state (these
numbers are given objects within ACPI’s root namespace: _S0, _S1, _S2, _S3, _S4 and _S5).
When entering a system sleeping state, OSPM will do the following:

1. Pick the deepest sleeping state supported by the platform and enabled waking devices.

2. Execute the _PTS control method (which passes the type of intended sleep state to OEM AML
code).

3. If OS policy decides to enter the S4 state and chooses to use the S4BIOS mechanism and
S4BIOS is supported by the platform, OSPM will pass control to the BIOS software by writing
the S4BIOS_REQ value to the SMI_CMD port.

4. If not using the S4BIOS mechanism, OSPM gets the SLP_TYPx value from the associated
sleeping object (_S1, _S2, _S3, _S4 or _S5).

5. Program the SLP_TYPx fields with the values contained in the selected sleeping object.

6. Execute the _GTS control method, passing an argument that indicates the sleeping state to be
entered (1, 2, 3, or 4 representing S1, S2, S3, and S4).

7. If entering S1, S2, or S3, flush the processor caches.

8. If not entering S4BIOS, set the SLP_EN bit to start the sleeping sequence. (This actually occurs
on the same write operation that programs the SLP_TYPx field in the PM1_CNT register.) If
entering S4BIOS, write the S4BIOS_REQ value into the SMI_CMD port.

9. If HW-reduced, program the register indicated by the SLEEP_CONTROL_REG FADT field
with the HW-reduced ACPI Sleep Type value (retrieved from the sleep state object in step 4
above) and with the SLP_EN bit set to one.

10. On systems containing processors without a hardware mechanism to place the processor in a
low-power state, execute appropriate native instructions to place the processor in a low-power
state.

The _PTS control method provides the BIOS a mechanism for performing some housekeeping, such
as writing the sleep type value to the embedded controller, before entering the system sleeping state.
Control method execution occurs “just prior” to entering the sleeping state and is not an event
synchronized with the write to the PM1_CNT register. Execution can take place several seconds
616 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
prior to the system actually entering the sleeping state. As such, no hardware power-plane
sequencing takes place by execution of the _PTS control method.

Upon waking, the _BFS control method is executed. OSPM then executes the _WAK control
method. This control method executes OEM-specific ASL/AML code that can search for any
devices that have been added or removed during the sleeping state.

The following sections describe the sleeping state attributes.

16.1.1 S1 Sleeping State
The S1 state is defined as a low wake-latency sleeping state. In this state, all system context is
preserved with the exception of CPU caches. Before entering S1, OSPM will flush the system
caches. If the platform supports the WBINVD instruction (as indicated by the WBINVD and
WBINVD_FLUSH flags in the FADT), OSPM will execute the WBINVD instruction. The hardware
is responsible for maintaining all other system context, which includes the context of the CPU,
memory, and chipset.

Examples of S1 sleeping state implementation alternatives follow.

16.1.1.1 Example 1: S1 Sleeping State Implementation
This example references an IA processor that supports the stop grant state through the assertion of
the STPCLK# signal. When SLP_TYPx is programmed to the S1 value (the OEM chooses a value,
which is then placed in the _S1 object) and the SLP_ENx bit is subsequently set, or when the HW-
reduced ACPI Sleep Type value for S1 and the SLP_EN bit are written to the Sleep Control
Register, the hardware can implement an S1 state by asserting the STPCLK# signal to the processor,
causing it to enter the stop grant state.

In this case, the system clocks (PCI and CPU) are still running. Any enabled wake event causes the
hardware to de-assert the STPCLK# signal to the processor whereby OSPM must first invalidate the
CPU caches and then transition back into the working state.

16.1.1.2 Example 2: S1 Sleeping State Implementation
When SLP_TYPx is programmed to the S1 value and the SLP_ENx bit is subsequently set, or the
HW-reduced ACPI Sleep Type value for S1 and the SLP_EN bit are written to the Sleep Control
Register, the hardware will implement an S1 sleeping state transition by doing the following:

1. Placing the processor into the stop grant state.

2. Stopping the processor’s input clock, placing the processor into the stop clock state.

3. Placing system memory into a self-refresh or suspend-refresh state. Refresh is maintained by the
memory itself or through some other reference clock that is not stopped during the sleeping
state.

4. Stopping all system clocks (asserts the standby signal to the system PLL chip). Normally the
RTC will continue running.

In this case, all clocks in the system have been stopped (except for the RTC). Hardware must reverse
the process (restarting system clocks) upon any enabled wake event whereby OSPM must first
invalidate the CPU caches and then transition back into the working state.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 617

Waking and Sleeping
16.1.2 S2 Sleeping State
The S2 state is defined as a low wake latency sleep state. This state is similar to the S1 sleeping state
where any context except for system memory may be lost. Additionally, control starts from the
processor’s reset vector after the wake event. Before entering S2 the SLP_EN bit, OSPM will flush
the system caches. If the platform supports the WBINVD instruction (as indicated by the WBINVD
and WBINVD_FLUSH flags in the FADT), OSPM will execute the WBINVD instruction. The
hardware is responsible for maintaining chip set and memory context. An example of an S2 sleeping
state implementation follows.

16.1.2.1 Example: S2 Sleeping State Implementation
When the SLP_TYPx register(s) are programmed to the S2 value (found in the _S2 object) and the
SLP_EN bit is set, or the HW-reduced ACPI Sleep Type value for S2 and the SLP_EN bit are
written to the Sleep Control Register, the hardware will implement an S2 sleeping state transition by
doing the following:

1. Stopping system clocks (the only running clock is the RTC).

2. Placing system memory into a self-refresh or suspend-refresh state.

3. Powering off the CPU and cache subsystem.

In this case, the CPU is reset upon detection of the wake event; however, core logic and memory
maintain their context. Execution control starts from the CPU’s boot vector. The BIOS is required
to:

• Program the initial boot configuration of the CPU (such as the CPU’s MSR and MTRR
registers).

• Initialize the cache controller to its initial boot size and configuration.

• Enable the memory controller to accept memory accesses.

• Jump to the waking vector.

16.1.3 S3 Sleeping State
The S3 state is defined as a low wake-latency sleep state. From the software viewpoint, this state is
functionally the same as the S2 state. The operational difference is that some Power Resources that
may have been left ON in the S2 state may not be available to the S3 state. As such, some devices
may be in a lower power state when the system is in S3 state than when the system is in the S2 state.
Similarly, some device wake events can function in S2 but not S3. An example of an S3 sleeping
state implementation follows.

16.1.3.1 Example: S3 Sleeping State Implementation
When the SLP_TYPx register(s) are programmed to the S3 value (found in the _S3 object) and the
SLP_EN bit is set, or the HW-reduced ACPI Sleep Type value for S3 and the SLP_EN bit are
written to the Sleep Control Register, the hardware will implement an S3 sleeping state transition by
doing the following:

1. Placing the memory into a low-power auto-refresh or self-refresh state.

2. Devices that are maintaining memory isolating themselves from other devices in the system.
618 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
3. Removing power from the system. At this point, only devices supporting memory are powered
(possibly partially powered). The only clock running in the system is the RTC clock.

In this case, the wake event repowers the system and resets most devices (depending on the
implementation).

Execution control starts from the CPU’s boot vector. The BIOS is required to:

4. Program the initial boot configuration of the CPU (such as the MSR and MTRR registers).

5. Initialize the cache controller to its initial boot size and configuration.

6. Enable the memory controller to accept memory accesses.

7. Jump to the waking vector.

Notice that if the configuration of cache memory controller is lost while the system is sleeping, the
BIOS is required to reconfigure it to either the pre-sleeping state or the initial boot state
configuration. The BIOS can store the configuration of the cache memory controller into the
reserved memory space, where it can then retrieve the values after waking. OSPM will call the _PTS
method once per session (prior to sleeping).

The BIOS is also responsible for restoring the memory controller’s configuration. If this
configuration data is destroyed during the S3 sleeping state, then the BIOS needs to store the pre-
sleeping state or initial boot state configuration in a non-volatile memory area (as with RTC CMOS
RAM) to enable it to restore the values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will discover any devices
that have been inserted or removed, and configure devices as they are turned on.

16.1.4 S4 Sleeping State
The S4 sleeping state is the lowest-power, longest wake-latency sleeping state supported by ACPI.
In order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Because this is a sleeping state, the platform context is maintained. Depending on how the
transition into the S4 sleeping state occurs, the responsibility for maintaining system context
changes. S4 supports two entry mechanisms: OS initiated and BIOS-initiated. The OSPM-initiated
mechanism is similar to the entry into the S1-S3 sleeping states; OSPM driver writes the SLP_TYPx
fields and sets the SLP_EN bit, or writes the HW-reduced ACPI Sleep Type value for S3 and the
SLP_EN bit to the Sleep Control Register. The BIOS-initiated mechanism occurs by OSPM
transferring control to the BIOS by writing the S4BIOS_REQ value to the SMI_CMD port, and is
not supported on HW-reduced ACPI platforms.

In OSPM-initiated S4 sleeping state, OSPM is responsible for saving all system context. Before
entering the S4 state, OSPM will save context of all memory with the exception of memory reported
as type AddressRangeReserved (see Section 15, “System Address Map Interfaces,” for more
information). Upon waking, OSPM will then restore the system context. When OSPM re-
enumerates buses coming out of the S4 sleeping state, it will discover any devices that have come
and gone, and configure devices as they are turned on.

In the BIOS-initiated S4 sleeping state, OSPM is responsible for the same system context as
described in the S3 sleeping state (BIOS restores the memory and some chip set context). The
S4BIOS transition transfers control to the BIOS, allowing it to save context to non-volatile memory
(such as a disk partition).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 619

Waking and Sleeping
16.1.4.1 Operating System-Initiated S4 Transition
If OSPM supports OSPM-initiated S4 transition, it will not generate a BIOS-initiated S4 transition.
Platforms that support the BIOS-initiated S4 transition also support OSPM-initiated S4 transition.

OSPM-initiated S4 transition is initiated by OSPM by saving system context, writing the appropriate
values to the SLP_TYPx register(s), and setting the SLP_EN bit, or writes the HW-reduced ACPI
Sleep Type value for S4 and the SLP_EN bit to the Sleep Control Register. Upon exiting the S4
sleeping state, the BIOS restores the chipset to its POST condition, updates the hardware signature
(described later in this section), and passes control to OSPM through a normal boot process.

When the BIOS builds the ACPI tables, it generates a hardware signature for the system. If the
hardware configuration has changed during an OS-initiated S4 transition, the BIOS updates the
hardware signature in the FACS table. A change in hardware configuration is defined to be any
change in the platform hardware that would cause the platform to fail when trying to restore the S4
context; this hardware is normally limited to boot devices. For example, changing the graphics
adapter or hard disk controller while in the S4 state should cause the hardware signature to change.
On the other hand, removing or adding a PC Card device from a PC Card slot should not cause the
hardware signature to change.

16.1.4.2 The S4BIOS Transition
This transition is not supported on HW-reduced ACPI platforms. On other systems, the BIOS-
initiated S4 transition begins with OSPM writing the S4BIOS_REQ value into the SMI_CMD port
(as specified in the FADT). Once gaining control, the BIOS then saves the appropriate memory and
chip set context, and then places the platform into the S4 state (power off to all devices).

In the FACS memory table, there is the S4BIOS_F bit that indicates hardware support for the BIOS-
initiated S4 transition. If the hardware platform supports the S4BIOS state, it sets the S4BIOS_F flag
within the FACS memory structure prior to booting the OS. If the S4BIOS_F flag in the FACS table
is set, this indicates that OSPM can request the BIOS to transition the platform into the S4BIOS
sleeping state by writing the S4BIOS_REQ value (found in the FADT) to the SMI_CMD port
(identified by the SMI_CMD value in the FADT).

Upon waking the BIOS, software restores memory context and jumps to the waking vector (similar
to wake from an S3 state). Coming out of the S4BIOS state, the BIOS must only configure boot
devices (so it can read the disk partition where it saved system context). When OSPM re-enumerates
buses coming out of the S4BIOS state, it will discover any devices that have come and gone, and
configure devices as they are turned on.

16.1.5 S5 Soft Off State
OSPM places the platform in the S5 soft off state to achieve a logical off. Notice that the S5 state is
not a sleeping state (it is a G2 state) and no context is saved by OSPM or hardware but power may
still be applied to parts of the platform in this state and as such, it is not safe to disassemble. Also
notice that from a hardware perspective, the S4 and S5 states are nearly identical. When initiated, the
hardware will sequence the system to a state similar to the off state. The hardware has no
responsibility for maintaining any system context (memory or I/O); however, it does allow a
transition to the S0 state due to a power button press or a Remote Start. Upon start-up, the BIOS
performs a normal power-on reset, loads the boot sector, and executes (but not the waking vector, as
all ACPI table context is lost when entering the S5 soft off state).
620 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The _TTS control method allows the BIOS a mechanism for performing some housekeeping, such
as storing the targeted sleep state in a “global” variable that is accessible by other control methods
(such as _PS3 and _DSW).

16.1.6 Transitioning from the Working to the Sleeping State
On a transition of the system from the working to the sleeping state, the following occurs:

1. OSPM decides (through a policy scheme) to place the system into the sleeping state.

2. OSPM invokes the _TTS method to indicate the deepest possible system state the system will
transition to (1, 2, 3, or 4 representing S1, S2, S3, and S4).

3. OSPM examines all devices enabled to wake the system and determines the deepest possible
sleeping state the system can enter to support the enabled wake functions. The _PRW named
object under each device is examined, as well as the power resource object it points to.

4. OSPM places all device drivers into their respective Dx state. If the device is enabled for wake,
it enters the Dx state associated with the wake capability. If the device is not enabled to wake the
system, it enters the D3 state.

5. OSPM executes the _PTS control method, passing an argument that indicates the desired
sleeping state (1, 2, 3, or 4 representing S1, S2, S3, and S4).

6. OSPM saves any other processor’s context (other than the local processor) to memory.

7. OSPM writes the waking vector into the FACS table in memory.

8. OSPM executes the _GTS control method, passing an argument that indicates the sleeping state
to be entered (1, 2, 3, or 4 representing S1, S2, S3, and S4).

9. If not a HW-reduced ACPI platform, OSPM clears the WAK_STS in the PM1a_STS and
PM1b_STS registers. On HW-reduced ACPI platforms, OSPM clears the WAK_STS bit in the
Sleep Status Register.

10. OSPM saves the local processor’s context to memory.

11. OSPM flushes caches (only if entering S1, S2 or S3).

12. OSPM sets GPE enable registers or enables wake-capable interrupts to ensure that all
appropriate wake signals are armed

13. If entering an S4 state using the S4BIOS mechanism, OSPM writes the S4BIOS_REQ value
(from the FADT) to the SMI_CMD port. This passes control to the BIOS, which then transitions
the platform into the S4BIOS state.

14. If not entering an S4BIOS state, and not a HW-reduced ACPI platform, then OSPM writes
SLP_TYPa (from the associated sleeping object) with the SLP_ENa bit set to the PM1a_CNT
register.

15. OSPM writes SLP_TYPb with the SLP_EN bit set to the PM1b_CNT register, or writes the
HW-reduced ACPI Sleep Type value and the SLP_EN bit to the Sleep Control Register.

16. On systems containing processors without a hardware mechanism to place the processor in a
low-power state, OSPM executes appropriate native instructions to place the processor in a low-
power state.

17. OSPM loops on the WAK_STS bit, either in both the PM1a_CNT and PM1b_CNT registers, or
in the SLEEP_STATUS_REG, in the case of HW-reduced ACPI platforms

18. The system enters the specified sleeping state.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 621

Waking and Sleeping
Note: This is accomplished after step 14 or 15 above.

16.1.7 Transitioning from the Working to the Soft Off State
On a transition of the system from the working to the soft off state, the following occurs:

1. OSPM executes the _PTS control method, passing the argument 5.

2. OSPM prepares its components to shut down (flushing disk caches).

3. OSPM executes the _GTS control method, passing the argument 5.

4. If not a HW-reduced ACPI platform, OSPM writes SLP_TYPa (from the _S5 object) with the
SLP_ENa bit set to the PM1a_CNT register.

5. OSPM writes SLP_TYPb (from the _S5 object) with the SLP_ENb bit set to the PM1b_CNT
register, or writes the HW-reduced ACPI Sleep Type value for S5 and the SLP_EN bit to the
Sleep Control Register.

6. The system enters the Soft Off state.

16.2 Flushing Caches
Before entering the S1, S2 or S3 sleeping states, OSPM is responsible for flushing the system
caches. ACPI provides a number of mechanisms to flush system caches. These include:

• Using a native instruction (for example, the IA-32 architecture WBINVD instruction) to flush
and invalidate platform caches.
WBINVD_FLUSH flag set (1) in the FADT indicates the system provides this support level.

• Using the IA-32 instruction WBINVD to flush but not invalidate the platform caches.
WBINVD flag set (1) in the FADT indicates the system provides this support level.

The manual flush mechanism has two caveats:

• Largest cache is 1 MB in size (FLUSH_SIZE is a maximum value of 2 MB).

• No victim caches (for which the manual flush algorithm is unreliable).

Processors with built-in victim caches will not support the manual flush mechanism and are
therefore required to support the WBINVD mechanism to use the S2 or S3 state.

The manual cache-flushing mechanism relies on the two FADT fields:

• FLUSH_SIZE. Indicates twice the size of the largest cache in bytes.

• FLUSH_STRIDE. Indicates the smallest line size of the caches in bytes.

The cache flush size value is typically twice the size of the largest cache size, and the cache flush
stride value is typically the size of the smallest cache line size in the platform. OSPM will flush the
system caches by reading a contiguous block of memory indicated by the cache flush size.

16.3 Initialization
This section covers the initialization sequences for an ACPI platform. After a reset or wake from an
S2, S3, or S4 sleeping state (as defined by the ACPI sleeping state definitions), the CPU will start
execution from its boot vector. At this point, the initialization software has many options, depending
622 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
on what the hardware platform supports. This section describes at a high level what should be done
for these different options. Figure 16-71 illustrates the flow of the boot-up software.

Figure 16-71 BIOS Initialization

The processor will start executing at its power-on reset vector when waking from an S2, S3, or S4
sleeping state, during a power-on sequence, or as a result of a hard or soft reset.

Boot Vector

SLP_TYP=S2
?

SLP_TYP=S3
?

Jump To
 Waking Vector

No

No

Yes

Yes

Initialize Memory
Image
 * System
 * Reserved
 * ACPI NVS
 * ACPI Reclaim
 * ACPI Tables
 * MPS Tables
 * ...

Boot OS Loader

POST

Initialize CPU
Init Memory Controller
Enable Memory
Configure Caches
Enable Caches
Initialize Chipset

Initialize CPU
Enable Memory
Configure Caches

SLP_TYP=
S4BIOS

?

No

Restore memory
Image

Yes
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 623

Waking and Sleeping
When executing from the power-on reset vector as a result of a power-on sequence, a hard or soft
reset, or waking from an S4 sleep state, the platform firmware performs complete hardware
initialization; placing the system in a boot configuration. The firmware then passes control to the
operating system boot loader.

When executing from the power-on reset vector as a result of waking from an S2 or S3 sleep state,
the platform firmware performs only the hardware initialization required to restore the system to
either the state the platform was in prior to the initial operating system boot, or to the pre-sleep
configuration state. In multiprocessor systems, non-boot processors should be placed in the same
state as prior to the initial operating system boot. The platform firmware then passes control back to
OSPM system by jumping to either the Firmware_Waking_Vector or the
X_Firmware_Waking_Vector in the FACS (see Table 5-37 for more information). The contents of
operating system memory contents may not be changed during the S2 or S3 sleep state.

First, the BIOS determines whether this is a wake from S2 or S3 by examining the SLP_TYP
register value, which is preserved between sleeping sessions. If this is an S2 or S3 wake, then the
BIOS restores minimum context of the system before jumping to the waking vector. This includes:

• CPU configuration. BIOS restores the pre-sleep configuration or initial boot configuration of
each CPU (MSR, MTRR, BIOS update, SMBase, and so on). Interrupts must be disabled (for
IA-32 processors, disabled by CLI instruction).

• Memory controller configuration. If the configuration is lost during the sleeping state, the
BIOS initializes the memory controller to its pre-sleep configuration or initial boot
configuration.

• Cache memory configuration. If the configuration is lost during the sleeping state, the BIOS
initializes the cache controller to its pre-sleep configuration or initial boot configuration.

• Functional device configuration. The BIOS doesn’t need to configure/restore context of
functional devices such as a network interface (even if it is physically included in chipset) or
interrupt controller. OSPM is responsible for restoring all context of these devices. The only
requirement for the hardware and BIOS is to ensure that interrupts are not asserted by devices
when the control is passed to OS.

• ACPI registers. SCI_EN bit must be set on non-HW-reduced ACPI platforms, and all event
status/enable bits (PM1x_STS, PM1x_EN, GPEx_STS and GPEx_EN) must not be changed by
BIOS.

Note: The BIOS may reconfigure the CPU, memory controller and cache memory controller to either the
pre-sleeping configuration or the initial boot configuration. OSPM must accommodate both
configurations.

When waking from an S4BIOS sleeping state, the BIOS initializes a minimum number of devices
such as CPU, memory, cache, chipset and boot devices. After initializing these devices, the BIOS
restores memory context from non-volatile memory such as hard disk, and jumps to waking vector.

As mentioned previously, waking from an S4 state is treated the same as a cold boot: the BIOS runs
POST and then initializes memory to contain the ACPI system description tables. After it has
finished this, it can call OSPM loader, and control is passed to OSPM.

When waking from S4 (either S4OS or S4BIOS), the BIOS may optionally set SCI_EN bit before
passing control to OSPM. In this case, interrupts must be disabled (for IA-32 processors, disabled
624 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
CLI instruction) until the control is passed to OSPM and the chipset must be configured in ACPI
mode.

16.3.1 Placing the System in ACPI Mode
When a platform initializes from a cold boot (mechanical off or from an S4 or S5 state), the
hardware platform may be configured in a legacy configuration, if not a HW-reduced ACPI
platform. From these states, the BIOS software initializes the computer as it would for a legacy
operating system. When control is passed to the operating system, OSPM will check the SCI_EN bit
and if it is not set will then enable ACPI mode by first finding the ACPI tables, and then by
generating a write of the ACPI_ENABLE value to the SMI_CMD port (as described in the FADT).
The hardware platform will set the SCI_EN bit to indicate to OSPM that the hardware platform is
now configured for ACPI.

Note: Before SCI is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur immediately
after ACPI is on. The SCI interrupt can only be signaled after OSPM has enabled one of the GPE/
PM1 enable bits.

When the platform is waking from an S1, S2 or S3 state, and from S4 and S5 on HW-reduced ACPI
platforms, OSPM assumes the hardware is already in the ACPI mode and will not issue an
ACPI_ENABLE command to the SMI_CMD port

16.3.2 BIOS Initialization of Memory
During a power-on reset, an exit from an S4 sleeping state, or an exit from an S5 soft-off state, the
BIOS needs to initialize memory. This section explains how the BIOS should configure memory for
use by a number of features including:

• ACPI tables.

• BIOS memory that wants to be saved across S4 sleeping sessions and should be cached.

• BIOS memory that does not require saving and should be cached.

For example, the configuration of the platform’s cache controller requires an area of memory to
store the configuration data. During the wake sequence, the BIOS will re-enable the memory
controller and can then use its configuration data to reconfigure the cache controllers. To support
these three items, IA-PC-based systems contain system address map reporting interfaces that return
the following memory range types:

• ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables. This
memory can be any place above 8 MB and contains the ACPI tables. When OSPM is finished
using the ACPI tables, it is free to reclaim this memory for system software use (application
space).

• ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being
reserved by the BIOS for its use. OSPM is required to tag this memory as cacheable, and to save
and restore its image before entering an S4 state. Except as directed by control methods, OSPM
is not allowed to use this physical memory. OSPM will call the _PTS control method some time
before entering a sleeping state, to allow the platform’s AML code to update this memory image
before entering the sleeping state. After the system awakes from an S4 state, OSPM will restore
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 625

Waking and Sleeping
this memory area and call the _WAK control method to enable the BIOS to reclaim its memory
image.

Note: The memory information returned from the system address map reporting interfaces should be the
same before and after an S4 sleep.

When the system is first booting, OSPM will invoke E820 interfaces on IA-PC-based legacy
systems or the GetMemoryMap() interface on UEFI-enabled systems to obtain a system memory
map (see Section 15, “System Address Map Interfaces,” for more information). As an example, the
following memory map represents a typical IA-PC-based legacy platform’s physical memory map.

Figure 16-72 Example Physical Memory Map

The names and attributes of the different memory regions are listed below:

• 0–640 KB. Compatibility Memory. Application executable memory for an 8086 system.

• 640 KB–1 MB. Compatibility Holes. Holes within memory space that allow accesses to be
directed to the PC-compatible frame buffer (A0000h-BFFFFh), to adapter ROM space (C0000h-
DFFFFh), and to system BIOS space (E0000h-FFFFFh).

• 1 MB–8 MB. Contiguous RAM. An area of contiguous physical memory addresses. Operating
systems may require this memory to be contiguous in order for its loader to load the OS properly
on boot up. (No memory-mapped I/O devices should be mapped into this area.)

• 8 MB–Top of Memory1. This area contains memory to the “top of memory1” boundary. In this
area, memory-mapped I/O blocks are possible.

• Boot Base–4 GB. This area contains the bootstrap ROM.

The BIOS should decide where the different memory structures belong, and then configure the E820
handler to return the appropriate values.

Above 8 MB
RAM

Compatibility
Memory

0

640 KB

Compatibility
Holes

1 MB

Contiguous
RAM

8 MB

Top of Memory1

No Memory

Boot ROM
4 GB

Boot Base
626 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
For this example, the BIOS will report the system memory map by E820 as shown in Figure 15-4.
Notice that the memory range from 1 MB to top of memory is marked as system memory, and then a
small range is additionally marked as ACPI reclaim memory. A legacy OS that does not support the
E820 extensions will ignore the extended memory range calls and correctly mark that memory as
system memory.

Figure 16-73 Memory as Configured after Boot

Also, from the Top of Memory1 to the Top of Memory2, the BIOS has set aside some memory for
its own use and has marked as reserved both ACPI NVS Memory and Reserved Memory. A legacy
OS will throw out the ACPI NVS Memory and correctly mark this as reserved memory (thus
preventing this memory range from being allocated to any add-in device).

OSPM will call the _PTS control method prior to initiating a sleep (by programming the sleep type,
followed by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML
code interpreter or driver structure is questionable), if OSPM decides to shut the system off, it will
not issue a _PTS, but will immediately issue a SLP_TYP of "soft off" and then set the SLP_EN bit,
or directly write the HW-reduced ACPI Sleep Type value and the SLP_EN bit to the Sleep Control
Register. Hence, the hardware should not rely solely on the _PTS control method to sequence the
system to the "soft off" state. After waking from an S4 state, OSPM will restore the ACPI NVS
memory image and then issue the _WAK control method that informs BIOS that its memory image
is back.

16.3.3 OS Loading
At this point, the BIOS has passed control to OSPM, either by using OSPM boot loader (a result of
waking from an S4/S5 or boot condition) or OSPM waking vector (a result of waking from an S2 or
S3 state). For the Boot OS Loader path, OSPM will get the system address map via one of the

Boot ROM

No Memory

Compatibility
Memory

Compatibility
Holes

Contiguous
RAM

- ACPI NVS Memory (E820)

NVS Memory

Reserved

Above 8 Mbyte
RAM

ACPI Tables
ACPI Reclaim
Memory

ACPI NVS
Memory

Reserved
Memory

System Memory

System Memory

Reserved
Memory

Reserved
Memory

Available
Address space

Available
Address space

0

640 KByte

1 MByte

Top of Memory1

Top of Memory2

8 MBytes - ACPI Reclaim Memory (E820)

- Reserved Memory (E820)

- System Memory (E820)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 627

Waking and Sleeping
mechanisms describe in Section 15, “System Address Map Interfaces.” If OSPM is booting from an
S4 state, it will then check the NVS image file’s hardware signature with the hardware signature
within the FACS table (built by BIOS) to determine whether it has changed since entering the
sleeping state (indicating that the platforms fundamental hardware configuration has changed during
the current sleeping state). If the signature has changed, OSPM will not restore the system context
and can boot from scratch (from the S4 state). Next, for an S4 wake, OSPM will check the NVS file
to see whether it is valid. If valid, then OSPM will load the NVS image into system memory. Next, if
not a HW-reduced ACPI platform, OSPM will check the SCI_EN bit and if it is not set, will write
the ACPI_ENABLE value to the SMI_CMD register to switch into the system into ACPI mode and
will then reload the memory image from the NVS file.

Figure 16-74 OS Initialization

Boot OS Loader OS
Waking Vector

Get Memory Map
(E820)
 * ACPI NVS
 * ACPI Reclaim
 * Reserved
 * System
 * Reserved

Memory Copy

NVS File
?

Yes

Load OS Images

Execute _WAK

No

Continue

Sanity Check
Compare memory and

volume SSN

Yes

No

SCI_EN set?

Execute _BFS

Turn on ACPI

No

Yes
628 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
If an NVS image file did not exist, then OSPM loader will load OSPM from scratch. At this point, OSPM will gener-
ate a _WAK call that indicates to the BIOS that its ACPI NVS memory image has been successfully and completely
updated.

16.3.4 Exiting ACPI Mode
For machines that do not boot in ACPI mode, ACPI provides a mechanism that enables the OS to
disable ACPI. The following occurs:

1. OSPM unloads all ACPI drivers (including the ACPI driver).

2. OSPM disables all ACPI events.

3. OSPM finishes using all ACPI registers.

4. OSPM issues an I/O access to the port at the address contained in the SMI_CMD field (in the
FADT) with the value contained in the ACPI_DISABLE field (in the FADT).

5. BIOS then remaps all SCI events to legacy events and resets the SCI_EN bit.

6. Upon seeing the SCI_EN bit cleared, the ACPI OS enters the legacy OS mode.

When and if the legacy OS returns control to the ACPI OS, if the legacy OS has not maintained the
ACPI tables (in reserved memory and ACPI NVS memory), the ACPI OS will reboot the system to
allow the BIOS to re-initialize the tables.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 629

Waking and Sleeping
630 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
17
Non-Uniform Memory Access (NUMA)

Architecture Platforms

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of
hardware resources including processors, memory, and I/O buses, that comprise what is commonly
known as a “NUMA node”. Two or more NUMA nodes are linked to each other via a high-speed
interconnect. Processor accesses to memory or I/O resources within the local NUMA node are
generally faster than processor accesses to memory or I/O resources outside of the local NUMA
node, accessed via the node interconnect. ACPI defines interfaces that allow the platform to convey
NUMA node topology information to OSPM both statically at boot time and dynamically at run time
as resources are added or removed from the system.

17.1 NUMA Node
A conceptual model for a node in a NUMA configuration may contain one or more of the following
components:

• Processor

• Memory

• I/O Resources

• Networking, Storage

• Chipset

The components defined as part of the model are intended to represent all possible components of a
NUMA node. A specific node in an implementation of a NUMA platform may not provide all of
these components. At a minimum, each node must have a chipset with an interface to the
interconnect between nodes.

The defining characteristic of a NUMA system is a coherent global memory and / or I/O address
space that can be accessed by all of the processors. Hence, at least one node must have memory, at
least one node must have I/O resources and at least one node must have processors. Other than the
chipset, which must have components present on every node, each is implementation dependent. In
the ACPI namespace, NUMA nodes are described as module devices. See Section 9.11,”Module
Device”.

17.2 System Locality
A collection of components that are presented to OSPM as a Symmetrical Multi-Processing (SMP)
unit belong to the same System Locality, also known as a Proximity Domain. The granularity of a
System Locality is typically at the NUMA Node level although the granularity can also be at the sub-
NUMA node level or the processor, memory and host bridge level. A System Locality is reported to
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 631

Non-Uniform Memory Access (NUMA) Architecture Platforms
the OSPM using the _PXM method. If OSPM only needs to know a near/far distinction among the
System Localities, the _PXM method is sufficient.

OSPM makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance
between the proximity domains (in other words, proximity domain 1 is not assumed to be closer to
proximity domain 0 than proximity domain 6).

17.2.1 System Resource Affinity Table Definition
This optional System Resource Affinity Table (SRAT) provides the boot time description of the
processor and memory ranges belonging to a system locality. OSPM will consume the SRAT only at
boot time. OSPM should use _PXM for any devices that are hot-added into the system after boot up.

The SRAT describes the system locality that all processors and memory present in a system belong
to at system boot. This includes memory that can be hot-added (that is memory that can be added to
the system while it is running, without requiring a reboot). OSPM can use this information to
optimize the performance of NUMA architecture systems. For example, OSPM could utilize this
information to optimize allocation of memory resources and the scheduling of software threads.

17.3 System Locality Distance Information
Optionally, OSPM may further optimize a NUMA architecture system using information about the
relative memory latency distances among the System Localities. This may be useful if the distance
between multiple system localities is significantly different. In this case, a simple near/far distinction
may be insufficient. This information is contained in the optional System Locality Information Table
(SLIT) and is returned from the evaluation of the _SLI object.

The SLIT is a matrix that describes the relative distances between all System Localities. Support for
the _PXM object is required for SLIT. The System Locality as returned by the _PXM object is used
as the row and column indices of the matrix.

Note: (Implementation Note) The size of the SLIT table is determined by the largest _PXM value used
in the system. Hence, to minimize the size of the SLIT table, the _PXM values assigned by the
system firmware should be in the range 0, …, N-1, where N is the number of System Localities. If
_PXM values are not packed into this range, the SLIT will still work, but more memory will have to
be allocated to store the “Entries” portion of the SLIT for the matrix.

The static SLIT table provides the boot time description of the relative distances among all System
Localities. For hot-added devices and dynamic reconfiguration of the system localities, the _SLI
object must be used for runtime update.

The _SLI method is an optional object that provides the runtime update of the relative distances from
the System Locality i to all other System Localities in the system. Since _SLI method is providing
additional relative distance information among System Localities, if implemented, it is provided
alongside with the _PXM method.

17.3.1 Online Hot Plug
In the case of online addition, the Bus Check notification (0x0) is performed on a device object to
indicate to OSPM that it needs to perform the Plug and Play re-enumeration operation on the device
632 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
tree starting from the point where it has been notified. OSPM needs to evaluate all _PXM objects
associated with the added System Localities, or _SLI objects if the SLIT is present.

In the case of online deletion, OSPM needs to perform the Plug and Play ejection operation when it
receives the Eject Request notification (0x03). OSPM needs to remove the relative distance
information from its internal data structure for the removed System Localities.

17.3.2 Impact to Existing Localities
Dynamic reconfiguration of the system may cause the relative distance information (if the optional
SLIT is present) to become stale. If this occurs, the System Locality Information Update notification
may be generated by the platform to a device at a point on the device tree that represents a System
Locality. This indicates to OSPM that it needs to invoke the _SLI objects associated with the System
Localities on the device tree starting from the point where it has been notified..
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 633

Non-Uniform Memory Access (NUMA) Architecture Platforms
634 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
18
ACPI Platform Error Interfaces (APEI)

This section describes the ACPI Platform Error Interfaces (APEI), which provide a means for the
platform to convey error information to OSPM. APEI extends existing hardware error reporting
mechanisms and brings them together as components of a coherent hardware error infrastructure.
APEI takes advantage of the additional hardware error information available in today’s hardware
devices and integrates much more closely with the system firmware.

As a result, APEI provides the following benefits:

• Allows for more extensive error data to be made available in a standard error record format for
determining the root cause of hardware errors.

• Is extensible, so that as hardware vendors add new and better hardware error reporting
mechanisms to their devices, APEI allows the platform and the OSPM to gracefully
accommodate the new mechanisms.

This provides information to help system designers understand basic issues about hardware errors,
the relationship between the firmware and OSPM, and information about error handling and the
APEI architecture components.

APEI consists of four separate tables:

• Error Record Serialization Table (ERST)

• BOOT Error Record Table (BERT)

• Hardware Error Source Table (HEST)

• Error Injection Table (EINJ)

18.1Hardware Errors and Error Sources
A hardware error is a recorded event related to a malfunction of a hardware component in a
computer platform. The hardware components contain error detection mechanisms that detect when
a hardware error condition exists. Hardware errors can be classified as either corrected errors or
uncorrected errors as follows:

• A corrected error is a hardware error condition that has been corrected by the hardware or by the
firmware by the time the OSPM is notified about the existence of the error condition.

• An uncorrected error is a hardware error condition that cannot be corrected by the hardware or
by the firmware. Uncorrected errors are either fatal or non-fatal.
— A fatal hardware error is an uncorrected or uncontained error condition that is determined to

be unrecoverable by the hardware. When a fatal uncorrected error occurs, the system is
restarted to prevent propagation of the error.

— A non-fatal hardware error is an uncorrected error condition from which OSPM can attempt
recovery by trying to correct the error. These are also referred to as correctable or
recoverable errors.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 635

ACPI Platform Error Interfaces (APEI)
Central to APEI is the concept of a hardware error source. A hardware error source is any hardware
unit that alerts OSPM to the presence of an error condition. Examples of hardware error sources
include the following:

• Processor machine check exception (for example, MC#)

• Chipset error message signals (for example, SCI, SMI, SERR#, MCERR#)

• I/O bus error reporting (for example, PCI Express root port error interrupt)

• I/O device errors

A single hardware error source might handle aggregate error reporting for more than one type of
hardware error condition. For example, a processor’s machine check exception typically reports
processor errors, cache and memory errors, and system bus errors.

A hardware error source is typically represented by the following:

• One or more hardware error status registers.

• One or more hardware error configuration or control registers.

• A signaling mechanism to alert OSPM to the existence of an error condition.

In some situations, there is not an explicit signaling mechanism and OSPM must poll the error status
registers to test for an error condition. However, polling can only be used for corrected error
conditions since uncorrected errors require immediate attention by OSPM.

18.2 Relationship between OSPM and System Firmware
Both OSPM and system firmware play important roles in hardware error handling. APEI improves
the methods by which both of these can contribute to the task of hardware error handling in a
complementary fashion. APEI allows the hardware platform vendor to determine whether the
firmware or OSPM will own key hardware error resources. APEI also allows the firmware to pass
control of hardware error resources to OSPM when appropriate.

18.3 Error Source Discovery
Platforms enumerate error sources to OSPM via a set of tables that describe the error sources. OSPM
may also support non-ACPI enumerated error sources such as: Machine Check Exception, Corrected
Machine Check, NMI, PCI Express AER, and on Itanium™ Processor Family (IPF) platforms the
INIT error source. Non-ACPI error sources are not described by this specification.

During initialization, OSPM examines the tables and uses this information to establish the necessary
error handlers that are responsible for processing error notifications from the platform.

18.3.1 Boot Error Source
Under normal circumstances, when a hardware error occurs, the error handler receives control and
processes the error. This gives OSPM a chance to process the error condition, report it, and
optionally attempt recovery. In some cases, the system is unable to process an error. For example,
system firmware or a management controller may choose to reset the system or the system might
experience an uncontrolled crash or reset.
636 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The boot error source is used to report unhandled errors that occurred in a previous boot. This
mechanism is described in the BERT table. The boot error source is reported as a ‘one-time polled’
type error source. OSPM queries the boot error source during boot for any existing boot error
records. The platform will report the error condition to OSPM via a Common Platform Error Record
(CPER) compliant error record. The CPER format is described in appendix N of the UEFI 2.1
specification.

The Boot Error Record Table (BERT) format is shown in Table 18-277.

Table 18-277 Boot Error Record Table (BERT) Table

The Boot Error Region is a range of addressable memory OSPM can access during initialization to
determine if an unhandled error condition occurred. System firmware must report this memory range
as firmware reserved. The format of the Boot Error Region is shown in following table.

Table 18-278 Boot Error Region

Field Byte
length

Byte
offset

Description

Header Signature 4 0 ‘BERT’. Signature for the Boot Error Record Table.

Length 4 4 Length, in bytes, of BERT.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the BERT for the supplied OEM table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Boot Error Region Length 4 36 The length in bytes of the boot error region.

Boot Error Region 8 40 64-bit physical address of the Boot Error Region.

Field Byte
length

Byte
offset

Description

Block Status 4 0 Indicates the type of error information reported in the error packet:
Bit 0 – Uncorrectable Error Valid: If set to one, indicates that an
uncorrectable error condition exists.
Bit 1 – Correctable Error Valid: If set to one, indicates that a
correctable error condition exists.
Bit 2 – Multiple Uncorrectable Errors: If set to one, indicates that
more than one uncorrectable errors have been detected.
Bit 3 – Multiple Correctable Errors: If set to one, indicates that more
than one correctable errors have been detected.
Bit 4–13 – Error Data Entry Count: This value indicates the number of
Error Data Entries found in the Data section.
Bit 14–31 – Reserved.

Raw Data Offset 4 4 Offset in bytes from the beginning of the Error Status Block to raw
error data. The raw data must follow any Generic Error Data Entries.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 637

ACPI Platform Error Interfaces (APEI)
One or more Generic Error Data Entry structures may be recorded in the Generic Error Data
Entries field of the Generic Error Status Block structure. This allows the platform to accumulate
information for multiple hardware components related to a given error event. For example, if the
generic error source represents an error that occurs on a device on the secondary side of a PCI
Express / PCI-X Bridge, it is useful to record error information from the PCI Express Bridge and
from the PCI Express device. Utilizing two Generic Error Data Entry structures enables this.
Table 18-289 defines the layout of a Generic Error Data Entry.

For details of some of the fields defined in Table 18-289 . See alsoT able 3 in section N2.2 of
Appendix N of the UEFI 2.1 specification.

18.3.2 ACPI Error Source
The hardware error source describes a standardized mechanism platforms may use to describe their
error sources. Use of this interface is the preferred way for platforms to describe their error sources
as it is platform and processor-architecture independent and allows the platform to describe the
operational parameters associated with error sources.

This mechanism allows for the platform to describe error sources in detail; communicating
operational parameters (i.e. severity levels, masking bits, and threshold values) to OSPM as
necessary. It also allows the platform to report error sources for which OSPM would typically not
implement support (for example, chipset-specific error registers).

The Hardware Error Source Table provides the platform firmware a way to describe a system’s
hardware error sources to OSPM. The format of the Hardware Error Source Table is shown in
Table 18-279.

Table 18-279 Hardware Error Source Table (HEST)

Raw Data Length 4 8 Length in bytes of the raw data.

Data Length 4 12 Length in bytes of the generic error data.

Error Severity 4 16 Identifies the error severity of the reported error:
0 – Correctable
1 – Fatal
2 – Corrected
3 – None
Note: This is the error severity of the entire event. Each Generic
Error Data Entry also includes its own Error Severity field.

Generic Error
Data

Data
Length

20 The information contained in this field is a collection of zero or more
Generic Error Data Entries.

Field Byte
length

Byte
offset

Description

Header Signature 4 0 “HEST”. Signature for the Hardware Error Source Table.

Length 4 4 Length, in bytes, of entire HEST. Entire table must be
contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.
638 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The following sections detail each of the specific error source descriptors.

Note: Error source types 3, 4, and 5 are reserved for legacy reasons and must not be used.

18.3.2.1 IA-32 Architecture Machine Check Exception
Processors implementing the IA-32 Instruction Set Architecture employ a machine check exception
mechanism to alert OSPM to the presence of an uncorrected hardware error condition. The
information in this table is used by OSPM to configure the machine check exception mechanism for
each processor in the system.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this
entry to all processors.

Table 18-280 IA-32 Architecture Machine Check Exception Structure

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the HEST for the supplied OEM table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Error Source Count 4 36 The number of error source descriptors.

Error Source Structure[n] - 40 A series of Error Source Descriptor Entries.

Field Byte
Length

Byte
Offset

Description

Type 2 0 0 – IA-32 Architecture Machine Check Exception Structure.

Source Id 2 2 This value serves to uniquely identify this error source against
other error sources reported by the platform.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, this bit indicates to the
OSPM that system firmware will handle errors from this
source first.
All other bits are reserved.

Enabled 1 7 Specifies whether MCE is to be enabled. If set to 1, this field
indicates this error source is to be enabled. If set to 0, this
field indicates that the error source is not to be enabled.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in
an error record created as a result of an error reported by this
error source.

Global Capability Init
Data

8 16 Indicates the value of the machine check global capability
register.

Global Control Init
Data

8 24 Indicates the value to be written to the machine check global
control register.

Field Byte
length

Byte
offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 639

ACPI Platform Error Interfaces (APEI)
18.3.2.1.1 IA-32 Architecture Machine Check Bank Structure

This table describes the attributes of a specific IA-32 architecture machine check hardware error
bank.

Table 18-281 IA-32 Architecture Machine Check Error Bank Structure

18.3.2.2 IA-32 Architecture Corrected Machine Check
Processors implementing the IA-32 Instruction Set Architecture may report corrected processor
errors to OSPM. The information in this table allows platform firmware to communicate key
parameters of the corrected processor error reporting mechanism to OSPM, including whether CMC
processing should be enabled.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this
entry to all processors.

Number Of Hardware
Banks

1 32 Indicates the number of hardware error reporting banks.

Reserved 7 33 Reserved.

Machine Check Bank
Structure[n]

- 40 A list of Machine Check Bank structures defined in section
17.3.2.1.1

Field Byte
Length

Byte
Offset

Description

Bank Number 1 0 Zero-based index identifies the machine check error bank.

Clear Status On
Initialization

1 1 If set, indicates the status information in this machine check
bank is to be cleared during system initialization as follows:
0 – Clear
1 – Don’t clear

Status Data Format 1 2 Identifies the format of the data in the status register:
0 – IA-32 MCA
1 – Intel® 64 MCA
2 – AMD64MCA
All other values are reserved

Reserved 1 3 Reserved.

Control Register
MSR Address

4 4 Address of the hardware bank’s control MSR. Ignored if zero.

Control Init Data 8 8 This is the value the OSPM will program into the machine check
bank’s control register.

Status Register
MSR Address

4 16 Address of the hardware bank’s MCi_STAT MSR. Ignored if
zero.

Address Register
MSR Address

4 20 Address of the hardware bank’s MCi_ADDR MSR. Ignored if
zero.

Misc Register
MSR Address

4 24 Address of the hardware bank’s MCi_MISC MSR. Ignored if
zero.

Field Byte
Length

Byte
Offset

Description
640 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 18-282 IA-32 Architecture Corrected Machine Check Structure

18.3.2.2.1 IA-32 Architecture Non-Maskable Interrupt

Uncorrected platform errors are typically reported using the Non-Maskable Interrupt (NMI) vector
(for example, INT 2). This table allows platform firmware to communicate parameters regarding the
configuration and handling of NMI error conditions.

Only one entry of this type is permitted in the HEST.

Table 18-283 IA-32 Architecture NMI Error Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 1 – IA-32 Architecture Corrected Machine Check Structure.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, this bit indicates that system
firmware will handle errors from this source first.
All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.
If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by OSPM.

Number of
Records To Pre-
allocate

4 8 Indicates the number of error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Notification
Structure

28 16 Hardware Error Notification Structure as defined in Table 17-14.

Number Of
Hardware Banks

1 44 The number of hardware error reporting banks.

Reserved 3 45 Reserved.

Machine Check
Bank Structure[n]

- 48 A list of Machine Check Bank structures defined in section
17.3.2.1.1.

Field Byte
Length

Byte
Offset

Description

Type 2 0 2 – IA-32 Architecture NMI Structure.

Source Id 2 2 Uniquely identifies this error source.

Reserved 4 4 Must be zero.

Number of Records
To Pre-allocate

4 8 Indicates number of error records to pre-allocate for this error
source. Must be >= 1.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 641

ACPI Platform Error Interfaces (APEI)
18.3.2.3 PCI Express Root Port AER Structure
PCI Express (PCIe) root ports may implement PCIe Advanced Error Reporting (AER) support. This
table contains information platform firmware supplies to OSPM for configuring AER support on a
given root port.

The HEST may contain one entry of this type for each PCI Express root port if none of the entries
has the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and
the information contained in that entry is applied to all PCIe root ports.

Table 18-284 PCI Express Root Port AER Structure

Max Sections Per
Record

4 12 Indicates maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Max Raw Data
Length

4 16 The size in bytes of the NMI error data.

Field Byte
Length

Byte
Offset

Description

Type 2 0 6 – AER Root Port.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, this bit indicates to the OSPM
that system firmware will handle errors from this source first.
Bit 1 - GLOBAL: If set, indicates that the settings contained in this
structure apply globally to all PCI Express Devices.
All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.
If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus of the root port.
If the GLOBAL flag is specified, this field is ignored.

Device 2 20 Identifies the PCI Device Number of the root port.
If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI Function number of the root port.
If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Field Byte
Length

Byte
Offset

Description
642 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
18.3.2.4 PCI Express Device AER Structure
PCI Express devices may implement AER support. This table contains information platform
firmware supplies to OSPM for configuring AER support on a given PCI Express device.

The HEST may contain one entry of this type for each PCI Express endpoint device if none of the
entries has the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this
type and the information contained in that entry will be applied to all PCI Express endpoint devices.

Table 18-285 PCI Express Device AER Structure

Reserved 2 26 Must be zero.

Uncorrectable Error
Mask

4 28 Value to write to the root port’s Uncorrectable Error Mask register.

Uncorrectable Error
Severity

4 32 Value to write to the root port’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the root port’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the root port’s Advanced Error Capabilities and
Control Register.

Root Error
Command

4 44 Value to write to the root port’s Root Error Command Register.

Field Byte
Length

Byte
Offset

Description

Type 2 0 7 – AER Endpoint.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, indicates that system firmware
will handle errors from this source first.
Bit 1 – GLOBAL: If set, indicates that the settings contained in
this structure apply globally to all PCI Express Devices.
All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.
If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus of the device.
If the GLOBAL flag is specified, this field is ignored.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 643

ACPI Platform Error Interfaces (APEI)
18.3.2.5 PCI Express/PCI-X Bridge AER Structure
PCI Express/PCI-X bridges that implement AER support implement fields that control the behavior
how errors are reported across the bridge.

The HEST may contain one entry of this type for each PCI Express/PCI-X bridges if none of the
entries has the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this
type and the information contained in that entry will be applied to all PCI Express/ PCI-X bridges.

Table 18-286 PCI Express Bridge AER Structure

Device 2 20 Identifies the PCI Device Number of the device.
If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI Function Number of the device.
If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 Must be zero.

Uncorrectable Error
Mask

4 28 Value to write to the root port’s Uncorrectable Error Mask
register.

Uncorrectable Error
Severity

4 32 Value to write to the root port’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the root port’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the root port’s Advanced Error Capabilities and
Control Register.

Field Byte
Length

Byte
Offset

Description

Type 2 0 8 – AER Bridge.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, indicates that system firmware
will handle errors from this source first.
Bit 1 – GLOBAL: If set, indicates that the settings contained in
this structure apply globally to all PCI Express Bridges.
All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.
If FIRMWARE_FIRST is set in the flags field, the Enabled field is
ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Field Byte
Length

Byte
Offset

Description
644 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
18.3.2.6 Generic Hardware Error Source
The platform may describe a generic hardware error source to OSPM using the Generic Hardware
Error Source structure. A generic hardware error source is an error source that either notifies OSPM
of the presence of an error using a non-standard notification mechanism or reports error information
that is encoded in a non-standard format.

Using the information in a Generic Hardware Error Source structure, OSPM configures an error
handler to read the error data from an error status block – a range of memory set aside by the
platform for recording error status information.

As the generic hardware error source is non-standard, OSPM does not implement built-in support for
configuration and control operations. The error source must be configured by system firmware
during boot.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus of the root port.
If the GLOBAL flag is specified, this field is ignored.

Device 2 20 Identifies the PCI device number of the bridge.
If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI function number of the bridge.
If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 This value must be zero.

Uncorrectable Error
Mask

4 28 Value to write to the bridge’s Uncorrectable Error Mask register.

Uncorrectable Error
Severity

4 32 Value to write to the bridge’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the bridge’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the bridge’s Advanced Error Capabilities and
Control Register.

Secondary
Uncorrectable Error
Mask

4 44 Value to write to the bridge’s secondary uncorrectable error
mask register.

Secondary
Uncorrectable Error
Severity

4 48 Value to write to the bridge’s secondary uncorrectable error
severity register.

Secondary
Advanced
Capabilities and
Control

4 52 Value to write to the bridge’s secondary advanced capabilities
and control register.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 645

ACPI Platform Error Interfaces (APEI)
Table 18-287 Generic Hardware Error Source Structure

The Error Status Address field specifies the location of an 8-byte memory-mapped register that
holds the physical address of the error status block. This error status block must reside in a range of
memory reported to OSPM as firmware reserved. OSPM maps the error status buffer into system
address space in order to read the error data.

18.3.2.6.1 Generic Error Data

The Error Status Block contains the error status information for a given generic error source. OSPM
provides an error handler that formats one or more of these blocks as necessary for the specific
operating system.

Field Byte
Length

Byte
Offset

Description

Type 2 0 9 – Generic Hardware Error Source Structure.

Source Id 2 2 Uniquely identify the error source.

Related Source Id 2 4 If this generic error source represents an alternate source to a
separate source that the platform has specified that it requires
firmware-first handling (See Section 18.4,”Firmware First Error
Handling”), this field identifies the error source for which this
error source is the alternate.
If this generic error source does not represent an alternate
source, this field must be set to 0xFFFF.

Flags 1 6 Reserved.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Max Raw Data
Length

4 16 Indicates the size in bytes of the error data recorded by this
error source.

Error Status
Address

12 20 Generic Address Structure as defined in Section 5.2.3.1 of the
ACPI Specification.
This field specifies the location of a register that contains the
physical address of a block of memory that holds the error
status data for this error source. This range of memory must
reside in firmware reserved memory. OSPM maps this range
into system address space and reads the error status
information from the mapped address.

Notification
Structure

28 32 Hardware Error Notification Structure as defined in Table 17-14.
This structure specifies how this error source notifies OSPM that
an error has occurred.

Error Status Block
Length

4 60 Identifies the length in bytes of the error status data block.
646 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The generic error status block includes two levels of information. The top level is a Generic Error
Status Block structure and is defined in Table 18-288. Following the Generic Error Status Block
structure are one or more Generic Error Data Entry structures, defined in Table 18-289.

Table 18-288 Generic Error Status Block

One or more Generic Error Data Entry structures may be recorded in the Generic Error Data
Entries field of the Generic Error Status Block structure. This allows the platform to accumulate
information for multiple hardware components related to a given error event. For example, if the
generic error source represents an error that occurs on a device on the secondary side of a PCI
Express / PCI-X Bridge, it is useful to record error information from the PCI Express Bridge and
from the PCI-X device. Utilizing two Generic Error Data Entry structures enables this. Table 18-
289 defines the layout of a Generic Error Data Entry.

For details of some of the fields defined in Table 18-289. See also Table 3 in section N2.2 of
Appendix N of the UEFI 2.1 specification.

Field Byte
Length

Byte
Offset

Description

Block Status 4 0 Indicates the type of error information reported in the error packet.
Bit 0 - Uncorrectable Error Valid: If set to one, indicates that an
uncorrectable error condition exists.
Bit 1 - Correctable Error Valid: If set to one, indicates that a
correctable error condition exists.
Bit 2 - Multiple Uncorrectable Errors: If set to one, indicates that
more than one uncorrectable errors have been detected.
Bit 3 - Multiple Correctable Errors: If set to one, indicates that
more than one correctable errors have been detected.
Bit 4-13 - Error Data Entry Count: This value indicates the number
of Error Data Entries found in the Data section.
Bit 14-31 - Reserved

Raw Data Offset 4 4 Offset in bytes from the beginning of the Error Status Block to raw
error data. The raw data must follow any Generic Error Data
Entries.

Raw Data Length 4 8 Length in bytes of the raw data.

Data Length 4 12 Length in bytes of the generic error data.

Error Severity 4 16 Identifies the error severity of the reported error:
0 – Recoverable
1 – Fatal
2 – Corrected
3 – None
Note: This is the error severity of the entire event. Each Generic
Error Data Entry also includes its own Error Severity field.

Generic Error Data
Entries

Data
Length

20 The information contained in this field is a collection of zero or
more Generic Error Data Entries (see Table 18-289).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 647

ACPI Platform Error Interfaces (APEI)
Table 18-289 Generic Error Data Entry

18.3.2.6.2 SCI Notification For Generic Error Sources

SCI notification is recommended for corrected errors where latency in processing error reports is not
critical to proper system operation. The implementation of SCI notification requires the platform to
define a device with PNP ID PNP0C33 in the ACPI namespace, referred to as the error device. This
device is used to notify the OSPM that a generic error source is reporting an error. Since multiple
generic error sources can use SCI notification, it is the responsibility of the OSPM to scan the list of
these generic error sources and check the block status field (Table 18-288) to identify the source
that reported the error.

The SCI signaling follows the model describedin Section 5.6.4.1.1. The platform implements a
general purpose event (GPE) for the error notification, and the GPE has an associated control

Field Byte
Length

Byte
Offset

Description

Section Type 16 0 Identifies the type of error data in this entry.
See the Section Type field of the Section Descriptor in the UEFI
2.1 specification.

Error Severity 4 16 Identifies the severity of the reported error.
0 – Recoverable
1 – Fatal
2 – Corrected
3 – None

Revision 2 20 The revision number of the error data. The revision number is
0x0201.
See the Revision field of the Section Descriptor in the UEFI 2.1
specification.

Validation Bits 1 22 Identifies whether certain fields are populated with valid data.
See the Validation Bits field of the Section Descriptor in the UEFI
2.1 specification.

Flags 1 23 Flags describing the error data.
See the Flags field of the Section Descriptor in the UEFI 2.1
specification.

Error Data Length 4 24 Length in bytes of the generic error data. It is valid to have a Data
Length of zero. This would be used for instance in firmware-first
error handling where the platform reports errors to the OSPM
using NMI.

FRU Id 16 28 Identifies the Field Replaceable Unit.
See the FRU Id field of the Section Descriptor in the UEFI 2.1
specification.

FRU Text 20 44 Text field describing the Field Replaceable Unit.
See the FRU Text field of the Section Descriptor in the UEFI 2.1
specification.

Data Error
Data
Length

64 Generic error data.
The information contained in this field must match one of the error
record section types defined in Appendix N of the UEFI 2.1
specification.
648 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
method. This control method is required to execute a Notify on the error device (PNP0C33); the
notification code used is 0x80.

An example of a control method for error notification is the following:

 Method (_GPE._L08) { // GPE 8 level error notification

 Notify (error_device, 0x80)

 }

The overall flow when the platform uses the SCI notification is:

The platform enumerates the error source with SCI as the notification method using the format in
Table 18-287 and Table 18-288

The platform surfaces an error device, PNP ID PNP0C33, to the OSPM

When the platform is ready to report an error, the platform populates the error status block including
the block status field (Table 18-288)

The platform signals the error using an SCI, on the appropriate GPE

The OSPM evaluates the GPE control method associated with this event as indicated on
Section 5.6.4.1.1; the platform is responsible for providing a control method that issues a
NOTIFY(error_device, 0x80) on the error device

OSPM responds to this notification by checking the error status block of all generic error sources
with the SCI Generic notification type to identify the source reporting the error

18.3.2.7 Hardware Error Notification
This table describes the notification mechanism associated with a hardware error source.

Table 18-290 Hardware Error Notification Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 Identifies the notification type:
0 – Polled
1 – External Interrupt
2 – Local Interrupt
3 – SCI
4 – NMI
5 - CMCI
6 - MCE
All other values are reserved

Length 1 1 Total length of the structure in bytes.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 649

ACPI Platform Error Interfaces (APEI)
18.4 Firmware First Error Handling
It may be necessary for the platform to process certain classes of errors in firmware before
relinquishing control to OSPM for further error handling. Errata management and error containment
are two examples where firmware-first error handling is beneficial. Generic hardware error sources
support this model through the related source ID.

The platform reports the original error source to OSPM via the hardware error source table (HEST)
and sets the FIRMWAREFIRST flag for this error source. In addition, the platform must report a
generic error source with a related source ID set to the original source ID. This generic error source
is used to notify OSPM of the errors on the original source and their status after the firmware first
handling.

There are different notification strategies that can be used in firmware first handling; the following
options are available to the platform:

• The platform may use NMI to notify the OSPM of both corrected and uncorrected errors for a
given error source

• The platform may use NMI to report uncorrected errors and the SCI to report corrected errors

Configuration
Write Enable

2 2 This field indicates whether configuration parameters may be
modified by OSPM. If the bit for the associated parameter is set,
the parameter is writeable by OSPM:
Bit 0: Type
Bit 1: Poll Interval
Bit 2: Switch To Polling Threshold Value
Bit 3: Switch To Polling Threshold Window
Bit 4: Error Threshold Value
Bit 5: Error Threshold Window
All other bits are reserved.

Poll Interval 4 4 Indicates the poll interval in milliseconds OSPM should use to
periodically check the error source for the presence of an error
condition.

Vector 4 8 Interrupt vector.

Switch To Polling
Threshold Value

4 12 The number of error interrupts that must occur within Switch To
Polling Threshold Interval before OSPM switches the error source
to polled mode.

Switch To Polling
Threshold Window

4 16 Indicates the time interval in milliseconds that Switch To Polling
Threshold Value interrupts must occur within before OSPM
switches the error source to polled mode.

Error Threshold
Value

4 20 Indicates the number of error events that must occur within Error
Threshold Interval before OSPM processes the event as an error
condition.

Error Threshold
Window

4 24 Indicates the time interval in milliseconds that Error Threshold
Value errors must occur within before OSPM processes the event
as an error condition.

Field Byte
Length

Byte
Offset

Description
650 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• The platform may use NMI to report uncorrected errors and polling to notify the OSPM of
corrected errors

18.4.1 Example: Firmware First Handling Using NMI Notification

If the platform chooses to use NMI to report errors, which is the recommended method for uncorrected errors, the
platform follows these steps:

1. System firmware configures the platform to trigger a firmware handler when the error occurs

2. System firmware identifies the error source for which it will handle errors via the error source
enumeration interface by setting the FIRMWARE_FIRST flag

3. System firmware describes the generic error source, and the associated error status block, as
described in Section 18.3.2.6. System firmware identifies the relation between the generic error
source and the original error source by using the original source ID in the related source ID of
Table 18-287.

4. When a hardware error reported by the error source occurs, system firmware gains control and
handles the error condition as required. Upon completion system firmware should do the
following:

a Extract the error information from the error source and fill in the error information in the
data block of the generic error source it identified as an alternate in step 3. The error
information format follows the specification in Section 18.3.2.6.1

b Set the appropriate bit in the block status field (Table 18-288) to indicate to the OSPM that a
valid error condition is present.

c Clears error state from the hardware.

d Generates an NMI.

At this point, the OSPM NMI handler scans the list of generic error sources to find the error source
that reported the error and processes the error report

18.5 Error Serialization
• The error record serialization feature is used to save and retrieve hardware error information to

and from a persistent store. OSPM interacts with the platform through a platform interface. On
UEFI-based platforms, the UEFI runtime variable services can be used to carry out error record
persistence operations. On non-UEFI based platforms, the ACPI solution described below is
used.

• For error persistence across boots, the platform must implement some form of non-volatile store
to save error records. The amount of space required depends on the platform’s processor
architecture. Typically, this store will be flash memory or some other form of non-volatile
RAM.

• Serialized errors are encoded according to the Common Platform Error Record (CPER) format,
which is described in appendix N of the UEFI 2.1 specification. These entries are referred to as
error records.

• The Error Record Serialization Interface is designed to be sufficiently abstract to allow hardware
vendors flexibility in how they implement their error record serialization hardware. The
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 651

ACPI Platform Error Interfaces (APEI)
platform provides details necessary to communicate with its serialization hardware by
populating the ERST with a set of Serialization Instruction Entries. One or more serialization
instruction entries comprise a Serialization Action. OSPM carries out serialization operations by
executing a series of Serialization Actions. Serialization Actions and Serialization Instructions
are described in detail in the following sections.

Table 18-291 details the layout of the ERST which system firmware is responsible for building.

Table 18-291 Error Record Serialization Table (ERST)

18.5.1 Serialization Action Table
A Serialization Action is defined as a series of Serialization Instructions on registers that result in a
well known action. A Serialization Instruction is a Serialization Action primitive and consists of
either reading or writing an abstracted hardware register. The Serialization Action Table contains
Serialization Instruction Entries for all the Serialization Actions the platform supports.

In most cases, a Serialization Action comprises only one Serialization Instruction, but it is
conceivable that a more complex device will require more than one Serialization Instruction. When
an action does comprise more than one instruction, the instructions must be listed consecutively and
they will consequently be performed sequentially, according to their placement in the Serialization
Action Table.

Field Byte
Length

Byte
Offset

Description

ACPI Standard Header

Header Signature 4 0 “ERST”. Signature for the Error Record Serialization
Table.

Length 4 4 Length, in bytes, of entire ERST. Entire table must
be contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the ERST for the supplied OEM
table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Serialization Header

Serialization Header Size 4 36 Length in bytes of the serialization header.

Reserved 4 40 Must be zero.

Instruction Entry Count 4 44 The number of Serialization Instruction Entries in the
Serialization Action Table.

Serialization Action Table

Serialization Instruction Entries 48 A series of error logging instruction entries.
652 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
18.5.1.1 Serialization Actions
This section identifies the Serialization Actions that comprise the Error Record Serialization
interface. Table 18-292 identifies the supported error record Serialization Actions.

Table 18-292 Error Record Serialization Actions

Value Name Description

0x0 BEGIN_WRITE_OPERATION Indicates to the platform that an error record write operation is
beginning. This allows the platform to set its operational context.

0x1 BEGIN_READ_OPERATION Indicates to the platform that an error record read operation is
beginning. This allows the platform to set its operational context.

0x2 BEGIN_CLEAR_OPERATION Indicates to the platform that an error record clear operation is
beginning. This allows the platform to set its operation context.

0x3 END_OPERATION Indicates to the platform that the current error record operation
has ended. This allows the platform to clear its operational
context.

0x4 SET_RECORD_OFFSET Sets the offset from the base of the Error Log Address Range to
or from which the platform is to transfer an error record.

0x5 EXECUTE_OPERATION Instructs the platform to carry out the current operation based on
the current operational context.

0x6 CHECK_BUSY_STATUS Returns the state of the current operation. Once an operation
has been executed through the EXECUTE_OPERATION action,
the platform is required to return an indication that the operation
is in progress until the operation completes. This allows the OS
to poll for completion by repeatedly executing the
CHECK_BUSY_STATUS action until the platform indicates that
the operation not busy.

0x7 GET_COMMAND_STATUS Returns the status of the current operation. The platform is
expected to maintain a status code for each operation. See
Table 17-17 for a list of valid command status codes.

0x8 GET_RECORD_IDENTIFIER Returns the record identifier of an existing error record on the
persistent store. The error record identifier is a 64-bit unsigned
value as defined in Appendix N of version 2.1 of the UEFI
specification. If the record store is empty, this action must return
0xFFFFFFFFFFFFFFFF.

0x9 SET_RECORD_IDENTIFIER Sets the record identifier. The error record identifier is a 64-bit
unsigned value as defined in Appendix N of version 2.1 of the
UEFI specification.

0xA GET_RECORD_COUNT Retrieves the number of error records currently stored on the
platforms persistent store. The platform is expected to maintain
a count of the number of error records resident in its persistent
store.

0xB BEGIN_DUMMY_WRITE_OPE
RATION

Indicates to the platform that a dummy error record write
operation is beginning. This allows the platform to set its
operational context. A dummy error record write operation
performs no actual transfer of information from the Error Log
Address Range to the persistent store.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 653

ACPI Platform Error Interfaces (APEI)
Table 18-293 below defines the serialization action status codes returned from
GET_COMMAND_STATUS.

Table 18-293 Command Status Definition

18.5.1.2 Serialization Instruction Entries
Each Serialization Action consists of a series of one or more Serialization Instructions. A
Serialization Instruction represents a primitive operation on an abstracted hardware register
represented by the register region as defined in a Serialization Instruction Entry.

A Serialization Instruction Entry describes a region in a serialization hardware register and the
serialization instruction to be performed on that region. Table 18-294 details the layout of a
Serialization Instruction Entry.

Table 18-294 Serialization Instruction Entry

0xC RESERVED Reserved.

0xD GET_ERROR_LOG_ADDRESS
_RANGE

Returns the 64-bit physical address OSPM uses as the buffer for
reading/writing error records.

0xE GET_ERROR_LOG_ADDRESS
_RANGE_LENGTH

Returns the length in bytes of the Error Log Address Range

0xF GET_ERROR_LOG_ADDRESS
_RANGE_ATTRIBUTES

Returns attributes that describe the behavior of the error log
address range.
Bit 0 (0x1) – Reserved.
Bit 1 (0x2) – Non-Volatile: Indicates that the error log address
range is in non-volatile RAM.
Bit 2 (0x4) – Slow: Indicates that the memory in which the error
log address range is locates has slow access times.
All other bits reserved.

Value Description

0x00 Success

0x01 Not Enough Space

0x02 Hardware Not Available

0x03 Failed

0x04 Record Store Empty

0x05 Record Not Found

Field Byte
Length

Byte
Offset

Description

Serialization
Action

1 N+0 The serialization action that this serialization instruction is a part of.

Instruction 1 N+1 Identifies the instruction to execute. See Table 17-19 for a list of
valid instructions.

Flags 1 N+2 Flags that qualify the instruction.

Value Name Description
654 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Register region is described as a generic address structure. This structure describes the physical
address of a register as well as the bit range that corresponds to a desired region of the register. The
bit range is defined as the smallest set of consecutive bits that contains every bit in the register that is
associated with the Serialization Instruction. If bits [6:5] and bits [3:2] all correspond to a
Serialization Instruction, the bit range for that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a particular Serialization Instruction (i.e.
bit 4 in the example above), a bit mask is required to distinguish all the bits in the region that
correspond to the instruction. The Mask field is defined to be this bit mask with a bit set to ‘1’ for
each bit in the bit range (defined by the register region) corresponding to the Serialization
Instruction. Note that bit 0 of the bit mask corresponds to the lowest bit in the bit range. In the
example used above, the mask would be 11011b or 0x1B.

The Instruction field identifies the operation to be performed on the register region by the instruction
entry. Table 18-295 identifies the instructions that are supported.

Table 18-295 Serialization Instructions

Reserved 1 N+3 Must be zero.

Register
Region

12 N+4 Generic address structure as defined inSection 5.2.3.1 to describe
the address and bit.

Value 8 N+16 Value used with READ_REGISTER_VALUE and
WRITE_REGISTER_VALUE instructions.

Mask 8 N+24 The bit mask required to obtain the bits corresponding to the
serialization instruction in a given bit range defined by the register
region.

Value Name Description

0x00 READ_REGISTER A READ_REGISTER instruction reads the designated
information from the specified Register Region.

0x01 READ_REGISTER_VALUE A READ_REGISTER_VALUE instruction reads the designated
information from the specified Register Region and compares
the results with the contents of the Value field. If the information
read matches the contents of the Value field, TRUE is returned,
else FALSE is returned.

0x02 WRITE_REGISTER A WRITE_REGISTER instruction writes a value to the specified
Register Region. The Value field is ignored.

0x03 WRITE_REGISTER_VALUE A WRITE_REGISTER_VALUE instruction writes the contents of
the Value field to the specified Register Region.

0x04 NOOP This instruction is a NOOP.

0x05 LOAD_VAR1 Loads the VAR1 variable from the register region.

0x06 LOAD_VAR2 Loads the VAR2 variable from the register region.

0x07 STORE_VAR1 Stores the value in VAR1 to the indicate register region.

0x08 ADD Adds VAR1 and VAR2 and stores the result in VAR1.

0x09 SUBTRACT Subtracts VAR1 from VAR2 and stores the result in VAR1.

Field Byte
Length

Byte
Offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 655

ACPI Platform Error Interfaces (APEI)
The Flags field allows qualifying flags to be associated with the instruction. Table 18-296 identifies
the flags that can be associated with Serialization Instructions.

Table 18-296 Instruction Flags

18.5.1.2.1 READ_REGISTER_VALUE

A read register value instruction reads the register region and compares the result with the specified
value. If the values are not equal, the instruction failed. This can be described in pseudo code as
follows:

0x0A ADD_VALUE Adds the contents of the specified register region to Value and
stores the result in the register region.

0x0B SUBTRACT_VALUE Subtracts Value from the contents of the specified register
region and stores the result in the register region.

0x0C STALL Stall for the number of microseconds specified in Value.

0x0D STALL_WHILE_TRUE OSPM continually compares the contents of the specified
register region to Value until the values are not equal. OSPM
stalls between each successive comparison. The amount of time
to stall is specified by VAR1 and is expressed in microseconds.

0x0E SKIP_NEXT_INSTRUCTION_I
F_TRUE

This is a control instruction which compares the contents of the
register region with Value. If the values match, OSPM skips the
next instruction in the sequence for the current action.

0x0F GOTO OSPM will go to the instruction specified by Value. The
instruction is specified as the zero-based index. Each
instruction for a given action has an index based on its relative
position in the array of instructions for the action.

0x10 SET_SRC_ADDRESS_BASE Sets the SRC_BASE variable used by the MOVE_DATA
instruction to the contents of the register region.

0x11 SET_DST_ADDRESS_BASE Sets the DST_BASE variable used by the MOVE_DATA
instruction to the contents of the register region.

0x12 MOVE_DATA Moves VAR2 bytes of data from SRC_BASE + Offset to
DST_BASE + Offset, where Offset is the contents of the register
region.

Value Name Description

0x01 PRESERVE_REGISTER For WRITE_REGISTER and WRITE_REGISTER_VALUE
instructions, this flag indicates that bits within the register that
are not being written must be preserved rather than destroyed.
For READ_REGISTER instructions, this flag is ignored.

Value Name Description
656 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
X = Read(register)
X = X >> Bit Offset described in Register Region
X = X & Mask
If (X != Value) FAIL
SUCCEED

18.5.1.2.2 READ_REGISTER

A read register instruction reads the register region. The result is a generic value and should not be
compared with Value. Value will be ignored. This can be described in pseudo code as follows:

X = Read(register)
X = X >> Bit Offset described in Register Region
X = X & Mask
Return X

18.5.1.2.3 WRITE_REGISTER_VALUE

A write register value instruction writes the specified value to the register region. If
PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write
value instruction are preserved. If the register is preserved, the write value instruction requires a read
of the register. This can be described in pseudo code as follows:

X = Value & Mask
X = X << Bit Offset described in Register Region
If (Preserve Register)

Y = Read(register)
Y = Y & ~(Mask << Bit Offset)
X = X | Y

Write(X, Register)

18.5.1.2.4 WRITE_REGISTER

A write register instruction writes a value to the register region. Value will be ignored. If
PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write
instruction are preserved. If the register is preserved, the write value instruction requires a read of the
register. This can be described in pseudo code as follows:

X = supplied value
X = X & Mask
X = X << Bit Offset described in Register Region
If (Preserve Register)

Y = Read(register)
Y = Y & ~(Mask << Bit Offset)
X = X | Y

Write(X, Register)

18.5.1.3 Error Record Serialization Information
The APEI error record includes an 8 byte field called OSPM Reserved. Table 18-297 defines the
layout of this field. The error record serialization information is a small buffer the platform can use
for serialization bookkeeping. The platform is free to use the 48 bits starting at bit offset 16 for its
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 657

ACPI Platform Error Interfaces (APEI)
own purposes. It may use these bits to indicate the busy/free status of an error record, to record an
internal identifier, etc.

Table 18-297 Error Record Serialization Info

18.5.2 Operations
The error record serialization interface comprises three operations: Write, Read, and Clear. OSPM
uses the Write operation to write a single error record to the persistent store. The Read operation is
used to retrieve a single error record previously recorded to the persistent store using the write
operation. The Clear operation allows OSPM to notify the platform that a given error record has
been fully processed and is no longer needed, allowing the platform to recover the storage associated
with a cleared error record.

Where the Error Log Address Range is NVRAM, significant optimizations are possible since
transfer from the Error Log Address Range to a separate storage device is unnecessary. The platform
may still, however, copy the record from NVRAM to another device, should it choose to. This
allows, for example, the platform to copy error records to private log files. In order to give the
platform the opportunity to do this, OSPM must use the Write operation to persist error records even
when the Error Log Address Range is NVRAM. The Read and Clear operations, however, are
unnecessary in this case as OSPM is capable of reading and clearing error records without assistance
from the platform.

18.5.2.1 Writing
To write a single HW error record, OSPM executes the following steps:

1. Initializes the error record’s serialization info. OSPM must fill in the Signature.

2. Writes the error record to be persisted into the

3. Error Log Address Range.

4. Executes the BEGIN_WRITE_OPERATION action to notify the platform that a record write
operation is beginning.

5. Executes the SET_RECORD_OFFSET action to inform the platform where in the

6. Error Log Address Range the error record resides.

7. Executes the EXECUTE_OPERATION action to instruct the platform to begin the write
operation.

8. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

9. Executes a GET_COMMAND_STATUS action to determine the status of the write operation.
If an error is indicated, the OS

10. PM may retry the operation.

Field Bit
Length

Bit
Offset

Description

Signature 16 0 16-bit signature (‘ER’) identifying the start of the error
record serialization data.

Platform Serialization Data 48 16 Platform private error record serialization information.
658 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
11. Executes an END_OPERATION action to notify the platform that the record write operation is
complete.

When OSPM performs the EXECUTE_OPERATION action in the context of a record write
operation, the platform attempts to transfer the error record from the designated offset in the Error
Log Address Range to a persistent store of its choice. If the Error Log Address Range is non-volatile
RAM, no transfer is required.

Where the platform is required to transfer the error record from the Error Log Address Range to a
persistent store, it performs the following steps in response to receiving a write command:

1. Sets some internal state to indicate that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Reads the error record’s

3. Record ID field to determine where on the storage medium the supplied error record is to be
written. The platform attempts to locate the specified error record on the persistent store.

a If the specified error record does not exist, the platform attempts to write a new record to the
persistent store.

b If the specified error record does exists, then if the existing error record is large enough to be
overwritten by the supplied error record, the platform can do an in-place replacement. If the
existing record is not large enough to be overwritten, the platform must attempt to locate
space in

c which to write the new record. It may mark the existing record as Free and coalesce adjacent
free records in order to create the necessary space.

4. Transfers the error record to the selected location on the persistent store.

5. Updates an internal

6. Record Count if a new record was written.

7. Records the s

8. tatus of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

9. Modifies internal busy state as necessary so when OS

10. PM executes CHECK_BUSY_STATUS, the result indicates that the operation is complete.

If the Error Log Address Range resides in NVRAM, the minimum steps required of the platform are:

1. Sets some internal state to indication that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Records the status of the o

3. peration so OSPM can retrieve the status by executing a GET_COMMAND_STATUS action.

4. Clear internal busy state so when OS

5. PM executes CHECK_BUSY_STATUS, the result indicates that the operation is complete.

18.5.2.2 Reading
During boot, OSPM attempts to retrieve all serialized error records from the persistent store. If the
Error Log Address Range does not reside in NVRAM, the following steps are executed by OSPM to
retrieve all error records:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 659

ACPI Platform Error Interfaces (APEI)
1. Executes the BEGIN_ READ_OPERATION action to notify the platform that a record read
operation is beginning.

2. Executes the SET_ RECORD_OFFSET action to inform the platform at what offset in the Error
Log Address Range the error record is to be transferred.

3. Executes the SET_RECORD_IDENTIFER action to inform the platform which error record is
to be read from its persistent store.

4. Executes the EXECUTE_OPERATION action to instruct the platform to begin the read
operation.

5. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

6. Executes a GET_COMMAND_STATUS action to determine the status of the read operation.

a If the status is Record Store Empty (0x04), continue to step 7.

b If an error occurred reading a valid error record, the status will be Failed (0x03), continue to
step 7.

c If the status is Record Not Found (0x05), indicating that the specified error record does not
exist, OSPM retrieves a valid identifier by executing a GET_RECORD_IDENTIFIER
action. The platform will return a valid record identifier.

d If the status is Success, OSPM transfers the retrieved record from the Error Log Address
Range to a private buffer and then executes the GET_RECORD_IDENTIFIER action to
determine the identifier of the next record in the persistent store.

7. Execute an END_OPERATION to notify the platform that the record read operation is
complete.

The steps performed by the platform to carry out a read request are as follows:

1. Sets some internal state to indicate that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Using the record identifier supplied by OSPM through the SET_RECORD_IDENTIFIER
operation, determine which error record to read:

a If the identifier is 0x0 (unspecified), the platform reads the ‘first’ error record from its
persistent store. First, in this is implementation specific.

b If the identifier is non-zero, the platform attempts to locate the specified error record on the
persistent store.

c If the specified error record does not exist, set the status register’s

d Status to Record Not Found (0x05), and update the status register’s Identifier field with the
identifier of the ‘first’ error record.

3. Transfer the record from the persistent store to the offset specified by OSPM from the base of
the Error Log Address Range.

4. Record the Identifier of the ‘next’ valid error record that resides on the persistent store. This
allows OSPM to retrieve a valid record identifier by executing a GET_RECORD_IDENTIFIER
operation.

5. Record the status of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

6. Clear internal busy state so when OSPM executes CHECK_BUSY_STATUS, the result
indicates that the operation is complete.
660 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Where the Error Log Address Range does reside in NVRAM, OSPM requires no platform support to
read persisted error records. OSPM can scan the Error Log Address Range on its own and retrieve
the error records it previously persisted.

18.5.2.3 Clearing
After OSPM has finished processing an error record, it will notify the platform by clearing the
record. This allows the platform to delete the record from the persistent store or mark it such that the
space is free and can be reused. The following steps are executed by OSPM to clear an error record:

1. Executes a BEGIN_ CLEAR_OPERATION action to notify the platform that a record clear
operation is beginning.

2. Executes a SET_RECORD_IDENTIFER action to inform the platform which error record is to
be cleared. This value must not be set to 0x0 (unspecified).

3. Executes an EXECUTE_OPERATION action to instruct the platform to begin the clear
operation.

4. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

5. Executes a GET_COMMAND_STATUS action to determine the status of the clear operation.

6. Execute an END_OPERATION to notify the platform that the record read operation is
complete.

The platform carries out a clear request by performing the following steps:

1. Sets some internal state to indication that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Using the record identifier supplied by OSPM through the SET_RECORD_IDENTIFIER
operation, determine which error record to clear. This value may not be 0x0 (unspecified).

3. Locate the specified error record on the persistent store.

4. Mark the record as free by updating the Attributes in its serialization header.

5. Update internal record count.

6. Clear internal busy state so when OS

7. PM executes CHECK_BUSY_STATUS, the result indicates that the operation is complete.

When the Error Log Address Range resides in NVRAM, the OS requires no platform support to
Clear error records.

18.5.2.4 Usage
This section describes several possible ways the error record serialization mechanism might be
implemented.

18.5.2.4.1 Error Log Address Range Resides in NVRAM

If the Error Log Address Range resides in NVRAM, then when OSPM writes a record into the
logging range, the record is automatically persistent and the busy bit can be cleared immediately. On
a subsequent boot, OSPM can read any persisted error records directly from the persistent store
range. The size of the persistent store, in this case, is expected to be enough for several error records.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 661

ACPI Platform Error Interfaces (APEI)
18.5.2.4.2 Error Log Address Range Resides in (volatile) RAM

In this implementation, the Error Log Address Range describes an intermediate location for error
records. To persist a record, OSPM copies the record into the Error Log Address Range and sets the
Execute, at which time the platform runs necessary code (SMM code on non-UEFI based systems
and UEFI runtime code on UEFI-enabled systems) to transfer the error record from main memory to
some persistent store. To read a record, OSPM asks the platform to copy a record from the persistent
store to a specified offset within the Error Log Address Range. The size of the Error Log Address
Range is at least large enough for one error record.

18.5.2.4.3 Error Log Address Range Resides on Service Processor

In this type of implementation, the Error Log Address Range is really MMIO. When OSPM writes
an error record to the Error Log Address Range, it is really writing to memory on a service
processor. When the OSPM sets the Execute control bit, the platform knows that the OSPM is done
writing the record and can do something with it, like move it into a permanent location (i.e. hard
disk) on the service processor. The size of the persistent store in this type of implementation is
typically large enough for one error record.

18.5.2.4.4 Error Log Address Range is Copied Across Network

In this type of implementation, the Error Log Address Range is an intermediate cache for error
records. To persist an error record, OSPM copies the record into the Error Log Address Range and
set the Execute control bit, and the platform runs code to transmit this error record over the wire. The
size of the Error Log Address Range in this type of implementation is typically large enough for one
error record.

18.6 Error Injection
This section outlines an ACPI table mechanism, called EINJ, which allows for a generic interface
mechanism through which OSPM can inject hardware errors to the platform without requiring
platform specific OSPM level software. The primary goal of this mechanism is to support testing of
OSPM error handling stack by enabling the injection of hardware errors. Through this capability
OSPM is able to implement a simple interface for diagnostic and validation of errors handling on the
system.

18.6.1 Error Injection Table (EINJ)
The Error Injection Table provides a generic interface mechanism through which OSPM can inject
hardware errors to the platform without requiring platform specific OSPM software. System
firmware is responsible for building this table, which is made up of Injection Instruction entries.
Table 18-298 details the layout of the table.

Table 18-298 Error Injection Table (EINJ)

Field Byte
length

Byte
offset

Description

ACPI Standard Header

Header Signature 4 0 EINJ. Signature for the Error Record Injection Table.
662 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 18-299 identifies the supported error injection actions.

Table 18-299 Error Injection Actions

Length 4 4 Length, in bytes, of entire EINJ. Entire table must be
contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of EINJ.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Injection Header

Injection Header Size 4 36 Length in bytes of the Injection Interface header.

Injection Flags 1 40 Reserved. Must be zero

Reserved 3 41 Must be zero.

Injection Entry Count 4 44 The number of Instruction Entries in the Injection Action
Table

Injection Action Table

Injection Instruction
Entries

48 A series of error injection instruction entries

Value Name Description

0x0 BEGIN_INJECTION_OPERATION Indicates to the platform that an error injection is
beginning. This allows the platform to set its operational
context.

0x1 GET_TRIGGER_ERROR_ACTION_T
ABLE

Returns a 64-bit physical memory pointer to the
TRIGGER_ERROR action table.
The TRIGGER_ERROR action instructions when executed
by software trigger the error that was injected by the
immediately prior SET_ERROR_TYPE action.

0x2 SET_ERROR_TYPE Type of error to Inject. Only one ERROR_TYPE can be
injected at any given time. If there is request for multiple
injections at the same time, then the platform will return an
error condition.

0x3 GET_ERROR_TYPE Returns the error injection capabilities of the platform.

0x4 END_OPERATION Indicates to the platform that the current injection operation
has ended. This allows the platform to clear its operational
context.

0x5 EXECUTE_OPERATION Instructs the platform to carry out the current operation
based on the current operational context.

Field Byte
length

Byte
offset

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 663

ACPI Platform Error Interfaces (APEI)
0x6 CHECK_BUSY_STATUS Returns the state of the current operation.
Once an operation has been executed through the
EXECUTE_OPERATION action, the platform is required to
return an indication that the operation is busy until the
operation is completed. This allows software to poll for
completion by repeatedly executing the
CHECK_BUSY_STATUS action until the platform
indicates that the operation is complete by setting not
busy.
The lower most bit (bit0) of the returned value indicates the
busy status by setting it to 1 and not busy status by setting
it to 0.

0x7 GET_COMMAND_STATUS Returns the status of the current operation.
The platform is expected to maintain a status code for
each operation. Bits 1:8 of the returned value indicate the
command status. See Table 18-293 for a list of valid
command status codes.

0x8 SET_ERROR_TYPE_WITH_ADDRE
SS

Type of error to Inject, and the address to inject. Only one
Error type can be injected at any given time. If there is
request for multiple injections at the same time, then the
platform will return an error condition.
Both this Action and the SET_ERROR_TYPE action will be
present as part of this EINJ action table. OSPM is free to
choose either of these two actions to inject an error. The
platform will give precedence to
SET_ERROR_TYPE_WITH_ADDRESS. In other words, if
a non-zero value is set using
SET_ERROR_TYPE_WITH_ADDRESS, then any error
type value set by SET_ERROR_TYPE will be ignored. If,
on the other hand, if no error type is specified using
SET_ERROR_TYPE_WITH_ADDRESS, then the platform
will use SET_ERROR_TYPE to identify the error type to
inject.
The RegisterRegion field (SeeTable 18-300) in
SET_ERROR_TYPE_WITH_ADDRESS points to a data
structure whose format is defined in Table 18-290.
Note that calling set error type with address without
specifying address has the same behavior as calling
SET_ERROR_TYPE.

0xFF TRIGGER_ERROR This is not a true error injection action. In response to error
injection, the platform returns a trigger error action table.
This table consists of a series of injection instruction
entries where the injection action is set to
TRIGGER_ERROR to distinguish such entries.

Value Name Description
664 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
18.6.2 Injection Instruction Entries
An Injection action consists of a series of one or more Injection Instructions. An Injection
Instruction represents a primitive operation on an abstracted hardware register, represented by the
register region as defined in an Injection Instruction Entry.

An Injection Instruction Entry describes a region in an injection hardware register and the injection
instruction to be performed on that region.

Table 18-300 details the layout of an Injection Instruction Entry.

Table 18-300 Injection Instruction Entry

Register region is described as a generic address structure. This structure describes the physical
address of a register as well as the bit range that corresponds to a desired region of the register. The
bit range is defined as the smallest set of consecutive bits that contains every bit in the register that is
associated with the injection Instruction. If bits [6:5] and bits [3:2] all correspond to an Injection
Instruction, the bit range for that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a particular injection Instruction (i.e. bit
4 in the example above), a bit mask is required to distinguish all the bits in the region that correspond
to the instruction. The Mask field is defined to be this bit mask with a bit set to a ‘1’ for each bit in
the bit range (defined by the register region) corresponding to the Injection Instruction. Note that bit
0 of the bit mask corresponds to the lowest bit in the bit range. In the example used above, the mask
would be 11011b or 0x1B.

Field Byte
length

Byte
offset

Description

Injection
Action

1 N+0 The injection action that this instruction is a part of. See Table 17-23 for
supported injection actions.

Instruction 1 N+1 Identifies the instruction to execute.
See Table 17-26 for a list of valid instructions.

Flags 1 N+2 Flags that qualify the instruction.

Reserved 1 N+3 Must be zero.

Register
Region

12 N+4 Generic address structure as defined in Section 5.2.3.1 to describe the
address and bit.
Address_Space_ID must be 0 (System Memory) or 1 (System IO). This
constraint is an attempt to ensure that the registers are accessible in
the presence of hardware error conditions.

Value 8 N+16 This is the value field that is used by the instruction READ or
WRITE_REGISTER_VALUE.

Mask 8 N+24 The bit mask required to obtain the bits corresponding to the injection
instruction in a given bit range defined by the register region.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 665

ACPI Platform Error Interfaces (APEI)
Table 18-301 Instruction Flags

18.6.3 Injection Instructions
Table 18-302 lists the supported Injection Instructions for Injection Instruction Entries.

Table 18-302 Injection Instructions

Table 18-303 below defines the error injection status codes returned from
GET_COMMAND_STATUS.

Table 18-303 Command Status Definition

Table 18-304 below defines the error type codes returned from GET_ERROR_TYPE.

Table 18-304 Error Type Definition

Value Name Description

0x01 PRESERVE_REGISTER For WRITE_REGISTER and WRITE_REGISTER_VALUE
instructions, this flag indicates that bits within the register that
are not being written must be preserved rather than
destroyed.
For READ_REGISTER instructions, this flag is ignored.

Opcode Instruction name Description

0x00 READ_REGISTER A READ_REGISTER instruction reads the value from the
specified register region.

0x01 READ_REGISTER_VALUE A READ_REGISTER_VALUE instruction reads the designated
information from the specified Register Region and compares
the results with the contents of the Value field.
If the information read matches the contents of the Value field,
TRUE is returned, else FALSE is returned.

0x02 WRITE_REGISTER A WRITE_REGISTER instruction writes a value to the specified
Register Region. The Value field is ignored.

0x03 WRITE_REGISTER_VALUE A WRITE_REGISTER_VALUE instruction writes the contents
of the Value field to the specified Register Region.

0x04 NOOP No operation.

Value Description

0x0 Success

0x1 Unknown Failure

0x2 Invalid Access

Bit Description

 0 Processor Correctable

 1 Processor Uncorrectable non-fatal

 2 Processor Uncorrectable fatal
666 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 18-305 SET_ERROR_TYPE_WITH_ADDRESS Data Structure

 3 Memory Correctable

 4 Memory Uncorrectable non-fatal

 5 Memory Uncorrectable fatal

 6 PCI Express Correctable

 7 PCI Express Uncorrectable non-fatal

 8 PCI Express Uncorrectable fatal

 9 Platform Correctable

 10 Platform Uncorrectable non-fatal

 11 Platform Uncorrectable fatal

 12:30 RESERVED

 31 Vendor Defined Error Type. If this bit is set, then the Error types and related data
structures are defined by the Vendor, as shown in Table 18-306.

Field Byte
Length

Byte
Offset

Description

Error Type 4 0x0 Bit map of error types to inject. Refer Table 18-304. This
field is cleared by the platform once it is consumed.

Vendor Error Type
Extension Structure
Offset

4 4 Specifies the offset from the beginning of the table to the
vendor error type extension structure. If no vendor error type
extension is present, bit31 in error type must be clear and
this field must be set to 0.

Flags 4 0x8 BIT 0 – Processor APIC Field Valid
BIT 1 – Memory Address and Memory address Mask Field
Valid
BIT 2 – PCIe SBDF field valid
BIT3:BIT31 – RESERVED

This field is cleared by the platform once it is consumed.

Processor Error

APIC ID 4 0x0C Optional field which specifies the physical APIC ID or the
X2APIC ID of the processor which is a target for the
injection.

Memory Error

Memory Address 8 0x10 Optional field which specifies the physical address of the
memory which is the target for the injection. Valid if BIT 1 of
the Flags field is set.

Memory Address
Range

8 0x18 Optional field which provided a range mask for the address
field. Valid if BIT 1 of the Flags field is set. If the OSPM
doesn’t want to provide a range of address, then this field
should be zero.

Bit Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 667

ACPI Platform Error Interfaces (APEI)
Table 18-306 Vendor Error Type Extension Structure

18.6.4 Trigger Action Table
Error injection operation is a two step process where the error is injected into the platform and
subsequently triggered. After software injects an error into the platform using SET_ERROR_TYPE
action, it needs to trigger the error. In order to trigger the error, the software invokes
GET_TRIGGER_ERROR_ACTION_TABLE action which returns a pointer to a Trigger Error

PCIe SBDF 4 0x20 BYTE 3 – PCIe Segment
BYTE 2 – Bus Number
BYTE 1 – Device Number[BITs 7:3], Function Number
BITs[2:0]
BYTE 0 – RESERVED

Field Byte
Length

Byte
Offset

Attribute Description

Length 4 0x0 Set by software. RO for
Platform

SBDF 4 0x04 Set by Platform. RO for
Software

This provides a PCIe Segment, Bus, Device
and Function number which can be used to
read the Vendor ID, Device ID and Rev ID, so
that software can identify the system for error
injection purposes.
The platform sets this field and is RO for
Software

Vendor ID 2 0x08 Set by Platform. RO for
Software

Vendor ID which identifies the device
manufacturer. This is same as the PCI SIG
defined Vendor ID
The platform sets this field and is RO for
Software

Device ID 2 0x0A Set by Platform. RO for
Software

This 16-bit ID is assigned by the
manufacturer that identifies this device.
The platform sets this field and is RO for
Software

Rev ID 1 0x0C Set by Platform. RO for
Software

This 8-bit value is assigned by the
manufacturer and identifies the revision
number of the device.
The platform sets this field and is RO for
Software

Reserved 3 0x0D Set by Platform. RO for
Software

Reserved

OEM Defined
structure

N 0x10 The rest of the fields are defined by the OEM.

Field Byte
Length

Byte
Offset

Description
668 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Action table. The format of the table is as shown in Table 18-307. Software executes the instruction
entries specified in the Trigger Error Action Table in order to trigger the injected error.

Table 18-307 Trigger Error Action

Note: If the “Entry Count” field above is ZERO, then there are no action structures in the
TRIGGER_ERROR action table. The platform may make this field ZERO in situations where there
is no need for a TRIGGER_ERROR action (for example, in cases where the error injection action
seeds as well as consumes the error).

Note: The format of TRIGGER_ERROR Instructions Entries is the same as Injection Instruction entries
as described in Table 18-302.

18.6.5Error Injection Operation
Before OSPM can use this mechanism to inject errors, it must discover the error injection
capabilities of the platform by executing a GET_ERROR_TYPE. See Table 18-304 for definition of
error types.

After discovering the error injection capabilities, OSPM can inject and trigger an error according to
the sequence described below.

Note that injecting an error into the platform does not automatically consume the error. In response
to an error injection, the platform returns a trigger error action table. The software that injected the
error must execute the actions in the trigger error action table in order to consume the error. If a
specific error type is such that it is automatically consumed on injection, the platform will return a
trigger error action table consisting of NO_OP.

1. Executes a BEGIN_ INJECTION_OPERATION action to notify the platform that an error
injection operation is beginning.

2. Executes a GET_ERROR_TYPE action to determine the error injection capabilities of the
system. This action returns a DWORD bit map of the error types supported by the platform. See
Table 18-304 for definition of error types.

3. If GET_ERROR_TYPE returns the DWORD with BIT31 set, it means that vendor defined error
types are present, apart from the standard error types defined in Table 18-304.

4. OSPM chooses the type of error to inject.

a If the OSPM chooses to inject one of the supported standard error types, then it sets the
corresponding bit in the “Error Type” field (see Table 18-305), by executing a

TRIGGER_ERROR
Header

Byte
Length

Byte
Offset

Description

Header Size 4 0 Length in bytes of this header.

Revision 4 4

Table Size 4 8 Size in Bytes of the entire table.

Entry Count 4 12 The number of Instruction Entries in the TRIGGER_ERROR
Action Sequence (See Note 1)

Action Table

TRIGGER_ERROR
Instruction Entries (See
Note 2)

16 A series of error injection instruction entries as defined in
Table 17-26.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 669

ACPI Platform Error Interfaces (APEI)
SET_ERROR_TYPE_WITH_ADDRESS command. For example, if OSPM chooses to
inject “Memory Correctable” error, then the OSPM executes
SET_ERROR_TYPE_WITH_ADDRESS with an “Error Type” value of 0x0000_0080.

• Optionally, the OSPM can choose the target of the injection, such as a memory range, PCIe
Segment/Device/Function or Processor APIC ID, depending on the type of error. The
OSPM does this by filling in the appropriate fields of the
“SET_ERROR_TYPE_WITH_ADDRESS Data structure”. See Table 18-305 for details.

b If the OSPM chooses to inject one of the vendor defined error types, then it executes
SET_ERROR_TYPE_WITH_ADDRESS with BIT31 of “Error Type” field set.

• OSPM gets of the location of the “Vendor Error Type Extension Structure”, by reading the
“Vendor Error Type Extension Structure Offset” (see Table 18-306).

— OSPM reads the Vendor ID, Device ID and Rev ID from the PCI config space whose path
(PCIe Segment/Device/Function) is provided in the “SBDF” field of the Vendor Error Type
Extension Structure.

— If the Vendor ID/Device ID and Rev IDs match, then the OSPM can identify the platform it
is running on and would know the Vendor error types that are supported by this platform

— The OSPM writes the vendor error type to inject in the “OEM Defined Structure” field. (see
Table 18-306)

• Optionally, the OSPM can choose the target of the injection, such as a memory range, PCIe
Segment/Device/Function or Processor APIC ID, depending on the type of error. The
OSPM does this by filling in the appropriate fields of the
“SET_ERROR_TYPE_WITH_ADDRESS Data structure”. See Table 18-305 for details

5. Executes an EXECUTE_OPERATION action to instruct the platform to begin the injection
operation.

6. Busy waits by continually executing CHECK_BUSY_STATUS action until the platform
indicates that the operation is complete by clearing the abstracted Busy bit.

7. Executes a GET_COMMAND_STATUS action to determine the status of the read operation.

8. If the status indicates that the platform cannot inject errors, stop.

9. Executes a GET_TRIGGER_ERROR_ACTION_TABLE operation to get the physical pointer
to the TRIGGER_ERROR action table. This provides the flexibility in systems where injecting
an error is a two (or more) step process.

10. Executes the actions specified in the TRIGGER_ERROR action table.

11. Execute an END_OPERATION to notify the platform that the error injection operation is
complete.
670 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19
ACPI Source Language (ASL)Reference

This section formally defines the ACPI Source Language (ASL). ASL is a source language for
defining ACPI objects including writing ACPI control methods. OEMs and BIOS developers define
objects and write control methods in ASL and then use a translator tool (compiler) to generate ACPI
Machine Language (AML) versions of the control methods. For a formal definition of AML, see the
ACPI Machine Language (AML) Specification, Section 20, “ACPI Machine Language
Specification.”

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OS must support AML. A given user can define some arbitrary source
language (to replace ASL) and write a tool to translate it to AML.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging.
(Debuggers and similar tools are expected to be AML-level tools, not source-level tools.) An ASL
translator implementer must understand how to read ASL and generate AML. An AML interpreter
author must understand how to execute AML.

This section has two parts:

• The ASL grammar, which is the formal ASL specification and also serves as a quick reference.

• A full ASL reference, which includes for each ASL operator: the operator invocation syntax, the
type of each argument, and a description of the action and use of the operator.

19.1 ASL Language Grammar
The purpose of this section is to state unambiguously the grammar rules used by the syntax checker
of an ASL compiler.

ASL statements declare objects. Each object has three parts, two of which might not be present.

Object := ObjectType FixedList VariableList

FixedList refers to a list, of known length, that supplies data that all instances of a given
ObjectType must have. A fixed list is written as (a , b , c , …) where the number of arguments
depends on the specific ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s,
t), d). Arguments to a FixedList can have default values, in which case they can be skipped. Thus,
(a,,c) will cause the default value for the second argument to be used. Some ObjectTypes can have
a null FixedList, which is simply omitted. Trailing arguments of some object types can be left out of
a fixed list, in which case the default value is used.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent.
It is written as { x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType
determines what terms are legal elements of the VariableList. Some ObjectTypes may have a null
variable list, which is simply omitted.

Other rules for writing ASL statements are the following:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 671

ACPI Source Language (ASL)Reference
• Multiple blanks are the same as one. Blank, (,), ‘,’ and newline are all token separators.

• // marks the beginning of a comment, which continues from the // to the end of the line.

• /* marks the beginning of a comment, which continues from the /* to the next */.

• “” (quotes) surround an ASCII string.

• Numeric constants can be written in three ways: ordinary decimal, octal (using 0ddd) or
hexadecimal, using the notation 0xdd.

• Nothing indicates an empty item. For example, { Nothing } is equivalent to {}.

19.1.1 ASL Grammar Notation
The notation used to express the ASL grammar is specified in the following table.

Table 19-308 ASL Grammar Notation

Notation Convention Description Example

Term := Term Term … The term to the left of := can be
expanded into the sequence of
terms on the right.

aterm := bterm cterm means that aterm can be
expanded into the two-term sequence of bterm
followed by cterm.

Angle brackets (< >) Used to group items. <a b> | <c d> means either
a b or c d.

Arrow (=>) Indicates required run-time
reduction of an ASL argument
to an AML data type. Means
“reduces to” or “evaluates to”
at run-time.

“TermArg => Integer” means that the argument
must be an ASL TermArg that must resolve to an
Integer data type when it is evaluated by an AML
interpreter.

Bar symbol (|) Separates alternatives. aterm := bterm | <cterm dterm> means the
following constructs are possible:
• bterm

• cterm dterm

aterm := <bterm | cterm> dterm means the
following constructs are possible:
• bterm dterm

• cterm dterm

Term Term Term Terms separated from each
other by spaces form an
ordered list.

N/A

Word in bold Denotes the name of a term in
the ASL grammar,
representing any instance of
such a term. ASL terms are not
case-sensitive.

In the following ASL term definition:
ThermalZone (ZoneName) {ObjectList}
the item in bold is the name of the term.

Word in italics Names of arguments to
objects that are replaced for a
given instance.

In the following ASL term definition:
ThermalZone (ZoneName) {ObjectList}
the italicized item is an argument. The item that is
not bolded or italicized is defined elsewhere in the
ASL grammar.
672 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.1.2 ASL Name and Pathname Terms

// Name and path characters supported

LeadNameChar :=
 ‘A’-‘Z’ | ‘a’-‘z’ | ‘_’
DigitChar :=
 ‘0’-‘9’
NameChar :=
 DigitChar | LeadNameChar
RootChar :=
 ‘\’
ParentPrefixChar :=
 ‘^’
PathSeparatorChar :=
 ‘.’
CommaChar :=
 ‘,’
SemicolonDelimiter :=
Nothing | ‘;’

// Names and paths

NameSeg :=
 <LeadNameChar> |
 <LeadNameChar NameChar> |
 <LeadNameChar NameChar NameChar> |
 <LeadNameChar NameChar NameChar NameChar>
NameString :=
 <RootChar NamePath> | <ParentPrefixChar PrefixPath NamePath> | NonEmptyNamePath
NamePath :=
 Nothing | <NameSeg NamePathTail>
NamePathTail :=
 Nothing | <PathSeparatorChar NameSeg NamePathTail>
NonEmptyNamePath :=
 NameSeg | <NameSeg NamePathTail>
PrefixPath :=
 Nothing | <ParentPrefixChar PrefixPath>

19.1.3 ASL Root and Secondary Terms

Single quotes (‘ ’) Indicate constant characters. ‘A’

0xdd Refers to a byte value
expressed as two hexadecimal
digits.

0x21 means a value of hexadecimal 21, or
decimal 37. Notice that a value expressed in
hexadecimal must start with a leading zero (0).

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to 9
inclusive.

Notation Convention Description Example
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 673

ACPI Source Language (ASL)Reference
// Root Term

ASLCode :=
 DefinitionBlockTerm

// Major Terms

SuperName :=
 NameString | ArgTerm | LocalTerm | DebugTerm | Type6Opcode | UserTerm
Target :=
 Nothing | SuperName
TermArg :=
 Type2Opcode | DataObject | ArgTerm | LocalTerm | NameString
UserTerm :=
 NameString(// NameString => Method
 ArgList
) => Nothing | DataRefObject

// List Terms

ArgList :=
 Nothing | <TermArg ArgListTail>
ArgListTail :=
 Nothing | <CommaChar TermArg ArgListTail>

ByteList :=
 Nothing | <ByteConstExpr ByteListTail>
ByteListTail :=
 Nothing | <CommaChar ByteConstExpr ByteListTail>

DWordList :=
 Nothing | <DWordConstExpr DWordListTail>
DWordListTail :=
 Nothing | <CommaChar DWordConstExpr DWordListTail>

ExtendedAccessAttribTerm :=
 ExtendedAccessAttribKeyword (
 AccessLength //ByteConst
)

FieldUnitList :=
 Nothing | <FieldUnit FieldUnitListTail>
FieldUnitListTail :=
 Nothing | <CommaChar FieldUnit FieldUnitListTail>
FieldUnit :=
 FieldUnitEntry | OffsetTerm | AccessAsTerm | ConnectionTerm
FieldUnitEntry :=
 <Nothing | NameSeg> CommaChar Integer

ObjectList :=
 Nothing | <Object ObjectList>
Object :=
CompilerDirective | NamedObject | NameSpaceModifier

PackageList :=
 Nothing | <PackageElement PackageListTail>
PackageListTail :=
 Nothing | <CommaChar PackageElement PackageListTail>
PackageElement :=
 DataObject | NameString
674 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
ParameterTypePackage :=
 ObjectTypeKeyword | {Nothing | ParameterTypePackageList}
ParameterTypePackageList :=
 ObjectTypeKeyword | <ObjectTypeKeyword CommaChar ParameterTypePackageList>

ParameterTypesPackage :=
 ObjectTypeKeyword | {Nothing | ParameterTypesPackageList}
ParameterTypesPackageList :=
 ParameterTypePackage | <ParameterTypePackage CommaChar ParameterTypesPackageList>

TermList :=
 Nothing | <Term SemicolonDelimiter TermList>
Term :=
 Object | Type1Opcode | Type2Opcode

// Conditional Execution List Terms

CaseTermList :=
 Nothing | CaseTerm | DefaultTerm DefaultTermList | CaseTerm CaseTermList
DefaultTermList :=
 Nothing | CaseTerm | CaseTerm DefaultTermList
IfElseTerm :=
 IfTerm ElseTerm

19.1.4 ASL Data and Constant Terms

// Numeric Value Terms

LeadDigitChar :=
 ‘1’-‘9’
HexDigitChar :=
 DigitChar | ‘A’-‘F’ | ‘a’-‘f’
OctalDigitChar :=
 ‘0’-‘7’
NullChar :=
 0x00

// Data Terms

DataObject :=
 BufferData | PackageData | IntegerData | StringData
DataRefObject :=
 DataObject | ObjectReference | DDBHandle

ComputationalData :=
 BufferData | IntegerData | StringData
BufferData :=
 Type5Opcode | BufferTerm
IntegerData :=
 Type3Opcode | Integer | ConstTerm
PackageData :=
 PackageTerm
StringData :=
 Type4Opcode | String

// Integer Terms

Integer :=
 DecimalConst | OctalConst | HexConst
DecimalConst :=
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 675

ACPI Source Language (ASL)Reference
 LeadDigitChar | <DecimalConst DigitChar>
OctalConst :=
 ‘0’ | <OctalConst OctalDigitChar>
HexConst :=
 <0x HexDigitChar> | <0X HexDigitChar> | <HexConst HexDigitChar>
ByteConst :=
 Integer => 0x00-0xFF
WordConst :=
 Integer => 0x0000-0xFFFF
DWordConst :=
 Integer => 0x00000000-0xFFFFFFFF
QWordConst :=
 Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

ByteConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => ByteConst
WordConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => WordConst
DWordConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => DWordConst
QWordConstExpr :=
 <Type3Opcode | ConstExprTerm | Integer> => QWordConst

ConstTerm :=
 ConstExprTerm | Revision
ConstExprTerm :=
 Zero | One | Ones

// String Terms

String :=
 ‘”’ Utf8CharList ‘”’
Utf8CharList :=
 Nothing | <EscapeSequence Utf8CharList> | <Utf8Char Utf8CharList>
Utf8Char :=
 0x01-0x21 |
 0x23-0x5B |
 0x5D-0x7F |
 0xC2-0xDF 0x80-0xBF |
 0xE0 0xA0-0xBF 0x80-0xBF |
 0xE1-0xEC 0x80-0xBF 0x80-0xBF |
 0xED 0x80-0x9F 0x80-0xBF |
 0xEE-0xEF 0x80-0xBF 0x80-0xBF |
 0xF0 0x90-0xBF 0x80-0xBF 0x80-0xBF |
 0xF1-0xF3 0x80-0xBF 0x80-0xBF 0x80-0xBF

// Escape sequences

EscapeSequence :=
 SimpleEscapeSequence | OctalEscapeSequence | HexEscapeSequence
HexEscapeSequence :=
 \x HexDigitChar |
 \x HexDigitChar HexDigitChar
SimpleEscapeSequence :=
 \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSequence :=
 \ OctalDigitChar |
676 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 \ OctalDigitChar OctalDigitChar |
 \ OctalDigitChar OctalDigitChar OctalDigitChar

// Miscellaneous Data Type Terms

DDBHandle :=
 Integer
ObjectReference :=
 Integer
Boolean :=
 True | False
True :=
 Ones
False :=
 Zero

19.1.5 ASL Opcode Terms

CompilerDirective :=
 IncludeTerm | ExternalTerm

NamedObject :=
 BankFieldTerm | CreateBitFieldTerm | CreateByteFieldTerm | CreateDWordFieldTerm |
 CreateFieldTerm | CreateQWordFieldTerm | CreateWordFieldTerm | DataRegionTerm |
 DeviceTerm | EventTerm | FieldTerm | FunctionTerm | IndexFieldTerm | MethodTerm |
 MutexTerm | OpRegionTerm | PowerResTerm | ProcessorTerm | ThermalZoneTerm

NameSpaceModifier :=
 AliasTerm | NameTerm | ScopeTerm

Type1Opcode :=
BreakTerm | BreakPointTerm | ContinueTerm | FatalTerm | IfElseTerm | LoadTerm |
 NoOpTerm | NotifyTerm | ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm |
 SleepTerm | StallTerm | SwitchTerm | UnloadTerm | WhileTerm

A Type 1 opcode term does not return a value and can only be used standalone on a line of ASL code.
Since these opcodes do not return a value they cannot be used as a term in an expression.

Type2Opcode :=
 AcquireTerm | AddTerm | AndTerm | ConcatTerm | ConcatResTerm | CondRefOfTerm |
 CopyObjectTerm | DecTerm | DerefOfTerm | DivideTerm |FindSetLeftBitTerm |
 FindSetRightBitTerm | FromBCDTerm | IncTerm | IndexTerm | LAndTerm | LEqualTerm |
 LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm | LNotTerm |
 LNotEqualTerm | LoadTableTerm | LOrTerm | MatchTerm | MidTerm |ModTerm | MultiplyTerm |
 NAndTerm | NOrTerm | NotTerm | ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm |
 ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm | TimerTerm | ToBCDTerm |
 ToBufferTerm | ToDecimalStringTerm | ToHexStringTerm | ToIntegerTerm | ToStringTerm |
 WaitTerm | XorTerm | UserTerm

A Type 2 opcode returns a value and can be used in an expression.

Type3Opcode :=
 AddTerm | AndTerm | DecTerm | DerefOfTerm | DivideTerm | EISAIDTerm |
 FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm | IncTerm | LAndTerm |
 LEqualTerm | LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm | LNotTerm |
 LNotEqualTerm | LOrTerm | MatchTerm | ModTerm | MultiplyTerm | NAndTerm | NOrTerm |
 NotTerm | OrTerm | ShiftLeftTerm | ShiftRightTerm | SubtractTerm | ToBCDTerm |
 ToIntegerTerm | XorTerm
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 677

ACPI Source Language (ASL)Reference
The Type 3 opcodes are a subset of Type 2 opcodes that return an Integer value and can be used in
an expression that evaluates to a constant. These opcodes may be evaluated at ASL compile-time. To
ensure that these opcodes will evaluate to a constant, the following rules apply: The term cannot
have a destination (target) operand, and must have either a Type3Opcode, Type4Opcode, Type5Opcode,
ConstExprTerm, Integer, BufferTerm, Package, or String for all arguments.

Type4Opcode :=
 ConcatTerm | DerefOfTerm | MidTerm | ToDecimalStringTerm | ToHexStringTerm | ToStringTerm

The Type 4 opcodes are a subset of Type 2 opcodes that return a String value and can be used in an
expression that evaluates to a constant. These opcodes may be evaluated at ASL compile-time. To
ensure that these opcodes will evaluate to a constant, the following rules apply: The term cannot
have a destination (target) operand, and must have either a Type3Opcode, Type4Opcode, Type5Opcode,
ConstExprTerm, Integer, BufferTerm, Package, or String for all arguments.

Type5Opcode :=
 ConcatTerm | ConcatResTerm | DerefOfTerm | MidTerm | ResourceTemplateTerm |
 ToBufferTerm | ToUUIDTerm | UnicodeTerm

The Type 5 opcodes are a subset of Type 2 opcodes that return a Buffer value and can be used in an
expression that evaluates to a constant. These opcodes may be evaluated at ASL compile-time. To
ensure that these opcodes will evaluate to a constant, the following rules apply: The term cannot
have a destination (target) operand, and must have either a Type3Opcode, Type4Opcode, Type5Opcode,
ConstExprTerm, Integer, BufferTerm, Package, or String for all arguments.

Type6Opcode :=
 RefOfTerm | DerefOfTerm | IndexTerm | UserTerm

19.1.6 ASL Primary (Terminal) Terms

AccessAsTerm :=
 AccessAs (
 AccessType, // AccessTypeKeyword
 AccessAttribute // Nothing | ByteConstExpr |
 // AccessAttribKeyword | ExtendedAccessAttribTerm
)
AcquireTerm :=
 Acquire (
 SyncObject, // SuperName => Mutex
 TimeoutValue // WordConstExpr
) => Boolean // True means the operation timed out and the Mutex was not acquired

AddTerm :=
 Add (
 Addend1, // TermArg => Integer
 Addend2, // TermArg => Integer
 Result // Target
) => Integer

AliasTerm :=
 Alias (
 SourceObject, // NameString
 AliasObject // NameString
)

AndTerm :=
 And (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
678 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Result // Target
) => Integer

ArgTerm :=
 Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

BankFieldTerm :=
 BankField (
 RegionName, // NameString => OperationRegion
 BankName, // NameString => FieldUnit
 BankValue, // TermArg => Integer
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword
) {FieldUnitList}

BreakPointTerm :=
 BreakPoint

BreakTerm :=
 Break

BufferTerm :=
 Buffer (
 BuffSize // Nothing | TermArg => Integer
) {StringData | ByteList} => Buffer

CaseTerm :=
 Case (
 Value // DataObject
) {TermList}

ConcatResTerm :=
 ConcatenateResTemplate (
 Source1, // TermArg => Buffer
 Source2, // TermArg => Buffer
 Result // Target
) => Buffer

ConcatTerm :=
 Concatenate (
 Source1, // TermArg => ComputationalData
 Source2, // TermArg => ComputationalData
 Result // Target
) => ComputationalData

ConnectionTerm :=
 Connection (
 ConnectionResource // NameString | ResourceMacroTerm
)

CondRefOfTerm :=
 CondRefOf (
 Source, // SuperName
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 679

ACPI Source Language (ASL)Reference
 Destination // Target
) => Boolean

ContinueTerm :=
 Continue

CopyObjectTerm :=
 CopyObject (
 Source, // TermArg => DataRefObject
 Result, // NameString | LocalTerm | ArgTerm
) => DataRefObject

CreateBitFieldTerm :=
 CreateBitField (
 SourceBuffer, // TermArg => Buffer
 BitIndex, // TermArg => Integer
 BitFieldName // NameString
)

CreateByteFieldTerm :=
 CreateByteField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 ByteFieldName // NameString
)

CreateDWordFieldTerm :=
 CreateDWordField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 DWordFieldName // NameString
)

CreateFieldTerm :=
 CreateField (
 SourceBuffer, // TermArg => Buffer
 BitIndex, // TermArg => Integer
 NumBits, // TermArg => Integer
 FieldName // NameString
)

CreateQWordFieldTerm :=
 CreateQWordField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 QWordFieldName // NameString
)

CreateWordFieldTerm :=
 CreateWordField (
 SourceBuffer, // TermArg => Buffer
 ByteIndex, // TermArg => Integer
 WordFieldName // NameString
)

DataRegionTerm :=
 DataTableRegion (
 RegionName, // NameString
 SignatureString, // TermArg => String
 OemIDString, // TermArg => String
680 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 OemTableIDString // TermArg => String
)

DebugTerm :=
 Debug

DecTerm :=
 Decrement (
 Minuend // SuperName
) => Integer

DefaultTerm :=
 Default {TermList}

DefinitionBlockTerm :=
 DefinitionBlock (
 AMLFileName, // StringData
 TableSignature, // StringData
 ComplianceRevision, // ByteConst
 OEMID, // StringData
 TableID, // StringData
 OEMRevision // DWordConst
) {ObjectList}

DerefOfTerm :=
 DerefOf (
 Source // TermArg => ObjectReference
 // ObjectReference is an object produced by terms such
 // as Index, RefOf or CondRefOf.
) => DataRefObject

DeviceTerm :=
 Device (
 DeviceName // NameString
) {ObjectList}

DivideTerm :=
 Divide (
 Dividend, // TermArg => Integer
 Divisor, // TermArg => Integer
 Remainder, // Target
 Result // Target
) => Integer // Returns Result

EISAIDTerm :=
 EISAID (
 EisaIdString // StringData
) => DWordConst

ElseIfTerm :=
 ElseIf (
 Predicate // TermArg => Integer
) {TermList} ElseTerm

ElseTerm :=
 Else {TermList} | ElseIfTerm | Nothing

EventTerm :=
 Event (
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 681

ACPI Source Language (ASL)Reference
 EventName // NameString
)

ExternalTerm :=
 External (
 ObjName, // NameString
 ObjType, // Nothing | ObjectTypeKeyword
 ResultType, // Nothing | ParameterTypePackage
 ParameterTypes // Nothing | ParameterTypesPackage
)

FatalTerm :=
 Fatal (
 Type, // ByteConstExpr
 Code, // DWordConstExpr
 Arg // TermArg => Integer
)

FieldTerm :=
 Field (
 RegionName, // NameString => OperationRegion
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword
) {FieldUnitList}

FindSetLeftBitTerm :=
 FindSetLeftBit (
 Source, // TermArg => Integer
 Result // Target
) => Integer

FindSetRightBitTerm :=
 FindSetRightBit (
 Source, // TermArg => Integer
 Result // Target
) => Integer

FromBCDTerm :=
 FromBCD (
 BCDValue, // TermArg => Integer
 Result // Target
) => Integer

FunctionTerm :=
 Function (
 FunctionName, // NameString
 ReturnType, // Nothing | ParameterTypePackage
 ParameterTypes // Nothing | ParameterTypesPackage
) {TermList}

IfTerm :=
 If (
 Predicate // TermArg => Integer
) {TermList}

IncludeTerm :=
 Include (
682 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 FilePathName // StringData
)

IncTerm :=
 Increment (
 Addend // SuperName
) => Integer

IndexFieldTerm :=
 IndexField (
 IndexName, // NameString => FieldUnit
 DataName, // NameString => FieldUnit
 AccessType, // AccessTypeKeyword
 LockRule, // LockRuleKeyword
 UpdateRule // UpdateRuleKeyword
) {FieldUnitList}

IndexTerm :=
 Index (
 Source, // TermArg => <String | Buffer | PackageTerm>
 Index, // TermArg => Integer
 Destination // Target
) => ObjectReference

LAndTerm :=
 LAnd (
 Source1, // TermArg => Integer
 Source2 // TermArg => Integer
) => Boolean

LEqualTerm :=
 LEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LGreaterEqualTerm :=
 LGreaterEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LGreaterTerm :=
 LGreater (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LLessEqualTerm :=
 LLessEqual (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean
LLessTerm :=
 LLess (
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LNotEqualTerm :=
 LNotEqual (
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 683

ACPI Source Language (ASL)Reference
 Source1, // TermArg => ComputationalData
 Source2 // TermArg => ComputationalData
) => Boolean

LNotTerm :=
 LNot (
 Source, // TermArg => Integer
) => Boolean

LoadTableTerm :=
 LoadTable (
 SignatureString, // TermArg => String
 OemIDString, // TermArg => String
 OemTableIDString, // TermArg => String
 RootPathString, // Nothing | TermArg => String
 ParameterPathString, // Nothing | TermArg => String
 ParameterData // Nothing | TermArg => DataRefObject
) => DDBHandle

LoadTerm :=
 Load (
 Object, // NameString
 DDBHandle // SuperName
)

LocalTerm :=
 Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

LOrTerm :=
 LOr (
 Source1, // TermArg => Integer
 Source2 // TermArg => Integer
) => Boolean

MatchTerm :=
 Match (
 SearchPackage, // TermArg => Package
 Op1, // MatchOpKeyword
 MatchObject1, // TermArg => ComputationalData
 Op2, // MatchOpKeyword
 MatchObject2, // TermArg => ComputationalData
 StartIndex // TermArg => Integer
) => <Ones | Integer>

MethodTerm :=
 Method (
 MethodName, // NameString
 NumArgs, // Nothing | ByteConstExpr
 SerializeRule, // Nothing | SerializeRuleKeyword
 SyncLevel, // Nothing | ByteConstExpr
 ReturnType, // Nothing | ParameterTypePackage
 ParameterTypes // Nothing | ParameterTypesPackage
) {TermList}

MidTerm :=
 Mid (
 Source, // TermArg => <Buffer | String>
 Index, // TermArg => Integer
 Length, // TermArg => Integer
684 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Result // Target
) => <Buffer | String>

ModTerm :=
 Mod (
 Dividend, // TermArg => Integer
 Divisor, // TermArg => Integer
 Result // Target
) => Integer // Returns Result

MultiplyTerm :=
 Multiply (
 Multiplicand, // TermArg => Integer
 Multiplier, // TermArg => Integer
 Result // Target
) => Integer

MutexTerm :=
 Mutex (
 MutexName, // NameString
 SyncLevel // ByteConstExpr
)

NameTerm :=
 Name (
 ObjectName, // NameString
 Object // DataObject
)

NAndTerm :=
 NAnd (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

NoOpTerm :=
 NoOp

NOrTerm :=
 NOr (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

NotifyTerm :=
 Notify (
 Object, // SuperName => <ThermalZone | Processor | Device>
 NotificationValue // TermArg => Integer
)

NotTerm :=
 Not (
 Source, // TermArg => Integer
 Result // Target
) => Integer

ObjectTypeTerm :=
 ObjectType (
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 685

ACPI Source Language (ASL)Reference
 Object // SuperName
) => Integer

OffsetTerm :=
 Offset (
 ByteOffset // IntegerData
)

OpRegionTerm :=
 OperationRegion (
 RegionName, // NameString
 RegionSpace, // RegionSpaceKeyword
 Offset, // TermArg => Integer
 Length // TermArg => Integer
)

OrTerm :=
 Or (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

PackageTerm :=
 Package (
 NumElements // Nothing | ByteConstExpr | TermArg => Integer
) {PackageList} => Package

PowerResTerm :=
 PowerResource (
 ResourceName, // NameString
 SystemLevel, // ByteConstExpr
 ResourceOrder // WordConstExpr
) {ObjectList}

ProcessorTerm :=
 Processor (
 ProcessorName, // NameString
 ProcessorID, // ByteConstExpr
 PBlockAddress, // DWordConstExpr | Nothing (=0)
 PblockLength // ByteConstExpr | Nothing (=0)
) {ObjectList}

RawDataBufferTerm :=
 RawDataBuffer (
 BuffSize // Nothing | WordConst
) { ByteList} => RawDataBuffer

RefOfTerm :=
 RefOf (
 Object // SuperName
) => ObjectReference

ReleaseTerm :=
 Release (
 SyncObject // SuperName
)

ResetTerm :=
 Reset (
686 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 SyncObject // SuperName
)

ReturnTerm :=
 Return (
 Arg // Nothing | TermArg => DataRefObject
)

ScopeTerm :=
 Scope (
 Location // NameString
) {ObjectList}

ShiftLeftTerm :=
 ShiftLeft (
 Source, // TermArg => Integer
 ShiftCount, // TermArg => Integer
 Result // Target
) => Integer

ShiftRightTerm :=
 ShiftRight (
 Source, // TermArg => Integer
 ShiftCount, // TermArg => Integer
 Result // Target
) => Integer

SignalTerm :=
 Signal (
 SyncObject // SuperName
)

SizeOfTerm :=
 SizeOf (
 DataObject // SuperName => <String | Buffer | Package>
) => Integer

SleepTerm :=
 Sleep (
 MilliSeconds // TermArg => Integer
)

StallTerm :=
 Stall (
 MicroSeconds // TermArg => Integer
)

StoreTerm :=
 Store (
 Source, // TermArg => DataRefObject
 Destination // SuperName
) => DataRefObject

SubtractTerm :=
 Subtract (
 Minuend, // TermArg => Integer
 Subtrahend, // TermArg => Integer
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 687

ACPI Source Language (ASL)Reference
 Result // Target
) => Integer

SwitchTerm :=
 Switch (
 Predicate // TermArg => ComputationalData
) {CaseTermList}

ThermalZoneTerm :=
 ThermalZone (
 ThermalZoneName // NameString
) {ObjectList}

TimerTerm :=
 Timer => Integer

ToBCDTerm :=
 ToBCD (
 Value, // TermArg => Integer
 Result // Target
) => Integer

ToBufferTerm :=
 ToBuffer (
 Data, // TermArg => ComputationalData
 Result // Target
) => ComputationalData

ToDecimalStringTerm :=
 ToDecimalString (
 Data, // TermArg => ComputationalData
 Result // Target
) => String

ToHexStringTerm :=
 ToHexString (
 Data, // TermArg => ComputationalData
 Result // Target
) => String

ToIntegerTerm :=
 ToInteger (
 Data, // TermArg => ComputationalData
 Result // Target
) => Integer

ToStringTerm :=
 ToString (
 Source, // TermArg => Buffer
 Length, // Nothing | TermArg => Integer
 Result // Target
) => String

ToUUIDTerm :=
 ToUUID (
 String // StringData
) => Buffer

UnicodeTerm :=
 Unicode (
688 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 String // StringData
) => Buffer

UnloadTerm :=
 Unload (
 DDBHandle // SuperName
)

WaitTerm :=
 Wait (
 SyncObject, // SuperName => Event
 TimeoutValue // TermArg => Integer
) => Boolean // True means timed-out

WhileTerm :=
 While (
 Predicate // TermArg => Integer
) {TermList}

XOrTerm :=
 XOr (
 Source1, // TermArg => Integer
 Source2, // TermArg => Integer
 Result // Target
) => Integer

19.1.7 ASL Parameter Keyword Terms
AccessAttribKeyword :=
 AttribQuick | AttribSendReceive | AttribByte | AttribBytes (n) | AttribRawBytes (n) |
 AttribRawProcessBytes (n) | AttribWord | AttribBlock |AttribProcessCall |
 AttribBlockProcessCall // Note: Used for SMBus and GenericSerialBus BufferAcc only |
AccessTypeKeyword :=
 AnyAcc | ByteAcc | WordAcc | DWordAcc | QWordAcc | BufferAcc
AddressKeyword :=
 AddressRangeMemory | AddressRangeReserved | AddressRangeNVS | AddressRangeACPI
AddressSpaceKeyword :=
 RegionSpaceKeyword | FFixedHW | PCC
AddressingModeKeyword :=
 AddressingMode7Bit | AddressingMode10Bit
ByteLengthKeyword :=
 DataBitsFive | DataBitsSix | DataBitsSeven | DataBitsEight | DataBitsNine
BusMasterKeyword :=
 BusMaster | NotBusMaster
ClockPhaseKeyword :=
 ClockPhaseFirst | ClockPhaseSecond
ClockPolarityKeyword :=
 ClockPolarityLow | ClockPolarityHigh
DecodeKeyword :=
 SubDecode | PosDecode
EndianKeyword :=
 BigEndianing | LittleEndian
ExtendedAccessAttribKeyword :=
 AttribBytes | AttribRawBytes | AttribRawProcessBytes
 // Note: Used for GenericSerialBus BufferAcc only.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 689

ACPI Source Language (ASL)Reference
FlowControlKeyword :=
 FlowControlNone | FlowControlXon | FlowControlHardware
InterruptTypeKeyword :=
 Edge | Level
InterruptLevel :=
 ActiveHigh | ActiveLow
InterruptLevelKeyword :=
 ActiveHigh | ActiveLow | ActiveBoth
IODecodeKeyword :=
 Decode16 | Decode10
IoRestrictionKeyword :=
 IoRestrictionNone | IoRestrictionInputOnly | IoRestrictionOutputOnly |
 IoRestrictionNoneAndPreserve
LockRuleKeyword :=
 Lock | NoLock
MatchOpKeyword :=
 MTR | MEQ | MLE | MLT | MGE | MGT
MaxKeyword :=
 MaxFixed | MaxNotFixed
MemTypeKeyword :=
 Cacheable | WriteCombining | Prefetchable | NonCacheable
MinKeyword :=
 MinFixed | MinNotFixed
ObjectTypeKeyword :=
 UnknownObj | IntObj | StrObj | BuffObj | PkgObj | FieldUnitObj | DeviceObj |
 EventObj | MethodObj | MutexObj | OpRegionObj | PowerResObj | ProcessorObj |
 ThermalZoneObj | BuffFieldObj | DDBHandleObj
ParityKeyword :=
 ParityTypeNone | ParityTypeSpace | ParityTypeMark | ParityTypeOdd | ParityTypeEven
PinConfigKeyword :=
 PullDefault | PullUp | PullDown | PullNone
PolarityKeyword :=
 PolarityHigh | PolarityLow
RangeTypeKeyword :=
 ISAOnlyRanges | NonISAOnlyRanges | EntireRange
ReadWriteKeyword :=
 ReadWrite | ReadOnly
RegionSpaceKeyword :=
 UserDefRegionSpace | SystemIO | SystemMemory | PCI_Config | EmbeddedControl |
 SMBus | SystemCMOS | PciBarTarget | IPMI | GeneralPurposeIO | GenericSerialBus
ResourceTypeKeyword :=
 ResourceConsumer | ResourceProducer
SerializeRuleKeyword :=
 Serialized | NotSerialized
ShareTypeKeyword :=
 Shared | Exclusive | SharedAndWake | ExclusiveAndWake
SlaveModeKeyword :=
 ControllerInitiated | DeviceInitiated
StopBitsKeyword :=
 StopBitsZero | StopBitsOne | StopBitsOnePlusHalf | StopBitsTwo
TransferWidthKeyword :=
 Width8Bit | Width16Bit | Width32Bit | Width64Bit | Width128Bit | Width256Bit
TranslationKeyword :=
 SparseTranslation | DenseTranslation
TypeKeyword :=
 TypeTranslation | TypeStatic
UpdateRuleKeyword :=
 Preserve | WriteAsOnes | WriteAsZeros
UserDefRegionSpace :=
 IntegerData => 0x80 - 0xFF
XferTypeKeyword :=
690 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 Transfer8 | Transfer16 | Transfer8_16
WireModeKeyword :=
 ThreeWireMode | FourWireMode

19.1.8 ASL Resource Template Terms

ResourceTemplateTerm :=
 ResourceTemplate () {ResourceMacroList} => Buffer

ResourceMacroList :=
 Nothing | <ResourceMacroTerm ResourceMacroList>
ResourceMacroTerm :=
 DMATerm | DWordIOTerm | DWordMemoryTerm | DWordSpaceTerm | EndDependentFnTerm |
 ExtendedIOTerm | ExtendedMemoryTerm | ExtendedSpaceTerm | FixedDMATerm | FixedIOTerm |
 GpioIntTerm | GpioIOTerm | I2CSerialBusTerm | InterruptTerm | IOTerm | IRQNoFlagsTerm |
 IRQTerm | Memory24Term | Memory32FixedTerm | Memory32Term | QWordIOTerm | QWordMemoryTerm |
 QWordSpaceTerm | RegisterTerm | SPISerialBusTerm | StartDependentFnTerm |
 StartDependentFnNoPriTerm | UARTSerialBusTerm | VendorLongTerm | VendorShortTerm |
 WordBusNumberTerm | WordIOTerm | WordSpaceTerm

DMATerm :=
 DMA (
 DMAType, // DMATypeKeyword (_TYP)
 BusMaster, // BusMasterKeyword (_BM)
 XferType, // XferTypeKeyword (_SIZ)
 DescriptorName // Nothing | NameString
) {ByteList} // List of channels (0-7 bytes)

DWordIOTerm :=
 DWordIO (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
 AddressGranularity, // DWordConstExpr (_GRA)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 AddressTranslation, // DWordConstExpr (_TRA)
 AddressLength, // DWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

DWordMemoryTerm :=
 DWordMemory (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 MemType, // Nothing (NonCacheable) | MemTypeKeyword (_MEM)
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressGranularity, // DWordConstExpr (_GRA)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 AddressLength, // DWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 691

ACPI Source Language (ASL)Reference
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
692 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 AddressRange, // Nothing | AddressKeyword (_MTP)
 MemoryType // Nothing | TypeKeyword (_TTP)
)

DWordSpaceTerm :=
 DWordSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // DWordConstExpr (_GRA)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 AddressTranslation, // DWordConstExpr (_TRA)
 AddressLength, // DWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

EndDependentFnTerm :=
 EndDependentFn ()

ExtendedIOTerm :=
 ExtendedIO (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 TypeSpecificAttributes, // Nothing | QWordConstExpr
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

ExtendedMemoryTerm :=
 ExtendedMemory (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 MemType, // Nothing (NonCacheable) | MemTypeKeyword (_MEM)
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 TypeSpecificAttributes, // Nothing | QWordConstExpr
 DescriptorName, // Nothing | NameString
 MemoryType, // Nothing | AddressKeyword (_MTP)
 TranslationType // Nothing | TypeKeyword (_TTP)
)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 693

ACPI Source Language (ASL)Reference
ExtendedSpaceTerm :=
 ExtendedSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 TypeSpecificAttributes, // Nothing | QWordConstExpr (_ATT)
 DescriptorName // Nothing | NameString
)

FixedDMATerm :=
 FixedDMA (
 DMAReq, //WordConstExpr (_DMA)
 Channel, //WordConstExpr (_TYP)
 XferWidth, //Nothing (Width32Bit) | TransferWidthKeyword (_SIZ)
 DescriptorName, //Nothing | NameString
)

FixedIOTerm :=
 FixedIO (
 AddressBase, // WordConstExpr (_BAS)
 RangeLength, // ByteConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

GpioIntTerm :=
 GpioInt(
 InterruptType, // InterruptTypeKeyword (_MOD)
 InterruptLevel, // InterruptLevelKeyword (_POL)
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinConfig, // PinConfigKeyword | ByteConstExpr (_PPI)
 DeBounceTime // Nothing | WordConstExpr (_DBT)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} // List of GPIO pins (_PIN)

GpioIOTerm :=
 GpioIO (
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 PinConfig, // PinConfigKeyword | ByteConstExpr (_PPIC)
 DeBounceTime // Nothing | WordConstExpr (_DBT)
 DriveStrength // Nothing | WordConstExpr (_DRS)
 IORestriction // Nothing (None) | IORestrictionKeyword (_IOR)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing (0) | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
) {DWordList} // List of GPIO pins (_PIN)
694 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
I2CSerialBusTerm :=
 I2CSerialBus (
 SlaveAddress, // WordConstExpr (_ADR)
 SlaveMode, // Nothing (ControllerInitiated) | SlaveModeKeyword (_SLV)
 ConnectionSpeed, // DWordConstExpr (_SPE)
 AddressingMode, // Nothing (AddressingMode7Bit) | AddressModeKeyword (_MOD)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
)
InterruptTerm :=
 Interrupt (
 ResourceType, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 InterruptType, // InterruptTypeKeyword (_LL, _HE)
 InterruptLevel, // InterruptLevelKeyword (_LL, _HE)
 ShareType, // Nothing (Exclusive) ShareTypeKeyword (_SHR)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
) {DWordList} // list of interrupts (_INT)

IOTerm :=
 IO (
 IODecode, // IODecodeKeyword (_DEC)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 Alignment, // ByteConstExpr (_ALN)
 RangeLength, // ByteConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

IRQNoFlagsTerm :=
 IRQNoFlags (
 DescriptorName // Nothing | NameString
) {ByteList} // list of interrupts (0-15 bytes)

IRQTerm :=
 IRQ (
 InterruptType, // InterruptTypeKeyword (_LL, _HE)
 InterruptLevel, // InterruptLevelKeyword (_LL, _HE)
 ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
 DescriptorName // Nothing | NameString
) {ByteList} // list of interrupts (0-15 bytes)

Memory24Term :=
 Memory24 (
 ReadWriteType, // ReadWriteKeyword (_RW)
 MinAddress[23:8], // WordConstExpr (_MIN)
 MaxAddress[23:8], // WordConstExpr (_MAX)
 Alignment, // WordConstExpr (_ALN)
 RangeLength, // WordConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

Memory32FixedTerm :=
 Memory32Fixed (
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressBase, // DWordConstExpr (_BAS)
 RangeLength, // DWordConstExpr (_LEN)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 695

ACPI Source Language (ASL)Reference
 DescriptorName // Nothing | NameString
)

Memory32Term :=
 Memory32 (
 ReadWriteType, // ReadWriteKeyword (_RW)
 MinAddress, // DWordConstExpr (_MIN)
 MaxAddress, // DWordConstExpr (_MAX)
 Alignment, // DWordConstExpr (_ALN)
 RangeLength, // DWordConstExpr (_LEN)
 DescriptorName // Nothing | NameString
)

QWordIOTerm :=
 QWordIO (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

QWordMemoryTerm :=
 QWordMemory (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 MemType, // Nothing (NonCacheable) | MemTypeKeyword (_MEM)
 ReadWriteType, // ReadWriteKeyword (_RW)
 AddressGranularity, // QWordConstExpr (_GRA)
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 AddressRange, // Nothing | AddressKeyword (_MTP)
 MemoryType // Nothing | TypeKeyword (_TTP)
)

QWordSpaceTerm :=
 QWordSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // QWordConstExpr (_GRA)
696 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 MinAddress, // QWordConstExpr (_MIN)
 MaxAddress, // QWordConstExpr (_MAX)
 AddressTranslation, // QWordConstExpr (_TRA)
 AddressLength, // QWordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

RawDataBufferTerm :=
 RawDataBuffer (
 (BuffSize) // Nothing | Integer
) {ByteList} => ByteList

RegisterTerm :=
 Register (
 AddressSpaceID, // AddressSpaceKeyword (_ASI)
 RegisterBitWidth, // ByteConstExpr (_RBW)
 RegisterOffset, // ByteConstExpr (_RBO)
 RegisterAddress, // QWordConstExpr (_ADR)
 AccessSize, // ByteConstExpr (_ASZ)
 DescriptorName // Nothing | NameString
)

SPISerialBusTerm :=
 SPISerialBus (
 DeviceSelection, // WordConstExpr (_ADR)
 DeviceSelectionPolarity, // Nothing (PolarityLow) | DevicePolarityKeyword (_DPL)
 WireMode, // Nothing (FourWireMode) | WireModeKeyword (_MOD)
 DataBitLength, // ByteConstExpr (_LEN)
 SlaveMode, // Nothing (ControllerInitiated) | SlaveModeKeyword (_SLV)
 ConnectionSpeed, // DWordConstExpr (_SPE)
 ClockPolarity, // ClockPolarityKeyword (_POL)
 ClockPhase, // ClockPhaseKeyword (_PHA)
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | RawDataBuffer (_VEN)
)

StartDependentFnNoPriTerm :=
 StartDependentFnNoPri () {ResourceMacroList}

StartDependentFnTerm :=
 StartDependentFn (
 CompatPriority, // ByteConstExpr (0-2)
 PerfRobustPriority // ByteConstExpr (0-2)
) {ResourceMacroList}

UARTSerialBusTerm :=
 UARTSerialBus(
 Initial BaudRate, // DwordConstExpr (_SPE)
 BitsPerByte, // Nothing (DataBitsEight) | DataBitsKeyword (_LEN)
 StopBits, // Nothing (StopBitsOne) | StopBitsKeyword (_STB)
 LinesInUse, // ByteConstExpr (_LIN)
 IsBigEndian, // Nothing (LittleEndian) | EndianessKeyword (_END)
 Parity, // Nothing (ParityTypeNone) | ParityTypeKeyword (_PAR)
 FlowControl, // Nothing (FlowControlNone) | FlowControlKeyword (_FLC)
 ReceiveBufferSize, // WordConstExpr (_RXL)
 TransmitBufferSize, // WordConstExpr (_TXL)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 697

ACPI Source Language (ASL)Reference
 ResourceSource, // StringData
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 DescriptorName, // Nothing | NameString
 VendorData // Nothing | Object (_VEN)
)

VendorLongTerm :=
 VendorLong (
 DescriptorName // Nothing | NameString
) {ByteList}

VendorShortTerm :=
 VendorShort (
 DescriptorName // Nothing | NameString
) {ByteList} // Up to 7 bytes

WordBusNumberTerm :=
 WordBusNumber (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 AddressGranularity, // WordConstExpr (_GRA)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 AddressTranslation, // WordConstExpr (_TRA)
 AddressLength, // WordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

WordIOTerm :=
 WordIO (
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
 AddressGranularity, // WordConstExpr (_GRA)
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 AddressTranslation, // WordConstExpr (_TRA)
 AddressLength, // WordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName, // Nothing | NameString
 TranslationType, // Nothing | TypeKeyword (_TTP)
 TranslationDensity // Nothing | TranslationKeyword (_TRS)
)

WordSpaceTerm :=
 WordSpace (
 ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
 ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
 Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
 MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
 MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
 TypeSpecificFlags, // ByteConstExpr (_TSF)
 AddressGranularity, // WordConstExpr (_GRA)
698 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 MinAddress, // WordConstExpr (_MIN)
 MaxAddress, // WordConstExpr (_MAX)
 AddressTranslation, // WordConstExpr (_TRA)
 AddressLength, // WordConstExpr (_LEN)
 ResourceSourceIndex, // Nothing | ByteConstExpr
 ResourceSource, // Nothing | StringData
 DescriptorName // Nothing | NameString
)

19.2 ASL Concepts
This reference section is for developers who are writing ASL code while developing definition
blocks for platforms.

19.2.1 ASL Names
This section describes how to encode object names using ASL.

The following table lists the characters legal in any position in an ASL object name. ASL names are
not case-sensitive and will be converted to upper case.

Table 19-309 Named Object Reference Encodings

The following table lists the name modifiers that can be prefixed to an ASL name.

Table 19-310 Definition Block Name Modifier Encodings

19.2.1.1 _T_x Reserved Object Names
The ACPI specification reserves object names with the prefix _T_ for internal use by the ASL
compiler. The ASL compiler may, for example, use these objects to store temporary values when
implementing translation of complicated control structures into AML. The ASL compiler must
declare _T_x objects normally (using Name) and must not define them more than once within the
same scope.

19.2.2 ASL Literal Constants
This section describes how to encode integer and string constants using ASL.

Value Description Title

0x41-0x5A, 0x5F, 0x61-0x7A Lead character of name
(‘A’–‘Z’, ‘_’ , ‘a’–‘z’)

LeadNameChar

0x30-0x39, 0x41-0x5A, 0x5F, 0x61-
0x7A

Non-lead (trailing) character of name (‘A’–
‘Z’, ‘_’, ‘a’–‘z’, ‘0’–‘9’)

NameChar

Value Description NamePrefix := Followed by …

0x5C Namespace root (‘\’) RootPrefix Name

0x5E Parent namespace (‘^’) ParentPrefix ParentPrefix or Name
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 699

ACPI Source Language (ASL)Reference
19.2.2.1 Integers
DigitChar := ‘0’-‘9’
LeadDigitChar := ‘1’-‘9’
OctalDigitChar := ‘0’-‘7’
HexDigitChar := DigitChar | ‘A’-‘F’ | ‘a’-‘f’

Integer := DecimalConst | OctalConst | HexConst
DecimalConst := LeadDigitChar | <DecimalConst DigitChar>
OctalConst := ‘0’ | <OctalConst OctalDigitChar>
HexConst := <0x HexDigitChar> | <0X HexDigitChar> | <HexConst HexDigitChar>
ByteConst := Integer => 0x00-0xFF
WordConst := Integer => 0x0000-0xFFFF
DWordConst := Integer => 0x00000000-0xFFFFFFFF
QWordConst := Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

Numeric constants can be specified in decimal, octal, or hexadecimal. Octal constants are preceded
by a leading zero (0), and hexadecimal constants are preceded by a leading zero and either a lower or
upper case ‘x’. In some cases, the grammar specifies that the number must evaluate to an integer
within a limited range, such as 0x00–0xFF, and so on.

19.2.2.2 Strings

 String := ‘”’ Utf8CharList ‘”’
Utf8CharList := Nothing | <EscapeSequence Utf8CharList> | <Utf8Char Utf8CharList>
Utf8Char := 0x01-0x21 |
 0x23-0x5B |
 0x5D-0x7F |
 0xC2-0xDF 0x80-0xBF |
 0xE0 0xA0-0xBF 0x80-0xBF |
 0xE1-0xEC 0x80-0xBF 0x80-0xBF |
 0xED 0x80-0x9F 0x80-0xBF |
 0xEE-0xEF 0x80-0xBF 0x80-0xBF |
 0xF0 0x90-0xBF 0x80-0xBF 0x80-0xBF |
 0xF1-0xF3 0x80-0xBF 0x80-0xBF 0x80-0xBF |
 0xF4 0x80-0x8F 0x80-0xBF 0x80-0xBF
EscapeSeq := SimpleEscapeSeq | OctalEscapeSeq | HexEscapeSeq
SimpleEscapeSeq := \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSeq := \ OctalDigitChar |
 \ OctalDigitChar OctalDigitChar |
 \ OctalDigitChar OctalDigitChar OctalDigitChar
HexEscapeSeq := \x HexDigitChar |
 \x HexDigitChar HexDigitChar
NullChar := 0x00

String literals consist of zero or more ASCII characters surrounded by double quotation marks ("). A
string literal represents a sequence of characters that, taken together, form a null-terminated string.
After all adjacent strings in the constant have been concatenated, a null character is appended.

Strings in the source file may be encoded using the UTF-8 encoding scheme as defined in the
Unicode 4.0 specification. UTF-8 is a byte-oriented encoding scheme, where some characters take a
single byte and others take multiple bytes. The ASCII character values 0x01-0x7F take up exactly
one byte.

However, only one operator currently supports UTF-8 strings: Unicode. Since string literals are
defined to contain only non-null character values, both Hex and Octal escape sequence values must
be non-null values in the ASCII range 0x01 through 0xFF. For arbitrary byte data (outside the range
of ASCII values), the Buffer object should be used instead.
700 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Since the backslash is used as the escape character and also the namespace root prefix, any string
literals that are to contain a fully qualified namepath from the root of the namespace must use the
double backslash to indicate this:

 Name (_EJD, ”_SB.PCI0.DOCK1”)

The double backslash is only required within quoted string literals.

Since double quotation marks are used close a string, a special escape sequence (\") is used to allow
quotation marks within strings. Other escape sequences are listed in the table below:

Table 19-311 ASL Escape Sequences

Since literal strings are read-only constants, the following ASL statement (for example) is not
supported:

Store (“ABC”, ”DEF”)

However, the following sequence of statements is supported:

Name (STR, ”DEF”)
...

Store (“ABC”, STR)

19.2.3 ASL Resource Templates
ASL includes some macros for creating resource descriptors. The ResourceTemplate macro creates a
Buffer in which resource descriptor macros can be listed. The ResourceTemplate macro
automatically generates an End descriptor and calculates the checksum for the resource template.
The format for the ResourceTemplate macro is as follows:

Escape Sequence ASCII Character

\a 0x07 (BEL)

\b 0x08 (BS)

\f 0x0C (FF)

\n 0x0A (LF)

\r 0x0D (CR)

\t 0x09 (TAB)

\v 0x0B (VT)

\" 0x22 (")

\' 0x27 (')

\\ 0x5C (\)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 701

ACPI Source Language (ASL)Reference

ResourceTemplate ()
 {
 // List of resource macros
 }

The following is an example of how these macros can be used to create a resource template that can
be returned from a _PRS control method:

 Name (PRS0, ResourceTemplate ()
 {
 StartDependentFn (1, 1)
 {
 IRQ (Level, ActiveLow, Shared) {10, 11}
 DMA (TypeF, NotBusMaster, Transfer16) {4}
 IO (Decode16, 0x1000, 0x2000, 0, 0x100)
 IO (Decode16, 0x5000, 0x6000, 0, 0x100, IO1)
 }
 StartDependentFn (1, 1)
 {
 IRQ (Level, ActiveLow, Shared) {}
 DMA (TypeF, NotBusMaster, Transfer16){5}
 IO (Decode16, 0x3000, 0x4000, 0, 0x100)
 IO (Decode16, 0x5000, 0x6000, 0, 0x100, IO2)
 }
 EndDependentFn ()
 })

Occasionally, it is necessary to change a parameter of a descriptor in an existing resource template at
run-time (i.e., during a method execution.) To facilitate this, the descriptor macros optionally
include a name declaration that can be used later to refer to the descriptor. When a name is declared
with a descriptor, the ASL compiler will automatically create field names under the given name to
refer to individual fields in the descriptor.

The offset returned by a reference to a resource descriptor field name is either in units of bytes (for
8-, 16-, 32-, and 64-bit field widths) or in bits (for all other field widths). In all cases, the returned
offset is the integer offset (in either bytes or bits) of the name from the first byte (offset 0) of the
parent resource template.

For example, given the above resource template, the following code changes the minimum and
maximum addresses for the I/O descriptor named IO2:

 CreateWordField (PRS0, IO2._MIN, IMIN)
 Store (0xA000, IMIN)

 CreateWordField (PRS0, IO2._MAX, IMAX)
 Store (0xB000, IMAX)

The resource template macros for each of the resource descriptors are listed below, after the table
that defines the resource descriptor. The resource template macros are formally defined in
Section 16, “Memory.”

The reserved names (such as _MIN and _MAX) for the fields of each resource descriptor are defined
in the appropriate table entry of the table that defines that resource descriptor.
702 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.2.4 ASL Macros
The ASL compiler supports some built in macros to assist in various ASL coding operations. The
following table lists some of the supported directives and an explanation of their function.

Table 19-312 Example ASL Built-in Macros

19.2.5 ASL Data Types
ASL provides a wide variety of data types and operators that manipulate data. It also provides
mechanisms for both explicit and implicit conversion between the data types when used with ASL
operators.

The table below describes each of the available data types.

Table 19-313 Summary of ASL Data Types

ASL Statement Description

EISAID (TextID) Converts the 7-character text argument into its corresponding 4-byte numeric
EISA ID encoding. This can be used when declaring IDs for devices that are
EISA IDs.

ResourceTemplate () Used to supply Plug and Play resource descriptor information in human readable
form, which is then translated into the appropriate binary Plug and Play resource
descriptor encodings. For more information about resource descriptor
encodings, see Section 6.4, “Resource Data Types for ACPI.”

ToUUID (AsciiString) Converts an ASCII string to a 128-bit buffer.

Unicode (StringData) Converts an ASCII string to a Unicode string contained in a buffer.

ASL Data Type Description

[Uninitialized] No assigned type or value. This is the type of all control method LocalX variables
and unused ArgX variables at the beginning of method execution, as well as all
uninitialized Package elements. Uninitialized objects must be initialized (via Store
or CopyObject) before they may be used as source operands in ASL expressions.

Buffer An array of bytes. Uninitialized elements are zero by default.

Buffer Field Portion of a buffer created using CreateBitField, CreateByteField,
CreateWordField, CreateQWordField, CreateField, or returned by the Index
operator.

DDB Handle Definition block handle returned by the Load operator

Debug Object Debug output object. Formats an object and prints it to the system debug port. Has
no effect if debugging is not active.

Device Device or bus object

Event Event synchronization object

Field Unit (within an
Operation Region)

Portion of an address space, bit-aligned and of one-bit granularity. Created using
Field, BankField, or IndexField.

Integer An n-bit little-endian unsigned integer. In ACPI 1.0 this was 32 bits. In ACPI 2.0
and later, this is 64 bits. The Integer (DWORD) designation indicates that only the
lower 32 bits have meaning and the upper 32 bits of 64-bit integers must be zero
(masking of upper bits is not required).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 703

ACPI Source Language (ASL)Reference
Note: (Compatibility Note) The ability to store and manipulate object references was first introduced in
ACPI 2.0. In ACPI 1.0 references could not be stored in variables, passed as parameters or
returned from functions.

19.2.5.1 Data Type Conversion Overview
ASL provides two mechanisms to convert objects from one data type to another data type at run-time
(during execution of the AML interpreter). The first mechanism, Explicit Data Type Conversion,
allows the use of explicit ASL operators to convert an object to a different data type. The second
mechanism, Implicit Data Type Conversion, is invoked by the AML interpreter when it is necessary
to convert a data object to an expected data type before it is used or stored.

The following general rules apply to data type conversions:

• Input parameters are always subject to implicit data type conversion (also known as implicit
source operand conversion) whenever the operand type does not match the expected input type.

• Output (target) parameters for all operators except the explicit data conversion operators are
subject to implicit data type conversion (also known as implicit result object conversion)
whenever the target is an existing named object or named field that is of a different type than the
object to be stored.

• Output parameters for the explicit data conversion operators, as well as output parameters that
refer to a method local or argument (LocalX or ArgX) are not subject to implicit type
conversion.

Both of these mechanisms (explicit and implicit conversion) are described in detail in the sections
that follow.

19.2.5.2 Explicit Data Type Conversions
The following ASL operators are provided to explicitly convert an object from one data type to
another:

Integer Constant Created by the ASL terms “Zero”, “One”, “Ones”, and “Revision”.

Method Control Method (Executable AML function)

Mutex Mutex synchronization object

Object Reference Reference to an object created using the RefOf, Index, or CondRefOf operators

Operation Region Operation Region (A region within an Address Space)

Package Collection of ASL objects with a fixed number of elements (up to 255).

Power Resource Power Resource description object

Processor Processor description object

RawDataBuffer An array of bytes. Uninitialized elements are zero by default. RawDataBuffer does
not contain any AML encoding bytes, only the raw bytes.

String Null-terminated ASCII string.

Thermal Zone Thermal Zone description object

ASL Data Type Description
704 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
EISAID

Converts a 7-character text argument into its corresponding 4-byte numeric EISA ID
encoding.

FromBCD

Convert an Integer to a BCD Integer

ToBCD

Convert a BCD Integer to a standard binary Integer.

ToBuffer

Convert an Integer, String, or Buffer to an object of type Buffer

ToDecimalString

Convert an Integer, String, or Buffer to an object of type String. The string contains
the ASCII representation of the decimal value of the source operand.

ToHexString

Convert an Integer, String, or Buffer to an object of type String. The string contains
the ASCII representation of the hexadecimal value of the source operand.

ToInteger

Convert an Integer, String, or Buffer to an object of type Integer.

ToString

Copy directly and convert a Buffer to an object of type String.

ToUUID

Convert an ASCII string to a UUID Buffer.

The following ASL operators are provided to copy and transfer objects:

CopyObject

Explicitly store a copy of the operand object to the target name. No implicit type
conversion is performed. (This operator is used to avoid the implicit conversion
inherent in the ASL Store operator.)

Store

Store a copy of the operand object to the target name. Implicit conversion is
performed if the target name is of a fixed data type (see below). However, Stores to
method locals and arguments do not perform implicit conversion and are therefore the
same as using CopyObject.

19.2.5.3 Implicit Data Type Conversions
Automatic or Implicit type conversions can take place at two different times during the execution of
an ASL operator. First, it may be necessary to convert one or more of the source operands to the data
type(s) expected by the ASL operator. Second, the result of the operation may require conversion
before it is stored into the destination. (Many of the ASL operators can store their result optionally
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 705

ACPI Source Language (ASL)Reference
into an object specified by the last parameter. In these operators, if the destination is specified, the
action is exactly as if a Store operator had been used to place the result in the destination.)

Such data conversions are performed by an AML interpreter during execution of AML code and are
known collectively as Implicit Operand Conversions. As described briefly above, there are two
different types of implicit operand conversion:

1. Conversion of a source operand from a mismatched data type to the correct data type required by
an ASL operator, called Implicit Source Conversion. This conversion occurs when a source
operand must be converted to the operand type expected by the operator. Any or all of the source
operands may be converted in this manner before the execution of the ASL operator can
proceed.

2. Conversion of the result of an operation to the existing type of a target operand before it is stored
into the target operand, called Implicit Result Conversion. This conversion occurs when the
target is a fixed type such as a named object or a field. When storing to a method Local or Arg,
no conversion is required because these data types are of variable type (the store simply
overwrites any existing object and the existing type).

19.2.5.4 Implicit Source Operand Conversion

During the execution of an ASL operator, each source operand is processed by the AML interpreter as follows:

• If the operand is of the type expected by the operator, no conversion is necessary.

• If the operand type is incorrect, attempt to convert it to the proper type.

• For the Concatenate operator and logical operators (LEqual, LGreater, LGreaterEqual, LLess,
LLessEqual, and LNotEqual), the data type of the first operand dictates the required type of the
second operand, and for Concatenate only, the type of the result object. (The second operator is
implicitly converted, if necessary, to match the type of the first operand.)

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit source conversion will be attempted anytime a source operand contains a data type that
is different that the type expected by the operator. For example:

Store (“5678”, Local1)
Add (0x1234, Local1, BUF1)

In the Add statement above, Local1 contains a String object and must undergo conversion to an
Integer object before the Add operation can proceed.

In some cases, the operator may take more than one type of operand (such as Integer and String). In
this case, depending on the type of the operand, the highest priority conversion is applied. The table
below describes the source operand conversions available. For example:

Store (Buffer (1) {}, Local0)
Name (ABCD, Buffer (10) {1, 2, 3, 4, 5, 6, 7, 8, 9, 0})
CreateDWordField (ABCD, 2, XYZ)
Name (MNOP, ”1234”)
Concatenate (XYZ, MNOP, Local0)

The Concatenate operator can take an Integer, Buffer or String for its first two parameters and the
type of the first parameter determines how the second parameter will be converted. In this example,
the first parameter is of type Buffer Field (from the CreateDWordField operator). What should it be
706 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
converted to: Integer, Buffer or String? According to Table 18-7, the highest priority conversion is to
Integer. Therefore, both of the following objects will be converted to Integers:

XYZ (0x05040302)
MNOP (0x31, 0x32, 0x33, 0x34)

And will then be joined together and the resulting type and value will be:

Buffer (0x02, 0x03, 0x04, 0x05, 0x31, 0x32, 0x33, 0x34)

19.2.5.5 Implicit Result Object Conversion
For all ASL operators that generate and store a result value (including the Store operator), the result
object is processed and stored by the AML interpreter as follows:

• If the ASL operator is one of the explicit conversion operators (ToString, ToInteger, etc., and the
CopyObject operator), no conversion is performed. (In other words, the result object is stored
directly to the target and completely overwrites any existing object already stored at the target.)

• If the target is a method local or argument (LocalX or ArgX), no conversion is performed and
the result is stored directly to the target.

• If the target is a fixed type such as a named object or field object, an attempt is made to convert
the source to the existing target type before storing.

• If conversion is impossible, abort the running control method and issue a fatal error.

An implicit result conversion can occur anytime the result of an operator is stored into an object that
is of a fixed type. For example:

Name (BUF1, Buffer (10))
Add (0x1234, 0x789A, BUF1)

Since BUF1 is a named object of fixed type Buffer, the Integer result of the Add operation must be
converted to a Buffer before it is stored into BUF1.

19.2.5.6 Data Types and Type Conversions
The following table lists the available ASL data types and the available data type conversions (if
any) for each. The entry for each data type is fully cross-referenced, showing both the types to which
the object may be converted as well as all other types that may be converted to the data type.

The allowable conversions apply to both explicit and implicit conversions.

Table 19-314 Data Types and Type Conversions

ASL Data Type Can be implicitly or explicitly converted to
these Data Types: (In priority order)

Can be implicitly or explicitly
converted from these Data Types:

[Uninitialized] None. Causes a fatal error when used as
a source operand in any ASL statement.

Integer, String, Buffer, Package, DDB
Handle, Object Reference

Buffer Integer, String, Debug Object Integer, String

Buffer Field Integer, Buffer, String, Debug Object Integer, Buffer, String

DDB Handle Integer, Debug Object Integer
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 707

ACPI Source Language (ASL)Reference
19.2.5.7 Data Type Conversion Rules
The following table presents the detailed data conversion rules for each of the allowable data type
conversions. These conversion rules are implemented by the AML Interpreter and apply to all
conversion types — explicit conversions, implicit source conversions, and implicit result
conversions.

Debug Object None. Causes a fatal error when used as
a source operand in any ASL statement.

Integer, String, Buffer, Package, Field
Unit, Buffer Field, DDB Handle

Device None None

Event None None

Field Unit (within an
Operation Region)

Integer, Buffer, String, Debug Object Integer, Buffer, String

Integer Buffer, Buffer Field, DDB Handle, Field
Unit, String, Debug Object

Buffer, String

Integer Constant Integer, Debug Object None. Also, storing any object to a
constant is a no-op, not an error.

Method None None

Mutex None None

Object Reference None None

Operation Region None None

Package Debug Object None

String Integer, Buffer, Debug Object Integer, Buffer

Power Resource None None

Processor None None

RawDataBuffer None None

Thermal Zone None None
708 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Table 19-315 Object Conversion Rules

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Buffer Buffer Field The contents of the buffer are copied to the Buffer Field. If the buffer is
smaller than the size of the buffer field, it is zero extended. If the buffer is
larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion was first introduced in ACPI 2.0. The
behavior in ACPI 1.0 was undefined.

Debug Object Each buffer byte is displayed as a hexadecimal integer, delimited by
spaces and/or commas.

Field Unit The entire contents of the buffer are copied to the Field Unit. If the buffer is
larger (in bits) than the size of the Field Unit, it is broken into pieces and
completely written to the Field Unit, lower chunks first. If the buffer (or the
last piece of the buffer, if broken up) is smaller than the size of the Field
Unit, it is zero extended before being written.

Integer If no integer object exists, a new integer is created. The contents of the
buffer are copied to the Integer, starting with the least-significant bit and
continuing until the buffer has been completely copied — up to the
maximum number of bits in an Integer. The size of an Integer is indicated
by the Definition Block table header’s Revision field. A Revision field value
less than 2 indicates that the size of an Integer is 32-bits. A value greater
than or equal to 2 signifies that the size of an Integer is 64-bits. If the buffer
is smaller than the size of an integer, it is zero extended. If the buffer is
larger than the size of an integer, it is truncated. Conversion of a zero-
length buffer to an integer is not allowed.

String If no string object exists, a new string is created. If the string already exists,
it is completely overwritten and truncated or extended to accommodate the
converted buffer exactly.The entire contents of the buffer are converted to a
string of two-character hexadecimal numbers, each separated by a space.
A zero-length buffer will be converted to a null (zero-length) string.

Buffer Field [See the
Integer and
Buffer Rules]

If the Buffer Field is smaller than or equal to the size of an Integer (in bits),
it will be treated as an Integer. Otherwise, it will be treated as a Buffer. The
size of an Integer is indicated by the Definition Block table header’s
Revision field. A Revision field value less than 2 indicates that the size of
an Integer is 32-bits. A value greater than or equal to 2 signifies that the
size of an Integer is 64-bits. (See the conversion rules for the Integer and
Buffer data types.)

DDB Handle [See the
Integer Rule]

The object is treated as an Integer (See conversion rules for the Integer
data type.)

Field Unit [See the
Integer and
Buffer Rules]

If the Field Unit is smaller than or equal to the size of an Integer (in bits), it
will be treated as an Integer. If the Field Unit is larger than the size of an
Integer, it will be treated as a Buffer. The size of an Integer is indicated by
the Definition Block table header’s Revision field. A Revision field value
less than 2 indicates that the size of an Integer is 32-bits. A value greater
than or equal to 2 signifies that the size of an Integer is 64-bits. (See the
conversion rules for the Integer and Buffer data types.)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 709

ACPI Source Language (ASL)Reference
Integer Buffer If no buffer object exists, a new buffer object is created based on the size of
the integer (4 bytes for 32-bit integers and 8 bytes for 64-bit integers). If a
buffer object already exists, the Integer overwrites the entire Buffer object.
If the integer requires more bits than the size of the Buffer, then the integer
is truncated before being copied to the Buffer. If the integer contains fewer
bits than the size of the buffer, the Integer is zero-extended to fill the entire
buffer.

Buffer Field The Integer overwrites the entire Buffer Field. If the integer is smaller than
the size of the buffer field, it is zero-extended. If the integer is larger than
the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion was first introduced in ACPI 2.0. The
behavior in ACPI 1.0 was undefined.

Debug Object The integer is displayed as a hexadecimal value.

Field Unit The Integer overwrites the entire Field Unit. If the integer is smaller than the
size of the buffer field, it is zero-extended. If the integer is larger than the
size of the buffer field, the upper bits are truncated.

String If no string object exists, a new string object is created based on the size of
the integer (8 characters for 32-bit integers and 16 characters for 64-bit
integers). If the string already exists, it is completely overwritten and
truncated or extended to accommodate the converted integer exactly. In
either case, the entire integer is converted to a string of hexadecimal ASCII
characters.

Package Package If no package object exists, a new package object is created. If the package
already exists, it is completely overwritten and truncated or extended to
accommodate the source package exactly. Any and all existing valid (non-
null) package elements of the target package are deleted, and the entire
contents of the source package are copied into the target package.

Debug Object Each element of the package is displayed based on its type.

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:
710 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.2.5.8 Rules for Storing and Copying Objects
The table below lists the actions performed when storing objects to different types of named targets.
ASL provides the following types of “store” operations:

• The Store operator is used to explicitly store an object to a location, with implicit conversion
support of the source object.

• Many of the ASL operators can store their result optionally into an object specified by the last
parameter. In these operators, if the destination is specified, the action is exactly as if a Store
operator had been used to place the result in the destination.

• The CopyObject operator is used to explicitly store a copy of an object to a location, with no
implicit conversion support.

String Buffer If no buffer object exists, a new buffer object is created. If a buffer object
already exists, it is completely overwritten. If the string is longer than the
buffer, the string is truncated before copying. If the string is shorter than the
buffer, the remaining buffer bytes are set to zero. In either case, the string
is treated as a buffer, with each ASCII string character copied to one buffer
byte, including the null terminator. A null (zero-length) string will be
converted to a zero-length buffer.

Buffer Field The string is treated as a buffer. If this buffer is smaller than the size of the
buffer field, it is zero extended. If the buffer is larger than the size of the
buffer field, the upper bits are truncated.
Compatibility Note: This conversion was first introduced in ACPI 2.0. The
behavior in ACPI 1.0 was undefined.

Debug Object Each string character is displayed as an ASCII character.

Field Unit Each character of the string is written, starting with the first, to the Field
Unit. If the Field Unit is less than eight bits, then the upper bits of each
character are lost. If the Field Unit is greater than eight bits, then the
additional bits are zeroed.

Integer If no integer object exists, a new integer is created. The integer is initialized
to the value zero and the ASCII string is interpreted as a hexadecimal
constant. Each string character is interpreted as a hexadecimal value (‘0’-
‘9’, ‘A’-‘F’, ‘a’-‘f’), starting with the first character as the most significant digit,
and ending with the first non-hexadecimal character, end-of-string, or when
the size of an integer is reached (8 characters for 32-bit integers and 16
characters for 64-bit integers). Note: the first non-hex character terminates
the conversion without error, and a “0x” prefix is not allowed. Conversion of
a null (zero-length) string to an integer is not allowed.

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 711

ACPI Source Language (ASL)Reference
Table 19-316 Object Storing and Copying Rules

19.2.5.9 Rules for Reading and Writing Objects
In the descriptions below, read operations always return the actual object, not a copy of the object in
order that constructs of the form:

 Add (Local1, Local2, Local3)

do not create unnecessary copies of Local1 or Local2. Also, this behavior enables the call-by-
reference semantics of control method invocation.

19.2.5.9.1 ArgX Objects

1. Read from ArgX parameters

• ObjectReference - Automatic dereference, return the target of the reference. Use of
DeRefOf returns the same.

• Buffer – Return the Buffer. Can create an Index, Field, or Reference to the buffer.

• Package – Return the Package. Can create an Index or Reference to the package.

• All other object types – Return the object.

Example method invocation for the table below:

 MTHD (RefOf (Obj), Buf, Pkg, Obj)

Table 19-317 Reading from ArgX Objects

When Storing an
object of any data
type to this type of
Target location

This action is performed by the
Store operator or any ASL operator
with a Target operand:

This action is performed by the
CopyObject operator:

Method ArgX
variable

The object is copied to the destination with no conversion applied, with one
exception. If the ArgX contains an Object Reference, an automatic de-reference
occurs and the object is copied to the target of the Object Reference instead of
overwriting the contents of ArgX

Method LocalX
variable

The object is copied to the destination with no conversion applied. Even if LocalX
contains an Object Reference, it is overwritten.

Field Unit or Buffer
Field

The object is copied to the destination
after implicit result conversion is applied

Fields permanently retain their type and
cannot be changed. Therefore,
CopyObject can only be used to copy an
object of type Integer or Buffer to fields.

 Named data object The object is copied to the destination
after implicit result conversion is applied
to match the existing type of the named
location

The object and type are copied to the
named location.

Parameter MTHD ArgX Type Read operation on ArgX Result of read

RefOf (Obj), Reference to object Obj Store (Arg0, …)
CopyObject (Arg0, …)
DeRefOf (Arg0)

Obj
Obj
Obj
712 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
2. Store to ArgX parameters

• ObjectReference objects - Automatic dereference, copy the object and overwrite the final
target.

• All other object types- Copy the object and overwrite the ArgX variable. (Direct writes to
buffer or package ArgX parameters will also simply overwrite ArgX)

Table 19-318 Writing to ArgX Objects

Note: RefOf (ArgX) returns a reference to ArgX.

19.2.5.9.2 LocalX Objects

1. Read from LocalX variables

• ObjectReference - If performing a DeRefOf return the target of the reference. Otherwise,
return the reference.

• All other object types - Return a the object

Table 19-319 Reading from LocalX Objects

2. Store to LocalX variables

• All object types - Delete any existing object in LocalX first, then store a copy of the object.

Buf, Buffer Store (Arg1, …)
CopyObject (Arg1, …)
Index (Arg1, …)
Field (Arg1, …)

Buf
Buf
Index (Buf)
Field (Buf)

Pkg Package Store (Arg2, …)
CopyObject (Arg2, …)
Index (Arg2, …)

Pkg
Pkg
Index (Pkg)

Obj All other object types Store (Arg3, …)
CopyObject (Arg3, …)

Obj
Obj

Current type of ArgX Object to be
written

Write operation on ArgX Result of write (in ArgX)

RefOf (OldObj) Obj
(Any type)

Store (…, ArgX)
CopyObject (…, ArgX)

RefOf (copy of Obj)
RefOf (copy of Obj)

All other object types Obj
(Any type)

Store (…, ArgX)
CopyObject (…, ArgX)

Copy of Obj
Copy of Obj

Current LocalX Type Read operation on LocalX Result of read

RefOf (Obj) Store (LocalX, …)
CopyObject (LocalX, …)
DeRefOf (LocalX)

RefOf (Obj)
RefOf (Obj)
Obj

Obj (All other types) Store (LocalX, …)
CopyObject (LocalX, …)

Obj
Obj

Parameter MTHD ArgX Type Read operation on ArgX Result of read
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 713

ACPI Source Language (ASL)Reference
Table 19-320 Writing to LocalX Objects

19.2.5.9.3 Named Objects

1. Read from Named object

• ObjectReference - If performing a DeRefOf return the target of the reference. Otherwise,
return the reference.

• All other object types - Return the object

Table 19-321 Reading from Named Objects

2. Store to Named object

• All object types - Delete any existing object in NAME first, then store a copy of the object.
The Store operator will perform an implicit conversion to the existing type in NAME.
CopyObject does not perform an implicit store.

Table 19-322 Writing to Named Objects

Current LocalX Type Object to be
written

Write operation on LocalX Result of write (in
LocalX)

All object types Obj
(Any type)

Store (…, LocalX)
CopyObject (…, LocalX)

Copy of Obj
Copy of Obj

Current NAME Type Read operation on NAME Result of read

RefOf (Obj) Store (NAME, …)
CopyObject (NAME, …)
DeRefOf (NAME)

RefOf (Obj)
RefOf (Obj)
Obj

Obj (All other types) Store (NAME, …)
CopyObject (NAME, …)

Obj
Obj

Current NAME
Type

Object to be
written

Write operation on NAME Result of write (in NAME)

Any
(Any Type)

Obj
(Any type)

Store (…, NAME)
CopyObject (…, NAME)

Copy of Obj (converted to type A)
Copy of Obj (No conversion)
714 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.3 ASL Operator Summary
Operator Name Location Description

AccessAs page 723 Change Field Access

Acquire page 724 Acquire a mutex

Add page 724 Integer Add

Alias page 724 Define a name alias

And page 725 Integer Bitwise And

ArgX page 725 Method argument data objects

BankField page 725 Declare fields in a banked configuration object

Break page 727 Continue following the innermost enclosing While

BreakPoint page 727 Used for debugging, stops execution in the debugger

Buffer page 727 Declare Buffer object

Case page 728 Expression for conditional execution

Concatenate page 728 Concatenate two strings, integers or buffers

ConcatenateResTemplate page 729 Concatenate two resource templates

CondRefOf page 729 Conditional reference to an object

Connection page 729 Declare Field Connection Attributes

Continue page 730 Continue innermost enclosing While loop

CopyObject page 730 Copy and existing object

CreateBitField page 731 Declare a bit field object of a buffer object

CreateByteField page 731 Declare a byte field object of a buffer object

CreateDWordField page 731 Declare a DWord field object of a buffer object

CreateField page 732 Declare an arbitrary length bit field of a buffer object

CreateQWordField page 732 Declare a QWord field object of a buffer object

CreateWordField page 732 Declare a Word field object of a buffer object

DataTableRegion page 732 Declare a Data Table Region

Debug page 733 Debugger output

Decrement page 733 Decrement an Integer

Default page 734 Default execution path in Switch()

DefinitionBlock page 734 Declare a Definition Block

DerefOf page 735 Dereference an object reference

Device page 735 Declare a bus/device object

Divide page 736 Integer Divide

DMA page 737 DMA Resource Descriptor macro

DWordIO page 737 DWord IO Resource Descriptor macro

DWordMemory page 739 DWord Memory Resource Descriptor macro

DWordSpace page 741 DWord Space Resource Descriptor macro

EisaId page 742 EISA ID String to Integer conversion macro

Else page 743 Alternate conditional execution

ElseIf page 743 Conditional execution
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 715

ACPI Source Language (ASL)Reference
EndDependentFn page 744 End Dependent Function

Event page 745 Resource Descriptor macro

ExtendedIO page 745 Declare an event synchronization object

ExtendedMemory page 747 Extended IO Resource Descriptor macro

ExtendedSpace page 748 Extended Space Resource Descriptor macro

External page 750 Declare external objects

Fatal page 751 Fatal error check

Field page 751 Declare fields of an operation region object

FindSetLeftBit page 754 Index of first least significant bit set

FindSetRightBit page 754 Index of first most significant bit set

FixedDMA page 757 Fixed DMA Resource Descriptor macro

FixedIO page 755 Fixed I/O Resource Descriptor macro

FromBCD page 755 Convert from BCD to numeric

Function page 755 Declare control method

GpioInt page 757 GPIO Interrupt Connection Resource Descriptor macro

GpioIo page 758 GPIO I0 Connection Resource Descriptor macro

I2CSerialBus page 759 I2C Serialbus Connection Resource Descriptor macro

If page 760 Conditional execution

Include page 760 Include another ASL file

Increment page 761 Increment a Integer

Index page 763 Indexed Reference to member object

IndexField page 764 Declare Index/Data Fields

Interrupt page 764 Interrupt Resource Descriptor macro

IO page 766 IO Resource Descriptor macro

IRQ page 767 Interrupt Resource Descriptor macro

IRQNoFlags page 767 Short Interrupt Resource Descriptor macro

LAnd page 767 Logical And

LEqual page 768 Logical Equal

LGreater page 768 Logical Greater

LGreaterEqual page 768 Logical Not less

LLess page 769 Logical Less

LLessEqual page 769 Logical Not greater

LNot page 769 Logical Not

LNotEqual page 769 Logical Not equal

Load page 770 Load differentiating definition block

LoadTable page 770 Load Table from RSDT/XSDT

LocalX page 771 Method local data objects

LOr page 772 Logical Or

Match page 772 Search for match in package array

Operator Name Location Description
716 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Memory24 page 773 Memory Resource Descriptor macro

Memory32 page 774 Memory Resource Descriptor macro

Memory32Fixed page 775 Memory Resource Descriptor macro

Method page 775 Declare a control method

Mid page 777 Return a portion of buffer or string

Mod page 777 Integer Modulo

Multiply page 778 Integer Multiply

Mutex page 778 Declare a mutex synchronization object

Name page 779 Declare a Named object

NAnd page 779 Integer Bitwise Nand

NoOp page 779 No operation

NOr page 780 Integer Bitwise Nor

Not page 780 Integer Bitwise Not

Notify page 780 Notify Object of event

ObjectType page 781 Type of object

Offset page 780 Set Field Offset within operation range

One page 782 Constant One Object (1)

Ones page 782 Constant Ones Object (-1)

OperationRegion page 782 Declare an operational region

Or page 784 Integer Bitwise Or

Package page 784 Declare a package object

PowerResource page 785 Declare a power resource object

Processor page 786 Declare a processor package

QWordIO page 786 QWord IO Resource Descriptor macro

QWordMemory page 788 QWord Memory Resource Descriptor macro

QWordSpace page 790 Qword Space Resource Descriptor macro

RawDataBuffer page 792 Declare a RawDataBuffer

RefOf page 792 Create Reference to an object

Register page 792 Generic register Resource Descriptor macro

Release page 793 Release a synchronization object

Reset page 794 Reset a synchronization object

ResourceTemplate page 794 Resource to buffer conversion macro

Return page 794 Return from method execution

Revision page 793 Constant revision object

Scope page 795 Open named scope

ShiftLeft page 796 Integer shift value left

ShiftRight page 796 Integer shift value right

Signal page 797 Signal a synchronization object

SizeOf page 797 Get the size of a buffer, string, or package

Operator Name Location Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 717

ACPI Source Language (ASL)Reference
Sleep page 797 Sleep n milliseconds (yields the processor)

SPISerialbus page 798 SPI Serialbus Connection Resource

Stall page 799 Delay n microseconds (does not yield the processor)

StartDependentFn page 799 Start Dependent Function Resource Descriptor macro

StartDependentFnNoPri page 800 Start Dependent Function Resource Descriptor macro

Store page 800 Store object Integer

Subtract page 801 Subtract

Switch page 801 Select code to execute based on expression value

ThermalZone page 803 Declare a thermal zone package.

Timer page 803 Get 64-bit timer value

ToBCD page 804 Convert Integer to BCD

ToBuffer page 804 Convert data type to buffer

ToDecimalString page 805 Convert data type to decimal string

ToHexString page 805 Convert data type to hexadecimal string

ToInteger page 804 Convert data type to integer

ToString page 806 Copy ASCII string from buffer

ToUUID page 806 Convert Ascii string to UUID

Unicode page 808 String to Unicode conversion macro

Unload page 809 Unload definition block

UARTSerialBus page 807 UART SerialBus Connection Resource Descriptor macro

VendorLong page 809 Vendor Resource Descriptor

VendorShort page 809 Vendor Resource Descriptor

Wait page 810 Wait on an Event

While page 810 Conditional loop

WordBusNumber page 811 Word Bus number Resource Descriptor macro

WordIO page 812 Word IO Resource Descriptor macro

WordSpace page 814 Word Space Resource Descriptor macro

 Xor page 815 Integer Bitwise Xor

Zero page 815 Constant Zero object 0

Operator Name Location Description
718 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.4 ASL Operator Summary By Type
// ASL compiler controls

External
Include

page 750
page 760

Declare external objects
Include another ASL file

// ACPI table management

DefinitionBlock page 734 Declare a Definition Block

Load page 770 Load definition block

LoadTable
Unload

page 771
page 809

Load Table from RSDT/XSDT
Unload definition block

// Miscellaneous named object creation

Alias
Buffer
Device
Function
Method
Name
Package
PowerResource
Processor
RawDataBuffer
Scope
ThermalZone

page 725
page 727
page 735
page 755
page 775
page 779
page 784
page 785
page 786
page 792
page 795
page 803

Define a name alias
Declare Buffer object
Declare a bus/device object
Declare a control method
Declare a control method
Declare a Named object
Declare a package object
Declare a power resource object
Declare a processor package
Declare a RawDataBuffer
Open named scope
Declare a thermal zone package.

// Operation Regions and Fields

AccessAs
BankField
Connection
DataTableRegion
Field
IndexField
Offset
OperationRegion

page 723
page 726
page 729
page 732
page 751
page 763
page 780
page 782

Change Field Access
Declare fields in a banked configuration object
Declare Field Connection Attributes
Declare a Data Table Region
Declare fields of an operation region object
Declare Index/Data Fields
Set Field offset within operation region
Declare an operational region

// Buffer Fields

CreateBitField
CreateByteField
CreateDWordField
CreateField
CreateQWordField
CreateWordField

page 731
page 731
page 731
page 732
page 732
page 732

Declare a bit field object of a buffer object
Declare a byte field object of a buffer object
Declare a DWord field object of a buffer object
Declare an arbitrary length bit field of a buffer object
Declare a QWord field object of a buffer object
Declare a Word field object of a buffer object

// Synchronization
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 719

ACPI Source Language (ASL)Reference
Acquire
Event
Mutex
Notify
Release
Reset
Signal
Wait

page 724
page 745
page 778
page 780
page 793
page 794
page 797
page 810

Acquire a mutex
Declare an event synchronization object
Declare a mutex synchronization object
Notify Object of event
Release a synchronization object
Reset a synchronization object
Signal a synchronization object
Wait on an Event

// Object references

CondRefOf
DerefOf
RefOf

page 729
page 735
page 792

Conditional reference to an object
Dereference an object reference
Create Reference to an ob ect

// Integer arithmetic

Add
And
Decrement
Divide
FindSetLeftBit
FindSetRightBit
Increment
Mod
Multiply
NAnd
NOr
Not
Or
ShiftLeft
ShiftRight
Subtract
 Xor

page 724
page 725
page 733
page 736
page 754
page 754
page 761
page 777
page 778
page 779
page 780
page 780
page 784
page 796
page 796
page 801
page 815

Integer Add
Integer Bitwise And
Decrement an Integer
Integer Divide
Index of first least significant bit set
Index of first most significant bit set
Increment a Integer
Integer Modulo
Integer Multiply
Integer Bitwise Nand
Integer Bitwise Nor
Integer Bitwise Not
Integer Bitwise Or
Integer shift value left
Integer shift value right I
Integer Subtract
Integer Bitwise Xor

// Logical operators

LAnd
LEqual
LGreater
LGreaterEqual
LLess
LLessEqual
LNot
LNotEqual
LOr

page 767
page 768
page 768
page 768
page 769
page 769
page 769
page 769
page 772

Logical And
Logical Equal
Logical Greater
Logical Not less
Logical Less
Logical Not greater
Logical Not
Logical Not equal
Logical Or

// Method execution control
720 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Break
BreakPoint
Case
Continue
Default
Else
ElseIf
Fatal
If
NoOp
Return
Sleep
Stall
Switch
While

page 727
page 727
page 728
page 730
page 734
page 743
page 743
page 751
page 760
page 779
page 794
page 797
page 799
page 801
page 810

Continue following the innermost enclosingWhile
Used for debugging, stops execution in the debugger
Expression for conditional execution
Continue innermost enclosing While loop
Default execution path in Switch()
Alternate conditional execution
Conditional execution
Fatal error check
Conditional execution
No operation
Return from method execution
Sleep n milliseconds (yields the processor)
Delay in microseconds (does not yield the processor)
Select code to execute based on expression value
Conditional loop

// Data type conversion and manipulation

Concatenate
CopyObject
Debug
EisaId
FromBCD

page 728
page 730
page 733
page 742
page 755

Concatenate two strings,integers or buffers
Copy and existing object
Debugger output
EISA ID String to Integer conversion macro
Convert from BCD to numeric

Index
Match
Mid
ObjectType
SizeOf
Store
Timer

page 763
page 772
page 777
page 781
page 797
page 800
page 803

Indexed Reference to member object
Search for match in package array
Return a portion of buffer or string
Type of object
Get the size of a buffer, string, or package
Store object
Get 64-bit timer value

ToBCD
ToBuffer
ToDecimalString
ToHexString
ToInteger
ToString
ToUUID
Unicode

page 804
page 804
page 805
page 805
page 804
page 806
page 806
page 808

Convert Integer to BCD
Convert data type to buffer
Convert data type to decimal string
Convert data type to hexadecimal string
Convert data type to integer
Copy ASCII string from buffer
Convert Ascii strin to UUID
String to Unicode conversion macro

// Resource Descriptor macros
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 721

ACPI Source Language (ASL)Reference
ConcatenateResTemplate
DMA
DWordIO
DWordMemory
DWordSpace
EndDependentFn
ExtendedIO
ExtendedMemory
ExtendedSpace
FixedDMA
FixedIO
GpioInt
GpioIO
I2CSerialBus
Interrupt
IO
IRQ
IRQNoFlags
Memory24
Memory32
Memory32Fixed
QWordIO
QWordMemory
QWordSpace
Register
ResourceTemplate
SPISerialBus
StartDependentFn
StartDependentFnNoPri
UARTSerialBus
VendorLong
VendorShort
WordBusNumber
WordIO
WordSpace

page 729
page 737
page 737
page 739
page 741
page 744
page 745
page 747
page 748
page 757
page 755
page 757
page 758
page 759
page 764
page 766
page 767
page 767
page 773
page 774
page 775
page 786
page 788
page 790
page 792
page 794
page 798
page 799
page 800
page 807
page 809
page 809
page 811
page 812
page 814

Concatenate two resource templates
DMA Resource Descriptor macro
DWord IO Resource Descriptor macro
DWord Memory Resource Descriptor macro
DWord Space Resource Descriptor macro
End Dependent Function Resource Descriptor macro Extended I/O
Resource Descriptor macro
Extended Memory Resource Descriptor macro
Extended Space Resource Descriptor macro
Fixed DMA resource Descriptor macro
Fixed I/O Resource Descriptor macro
GPIO Interrupt Connection Resource Descriptor macro
GPIO IO Connection Resource Descriptor macro
I2CSerialBus Connection Resource Descriptor macro
Interrupt Resource Descriptor macro
IO Resource Descriptor macro
Interrupt Resource Descriptor macro
Short Interrupt Resource Descriptor macro
Memory Resource Descriptor macro
Memory Resource Descriptor macro
Memory Resource Descriptor macro
QWord IO Resource Descriptor macro
QWord Memory Resource Descriptor macro
Qword Space Resource Descriptor macro
Generic register Resource Descriptor macro
Resource to buffer conversion macro
SPI SerialBus Connection Resource Descriptor macro
Start Dependent Function Resource Descriptor macro
Start Dependent Function Resource Descriptor macro
UART SerialBus Connection Resource Descriptor macro
Vendor Resource Descriptor
Vendor Resource Descriptor
Word Bus number Resource Descriptor macro
Word IO Resource Descriptor macro
Word Space Resource Descriptor macro

// Constants

One
Ones
Revision
Zero

page 782
page 782
page 793
page 815

Constant One Object (1)
Constant Ones Object (-1)
Constant revision object
 Constant Zero object (0)

// Control method objects

ArgX
LocalX

page 725
page 771

Method argument data objects
Method local data ob ects
722 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5 ASL Operator Reference
This section describes each of the ASL operators. The syntax for each operator is given, with a
description of each argument and an overall description of the operator behavior. Example ASL
code is provided for the more complex operators.

ASL operators can be categorized as follows:

• Named Object creation

• Method execution control (If, Else, While, etc.)

• Integer math

• Logical operators

• Resource Descriptor macros

• Object conversion

• Utility/Miscellaneous

19.5.1 AccessAs (Change Field Unit Access)

Syntax
AccessAs (AccessType, AccessAttribute)

AccessAs (AccessType, AccessAttribute (AccessLength))

Arguments

AccessType is an AccessTypeKeyword that specifies the type of access desired (ByteAcc,
WordAcc, etc.). AccessAttribute is an optional argument of type AccessAttributeKeyword that
specifies additional protocols to be used, such as AttribQuick, AttribSendReceive, etc.
AccessLength is a required argument for some of the Access Attributes.

Description
The AccessAs operator is used within a FieldList to specify the Access Type, Access Attributes, and
Access Length for the remaining FieldUnits within the list (or until another AccessAs operator is
encountered.) It allows FieldUnits to have different access types within a single Field definition.

Supported AccessTypes:

• AnyAcc

• ByteAcc

• WordAcc

• DwordAcc

• QWordAcc

• BufferAcc

Supported simple AccessAttributes (with SMBus synonyms):

• AttribQuick (SMBQuick)

• AttribSendReceive (SMBSendReceive)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 723

ACPI Source Language (ASL)Reference
• AttribByte (SMBByte)

• AttribWord (SMBWord)

• AttribBlock (SMBBlock)

• AttribProcessCall (SMBProcessCall)

• AttribBlockProcessCall (SMBBlockProcessCall)

Access Attributes that require an AccessLength argument:

• AttribBytes (AccessLength)

• AttribRawBytes (AccessLength)

• AttribRawProcessBytes (AccessLength)

19.5.2 Acquire (Acquire a Mutex)

Syntax
Acquire (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be a mutex synchronization object. TimeoutValue is evaluated as an Integer.

Description
Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the
current execution thread is suspended until the owner of the Mutex releases it or until at least
TimeoutValue milliseconds have elapsed. A Mutex can be acquired more than once by the same
invocation.

Note: For Mutex objects referenced by a _DLM object, the host OS may also contend for ownership.

This operation returns True if a timeout occurred and the mutex ownership was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no timeout and the operation will wait
indefinitely.

19.5.3 Add (Integer Add)

Syntax
Add (Addend1, Addend2, Result) => Integer

Arguments

Addend1 and Addend2 are evaluated as Integers.

Description
The operands are added and the result is optionally stored into Result. Overflow conditions are
ignored and the result of overflows simply loses the most significant bits.
724 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.4 Alias (Declare Name Alias)

Syntax
Alias (SourceObject, AliasObject)

Arguments

SourceObject is any named object. AliasObject is a NameString.

Description
Creates a new object named AliasObject that refers to and acts exactly the same as SourceObject.

AliasObject is created as an alias of SourceObject in the namespace. The SourceObject name must
already exist in the namespace. If the alias is to a name within the same definition block, the
SourceObject name must be logically ahead of this definition in the block.

Example
The following example shows the use of an Alias term:

Alias (\SUS.SET.EVEN, SSE)

19.5.5 And (Integer Bitwise And)

Syntax
And (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise AND is performed and the result is optionally stored into Result.

19.5.6 Argx (Method Argument Data Objects)

Syntax
Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

Description
Up to 7 argument-object references can be passed to a control method. On entry to a control method,
only the argument objects that are passed are usable.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 725

ACPI Source Language (ASL)Reference
19.5.7 BankField (Declare Bank/Data Field)

Syntax
BankField (RegionName, BankName, BankValue, AccessType, LockRule, UpdateRule)
{FieldUnitList}

Arguments

RegionName is the name of the host Operation Region. BankName is the name of the bank selection
register.

Accessing the contents of a banked field data object will occur automatically through the proper
bank setting, with synchronization occurring on the operation region that contains the BankName
data variable, and on the Global Lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field
operator.

Description
This operator creates data field objects. The contents of the created objects are obtained by a
reference to a bank selection register.

This encoding is used to define named data field objects whose data values are fields within a larger
object selected by a bank-selected register.

Example
The following is a block of ASL sample code using BankField:

• Creates a 4-bit bank-selected register in system I/O space.

• Creates overlapping fields in the same system I/O space that are selected via the bank register.

//
// Define a 256-byte operational region in SystemIO space
// and name it GIO0

OperationRegion (GIO0, SystemIO, 0x125, 0x100)

// Create some fields in GIO including a 4-bit bank select register

Field (GIO0, ByteAcc, NoLock, Preserve) {
 GLB1, 1,
 GLB2, 1,
 Offset (1), // Move to offset for byte 1
 BNK1, 4
}

// Create FET0 & FET1 in bank 0 at byte offset 0x30

BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {
 Offset (0x30),
 FET0, 1,
 FET1, 1
}

726 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 // Create BLVL & BAC in bank 1 at the same offset

BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {
 Offset (0x30),
 BLVL, 7,
 BAC, 1
}

19.5.8 Break (Break from While)

Syntax
Break

Description
Break causes execution to continue immediately following the innermost enclosing While or
Switch scope, in the current Method. If there is no enclosing While or Switch within the current
Method, a fatal error is generated.

Compatibility Note: In ACPI 1.0, the Break operator continued immediately following the
innermost “code package.” Starting in ACPI 2.0, the Break operator was changed to exit the
innermost “While” or “Switch” package. This should have no impact on existing code, since the
ACPI 1.0 definition was, in practice, useless.

19.5.9 BreakPoint (Execution Break Point)

Syntax
BreakPoint

Description
Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In
the non-debug version of the AML interpreter, BreakPoint is equivalent to Noop.

19.5.10 Buffer (Declare Buffer Object)

Syntax
Buffer (BufferSize) {String or ByteList} => Buffer

Arguments

Declares a Buffer of size BufferSize and optional initial value of String or ByteList.

Description

The optional BufferSize parameter specifies the size of the buffer and the initial value is specified in
Initializer ByteList. If BufferSize is not specified, it defaults to the size of initializer. If the count is
too small to hold the value specified by initializer, the initializer size is used. For example, all four of
the following examples generate the same data in namespace, although they have different ASL
encodings:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 727

ACPI Source Language (ASL)Reference
Buffer (10) {“P00.00A”}
Buffer (Arg0) {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41}
Buffer (10) {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41, 0x00, 0x00, 0x00}
Buffer () {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41, 0x00, 0x00, 0x00}

19.5.11 Case (Expression for Conditional Execution)

Syntax
Case (Value) {TermList}

Arguments

Value specifies an Integer, Buffer, String or Package object. TermList is a sequence of executable
ASL expressions.

Description
Execute code based upon the value of a Switch statement.

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the
value of the enclosing Switch (Value). If the Case value is a Package, then control passes if any
member of the package matches the Switch (Value). The Switch CaseTermList can include any
number of Case instances, but no two Case Values (or members of a Value, if Value is a Package)
within the same Switch statement can contain the same value.

Execution of the statement body begins at the start of the TermList and proceeds until the end of the
TermList body or until a Break or Continue operator transfers control out of the body.

19.5.12 Concatenate (Concatenate Data)

Syntax
Concatenate (Source1, Source2, Result) => ComputationalData

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2 and the type of the result object. Source2 is implicitly
converted if necessary to match the type of Source1.

Description
Source2 is concatenated to Source1 and the result data is optionally stored into Result.

Table 19-323 Concatenate Data Types

Source1 Data Type Source2 Data Type (Converted Type) Result Data Type

Integer Integer/String/Buffer Integer Buffer

String Integer/String/Buffer String String

Buffer Integer/String/Buffer Buffer Buffer
728 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.13 ConcatenateResTemplate (Concatenate Resource Templates)

Syntax
ConcatenateResTemplate (Source1, Source2, Result) => Buffer

Arguments

Source1 and Source2 are evaluated as Resource Template buffers.

Description
The resource descriptors from Source2 are appended to the resource descriptors from Source1. Then
a new end tag and checksum are appended and the result is stored in Result, if specified. If either
Source1 or Source2 is exactly 1 byte in length, a run-time error occurs. An empty buffer is treated as
a resource template with only an end tag.

19.5.14 CondRefOf (Create Object Reference Conditionally)

Syntax
CondRefOf (Source, Result) => Boolean

Arguments

Attempts to create a reference to the Source object. The Source of this operation can be any object
type (for example, data package, device object, and so on), and the result data is optionally stored
into Result.

Description
On success, the Destination object is set to refer to Source and the execution result of this operation
is the value True. On failure, Destination is unchanged and the execution result of this operation is
the value False. This can be used to reference items in the namespace that may appear dynamically
(for example, from a dynamically loaded definition block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for
RefOf but not for CondRefOf.

19.5.15 Connection (Declare Field Connection Attributes)

Syntax
Connection (ConnectionResourceObj)

Arguments

ConnectionResourceObj is a GPIO or Serial Bus Connection Descriptor depending on the Operation
Region type, or a named object containing the Descriptor

See Section 6.4.3.8.2, "Connection Resource Descriptors" and Section 19.5.46 "Field (Declare Field
Objects)" for more information.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 729

ACPI Source Language (ASL)Reference
Examples
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100)// GenericSerialBus device at command value
offset zero

Name (I2C, ResourceTemplate(){
 I2CSerialBus(0x5a,,100000,, "_SB.I2C",,,,RawDataBuffer(){1,6})
})

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2C) // Specify connection resource information
 AccessAs(BufferAcc, AttribWord) // Use the GenericSerialBus
 // Read/Write Word protocol
 FLD0, 8, // Virtual register at command value 0.
 FLD1, 8, // Virtual register at command value 1.

Field(TOP1, BufferAcc, NoLock, Preserve)
{
 Connection(I2CSerialBus(0x5b,,100000,, "_SB.I2C",,,,RawDataBuffer(){3,9}))
 AccessAs(BufferAcc, AttribBytes (16))
 FLD2, 8 // Virtual register at command value 0.
}

 // Create the GenericSerialBus data buffer
Name(BUFF, Buffer(34){}) // Create GenericSerialBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

Description
The Connection macro declares the connection attributes for subsequent fields defined within the
Field declaration.

19.5.16 Continue (Continue Innermost Enclosing While)

Syntax
Continue

Description
Continue causes execution to continue at the start of the innermost enclosing While scope, in the
currently executing Control Method, at the point where the condition is evaluated. If there is no
enclosing While within the current Method, a fatal error is generated.

19.5.17 CopyObject (Copy and Store Object)

Syntax
CopyObject (Source, Destination) => DataRefObject

Arguments

Converts the contents of the Source to a DataRefObject using the conversion rules in 18.2.5 and then
copies the results without conversion to the object referred to by Destination.
730 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
If Destination is already an initialized object of type DataRefObject, the original contents of
Destination are discarded and replaced with Source. Otherwise, a fatal error is generated.

Note: (Compatibility Note) The CopyObject operator was first introduced new in ACPI 2.0.

19.5.18 CreateBitField (Create 1-Bit Buffer Field)

Syntax
CreateBitField (SourceBuffer, BitIndex, BitFieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex is evaluated as an integer. BitFieldName is a
NameString.

Description
A new buffer field object named BitFieldName is created for the bit of SourceBuffer at the bit index
of BitIndex. The bit-defined field within SourceBuffer must exist.BitFieldName is created for the bit
of SourceBuffer at the bit index of BitIndex. The bit-defined field within SourceBuffer must exist.

19.5.19 CreateByteField (Create 8-Bit Buffer Field)

Syntax
CreateByteField (SourceBuffer, ByteIndex, ByteFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. ByteFieldName is a
NameString.

Description
A new buffer field object named ByteFieldName is created for the byte of SourceBuffer at the byte
index of ByteIndex. The byte-defined field within SourceBuffer must exist.

19.5.20 CreateDWordField (Create 32-Bit Buffer Field)

Syntax
CreateDWordField (SourceBuffer, ByteIndex, DWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. DWordFieldName is a
NameString.

Description
A new buffer field object named DWordFieldName is created for the DWord of SourceBuffer at the
byte index of ByteIndex. The DWord-defined field within SourceBuffer must exist.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 731

ACPI Source Language (ASL)Reference
19.5.21 CreateField (Create Arbitrary Length Buffer Field)

Syntax
CreateField (SourceBuffer, BitIndex, NumBits, FieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex and NumBits are evaluated as integers. FieldName is
a NameString.

Description
A new buffer field object named FieldName is created for the bits of SourceBuffer at BitIndex for
NumBits. The entire bit range of the defined field within SourceBuffer must exist. If NumBits
evaluates to zero, a fatal exception is generated.

19.5.22 CreateQWordField (Create 64-Bit Buffer Field)

Syntax
CreateQWordField (SourceBuffer, ByteIndex, QWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. QWordFieldName is a
NameString.

Description
A new buffer field object named QWordFieldName is created for the QWord of SourceBuffer at the
byte index of ByteIndex. The QWord-defined field within SourceBuffer must exist.

19.5.23 CreateWordField (Create 16-Bit Buffer Field)

Syntax
CreateWordField (SourceBuffer, ByteIndex, WordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. WordFieldName is a
NameString.

Description
A new bufferfield object named WordFieldName is created for the word of SourceBuffer at the byte
index of ByteIndex. The word-defined field within SourceBuffer must exist.

19.5.24 DataTableRegion (Create Data Table Operation Region)

Syntax
DataTableRegion (RegionName, SignatureString, OemIDString, OemTableIDString)
732 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments

Creates a new region named RegionName. SignatureString, OemIDString and OemTableIDString
are evaluated as strings.

Description
A Data Table Region is a special Operation Region whose RegionSpace is SystemMemory . Any
table referenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNVS.

The memory referred to by the Data Table Region is the memory that is occupied by the table
referenced in XSDT that is identified by SignatureString, OemIDString and OemTableIDString.
Any Field object can reference RegionName

The base address of a Data Table region is the address of the first byte of the header of the table
identified by SignatureString, OemIDString and OemTableIDString. The length of the region is the
length of the table.

19.5.25 Debug (Debugger Output)

Syntax
Debug

Description
The debug data object is a virtual data object. Writes to this object provide debugging information.
On at least debug versions of the interpreter, any writes into this object are appropriately displayed
on the system’s native kernel debugger. All writes to the debug object are otherwise benign. If the
system is in use without a kernel debugger, then writes to the debug object are ignored. The
following table relates the ASL term types that can be written to the Debug object to the format of
the information on the kernel debugger display.

Table 19-324 Debug Object Display Formats

The Debug object is a write-only object; attempting to read from the debug object is not supported.

19.5.26 Decrement (Integer Decrement)

Syntax
Decrement (Minuend) => Integer

ASL Term Type Display Format

Numeric data object All digits displayed in hexadecimal format.

String data object String is displayed.

Object reference Information about the object is displayed (for example, object type and object
name), but the object is not evaluated.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 733

ACPI Source Language (ASL)Reference
Arguments

Minuend is evaluated as an Integer.

Description
This operation decrements the Minuend by one and the result is stored back to Minuend. Equivalent
to Subtract (Minuend, 1, Minuend). Underflow conditions are ignored and the result is Ones.

19.5.27 Default (Default Execution Path in Switch)

Syntax
Default {TermList}

Arguments

TermList is a sequence of executable ASL expressions.

Description
Within the body of a Switch (page 801) statement, the statements specified by TermList will be
executed if no Case (page 728) statement value matches the Switch statement value. If Default is
omitted and no Case match is found, none of the statements in the Switch body are executed. There
can be at most one Default statement in the immediate scope of the parent Switch statement. The
Default statement can appear anywhere in the body of the Switch statement.

19.5.28 DefinitionBlock (Declare Definition Block)

Syntax
DefinitionBlock (AMLFileName, TableSignature, ComplianceRevision, OEMID, TableID,
OEMRevision) {TermList}

Arguments

AMLFileName is a string that specifies the desired name of the translated output AML file.
TableSignature is a string that contains the 4-character ACPI signature. ComplianceRevision is an 8-
bit value. OEMID is a 6-character string, TableId is an 8-character string, and OEMRevision is a 32-
bit value. TermList is a sequence of executable ASL expressions.

Description
The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of
the Differentiated Definition Block or as part of an additional Definition Block.

This unit of data and/or AML code describes either the base system or some large extension (such as
a docking station). The entire DefinitionBlock will be loaded and compiled by the OS as a single
unit, and can be unloaded by the OS as a single unit.

Note: For compatibility with ACPI versions before ACPI 2.0, the bit width of Integer objects is
dependent on the ComplianceRevision of the DSDT. If the ComplianceRevision is less than 2, all
integers are restricted to 32 bits. Otherwise, full 64-bit integers are used. The version of the DSDT
sets the global integer width for all integers, including integers in SSDTs.
734 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.29 DerefOf (Dereference an Object Reference)

Syntax
DerefOf (Source) => Object

Arguments

Returns the object referred by the Source object reference.

Description
If the Source evaluates to an object reference, the actual contents of the object referred to are
returned. If the Source evaluates to a string, the string is evaluated as an ASL name (relative to the
current scope) and the contents of that object are returned. If the object specified by Source does not
exist then a fatal error is generated.

Note: (Compatibility Note) The use of a String with DerefOf was first introduced in ACPI 2.0.

19.5.30 Device (Declare Bus/Device Package)

Syntax
Device (DeviceName) {ObjectList}

Arguments

Creates a Device object of name DeviceName, which represents either a bus or a device or any other
similar hardware. Device opens a name scope.

Description
A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the
hardware devices in the system to the operating software. Each Bus/Device Package is defined
somewhere in the hierarchical namespace corresponding to that device’s location in the system.
Within the namespace of the device are other names that provide information and control of the
device, along with any sub-devices that in turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware
standard manner. This type of value-added function is expressible in the ACPI Definition Block
such that operating software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function
outside the device’s normal capabilities and for any Device Object required to fill in the tree for such
a device. For example, if the system includes a PCI device (integrated or otherwise) with no
additional functions such as power management, the BIOS would not report such a device; however,
if the system included an integrated ISA device below the integrated PCI device (device is an ISA
bridge), then the system would include a Device Package for the ISA device with the minimum
feature being added being the ISA device’s ID and configuration information and the parent PCI
device, because it is required to get the ISA Device Package placement in the namespace correct.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 735

ACPI Source Language (ASL)Reference
Example
The following block of ASL sample code shows a nested use of Device objects to describe an IDE
controller connected to the root PCI bus.

 Device (IDE0) { // primary controller
 Name (_ADR, 0) // put PCI Address (device/function) here

 // define region for IDE mode register

 OperationRegion (PCIC, PCI_Config, 0x50, 0x10)
 Field (PCIC, AnyAcc, NoLock, Preserve) {
 …
 }
 Device (PRIM) { // Primary adapter
 Name (_ADR, 0) // Primary adapter = 0
 …
 Method (_STM, 2) {
 …
 }
 Method (_GTM) {
 …
 }
 Device (MSTR) { // master channel
 Name (_ADR, 0)
 Name (_PR0, Package () {0, PIDE})

 Name (_GTF) {
 …
 }
 }
 Device (SLAV) {
 Name (_ADR, 1)
 Name (_PR0, Package () {0, PIDE})
 Name (_GTF) {
 …
 }
 }
 }
 }

19.5.31 Divide (Integer Divide)

Syntax
Divide (Dividend, Divisor, Remainder, Result) => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description
Dividend is divided by Divisor, then the resulting remainder is optionally stored into Remainder and
the resulting quotient is optionally stored into Result. Divide-by-zero exceptions are fatal.

The function return value is the Result (quotient).
736 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.32 DMA (DMA Resource Descriptor Macro)

Syntax
DMA (DmaType, IsBusMaster, DmaTransferSize, DescriptorName) {DmaChannelList} => Buffer

Arguments

DmaType specifies the type of DMA cycle: ISA compatible (Compatibility), EISA Type A
(TypeA), EISA Type B (TypeB) or EISA Type F (TypeF). The 2-bit field DescriptorName._TYP is
automatically created to refer to this portion of the resource descriptor, where ‘0’ is Compatibility,
‘1’ is TypeA, ‘2’ is TypeB and ‘3’ is TypeF.

IsBusMaster specifies whether this device can generate DMA bus master cycles (BusMaster) or not
(NotBusMaster). If nothing is specified, then BusMaster is assumed. The 1-bit field
DescriptorName._BM is automatically created to refer to this portion of the resource descriptor,
where ‘0’ is NotBusMaster and ‘1’ is BusMaster.

DmaTransferSize specifies the size of DMA cycles the device is capable of generating: 8-bit
(Transfer8), 16-bit (Transfer16) or both 8 and 16-bit (Transfer8_16). The 2-bit field
DescriptorName._SIZ is automatically created to refer to this portion of the resource descriptor,
where ‘0’ is Transfer8, ‘1’ is Transfer8_16 and ‘2’ is Transfer16.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

DmaChannelList is a comma-delimited list of integers in the range 0 through 7 that specify the DMA
channels used by the device. There may be no duplicates in the list.

Description
The DMA macro evaluates to a buffer which contains a DMA resource descriptor. The format of the
DMA resource descriptor can be found in “DMA Descriptor” (page 311). The macro is designed to
be used inside of a ResourceTemplate (page 794).

19.5.33 DWordIO (DWord IO Resource Descriptor Macro)

Syntax
DWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName, TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer)
or passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 737

ACPI Source Language (ASL)Reference
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly),
valid non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation
(EntireRange). The 2-bit field DescriptorName._RNG is automatically created to refer to this
portion of the resource descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on
which the I/O range must be aligned. The 32-bit field DescriptorName._GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the I/
O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource
descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
I/O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource
descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 32-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the I/O
range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this I/O range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a value of zero is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
738 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is Memory. If
TypeStatic is specified, then the secondary side of the bus is I/O. If nothing is specified, then
TypeStatic is assumed. The 1-bit field DescriptorName._TTP is automatically created to refer to this
portion of the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP
(page 333) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the
primary to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only
used when TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is
assumed. The 1-bit field DescriptorName._TRS is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS
(page 333) for more information.

Description
The DWordIO macro evaluates to a buffer which contains a 32-bit I/O range resource descriptor.
The format of the 32-bit I/O range resource descriptor can be found in “DWord Address Space
Descriptor ” (page 325). The macro is designed to be used inside of a ResourceTemplate (page 794).

19.5.34 DWordMemory (DWord Memory Resource Descriptor Macro)

Syntax
DWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable, ReadAndWrite,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode)
or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit
field DescriptorName._DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName._MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or
can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName._MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 739

ACPI Source Language (ASL)Reference
Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and
write-combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field
DescriptorName._RW is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ReadWrite and ‘0’ is ReadOnly.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on
which the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 32-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 32-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 32-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
Memory range. The 32-bit field DescriptorName._LEN is automatically created to refer to this
portion of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this Memory range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked
as normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as
ACPI reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If
nothing is specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName._MTP
is automatically created in order to refer to this portion of the resource descriptor, where ‘0’ is
740 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
AddressRangeMemory, ‘1’ is AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is
AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic
is specified, then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is
assumed. The 1-bit field DescriptorName._TTP is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 333) for
more information.

Description
The DWordMemory macro evaluates to a buffer which contains a 32-bit memory resource
descriptor. The format of the 32-bit memory resource descriptor can be found in “DWord Address
Space Descriptor ” (page 325). The macro is designed to be used inside of a ResourceTemplate
(page 794).

19.5.35 DWordSpace (DWord Space Resource Descriptor Macro)

Syntax
DWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values
are 0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode)
or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit
field DescriptorName._DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName._MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or
can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName._MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 741

ACPI Source Language (ASL)Reference
AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on
which the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 32-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 32-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 32-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
Memory range. The 32-bit field DescriptorName._LEN is automatically created to refer to this
portion of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this Memory range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The DWordSpace macro evaluates to a buffer which contains a 32-bit Address Space resource
descriptor. The format of the 32-bit Address Space resource descriptor can be found in “DWord
Address Space Descriptor ” (page 325). The macro is designed to be used inside of a
ResourceTemplate (page 794).

19.5.36 EISAID (EISA ID String To Integer Conversion Macro)

Syntax
EISAID (EisaIdString) => DWordConst
742 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments

The EisaIdString must be a String object of the form “UUUNNNN”, where “U” is an uppercase
letter and “N” is a hexadecimal digit. No asterisks or other characters are allowed in the string.

Description
Converts EisaIdString, a 7-character text string argument, into its corresponding 4-byte numeric
EISA ID encoding. It can be used when declaring IDs for devices that have EISA IDs.

Example
 EISAID (“PNP0C09”) // This is a valid invocation of the macro.

19.5.37 Else (Alternate Execution)

Syntax
Else {TermList}

Arguments

TermList is a sequence of executable ASL statements.

Description
If Predicate evaluates to 0 in an If statement, then control is transferred to the Else portion, which
can consist of zero or more ElseIf statements followed by zero or one Else statements. If the
Predicate of any ElseIf statement evaluates to non-zero, the statements in its term list are executed
and then control is transferred past the end of the final Else term. If no Predicate evaluates to non-
zero, then the statements in the Else term list are executed.

Example
The following example checks Local0 to be zero or non-zero. On non-zero, CNT is incremented;
otherwise, CNT is decremented.

If (LGreater (Local0, 5)
{
 Increment (CNT)
} Else If (Local0) {
 Add (CNT, 5, CNT)
}
Else
{
 Decrement (CNT)
}

19.5.38 ElseIf (Alternate/Conditional Execution)

Syntax
ElseIf (Predicate)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 743

ACPI Source Language (ASL)Reference
Arguments

Predicate is evaluated as an Integer.

Description
If the Predicate of any ElseIf statement evaluates to non-zero, the statements in its term list are
executed and then control is transferred past the end of the final Else. If no Predicate evaluates to
non-zero, then the statements in the Else term list are executed.

Note: (Compatibility Note) The ElseIf operator was first introduced in ACPI 2.0, but is backward
compatible with the ACPI 1.0 specification. An ACPI 2.0 and later ASL compiler must synthesize
ElseIf from the If. and Else opcodes available in 1.0. For example:

If (predicate1)
{
 …statements1…
}
ElseIf (predicate2)
{
 …statements2…
}
Else
{
 …statements3…
}

is translated to the following:
If (predicate1)
{
 …statements1…
}
Else
{
 If (predicate2)
 {
 …statements2…
 }
 Else
 {
 …statements3…
 }
}

19.5.39 EndDependentFn (End Dependent Function Resource
Descriptor Macro)

Syntax
EndDependentFn () => Buffer

Description
The EndDependentFn macro generates an end-of-dependent-function resource descriptor buffer
inside of an ResourceTemplate (page 794). It must be matched with a StartDependentFn (page 799)
or StartDependentFnNoPri (page 800) macro.
744 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.40 Event (Declare Event Synchronization Object)

Syntax
Event (EventName)

Arguments

Creates an event synchronization object named EventName.

Description
For more information about the uses of an event synchronization object, see the ASL definitions for
the Wait, Signal, and Reset function operators.

19.5.41 ExtendedIO (Extended IO Resource Descriptor Macro)

Syntax
ExtendedIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, TypeSpecificAttributes,
DescriptorName, TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly),
valid non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation
(EntireRange). The 2-bit field DescriptorName._RNG is automatically created to refer to this
portion of the resource descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on
which the I/O range must be aligned. The 64-bit field DescriptorName._GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/
O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 745

ACPI Source Language (ASL)Reference
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource
descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
I/O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource
descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 64-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O
range. The 64-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is Memory. If
TypeStatic is specified, then the secondary side of the bus is I/O. If nothing is specified, then
TypeStatic is assumed. The 1-bit field DescriptorName. _TTP is automatically created to refer to
this portion of the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP
(page 333) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the
primary to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only
used when TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is
assumed. The 1-bit field DescriptorName._TRS is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS
(page 333) for more information.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type.
See Section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operatorsDescription

The ExtendedIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in
“Extended Address Space Descriptor” (page 316). The macro is designed to be used inside of a
ResourceTemplate (page 794).
746 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.42 ExtendedMemory (Extended Memory Resource Descriptor
Macro)

Syntax
ExtendedMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable, ReadAndWrite,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
TypeSpecificAttributes, DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode)
or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit
field DescriptorName._DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName. _MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or
can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName. _MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and
write-combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field
DescriptorName._RW is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ReadWrite and ‘0’ is ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on
which the Memory range must be aligned. The 64-bit field DescriptorName._GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName ._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 747

ACPI Source Language (ASL)Reference
secondary bus. The 64-bit field DescriptorName ._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 64-bit field
DescriptorName. _TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked
as normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as
ACPI reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If
nothing is specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName.
_MTP is automatically created in order to refer to this portion of the resource descriptor, where ‘0’ is
AddressRangeMemory, ‘1’ is AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is
AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic
is specified, then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is
assumed. The 1-bit field DescriptorName. _TTP is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 333) for
more information.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type.
See Section 6.4.3.5.4.1,”Type Specific Attributes”.

Description
The ExtendedMemory macro evaluates to a buffer which contains a 64-bit memory resource
descriptor, which describes a range of memory addresses. The format of the 64-bit memory resource
descriptor can be found in “Extended Address Space Descriptor” (page 328). The macro is designed
to be used inside of a ResourceTemplate (page 794).

19.5.43 ExtendedSpace (Extended Address Space Resource
Descriptor Macro)

Syntax
ExtendedSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, TypeSpecificAttributes, DescriptorName)
748 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values
are 0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode)
or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit
field DescriptorName. _DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName. _MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or
can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName. _MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on
which the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 64-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type.
See Section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 749

ACPI Source Language (ASL)Reference
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The ExtendedSpace macro evaluates to a buffer which contains a 64-bit Address Space resource
descriptor, which describes a range of addresses. The format of the 64-bit AddressSpace descriptor
can be found in “Extended Address Space Descriptor” (page 328). The macro is designed to be used
inside of a ResourceTemplate (page 794).

19.5.44 External (Declare External Objects)

Syntax
External (ObjectName, ObjectType, ReturnType, ParameterTypes)

Arguments

ObjectName is a NameString.

ObjectType is an optional ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). If not specified,
“UnknownObj” type is assumed.

ReturnType is optional. If the specified ObjectType is MethodObj, then this specifies the type or
types of object returned by the method. If the method does not return an object, then nothing is
specified or UnknownObj is specified. To specify a single return type, simply use the
ObjectTypeKeyword. To specify multiple possible return types, enclose the comma-separated
ObjectTypeKeywords with braces. For example: {IntObj, BuffObj}.

ParameterTypes is optional. If the specified ObjectType is MethodObj, this specifies both the
number and type of the method parameters. It is a comma-separated, variable-length list of the
expected object type or types for each of the method parameters, enclosed in braces. For each
parameter, the parameter type consists of either an ObjectTypeKeyword or a comma-separated sub-
list of ObjectTypeKeywords enclosed in braces. There can be no more than seven parameters in
total.Description

The External directive informs the ASL compiler that the object is declared external to this table so
that no errors will be generated for an undeclared object. The ASL compiler will create the external
object at the specified place in the namespace (if a full path of the object is specified), or the object
will be created at the current scope of the External term.

External is especially useful for use in secondary SSDTs, when the required scopes and objects are
declared in the main DSDT.

Example
This example shows the use of External in conjunction with Scope within an SSDT:
750 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{
 External (_SB.PCI0, DeviceObj)

 Scope (_SB.PCI0)
 {
 }
}

19.5.45 Fatal (Fatal Error Check)

Syntax
Fatal (Type, Code, Arg)

Arguments

This operation is used to inform the OS that there has been an OEM-defined fatal error.

Description
In response, the OS must log the fatal event and perform a controlled OS shutdown in a timely
fashion.

19.5.46 Field (Declare Field Objects)

Syntax
Field (RegionName, AccessType, LockRule, UpdateRule) {FieldUnitList}

Arguments

RegionName is a namestring that refers to the host operation region.

AccessType defines the default access width of the field definition and is any one of the following:
AnyAcc, ByteAcc, WordAcc, DWordAcc, or QWordAcc. In general, accesses within the parent
object are performed naturally aligned. If desired, AccessType set to a value other than AnyAcc can
be used to force minimum access width. Notice that the parent object must be able to accommodate
the AccessType width. For example, an access type of WordAcc cannot read the last byte of an odd-
length operation region. The exceptions to natural alignment are the access types used for a non-
linear SMBus device. These will be discussed in detail below. Not all access types are meaningful
for every type of operational region.

LockRule is a flag that indicates whether the Global Lock is to be used when accessing this field and
is one of the following: Lock or NoLock. If LockRule is set to Lock, accesses to modify the
component data objects will acquire and release the Global Lock. If both types of locking occur, the
Global Lock is acquired after the parent object Mutex.

On Hardware-reduced ACPI platforms, Lock is not supported.

UpdateRule is used to specify how the unmodified bits of a field are treated and is any one of the
following: Preserve, WriteAsOnes, or WriteAsZeros. For example, if a field defines a component
data object of 4 bits in the middle of a WordAcc region, when those 4 bits are modified the
UpdateRule specifies how the other 12 bits are treated.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 751

ACPI Source Language (ASL)Reference
FieldUnitList is a variable-length list of individual field unit definitions, separated by commas. Each
entry in the field unit list is one of the following:

Table 19-325 Field Unit list entires

FieldUnitName is the ACPI name for the field unit (1 to 4 characters), and BitLength is the length of
the field unit in bits. Offset is used to specify the byte offset of the next defined field unit. This can
be used instead of defining the bit lengths that need to be skipped. AccessAs is used to define the
access type and attributes for the remaining field units within the list. Connection is used to identify
the connection resource of the field access. This is necessary for GenericSerialBus and
GeneralPurposeIO operation region types only.

Description
Declares a series of named data objects whose data values are fields within a larger object. The fields
are parts of the object named by RegionName, but their names appear in the same scope as the Field
term.

For example, the field operator allows a larger operation region that represents a hardware register to
be broken down into individual bit fields that can then be accessed by the bit field names. Extracting
and combining the component field from its parent is done automatically when the field is accessed.

When reading from a FieldUnit, returned values are normalized (shifted and masked to the proper
length.) The data type of an individual FieldUnit can be either a Buffer or an Integer, depending on
the bit length of the FieldUnit. If the FieldUnit is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. If the FieldUnit is larger than the size of an Integer, it will be
treated as a Buffer. The size of an Integer is indicated by the DSDT header’s Revision field. A
revision less than 2 indicates that the size of an Integer is 32 bits. A value greater than or equal to 2
signifies that the size of an Integer is 64 bits. For more information about data types and FieldUnit
type conversion rules, see Section 19.2.5.7, “Data Type Conversion Rules”.

Accessing the contents of a field data object provides access to the corresponding field within the
parent object. If the parent object supports Mutex synchronization, accesses to modify the
component data objects will acquire and release ownership of the parent object around the
modification.

The following table relates region types declared with an OperationRegion term to the different
access types supported for each region.

Table 19-326 OperationRegion Region Types and Access Types

FieldUnitName, BitLength

Offset (ByteOffset)

AccessAs (AccessType, AccessAttribute)

Connection (ConnectionResourceObj)

Region Type Permitted Access Type(s) Description

SystemMemory ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed
752 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The named FieldUnit data objects are provided in the FieldList as a series of names and bit widths.
Bits assigned no name (or NULL) are skipped. The ASL compiler supports the Offset (ByteOffset)
macro within a FieldList to skip to the bit position of the supplied byte offset, and the AccessAs
macro to change access within the field list.

GenericSerialBus, SMBus and IPMI regions are inherently non-linear, where each offset within the
respective address space represents a variable sized (0 to 32 bytes) field. Given this uniqueness,
these operation regions include restrictions on their field definitions and require the use of a region-
specific data buffer when initiating transactions. For more information on the SMBus data buffer
format, see Section 13, “ACPI System Management Bus Interface Specification,”. For more
information on the IPMI data buffer format, see Section 5.5.2.4.3, “Declaring IPMI Operation
Regions". For more information on the Generic Serial Bus data buffer format, see Section 5.5.2.4.5
"Declaring Generic Serial Bus Operation Regions."

For restrictions on the use of Fields with GeneralPurposeIO OpRegions, see Section 5.5.2.4.4,
"Declaring General PurposeIO Operation Regions".

Example
OperationRegion (MIOC, PCI_Config, Zero, 0xFF)
Field (MIOC, AnyAcc, NoLock, Preserve)
{
 Offset (0x58),
 HXGB, 32,
 HXGT, 32,
 GAPE, 8,

SystemIO ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

PCI_Config ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

EmbeddedControl ByteAcc Byte access only

SMBus BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

CMOS ByteAcc Byte access only

PciBarTarget ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

IPMI BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

GeneralPurposeIO ByteAcc Byte access only

GenericSerialBus BufferAcc Reads and writes to this operation region
involve the use of a region-specific data buffer.
(See below.)

Region Type Permitted Access Type(s) Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 753

ACPI Source Language (ASL)Reference
 MR0A, 4,
 MR0B, 4
}

19.5.47 FindSetLeftBit (Find First Set Left Bit)

Syntax
FindSetLeftBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description
The one-based bit location of the first MSb (most significant set bit) is optionally stored into Result.
The result of 0 means no bit was set, 1 means the left-most bit set is the first bit, 2 means the left-
most bit set is the second bit, and so on.

19.5.48 FindSetRightBit (Find First Set Right Bit)

Syntax
FindSetRightBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description
The one-based bit location of the most LSb (least significant set bit) is optionally stored in Result.
The result of 0 means no bit was set, 32 means the first bit set is the thirty-second bit, 31 means the
first bit set is the thirty-first bit, and so on.

19.5.49 FixedDMA (DMA Resource Descriptor Macro)

Syntax
FixedDMA (DmaRequestLine, Channel, DmaTransferWidth, DescriptorName) => Buffer

Arguments

DmaRequestLine is a system-relative number uniquely identifying the request line statically
assigned to the device.. The bit field name _DMA is automatically created to refer to this portion of
the resource descriptor.

Channel is a controller-relative number uniquely identifying the channel statically assigned to this
DMARequestLine. Channels can be shared by reusing Channel numbers across descriptors. The bit
field name _TYP is automatically created to refer to this portion of the resource descriptor.

DmaTransferWidth is an optional argument specifying the width of data transfer for which the
device is configured. Valid values are Width8Bit, Width16Bit, Width32Bit,Width64Bit, Width
754 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
128Bit or Width256Bit. If not specified, Width32Bit is assumed. The bit field name _SIZ is
automatically created to refer to this portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The FixedDMA macro evaluates to a buffer that contains a Fixed DMA Descriptor (Section 6.4.3).

19.5.50 FixedIO (Fixed IO Resource Descriptor Macro)

Syntax
FixedIO (AddressBase, RangeLength, DescriptorName) => Buffer

Arguments

AddressBase evaluates to a 16-bit integer. It describes the starting address of the fixed I/O range.
The field DescriptorName. _BAS is automatically created to refer to this portion of the resource
descriptor.

RangeLength evaluates to an 8-bit integer. It describes the length of the fixed I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

Description
The FixedIO macro evaluates to a buffer which contains a fixed I/O resource descriptor. The format
of the fixed I/O resource descriptor can be found in “Fixed Location I/O Port Descriptor ”
(page 314). The macro is designed to be used inside of a ResourceTemplate (page 794).

19.5.51 FromBCD (Convert BCD To Integer)

Syntax
FromBCD (BCDValue, Result) => Integer

Arguments

BCDValue is evaluated as an Integer.

Description
The FromBCD operation is used to convert BCDValue to a numeric format and store the numeric
value into Result.

19.5.52 Function (Declare Control Method)

Syntax
Function (FunctionName, ReturnType, ParameterTypes) {TermList}
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 755

ACPI Source Language (ASL)Reference
Arguments

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the
method does not return an object, then nothing is specified or UnknownObj is specified. To specify
a single return type, simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify
multiple possible return types, enclose the comma-separated ObjectTypeKeywords with braces. For
example: {IntObj, BuffObj}.

ParameterTypes specifies both the number and type of the method parameters. It is a comma-
separated, variable-length list of the expected object type or types for each of the method parameters,
enclosed in braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword
or a comma-separated sub-list of ObjectTypeKeywords enclosed in braces. There can be no more
than seven parameters in total.

Description
Function declares a named package containing a series of terms that collectively represent a control
method. A control method is a procedure that can be invoked to perform computation. Function
opens a name scope.

System software executes a control method by executing the terms in the package in order. For more
information on method execution, see Section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on
the namespace tree. Any names created within this scope are “below” the name of this package. The
current namespace location is assigned to the method package, and all namespace references that
occur during control method execution for this package are relative to that location.

Functions are equivalent to a Method that specifies NotSerialized. As such, a function should not
create any named objects, since a second thread that might re-enter the function will cause a fatal
error if an attempt is made to create the same named object twice.

Note: (Compatibility Note) New for ACPI 3.0

Example
The following block of ASL sample code shows the use of Function for defining a control method:

Function (EXAM, IntObj, {StrObj, {IntObj, StrObj}})
{
 Name (Temp,””)
 Store (Arg0, Temp) // could have used Arg1
 Return (SizeOf (Concatenate (Arg1, Temp)))
}

This declaration is equivalent to:
756 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Method (EXAM, 2, NotSerialized, 0, IntObj, {StrObj, {IntObj, StrObj}})
{
…
}

19.5.53 GpioInt (GPIO Interrupt Connection Resource Descriptor
Macro)

GpioInt (EdgeLevel, ActiveLevel, Shared, PinConfig, DebounceTimeout, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData) {PinList}

Arguments

EdgeLevel can be either Edge or Level. The bit field name _MOD is automatically created to refer
to this portion of the resource descriptor.

ActiveLevel can be one of ActiveHigh, ActiveLow or ActiveBoth. ActiveBoth can be specified
only if EdgeLevel is Edge. The bit field name _POL is automatically created to refer to this portion
of the resource descriptor.

Shared is an optional argument and can be one of Shared, Exclusive, SharedAndWake or
ExclusiveAndWake. If not specified, Exclusive is assumed. The "Wake" designation indicates that
the interrupt is capable of waking the system from a low-power idle state or a system sleep state. The
bit field name _SHR is automatically created to refer to this portion of the resource descriptor.

PinConfig can be one of PullDefault, PullUp, PullDown, PullNone or a vendor-supplied value in
the range 128-255. The bit field name _PPI is automatically created to refer to this portion of the
resource descriptor.

DebounceTimeout is an optional argument specifying the debounce wait time, in hundredths of
milliseconds. The bit field name _DBT is automatically created to refer to this portion of the
resource descriptor.

ResourceSource is a string which uniquely identifies the GPIO controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment that
utilizes the namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined byte
data to be decoded by the OS driver. The bit field name _VEN is automatically created to refer to
this portion of the resource descriptor.

PinList is a list of (zero-based) pin numbers on the ResourceSource that are described by this
descriptor. For interrupt pin descriptors, only one pin is allowed. The bit field name _PIN is
automatically created to refer to this portion of the resource descriptor.

Description
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 757

ACPI Source Language (ASL)Reference
The GpioInt macro evaluates to a buffer that contains a GPIO Interrupt Connection resource
descriptor. The format of the GPIO Interrupt Connection resource descriptor can be found in "GPIO
Connection Descriptor" (Section 6.4.3.8.1). The macro is designed to be used inside of a Resource
Template (Section 19.2.3).

19.5.54 GpioIo (GPIO Connection IO Resource Descriptor Macro)
GpioIo (Shared, PinConfig, DebounceTimeout, DriveStrength, IORestriction, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData) {PinList}

Arguments

Shared is an optional argument and can be either Shared or Exclusive. If not specified, Exclusive is
assumed. The bit field name _SHR is automatically created to refer to this portion of the resource
descriptor.

PinConfig can be one of PullDefault, PullUp, PullDown, PullNone or a vendor-supplied value in
the range 128-255. The bit field name _PPI is automatically created to refer to this portion of the
resource descriptor.

DebounceTimeout is an optional argument specifying the hardware debounce wait time, in
hundredths of milliseconds. The bit field name _DBT is automatically created to refer to this portion
of the resource descriptor.

DriveStrength is an optional argument specifying the output drive capability of the pin, in
hundredths of milliamperes. The bit field name _DRS is automatically created to refer to this portion
of the resource descriptor.

IORestriction is an optional argument and can be IoRestrictionInputOnly,
IoRestrictionOutputOnly, IoRestrictionNone, or IORestrictionNoneAndPreserve.
IORestrictions limit the mode in which the pin can be accessed (Input or Output). They also ensure
that the pin configuration is preserved during periods when the driver is unloaded or the resource has
been disconnected by the driver. If not specified, IoRestrictionNone is assumed. The bit field name
_IOR is automatically created to refer to this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the GPIO controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment that
utilizes the namespace search rules.

ResourceSourceIndex is an optional argument and is always 0 for this revision.

ResourceUsage is an optional argument and is always ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies a RawDataBuffer containing vendor-defined byte
data to be decoded by the OS driver. The bit field name _VEN is automatically created to refer to
this portion of the resource descriptor.

PinList is a list of pin numbers on the ResourceSource that are described by this descriptor. The bit
field name _PIN is automatically created to refer to this portion of the resource descriptor.
758 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
The GpioIo macro evaluates to a buffer that contains a GPIO IO Connection resource descriptor.
The format of the GPIO IO Connection resource descriptor can be found in "GPIO Connection
Descriptor" (Section 6.4.3.8.1). The macro is designed to be used inside of a Resource Template
(Section 19.2.3).

19.5.55 I2CSerialBus (I2C Serial Bus Connection Resource Descriptor
Macro)

Syntax
I2CSerialBus (SlaveAddress, SlaveMode, ConnectionSpeed, AddressingMode, ResourceSource,
ResourceSourceIndex, ResourceUsage, DescriptorName, VendorData)

Arguments

SlaveAddress is the I2C bus address for this connection. The bit field name _ADR is automatically
created to refer to this portion of the resource descriptor.

SlaveMode is an optional argument and can be either ControllerInitiated or DeviceInitiated.
ControllerInitiated is the default. The bit field name _SLV is automatically created to refer to this
portion of the resource descriptor.

ConnectionSpeed is the maximum connection speed supported by this connection, in hertz. The bit
field name _SPE is automatically created to refer to this portion of the resource descriptor.

AddressingMode is an optional argument and can be either AddressingMode7Bit or
AddressingMode10Bit. AddressingMode7Bit is the default. The bit field name _MOD is
automatically created to refer to this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the I2C bus controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment that
utilizes the namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies an object to be decoded by the OS driver. It is a
RawDataBuffer. The bit field name _VEN is automatically created to refer to this portion of the
resource descriptor.

Description
The I2CSerialBus macro evaluates to a buffer that contains an I2C Serial Bus resource descriptor.
The macro is designed to be used inside of a ResourceTemplate (see Section 19.2.3).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 759

ACPI Source Language (ASL)Reference
19.5.56 If (Conditional Execution)

Syntax
If (Predicate) {TermList}

Arguments

Predicate is evaluated as an Integer.

Description
If the Predicate is non-zero, the term list of the If term is executed.

Example
The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1

If (And (Local0, 4))
{
 XOr (Local0, 4, Local0)
}

// example 2

Store (4, Local2)
If (And (Local0, Local2))
{
 XOr (Local0, Local2, Local0)
}

19.5.57 Include (Include Additional ASL File)

Syntax
Include (FilePathName)

Arguments

FilePathname is a StringData data type that contains the full OS file system path.

Description
Include another file that contains ASL terms to be inserted in the current file of ASL terms. The file
must contain elements that are grammatically correct in the current scope.

Example

 Include ("dataobj.asl")

19.5.58 Increment (Integer Increment)

Syntax
Increment (Addend) => Integer
760 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments

Addend is evaluated as an Integer.

Description
Add one to the Addend and place the result back in Addend. Equivalent to Add (Addend, 1,
Addend). Overflow conditions are ignored and the result of an overflow is zero.

19.5.59 Index (Indexed Reference To Member Object)

Syntax
Index (Source, Index, Destination) => ObjectReference

Arguments

Source is evaluated to a buffer, string, or package data type. Index is evaluated to an integer. The
reference to the nth object (where n = Index) within Source is optionally stored as a reference into
Destination.

Description
When Source evaluates to a Buffer, Index returns a reference to a Buffer Field containing the nth
byte in the buffer. When Source evaluates to a String, Index returns a reference to a Buffer Field
containing the nth character in the string. When Source evaluates to a Package, Index returns a
reference to the nth object in the package.

19.5.59.1 Index with Packages
The following example ASL code shows a way to use the Index term to store into a local variable
the sixth element of the first package of a set of nested packages:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 761

ACPI Source Language (ASL)Reference
 Name (IO0D, Package () {
 Package () {
 0x01, 0x03F8, 0x03F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFE, 0x00, 0x00
 },
 Package () {
 0x01, 0x02F8, 0x02F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBE, 0x00, 0x00
 },
 Package () {
 0x01, 0x03E8, 0x03E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFA, 0x00, 0x00
 },
 Package () {
 x01, 0x02E8, 0x02E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBA, 0x00, 0x00
 },
 Package() {
 0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02, 0x25, 0x20, 0x7F, 0x00, 0x00
 }
 })

 // Get the 6th element of the first package

 Store (DeRefOf (Index (DeRefOf (Index (IO0D, 0)), 5)), Local0)

Note: DeRefOf is necessary in the first operand of the Store operator in order to get the actual object,
rather than just a reference to the object. If DeRefOf were not used, then Local0 would contain an
object reference to the sixth element in the first package rather than the number 1.

19.5.59.2 Index with Buffers
The following example ASL code shows a way to store into the third byte of a buffer:

 Name (BUFF, Buffer () {0x01, 0x02, 0x03, 0x04, 0x05})

 // Store 0x55 into the third byte of the buffer

 Store (0x55, Index (BUFF, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

If Source is evaluated to a buffer data type, the ObjectReference refers to the byte at Index within
Source. If Source is evaluated to a buffer data type, a Store operation will only change the byte at
Index within Source.

The following example ASL code shows the results of a series of Store operations:

Name (SRCB, Buffer () {0x10, 0x20, 0x30, 0x40})
 Name (BUFF, Buffer () {0x1, 0x2, 0x3, 0x4})

The following will store 0x78 into the 3rd byte of the destination buffer:

Store (0x12345678, Index (BUFF, 2))

The following will store 0x10 into the 2nd byte of the destination buffer:

Store (SRCB, Index (BUFF, 1))

The following will store 0x41 (an ‘A’) into the 4th byte of the destination buffer:
762 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Store (“ABCDEFGH”, Index (BUFF, 3))

Note: (Compatibility Note) First introduced in ACPI 2.0. In ACPI 1.0, the behavior of storing data larger
than 8-bits into a buffer using Index was undefined.

19.5.59.3 Index with Strings

The following example ASL code shows a way to store into the 3rd character in a string:

 Name (STR, “ABCDEFGHIJKL”)

 // Store ‘H’ (0x48) into the third character to the string

 Store (“H”, Index (STR, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

Note: (Compatibility Note) First introduced in ACPI 2.0.

19.5.60 IndexField (Declare Index/Data Fields)

Syntax
IndexField (IndexName, DataName, AccessType, LockRule, UpdateRule) {FieldUnitList}

Arguments

IndexName and DataName refer to field unit objects. AccessType, LockRule, UpdateRule, and
FieldList are the same format as the Field term.

Description
Creates a series of named data objects whose data values are fields within a larger object accessed by
an index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data
register pair. This provides a simple way to declare register variables that occur behind a typical
index and data register pair.

Accessing the contents of an indexed field data object will automatically occur through the
DataName object by using an IndexName object aligned on an AccessType boundary, with
synchronization occurring on the operation region that contains the index data variable, and on the
Global Lock if specified by LockRule.

The value written to the IndexName register is defined to be a byte offset that is aligned on an
AccessType boundary. For example, if AccessType is DWordAcc, valid index values are 0, 4, 8, etc.
This value is always a byte offset and is independent of the width or access type of the DataName
register.

Example
The following is a block of ASL sample code using IndexField:

Creates an index/data register in system I/O space made up of 8-bit registers.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 763

ACPI Source Language (ASL)Reference
• Creates a FET0 field within the indexed range.

Method (EX1) {
 // Define a 256-byte operational region in SystemIO space
 // and name it GIO0

 OperationRegion (GIO0, 1, 0x125, 0x100)

 // Create a field named Preserve structured as a sequence
 // of index and data bytes

 Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {
 IDX0, 8,
 DAT0, 8,
 .
 .
 .
 }
 // Create an IndexField within IDX0 & DAT0 which has
 // FETs in the first two bits of indexed offset 0,
 // and another 2 FETs in the high bit on indexed
 // 2F and the low bit of indexed offset 30

 IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {
 FET0, 1,
 FET1, 1,
 Offset (0x2f), // skip to byte offset 2f
 , 7, // skip another 7 bits
 FET3, 1,
 FET4, 1
 }

 // Clear FET3 (index 2F, bit 7)

 Store (Zero, FET3)

} // End EX1

19.5.61 Interrupt (Interrupt Resource Descriptor Macro)

Syntax
Interrupt (ResourceUsage, EdgeLevel, ActiveLevel, Shared, ResourceSourceIndex,
ResourceSource, DescriptorName) {InterruptList} => Buffer

Arguments

ResourceUsage describes whether the device consumes the specified interrupt
(ResourceConsumer) or produces it for use by a child device (ResourceProducer). If nothing is
specified, then ResourceConsumer is assumed.

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The
field DescriptorName. _HE is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is Edge and ‘0’ is Level.
764 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow).
The field DescriptorName. _LL is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is ActiveHigh and ‘0’ is ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not
(Exclusive), and whether it is capable of waking the system from a low-power idle or system sleep
state (SharedAndWake or ExclusiveAndWake). The field DescriptorName. _SHR is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is Shared and ‘0’ is
Exclusive. If nothing is specified, then Exclusive is assumed.

ResourceSourceIndex evaluates to an integer between 0x00 and 0xFF and describes the resource
source index. If it is not specified, then it is not generated. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource evaluates to a string which uniquely identifies the resource source. If it is not
specified, it is not generated. If this argument is specified, but the ResourceSourceIndex argument is
not specified, a zero value is assumed.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

InterruptList is a comma-delimited list on integers, at least one value is required. Each integer
represents a 32-bit interrupt number. At least one interrupt must be defined, and there may be no
duplicates in the list. The field “DescriptorName. _INT” is automatically created to refer to this
portion of the resource descriptor.

Description
The Interrupt macro evaluates to a buffer that contains an interrupt resource descriptor. The format
of the interrupt resource descriptor can be found in “Extended Interrupt Descriptor ” (page 310). The
macro is designed to be used inside of a ResourceTemplate (page 794).

19.5.62 IO (IO Resource Descriptor Macro)

Syntax
IO (Decode, AddressMin, AddressMax, AddressAlignment, RangeLength, DescriptorName) =>
Buffer

Argument
Decode describes whether the I/O range uses 10-bit decode (Decode10) or 16-bit decode
(Decode16). The field DescriptorName. _DEC is automatically created to refer to this portion of the
resource descriptor, where ‘1’ is Decode16 and ‘0’ is Decode10.

AddressMin evaluates to a 16-bit integer that specifies the minimum acceptable starting address for
the I/O range. It must be an even multiple of AddressAlignment. The field DescriptorName._MIN is
automatically created to refer to this portion of the resource descriptor.

AddressMax evaluates to a 16-bit integer that specifies the maximum acceptable starting address for
the I/O range. It must be an even multiple of AddressAlignment. The field DescriptorName._MAX is
automatically created to refer to this portion of the resource descriptor.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 765

ACPI Source Language (ASL)Reference
AddressAlignment evaluates to an 8-bit integer that specifies the alignment granularity for the I/O
address assigned. The field DescriptorName. _ALN is automatically created to refer to this portion
of the resource descriptor.

RangeLength evaluates to an 8-bit integer that specifies the number of bytes in the I/O range. The
field DescriptorName. _LEN is automatically created to refer to this portion of the resource
descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The IO macro evaluates to a buffer which contains an IO resource descriptor. The format of the IO
descriptor can be found in “I/O Port Descriptor” (page 310). The macro is designed to be used inside
of a ResourceTemplate (page 794).

19.5.63 IRQ (Interrupt Resource Descriptor Macro)

Syntax
IRQ (EdgeLevel, ActiveLevel, Shared, DescriptorName) {InterruptList} => Buffer

Arguments

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The
field DescriptorName. _HE is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow).
The field DescriptorName. _LL is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not
(Exclusive), and whether it is capable of waking the system from a low-power idle or system sleep
state (SharedAndWake or ExclusiveAndWake). The field DescriptorName. _SHR is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is Shared and ‘0’
is Exclusive. If nothing is specified, then Exclusive is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is
required. There may be no duplicates in the list.

Description
The IRQ macro evaluates to a buffer that contains an IRQ resource descriptor. The format of the
IRQ descriptor can be found in “IRQ Descriptor” ((page 310). The macro produces the three-byte
form of the descriptor. The macro is designed to be used inside of a ResourceTemplate (page 794).
766 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.64 IRQNoFlags (Interrupt Resource Descriptor Macro)

Syntax
IRQNoFlags (DescriptorName) {InterruptList} => Buffer

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is
required. There may be no duplicates in the list Description

The IRQNoFlags macro evaluates to a buffer which contains an active-high, edge-triggered IRQ
resource descriptor. The format of the IRQ descriptor can be found in IRQ Descriptor (page 310).
The macro produces the two-byte form of the descriptor. The macro is designed to be used inside of
a ResourceTemplate (page 794).

19.5.65 LAnd (Logical And)

Syntax
LAnd (Source1, Source2) => Boolean

Arguments

Source1 and source2 are evaluated as integers.

Description
If both values are non-zero, True is returned: otherwise, False is returned.

19.5.66 LEqual (Logical Equal)

Syntax
LEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type
of Source1.

Description
If the values are equal, True is returned; otherwise, False is returned. For integers, a numeric
compare is performed. For strings and buffers, True is returned only if both lengths are the same and
the result of a byte-wise compare indicates exact equality.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 767

ACPI Source Language (ASL)Reference
19.5.67 LGreater (Logical Greater)

Syntax
LGreater (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type
of Source1.

Description
If Source1 is greater than Source2, True is returned; otherwise, False is returned. For integers, a
numeric comparison is performed. For strings and buffers, a lexicographic comparison is performed.
True is returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is
numerically greater than the corresponding byte in Source2. False is returned if at least one byte in
Source1 is numerically less than the corresponding byte in Source2. In the case of byte-wise
equality, True is returned if the length of Source1 is greater than Source2, False is returned if the
length of Source1 is less than or equal to Source2.

19.5.68 LGreaterEqual (Logical Greater Than Or Equal)

Syntax
LGreaterEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type
of Source1.

Description
If Source1 is greater than or equal to Source2, True is returned; otherwise, False is returned.
Equivalent to LNot(LLess()). See the description of the LLess operator.

19.5.69 LLess (Logical Less)

Syntax
LLess (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type
of Source1.
768 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
If Source1 is less than Source2, True is returned; otherwise, False is returned. For integers, a
numeric comparison is performed. For strings and buffers, a lexicographic comparison is performed.
True is returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is
numerically less than the corresponding byte in Source2. False is returned if at least one byte in
Source1 is numerically greater than the corresponding byte in Source2. In the case of byte-wise
equality, True is returned if the length of Source1 is less than Source2, False is returned if the length
of Source1 is greater than or equal to Source2.

19.5.70 LLessEqual (Logical Less Than Or Equal)

Syntax
LLessEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type
of Source1.

Description
If Source1 is less than or equal to Source2, True is returned; otherwise False is returned. Equivalent
to LNot(LGreater()). See the description of the LGreater operator.

19.5.71 LNot (Logical Not)

Syntax
LNot (Source) => Boolean

Arguments

Source is evaluated as an integer.

Description
If the value is zero True is returned; otherwise, False is returned.

19.5.72 LNotEqual (Logical Not Equal))

Syntax
LNotEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type
of Source1.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 769

ACPI Source Language (ASL)Reference
Description
If Source1 is not equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LEqual()).See the description of the LEqual operator.

19.5.73 Load (Load Definition Block)

Syntax
Load (Object, DDBHandle)

Arguments

The Object parameter can either refer to an operation region field or an operation region directly. If
the object is an operation region, the operation region must be in SystemMemory space. The
Definition Block should contain an ACPI DESCRIPTION_HEADER of type SSDT. The Definition
Block must be totally contained within the supplied operation region or operation region field.
OSPM reads this table into memory, the checksum is verified, and then it is loaded into the ACPI
namespace. The DDBHandle parameter is the handle to the Definition Block that can be used to
unload the Definition Block at a future time via the Unload operator.

Description
Performs a run-time load of a Definition Block. Any table referenced by Load must be in memory
marked as AddressRangeReserved or AddressRangeNVS.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the root of the namespace.
The new Definition Block can override this by specifying absolute names or by adjusting the
namespace location using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the
Definition Block has been loaded. The control methods defined in the Definition Block are not
executed during load time.

19.5.74 LoadTable (Load Definition Block From XSDT)

Syntax
LoadTable (SignatureString, OEMIDString, OEMTableIDString, RootPathString,
ParameterPathString, ParameterData) => DDBHandle

Arguments

The XSDT is searched for a table where the Signature field matches SignatureString, the OEM ID
field matches OEMIDString, and the OEM Table ID matches OEMTableIDString. All comparisons
are case sensitive. If the SignatureString is greater than four characters, the OEMIDString is greater
than six characters, or the OEMTableID is greater than eight characters, a run-time error is
generated. The OS can also check the OEM Table ID and Revision ID against a database for a newer
revision Definition Block of the same OEM Table ID and load it instead.
770 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The RootPathString specifies the root of the Definition Block. It is evaluated using normal scoping
rules, assuming that the scope of the LoadTable instruction is the current scope. The new Definition
Block can override this by specifying absolute names or by adjusting the namespace location using
the Scope operator. If RootPathString is not specified, “\” is assumed

If ParameterPathString and ParameterData are specified, the data object specified by
ParameterData is stored into the object specified by ParameterPathString after the table has been
added into the namespace. If the first character of ParameterPathString is a backslash (‘\’) or caret
(‘^’) character, then the path of the object is ParameterPathString. Otherwise, it is
RootPathString.ParameterPathString. If the specified object does not exist, a run-time error is
generated.

The handle of the loaded table is returned. If no table matches the specified signature, then 0 is
returned.

Description
Performs a run-time load of a Definition Block from the XSDT. Any table referenced by LoadTable
must be in memory marked by AddressRangeReserved or AddressRangeNVS.

Note: OSPM loads the DSDT and all SSDTs during initialization. As such, Definition Blocks to be
conditionally loaded via LoadTable must contain signatures other than “SSDT”.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the
Definition Block has been loaded. The control methods defined in the Definition Block are not
executed during load time.

Example
 Store (LoadTable (“OEM1”, ”MYOEM”, ”TABLE1”, ”_SB.PCI0”,”MYD”,
 Package () {0,”_SB.PCI0”}), Local0)

This operation would search through the RSDT or XSDT for a table with the signature “OEM1,” the
OEM ID of “MYOEM,” and the table ID of “TABLE1.” If not found, it would store Zero in Local0.
Otherwise, it will store a package containing 0 and “_SB.PCI0” into the variable at
_SB.PCI0.MYD.

19.5.75 Localx (Method Local Data Objects)

Syntax
Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

Description
Up to 8 local objects can be referenced in a control method. On entry to a control method, these
objects are uninitialized and cannot be used until some value or reference is stored into the object.
Once initialized, these objects are preserved in the scope of execution for that control method.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 771

ACPI Source Language (ASL)Reference
19.5.76 LOr (Logical Or)

Syntax
LOr (Source1, Source2) => Boolean

Arguments

Source1 and Source2 are evaluated as integers.

Description
If either value is non-zero, True is returned; otherwise, False is returned.

19.5.77 Match (Find Object Match)

Syntax
Match (SearchPackage, Op1, MatchObject1, Op2, MatchObject2, StartIndex) => Ones | Integer

Arguments

SearchPackage is evaluated to a package object and is treated as a one-dimension array. Each
package element must evaluate to either an integer, a string, or a buffer. Uninitialized package
elements and elements that do not evaluate to integers, strings, or buffers are ignored. Op1 and Op2
are match operators. MatchObject1 and MatchObject2 are the objects to be matched and must each
evaluate to either an integer, a string, or a buffer. StartIndex is the starting index within the
SearchPackage.

Description
A comparison is performed for each element of the package, starting with the index value indicated
by StartIndex (0 is the first element). If the element of SearchPackage being compared against is
called P[i], then the comparison is:

If (P[i] Op1 MatchObject1) and (P[i] Op2 MatchObject2) then Match => i is returned.

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the
constant object Ones is returned. The data type of the MatchObject dictates the required type of the
package element. If necessary, the package element is implicitly converted to match the type of the
MatchObject. If the implicit conversion fails for any reason, the package element is ignored (no
match.)

Op1 and Op2 have the values and meanings listed in the following table.

Table 19-327 Match Term Operator Meanings

Operator Encoding Macro

TRUE – A don’t care, always returns TRUE 0 MTR

EQ – Returns TRUE if P[i] == MatchObject 1 MEQ

LE – Returns TRUE if P[i] <= MatchObject 2 MLE

LT – Returns TRUE if P[i] < MatchObject 3 MLT

GE – Returns TRUE if P[i] >= MatchObject 4 MGE
772 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example
Following are some example uses of Match:

Name (P1,
 Package () {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

// match 1993 == P1[i]
Match (P1, MEQ, 1993, MTR, 0, 0) // -> 7, since P1[7] == 1993

// match 1984 == P1[i]
Match (P1, MEQ, 1984, MTR, 0, 0) // -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000
Match (P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3rd element
Match (P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

19.5.78 Memory24 (Memory Resource Descriptor Macro)

Syntax
Memory24 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment,
RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field
DescriptorName._RW is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ReadWrite and ‘0’ is ReadOnly.

AddressMinimum evaluates to a 16-bit integer that specifies bits [8:23] of the lowest possible base
address of the memory range. All other bits are assumed to be zero. The value must be an even
multiple of AddressAlignment. The 16-bit field DescriptorName._MIN is automatically created to
refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies bits [8:23] of the highest possible base
address of the memory range. All other bits are assumed to be zero. The value must be an even
multiple of AddressAlignment. The 16-bit field DescriptorName._MAX is automatically created to
refer to this portion of the resource descriptor.

AddressAlignment evaluates to a 16-bit integer that specifies bits [0:15] of the required alignment for
the memory range. All other bits are assumed to be zero. The address selected must be an even
multiple of this value. The 16-bit field DescriptorName. _ALN is automatically created to refer to
this portion of the resource descriptor.

GT – Returns TRUE if P[i] > MatchObject 5 MGT

Operator Encoding Macro
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 773

ACPI Source Language (ASL)Reference
RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the
memory range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor. The range length provides the length of the memory range in 256
byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Memory24 macro evaluates to a buffer which contains an 24-bit memory descriptor. The
format of the 24-bit memory descriptor can be found in “24-Bit Memory Range Descriptor ”
(page 317). The macro is designed to be used inside of a ResourceTemplate (page 794).

Note: The use of Memory24 is deprecated and should not be used in new designs.

19.5.79 Memory32 (Memory Resource Descriptor Macro)

Syntax
Memory32 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment,
RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field
DescriptorName._RW is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ReadWrite and ‘0’ is ReadOnly.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
memory range. The value must be an even multiple of AddressAlignment. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
memory range. The value must be an even multiple of AddressAlignment. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressAlignment evaluates to a 32-bit integer that specifies the required alignment for the memory
range. The address selected must be an even multiple of this value. The 32-bit field DescriptorName.
_ALN is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
memory range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor. The range length provides the length of the memory range in 1
byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.
774 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
The Memory32 macro evaluates to a buffer which contains a 32-bit memory descriptor, which
describes a memory range with a minimum, a maximum and an alignment. The format of the 32-bit
memory descriptor can be found in “32-Bit Memory Range Descriptor ” (page 318). The macro is
designed to be used inside of a ResourceTemplate (page 794).

19.5.80 Memory32Fixed (Memory Resource Descriptor Macro)

Syntax
Memory32Fixed (ReadAndWrite, AddressBase, RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field
DescriptorName._RW is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ReadWrite and ‘0’ is ReadOnly.

AddressBase evaluates to a 32-bit integer that specifies the base address of the memory range. The
32-bit field DescriptorName. _BAS is automatically created to refer to this portion of the resource
descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the
memory range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Memory32Fixed macro evaluates to a buffer which contains a 32-bit memory descriptor, which
describes a fixed range of memory addresses. The format of the fixed 32-bit memory descriptor can
be found in 32-Bit Fixed Memory Range Descriptor (page 320). The macro is designed to be used
inside of a ResourceTemplate (page 794).

19.5.81 Method (Declare Control Method)

Syntax
Method (MethodName, NumArgs, SerializeRule, SyncLevel, ReturnType, ParameterTypes)
{TermList}

Arguments

MethodName is evaluated as a Namestring data type.

NumArgs is optional and is the required number of arguments to be passed to the method, evaluated
as an Integer data type. If not specified, the default value is zero arguments. Up to 7 arguments may
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 775

ACPI Source Language (ASL)Reference
be passed to a method. These arguments may be referenced from within the method as Arg0 through
Arg6.

SerializeRule is optional and is a flag that defines whether the method is serialized or not and is one
of the following: Serialized or NotSerialized. A method that is serialized cannot be reentered by
additional threads. If not specified, the default is NotSerialized.

SyncLevel is optional and specifies the synchronization level for the method (0 – 15). If not
specified, the default sync level is zero.

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the
method does not return an object, then nothing is specified or UnknownObj is specified. To specify
a single return type, simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify
multiple possible return types, enclose the comma-separated ObjectTypeKeywords with braces. For
example: {IntObj, BuffObj}.

ParameterTypes is optional and specifies the type of the method parameters. It is a comma-
separated, variable-length list of the expected object type or types for each of the method parameters,
enclosed in braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword
or a comma-separated sub-list of ObjectTypeKeywords enclosed in braces. If ParameterTypes is
specified, the number of parameters must match NumArgs.

TermList is a variable-length list of executable ASL statements representing the body of the control
method.

Description
Creates a new control method of name MethodName. This is a named package containing a series of
object references that collectively represent a control method, which is a procedure that can be
invoked to perform computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For
more information on method execution, see Section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on
the namespace tree. Any names created within this scope are “below” the name of this package. The
current namespace location is assigned to the method package, and all namespace references that
occur during control method execution for this package are relative to that location.

If a method is declared as Serialized, an implicit mutex associated with the method object is
acquired at the specified SyncLevel. If no SyncLevel is specified, SyncLevel 0 is assumed. The
serialize rule can be used to prevent reentering of a method. This is especially useful if the method
creates namespace objects. Without the serialize rule, the reentering of a method will fail when it
attempts to create the same namespace object.

There are eight local variables automatically available for each method, referenced as Local0
through Local7. These locals may be used to store any type of ASL object.

Also notice that all namespace objects created by a method have temporary lifetime. When method
execution exits, the created objects will be destroyed.

Examples
The following block of ASL sample code shows a use of Method for defining a control method that
turns on a power resource.
776 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Method (_ON) {
 Store (One, GIO.IDEP) // assert power
 Sleep (10) // wait 10ms
 Store (One, GIO.IDER) // de-assert reset#
 Stall (10) // wait 10us
 Store (Zero, GIO.IDEI) // de-assert isolation
}

This method is an implementation of _SRS (Set Resources). It shows the use of a method argument
and two method locals.

Method (_SRS, 1, NotSerialized)
{
 CreateWordField (Arg0, One, IRQW)
 Store (_SB.PCI0.PID1.IENA, Local1)
 Or (IRQW, Local1, Local1)
 Store (Local1, _SB.PCI0.PID1.IENA)
 FindSetRightBit (IRQW, Local0)
 If (Local0)
 {
 Decrement (Local0)
 Store (Local0, _SB.PCI0.PID1.IN01)
 }
}

19.5.82 Mid (Extract Portion of Buffer or String)

Syntax
Mid (Source, Index, Length, Result) => Buffer or String

Arguments

Source is evaluated as either a Buffer or String. Index and Length are evaluated as Integers.

Description
If Source is a buffer, then Length bytes, starting with the Indexth byte (zero-based) are optionally
copied into Result. If Index is greater than or equal to the length of the buffer, then the result is an
empty buffer. Otherwise, if Index + Length is greater than or equal to the length of the buffer, then
only bytes up to and including the last byte are included in the result.

If Source is a string, then Length characters, starting with the Indexth character (zero-based) are
optionally copied into Result. If Index is greater than or equal to the length of the buffer, then the
result is an empty string. Otherwise, if Index + Length is greater than or equal to the length of the
string, then only bytes up to an including the last character are included in the result.

19.5.83 Mod (Integer Modulo)

Syntax
Mod (Dividend, Divisor, Result) => Integer

Arguments

Dividend and Divisor are evaluated as Integers.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 777

ACPI Source Language (ASL)Reference
Description
The Dividend is divided by Divisor, and then the resulting remainder is optionally stored into Result.
If Divisor evaluates to zero, a fatal exception is generated.

19.5.84 Multiply (Integer Multiply)

Syntax
Multiply (Multiplicand, Multiplier, Result) => Integer

Arguments

Multiplicand and Multiplier are evaluated as Integers.

Description
The Multiplicand is multiplied by Multiplier and the result is optionally stored into Result. Overflow
conditions are ignored and results are undefined.

19.5.85 Mutex (Declare Synchronization/Mutex Object)

Syntax
Mutex (MutexName, SyncLevel)

Arguments

Creates a data mutex synchronization object named MutexName, with a synchronization level from
0 to 15 as specified by the Integer SyncLevel.

Description
A synchronization object provides a control method with a mechanism for waiting for certain events.
To prevent deadlocks, wherever more than one synchronization object must be owned, the
synchronization objects must always be released in the order opposite the order in which they were
acquired.

The SyncLevel parameter declares the logical nesting level of the synchronization object. The
current sync level is maintained internally for a thread, and represents the greatest SyncLevel among
mutex objects that are currently acquired by the thread. The SyncLevel of a thread before acquiring
any mutexes is zero. The SyncLevel of the Global Lock (_GL) is zero.

All Acquire terms must refer to a synchronization object with a SyncLevel that is equal or greater
than the current level, and all Release terms must refer to a synchronization object with a SyncLevel
that is equal to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired
using an Acquire term and is released using a Release term. Ownership of a Mutex must be
relinquished before completion of any invocation. For example, the top-level control method cannot
exit while still holding ownership of a Mutex. Acquiring ownership of a Mutex can be nested (can be
acquired multiple times by the same thread).
778 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.86 Name (Declare Named Object)

Syntax
Name (ObjectName, Object)

Arguments

Creates a new object named ObjectName. Attaches Object to ObjectName in the Global ACPI
namespace.

Description
Creates ObjectName in the namespace, which references the Object.

Example
The following example creates the name PTTX in the root of the namespace that references a
package.

Name (\PTTX, // Port to Port Translate Table
 Package () {Package () {0x43, 0x59}, Package) {0x90, 0xFF}}
)

The following example creates the name CNT in the root of the namespace that references an integer
data object with the value 5.

Name (\CNT, 5)

19.5.87 NAnd (Integer Bitwise Nand)

Syntax
NAnd (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise NAND is performed and the result is optionally stored in Result.

19.5.88 NoOp Code (No Operation)

Syntax
NoOp

Description
This operation has no effect.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 779

ACPI Source Language (ASL)Reference
19.5.89 NOr (Integer Bitwise Nor)

Syntax
NOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise NOR is performed and the result is optionally stored in Result.

19.5.90 Not (Integer Bitwise Not)

Syntax
Not (Source, Result) => Integer

Arguments

Source is evaluated as an integer data type.

Description
A bitwise NOT is performed and the result is optionally stored in Result.

19.5.91 Notify (Notify Object of Event)

Syntax
Notify (Object, NotificationValue)

Arguments

Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to
a device, processor, or thermal zone object.

Description
Object type determines the notification values. For example, the notification values for a thermal
zone object are different from the notification values used for a device object. Undefined notification
values are treated as reserved and are ignored by the OS.

For lists of defined Notification values, see Section 5.6.6, “Device Object Notifications.”

19.5.92 Offset (Change Current Field Unit Offset)

Syntax
Offset (ByteOffset)

Arguments

ByteOffset is the new offset (in bytes) for the next FieldUnit within a FieldList.
780 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
The Offset operator is used within a FieldList to specify the byteOffset of the next defined field
within its parent operation region. This can be used instead of defining the bit lengths that need to be
skipped. All offsets are defined starting from zero, based at the starting address of the parent region.

19.5.93 ObjectType (Get Object Type)

Syntax
ObjectType (Object) => Integer

Arguments

Object is any valid object.

Description
The execution result of this operation is an integer that has the numeric value of the object type for
Object.

The object type codes are listed in Table 18-20. Notice that if this operation is performed on an
object reference such as one produced by the Alias, Index, or RefOf statements, the object type of
the base object is returned. For typeless objects such as predefined scope names (in other words,
_SB, _GPE, etc.), the type value 0 (Uninitialized) is returned.

Table 19-328 TValues Returned By the ObjectType Operator

Value Object

0 Uninitialized

1 Integer

2 String

3 Buffer

4 Package

5 Field Unit

6 Device

7 Event

8 Method

9 Mutex

10 Operation Region

11 Power Resource

12 Processor

13 Thermal Zone

14 Buffer Field

15 DDB Handle

16 Debug Object

>16 Reserved
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 781

ACPI Source Language (ASL)Reference
19.5.94 One (Constant One Integer)

Syntax
One=> Integer

Description
The One operator returns an Integer with the value 1. Writes to this object are not allowed. The use
of this operator can reduce AML code size, since it is represented by a one-byte AML opcode.

19.5.95 Ones (Constant Ones Integer)

Syntax
Ones=> Integer

Description

Description
The Ones operator returns an Integer with all bits set to 1. Writes to this object are not allowed. The
use of this operator can reduce AML code size, since it is represented by a one-byte AML opcode.

Note: The actual value of the integer returned by the Ones operator depends on the integer width of the
DSDT. If the revision of the DSDT is 1 or less, the integer width is 32 bits and Ones returns
0xFFFFFFFF. If the revision of the DSDT is 2 or greater, the integer width is 64 bits and Ones
returns 0xFFFFFFFFFFFFFFFF. This difference must be considered when performing
comparisons against the Ones Integer.

19.5.96 OperationRegion (Declare Operation Region)

Syntax
OperationRegion (RegionName, RegionSpace, Offset, Length)

Arguments

Declares an operation region named RegionName. Offset is the offset within the selected
RegionSpace at which the region starts (byte-granular), and Length is the length of the region in
bytes.

Description
An Operation Region is a type of data object where read or write operations to the data object are
performed in some hardware space. For example, the Definition Block can define an Operation
Region within a bus, or system I/O space. Any reads or writes to the named object will result in
accesses to the I/O space.

Operation regions are regions in some space that contain hardware registers for exclusive use by
ACPI control methods. In general, no hardware register (at least byte-granular) within the operation
region accessed by an ACPI control method can be shared with any accesses from any other source,
with the exception of using the Global Lock to share a region with the firmware. The entire
Operation Region can be allocated for exclusive use to the ACPI subsystem in the host OS.
782 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Operation Regions that are defined within the scope of a method are the exception to this rule. These
Operation Regions are known as “Dynamic” since the OS has no idea that they exist or what
registers they use until the control method is executed. Using a Dynamic SystemIO or
SystemMemory Operation Region is not recommended since the OS cannot guarantee exclusive
access. All other types of Operation Regions may be Dynamic.

Operation Regions define the overall base address and length of a hardware region, but they cannot
be accessed directly by AML code. A Field object containing one or more FieldUnits is used to
overlay the Operation Region in order to access individual areas of the Region. An individual
FieldUnit within an Operation Region may be as small as one bit, or as large as the length of the
entire Region. FieldUnit values are normalized (shifted and masked to the proper length.) The data
type of a FieldUnit can be either a Buffer or an Integer, depending on the bit length of the
FieldUnit. If the FieldUnit is smaller than or equal to the size of an Integer (in bits), it will be treated
as an Integer. If the FieldUnit is larger than the size of an Integer, it will be treated as a Buffer. The
size of an Integer is indicated by the DSDT header’s Revision field. A revision less than 2 indicates
that the size of an Integer is 32 bits. A value greater than or equal to 2 signifies that the size of an
Integer is 64 bits. For more information about data types and FieldUnit type conversion rules, see
Section 19.2.5.7, “Data Type Conversion Rules”.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a
Field data object for the region, will automatically synchronize on the Operation Region object;
however, a control method may also explicitly synchronize to a region to prevent other accesses to
the region (from other control methods). Notice that according to the control method execution
model, control method execution is non-preemptive. Because of this, explicit synchronization to an
Operation Region needs to be done only in cases where a control method blocks or yields execution
and where the type of register usage requires such synchronization.

There are eight predefined Operation Region types specified in ACPI:

Table 19-329 Predefined Operation Region types

In addition, OEMs may define Operation Regions types 0x80 to 0xFF.

Name (RegionSpace Keyword) Value

SystemMemory 0

SystemIO 1

PCI_Config 2

EmbeddedControl 3

SMBus 4

CMOS 5

PCIBARTarget 6

IPMI 7

GeneralPurposeIO 8

GenericSerialbus 9

Reserved 0x0A-0x7F
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 783

ACPI Source Language (ASL)Reference
Example
The following example ASL code shows the use of OperationRegion combined with Field to
describe IDE 0 and 1 controlled through general I/O space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)
Field (GIO, ByteAcc, NoLock, Preserve) {
 IDEI, 1, // IDEISO_EN - isolation buffer
 IDEP, 1, // IDE_PWR_EN - power
 IDER, 1 // IDERST#_EN - reset#
}

19.5.97 Or (Integer Bitwise Or)

Syntax
Or (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise OR is performed and the result is optionally stored in Result.

19.5.98 Package (Declare Package Object)

Syntax
Package (NumElements) {PackageList} => Package

Arguments

NumElements is evaluated as an Integer. PackageList is an initializer list of objects.

Description
Declares an unnamed aggregation of data items, constants, and/or references to control methods.
The size of the package is NumElements. PackageList contains the list data items, constants, and/or
control method references used to initialize the package.

If NumElements is absent, it is set to match the number of elements in the PackageList. If
NumElements is present and greater than the number of elements in the PackageList, the default
entry of type Uninitialized (see ObjectType) is used to initialize the package elements beyond those
initialized from the PackageList. There are two types of package elements allowed in the
PackageList: Data Objects (Integers, Strings, Buffers, and Packages) and references to control
methods.

Evaluating an undefined element will yield an error, but elements can be assigned values at runtime
to make them defined (via the Index operator). It is an error for NumElements to be less than the
number of elements in the PackageList..

The ASL compiler can emit two different AML opcodes for a Package declaration, either
PackageOp or VarPackageOp. For small, fixed-length packages, the PackageOp is used and this
784 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
opcode is compatible with ACPI 1.0. A VarPackageOp will be emitted if any of the following
conditions are true:

• The NumElements argument is a TermArg that can only be resolved at runtime.

• At compile time, NumElements resolves to a constant that is larger than 255.

• The PackageList contains more than 255 initializer elements.

Note: The ability to create variable-sized packages was first introduced in ACPI 2.0. ACPI 1.0 only
allowed fixed-size packages with up to 255 elements.

Examples
Example 1:

Package () {
 3,
 9,
 “ACPI 1.0 COMPLIANT”,
 Package () {
 “CheckSum=>”,
 Package () {7, 9}
 },
 0
}

Example 2: This example defines and initializes a two-dimensional array.

Package () {
 Package () {11, 12, 13},
 Package () {21, 22, 23}
}

Example 3: This code allocates space for ten objects to be defined at runtime (see the Name and
Index term definitions).

Package (10) {}

Example 4: These package declarations will cause the compiler to emit a VarPackageOp AML
opcode.

Name (SIZE, 4)
Package (SIZE) {}

Package (1024) {}

Package (256) {}

19.5.99 PowerResource (Declare Power Resource)

Syntax
PowerResource (ResourceName, SystemLevel, ResourceOrder) {ObjectList}

Arguments

Declares a power resource named ResourceName. PowerResource opens a name scope.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 785

ACPI Source Language (ASL)Reference
Description
For a definition of the PowerResource term, see Section 7.1, “Declaring a Power Resource Object.”

19.5.100 Processor (Declare Processor)

Syntax
Processor (ProcessorName, ProcessorID, PBlockAddress, PblockLength) {ObjectList}

Arguments

Declares a named processor object named ProcessorName. Processor opens a name scope. Each
processor is required to have a unique ProcessorID value that is unique from any other ProcessorID
value.

For each processor in the system, the ACPI BIOS declares one processor object in the namespace
anywhere within the _SB scope. For compatibility with operating systems implementing ACPI 1.0,
the processor object may also be declared under the _PR scope. An ACPI-compatible namespace
may define Processor objects in either the _SB or _PR scope but not both.

PBlockAddress provides the system I/O address for the processors register block. Each processor
can supply a different such address. PBlockLength is the length of the processor register block, in
bytes and is either 0 (for no P_BLK) or 6. With one exception, all processors are required to have the
same PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength
when all other processors have a zero PBlockLength. It is valid for every processor to have a
PBlockLength of 0.

Description
The following block of ASL sample code shows a use of the Processor term.

 Processor (
 _PR.CPU0, // Namespace name
 1,
 0x120, // PBlk system IO address
 6 // PBlkLen
) {ObjectList}

The ObjectList is an optional list that may contain an arbitrary number of ASL Objects. Processor-
specific objects that may be included in the ObjectList include _PTC, _CST, _PCT, _PSS, _PPC,
_PSD, _TSD, _CSD, _PDC, _TPC, _TSS, and _OSC. These processor-specific objects can only be
specified when the processor object is declared within the _SB scope. For a full definition of these
objects, see Section 8, “Processor Configuration and Control.”

19.5.101 QWordIO (QWord IO Resource Descriptor Macro)

Syntax
QWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName, TranslationType, TranslationDensity)
786 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer)
or passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly),
valid non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation
(EntireRange). The 2-bit field DescriptorName._RNG is automatically created to refer to this
portion of the resource descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on
which the I/O range must be aligned. The 64-bit field DescriptorName. _GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/
O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource
descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
I/O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource
descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 64-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 787

ACPI Source Language (ASL)Reference
ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this I/O range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is Memory. If
TypeStatic is specified, then the secondary side of the bus is I/O. If nothing is specified, then
TypeStatic is assumed. The 1-bit field DescriptorName. _TTP is automatically created to refer to
this portion of the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP
(page 332) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the
primary to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only
used when TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is
assumed. The 1-bit field DescriptorName. _TRS is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS
(page 333) for more information.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The QWordIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in
QWord Address Space Descriptor (page 321). The macro is designed to be used inside of a
ResourceTemplate (page 794).

19.5.102 QWordMemory (QWord Memory Resource Descriptor Macro)

Syntax
QWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable, ReadAndWrite,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode)
or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit
field DescriptorName. _DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
788 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
field DescriptorName. _MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or
can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName. _MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and
write-combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName. _MEM is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field
DescriptorName._RW is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is ReadWrite and ‘0’ is ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on
which the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 64-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this Memory range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 789

ACPI Source Language (ASL)Reference
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked
as normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as
ACPI reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If
nothing is specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName.
_MTP is automatically created in order to refer to this portion of the resource descriptor, where ‘0’ is
AddressRangeMemory, ‘1’ is AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is
AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic
is specified, then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is
assumed. The 1-bit field DescriptorName. _TTP is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 332) for
more information.

Description
The QWordMemory macro evaluates to a buffer which contains a 64-bit memory resource
descriptor, which describes a range of memory addresses. The format of the 64-bit memory resource
descriptor can be found in “QWord Address Space Descriptor ” (page 321). The macro is designed
to be used inside of a ResourceTemplate (page 794).

19.5.103 QWordSpace (QWord Space Resource Descriptor Macro)

Syntax
QWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values
are 0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device
(ResourceConsumer) or passed on to child devices (ResourceProducer). If nothing is specified,
then ResourceConsumer is assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode)
or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit
field DescriptorName. _DEC is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName. _MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.
790 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or
can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName. _MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on
which the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 64-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 64-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the
Memory range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this
portion of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this Memory range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The QWordSpace macro evaluates to a buffer which contains a 64-bit Address Space resource
descriptor, which describes a range of addresses. The format of the 64-bit AddressSpace descriptor
can be found in “QWord Address Space Descriptor ” (page 321). The macro is designed to be used
inside of a ResourceTemplate (page 794).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 791

ACPI Source Language (ASL)Reference
19.5.104 RawDataBuffer

Syntax
RawDataBuffer (RDBufferSize) {ByteList} => RawDataBuffer

Arguments

Declares a RawDataBuffer of size RDBufferSize and optional initial value of ByteList.

Description
The optional RDBufferSize parameter specifies the size of the buffer and must be a word constant.
The initial value is specified in Initializer ByteList. If RDBufferSize is not specified, it defaults to the
size of initializer. If the count is too small to hold the value specified by initializer, the initializer size
is used.

Note that a RawDataBuffer is not encoded as a Buffer (Opcode, Package length bytes, etc), but
rather contains only the raw bytes specified.

19.5.105 RefOf (Create Object Reference)

Syntax
RefOf (Object) => ObjectReference

Arguments

Object can be any object type (for example, a package, a device object, and so on).

Description
Returns an object reference to Object. If the Object does not exist, the result of a RefOf operation is
fatal. Use the CondRefOf term in cases where the Object might not exist.

The primary purpose of RefOf() is to allow an object to be passed to a method as an argument to the
method without the object being evaluated at the time the method was loaded.

19.5.106 Register (Generic Register Resource Descriptor Macro)

Syntax
Register (AddressSpaceKeyword, RegisterBitWidth, RegisterBitOffset, RegisterAddress,
AccessSize, DescriptorName)

Arguments

AddressSpaceKeyword specifies the address space where the register exists. The register can exist in
I/O space (SystemIO), memory (SystemMemory), PCI configuration space (PCI_Config),
embedded controller space (EmbeddedControl), SMBus (SMBus), Platform Communications
Channel (PCC), or fixed-feature hardware (FFixedHW). The 8-bit field DescriptorName. _ASI is
automatically created in order to refer to this portion of the resource descriptor. See Address Space
Id (page 336) for more information, including a list of valid values and their meanings.
792 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
RegisterBitWidth evaluates to an 8-bit integer that specifies the number of bits in the register. The 8-
bit field DescriptorName. _RBW is automatically created in order to refer to this portion of the
resource descriptor. See _RBW (page 336) for more information.

RegisterBitOffset evaluates to an 8-bit integer that specifies the offset in bits from the start of the
register indicated by RegisterAddress. The 8-bit field DescriptorName. _RBO is automatically
created in order to refer to this portion of the resource descriptor. See _RBO (page 336) for more
information.

RegisterAddress evaluates to a 64-bit integer that specifies the register address. The 64-bit field
DescriptorName. _ADR is automatically created in order to refer to this portion of the resource
descriptor. See _ADR (page 336) for more information.

AccessSize evaluates to an 8-bit integer that specifies the size of data values used when accessing the
address space as follows:

0 - Undefined (legacy)

1 - Byte access

2 - Word access

3 - DWord access

4 - QWord access

The 8-bit field DescriptorName. _ASZ is automatically created in order to refer to this portion of the
resource descriptor. See _ASZ (page 336) for more information. For backwards compatibility, the
AccesSize parameter is optional when invoking the Register macro. If the AccessSize parameter is
not supplied then the AccessSize field will be set to zero. In this case, OSPM will assume the access
size.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The Register macro evaluates to a buffer which contains a generic register resource descriptor. The
format of the generic register resource descriptor can be found in “Generic Register Descriptor ”
(page 336). The macro is designed to be used inside of a ResourceTemplate (page 794).

19.5.107 Release (Release a Mutex Synchronization Object)

Syntax
Release (SyncObject)

Arguments

SynchObject must be a mutex synchronization object.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 793

ACPI Source Language (ASL)Reference
Description
If the mutex object is owned by the current invocation, ownership for the Mutex is released once. It
is fatal to release ownership on a Mutex unless it is currently owned. A Mutex must be totally
released before an invocation completes.

19.5.108 Reset (Reset an Event Synchronization Object)

Syntax
Reset (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

Description
This operator is used to reset an event synchronization object to a non-signaled state. See also the
Wait and Signal function operator definitions.

19.5.109 ResourceTemplate (Resource To Buffer Conversion Macro)

Syntax
ResourceTemplate () {ResourceMacroList} => Buffer

Description
For a full definition of the ResourceTemplateTerm macro, see Section 19.2.3, “ASL Resource
Templates”.

19.5.110 Return (Return from Method Execution)

Syntax
Return

Return ()

Return (Arg)

Arguments

Arg is optional and can be any valid object or reference.

Description
Returns control to the invoking control method, optionally returning a copy of the object named in
Arg. If no Arg object is specified, a Return(Zero) is generated by the ASL compiler.
794 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: In the absence of an explicit Return () statement, the return value to the caller is undefined.

19.5.111 Revision (Constant Revision Integer)

Syntax
Revision => Integer

Description
The Revision operator returns an Integer containing the current revision of the AML interpreter.
Writes to this object are not allowed.

19.5.112 Scope (Open Named Scope)

Syntax
Scope (Location) {ObjectList}

Arguments

Opens and assigns a base namespace scope to a collection of objects. All object names defined
within the scope are created relative to Location. Note that Location does not have to be below the
surrounding scope, but can refer to any location within the namespace. The Scope term itself does
not create objects, but only locates objects within the namespace; the actual objects are created by
other ASL terms.

Description
The object referred to by Location must already exist in the namespace and be one of the following
object types that has a namespace scope associated with it:

• A predefined scope such as: \ (root), _SB, \GPE, _PR, _TZ, etc.

• Device

• Processor

• Thermal Zone

• Power Resource

The Scope term alters the current namespace location to the existing Location. This causes the
defined objects within ObjectList to be created relative to this new location in the namespace.

Note: When creating secondary SSDTs, it is often required to use the Scope operator to change the
namespace location in order create objects within some part of the namespace that has been defined
by the main DSDT. Use the External operator to declare the scope location so that the ASL
compiler will not issue an error for an undefined Location.

Examples
The following example ASL code uses the Scope operator and creates several objects:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 795

ACPI Source Language (ASL)Reference
Scope (\PCI0)
{
 Name (X, 3)
 Scope (\)
 {
 Method (RQ) {Return (0)}
 }
 Name (^Y, 4)
}

The created objects are placed in the ACPI namespace as shown:

\PCI0.X
\RQ
\Y

This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{
 External (_SB.PCI0, DeviceObj)

 Scope (_SB.PCI0)
 {
 }
}

19.5.113 ShiftLeft (Integer Shift Left)

Syntax
ShiftLeft (Source, ShiftCount, Result) => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description
Source is shifted left with the least significant bit zeroed ShiftCount times. The result is optionally
stored into Result.

19.5.114 ShiftRight (Integer Shift Right)

Syntax
ShiftRight (Source, ShiftCount, Result) => Integer

Arguments

Source and ShiftCount are evaluated as Integers.
796 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
Source is shifted right with the most significant bit zeroed ShiftCount times. The result is optionally
stored into Result.

19.5.115 Signal (Signal a Synchronization Event)

Syntax
Signal (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

Description
The Event object is signaled once, allowing one invocation to acquire the event.

19.5.116 SizeOf (Get Data Object Size)

Syntax
SizeOf (ObjectName) => Integer

Arguments

ObjectName must be a buffer, string or package object.

Description
Returns the size of a buffer, string, or package data object.

For a buffer, it returns the size in bytes of the data. For a string, it returns the size in bytes of the
string, not counting the trailing NULL. For a package, it returns the number of elements. For an
object reference, the size of the referenced object is returned. Other data types cause a fatal run-time
error.

19.5.117 Sleep (Milliseconds Sleep)

Syntax
Sleep (MilliSeconds)

Arguments

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at
least the required number of milliseconds.

Description
The implementation of Sleep is to round the request up to the closest sleep time supported by the OS
and relinquish the processor.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 797

ACPI Source Language (ASL)Reference
19.5.118 SPISerialBus (SPI Serial Bus Connection Resource
Descriptor Macro)

Syntax
SPISerialBus (DeviceSelection, DeviceSelectionPolarity, WireMode, DataBitLength, SlaveMode,
ConnectionSpeed, ClockPolarity, ClockPhase, ResourceSource, ResourceSourceIndex,
ResourceUsage, DescriptorName, VendorData)

Arguments

DeviceSelection is the device selection value. This value may refer to a chip-select line, GPIO line or
other line selection mechanism. _ADR is automatically created to refer to this portion of the
resource descriptor.

DeviceSelectionPolarity is an optional argument and can be either PolarityHigh or PolarityLow to
indicate that the device is active. PolarityLow is the default. The bit field _DPL is automatically
created to refer to this portion of the resource descriptor.

WireMode is an optional argument and can be either ThreeWireMode or FourWireMode.
FourWireMode is the default. The bit field name _MOD is automatically created to refer to this
portion of the resource descriptor.

DataBitLength is the size, in bits, of the smallest transfer unit for this connection. _LEN is
automatically created to refer to this portion of the resource descriptor.

SlaveMode is an optional argument and can be either ControllerInitiated or DeviceInitiated.
ControllerInitiated is the default. The bit field name _SLV is automatically created to refer to this
portion of the resource descriptor.

ConnectionSpeed is the maximum connection speed supported by this connection, in hertz. The bit
field name _SPE is automatically created to refer to this portion of the resource descriptor.

ClockPolarity can be either ClockPolarityLow or ClockPolarityHigh. _POL is automatically created
to refer to this portion of the resource descriptor.

ClockPhase can be either ClockPhaseFirst or ClockPhaseSecond. _PHA is automatically created to
refer to this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the SPI bus controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment that
utilizes the namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this
revision.DescriptorName is an optional argument that specifies a name for an integer constant that
will be created in the current scope that contains the offset of this resource descriptor within the
current resource template buffer. The predefined descriptor field names may be appended to this
name to access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies an object to be decoded by the OS driver. It is a
RawDataBuffer. The bit field name _VEN is automatically created to refer to this portion of the
resource descriptor.
798 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Description
The SPISerialBus macro evaluates to a buffer that contains a SPI Serial Bus resource descriptor.
The macro is designed to be used inside of a ResourceTemplate (see Section 19.2.3).

19.5.119 Stall (Stall for a Short Time)

Syntax
Stall (MicroSeconds)

Arguments

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least
the required number of microseconds.

Description
The implementation of Stall is OS-specific, but must not relinquish control of the processor.
Because of this, delays longer than 100 microseconds must use Sleep instead of Stall.

19.5.120 StartDependentFn (Start Dependent Function Resource
Descriptor Macro)

Syntax
StartDependentFn (CompatibilityPriority, PerformancePriority) {ResourceList}

Arguments

CompatibilityPriority indicates the relative compatibility of the configuration specified by
ResourceList relative to the PC/AT. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

PerformancePriority indicates the relative performance of the configuration specified by
ResourceList relative to the other configurations. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

ResourceList is a list of resources descriptors which must be selected together for this configuration.

Description
The StartDependentFn macro evaluates to a buffer which contains a start dependent function
resource descriptor, which describes a group of resources which must be selected together. Each
subsequent StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new
choice of resources for configuring the device, with the last choice terminated with an
EndDependentFn resource descriptor. The format of the start dependent function resource descriptor
can be found in “Start Dependent Functions Descriptor” (page 312). This macro generates the two-
byte form of the resource descriptor. The macro is designed to be used inside of a ResourceTemplate
(page 794).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 799

ACPI Source Language (ASL)Reference
19.5.121 StartDependentFnNoPri (Start Dependent Function Resource
Descriptor Macro)

Syntax
StartDependentFnNoPri () {ResourceList}

Description
The StartDependentFnNoPri macro evaluates to a buffer which contains a start dependent function
resource descriptor, which describes a group of resources which must be selected together. Each
subsequent StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new
choice of resources for configuring the device, with the last choice terminated with an
EndDependentFn resource descriptor. The format of the start dependent function resource descriptor
can be found in “Start Dependent Functions Descriptor” (page 312). This macro generates the one-
byte form of the resource descriptor. The macro is designed to be used inside of a ResourceTemplate
(page 794).

This is similar to StartDependentFn (page 799) with both CompatibilityPriority and
PerformancePriority set to 1, but is one byte shorter.

19.5.122 Store (Store an Object)

Syntax
Store (Source, Destination) => DataRefObject

Arguments

This operation evaluates Source, converts it to the data type of Destination, and writes the result into
Destination. For information on automatic data-type conversion, see Section 19.2.5, “ASL Data
Types.”

Description
Stores to OperationRegion Field data types may relinquish the processor depending on the region
type.

All stores (of any type) to the constant Zero, constant One, or constant Ones object are not allowed.
Stores to read-only objects are fatal. The execution result of the operation depends on the type of
Destination. For any type other than an operation region field, the execution result is the same as the
data written to Destination. For operation region fields with an AccessType of ByteAcc, WordAcc,
DWordAcc, QWordAcc or AnyAcc, the execution result is the same as the data written to
Destination as in the normal case, but when the AccessType is BufferAcc, the operation region
handler may modify the data when it is written to the Destination so that the execution result
contains modified data.

Example
The following example creates the name CNT that references an integer data object with the value 5
and then stores CNT to Local0. After the Store operation, Local0 is an integer object with the value
5.
800 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Name (CNT, 5)
Store (CNT, Local0)

19.5.123 Subtract (Integer Subtract)

Syntax
Subtract (Minuend, Subtrahend, Result) => Integer

Arguments

Minuend and Subtrahend are evaluated as Integers.

Description
Subtrahend is subtracted from Minuend, and the result is optionally stored into Result. Underflow
conditions are ignored and the result simply loses the most significant bits.

19.5.124 Switch (Select Code To Execute Based On Expression)

Syntax
Switch (Expression) {CaseTermList}

Arguments

Expression is an ASL expression that evaluates to an Integer, String or Buffer.

Description
The Switch, Case and Default statements help simplify the creation of conditional and branching
code. The Switch statement transfers control to a statement within the enclosed body of executable
ASL code

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the
value of Switch (Expression). If the Case value is a Package, then control passes if any member of
the package matches the Switch (Value) The Switch CaseTermList can include any number of Case
instances, but no two Case Values (or members of a Value, if Value is a Package) within the same
Switch statement can have the same value.

Execution of the statement body begins at the selected TermList and proceeds until the TermList end
of body or until a Break or Continue statement transfers control out of the body.

The Default statement is executed if no Case Value matches the value of Switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body
are executed. There can be at most one Default statement. The Default statement can appear
anywhere in the body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.
(Compatibility Note) The Switch, Case, and Default terms were first introduced in ACPI 2.0.
However, their implementation is backward compatible with ACPI 1.0 AML interpreters.

Example
Use of the Switch statement usually looks something like this:
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 801

ACPI Source Language (ASL)Reference
Switch (expression)
{
 Case (value) {
 Statements executed if Lequal (expression, value)
 }
 Case (Package () {value, value, value}) {
 Statements executed if Lequal (expression, any value in package)
 }
 Default {
 Statements executed if expression does not equal
 any case constant-expression
}
}

Note: (Compiler Note) The following example demonstrates how the Switch statement should be
translated into ACPI 1.0-compatible AML:

Switch (Add (ABCD(),1)
{
 Case (1) {
 …statements1…
 }
 Case (Package () {4,5,6}) {
 …statements2…
 }
 Default {
 …statements3…
 }
}

is translated as:
Name (_T_I, 0) // Create Integer temporary variable for result
While (One)
{
 Store (Add (ABCD (), 1), _T_I)
 If (LEqual (_T_I, 1)) {
 …statements1…
 }
 Else {
 If (LNotEqual (Match (Package () {4, 5, 6}, MEQ, _T_I, MTR, 0, 0), Ones)) {
 …statements2…
 }
 Else {
 …statements3…
 }
 Break
}

The While (One) is emitted to enable the use of Break and Continue within the Switch statement.
Temporary names emitted by the ASL compiler should appear at the top level of the method, since
the Switch statement could appear within a loop and thus attempt to create the name more than once.

Note: If the ASL compiler is unable to determine the type of the expression, then it will generate a
warning and assume a type of Integer. The warning will indicate that the code should use one of the
type conversion operators (Such as ToInteger, ToBuffer, ToDecimalString or ToHexString).
802 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Caution: Some of these operators are defined starting with ACPI 2.0 and as such may not be
supported by ACPI 1.0b compatible interpreters.

For example:

Switch (ABCD ()) // Cannot determine the type because methods can return anything.
{
 …case statements…
}

will generate a warning and the following code:
Name (_T_I, 0)
Store (ABCD (), _T_I)

To remove the warning, the code should be:
Switch (ToInteger (ABCD ()))
{
 …case statements…
}

19.5.125 ThermalZone (Declare Thermal Zone)

Syntax
ThermalZone (ThermalZoneName) {ObjectList}

Arguments

Declares a Thermal Zone object named ThermalZoneName. ThermalZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a
system is required to have a unique ThermalZoneName.

Description
A thermal zone may be declared in the namespace anywhere within the _SB scope. For
compatibility with operating systems implementing ACPI 1.0, a thermal zone may also be declared
under the _TZ scope. An ACPI-compatible namespace may define Thermal Zone objects in either
the _SB or _TZ scope but not both.

For example ASL code that uses a ThermalZone statement, see Section 11, “Thermal Management.”

19.5.126 Timer (Get 64-Bit Timer Value)

Syntax
Timer => Integer

Description
The timer opcode returns a monotonically increasing value that can be used by ACPI methods to
measure time passing, this enables speed optimization by allowing AML code to mark the passage
of time independent of OS ACPI interpreter implementation.

The Sleep opcode can only indicate waiting for longer than the time specified.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 803

ACPI Source Language (ASL)Reference
The value resulting from this opcode is 64-bits. It is monotonically increasing, but it is not
guaranteed that every result will be unique, i.e. two subsequent instructions may return the same
value. The only guarantee is that each subsequent evaluation will be greater-than or equal to the
previous ones.

The period of this timer is 100 nanoseconds. While the underlying hardware may not support this
granularity, the interpreter will do the conversion from the actual timer hardware frequency into 100
nanosecond units.

Users of this opcode should realize that a value returned only represents the time at which the
opcode itself executed. There is no guarantee that the next opcode in the instruction stream will
execute in any particular time bound.

The OSPM can implement this using the ACPI Timer and keep track of overrun. Other
implementations are possible. This provides abstraction away from chipset differences

Note: (Compatibility Note) New for ACPI 3.0

19.5.127 ToBCD (Convert Integer to BCD)

Syntax
ToBCD (Value, Result) => Integer

Arguments

Value is evaluated as an integer

Description
The ToBCD operator is used to convert Value from a numeric (Integer) format to a BCD format and
optionally store the numeric value into Result.

19.5.128 ToBuffer (Convert Data to Buffer)

Syntax
ToBuffer (Data, Result) => Buffer

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to buffer type and the result is optionally stored into Result. If Data is an integer,
it is converted into n bytes of buffer (where n is 4 if the definition block has defined integers as 32-
bits or 8 if the definition block has defined integers as 64-bits as indicated by the Definition Block
table header’s Revision field), taking the least significant byte of integer as the first byte of buffer. If
Data is a buffer, no conversion is performed. If Data is a string, each ASCII string character is
copied to one buffer byte, including the string null terminator. A null (zero-length) string will be
converted to a zero-length buffer.
804 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.129 ToDecimalString (Convert Data to Decimal String)

Syntax
ToDecimalString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to a decimal string, and the result is optionally stored into Result. If Data is
already a string, no action is performed. If Data is a buffer, it is converted to a string of decimal
values separated by commas. (Each byte of the buffer is converted to a single decimal value.) A
zero-length buffer will be converted to a null (zero-length) string.

19.5.130 ToHexString (Convert Data to Hexadecimal String)

Syntax
ToHexString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to a hexadecimal string, and the result is optionally stored into Result. If Data is
already a string, no action is performed. If Data is a buffer, it is converted to a string of hexadecimal
values separated by commas. A zero-length buffer will be converted to a null (zero-length) string.

19.5.131 ToInteger (Convert Data to Integer)

Syntax
ToInteger (Data, Result) => Integer

Arguments

Data must be an Integer, String, or Buffer data type.

Description
Data is converted to integer type and the result is optionally stored into Result. If Data is a string, it
must be either a decimal or hexadecimal numeric string (in other words, prefixed by “0x”) and the
value must not exceed the maximum of an integer value. If the value is exceeding the maximum, the
result of the conversion is unpredictable. A null (zero-length) string is illegal. If Data is a Buffer, the
first 8 bytes of the buffer are converted to an integer, taking the first byte as the least significant byte
of the integer. A zero-length buffer is illegal. If Data is an integer, no action is performed.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 805

ACPI Source Language (ASL)Reference
19.5.132 ToString (Convert Buffer To String)

Syntax
ToString (Source, Length, Result) => String

Arguments

Source is evaluated as a buffer. Length is evaluated as an integer data type.

Description
Starting with the first byte, the contents of the buffer are copied into the string until the number of
characters specified by Length is reached or a null (0) character is found. If Length is not specified or
is Ones, then the contents of the buffer are copied until a null (0) character is found. If the source
buffer has a length of zero, a zero length (null terminator only) string will be created. The result is
copied into the Result.

19.5.133 ToUUID (Convert String to UUID Macro)

Syntax
ToUUID (AsciiString) => Buffer

Arguments

AsciiString is evaluated as a String data type.

Description
This macro will convert an ASCII string to a 128-bit buffer. The string must have the following
format:

aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

where aa – pp are one byte hexadecimal numbers, made up of hexadecimal digits. The resulting
buffer has the following format:

Table 19-330 UUID Buffer Format

String Offset In Buffer

aa 3

bb 2

cc 1

dd 0

ee 5

ff 4

gg 7

hh 6

ii 8

jj 9

kk 10
806 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: (Compatibility Note) New for ACPI 3.0

19.5.134 UARTSerialBus (UART Serial Bus Connection Resource
Descriptor Macro)

Syntax
UARTSerialBus (InitialBaudRate, BitsPerByte, StopBits, LinesInUse, IsBigEndian, Parity,
FlowControl, ReceiveBufferSize, TransmitBufferSize, ResourceSource, ResourceSourceIndex,
ResourceUsage, DescriptorName, VendorData)

Arguments

InitialBaudRate evaluates to a 32-bit integer that specifies the default or initial connection speed in
bytes per second that the device supports. The bit field _SPE is automatically created to refer to this
portion of the resource descriptor.

BitsPerByte is an optional argument that specifies whether five bits (DataBitsFive), six bits
(DataBitsSix), seven bits (DataBitsSeven), eight bits (DataBitsEight) or nine bits (DataBitsNine)
contain data during transfer of a single packet or character. DataBitsEight is the default. The bit field
DescriptorName._LEN is automatically created to refer to this portion of the resource descriptor.

StopBits is an optional argument that specifies whether there are two bits (StopBitsTwo), one and a
half bits (StopBitsOnePlusHalf), one bit (StopBitsOne) or no bits (StopBitsZero) used to signal
the end of a packet or character. StopBitsOne is the default. The bit field _STB is automatically
created to refer to this portion of the resource descriptor.

LinesInUse evaluates to an integer representing 8 1-bit flags representing the presence (‘1’) or
absence (‘0’) of a particular line. The bit field _LIN is automatically created to refer to this portion
of the resource descriptor.

ll 11

mm 12

nn 13

oo 14

pp 15

Bit Mask UART Line

Bit 7 (0x80) Request To Send (RTS)

Bit 6 (0x40) Clear To Send (CTS)

Bit 5 (0x20) Data Terminal Ready (DTR)

Bit 4 (0x10) Data Set Ready (DSR)

Bit 3 (0x08) Ring Indicator (RI)

Bit 2 (0x04) Data Carrier Detect (DTD)

Bit 1 (0x02) Reserved. Must be 0.

Bit 0 (0x01) Reserved. Must be 0.

String Offset In Buffer
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 807

ACPI Source Language (ASL)Reference
IsBigEndian is an optional argument that specifies whether the device is expecting big endian
(BigEndian) or little endian (LittleEndian) data formats. LittleEndian is the default. The bit field
_END is automatically created to refer to this portion of the resource descriptor.

Parity is an optional argument that specifies whether the type of parity bits included after the data in
a packet are to be interpreted as space parity (ParityTypeSpace), mark parity (ParityTypeMark), odd
parity (ParityTypeOdd), even parity (ParityTypeEven) or no parity (ParityTypeNone).
ParityTypeNone is the default. The bit field PAR is automatically created to refer to this portion of
the resource descriptor.

FlowControl is an optional argument that specifies whether there is hardware-based flow control
(FlowControlHardware), software-based flow control (FlowControlXON) or no flow control
(FlowControlNone) used when communicating with the device. FlowControlNone is the default.
The bit field_FLC is automatically created to refer to this portion of the resource descriptor.

ReceiveBufferSize evaluates to a 16-bit integer that specifies the upper limit in bytes of the receive
buffer that can be optimally utilized while communicating with this device. The bit field_RXL is
automatically created to refer to this portion of the resource descriptor.

TransmitBufferSize evaluates to a 16-bit integer that specifies the upper limit in bytes of the transmit
buffer that can be optimally utilized while communicating with this device. The bit field _TXL is
automatically created to refer to this portion of the resource descriptor.

ResourceSource is a string which uniquely identifies the UART bus controller referred to by this
descriptor. ResourceSource can be a fully-qualified name, a relative name or a name segment that
utilizes the namespace search rules.

ResourceSourceIndex is an optional argument and is assumed to be 0 for this revision.

ResourceUsage is an optional argument and is assumed to be ResourceConsumer for this revision.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

VendorData is an optional argument that specifies an object to be decoded by the OS driver. It is a
RawDataBuffer. The bit field name _VEN is automatically created to refer to this portion of the
resource descriptor.

Description
The UARTSerialBus macro evaluates to a buffer that contains a UART Serial Bus resource
descriptor. The macro is designed to be used inside of a ResourceTemplate (seeSection 19.2.3).

19.5.135 Unicode (String To Unicode Conversion Macro)

Syntax
Unicode (String) => Buffer

Arguments

This macro will convert a string to a Unicode (UTF-16) string contained in a buffer. The format of
the Unicode string is 16 bits per character, with a 16-bit null terminator.
808 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
19.5.136 Unload (Unload Definition Block)

Syntax
Unload (Handle)

Arguments

Handle is evaluated as a DDBHandle data type.

Description
Performs a run-time unload of a Definition Block that was loaded using a Load term or LoadTable
term. Loading or unloading a Definition Block is a synchronous operation, and no control method
execution occurs during the function. On completion of the Unload operation, the Definition Block
has been unloaded (all the namespace objects created as a result of the corresponding Load
operation will be removed from the namespace).

19.5.137 VendorLong (Long Vendor Resource Descriptor)

Syntax
VendorLong (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer.

VendorByteList evaluates to a comma-separated list of 8-bit integer constants, where each byte is
added verbatim to the body of the VendorLong resource descriptor. A maximum of n bytes can be
specified. UUID and UUID specific descriptor subtype are part of the VendorByteList.

Description
The VendorLong macro evaluates to a buffer which contains a vendor-defined resource descriptor.
The format of the long form of the vendor-defined resource descriptor can be found in Vendor-
Defined Descriptor (page 315). The macro is designed to be used inside of a ResourceTemplate
(page 794).

This is similar to VendorShort (page 809), except that the number of allowed bytes in
VendorByteList is 65,533 (instead of 7).

19.5.138 VendorShort (Short Vendor Resource Descriptor)

Syntax
VendorShort (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 809

ACPI Source Language (ASL)Reference
Description
The VendorShort macro evaluates to a buffer which contains a vendor-defined resource descriptor.
The format of the short form of the vendor-defined resource descriptor can be found in “Vendor-
Defined Descriptor” (page 315). The macro is designed to be used inside of a ResourceTemplate
(page 794).

This is similar to VendorLong (page 809), except that the number of allowed bytes in
VendorByteList is 7 (instead of 65,533).

19.5.139 Wait (Wait for a Synchronization Event)

Syntax
Wait (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be an event synchronization object. TimeoutValue is evaluated as an Integer. The
calling method blocks while waiting for the event to be signaled.

Description
The pending signal count is decremented. If there is no pending signal count, the processor is
relinquished until a signal count is posted to the Event or until at least TimeoutValue milliseconds
have elapsed.

This operation returns a non-zero value if a timeout occurred and a signal was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no time out and the operation will wait
indefinitely.

19.5.140 While (Conditional Loop)

Syntax
While (Predicate) {TermList}

Arguments

Predicate is evaluated as an integer.

Description
If the Predicate is non-zero, the list of terms in TermList is executed. The operation repeats until the
Predicate evaluates to zero.

Note: Creation of a named object more than once in a given scope is not allowed. As such,
unconditionally creating named objects within a While loop must be avoided. A fatal error will be
810 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
generated on the second iteration of the loop, during the attempt to create the same named object
a second time.

19.5.141 WordBusNumber (Word Bus Number Resource Descriptor
Macro)

Syntax
WordBusNumber (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName)

Arguments

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer)
or passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName. _MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed)
or can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName. _MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the bus number range using positive
(PosDecode) or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is
assumed. The 1-bit field DescriptorName. _DEC is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on
which the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is
automatically created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the
bus number range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 16-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the
bus number range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 16-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary
bus bus number which results in the corresponding primary bus bus number. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 16-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 811

ACPI Source Language (ASL)Reference
RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in
the bus number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to
this portion of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this I/O range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The WordBusNumber macro evaluates to a buffer which contains a 16-bit bus-number resource
descriptor. The format of the 16-bit bus number resource descriptor can be found in “Word Address
Space Descriptor ” (page 327). The macro is designed to be used inside of a ResourceTemplate
(page 794).

19.5.142 WordIO (Word IO Resource Descriptor Macro)

Syntax
WordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges, AddressGranularity,
AddressMinimum, AddressMaximum, AddressTranslation, RangeLength, ResourceSourceIndex,
ResourceSource, DescriptorName, TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer)
or passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SubDecode and ‘0’ is PosDecode.
812 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly),
valid non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation
(EntireRange). The 2-bit field DescriptorName._RNG is automatically created to refer to this
portion of the resource descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on
which the I/O range must be aligned. The 16-bit field DescriptorName. _GRA is automatically
created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible base address of the I/
O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit
field DescriptorName._MIN is automatically created to refer to this portion of the resource
descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible base address of the
I/O range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit
field DescriptorName._MAX is automatically created to refer to this portion of the resource
descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary
bus I/O address which results in the corresponding primary bus I/O address. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 16-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the I/O
range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this I/O range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary
side of the bus is different (TypeTranslation) from that on the primary side of the bus or the same
(TypeStatic). If TypeTranslation is specified, then the secondary side of the bus is Memory. If
TypeStatic is specified, then the secondary side of the bus is I/O. If nothing is specified, then
TypeStatic is assumed. The 1-bit field DescriptorName. _TTP is automatically created to refer to
this portion of the resource descriptor, where ‘1’ is TypeTranslation and ‘0’ is TypeStatic. See _TTP
(page 333) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the
primary to secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only
used when TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 813

ACPI Source Language (ASL)Reference
assumed. The 1-bit field DescriptorName. _TRS is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS
(page 333) for more information.

Description
The WordIO macro evaluates to a buffer which contains a 16-bit I/O range resource descriptor. The
format of the 16-bit I/O range resource descriptor can be found in “Word Address Space Descriptor
” (page 327). The macro is designed to be used inside of a ResourceTemplate (page 794).

19.5.143 WordSpace (Word Space Resource Descriptor Macro))

Syntax
WordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed, TypeSpecificFlags,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation, RangeLength,
ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values
are 0xC0 through 0xFF.

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer)
or passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

Decode specifies whether or not the device decodes the bus number range using positive
(PosDecode) or subtractive (SubDecode) decode. If nothing is specified, then PosDecode is
assumed. The 1-bit field DescriptorName. _DEC is automatically created to refer to this portion of
the resource descriptor, where ‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or
can be changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit
field DescriptorName. _MIF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed)
or can be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit
field DescriptorName. _MAF is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on
which the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is
automatically created to refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the
bus number range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 16-bit field DescriptorName._MIN is automatically created to refer to this
portion of the resource descriptor.
814 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the
bus number range. The value must have ‘0’ in all bits where the corresponding bit in
AddressGranularity is ‘1’. For bridge devices which translate addresses, this is the address on the
secondary bus. The 16-bit field DescriptorName._MAX is automatically created to refer to this
portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary
bus bus number which results in the corresponding primary bus bus number. For all non-bridge
devices or bridges which do not perform translation, this must be ‘0’. The 16-bit field
DescriptorName._TRA is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in
the bus number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to
this portion of the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the
resource descriptor within the object specified by ResourceSource. If this argument is specified, the
ResourceSource argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device
which produces the pool of resources from which this I/O range is allocated. If this argument is
specified, but the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be
created in the current scope that contains the offset of this resource descriptor within the current
resource template buffer. The predefined descriptor field names may be appended to this name to
access individual fields within the descriptor via the Buffer Field operators.

Description
The WordSpace macro evaluates to a buffer which contains a 16-bit Address Space resource
descriptor. The format of the 16-bit Address Space resource descriptor can be found in “Word
Address Space Descriptor ” (page 327). The macro is designed to be used inside of a
ResourceTemplate (page 794).

19.5.144 XOr (Integer Bitwise Xor)

Syntax
XOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description
A bitwise XOR is performed and the result is optionally stored into Result.

19.5.145 Zero (Constant Zero Integer)

Syntax
Zero => Integer
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 815

ACPI Source Language (ASL)Reference
Description
The Zero operator returns an Integer with the value 0. Writes to this object are not allowed. The use
of this operator can reduce AML code size, since it is represented by a one-byte AML opcode.
816 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
20
ACPI Machine Language (AML) Specification

This section formally defines the ACPI Control Method Machine Language (AML) language. AML
is the ACPI Control Method virtual machine language, machine code for a virtual machine that is
supported by an ACPI-compatible OS. ACPI control methods can be written in AML, but humans
ordinarily write control methods in ASL.

AML is the language processed by the ACPI AML interpreter. It is primarily a declarative language.
It’s best not to think of it as a stream of code, but rather as a set of declarations that the ACPI AML
interpreter will compile into the ACPI Namespace at definition block load time. For example, notice
that DefByte allocates an anonymous integer variable with a byte-size initial value in ACPI
namespace, and passes in an initial value. The byte in the AML stream that defines the initial value is
not the address of the variable’s storage location.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging.
(Debuggers and other ACPI control method language tools are expected to be AML-level tools, not
source-level tools.) An ASL translator implementer must understand how to read ASL and generate
AML. An AML interpreter author must understand how to execute AML.

AML and ASL are different languages, though they are closely related.

All ACPI-compatible operating systems must support AML. A given user can define some arbitrary
source language (to replace ASL) and write a tool to translate it to AML. However, the ACPI group
will support a single translator for a single language, ASL.

20.1 Notation Conventions
The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 20-331 AML Grammar Notation Conventions

Notation Convention Description Example

0xdd Refers to a byte value expressed as
2 hexadecimal digits.

0x21

Number in bold. Denotes the encoding of the AML
term.

Term => Evaluated Type Shows the resulting type of the
evaluation of Term.

Single quotes (‘ ’) Indicate constant characters. ‘A’ => 0x41

Term := Term Term … The term to the left of := can be
expanded into the sequence of
terms on the right.

aterm := bterm cterm means that aterm
can be expanded into the two-term
sequence of bterm followed by cterm.

Term Term Term … Terms separated from each other
by spaces form an ordered list.

Angle brackets (< >) Used to group items. <a b> | <c d> means either a b or c d.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 817

ACPI Machine Language (AML) Specification
20.2 AML Grammar Definition
This section defines the byte values that make up an AML byte stream.

The AML encoding can be categorized in the following groups:

• Table and Table Header encoding

• Name objects encoding

• Data objects encoding

• Package length encoding

• Term objects encoding

• Miscellaneous objects encoding

20.2.1 Table and Table Header Encoding

AMLCode := DefBlockHeader TermList

DefBlockHeader := TableSignature TableLength SpecCompliance CheckSum OemID
 OemTableID OemRevision CreatorID CreatorRevision

TableSignature := DWordData // As defined in section 5.2.3.
TableLength := DWordData // Length of the table in bytes including
 // the block header.
SpecCompliance := ByteData // The revision of the structure.
CheckSum := ByteData // Byte checksum of the entire table.
OemID := ByteData(6) // OEM ID of up to 6 characters. If the OEM
 // ID is shorter than 6 characters, it
 // can be terminated with a NULL
 // character.
OemTableID := ByteData(8) // OEM Table ID of up to 8 characters. If
 // the OEM Table ID is shorter than 8

Bar symbol (|) Separates alternatives. aterm := bterm | [cterm dterm] means
the following constructs are possible:
 bterm
 cterm dterm
aterm := [bterm | cterm] dterm means
the following constructs are possible:
 bterm dterm
 cterm dterm

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to
9 inclusive.

Parenthesized term
following another term.

The parenthesized term is the
repeat count of the previous term.

aterm(3) means aterm aterm aterm.
bterm(n) means n number of bterms.

Notation Convention Description Example
818 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 // characters, it can be terminated with
 // a NULL character.
OemRevision := DWordData // OEM Table Revision.
CreatorID := DWordData // Vendor ID of the ASL compiler.
CreatorRevision := DWordData // Revision of the ASL compiler.

20.2.2 Name Objects Encoding

LeadNameChar := ‘A’-‘Z’ | ‘_’
DigitChar := ‘0’-‘9’
NameChar := DigitChar | LeadNameChar
RootChar := ‘\’
ParentPrefixChar := ‘^’

‘A’-‘Z’ := 0x41 - 0x5A
‘_’ := 0x5F
‘0’-‘9’ := 0x30 - 0x39
‘\’ := 0x5C
‘^’ := 0x5E

NameSeg := <LeadNameChar NameChar NameChar NameChar>
 // Notice that NameSegs shorter than 4 characters are filled with
 // trailing underscores (‘_’s).
NameString := <RootChar NamePath> | <PrefixPath NamePath>
PrefixPath := Nothing | <‘^’ PrefixPath>
NamePath := NameSeg | DualNamePath | MultiNamePath | NullName

DualNamePath := DualNamePrefix NameSeg NameSeg
DualNamePrefix := 0x2E
MultiNamePath := MultiNamePrefix SegCount NameSeg(SegCount)
MultiNamePrefix := 0x2F

SegCount := ByteData

Note: SegCount can be from 1 to 255. For example: MultiNamePrefix(35) is encoded as 0x2f 0x23 and
followed by 35 NameSegs. So, the total encoding length will be 1 + 1 + 35*4 = 142. Notice that:
DualNamePrefix NameSeg NameSeg has a smaller encoding than the encoding of:
MultiNamePrefix(2) NameSeg NameSeg

SimpleName := NameString | ArgObj | LocalObj
SuperName := SimpleName | DebugObj | Type6Opcode
NullName := 0x00
Target := SuperName | NullName
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 819

ACPI Machine Language (AML) Specification
20.2.3 Data Objects Encoding

ComputationalData := ByteConst | WordConst | DWordConst | QWordConst | String |
 ConstObj | RevisionOp | DefBuffer
DataObject := ComputationalData | DefPackage | DefVarPackage
DataRefObject := DataObject | ObjectReference | DDBHandle

ByteConst := BytePrefix ByteData
BytePrefix := 0x0A
WordConst := WordPrefix WordData
WordPrefix := 0x0B
DWordConst := DWordPrefix DWordData
DWordPrefix := 0x0C
QWordConst := QWordPrefix QWordData
QWordPrefix := 0x0E
String := StringPrefix AsciiCharList NullChar
StringPrefix := 0x0D

ConstObj := ZeroOp | OneOp | OnesOp
ByteList := Nothing | <ByteData ByteList>
ByteData := 0x00 - 0xFF
WordData := ByteData[0:7] ByteData[8:15]
 // 0x0000-0xFFFF
DWordData := WordData[0:15] WordData[16:31]
 // 0x00000000-0xFFFFFFFF
QWordData := DWordData[0:31] DWordData[32:63]
 // 0x0000000000000000-0xFFFFFFFFFFFFFFFF
AsciiCharList := Nothing | <AsciiChar AsciiCharList>
AsciiChar := 0x01 - 0x7F
NullChar := 0x00
ZeroOp := 0x00
OneOp := 0x01
OnesOp := 0xFF
RevisionOp := ExtOpPrefix 0x30
ExtOpPrefix := 0x5B

20.2.4 Package Length Encoding

PkgLength := PkgLeadByte |
 <PkgLeadByte ByteData> |
 <PkgLeadByte ByteData ByteData> |
 <PkgLeadByte ByteData ByteData ByteData>

PkgLeadByte := <bit 7-6: ByteData count that follows (0-3)>
 <bit 5-4: Only used if PkgLength < 63>
 <bit 3-0: Least significant package length nybble>

Note: The high 2 bits of the first byte reveal how many follow bytes are in the PkgLength. If the
PkgLength has only one byte, bit 0 through 5 are used to encode the package length (in other
words, values 0-63). If the package length value is more than 63, more than one byte must be
used for the encoding in which case bit 4 and 5 of the PkgLeadByte are reserved and must be
zero. If the multiple bytes encoding is used, bits 0-3 of the PkgLeadByte become the least
significant 4 bits of the resulting package length value. The next ByteData will become the next
820 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
least significant 8 bits of the resulting value and so on, up to 3 ByteData bytes. Thus, the maximum
package length is 2**28.

20.2.5 Term Objects Encoding

TermObj := NameSpaceModifierObj | NamedObj | Type1Opcode | Type2Opcode
TermList := Nothing | <TermObj TermList>

TermArg := Type2Opcode | DataObject | ArgObj | LocalObj
UserTermObj := NameString TermArgList
TermArgList := Nothing | <TermArg TermArgList>

ObjectList := Nothing | <Object ObjectList>
Object := NameSpaceModifierObj | NamedObj

20.2.5.1 Namespace Modifier Objects Encoding

NameSpaceModifierObj := DefAlias | DefName | DefScope

DefAlias := AliasOp NameString NameString
AliasOp := 0x06

DefName := NameOp NameString DataRefObject
NameOp := 0x08

DefScope := ScopeOp PkgLength NameString TermList
ScopeOp := 0x10

20.2.5.2 Named Objects Encoding

NamedObj := DefBankField | DefCreateBitField | DefCreateByteField | DefCreateDWordField |
 DefCreateField | DefCreateQWordField |DefCreateWordField | DefDataRegion |
 DefOpRegion | DefPowerRes | DefProcessor | DefThermalZone

DefBankField := BankFieldOp PkgLength NameString NameString BankValue FieldFlags FieldList
BankFieldOp := ExtOpPrefix 0x87
BankValue := TermArg => Integer
FieldFlags := ByteData // bit 0-3: AccessType
 // 0 AnyAcc
 // 1 ByteAcc
 // 2 WordAcc
 // 3 DWordAcc
 // 4 QWordAcc
 // 5 BufferAcc
 // 6 Reserved
 // 7-15 Reserved
 // bit 4: LockRule
 // 0 NoLock
 // 1 Lock
 // bit 5-6: UpdateRule
 // 0 Preserve
 // 1 WriteAsOnes
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 821

ACPI Machine Language (AML) Specification
 // 2 WriteAsZeros
 // bit 7: Reserved (must be 0)

FieldList := Nothing | <FieldElement FieldList>
NamedField := NameSeg PkgLength
ReservedField := 0x00 PkgLength
AccessField := 0x01 AccessType AccessAttrib
AccessType := ByteData // Bits 0:3 - Same as AccessType bits of FieldFlags.
 // Bits 4:5 - Reserved
 // Bits 7:6 - 0 = AccessAttrib = Normal Access Attributes
 // 1 = AccessAttrib = AttribBytes (x)
 // 2 = AccessAttrib = AttribRawBytes (x)
 // 3 = AccessAttrib = AttribRawProcessBytes (x)
 //
 // x' is encoded as bits 0:7 of the AccessAttrib byte.

AccessAttrib := ByteData // If AccessType is BufferAcc for the SMB or
 // GPIO OpRegions, AccessAttrib can be one of
 // the following values:
 // 0x02 AttribQuick
 // 0x04 AttribSendReceive
 // 0x06 AttribByte
 // 0x08 AttribWord
 // 0x0A AttribBlock
 // 0x0C AttribProcessCall
 // 0x0D AttribBlockProcessCall

ConnectField := <0x02 NameString> | <0x02 BufferData>

DefCreateBitField := CreateBitFieldOp SourceBuff BitIndex NameString
CreateBitFieldOp := 0x8D
SourceBuff := TermArg => Buffer
BitIndex := TermArg => Integer

DefCreateByteField := CreateByteFieldOp SourceBuff ByteIndex NameString
CreateByteFieldOp := 0x8C
ByteIndex := TermArg => Integer

DefCreateDWordField := CreateDWordFieldOp SourceBuff ByteIndex NameString
CreateDWordFieldOp := 0x8A

DefCreateField := CreateFieldOp SourceBuff BitIndex NumBits NameString
CreateFieldOp := ExtOpPrefix 0x13
NumBits := TermArg => Integer

DefCreateQWordField := CreateQWordFieldOp SourceBuff ByteIndex NameString
CreateQWordFieldOp := 0x8F

DefCreateWordField := CreateWordFieldOp SourceBuff ByteIndex NameString
CreateWordFieldOp := 0x8B

DefDataRegion := DataRegionOp NameString TermArg TermArg TermArg
DataRegionOp := ExOpPrefix 0x88

DefDevice := DeviceOp PkgLength NameString ObjectList
DeviceOp := ExtOpPrefix 0x82

DefEvent := EventOp NameString
EventOp := ExtOpPrefix 0x02
822 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
DefField := FieldOp PkgLength NameString FieldFlags FieldList
FieldOp := ExtOpPrefix 0x81

DefIndexField := IndexFieldOp PkgLength NameString NameString FieldFlags FieldList
IndexFieldOp := ExtOpPrefix 0x86

DefMethod := MethodOp PkgLength NameString MethodFlags TermList
MethodOp := 0x14
MethodFlags := ByteData // bit 0-2: ArgCount (0-7)
 // bit 3: SerializeFlag
 // 0 NotSerialized
 // 1 Serialized
 // bit 4-7: SyncLevel (0x00-0x0f)

DefMutex := MutexOp NameString SyncFlags
MutexOp := ExtOpPrefix 0x01
SyncFlags := ByteData // bit 0-3: SyncLevel (0x00-0x0f)
 // bit 4-7: Reserved (must be 0)

DefOpRegion := OpRegionOp NameString RegionSpace RegionOffset RegionLen
OpRegionOp := ExtOpPrefix 0x80
RegionSpace := ByteData // 0x00 SystemMemory
 // 0x01 SystemIO
 // 0x02 PCI_Config
 // 0x03 EmbeddedControl
 // 0x04 SMBus
 // 0x05 CMOS
 // 0x06 PciBarTarget
 // 0x07 IPMI
 // 0x80-0xFF: User Defined
RegionOffset := TermArg => Integer
RegionLen := TermArg => Integer

DefPowerRes := PowerResOp PkgLength NameString SystemLevel ResourceOrder ObjectList
PowerResOp := ExtOpPrefix 0x84
SystemLevel := ByteData
ResourceOrder := WordData

DefProcessor := ProcessorOp PkgLength NameString ProcID PblkAddr PblkLen ObjectList
ProcessorOp := ExtOpPrefix 0x83
ProcID := ByteData
PblkAddr := DWordData
PblkLen := ByteData

DefThermalZone := ThermalZoneOp PkgLength NameString ObjectList
ThermalZoneOp := ExtOpPrefix 0x85

ExtendedAccessField := 0x03 AccessType ExtendedAccessAttrib AccessLength

ExtendedAccessAttrib := ByteData // 0x0B AttribBytes
 // 0x0E AttribRawBytes
 // 0x0F AttribRawProcess

FieldElement := NamedField | ReservedField | AccessField | ExtendedAccessField |
 ConnectField
RegionSpace := ByteData // 0x00 SystemMemory
 // 0x01 SystemIO
 // 0x02 PCI_Config
 // 0x03 EmbeddedControl
 // 0x04 SMBus
 // 0x05 CMOS
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 823

ACPI Machine Language (AML) Specification
 // 0x06 PciBarTarget
 // 0x07 IPMI
 // 0x08 GeneralPurposeIO
 // 0x09 GenericSerialBus
 // 0x80-0xFF: User Defined

20.2.5.3 Type 1 Opcodes Encoding

Type1Opcode := DefBreak | DefBreakPoint | DefContinue | DefFatal | DefIfElse |
 DefLoad | DefNoop | DefNotify | DefRelease | DefReset | DefReturn |
 DefSignal | DefSleep | DefStall | DefUnload | DefWhile

DefBreak := BreakOp
BreakOp := 0xA5

DefBreakPoint := BreakPointOp
BreakPointOp := 0xCC

DefContinue := ContinueOp
ContinueOp := 0x9F

DefElse := Nothing | <ElseOp PkgLength TermList>
ElseOp := 0xA1

DefFatal := FatalOp FatalType FatalCode FatalArg
FatalOp := ExtOpPrefix 0x32
FatalType := ByteData
FatalCode := DWordData
FatalArg := TermArg => Integer

DefIfElse := IfOp PkgLength Predicate TermList DefElse
IfOp := 0xA0
Predicate := TermArg => Integer

DefLoad := LoadOp NameString DDBHandleObject
LoadOp := ExtOpPrefix 0x20
DDBHandleObject := SuperName

DefNoop := NoopOp
NoopOp := 0xA3

DefNotify := NotifyOp NotifyObject NotifyValue
NotifyOp := 0x86
NotifyObject := SuperName => ThermalZone | Processor | Device
NotifyValue := TermArg => Integer

DefRelease := ReleaseOp MutexObject
ReleaseOp := ExtOpPrefix 0x27
MutexObject := SuperName

DefReset := ResetOp EventObject
ResetOp := ExtOpPrefix 0x26
EventObject := SuperName

DefReturn := ReturnOp ArgObject
ReturnOp := 0xA4
ArgObject := TermArg => DataRefObject

DefSignal := SignalOp EventObject
SignalOp := ExtOpPrefix 0x24
824 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
DefSleep := SleepOp MsecTime
SleepOp := ExtOpPrefix 0x22
MsecTime := TermArg => Integer

DefStall := StallOp UsecTime
StallOp := ExtOpPrefix 0x21
UsecTime := TermArg => ByteData

DefUnload := UnloadOp DDBHandleObject
UnloadOp := ExtOpPrefix 0x2A

DefWhile := WhileOp PkgLength Predicate TermList
WhileOp := 0xA2

20.2.5.4 Type 2 Opcodes Encoding

Type2Opcode := DefAcquire | DefAdd | DefAnd | DefBuffer | DefConcat |
 DefConcatRes | DefCondRefOf | DefCopyObject | DefDecrement |
 DefDerefOf | DefDivide | DefFindSetLeftBit | DefFindSetRightBit |
 DefFromBCD | DefIncrement | DefIndex | DefLAnd | DefLEqual |
 DefLGreater | DefLGreaterEqual | DefLLess | DefLLessEqual | DefMid |
 DefLNot | DefLNotEqual | DefLoadTable | DefLOr | DefMatch | DefMod |
 DefMultiply | DefNAnd | DefNOr | DefNot | DefObjectType | DefOr |
 DefPackage | DefVarPackage | DefRefOf | DefShiftLeft | DefShiftRight |
 DefSizeOf | DefStore | DefSubtract | DefTimer | DefToBCD | DefToBuffer |
 DefToDecimalString | DefToHexString | DefToInteger | DefToString |
 DefWait | DefXOr | UserTermObj

Type6Opcode := DefRefOf | DefDerefOf | DefIndex | UserTermObj

DefAcquire := AcquireOp MutexObject Timeout
AcquireOp := ExtOpPrefix 0x23
Timeout := WordData

DefAdd := AddOp Operand Operand Target
AddOp := 0x72
Operand := TermArg => Integer

DefAnd := AndOp Operand Operand Target
AndOp := 0x7B

DefBuffer := BufferOp PkgLength BufferSize ByteList
BufferOp := 0x11
BufferSize := TermArg => Integer

DefConcat := ConcatOp Data Data Target
ConcatOp := 0x73
Data := TermArg => ComputationalData

DefConcatRes := ConcatResOp BufData BufData Target
ConcatResOp := 0x84
BufData := TermArg => Buffer

DefCondRefOf := CondRefOfOp SuperName Target
CondRefOfOp := ExtOpPrefix 0x12

DefCopyObject := CopyObjectOp TermArg SimpleName
CopyObjectOp := 0x9D
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 825

ACPI Machine Language (AML) Specification
DefDecrement := DecrementOp SuperName
DecrementOp := 0x76

DefDerefOf := DerefOfOp ObjReference
DerefOfOp := 0x83
ObjReference := TermArg => ObjectReference | String

DefDivide := DivideOp Dividend Divisor Remainder Quotient
DivideOp := 0x78
Dividend := TermArg => Integer
Divisor := TermArg => Integer
Remainder := Target
Quotient := Target

DefFindSetLeftBit := FindSetLeftBitOp Operand Target
FindSetLeftBitOp := 0x81

DefFindSetRightBit := FindSetRightBitOp Operand Target
FindSetRightBitOp := 0x82

DefFromBCD := FromBCDOp BCDValue Target
FromBCDOp := ExtOpPrefix 0x28
BCDValue := TermArg => Integer

DefIncrement := IncrementOp SuperName
IncrementOp := 0x75

DefIndex := IndexOp BuffPkgStrObj IndexValue Target
IndexOp := 0x88
BuffPkgStrObj := TermArg => Buffer, Package or String
IndexValue := TermArg => Integer

DefLAnd := LandOp Operand Operand
LandOp := 0x90

DefLEqual := LequalOp Operand Operand
LequalOp := 0x93

DefLGreater := LgreaterOp Operand Operand
LgreaterOp := 0x94

DefLGreaterEqual := LgreaterEqualOp Operand Operand
LgreaterEqualOp := LnotOp LlessOp

DefLLess := LlessOp Operand Operand
LlessOp := 0x95

DefLLessEqual := LlessEqualOp Operand Operand
LlessEqualOp := LnotOp LgreaterOp

DefLNot := LnotOp Operand
LnotOp := 0x92

DefLNotEqual := LnotEqualOp Operand Operand
LnotEqualOp := LnotOp LequalOp

DefLoadTable := LoadTableOp TermArg TermArg TermArg TermArg TermArg TermArg
LoadTableOp := ExtOpPrefix 0x1F

DefLOr := LorOp Operand Operand
LorOp := 0x91
826 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
DefMatch := MatchOp SearchPkg MatchOpcode Operand MatchOpcode Operand StartIndex
MatchOp := 0x89
SearchPkg := TermArg => Package
MatchOpcode := ByteData // 0 MTR
 // 1 MEQ
 // 2 MLE
 // 3 MLT
 // 4 MGE
 // 5 MGT

StartIndex := TermArg => Integer

DefMid := MidOp MidObj TermArg TermArg Target
MidOp := 0x9E
MidObj := TermArg => Buffer | String

DefMod := ModOp Dividend Divisor Target
ModOp := 0x85

DefMultiply := MultiplyOp Operand Operand Target
MultiplyOp := 0x77

DefNAnd := NandOp Operand Operand Target
NandOp := 0x7C

DefNOr := NorOp Operand Operand Target
NorOp := 0x7E

DefNot := NotOp Operand Target
NotOp := 0x80

DefObjectType := ObjectTypeOp SuperName
ObjectTypeOp := 0x8E

DefOr := OrOp Operand Operand Target
OrOp := 0x7D

DefPackage := PackageOp PkgLength NumElements PackageElementList
PackageOp := 0x12
DefVarPackage := VarPackageOp PkgLength VarNumElements PackageElementList
VarPackageOp := 0x13
NumElements := ByteData
VarNumElements := TermArg => Integer
PackageElementList := Nothing | <PackageElement PackageElementList>
PackageElement := DataRefObject | NameString

DefRefOf := RefOfOp SuperName
RefOfOp := 0x71

DefShiftLeft := ShiftLeftOp Operand ShiftCount Target
ShiftLeftOp := 0x79
ShiftCount := TermArg => Integer

DefShiftRight := ShiftRightOp Operand ShiftCount Target
ShiftRightOp := 0x7A

DefSizeOf := SizeOfOp SuperName
SizeOfOp := 0x87

DefStore := StoreOp TermArg SuperName
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 827

ACPI Machine Language (AML) Specification
StoreOp := 0x70

DefSubtract := SubtractOp Operand Operand Target
SubtractOp := 0x74

DefTimer := TimerOp
TimerOp := 0x5B 0x33

DefToBCD := ToBCDOp Operand Target
ToBCDOp := ExtOpPrefix 0x29

DefToBuffer := ToBufferOp Operand Target
ToBufferOp := 0x96

DefToDecimalString := ToDecimalStringOp Operand Target
ToDecimalStringOp := 0x97

DefToHexString := ToHexStringOp Operand Target
ToHexStringOp := 0x98

DefToInteger := ToIntegerOp Operand Target
ToIntegerOp := 0x99

DefToString := ToStringOp TermArg LengthArg Target
LengthArg := TermArg => Integer
ToStringOp := 0x9C

DefWait := WaitOp EventObject Operand
WaitOp := ExtOpPrefix 0x25

DefXOr := XorOp Operand Operand Target
XorOp := 0x7F

20.2.6 Miscellaneous Objects Encoding
Miscellaneous objects include:

• Arg objects

• Local objects

• Debug objects

20.2.6.1 Arg Objects Encoding

ArgObj := Arg0Op | Arg1Op | Arg2Op | Arg3Op | Arg4Op | Arg5Op | Arg6Op
Arg0Op := 0x68
Arg1Op := 0x69
Arg2Op := 0x6A
Arg3Op := 0x6B
Arg4Op := 0x6C
Arg5Op := 0x6D
Arg6Op := 0x6E
828 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
20.2.6.2 Local Objects Encoding

LocalObj := Local0Op | Local1Op | Local2Op | Local3Op | Local4Op | Local5Op | Local6Op |
Local7Op
Local0Op := 0x60
Local1Op := 0x61
Local2Op := 0x62
Local3Op := 0x63
Local4Op := 0x64
Local5Op := 0x65
Local6Op := 0x66
Local7Op := 0x67

20.2.6.3 Debug Objects Encoding

DebugObj := DebugOp
DebugOp := ExtOpPrefix 0x31

20.3 AML Byte Stream Byte Values
The following table lists all the byte values that can be found in an AML byte stream and the
meaning of each byte value. This table is useful for debugging AML code.

Table 20-332 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding
Group

Fixed List
Arguments

Variable List Arguments

0x00 ZeroOp Data Object — —

0x01 OneOp Data Object — —

0x02-0x05 — — — —

0x06 AliasOp Term Object NameString
NameString

—

0x07 — — — —

0x08 NameOp Term Object NameString
DataRefObject

—

0x09 — — — —

0x0A BytePrefix Data Object ByteData —

0x0B WordPrefix Data Object WordData —

0x0C DWordPrefix Data Object DWordData —

0x0D StringPrefix Data Object AsciiCharList
NullChar

—

0x0E QWordPrefix Data Object QWordData —

0x0F — — — —

0x10 ScopeOp Term Object NameString TermList

0x11 BufferOp Term Object TermArg ByteList

0x12 PackageOp Term Object ByteData Package TermList

0x13 VarPackageOp Term Object TermArg Package TermList
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 829

ACPI Machine Language (AML) Specification
0x14 MethodOp Term Object NameString
ByteData

TermList

0x15-0x2D — — — —

0x2E (‘.’) DualNamePrefix Name Object NameSeg
NameSeg

—

0x2F (‘/’) MultiNamePrefix Name Object ByteData
NameSeg(N)

—

0x30-0x39
('0'-'9')

DigitChar— Name
Object—

— —

0x3A-0x40 — — — —

0x41-0x5A
(‘A’-‘Z’)

NameChar Name Object — —

0x5B (‘[’) ExtOpPrefix — ByteData —

0x5B 0x00 — — — —

0x5B 0x01 MutexOp Term Object NameString
ByteData

—

0x5B 0x02 EventOp Term Object NameString —

0x5B 0x12 CondRefOfOp Term Object SuperName
SuperName

—

0x5B 0x13 CreateFieldOp Term Object TermArg
TermArg
TermArg
NameString

—

0x5B 0x1F LoadTableOp Term Object TermArg
TermArg
TermArg
TermArg
TermArg
TermArg

—

0x5B 0x20 LoadOp Term Object NameString
SuperName

—

0x5B 0x21 StallOp Term Object TermArg —

0x5B 0x22 SleepOp Term Object TermArg —

0x5B 0x23 AcquireOp Term Object SuperName
WordData

—

0x5B 0x24 SignalOp Term Object SuperName —

0x5B 0x25 WaitOp Term Object SuperName
TermArg

—

0x5B 0x26 ResetOp Term Object SuperName —

0x5B 0x27 ReleaseOp Term Object SuperName —

0x5B 0x28 FromBCDOp Term Object TermArg Target —

0x5B 0x29 ToBCD Term Object TermArg Target —

Encoding
Value

Encoding Name Encoding
Group

Fixed List
Arguments

Variable List Arguments
830 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
0x5B 0x2A UnloadOp Term Object SuperName —

0x5B 0x30 RevisionOp Data Object — —

0x5B 0x31 DebugOp Debug Object — —

0x5B 0x32 FatalOp Term Object ByteData
DWordData
TermArg

—

0x5B 0x33 TimerOp Term Object — —

0x5B 0x80 OpRegionOp Term Object NameString
ByteData
TermArg
TermArg

—

0x5B 0x81 FieldOp Term Object NameString
ByteData

FieldList

0x5B 0x82 DeviceOp Term Object NameString ObjectList

0x5B 0x83 ProcessorOp Term Object NameString
ByteData
DWordData
ByteData

ObjectList

0x5B 0x84 PowerResOp Term Object NameString
ByteData
WordData

ObjectList

0x5B 0x85 ThermalZoneOp Term Object NameString ObjectList

0x5B 0x86 IndexFieldOp Term Object NameString
NameString
ByteData

FieldList

0x5B 0x87 BankFieldOp Term Object NameString
NameString
TermArg
ByteData

FieldList

0x5B 0x88 DataRegionOp Term Object NameString
TermArg
TermArg
TermArg

—

0x5B 0x80 -
0x5B 0xFF

— — — —

0x5C (‘\’) RootChar Name Object — —

0x5D — — — —

0x5E (‘^’) ParentPrefixChar Name Object — —

0x5F(‘_’) NameChar— Name Object — —

0x60 (‘`’) Local0Op Local Object — —

0x61 (‘a’) Local1Op Local Object — —

0x62 (‘b’) Local2Op Local Object — —

0x63 (‘c’) Local3Op Local Object — —

Encoding
Value

Encoding Name Encoding
Group

Fixed List
Arguments

Variable List Arguments
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 831

ACPI Machine Language (AML) Specification
0x64 (‘d’) Local4Op Local Object — —

0x65 (‘e’) Local5Op Local Object — —

0x66 (‘f’) Local6Op Local Object — —

0x67 (‘g’) Local7Op Local Object — —

0x68 (‘h’) Arg0Op Arg Object — —

0x69 (‘i’) Arg1Op Arg Object — —

0x6A (‘j’) Arg2Op Arg Object — —

0x6B (‘k’) Arg3Op Arg Object — —

0x6C (‘l’) Arg4Op Arg Object — —

0x6D (‘m’) Arg5Op Arg Object — —

0x6E (‘n’) Arg6Op Arg Object — —

0x6F — — — —

0x70 StoreOp Term Object TermArg
SuperName

—

0x71 RefOfOp Term Object SuperName —

0x72 AddOp Term Object TermArg
TermArg Target

—

0x73 ConcatOp Term Object TermArg
TermArg Target

—

0x74 SubtractOp Term Object TermArg
TermArg Target

—

0x75 IncrementOp Term Object SuperName —

0x76 DecrementOp Term Object SuperName —

0x77 MultiplyOp Term Object TermArg
TermArg Target

—

0x78 DivideOp Term Object TermArg
TermArg Target
Target

—

0x79 ShiftLeftOp Term Object TermArg
TermArg Target

—

0x7A ShiftRightOp Term Object TermArg
TermArg Target

—

0x7B AndOp Term Object TermArg
TermArg Target

—

0x7C NandOp Term Object TermArg
TermArg Target

—

0x7D OrOp Term Object TermArg
TermArg Target

—

0x7E NorOp Term Object TermArg
TermArg Target

—

Encoding
Value

Encoding Name Encoding
Group

Fixed List
Arguments

Variable List Arguments
832 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
0x7F XorOp Term Object TermArg
TermArg Target

—

0x80 NotOp Term Object TermArg Target —

0x81 FindSetLeftBitOp Term Object TermArg Target —

0x82 FindSetRightBitOp Term Object TermArg Target —

0x83 DerefOfOp Term Object TermArg —

0x84 ConcatResOp Term Object TermArg
TermArg Target

—

0x85 ModOp Term Object TermArg
TermArg Target

—

0x86 NotifyOp Term Object SuperName
TermArg

—

0x87 SizeOfOp Term Object SuperName —

0x88 IndexOp Term Object TermArg
TermArg Target

—

0x89 MatchOp Term Object TermArg
ByteData
TermArg
ByteData
TermArg
TermArg

—

0x8A CreateDWordFieldOp Term Object TermArg
TermArg
NameString

—

0x8B CreateWordFieldOp Term Object TermArg
TermArg
NameString

—

0x8C CreateByteFieldOp Term Object TermArg
TermArg
NameString

—

0x8D CreateBitFieldOp Term Object TermArg
TermArg
NameString

—

0x8E ObjectTypeOp Term Object SuperName —

0x8F CreateQWordFieldOp Term Object TermArg
TermArg
NameString

—

0x90 LandOp Term Object TermArg
TermArg

—

0x91 LorOp Term Object TermArg
TermArg

—

0x92 LnotOp Term Object TermArg —

Encoding
Value

Encoding Name Encoding
Group

Fixed List
Arguments

Variable List Arguments
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 833

ACPI Machine Language (AML) Specification
20.4 AML Encoding of Names in the Namespace
Assume the following namespace exists:

0x92 0x93 LNotEqualOp Term Object TermArg
TermArg

—

0x92 0x94 LLessEqualOp Term Object TermArg
TermArg

—

0x92 0x95 LGreaterEqualOp Term Object TermArg
TermArg

—

0x93 LEqualOp Term Object TermArg
TermArg

—

0x94 LGreaterOp Term Object TermArg
TermArg

—

0x95 LLessOp Term Object TermArg
TermArg

—

0x96 ToBufferOp Term Object TermArg Target —

0x97 ToDecimalStringOp Term Object TermArg Target —

0x98 ToHexStringOp Term Object TermArg Target —

0x99 ToIntegerOp Term Object TermArg Target —

0x9A-0x9B — — — —

0x9C ToStringOp Term Object TermArg
TermArg Target

—

0x9D CopyObjectOp Term Object TermArg
SimpleName

—

0x9E MidOp Term Object TermArg
TermArg
TermArg Target

—

0x9F ContinueOp Term Object — —

0xA0 IfOp Term Object TermArg TermList

0xA1 ElseOp Term Object — TermList

0xA2 WhileOp Term Object TermArg TermList

0xA3 NoopOp Term Object — —

0xA4 ReturnOp Term Object TermArg —

0xA5 BreakOp Term Object — —

0xA6-0xCB — — — —

0xCC BreakPointOp Term Object — —

0xCD-0xFE — — — —

0xFF OnesOp Data Object — —

Encoding
Value

Encoding Name Encoding
Group

Fixed List
Arguments

Variable List Arguments
834 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification

 \
 S0
 MEM
 SET
 GET
 S1
 MEM
 SET
 GET
 CPU
 SET
 GET

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and loads a block
using it as a root. Assume the loaded block contains the following names:

 STP1
 ^GET
 ^^PCI0
 ^^PCI0.SBS
 \S2
 \S2.ISA.COM1
 ^^^S3
 ^^^S2.MEM
 ^^^S2.MEM.SET
 Scope(\S0.CPU.SET.STP1) {
 XYZ
 ^ABC
 ^ABC.DEF
 }

This will be encoded in AML as:
'STP1'
ParentPrefixChar 'GET_'
ParentPrefixChar ParentPrefixChar 'PCI0'
ParentPrefixChar ParentPrefixChar DualNamePrefix 'PCI0' 'SBS_'
RootChar 'S2__'
RootChar MultiNamePrefix 3 'S2__' 'ISA_' 'COM1'
ParentPrefixChar ParentPrefixChar ParentPrefixChar 'S3__'
ParentPrefixChar ParentPrefixChar ParentPrefixChar DualNamePrefix 'S2__' 'MEM_'
ParentPrefixChar ParentPrefixChar ParentPrefixChar MultiNamePrefix 3 'S2__' 'MEM_' 'SET_'

After the block is loaded, the namespace will look like this (names added to the namespace by the
loading operation are shown in bold):
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 835

ACPI Machine Language (AML) Specification
 \
 S0
 MEM
 SET
 GET
 CPU
 SET
 STP1
 XYZ
 ABC
 DEF
 GET
 PCI0
 SBS
 S1
 MEM
 SET
 GET
 CPU
 SET
 GET
 S2
 ISA
 COM1
 MEM
 SET
 S3
836 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
21
ACPI Data Tables and Table Definition Language

There are two fundamental types of ACPI tables:

• Tables that contain AML code produced from the ACPI Source Language (ASL). These include
the DSDT, any SSDTs, and sometimes OEM-specific tables (OEMx).

• Tables that contain simple data and no AML byte code. These types of tables are known as ACPI
Data Tables. They include tables such as the FADT, MADT, ECDT, SRAT, etc. - essentially
any table other than a DSDT or SSDT.

• The first type of table is generated using an ASL compiler and this language is specified in
section 18.

The second type of table, the ACPI Data Table, is addressed by this section.

This section describes a simple language (the Table Definition Language or TDL) that can be used to
generate any ACPI data table. It simplifies the table generation for BIOS vendors and can
automatically generate fields such as table lengths, subtable lengths, checksums, flag fields, etc.

21.1 Types of ACPI Data Tables
In the context of a compiler for the Table Definition Language (TDL), there are two types of ACPI
Data Tables:

• ACPI tables that are "known" to the compiler. These would typically include all of the basic
ACPI tables defined in the ACPI specification such as the FADT, MADT, ECDT, etc. Since
these tables are fully specified (usually via the ACPI specification, but from other sources as
well), the TDL compiler knows all details of these tables -- including all required data types,
1optional or required sub-tables, etc.

• ACPI tables that are unknown to the compiler. These may include tables that are not defined in
the ACPI specification such as MCFG, DBGP, etc., or simply new ACPI tables that have not yet
been implemented in the compiler.

One of the goals of the ACPI Table Definition Language is to support both cases above. Most ACPI
tables will be known to the compiler (and will be the easiest to specify in TDL), but the language is
general enough to allow the definition of new ACPI tables that are unknown or unimplemented in
the compiler.

An additional goal of TDL is to support the output of a disassembler that formats an existing table
into TDL. This enables disassembler/change/compile operations.

1.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 837

ACPI Data Tables and Table Definition Language
21.2 ACPI Table Definition Language Specification
The following section defines the ACPI Table Definition Language (TDL). The grammar notation
follows the same rules as the ASL source language (See Section 19.1.1, ASL Grammar Notation.)
Full definition of the various data types follows the grammar specification.

21.2.1 Overview of the Table Definition Language (TDL)
Most ACPI tables share the following structure (all except FACS):

• A common, 36 byte header containing the table signature, length, checksum, revision, and other
data.

• A table body which contains the specific table data.

The Table Definition Language allows the definition of an ACPI table via a collection of fields. Each
line of TDL source code is a field, and corresponds to a single data item in the definition of the table.

For example, the C definition of the common ACPI table header is as follows:

typedef struct acpi_table_header
{
 char Signature[4];
 UINT32 Length;
 UINT8 Revision;
 UINT8 Checksum;
 char OemId[6];
 char OemTableId[8];
 UINT32 OemRevision;
 char AslCompilerId[4];
 UINT32 AslCompilerRevision;

} ACPI_TABLE_HEADER;

In the Table Definition Language, an ACPI table header can be described as follows:
 : "ECDT"
 : 00000000
 : 01
 : 00
 : "OEM "
 : "MACHINE1"
 : 00000001
 : ""
 : 00000000

Additionally and optionally, it can also be described with accompanying field names:
 Signature : "ECDT" [Embedded Controller Boot Resources Table]
 Table Length : 00000000
 Revision : 01
 Checksum : 00
 Oem ID : "OEM "
 Oem Table ID : "MACHINE1"
 Oem Revision : 00000001
 Asl Compiler ID : ""
 Asl Compiler Revision : 00000000
838 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Note: In the ACPI table header, the TableLength, Checksum, AslCompilerId, and the
AslCompilerRevision fields are all output fields that are filled in automatically by the compiler
during table generation. Also, the field names are output by a disassembler that formats existing
tables into TDL code.

21.2.2 TDL Grammar Specification
//
// Root Term
//
DataTable :=
FieldList

//
// Field Terms
//
FieldList :=
 Field |
 <Field FieldList>

Field :=
 <FieldDefinition OptionalFieldComment> |
 CommentField

FieldDefinition :=

 // Fields for predefined (known) ACPI tables

 <OptionalFieldName ':' FieldValue> |

 // Generic data types (used for custom or undefined ACPI tables)

 <'UINT8' ':' IntegerExpression> | // 8-bit unsigned integer
 <'UINT16' ':' IntegerExpression> | // 16-bit unsigned integer
 <'UINT24' ':' IntegerExpression> | // 24-bit unsigned integer
 <'UINT32' ':' IntegerExpression> | // 32-bit unsigned integer
 <'UINT40' ':' IntegerExpression> | // 40-bit unsigned integer
 <'UINT48' ':' IntegerExpression> | // 48-bit unsigned integer
 <'UINT56' ':' IntegerExpression> | // 56-bit unsigned integer
 <'UINT64' ':' IntegerExpression> | // 64-bit unsigned integer
 <'String' ':' String> | // Quoted ASCII string
 <'Unicode' ':' String> | // Quoted ASCII string -> Unicode string
 <'Buffer' ':' ByteConstList> | // Raw buffer of 8-bit unsigned integers
 <'GUID' ':' Guid> | // In GUID format
 <'Label' ':' Label> // ASCII label - unquoted string

OptionalFieldName :=
 Nothing |
 AsciiCharList // Optional field name/description

FieldValue :=
 IntegerExpression | String | Buffer | Flags | Label

OptionalFieldComment :=
 Nothing |
 <'[' AsciiCharList ']'>
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 839

ACPI Data Tables and Table Definition Language
CommentField :=
 <'//' AsciiCharList NewLine> |
 <'/*' AsciiCharList '*/'> |
 <'[' AsciiCharList ']'>

//
// Data Expressions
//
IntegerExpression :=
 Integer |
 <IntegerExpression IntegerOperator IntegerExpression> |
 <'(' IntegerExpression ')'>

//
// Operators below are shown in precedence order. The precedence rules
// are the same as the C language. Parentheses have precedence over
// all operators.
//
IntegerOperator :=
 '!' | '~' | '*' | '/' | '%' | '+' | '-' | '<<' | '>>' |
 '<' | '>' | '<=' | '>=' | '==' | '!=' | '&' | '^' | '|' |
 '&&' |'||' |

//
// Data Types
//
String :=
 <'"' AsciiCharList '"'>
Buffer :=
 ByteConstList
Guid :=
 <DWordConst '-' WordConst '-' WordConst '-' WordConst '-' Const48>
Label :=
 AsciiCharList

//
// Data Terms
//
Integer :=
 ByteConst | WordConst | Const24 | DWordConst | Const40 | Const48 | Const56 |
 QWordConst | LabelReference

LabelReference :=
 <'$' Label>

Flags :=
 OneBit | TwoBits

ByteConstList :=
 ByteConst |
 <Byte Const ' ' ByteConstList>

AsciiCharList :=
 Nothing |
 PrintableAsciiChar |
 <PrintableAsciiChar AsciiCharList>

//
// Terminals
//
840 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
ByteConst :=
 0x00-0xFF
WordConst :=
 0x0000 - 0xFFFF
Const24 :=
 0x000000 - 0xFFFFFF
DWordConst :=
 0x00000000 - 0xFFFFFFFF
Const40 :=
 0x0000000000 - 0xFFFFFFFFFF
Const48 :=
 0x000000000000 - 0xFFFFFFFFFFFF
Const56 :=
 0x00000000000000 - 0xFFFFFFFFFFFFFF
QWordConst :-
 0x0000000000000000 - 0xFFFFFFFFFFFFFFFF

OneBit :=
 0 - 1
TwoBits :=
 0 - 3

PrintableAsciiChar :=
 0x20 - 0x7E
NewLine :=
 '\n'

21.2.3 Data Types

21.2.3.1 Integers
All integers in ACPI are unsigned. Four major types of unsigned integers are supported by the
compiler: Bytes, Words, DWords and QWords. In addition, for special cases, there are some odd
sized integers such as 24-bit and 56-bit. The actual required width of an integer is defined by the
ACPI table. If an integer is specified that is numerically larger than the width of the target field
within the input source, an error is issued by the compiler. Integers are expected by the data table
compiler to be entered in hexadecimal with no "hex" prefix.

Examples:

[001] Revision : 04// Byte (8-bit)
[002] C2 Latency : 0000// Word (16-bit)
[004] DSDT Address : 00000001// DWord (32-bit)
[008] Address : 0000000000000001// QWord (64-bit)

Length of non-power-of-two examples:

[003] Reserved : 000000// 24 bits
[007] Capabilities : 00000000000000 // 56 bits

21.2.3.2 Integer Expressions
Expressions are supported in all fields that require an integer value.

Supported operators (Standard C meanings, in precedence order):
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 841

ACPI Data Tables and Table Definition Language
() Parentheses

! Logical NOT

~ Bitwise ones compliment (NOT)

* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<< Shift left

>> Shift right

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

== Equal

!= Not Equal

& Bitwise AND

^ bitwise Exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

Examples:

[001] Revision : 04 * (4 + 7)// Byte (8-bit)
[002] C2 Latency : 0032 + 8// Word (16-bit)

21.2.3.3 Flags
Many ACPI tables contain flag fields. For these fields, only the individual flag bits need to be
specified to the compiler. The individual bits are aggregated into a single integer of the proper size
by the compiler.

Examples:

[002] Flags (decoded below) : 0005
 Polarity : 1
 Trigger Mode : 1

In this example, only the Polarity and Trigger Mode fields need to be specified to the compiler (as
either zero or one). The compiler then creates the final 16-bit Flags field for the ACPI table.
842 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
21.2.3.4 Strings
Strings must always be surrounded by quotes. The actual string that is generated by the compiler
may or may not be null-terminated, depending on the table definition in the ACPI specification. For
example, the OEM ID and OEM Table ID in the common ACPI table header (shown above) are
fixed at six and eight characters, respectively. They are not necessarily null terminated. Most other
strings, however, are of variable-length and are automatically null terminated by the compiler. If a
string is specified that is too long for a fixed-length string field, an error is issued. String lengths are
specified in the definition for each relevant ACPI table.

Escape sequences within a quoted string are not allowed. The backslash character '\' refers to the root
of the ACPI namespace.

Examples:

[008] Oem Table ID : "TEMPLATE" // Fixed length
[006] Processor UID String : "\CPU0"// Variable length

21.2.3.5 Buffers
A buffer is typically used whenever the required binary data is larger than a QWord, or the data does
not fit exactly into one of the standard integer widths. Examples include UUIDs and byte data
defined by the SLIT table.

Examples:

// SLIT entry

[032] Locality 0 : 0A 10 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 \
 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33

// DMAR entry

[002] PCI Path : 1F 07

Each hexadecimal byte should be entered separately, separated by a space. The continuation
character (backslash) may be used to continue the buffer data to more than one line.

21.2.4 Fields Set Automatically by the Compiler

There are several types of ACPI table fields that are set automatically by the compiler. This
simplifies the process of ACPI table development by relieving the programmer from these tasks.

Checksums: All ACPI table checksums are computed and inserted
automatically. This includes the main checksum that appears in
the standard ACPI table header, as well as any additional
checksum fields such as the extended checksum that appears in
the ACPI 2.0 RSDP.

Table and Subtable Lengths: All ACPI table lengths are computed and inserted automatically.
This includes the master table length that appears in the common
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 843

ACPI Data Tables and Table Definition Language
ACPI table header, and the length of any internal subtables as
applicable.

Examples:

[004] Table Length : 000000F4

[001] Subtable Type : 08 <Platform Interrupt Sources>
[001] Length : 10

[001] Subtable Type : 01 <Memory Affinity>
[001] Length : 28

Flags: As described in the previous section, individual flags are
aggregated automatically by the compiler and inserted into the
ACPI table as the correctly sized and valued integer.

Compiler IDs: The data table compiler automatically inserts the ID and current
revision for iASL into the common ACPI table header for each
table during compilation.

21.2.5 Special Fields

Reserved Fields: All fields that are declared as Reserved by the table definition
within the ACPI (or other) specification should be set to zero.

Table Revision: This field in the common ACPI table header is often very
important and defines the structure of the remaining table. The
developer should take care to ensure that this value is correct and
current. This field is not set automatically by the compiler. It is
instead used to indicate which version of the table is being
compiled.

Table Signature: There are several table signatures within ACPI that are either
different from the table name, or have unusual length:

FADT - signature is "FACP".

MADT - signature is "APIC".

RSDP - signature is "RSD PTR " (with trailing space)

21.2.6 21.6TDL Generic Data Types
These data types are used to construct ACPI tables that are not predefined (known) by the TDL
compiler.

UINT8 Generates an 8-bit unsigned integer

UINT16 Generates a 16-bit unsigned integer

UINT24 Generates a 24-bit unsigned integer

UINT32 Generates a 32-bit unsigned integer
844 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
UINT40 Generates a 40-bit unsigned integer

UINT48 Generates a 48-bit unsigned integer

UINT56 Generates a 56-bit unsigned integer

UINT64 Generates a 64-bit unsigned integer

String Generates a null-terminated ASCII string (ASCIIZ)

Unicode Generates a null terminated Unicode (UTF-16) string

Buffer Generates a buffer of 8-bit unsigned integers

GUID Generates an encoded GUID in a 16-byte buffer

Label Generates a Label at the current location (offset) within the table.

This label can be referenced within integer expressions by prepending
the label with a '$' sign.

21.2.7 Defining a Known ACPI Table in TDL
It is expected that most ACPI tables that will be created via the TDL compiler are ACPI tables that
are known to the compiler. This means that the compiler contains the required structure and
definition of the table, as per the ACPI specification or other specification for that table.

For these known ACPI tables, specifying the data for the table involves simply defining the value for
each field in the table. The compiler automatically types the data, performs range and any value
checks, and generates the appropriate output.

The starting point for any of the known ACPI tables is the document that specifies the format of the
table (usually the ACPI specification), or a table template file generated by an ASL compiler, or
even the output of an AML disassembler. Writing the TDL code involves implementing one line of
code for each data item specified in the table definition itself.

For example, the table header for an ACPI table can be defined as simply a sequence of strings and
integers. The TDL compiler will format these data items into a 36-byte ACPI header.

 : "ECDT"
 : 00000000
 : 01
 : 00
 : "OEM "
 : "MACHINE1"
 : 00000001
 : ""
 : 00000000

21.2.8 Defining an Unknown or New ACPI table in TDL
For ACPI tables that are new or whose formats are otherwise unknown to the compiler, "generic"
data types are introduced to allow the definition of these tables using explicit data types.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 845

ACPI Data Tables and Table Definition Language
Examples of Generic Data Types:
 Label : StartRecord
 UINT8 : 11
 UINT16 : $EndRecord - $StartRecord // Record length
 UINT24 : 112233
 UINT32 : 11223344
 UINT56 : 11223344556677
 UINT64 : 1122334455667788

 String : "This is a string"
 DevicePath : "\PciRoot(0)\Pci(0x1f,1)\Usb(0,0)"
 Unicode : "This string will be encoded to Unicode"

 Buffer : AA 01 32 4C 77
 GUID : 11223344-5566-7788-99aa-bbccddeeff00
 Label : EndRecord

21.2.9 21.9Table Definition Language Examples

21.2.9.1 21.9.1ECDT Disassembler Output

The output of the iASL disassembler may be used as direct input to the TDL compiler:
846 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
[000h 0000 4] Signature : "ECDT" [Embedded Controller Data Table]
[004h 0004 4] Table Length : 0000004E
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : F4
[00Ah 0010 6] Oem ID : "INTEL "
[010h 0016 8] Oem Table ID : "TEMPLATE"
[018h 0024 4] Oem Revision : 00000001
[01Ch 0028 4] Asl Compiler ID : "INTL"
[020h 0032 4] Asl Compiler Revision : 20110316

[024h 0036 12] Command/Status Register : [Generic Address Structure]
[024h 0036 1] Space ID : 01 [SystemIO]
[025h 0037 1] Bit Width : 08
[026h 0038 1] Bit Offset : 00
[027h 0039 1] Encoded Access Width : 00 [Undefined/Legacy]
[028h 0040 8] Address : 0000000000000066

[030h 0048 12] Data Register : [Generic Address Structure]
[030h 0048 1] Space ID : 01 [SystemIO]
[031h 0049 1] Bit Width : 08
[032h 0050 1] Bit Offset : 00
[033h 0051 1] Encoded Access Width : 00 [Undefined/Legacy]
[034h 0052 8] Address : 0000000000000062

[03Ch 0060 4] UID : 00000000
[040h 0064 1] GPE Number : 09
[041h 0065 13] Namepath : "_SB.PCI0.EC"

Raw Table Data: Length 78 (0x4E)

 0000: 45 43 44 54 4E 00 00 00 01 F4 49 4E 54 45 4C 20 ECDTN.....INTEL
 0010: 54 45 4D 50 4C 41 54 45 01 00 00 00 49 4E 54 4C TEMPLATE....INTL
 0020: 16 03 11 20 01 08 00 00 66 00 00 00 00 00 00 00 f.......
 0030: 01 08 00 00 62 00 00 00 00 00 00 00 00 00 00 00 b...........
 0040: 09 5C 5F 53 42 2E 50 43 49 30 2E 45 43 00 ._SB.PCI0.EC.

21.2.9.2 ECDT Definition with Field Comments
Similar to the disassembler output but simpler:

 Signature : "ECDT" [Embedded Controller Data Table]
 Table Length : 0000004E
 Revision : 01
 Checksum : F4
 Oem ID : "INTEL "
 Oem Table ID : "TEMPLATE"
 Oem Revision : 00000001
 Asl Compiler ID : "INTL"
 Asl Compiler Revision : 20110316

 Command/Status Register : [Generic Address Structure]
 Space ID : 01 [SystemIO]
 Bit Width : 08
 Bit Offset : 00
 Encoded Access Width : 00 [Undefined/Legacy]
 Address : 0000000000000066
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 847

ACPI Data Tables and Table Definition Language
 Data Register : [Generic Address Structure]
 Space ID : 01 [SystemIO]
 Bit Width : 08
 Bit Offset : 00
 Encoded Access Width : 00 [Undefined/Legacy]
 Address : 0000000000000062

 UID : 00000000
 GPE Number : 09
 Namepath : "_SB.PCI0.EC"

21.2.10 Minimal ECDT Definition
An example of a minimal ECDT definition with no Field Names:

 : "ECDT" [Embedded Controller Boot Resources Table]
 : 0000004E
 : 01
 : F4
 : "INTEL "
 : "TEMPLATE"
 : 00000001
 : "INTL"
 : 20110316

 : [Generic Address Structure]
 : 01 [SystemIO]
 : 08
 : 00
 : 00 [Undefined/Legacy]
 : 0000000000000066

 : [Generic Address Structure]
 : 01 [SystemIO]
 : 08
 : 00
 : 00 [Undefined/Legacy]
 : 0000000000000062

 : 00000000
 : 09
 : "_SB.PCI0.EC"

21.2.10.1 Generic ACPI Table Definition
Tables that are not known to the TDL compiler can be defined by using the generic data types. All
ACPI tables are assumed to have the common ACPI header, however:

Signature : "OEMZ"
Table Length : 00000052
Revision : 01
Checksum : 6C
Oem ID : "TEST"
Oem Table ID : "CUSTOM "
Oem Revision : 00000001
Asl Compiler ID : "INTL
Asl Compiler Revision : 00000001
848 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
 UINT8 : 01
 UINT8 : 08
 UINT8 : 00
 UINT8 : 00
 UINT64 : 0000000000000066
 UINT32 : 00000000
 UINT8 : 12
 String : "Hello World!"
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 849

ACPI Data Tables and Table Definition Language
850 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Appendix A
Storage Device Class

This section defines the behavior of devices as that behavior relates to power management and,
specifically, to the four device power states defined by ACPI. The goal is enabling device vendors to
design power-manageable products that meet the basic needs of OSPM and can be utilized by any
ACPI-compatible operating system.

A.1 Overview
The power management of individual devices is the responsibility of a policy owner in the operating
system. This software element will implement a power management policy that is appropriate for the
type (or class) of device being managed. Device power management policy typically operates in
conjunction with a global system power policy implemented in the operating system.

In general, the device-class power management policy strives to reduce power consumption while
the system is working by transitioning among various available power states according to device
usage. The challenge facing policy owners is to minimize power consumption without adversely
impacting the system’s usability. This balanced approach provides the user with both power savings
and good performance.

Because the policy owner has very specific knowledge about when a device is in use or potentially in
use, there is no need for hardware timers or such to determine when to make these transitions.
Similarly, this level of understanding of device usage makes it possible to use fewer device power
states. Generally, intermediate states attempt to draw a compromise between latency and
consumption because of the uncertainty of actual device usage. With the increased knowledge in the
OS, good decisions can be made about whether the device is needed at all. With this ability to turn
devices off more frequently, the benefit of having intermediate states diminishes.

The policy owner also determines what class-specific events can cause the system to transition from
sleeping to working states, and enables this functionality based on application or user requests.
Notice that the definition of the wake events that each class supports will influence the system’s
global power policy in terms of the level of power management a system sleeping state can attain
while still meeting wake latency requirements set by applications or the user.

A.2 Device Power States
The following definitions apply to devices of all classes:

• D0. State in which device is on and running. It is receiving full power from the system and is
delivering full functionality to the user.

• D1. Class-specific low-power state (defined in the following section) in which device context
may or may not be lost. Buses in D1 cannot do anything to the bus that would force devices on
that bus to lose context.

• D2. Class-specific low-power state (defined in the following section) in which device context
may or may not be lost. Attains greater power savings than D1. Buses in D2 can cause devices
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 851

on that bus to lose some context (for example, the bus reduces power supplied to the bus).
Devices in D2 must be prepared for the bus to be in D2 or higher.

• D3. State in which device is off and not running. Device context is lost. Power can be removed
from the device.

Device power-state transitions are typically invoked through bus-specific mechanisms (for example,
ATA Standby, USB Suspend, and so on). In some cases, bus-specific mechanisms are not available
and device-specific mechanisms must be used. Notice that the explicit command for entering the D3
state might be the removal of power.

It is the responsibility of the policy owner (or other software) to restore any lost device context when
returning to the D0 state.

A.2.1 Bus Power Management
Policy owners for bus devices (for example, PCI, USB, Small Computer System Interface [SCSI])
have the additional responsibility of tracking the power states of all devices on the bus and for
transitioning the bus itself to only those power states that are consistent with those of its devices.
This means that the bus state can be no lower than the highest state of one of its devices. However,
enabled wake events can affect this as well. For example, if a particular device is in the D2 state and
set to wake the system and the bus can only forward wake requests while in the D1 state, then the
bus must remain in the D1 state even if all devices are in a lower state.

Below are summaries of relevant bus power management specifications with references to the
sources.

A.2.2 Display Power Management
Refer to the Display Power Management Signaling Specification (DPMS), available from:

Video Electronics Standards Association (VESA)
2150 North First Street
Suite 440
San Jose, CA 95131-2029

A DPMS-compliant video controller and DPMS-compliant monitor use the horizontal and vertical
sync signals to control the power mode of the monitor. There are 4 modes of operation: normal,
standby, suspend and off. DPMS-compliant video controllers toggle the sync lines on or off to select
the power mode.

A.2.3 PCMCIA/PCCARD/CardBus Power Management
PCMCIA and PCCARD devices do not have device power states defined. The only power states
available are on and off, controlled by the host bus controller. The CardBus specification is a
superset of the PCCARD specification, incorporating the power management specification for PCI
bus. Power management capabilities query, state transition commands and wake event reporting are
identical.

A.2.4 PCI Power Management
Refer to the PCI Special Interest Group (PCISIG) Web site, at the ACPI Link Document under the
heading "PCI Sig".
852 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
• PCI Bus Power Management Capabilities Query. PCI Bus device capabilities are reported
via the optional Capabilities List registers, which are accessed via the Cap_Ptr.

• PCI Bus Power Management State Transition Commands. PCI Bus device power states are
controlled and queried via the standard Power Management Status/Control Register (PMCSR).

• PCI Bus Wakeup Event Reporting. PCI wake events are reported on the optional PME#
signal, with setting of the Wake_Int bit in the PMCSR. Wake event reporting is controlled by the
Wake_En bit in the PMCSR register.

A.2.5 USB Power Management
Refer to the Universal Serial Bus Implementers Forum (USB-IF) Web site, at the ACPI Link
Document under the heading "Universal Serial Bus Power Management".

• USB Power Management Capabilities Query. USB device capabilities are reported to the
USB Host via the standard Power Descriptors. These address power consumption, latency time,
wake support, and battery support and status notification.

• USB Power Management State Transition Commands. USB device power states are
controlled by the USB Host via the standard SET_FEATURE command. USB device power
states are queried via the standard USB GET_STATUS command.

• USB Wakeup Event Reporting. USB wake event reporting is controlled using the
SET_FEATURE command, with value DEVICE_REMOTE_WAKEUP. USB wake events are
reported by sending remote wake resume signaling.

A.2.6 Device Classes
Below is a list of the class-specific device power management definitions available in this
specification. Notice that there exists a default device class definition that applies to all devices, even
if there is a separate, class-specific section that adds additional requirements.

• Audio Device Class. Applies to audio devices.

• COM Port Device Class. Applies to COM ports devices.

• Display Device Class. Applies to CRT monitors, LCD panels, and video controllers for those
devices.

• Input Device Class. Applies to standard types of input devices such as keyboards, keypads,
mice, pointing devices, joysticks, and game pads, plus new types of input devices such as virtual
reality devices.

• Modem Device Class. Applies to modem and modem-like (for example, ISDN terminal
adapters) devices.

• Network Device Class. Applies specifically to Ethernet and token ring adapters. ATM and
ISDN adapters are not supported by this specification.

• PC Card Controller Device Class. Applies to PC Card controllers and slots.

• Storage Device Class. Applies specifically to ATA hard disks, floppy disks, ATAPI and SCSI
CD-ROMs, and the IDE channel.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 853

A.3 Default Device Class
The requirements expressed in this section apply to all devices, even if there is a separate, class-
specific power management definition that identifies additional requirements.

Table A-333 Default Power State Definitions

A.3.1 Default Power Management Policy

A.3.2 Default Wake Events
There are no default wake events, because knowledge of the device is implicit in servicing such
events. Devices can expose wake capabilities to OSPM, and device-specific software can enable
these, but there is no generic application-level or OS-wide support for undefined wake events.

A.3.3 Minimum Power Capabilities
All devices must support the D0 and D3 states. Functionality available in D0 must be available after
returning to D0 from D3 without requiring a system reboot or any user intervention. This
requirement applies whether or not power is removed from the device during D3.

A.4 Audio Device Class
The requirements expressed in this section apply to audio devices

State Definition

D0 Device is on and running. It is receiving full power from the system, and is delivering full functionality
to the user.

D1 This state is not defined and not used by the default device class.

D2 This state is not defined and not used by the default device class.

D3 Device is off and not running. Device context is assumed lost, and there is no need for any of it to be
preserved in hardware. This state should consume the minimum power possible. Its only
requirement is to recognize a bus-specific command to re-enter D0. Power can be removed from
the device while in D3. If power is removed, the device will receive a bus-specific hardware reset
upon reapplication of power, and should initialize itself as in a normal power on.

Present
State

Next
State

Cause

D0 D3 Device determined by the OS to not be needed by any applications or the user.
System enters a sleeping state.

D3 D0 Device determined by the OS to be needed by some application or the user.
854 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.4.1 Power State Definitions

If a device is in the D1 or D2 state it must resume within 100 ms. A device in the D3 state may take
as long as it needs to power up. It is the responsibility of the policy owner to advertise to the system
how long a device requires to power up.

All audio devices must be capable of D0, D2 and D3 states. It is desirable that an audio device be
capable of D1 state. The difference between D1 and D2 is that a device capable of D1 can maintain
complete state information in reduced power mode. The policy owner or other software must save
all states for D2-capable devices. Some audio samples may be lost in transitioning into and out of the
D2 state.

Notice that the D1 state was added to allow digital signal processor (DSP)-equipped audio hardware
to exploit low-power modes in the DSP. For example, a DSP may be used to implement Dolby AC-
3 Decode. When paused it stops playing audio, but the DSP may contain thousands of bytes worth of
state information. If the DSP supports a low-power state, it can shut down and later resume from
exactly the audio sample where it paused without losing state information.

A.4.2 Power Management Policy
For the purpose of the following state transition policy, the following device-specific operational
states are defined:

• Playing. Audio is playing.

• Recording:

• Foreground. Normal application is recording. Recording is considered foreground unless
specifically designated low priority.

• Background. Speech recognition or speech activity detection is running. Recording may be
preempted by foreground recording or playing. Any audio recording may be designated as
background.

• Full Duplex. Device is simultaneously playing and recording.

• Paused. File handle is open. Only devices that are playing, foreground recording or in full
duplex operation may be paused. Background recording may not be paused. State is static and
never lost. The paused state assumes that a device must transition to the resumed state rapidly.

State Status Definition

D0 Required Power is on. Device is operating.

D1 Optional Power consumption is less than D0 state. Device must be able to transition between
D0 and D1 states within 100 ms. No audio samples may be lost by entering and
leaving this state.

D2 Required Power consumption is less than D0 state. Device must be able to transition between
D0 and D2 states within 100 ms. Audio samples may be lost by entering and leaving
this state.

D3 Required The device is completely off or drawing minimal power. For example, a stereo will be
off, but a light-emitting diode (LED) may be on and the stereo may be listening to IR
commands.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 855

Playing or recording must be resumed within 100 ms. No audio samples may be lost between the
device is paused and later resumed.

• Closed. No file handle is open.

When an audio device is in the D0 state it will refuse system requests to transition to D3 state unless
it is in background record mode. When an audio device is paused (D1 or D2) and it receives a
request to transition to the D3 state, it will save the state of the audio device and transition to the D3
state.

Since multimedia applications often open and close audio files in rapid succession, it is
recommended that an inactivity timer be employed by the policy owner to prevent needless
shutdowns (D3 transitions) of the audio hardware. For example, frequent power cycling may
damage audio devices powered by vacuum tubes.

A.4.3 Wake Events
An audio device may be a wake device. For example, a USB microphone designed for security
applications might use the USB wake mechanism to signal an alarm condition.

A.4.4 Minimum Power Capabilities
All audio devices must be capable of D0, D2 and D3 power states. If the device is capable of
maintaining context while in a low-power state it should advertise support for D1. Transitional
latency for the D2 or D3 states must be less than 100 ms. There are no latency restrictions for D3
transitions, but the policy owner should advertise the amount of time required.

A.5 COM Port Device Class
The requirements expressed in this section apply to Universal Asynchronous Receiver/Transmitters
(UARTs) such as the common NS16550 buffered serial port and equivalents.

The two required states for any power-managed COM Port are full on (D0) and full off (D3). This in
turn requires that the COM port hardware be power-manageable by ACPI control methods for COM
ports that are on system boards, or by standard bus power management controls for COM ports that
are on add-in cards (for example, PCI). Because of this, ISA-based COM port add-in cards will not
be able to meet this requirement, and therefore cannot be compliant with this specification.

Present
State

Next
State

Cause

D3 D0 Audio device moves from closed to open state or paused when the device receives the
resume command.

D0 D1 Audio device receives pause command. If device is D1 capable, this state is preferred. If
not, the device driver will preserve context, and the device will be set to D2.

D2/D1 D0 Audio device receives a resume command.

D0 D2 Audio device is closed. Audio inactivity timer started.

D2 D3 Audio inactivity timer expires.

D0 D3 Audio device is in background record mode and receives power-down command.
856 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.5.1 Power State Definitions

A.5.2 Power Management Policy

A.5.3 Wake Events
If the COM port is capable of generating wake events, asserting the “ring indicator” line (V.24
circuit 125) will cause the COM port to assert a wake event. There are two common mechanisms
that may be employed (either one or both) for performing machine wake using COM ports.

The first provides a solution that is capable of waking the PC whether the UART is powered (D0) or
not (D3). Here, the “ring indicator” line (from V.24 circuit 125) is commonly connected directly to
the system wake device in addition to being connected to the UART. While this implementation is
normative for COM ports located on system motherboards (see the ACPI specification), it could also
be done by add-in cards with COM ports that reside on buses supporting system wake from devices
in D3 (for example, PME# signal on PCI).

The second mechanism requires that the UART be powered (D0) to use the UART’s interrupt output
pin to generate the wake event instead. When using this method, the OS COM port policy owner or
power management control methods are expected to configure the UART. Although any UART
interrupt source (for example, ‘data ready’) could theoretically be used to wake the system, these
methods are beyond the scope of this document.

A.5.4 Minimum Power Capabilities
A COM port conforming to this specification must support the D0 and D3 states.

A.6 Display Device Class
The requirements expressed in this section apply to all devices engaged in the display of program
content, which includes full screen display devices, display controllers, and graphics adapters. This

State Status Definition

D0 Required Line drivers are on. UART context is preserved.

D1 N/A This state is not defined for COM Ports. Use the D3 state instead.

D2 N/A This state is not defined for COM Ports. Use the D3 state instead.

D3 Required Line drivers are off (unpowered; outputs isolated from devices attached to the port).
UART context is lost. Latency to return to D0 is less than 1 second.

Present
State

Next
State

Cause

D3 D0 Power-on reset
COM port opened by an application

D0 D3 COM port closed
System enters sleeping state while wake is disabled on this device.
System enters sleeping state while wake is enabled on this device and the device is
capable of generating wake to the system from state D3.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 857

class does not include video capture devices unless they are children of the graphics adapter. This
class does not include edge displays or hardware indicators for device states.

While saving power from the display and adapter are primary goals of Display Device Class power
management definitions, the definitions are also intended to ensure that the user perceives the
system as "off" during system sleeping states, as required above. When the system enters a lower
power state, the screen must go black so the user knows the system is idle. This is important because
devices that cannot actually save power (standard televisions, for example) can still support the user
notice of system idle by going black.

A.6.1 Power State Definitions

A.6.1.1 CRT Monitors (not including other full screen displays)

CRT Monitors are a special case in power management. On the one hand, they support a common
defined method (DPMS) for changing power states. On the other hand, that procedure and the CRT
support is extremely slow and out of keeping with other faster power control methods used by other
forms of display. This definition should not preclude the use of faster and more effective methods of
transitioning the CRT if they are available and known to the controller. DPMS is not recommended
as solution for new display devices in the future.

State Status Definition

D0 Required This state is equivalent to the “On” state defined in the VESA DPMS specification (see
Related Documents) and is signaled to the display using the DPMS method.
Display is fully on
Video image is active

D1 Optional This state is equivalent to the “Standby” state defined in the VESA DPMS and is
signaled to the display using the DPMS method.
Display is functional but may be conserving energy
Video image is blank
Latency to return to D0 must be less than 5 seconds

D2 Required This state is equivalent to the “Suspend” state defined in the VESA DPMS specification
and is signaled to the display using the DPMS method.
Display is functional and conserving energy
Video image is blank
Latency to return to D0 is less than 10 seconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification and
is signaled to the display using the DPMS method.
Display is non-functional
Video image is blank
858 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.6.1.2 Internal Flat Panel Devices

Internal flat panels (also known as local flat panels or sometimes as LCDs) do not normally support
or require DPMS signaling to change power states. Instead, controllers capable of managing such
panels tend to provide vendor-specific methods to control internal flat panels, often involving
special sequencing of power signals to the panel. Some may be managed only by the application or
removal of power.

Backlight control for power management states is likewise controller and even platform specific.
Note that on-off backlight control for power management states is often unrelated to backlight
intensity or brightness control that is used while in the D0 state.

The 500 milliseconds is only to allow some existing hardware to function . The target for new
devices should be 100 milliseconds.

A.6.1.3 DVI Displays (Digital Flat Panels and DVI Monitors)

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the panel
by the correct application of power and/or controller specific signaling.
Display is fully on
Backlight (if present) is fully on(subject to performance state requirements – see below)
Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able to
meet the resume requirement and the driver is able to restore state.
Display retains internal state but may be conserving energy
Backlight(if present) is fully off
Video image is blank
Latency to return to D0 must be less than 500 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able to
meet the resume requirement and the driver is able to restore state.
Display retains state but is conserving energy
Backlight (if present) is fully off;
Video image is blank
Latency to return to D0 is less than 500 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It is
signaled by the removal of power or possibly by controller-specific signaling.
Display is non-functional
Backlight (if present) is fully off.
Video image is blank
Latency to return to D0 is less than 500 milliseconds

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
display by the correct application of power and/or controller specific signaling.
Display is fully on
Video image is active
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 859

Although 250 milliseconds is shown here because not all devices in this group are fast now, the
target resume for a new device should be 100 milliseconds.

A.6.1.4 Standard TV Devices (and Analog HDTVs)

A.6.1.5 Other (new) Full Screen Devices
Some devices not specifically defined here already exist, such as projectors that emulate CRTs or
HDTVs. Others may be coming. It is important for any device used for full screen display to support

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled by
the removal of display output and time expiring. The physical state entered is no
different than D2.
Display retains internal state but may be conserving energy
Video image is blank
Latency to return to D0 must be less than 250 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled by
the removal of display output and time expiring The physical state entered is no
different than D1.
Display retains state but is conserving energy
Video image is blank
Latency to return to D0 is less than 250 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It is
signaled by the removal of display output and time expiring
Display is non-functional
Video image is blank
Latency to return to D0 is less than 250 milliseconds

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device.
Display is fully on
Video image is active

D1 Optional Video image is blank
Latency to return to D0 must be less than 100 milliseconds

D2 Optional Video image is blank
Latency to return to D0 must be less than 100 milliseconds

D3 Required This state is not equivalent to the “Off” state defined in the VESA DPMS specification
because not power is actually saved.
Video image is blank
Latency to return to D0 is less than 100 milliseconds

State Status Definition
860 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
power transitions and power management states, but the primary requirement for the method should
be low overhead.

Although 250 milliseconds is shown here because not all devices in this group are fast now, the
target resume for a new device should be 100 milliseconds.

A.6.1.6 Video Controllers (Graphics Adapters)

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
panel by the correct application of power and/or device specific signaling known to the
controller.
Display is fully on
Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled to
the panel by the correct application of power and/or device specific signaling known to
the controller.
Display retains internal state but may be conserving energy
Video image is blank
Latency to return to D0 must be less than 100 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled to
the panel by the correct application of power and/or device specific signaling known to
the controller.
Display retains state but is conserving energy
Video image is blank
Latency to return to D0 is less than 100 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It is
signaled by the removal of display output and/or device specific methods known to the
controller.
Display is non-functional
Video image is blank
Latency to return to D0 is less than 250 milliseconds

State Status Definition

D0 Required Back-end is on
Video controller context is preserved
Video memory contents are preserved

D1 Optional Back-end is off, except for CRT control signaling (DPMS)
Video controller context is preserved
Video memory contents is preserved
Latency to return to D0 is less than 100 milliseconds

D2 Optional Back-end is off, except for CRT control signaling (DPMS)
Video controller context is lost
Video memory contents is lost
Latency to return to D0 is less than 200 milliseconds
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 861

A.6.1.7 Display Codecs
Like the displays they control, display codecs are children of the adapter and cannot be in a higher
state than the adapter or a lower state than the displays they control . It is generally not helpful to
deal with codecs entirely separately from the adapter or the displays they control. While it may vary
from device to device, a codec will either be safely powered down when its display is powered down
or it may require power as long as the adapter receives power.

A.6.2 Power Management Policy for the Display Class

These state transition definitions apply to both the full screen display and the video controller.
However, the control of the two devices is independent, except that a video controller will never be
put into a lower power state than its full screen display. Also, while full screen displays can
transition directly from D1 to D3 or from D2 to D3, the adapters require a transition to D0 from D1
or D2 before entering D3.

Transitions for the video controller are commanded via the bus-specific control mechanism for
device states. Monitor/LCD transitions are commanded by signaling from the video controller and
are only generated as a result of explicit commands from the policy-owner. Full screen display
power control is functionally independent from any other interface the monitor may provide (such as
USB). For instance, Hubs and HID devices in the monitor enclosure may be power-managed by their
driver over the USB bus, but the Monitor/LCD device itself may not; it must be power-managed
from the video controller using the methods above.

A.6.3 Wake Events
Display devices incorporating a system power switch should generate a wake event when the switch
is pressed while the system is sleeping.

A.6.4 Minimum Power Capabilities
A CRT monitor conforming to this specification must support the D0, D2, and D3 states. Other full
screen displays only need to support D0 and D3. Support for the D1 state is optional in all cases.
Transitional latencies for the D1 or D2 state must meet the requirements above.

D3 Required Back-end is off
Video controller context is lost (power removed)
Video memory contents is lost (power removed)
Latency to return to D0 is less than 200 milliseconds

Present
State

Next
State

Cause

D0 D1 User inactivity for a period of time (T1)

D1 D2 User inactivity for a period of time (T2 > T1)

D2 D3 User inactivity for a period of time (T3 > T2)

D1/D2/D3 D0 User activity or application UI change (for example, dialog pop-up)

State Status Definition
862 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A video controller conforming to this specification must support the D0 and D3 states. Support for
the D1 and D2 states is optional. Transitional latencies for the D1 must be less than 100 milliseconds
while D2 and D3 must transition to D0 in less than 200 milliseconds.

A.6.5 Performance States for Display Class Devices
Performance states for display devices and adapters have one clear difference from defined power
management states. There is no display in any power management state higher than D0. However,
performance states are all applied within D0, which means they save power while continuing to
display. Not all display class devices will support performance states, but in all cases, they must
allow continued display where they exist.

A.6.5.1 Common Requirements for Display Class Performance States
The definition of each state (up the line toward the OSPM) must include maximum latency
information on transitions into the state and transitions out of the state. (For states other than DPS1,
it may be necessary to indicate whether the latency is the time from DPS0 to DPSx or only from
DPSx-1 to DPSx.)

Each state has to have a relative weight indicator or a relative power savings indicator (i.e., it can
make a difference in OSPM policies whether DPS1 saves 2% power and DPS2 save 75% power
even if latency is longer.)

While ASL NameSpace structures may provide some of this information, it is recommended that
display class performance states be entered and exited by driver and not by control method wherever
possible.

A.6.5.2 Performance states for Full Screen Displays

A.6.5.2.1 CRT Performance States

Some CRTs (in theory) have the capability for "reduced on" -- a mode which displays but uses less
power than full performance. Even without this capability, a CRT may be able to use reduced refresh
or other methods to reduce the total power of displaying.

A.6.5.2.2 Internal Flat Panel

In general, panels consume a fixed amount of power. However, some panels are also capable of
supporting reduced refresh. More important, the amount of backlight brightness is a major factor in
system power. This clearly needs to be coordinated with direct ASL control methods for brightness
and with ambient light sensing when present. However, a performance state may be achieved by
offsetting the brightness value computed by other methods, either by a fixed amount or a fixed
percentage.

A.6.5.2.3 DVI Full Screen Devices

DVI Devices are normally capable of frequency control and may be able to benefit by frequency
control. However, because of sensitivity to signal loss, DVI devices may have limitations on other
types of performance control.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 863

A.6.5.2.4 Standard TV and Analog HDTVs

Standard TV and Analog HDTVs do not appear capable of performance states. Codecs controlling
them may be capable of power saving, however.

A.6.5.2.5 New Devices

The ability to reduce power while continuing to display will be increasingly important.

A.6.5.3 Performance States for Video Controllers/Display Adapters
Adapters are somewhat limited during performance states because they have to continue to support
display on one or more full screen devices. However, they can still do a number of things to support
performance states, including

• Changes to basic display and render capabilities, including speed or frequency range supported.

• Feature/Capability/Quality Control – limiting specific hardware features, limiting refresh rates,
limiting resolutions.

The limiting factor on what can be supported may sometimes be in the OSPM. If the OSPM support
dynamic changes in these features during a performance state change (even if no other time), more
opportunities arise.

Once again, the latency on transitions and the power saved by specific states have to be made
available to the OSPM in order to use these options effectively.

A.7 Input Device Class
The requirements expressed in this section apply to standard types of input devices such as
keyboards, keypads, mice, pointing devices, joysticks, game pads, to devices that combine these
kinds of input functionality (composite devices, and so on), and to new types of input devices such
as virtual reality devices, simulation devices, and so on.

A.7.1 Power State Definitions

State Status Definition

D0 Required Device is receiving full power from its power source, delivering full functionality to the
user, and preserving applicable context and state information.

D1 Optional Input device power consumption is greatly reduced. In general, device is in a power
management state and is not delivering any functionality to the user except wake
functionality if applicable. Device status, state, or other information indicators (for
example, LEDs, LCD displays, and so on) are turned off to save power.
The following device context and state information should be preserved by the policy
owner or other software:
Keyboard. Num, caps, scroll lock states (and Compose and Kana states if
applicable) and associated LED/indicator states, repeat delay, and repeat rate.
Joystick. Forced feedback effects (if applicable).
Any input device. All context and state information that cannot be preserved by the
device when it’s conserving power.
864 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.7.2 Power Management Policy

Note: *Depends on capability of device (if it features D1 or D3 wake capability or not); device will be put
in state with the lowest possible power consumption.

A.7.3 Wake Events
It is recommended, but not required, that input devices implement and support bus-specific wake
mechanisms if these are defined for their bus type. This is recommended because a user typically
uses an input device of some kind to wake the system when it is in a power management state (for
example, when the system is sleeping).

The actual input data (particular button or key pressed) that’s associated with a wake event should
never be discarded by the device itself, but should always be passed along to the policy owner or
other software for further interpretation. This software implements a policy for how this input data
should be interpreted, and decides what should be passed along to higher-level software, and so on.

It is recommended that the device button(s) or key(s) used for power management purposes are
clearly labeled with text and/or icons. This is recommended for keyboards and other input devices
on which all buttons or keys are typically labeled with text and/or icons that identify their usage.

For example, a keyboard could include a special-purpose power management button (for example,
“Power”) that, when pressed during a system sleeping state, generates a wake event. Alternatively,
the button(s) on mice and other pointing devices could be used to trigger a wake event.

Examples of more advanced wake events include keyboard wake signaling when any key is pressed,
mouse wake signaling on detection of X/Y motion, joystick wake signaling on X/Y motion, and so
on. However, in order to avoid accidental or unintentional wake of the system, and to give the user
some control over which input events will result in a system wake, it’s suggested that more advanced
types of wake events are implemented as features that can be turned on or off by the user (for
example, as part of the OSPM user interface).

D2 N/A This state is not defined for input devices, use D1 as the power management state
instead.

D3 Required Input device is off and not running. In general, the device is not delivering any
functionality to the user except wake functionality if applicable. Device context and
state information is lost.

Present
State

Next
State

Cause

D3 D0 Requested by the system

D0 D1/D3* Requested by the system (for example, system goes to sleep with wake enabled)

D0/D1 D3 Requested by the system (for example, system goes to sleep with wake disabled)
Power is removed

D1/D3 D0 Device with enabled wake capability requests transition by generating a wake event
Requested by the system

State Status Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 865

A.7.4 Minimum Power Capabilities
An input device conforming to this specification must support the D0 and D3 states. Support for the
D1 state is optional.

A.8 Modem Device Class
• The requirements expressed in this section apply to modems and similar devices, such as USB

controlled ISDN Terminal Adapters (“digital modems”) and computer-connected telephone
devices ("CT phones"). This specification will refer to these devices as “modems; the same
considerations apply to digital modems and CT phones unless explicitly stated otherwise.

• The scope of this section is further restricted to modems that support power management using
methods defined by the relevant PC-modem connection bus. These include PCI, USB, PCCARD
(PCMCIA), CardBus, and modems on the system motherboard described by ACPI BIOS control
methods. The scope does not include bus-specific means for devices to alert the host PC (for
example, how to deliver a ”ringing”’ message), nor does it address how those alerting operations
are controlled.

A.8.1 Technology Overview
Modems are traditionally serial devices, but today modems may be attached to a PC by many
different means. Further, many new modems expose a software serial interface, where the modem
controller function is implemented in software. This specification addresses three different
connection types:

• Traditional connections without power-managed connections (for example, COM, LPT, ISA)

• Power managed connections (for example, PCCARD, CardBus, PCI, USB)

• Motherboard modems

For some of the above modem connection types mentioned, there are three different modem
architectures possible:

• Traditional modem (DAA, DSP, and controller in hardware)

• Controller-less design (DAA and DSP in hardware)

• "Soft modem" design (DAA and CODEC only in hardware)

The hardware components of the modem shall be controlled by the relevant bus commands, where
applicable (USB, PCI, CardBus). The software components are dependent on the power state of the
CPU.

A.8.1.1 Traditional Connections
In older methods (COM, LPT, ISA) the modem is controlled primarily by serialized ASCII
command strings (for example, V.25ter) and traditional V.24 (RS-232) out-of-band leads. In these
legacy devices, there are no common means for power management other than the power switch for
the device, or the entire system unit.

An external modem connected to a COM port or LPT port typically has its own power supply. An
LPT port modem might run from the current on the LPT port +5V supply. For COM or LPT port
modems, power is typically controlled by a user switch.
866 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
The most common modem type is an ISA card with an embedded COM port. From a software
standpoint, they are logically identical to external modems, but the modems are powered by the PC
system unit. Power is drawn from the ISA bus without independent power switching.

A.8.1.2 Power-Managed Connections
PCMCIA, PCCARD and CardBus slots are powered and power-managed by the system, using
means defined in the relevant bus specifications. For PCMCIA and PCCARD devices, only D0 and
D3 states are available, via Socket Services in the OS and/or ACPI BIOS. CardBus adds
intermediate states, using the same mechanisms defined for PCI Bus.

PCI bus slots are powered and power-managed by the system, using means defined in the PCI
specification.

USB devices may be powered by the USB itself (100mA or 500mA), or have their own external
power supply. All USB devices are power-managed by the USB bus master, using means defined in
the USB specification.

A.8.1.3 Motherboard Modems
A modem embedded in the motherboard is powered by controls on the motherboard. It should be
power-managed by using control methods exposed via ACPI BIOS tables.

A.8.2 Power State Definitions

State Status Definition

D0 Required Phone interface is on (may be on or off hook)
Speaker is on
Controller Context is preserved

D1 N/A Not defined (do not use)

D2 Optional Phone interface is not powered by the host (on hook)
Speaker is off
Controller context is preserved
2 seconds maximum restore time

D3 Required Phone interface is not powered by host (on hook)
Speaker is off
Controller context may be lost
5 seconds maximum restore time
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 867

A.8.3 Power Management Policy

A.8.4 Wake Events
For any type of modem device, wake events (if supported and enabled) are only generated in
response to detected “ringing” from an incoming call. All other events associated with modems
(V.8bis messages, and so on) require that the PC be in the “working” state to capture them. The
methods and signals used to generate the wake may vary as a function of the modem connection
(bus) type and modem architecture.

Machine wake is allowed from any modem power state (D0, D2, and D3), and is accomplished by
methods described in the appropriate bus power management specification (PCI, USB, PCCARD),
or by ACPI system board control methods (for Modem on Motherboard implementations).

If the specific modem implementation or connection type does not enable it to assert system wake
signaling, these modems will not be able to wake the machine. The OS modem policy owner will
have to retain the PC in the “working” state to perform all types of event detection (including
ringing).

A.8.5 Minimum Power Capabilities
A modem or similar device conforming to this specification must support the D0 and D3
states. Support of the D2 state is optional.

A.9 Network Device Class
The requirements expressed in this section apply to Ethernet and token ring adapters. ATM and
ISDN adapters are not supported by this specification.

A.9.1 Power State Definitions
For the purpose of the following state definitions “no bus transmission” means that transmit requests
from the host processor are not honored, and “no bus reception” means that received data are not
transferred to host memory.

Present
State

Next State Cause

D2/D3 D0 System issues a bus command to enter the D0 state (for example, an application
is answering or originating a call).

D0 D2 System issues a bus command to enter the D2 state. (for example, an application
is listening for an incoming call).

D0 D3 System issues a bus command to enter the D3 state (for example, all
applications have closed the Modem device).

State Status Definition

D0 Required Device is on and running and is delivering full functionality and performance to the
user
Device is fully compliant with the requirements of the attached network
868 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
This document does not specify maximum power and maximum latency requirements for the
sleeping states because these numbers are very different for different network technologies. The
device must meet the requirements of the bus that it attaches to.

Although the descriptions of states D1 and D2 are the same, the choice of whether to implement D1
or D2 or both may depend on bus services required, power requirements, or time required to restore
the physical layer. For example, a device designed for a particular bus might include state D1
because it needs a bus service such as a bus clock to support Magic Packet™ wake, and that service
is available in the bus device’s D1 power state but not in D2. Also, a device might include both state
D1 and state D2 to provide a choice between lower power and lower latency.

A.9.2 Power Management Policy

A.9.3 Wake Events
Network wake events are generally the result of either a change in the link status or the reception of
a wake frame from the network.

A.9.3.1 Link Status Events
Link status wake events are useful to indicate a change in the network’s availability, particularly
when this change may impact the level at which the system should re-enter the sleeping state. For
example, a transition from “link off” to “link on” may trigger the system to re-enter sleep at a higher

D1 Optional No bus transmission allowed
No bus reception allowed
No interrupts can occur
Device context may be lost

D2 Optional No bus transmission allowed
No bus reception allowed
No interrupts can occur
Device context may be lost

D3 Required Device context is assumed to be lost
No bus transmission allowed
No bus reception allowed
No interrupts can occur

Present
State

Next
State

Cause

D0 Dx System enters sleep state. If wake is enabled, Dx is the lowest power state (for
example, D1, D2, D3) from which the network device supports system wake.
An appropriate time-out has elapsed after a “link down” condition was detected. Dx is
the lowest power state in which the network device can detect “link up.”

D0 D3 System initiated network shutdown.
System enters sleep state and wake is either not enabled or the network device is
capable of waking from D3.

D1/D2/D3 D0 System wake (transition to S0), including a wake caused by a network wake event.

State Status Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 869

level (for example, S2 versus S3) so that wake frames can be detected. Conversely, a transition from
“link on” to “link off” may trigger the system to re-enter sleep at a deeper level (for example, S3
versus S2) since the network is not currently available. The network device should implement an
internal delay to avoid unnecessary transitions when the link status toggles on or off momentarily.

A.9.3.2 Wake Frame Events
Wake frame events are used to wake the system whenever meaningful data is presented to the system
over the network. Examples of meaningful data include the reception of a Magic Packet™, a
management request from a remote administrator, or simply network traffic directly targeted to the
local system. In all of these cases the network device was pre-programmed by the policy owner or
other software with information on how to identify wake frames from other network traffic. The
details of how this information is passed between software and network device depend on the OS
and therefore are not described in this specification.

A.9.4 Minimum Power Capabilities
A network device conforming to this specification must support the D0 and D3 states. Support for
the D1 and D2 states is optional.

A.10 PC Card Controller Device Class
The requirements expressed in this section apply to PC Card controller devices and the PC Card
slots.

Power management of PC Cards is not defined by this specification. PC Card power management is
defined by the relevant power management specification for the card’s device class (for example,
network, modem, and so on), in conjunction with the PC Card standard (for 16-bit cards) or the PCI
Power Management Specification (for CardBus cards).
870 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.10.1 Power State Definitions

A.10.2 Power Management Policy
The PC Card controller is a bus controller. As such, its power state is dependent on the devices

State Status Definition

D0 Required Card status change interrupts are fully functional.
Card functional interrupts are fully functional.
Controller context (for example, memory, I/O windows) is fully functional.
Controller interface is fully functional (processor can access cards).
Power to cards (slots) is available (may be on or off under software control).
The controller is at its highest power consumption level.
Bus command response time is at its fastest level.
PC Cards can be in any Dx power state (D0-D3).
Note: In D0 state, CSTSCHG interrupts can be passed to a system from a powered
down PC Card (for more detail, refer to section 5.2.11.2 of PC Card Standard,
Electrical Specification).

D1 Optional Card status change interrupts are disabled. CSTSCHG interrupt events are still
detectable by the controller and cause the bus-specific wake signal to be asserted if
wake is enabled on the controller.
Card functional interrupts are disabled.
Controller context is preserved (all register contents must be maintained but memory
and I/O windows need not be functional).
Controller interface is non-functional (processor cannot access cards).
Power to cards (slots) is available (may be on or off; retains power setting it had at
time of entry to D1).
Power-level consumption for the controller is high but less than D0.
The time required to restore the function from the D1 state to the D0 state is quicker
than resumption from D3.
Bus command response time is equal to or slower than in D0.
PC Cards can be in the D1, D2, or D3 power states (not D0).
Note: In D1 state, CSTSCHG interrupts can be passed to a system from a powered-
down PC Card (for more detail, refer to section 5.2.11.2 of PC Card Standard,
Electrical Specification).

D2 Optional Functionally the same as D1 (may be implemented instead of D1 in order to allow
bus and/or system to enter a lower-power state).

D3 Required Card status change interrupt: Disabled and need not be detected.
Card functional interrupt: Disabled and need not be detected.
Controller context (for example, memory, I/O windows): Lost.
Controller interface: Non-functional (processor can not access cards).
Clock to controller: Off.
Power to cards (slots): Off (card context lost).
Note: If Vcc is removed (for example, PCI Bus B3) while the device is in the D3 state,
a bus-specific reset (for example, PCI RST#) must be asserted when power is
restored and functions will then return to the D0 state with a full power-on reset
sequence. Whenever the transition from D3 to D0 is initiated through assertion of a
bus-specific reset, the power-on defaults will be restored to the function by hardware
just as at initial power up. The function must then be fully initialized and reconfigured
by software.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 871

plugged into the bus (child devices). OSPM will track the state of all devices on the bus and will put
the bus into the best possible power state based on the current device requirements on that bus. For
example, if the PC Card cards are all in the D1 state, OSPM will put the PC Card controller in the D1
state.

A.10.3 Wake Events
A wake event is any event that would normally assert the controller’s status change interrupt (for
example, card insertion, card battery state change, card ReqAttn event, and so on) or ring-indicate
signal.

A.10.4 Minimum Power Capabilities
A PC Card controller device conforming to this specification must support the D0 and D3
states. Support for the D1 or D2 states is optional.

A.11 Storage Device Class
The requirements expressed in this section apply to ATA hard disks, floppy disks, ATAPI and SCSI
CD-ROMs, and the IDE channel.

Present
State

Next
State

Cause

D2/D3 D0 Any card in any slot needing to transition to state D0 due to a wake event or because of
system usage.

D0 D1 No card in any slot is in state D0.

D0 D2 No card in any slot is in state D0 or D1.

D0 D3 All cards in all slots are in state D3.
872 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A.11.1 Power State Definitions

A.11.1.1 Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices

A.11.1.2 Floppy Disk Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is functional.
Interface mode context (for example, communications timings) is programmed.

D1 Optional Drive controller (for example, interface and control electronics) is functional.
Interface mode context (for example, communications timings) is preserved.
Drive motor (for example, spindle) is stopped, with fast-start mode enabled, if
available.
Laser (if any) is off.
Recommended latency to return to D0 is less than 5 seconds.
Power consumption in D1 should be no more than 80% of power consumed in D0.
Note: For ATA devices, this state is invoked by the Standby Immediate command.

D2 N/A This state is not defined for storage devices.

D3 Required Drive controller (for example, interface and control electronics) is not functional;
context is lost.
Interface mode (for example, communications timings) is not preserved.
Drive motor (for example, spindle) is stopped.
Laser (if any) is off.
Power consumption in D3 is no more than 10% of power consumed in D0.
Note: For ATA devices, this state is invoked by the “sleep” command.

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is functional.
Drive motor (for example, spindle) is turning.

D1 N/A This state is not defined for floppy disk drives.

D2 N/A This state is not defined for floppy disk drives.

D3 Required Drive controller (for example, interface and control electronics) is not functional;
context is lost.
Drive motor (for example, spindle) is stopped.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 873

A.11.1.3 IDE Channel Devices

A.11.2 Power Management Policy

A.11.2.1 Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable
Storage Devices

Note: * If supported.

Note: For ATA, the D3-to-D0 transition requires a reset of the IDE channel. This means that both
devices on a channel must be placed into D3 at the same time.

A.11.2.2 IDE Channel Devices

A.11.3 Wake Events
Storage devices with removable media can, optionally, signal wake upon insertion of media using
their bus-specific notification mechanism. There are no other wake events defined for Storage
devices.

A.11.4 Minimum Power Capabilities
A hard disk, CD-ROM or IDE/ATAPI removable storage device conforming to this specification
must support the D0 and D3 states. Support for the D1 state is optional.

State Status Definition

D0 Required Adapter is functional.
Adapter interface mode (for example, communications timings) is programmed.
Power is applied to the bus (and all devices connected to it).

D1 N/A This state is not defined for the IDE Channel.

D2 N/A This state is not defined for the IDE Channel.

D3 Required Adapter is non-functional.
Adapter interface mode (for example, communications timings) is not preserved.
Power to the bus (and all devices connected to it) may be off.

Present
State

Next
State

Cause

D3 D0 Device usage (high-priority I/O).

D0 D1* Device inactivity (no high-priority I/O) for some period of time (T1).

D0 D3 Device inactivity (no high-priority I/O) for a period of time (T2=>T1).
System enters sleeping state.

D1* D0 Device usage (High-priority I/O).

Present
State

Next
State

Cause

D3 D0 Any device on the channel needing to transition to a state other than state D3.

D0 D3 All devices on the channel in state D3.
874 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
A floppy disk and IDE channel device conforming to this specification must support the D0 and D3
states.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 875

876 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Appendix B
Video Extensions

B.1 ACPI Extensions for Display Adapters: Introduction
This section of the document describes a number of specialized ACPI methods to support
motherboard graphics devices.

In many cases, system manufacturers need to add special support to handle multiple output devices
such as panels and TV-out capabilities, as well as special power management features. This is
particularly true for notebook manufacturers. The methods described here have been designed to
enable interaction between the system BIOS, video driver, and OS to smoothly support these
features.

Systems containing a built-in display adapter are required to implement the ACPI Extensions for
Display Adapters.

Table B-334 Video Extension Object Requirements

Method Description Requirement

_DOS Enable/Disable output switching Required if system supports display switching
or LCD brightness levels

_DOD Enumerate all devices attached to display
adapter

Required if integrated controller supports
output switching

_ROM Get ROM Data Required if ROM image is stored in proprietary
format

_GPD Get POST Device Required if _VPO is implemented

_SPD Set POST Device Required if _VPO is implemented

_VPO Video POST Options Required if system supports changing post
VGA device

_ADR Return the unique ID for this device Required

_BCL Query list of brightness control levels
supported

Required if embedded LCD supports
brightness control

_BCM Set the brightness level Required if _BCL is implemented

_DDC Return the EDID for this device Required if embedded LCD does not support
return of EDID via standard interface

_DCS Return status of output device Required if the system supports display
switching (via hotkey)

_DGS Query graphics state Required if the system supports display
switching (via hotkey

_DSS Device state set Required if the system supports display
switching (via hotkey).
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 877

B.2 Definitions
• Built-in display adapter. This is a graphics chip that is built into the motherboard and cannot be

replaced. ACPI information is valid for such built-in devices.

•

• Add-in display adapter. This is a graphics chip or board that can be added to or removed from
the computer. Because the system BIOS cannot have specific knowledge of add-in boards, ACPI
information is not available for add-in devices.

•

• Boot-up display adapter. This is the display adapter programmed by the system BIOS during
machine power-on self-test (POST). It is the device upon which the machine will show the
initial operating system boot screen, as well as any system BIOS messages.

• The system can change the boot-up display adapter, and it can switch between the built-in
adapter and the add-in adapter.

• Display device. This is a synonym for the term display adapter discussed above.

• Output device. This is a device, which is a recipient of the output of a display device. For
example, a CRT or a TV is an output device.

B.3 ACPI Namespace
This is an example of the display-related namespace on an ACPI system:
878 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
GPE // ACPI General-purpose HW event
 _L0x // Notify(VGA, 0x80) to tell OSPM of the event, when user presses
// the hot key to switch the output status of the monitor.
// Notify(VGA, 0x81) to tell the event to OSPM, when there are any
// changes on the sub-devices for the VGA controller

SB
|- PCI
 |- VGA // Define the VGA controller in the namespace
 |- _PS0 / PR0
 |- _PS1 / PR1
 |- _PS3
 |- _DOS // Method to control display output switching
 |- _DOD // Method to retrieve information about child output devices
 |- _ROM // Method to retrieve the ROM image for this device
 |- _GPD // Method for determining which VGA device will post
 |- _SPD // Method for controlling which VGA device will post
 |- _VPO // Method for determining the post options
 |- CRT // Child device CRT
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state
 |- _PS0 \
 |- _PS1 - Power methods
 |- _PS2 - for the output device
 |- _PS3 /
 |- LCD // Child device LCD
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state
 |- _BCL // Brightness control levels
 |- _BCM // Brightness control method
 |- _BQC // Brightness Query Current Level
 |- _PS0 \
 |- _PS1 - Power methods
 |- _PS2 - for the output device
 |- _PS3 /
 |- TV // Child Device TV
 |- _ADR // Hardware ID for this device
 |- _DDC // Get EDID information from the monitor device
 |- _DCS // Get current hardware status
 |- _DGS // Query desired hardware active \ inactive state
 |- _DSS // Set hardware active \ inactive state

The LCD device represents the built-in output device. Mobile PCs will always have a built-in LCD
display, but desktop systems that have a built-in graphics adapter generally don’t have a built-in
output device.

B.4Display-specific Methods
The methods described in this section are all associated with specific display devices. This device-
specific association is represented in the namespace example in the previous section by the
positioning of these methods in a device tree.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 879

B.3.1 _DOS (Enable/Disable Output Switching)
Many ACPI machines currently reprogram the active display output automatically when the user
presses the display toggle switch on the keyboard. This is done because most video device drivers
are currently not capable of being notified synchronously of such state changes. However, this
behavior violates the ACPI specification, because the system modifies some graphics device
registers.

The existence of the _DOS method indicates that the system BIOS is capable of automatically
switching the active display output or controlling the brightness of the LCD. If it exists at all, the
_DOS method must be present for all display output devices. This method is required if the system
supports display switching or LCD brightness control.

Arguments: (1)

Arg0 – An Integer containing the encoded switching controls (see below)

Return Value:

None

Additional Argument Information:
Bits 1:0

0 – The system BIOS should not automatically switch (toggle) the active display output, but
instead just save the desired state change for the display output devices in variables associated
with each display output, and generate the display switch event. OSPM can query these state
changes by calling the _DGS method.

1 – The system BIOS should automatically switch (toggle) the active display output, with no
interaction required on the OS part. The display switch event should not be generated in this
case.

2 – The _DGS values should be locked. It’s highly recommended that the system BIOS do nothing
when hotkey pressed. No switch, no notification.

3 – The system BIOS should not automatically switch (toggle) the active display output, but
instead generate the display switch event notify codes 0x82, 0x83, or 0x84. OSPM will
determine what display output state should be set, and change the display output state without
further involvement from the system BIOS.

Bit 2

0 – The system BIOS should automatically control the brightness
level of the LCD when the power changes from AC to DC.

1 – The system BIOS should not automatically control the brightness level of the LCD when the
power changes from AC to DC.

The _DOS method controls this automatic switching behavior. This method should do so by saving
the parameter passed to this method in a global variable somewhere in the BIOS data segment. The
system BIOS then checks the value of this variable when doing display switching. This method is
also used to control the generation of the display switching Notify(VGA, 0x80/0x81).

The system BIOS, when doing switching of the active display, must verify the state of the variable
set by the _DOS method. The default value of this variable must be 1.
880 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
B.3.2 _DOD (Enumerate All Devices Attached to the Display Adapter)
This method is used to enumerate devices attached to the display adapter. This method is required if
integrated controller supports output switching.

On many laptops today, a number of devices can be connected to the graphics adapter in the
machine. These devices are on the motherboard and generally are not directly enumerable by the
video driver; for this reason, all motherboard VGA attached devices are listed in the ACPI
namespace.

These devices fall into two categories:

• Video output devices. For example, a machine with a single display device on the motherboard
can have three possible output devices attached to it, such as a TV, a CRT, or a panel.

• Non-video output devices. For example, TV Tuner, DVD decoder, Video Capture. They just
attach to VGA and their power management closely relates to VGA.

Both ACPI and the video driver have the ability to program and configure output devices. This
means that both ACPI and the video driver must enumerate the devices using the same IDs. To solve
this problem, the _DOD method returns a list of devices attached to the graphics adapter, along with
device-specific configuration information. This information will allow the cooperation between
ACPI components and the video driver.

Every child device enumerated in the ACPI namespace under the graphics adapter must be specified
in this list of devices. Each display device must have its own ID, which is unique with respect to any
other attachable devices enumerated.

Arguments:

None

Return Value:

A Package containing a variable-length list of Integers, each of which contains the 32-bit device
attribute of a child device (See Table B-335)

Example:

Method (_DOD, 0) {
 Return (
 Package()
 {
 0x00000110, // Primary LCD panel, not detectable by BIOS
 0x80000100, // CRT type display, not detectable by BIOS
 0x80000220, // TV type display, not detectable by the BIOS
 0x80000411, // Secondary LCD panel, not detectable by BIOS
 }
)
}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 881

Table B-335 Video Output Device Attributes

As mentioned in the above table, a “Pipe” or “Head” refers to a unique display content stream e.g. at
a particular color-depth, resolution, and refresh-rate. The “Port” refers to the display output device
attachment and may include a DAC, encoder or other mechanism required to support a given display
end-point. The “Display Type” describes the generalized class of display output technology, and the
means of integration. The “Display Index” is then an index that assists in creating a unique identifier
display end-points in scenarios where other attributes are the same.

Bits Definition

15:0 Device ID. The device ID must match the ID’s specified by Video Chip Vendors. They must also be
unique under VGA namespace.

Bit 3:0 Display Index
A zero-based instance of the Display, when multiple displays of the same type are
attached, regardless of where it is associated. Starting from the first adapter and its
first display of the type on the first integrated internal device and then incrementing
per device-function according to its relative port number.

Bit 7:4 Display Port Attachment
This field differentiates displays of the same type attached at different points of one
adapter. The zero-based number scheme is specific to each Video Chip Vendors’
implementation.

Bit 11:8 Display Type
Describes the specific type of Display Technology in use.
0 – Other
1 – VGA* CRT or VESA* Compatible Analog Monitor
2 – TV/HDTV or other Analog-Video Monitor
3 – External Digital Monitor (See Note 1.)
4 – Internal/Integrated Digital Flat Panel (See Note 2.)
5~15 – Reserved for future use

Bit 15:12 Chipset Vendor Specific.

16 BIOS can detect the device.

17 Non-VGA output device whose power is related to the VGA device. This can be used when
specifying devices like TV Tuner, DVD decoder, Video Capture … etc.

20:18 For VGA multiple-head devices, this specifies head or pipe ID e.g. for Dual-Pipe*, Dual-Display*,
Duo-View*, TwinView*, Triple-View* … etc, beginning with 0 for head 0 or single-head device and
increasing for each additional head.

30:21 Reserved (must be 0)

31 Device ID Scheme
1 – Uses the bit-field definitions above (bits 15:0)
0 – Other scheme, contact the Video Chip Vendor
882 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Figure B-1 Example Display Architecture

Table B-336 Example Device Ids

Bits Definition

0x000xyyyy Bit 31 = 0. Other proprietary scheme - 0x110 Device ID is an exception. (See Note 3)

0x00000110 Integrated LCD Panel #1 using a common, backwards compatible ID

0x80000100 Integrated VGA CRT or VESA compatible Monitor #1 on Port0

0x80000240 Integrated TV #1 on Port4

0x80000410 Integrated Internal LCD Panel #1 on Port1

0x80000421 LVDS Panel #2 Dual-Link using Port2 & 3. (See Note 4)

0x80000131 VGA CRT or VESA compatible Monitor #2 on Port3

0x80000121 Dual-Link VGA CRT or VESA compatible Monitor #2 using Port2 & 3. (See Note 4.)

0x80000320 DVI Monitor #1 on Port2 (shares Port2 with a Dual-Function DVI/TV Encoder). (See Note 5)

0x80000331 DVI Monitor #2 on Port3

0x80000330 Dual-Link DVI Monitor #1 using Port2 & 3

0x80000231 TV #2 on Port2 (shares Port2 with a Dual-Function DVI/TV Encoder). (See Note 5)

 Pipe 0Primary Desktop

Secondary
Desktop

= 1

 = 4

 = 3

 = 2

= 1

Port 1

 Pipe 1

Port 0

Port 2

Port 3

Port 4

Dual-Port

Dual - Link

0 = 1st CRT

0 = 1st LCD

0 = 1st DVI

Pipe / Head Ports Display Types Display Index
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 883

Note: An “External Digital Monitor” is an external display device attachable via a user-accessible
connector standard (e.g. DFP* or DVI* Compatible Monitors).

Note: An “Internal Flat Panel” is a non-detachable fixed pixel display device, including a backlight, and is
internally associated, without user-accessible connectors, to the Video Chip (e.g. TFT LCD via
TMDS*, LVDS* interface).

Note: When Bit 31 is 0, no assumptions can be made on which ID will be used for any particular display
type. Contact the Video Chip vendor for details of the ID scheme employed.

Note: In certain cases multiple Displays Ports may be combined to increase bandwidth for a particular
Display in higher-resolution modes. In this situation, the Display Type and Port Number should
remain the same in order to retain a consistent ID for the same device, regardless of the selected
display mode.

Note: In certain cases, more than one type of display (and connector) may be supportable on a single
Port (e.g. DVI + TV + CRT on a single Display Encoder device), while only one display is
selectable at any time. In this case the Port Number field of the ID may be the same as other
Display ID’s however the other fields (e.g. Display Type) provide uniqueness.

B.3.3 _ROM (Get ROM Data)
This method is used to get a copy of the display devices’ ROM data. This method is required when
the ROM image is stored in a proprietary format such as stored in the system BIOS ROM. This
method is not necessary if the ROM image can be read through a standard PCI interface (using ROM
BAR). If _ROM is present, it is preferred over the image read through the standard PCI interface, in
order to allow system BIOS to provide re-configured ROM data via the method.

The video driver can use the data returned by this method to program the device. The format of the
data returned by this function is a large linear buffer limited to 4 KB. The content of the buffer is
defined by the graphics independent hardware vendor (IHV) that builds this device. The format of
this ROM data will traditionally be compatible with the ROM format of the normal PCI video card,
which will allow the video driver to program its device, independently of motherboard versus add-in
card issues.

The data returned by the _ROM method is implementation-specific data that the video driver needs
to program the device. This method is defined to provide this data as motherboard devices typically
don’t have a dedicated option ROM. This method will allow a video driver to get the key
implementation specific data it needs so that it can fully control and program the device without
BIOS support.

Arguments: (2)

Arg0 – An Integer containing the offset of the display device ROM data

Arg1 – An Integer containing the size of the buffer to fill in (up to 4K).

Return Value:

A Buffer containing the requested ROM data

B.3.4 _GPD (Get POST Device)
This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to query a CMOS value that determines which VGA
device will be posted at boot. A zero return value indicates the motherboard VGA will be posted on
884 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
the next boot, a 1 indicates a PCI VGA device will be posted, and a 2 indicates an AGP VGA device
will be posted.

Arguments:

None

Return Value:

An Integer containing encoded post information (32 bits valid)
Bits 1:0
00 – Post the motherboard VGA device
01 – Post an add-in PCI VGA device
10 – Post an add-in AGP VGA device
11 – Post an add-in PCI-Express VGA device

Bits 31:2 – Reserved (must be 0)

B.3.5 _SPD (Set POST Device)
This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to update a CMOS value that determines which
video device will be posted at boot. A zero argument will cause the “motherboard” to be posted on
the next boot, a 1 will cause an add-in PCI device to be posted, and a 2 will cause an add-in AGP
device to be posted.

Arguments: (1)

Arg0 – An Integer containing encode post information (32 bits valid)

Bits 1:0

00 – Post the motherboard VGA device

01 – Post an add-in PCI VGA device

10 – Post an add-in AGP VGA device

11 – Post an add-in PCI-Express VGA device

Bits 31:2 – Reserved (must be 0)

Return Value:

An Integer containing the status of the operation

0 – Operation was successful

Non-zero –Operation failed

Example

Method (_SPD, 1){ // Make the motherboard device the device to post }

B.3.6 _VPO (Video POST Options)
This method is required for systems with video devices built onto the motherboard and support
changing post-VGA device.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 885

This method is used as a mechanism for the OS to determine what options are implemented. This
method will be used in conjunction with _GPD and _SPD

Arguments:
None

Return Value:

An Integer containing the options that are implemented and available

Bit 0 – Posting the motherboard VGA device is an option. (Bit 0 should always be set)

Bit 1 – Posting a PCI VGA device is an option.

Bit 2 – Posting an AGP VGA device is an option.

Bit 3 – Posting a PCI-Express VGA device is an option.

Bits 31:4 – Reserved (must be zero)

B.4 Notifications for Display Devices
Display devices may need to know about external, asynchronous events. In order to accommodate
that, the following notifications are defined.

The event number is standardized because the event will be handled by the OS directly under certain
circumstances (see _DOS method in this specification).

These notifications are valid for Display Devices

Table B-337 Notifications for Display Devices.

B.5 Output Device-specific Methods
The methods in this section are methods associated with the display output device.

Value Description

0x80 Cycle Output Device. Used to notify OSPM whenever the state of one of the output devices
attached to the VGA controller has been switched or toggled. This event will, for example, be
generated when the user presses a hotkey to switch the active display output from the LCD panel to
the CRT.

0x81 Output Device Status Change. Used to notify OSPM whenever the state of any output devices
attached to the VGA controller has been changed. This event will, for example, be generated when
the user plugs-in or remove a CRT from the VGA port. In this case, OSPM will re-enumerate all
devices attached to VGA

0x82 Cycle Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed the
Cycle display hotkey.

0x83 Next Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed the
Next display hotkey.

0x84 Previous Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed
the Previous display hotkey.
886 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
B.5.1 _ADR (Return the Unique ID for this Device)
This method returns a unique ID representing the display output device. All output devices must
have a unique hardware ID. This method is required for all The IDs returned by this method will
appear in the list of hardware IDs returned by the _DOD method.

Arguments:

None

Return Value:

An Integer containing the device ID (32-bits)

Example:

 Method (_ADR, 0) {
 return(0x0100) // device ID for this CRT
 }

This method is required for all output display devices.

B.5.2 _BCL (Query List of Brightness Control Levels Supported)
This method allows the OS to query a list of brightness level supported by built-in display output
devices. (This method in not allowed for externally connected displays.) This method is required if
an integrated LCD is present and supports brightness levels.

Each brightness level is represented by a number between 0 and 100, and can be thought of as a
percentage. For example, 50 can be 50% power consumption or 50% brightness, as defined by the
OEM.

The OEM may define the number 0 as "Zero brightness" that can mean to turn off the lighting (e.g.
LCD panel backlight) in the device. This may be useful in the case of an output device that can still
be viewed using only ambient light, for example, a transflective LCD. If Notify(Output Device,
0x85) for “Zero brightness” is issued, OSPM may be able to turn off the lighting by calling
_BCM(0).

Arguments:

None

Return Value:

A variable-length Package containing a list of Integers representing the the supported brightness
levels. Each integer has 8 bits of significant data.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 887

Example:

 Method (_BCL, 0) {
 // List of supported brightness levels
 Return (Package(7){
 80, // level when machine has full power
 50, // level when machine is on batteries
 // other supported levels:
 20, 40, 60, 80, 100}
 }

The first number in the package is the level of the panel when full power is connected to the
machine. The second number in the package is the level of the panel when the machine is on
batteries. All other numbers are treated as a list of levels OSPM will cycle through when the user
toggles (via a keystroke) the brightness level of the display.

These levels will be set using the _BCM method described in the following section.

B.5.3 _BCM (Set the Brightness Level)
This method allows OSPM to set the brightness level of a built-in display output device.

The OS will only set levels that were reported via the _BCL method. This method is required if
_BCL is implemented.

Arguments: (1)

Arg0 – An Integer containing the new brightness level

Return Value:

None

Example:

 Method (_BCM, 1) { // Set the requested level }

The method will be called in response to a power source change or at the specific request of the end
user, for example, when the user presses a function key that represents brightness control.

B.5.4 _BQC (Brightness Query Current level)
This method returns the current brightness level of a built-in display output device.

Arguments:

None

Return Value:

An Integer containing the current brightness level (must be one of the values returned from the
_BCL method)
888 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
B.5.5 _DDC (Return the EDID for this Device)
This method returns an EDID (Extended Display Identification Data) structure that represents the
display output device. This method is required for integrated LCDs that do not have another standard
mechanism for returning EDID data.

Arguments:

Arg0 – An Integer containing a code for the return data length:

1 – Return 128 bytes of data

2 – Return 256 bytes of data

Return Value:

Either a Buffer containing the requested data (of the length specified in Arg0), or an Integer (value
0) if Arg0 was invalid

Example:

Method (_DDC, 2) {
 If (LEqual (Arg0, 1)) { Return (Buffer(128){ ,,,, }) }
 If (LEqual (Arg0, 2)) { Return (Buffer(256){ ,,,, }) }
 Return (0)
}

The buffer will later be interpreted as an EDID data block. The format of this data is defined by the
VESA EDID specification.

B.5.6 _DCS (Return the Status of Output Device)
This method is required if hotkey display switching is supported.

Arguments:

None

Return Value:

An Integer containing the device status (32 bits) (See Table B-338)

Table B-338 Device Status

Example:
• If the output signal is activated by _DSS, _DCS returns 0x1F or 0x0F.

Bits Definition

0 Output connector exists in the system now

1 Output is activated

2 Output is ready to switch

3 Output is not defective (it is functioning properly)

4 Device is attached (this is optional)

5-31 Reserved (must be zero)
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 889

• If the output signal is inactivated by _DSS, _DCS returns 0x1D or 0x0D.

• If the device is not attached or cannot be detected, _DCS returns 0x0xxxx and should return
0x1xxxx if it is attached.

• If the output signal cannot be activated, _ DCS returns 0x1B or 0x0B.

• If the output connector does not exist (when undocked), _DCS returns 0x00.

B.5.7 _DGS (Query Graphics State)
This method is used to query the state (active or inactive) of the output device. This method is
required if hotkey display switching is supported.

Arguments:

None

Return Value:

An Integer containing the device state (32 bits) (See Table B-339)

Table B-339 Device State for _DGS

The desired state represents what the user wants to activate or deactivate, based on the special
function keys the user pressed. OSPM will query the desired state when it receives the display toggle
event (described earlier).

B.5.8 _DSS (Device Set State)
OSPM will call this method when it determines the outputs can be activated or deactivated. OSPM
will manage this to avoid flickering as much as possible. This method is required if hotkey display
switching is supported.

Arguments: (1)

Arg0 – An Integer containing the new device state (32 bits) (See Table B-340)

Return Value:

None

Table B-340 Device State for _DSS

Bits Definition

0 0 – Next desired state is inactive
1 – Next desired state is active

1-31 Reserved (must be zero)

Bits Definition

0 0 – Set output device to inactive state
1 – Set output device to active state

30 0 – Do whatever Bit 31 requires
1 – Don’t do actual switching, but need to change _DGS to next state
890 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
Example Usage:
OS may call in such an order to turn off CRT, and turn on LCD

CRT._DSS(0);
LCD._DSS(80000001L);

or
LCD._DSS(1);
CRT._DSS(80000000L);

OS may call in such an order to force BIOS to make _DGS jump to next state without actual CRT,
LCD switching

CRT._DSS(40000000L);
LCD._DSS(C0000001L);

B.6 Notifications Specific to Output Devices
Output devices may need to know about external, asynchronous events. In order, each of these
events corresponds to accommodate that, pressing a key or button on the following machine. Using
these notifications is not appropriate if no physical device exists that is associated with them. OSPM
may ignore any of these notifications if, for example the current user does not have permission to
change the state of the output device.

These notifications are only valid for Output Devices.

Table B-341 Notification Values for Output Devices

31 0 – Don’t do actual switching, just cache the change
1 – If Bit 30 = 0, commit actual switching, including any _DSS with MSB=0 called before
 If Bit 30 = 1, don’t do actual switching, change _DGS to next state

1-29 Reserved (must be zero)

Value Description

0x85 Cycle Brightness. Used to notify OSPM that the output device brightness should be increased by
one level. Used to notify OSPM that the user pressed a button or key that is associated with cycling
brightness. A useful response by OSPM would be to increase output device brightness by one or
more levels. (Levels are defined in _BCL.) If the brightness level is currently at the maximum value,
it should be set to the minimum level.

0x86 Increase Brightness. Used to notify OSPM that the output device brightness should be increased
by one or more levels as defined by the _BCL object. Used to notify OSPM that the user pressed a
button or key that is associated with increasing brightness. If the brightness level is currently at the
maximum value, OSPM may should ignore the notification.

0x87 Decrease Brightness. Used to notify OSPM that the output device brightness should be
decreased by one or more levels as defined by the _BCL object. Used to notify OSPM that the user
pressed a button or key that is associated with decreasing device brightness. If the brightness level
is currently at the minimum value, OSPM may should ignore the notification.

Bits Definition
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 891

B.7 Notes on State Changes
It is possible to have any number of simultaneous active output devices. It is possible to have 0, 1, 2
... and so on active output devices. For example, it is possible for both the LCD device and the CRT
device to be active simultaneously. It is also possible for all display outputs devices to be inactive
(this could happen in a system where multiple graphics cards are present).

The state of the output device is separate from the power state of the device. The “active” state
represents whether the image being generated by the graphics adapter would be sent to this particular
output device. A device can be powered off or in a low-power mode but still be the active output
device. A device can also be in an off state but still be powered on.

Example of the display-switching mechanism:

The laptop has three output devices on the VGA adapter. At this moment in time, the panel and the
TV are both active, while the CRT is inactive. The automatic display-switching capability has been
disabled by OSPM by calling _DOS(0), represented by global variable display_switching = 0.

The system BIOS, in order to track the state of these devices, will have three global variable to track
the state of these devices. There are currently initialized to:

 crt_active – 0
 panel_active – 1
 tv_active – 1

The user now presses the display toggle switch, which would switch the TV output to the CRT.

The system BIOS first updates three temporary variables representing the desired state of output
devices:

 want_crt_active – 1
 want_panel_active – 1
 want_tv_active – 0

Then the system BIOS checks the display_switching variable. Because this variable is set to zero,
the system BIOS does not do any device reprogramming, but instead generates a Notify(VGA, 0x80/
0x81) event for the display. This event will be sent to OSPM.

OSPM will call the _DGS method for each enumerated output device to determine which devices
should now be active. OSPM will determine whether this is possible, and will reconfigure the

0x88 Zero Brightness. Used to notify OSPM that the output device brightness should be zeroed,
effectively turning off any lighting that is associated with the device. Used to notify OSPM that the
user pressed a button or key associated with zeroing device brightness. This is not to be confused
with putting the device in a D3 state. While the brightness may be decreased to zero, the device
may still be displaying, using only ambient light.

0x89 Display Device Off. Used to notify OSPM that the device should be put in an off state, one that is
not active or visible to the user, usually D3, but possibly D1 or D2. Used to notify OSPM that the
user pressed a low power button or key associated with putting the device in an off state. There is
no need for a corresponding “device on” notification, for two reasons. First, OSPM may choose to
toggle device state when this event is pressed multiple times. Second, OSPM may (and probably
will) choose to turn the monitor on whenever the user types on the keyboard, moves the mouse, or
otherwise indicates that he or she is attempting to interact with the machine.

Value Description
892 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Advanced Configuration and Power Interface Specification
internal data structure of the OS to represent this state change. The graphics modes will be
recomputed and reset.

Finally, OSPM will call the _DSS method for each output device it has reconfigured.

Note: OSPM may not have called the _DSS routines with the same values and the _DGS routines
returned, because the user may be overriding the default behavior of the hardware-switching
driver or operating system-provided UI. The data returned by the _DGS method (the want_XXX
values) are only a hint to the OS as to what should happen with the output devices.

If the display-switching variable is set to 1, then the BIOS would not send the event, but instead
would automatically reprogram the devices to switch outputs. Any legacy display notification
mechanism could also be performed at this time.
Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba 893

894 Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Symbols
_EJx 301
A
AC adapter

device ID 233
power source objects 510

AC status notification 492
access, device 579
AccessAs term 208, 591
acoustics See noise
ACPI

definition 17
device ID 232, 245
goals 1

ACPI Hardware See hardware
ACPI Machine Language See AML
ACPI mode

entering 625
exiting 629

ACPI Namespace
AML encoding 834
control method access 198
definition 17
display adapters 878
embedded controller device definition 580
generic hardware registers 93
Modifier Objects encoding, AML 821
naming conventions 189
Processor statements 393
root namespaces 191
SMBus host controller objects 587

ACPI Source Language See ASL
ACPI System Description tables See tables
ACPI-compatible hardware See hardware
Acquire (Acquire a Mutex) 724
Acquire terms 778
active cooling

_ACx object 521, 534
control methods 524
definition 520
engaging 524
preferences 51, 527
threshold values 527

active line printer (LPT) ports 42
Active List (_ALx) object 534
Add (Integer Add) 724
add-in display adapter, definition 878
Address (_ADR) object 254
address register (SMB_ADDR) 572
Address Space Descriptors

DWORD resource descriptor format 324
Extended 328
QWORD resource descriptor format 321,

788, 790, 791
resource specific flags 332
WORD resource descriptor format 327

Address Space Resource Descriptors
valid combinations 321

addresses
alarm fields 82
BARs (Base Address Registers) 199
blocking, BIOS 605
bus types 254, 258, 263, 295, 296
control methods 198
decoding 458
FACS 127
format 106
functional fixed hardware 58
Generic Address Structure (GAS) 106
generic hardware 58, 65
I/O (S)APIC 141, 350
map samples 610
mixed, preventing 141, 350
registers 71
reset register 91, 92
slave 491, 585
system description tables 102

Advanced Configuration and Power Interface
See ACPI
Advanced Programmable Interrupt Controller
See APIC
alarm address register (SMB_ALRM_ADDR)
573
alarm data register (SMB_ALRM_DATA) 573
alarm events 81
Alias (Declare Name Alias) 725
Version 5.0 December 6, 2011 895

Advanced Configuration and Power Interface Specification
allocation, device resources 297
Ambient Light Sensor devices 233
AML

Arg Objects encoding 828
battery events 497
byte values 829
code event handler 59
compiling 58
Control Method Battery 498
data buffers, SMBus 209, 592
Data Objects encoding 820
Debug Objects encoding 829
definition 17
grammar 818
Local Objects encoding 829
Name Objects encoding 818, 819
Named Objects encoding 821
Namespace encoding 834
Namespace Modifier Objects encoding 821
notation conventions 817
Package Length encoding 820
purpose of 58
sleep button code example 79
SMBus device access protocols 210, 593
Term Objects encoding 821
Type 1 Opcodes encoding 824
Type 2 Opcodes encoding 825

And (Integer Bitwise And) 725
angle brackets

AML 817
ASL notation 672

answering phones
modem example 40
waking computer 42

APIC
_MAT (Multiple APIC Table Entry) 281
definition 17
I/O 20, 138
local 21
multiple description table (MADT) 21
NMI 140
Processor Local 137, 158
structure types 136

support 138
APM BIOS 31
appliance PCs 125
ARB_DIS 89
architecture, system description tables 101
Arg Objects encoding, AML 828
arguments, control methods 196
Argx (Method Argument Data Objects) 725
arrow symbol

ASL notation 672
ASL

_FIX usage example 272
_HPP example 275
case sensitivity 699
CMOS protocols 198
converting to AML 58
data and constant terms 675
data types 703
definition 18
Definition Block terms 734
EC-SMB-HC device code 582
embedded controller device code 581
grammar 671
grammar notation 672
index with buffers example code 762
IPMI data buffer code 203
IPMI devices 201
lid status code example 98
macros 703
modifiers 699
multiple Smart Battery subsystem code 496
name and pathname terms 673
nested packages sample code 761
object names 699
objects, declaring 195
opcode terms 677
opcodes 677
operator reference 723
operator summary 715
operator summary by type 719
parameter keyword terms 689
parameters 706
Power Resource statements 357
896 December 6, 2011 Version 5.0

primary terms 678
reserved object names 699
resource template terms 691, 807
root and secondary terms 673
SMBBlock code 213, 216, 596
SMBBlockProcessCall code 215, 217, 598
SMBByte code 212, 595
SMBProcessCall code 214, 597
SMBQuick code 211, 594
SMBSendReceive code 211, 594
SMBus data buffer code 209, 592
SMBus devices 589
SMBWord code 212, 596
storing results 706
thermal zone examples 548
virtual register code 202, 205, 206, 592

AT interrupt model 149
ATA hard disks See storage devices
audible output See noise
audio devices, power management 853, 854
aware device drivers 223
B
Back From Sleep (_BFS) 373
BankField (Declare Bank/Data Field) 726
bar symbol

AML notation 818
ASL notation 672

BARs (Base Address Registers) 199
Base Bus Number (_BBN) object 353
batteries

Control Method Batteries 496
emergency shutdown 48
events 497
low-level warnings 47
management 45
multiple 45
power status information 38
remaining capacity 505
types supported 39

batteries See also Smart Batteries
Battery Charge Time (_BCT) object 507
Battery Information (_BIF) object 498
Battery Information Extended(_BIX) object

500
Battery Maintenance Control (_BMC) object
509
Battery Maintenance Data (_BMD) object 507
Battery Measurement Averaging Interval
(_BMA) object 503
Battery Measurement Sampling Time (_BMS)
object 504
Battery Status (_BST) object 504
Battery Time (_BTM) object 506
Battery Trip Point (_BTP) object 506
bay devices 522
BIOS

address range types 605
configuring boot devices 44
determining ACPI support 83
Device Objects 735
devices, switching 892
Dock Name (_BDN) 350
initialization 623
legacy functions 31
legacy specifications 15
memory initialization 625
relation to ACPI 5
resetting enable bits 95
S4 Sleeping state transition 620

bits
alarm 82
child 65, 93
child status 95
control 93
enable 69
general-purpose events 95
generic hardware registers 92
ignored 20, 66
interrupt status 65
lid status 98
parent 65, 93
PM timer 89
PM1 Control registers 88
PM1 Enable registers 87
PM1 Status registers 85
PM2 Control register 89
Version 5.0 December 6, 2011 897

Advanced Configuration and Power Interface Specification
processor control register 90
processor LVL2 90
processor LVL3 91
register notation 60
reserved 22, 66, 105
reset register 91, 92
SMBus protocol encoding 586
status 69, 93
system event signals 44
wake enabled 39
write-only 66

blanks 671
block count register (SMB_BCNT) 573
block devices, GPE 450
Block Write-Read Block Process Call (SMB-
BlockProcessCall) protocol 215, 598
blocking, control methods 196
blocks, register 70
BM_RLD 88
BM_STS 85
bold

AML notation 817
ASL notation 672

boot architecture flags, IA-PC 126
boot devices 44
boot resources, embedded controller 149
bootstrap ROM 626
boot-up 622
brackets, angle

AML notation 817
ASL notation 672

Break (Break from While) 727
BreakPoint (Execution Break Point) 727
bridges

Base Bus Number (_BBN) 353
DWORD 325
flags 334
ISA bus device 441, 735
power states 39
purpose 104
QWORD 323, 330
WORD 328

Brightness Control Levels Supported, Query

List of (_BCL) 887
brightness control, LCDs 877
Brightness Level, Set (_BCM) 888
Buffer (Declare Buffer Object) 727
Buffer field data type, ASL 703, 707
buffers, IPMI 202
buffers, SMBus 209, 592
built-in display adapter, definition 878
Burst Disable Embedded Controller (BD_EC)
566
Burst Enable Embedded Controller (BE_EC)
565
Burst flags 564
burst mode 565
Bus/Device packages 735
buses

power management standards 852
segment locations 353
setting power states 38

button control models 75
buttons See power button
byte values, AML 829
C
C0 processor power state

definition 28
implementation 387

C1 processor power state
definition 28
implementation 389

C2 processor power state
definition 28
implementation 389

C3 processor power state
definition 29
implementation 389

cache controller configuration 624
caches, flushing 391, 622
capacity, battery

calculating 45
low-level warnings 47
remaining 505
status information 39

CardBus mode 350
898 December 6, 2011 Version 5.0

Case (Conditional Execution) 728
case sensitivity, ASL 699
category names 6
Celsius scale 523
centenary value, RTC alarm 82
Central Processing Unit See CPU
CENTURY 82
channels, DMA 311, 315
chemistry independence 492
child bits 65, 93
child objects, ASL statements 671
child status bits 95
CityplaceEnterprise servers 125
CLK_VAL 90
clock logic 387
CMOS protocols 198
cold boots 91, 624
cold insertion and removal 298
COM port devices, power management 40,
853, 856
command protocols, SMBus 586
command register (SMB_CMD) 572
commands, embedded controller interface 564
comments, ASL 672
compatibility memory 626
compatibility, compiler 801
Compatible ID (_CID) object 255
compiling, ASL to AML 58, 801
composite battery 45
Concatenate (Concatenate Data) 728
ConcatenateResTemplate (Concatenate Re-
source Templates) 729
CondRefOf (Conditional Reference Of) 729
configuration objects, device 267
configuring

BIOS initialization 624
boot devices 44
modem example 44
Plug and Play devices 44

context, device 19
context, system

definition 23
during emergency shutdown 49

S4 sleeping state 619
sleep states lost in 28

contiguous RAM 626
Continue (Continue Innermost Enclosing
While) 730
control bits

functions 93
symbol 60

Control Method Battery 45
Control Method placeBattery 231, 232, 496
control methods

_ADR (Return the Unique ID for this De-
vice) 887

_BCL (Query List of Brightness Control
Levels Supported) 887

_BCM (Set the Brightness Level) 888
_BDN (BIOS Dock Name) 350
_BFS (Back From Sleep) 373
_DCK (Dock) 350
_DCS (Return the Status of Output Device)

889
_DDC (Return the EDID for this Device)

889
_DDS (PlaceNameDevice PlaceNameSet

PlaceTypeState)PlaceName 890
_DGS (PlaceNameQuery PlaceName-

Graphics PlaceTypeState)Place-
Name 890

_DOD (Enumerate All Devices Attached to
the Display Adapter) 881

_DOS (Enable/Disable Output Switching)
880

_GPD (Get POST Device) 884
_GTS (Going To Sleep) 374
_LID (lid device) 433, 434, 435, 440, 473,

481, 482, 483, 484
_MSG (Message) 431, 432
_OFF 358
_PS0 (PlaceNamePower PlaceTypeState 0)

362
_PS0 (Power State 0) 363
_PS1 (PlaceNamePower PlaceTypeState 1)

362
Version 5.0 December 6, 2011 899

Advanced Configuration and Power Interface Specification
_PS2 (PlaceNamePower PlaceTypeState 2)
362

_PS3 (PlaceNamePower PlaceTypeState 3)
362

_PSC (PlaceNamePower PlaceTypeState
Current) 363

_PSW 367
_PTS (Prepare To Sleep) 373
_REG (Region) 351
_ROM (Get Rom Data) 884
_SCP (Set Cooling Policy) 540
_SPD (Set POST Device) 885
_STM (Set Timing Mode) 446
_TMP (Temperature) 521, 544
_VPO (Video POST OPtions) 885
_WAK (System Wake) 381
ASL, writing 671
battery 498
device identification 253
device removal 298
initialization (_INI) 349
lid device 427, 432, 440, 472
OEM-supplied 372
overview 196
power button 76, 441
Power Resource objects 358
power source 510, 512
reserved names 234
resources 267
sleep button 78, 441
system indicators 431
thermal management 533
video extensions 877

control methods See also objects
control registers 69
controllers, embedded

definition 19
interface 19

conversion, data types 703
cooling modes 50, 520
cooling preferences 51, 527
CopyObject (Copy an Object) 730
core logic, system events 44

CPU
boot configuration 624
boot-up 622
cache flushing 391
clock logic 387
definition 18
fixed hardware control 57
multiple performance state control 407
non-symmetric power state support 387
passive cooling 525
performance states 29
processor power states 385
thermal management 49
throttling 387, 400
waking operations 39

crashed systems 75, 76
CreateBitField (Create 1-Bit Buffer Field) 731
CreateByteField (Create 8-Bit Buffer Field)
731
CreateDWordField (Create 32-Bit Buffer
Field) 731
CreateField (Create Arbitrary Length Buffer
Field) 732
CreateQWordField (Create 64-Bit Buffer
Field) 732
CreateWordField (Create 16-Bit Buffer Field)
732
Critical battery state 48
Critical Temperature (_CRT) object 526, 538
critical temperature shutdowns 520, 526
Cross Device Dependency 66
CRT monitors, power management 857
C-States (processor power) 390, 395
CT phones See modems
Current Resource Settings (_CRS) objects 268,
467
D
D0-Fully On

control method 362, 363
definition 27
In Rush Current (_IRC) object 368
power resource object 363
transitioning to 364
900 December 6, 2011 Version 5.0

D1 Device State
definition 27
transitioning to 364

D1 PlaceNameDevice PlaceTypeState
control methods 362

D1 PlaceNameplaceDevice PlaceTypeState
power resource objects 364

D2 Device State
definition 27
transitioning to 365

D2 PlaceNameDevice PlaceTypeState
control methods 362

D2 PlaceNameplaceDevice PlaceTypeState
power resource objects 364, 365

D3-Off
control methods 362
definition 26
transitioning to 359

dash character
AML notation 818
ASL notation 673

data buffers, IPMI 202
data buffers, SMBus 209, 592
Data Objects encoding, AML 820
data objects, ASL

Buffer 727
Package 784

data register array (SMB_DATA) 573
data types

ASL 703
concatenate 712, 713, 714, 728

data types, resource See resource data types
DataTableRegion (Create Data Table Opera-
tion Region) 732
day alarm 81
day mode 35
DAY_ALRM 82
DDB Handle data type, ASL 703, 707
DDT, Plug and Play devices 43
Debug (Debugger Output) 733
Debug Object data type, ASL 703, 708
Debug Objects encoding, AML 829
debugging

requirements for 671
decimals, notation 672
Decrement (Integer Decrement) 733
Default (Default Execution Path in Switch) 734
Definition Blocks

ASL code 699
encoding 192
loading 103, 132, 770
loading from XSDT 770
unloading 809

DefinitionBlock (Declare Definition Block)
734
definitions See terminology
degrees, Kelvin 523
dependencies, device 66, 312
DerefOf (Dereference an Object Reference)
735
description tables See tables
design guides 6, 8
desktop PCs

profile system type 124
Device (Declare Bus/Device Package) 735
device and processor performance states 29, 43
Device Class Power Management specifica-
tions 37
Device data type, ASL 703, 707, 708
device drivers, ACPI-Aware 223
Device Name (_DDN) object 256
device power

management 36
modem example 39
objects 359
requirements 854
standards 36, 37
states 26
status 38

devices
audio, power management 854
class-specific objects 231
COM port, power management 856
context, definition 19
definition 18
graphics 877
Version 5.0 December 6, 2011 901

Advanced Configuration and Power Interface Specification
identification objects 253
input, power management 864
insertion and removal objects 297
interference 66
modems, power management 866
network, power management 868
object notification 227
PC Card controllers, power management

870
Plug and Play IDs 231
power states 26
resource allocation 297
resource control method 267
SMBus, declaring 588
storage, power management 872
waking system 366

Devices Attached to the Display Adapter
(_DOD) 881
Differentiated Definition Block

Bus/Device packages 735
determining device power capabilities 37
modem example 41

Differentiated Description Block
isolation logic 41

Differentiated System Description Table See
DSDT
digital modems See modems
Direct Memory Access (_DMA) object 269
Disable (_DIS) object 269
Disable Output Switching (_DOS) 880
display adapters

ACPI Namespace 878
control methods 877
definitions 878
switching devices 892

display devices, power management 853, 857
Display Power Management Signaling Specifi-
cation (DPMS) 852
Divide (Integer Divide) 736
DMA resource descriptor format 311, 315
DMA Resource Descriptor Macro 737, 754
Dock (_DCK) control method 350
docking

control methods 297, 350
event signals 45
objects 299
query events 94

documentation
organization 12
supplemental 15

drain rates, battery 47
drivers

interference 66
restoration 27

DSDT
definition 19, 133
purpose 103

dual 8259 138
dual-button model 75
duty cycle 387
DVD decoders 881
DWORD 90
DWORD resource descriptor format 324
DWordIO (DWord IO Resource Descriptor
Macro) 737
DWordMemory (DWord Memory Resource
Descriptor Macro) 739
DWordSpace (DWord Space Resource De-
scriptor Macro) 741
dynamic insertion and removal 297
dynamic objects 197
dynamic Operation Regions 783
dynamic transitioning 62
E
E_TMR_VAL 89
E820 mapping 606
EC_DATA (embedded controller data register)
564
EC_SC (R) (embedded controller status regis-
ter) 563
EC_SC (W) (embedded controller command
register) 564
ECDT 149
ECI See embedded controller interface
EC-SMB-HC 569, 582
EDID control methods (_DDC) 889
902 December 6, 2011 Version 5.0

EFI
definition 19
GetMemoryMap interface 608
RSDP location 108

EISA ID 256
EISAID (EISA ID String To Integer Conver-
sion Macro) 742
Eject (_EJx) object 301
Eject Device List (_EDL) object 299
Ejection Dependent Device (_EJD) object 300
ejection mechanisms 297
Else (Alternate Execution) 743
ElseIf (Alternate/Conditional Execution) 743
embedded controller

boot resources table 149
burst mode 565
device ID 232
device object 441
event control example 93
multiple 559
operations 98
queuing events 222
region control method 352

embedded controller interface
ACPI Namespace objects 580
algorithms 568
ASL code, device 581
bi-directional communications 560
Burst flag 564
command interrupt model 568
command register (EC_SC (W)) 564
command set 564
commands, restricted 580
configurations, additional 562
data register (EC_DATA) 564
definition 19
firmware requirements 566
Input Buffer Full (IBF) flag 564, 569
objects 580
OEM-definable values 569
Output Buffer Full (OBF) flag 563, 569
registers 563
shared 560, 562

SMBus host controller 569
SMBus notification header

(OS_SMB_EVT) 566
SMBus protocol descriptions 574
SMBus registers 570
specifications 559

emergency shutdown 48
enable bits

corresponding status bits 95
resetting 95
symbol 60

enable register 44
Enable/Disable Output Switch (_DOS) 880
encoding

AML 818
Definition Blocks 192
object names, ASL 699
tables 105

End Dependent Functions resource descriptor
format 313
end tag resource descriptor format 316
EndDependentFn End Dependent Functions
Descriptor Macro) 744
energy conservation See power management
Enumerate All Devices Attached to the Display
Adapter (_DOD) 881
enumeration, enabling 588
errors, fatal 751
Ethernet adapters See network devices
Event (Declare Event Synchronization Object)
745
Event data type, ASL 703, 708
events

alarm 81
AML code handler 59
battery 497
button 75
enable register 44
fixed feature 20
fixed handling 220
general model 44
general-purpose registers 20, 93
hardware 63
Version 5.0 December 6, 2011 903

Advanced Configuration and Power Interface Specification
interrupt 63, 83
link status 869
OS-transparent 64
power button 76
power button override 77
programming model 218
query 94
shared 65
status register 44
synchronization objects 797
synchronization, waiting for 810
user-initiated 75
wake frame 870

exiting ACPI mode 629
extended I/O bus 232
Extended Interrupt resource descriptor format
334
Extended IO Resource Descriptor Macro 745
Extended Memory Resource Descriptor Macro
747
Extended resource descriptor format 328
Extended Root Systems Description Table See
XSDT
Extended Space Resource Descriptor Macro
748
Extensible Firmware Interface See EFI
External (Declare External Objects) 750
F
FACS

definition 19
flags 130
Global Lock 130
table fields 127

FADT
alarm bits 81
cache flushing 391, 622
definition 19
flags 92
optional feature bits 84
Plug and Play IDs 272
processor power states 386
reset register location 91, 92
SCI interrupt mapping 83

fans
active cooling 50
device operations 529
noise preferences 51
Plug and Play ID 99
thermal zone example 550

Fatal (Fatal Error Check) 751
fatal errors 751
features

fixed 20
generic 20
generic hardware 95

Field (Declare Field Objects) 751
fields

alarm 82
cache flushing 622
declaring objects 751
embedded controller boot resources 149
FACS 127
FADT 114, 272
I/O APIC 138
IPMI 201
MADT 135, 157, 182
NMI 140
Processor Local APIC 137, 144, 183, 184,

185, 186, 187
reserved 105
RSDT 113
SBST 149
SMBus 204, 207, 590
Start Dependent Functions 312

FindSetLeftBit (Find First Set Left Bit) 754
FindSetRightBit (Find First Set Right Bit) 754
firmware

ACPI System 6
embedded controller requirements 566
OSPM controls 33
SMM functional fixed hardware implemen-

tation 57
Firmware ACPI Control Structure See FACS
Fixed ACPI Description Table See FADT
fixed event handling 220
fixed features
904 December 6, 2011 Version 5.0

definition 20
events 20
registers 20

fixed hardware
definition 55
feature control bits 88
feature enable bits 86
feature status bits 84
features 67
functional implementation 57
interfaces 57
power button 76
programming model 56
register blocks 70
registers 69, 84
sleep button 78

fixed location I/O port descriptor resource de-
scriptor format 314
Fixed Register Resource Provider (_FIX) 272
fixed width registers 336
FixedIO (Fixed IO Resource Descriptor) 755
FixedList 671
flags

Burst 564
DWORD 325
FACS 130
FADT 92
I/O resource 333
IA-PC boot architecture 126
Input Buffer Full (IBF) 564, 569
interrupt vector 335
local APIC 137
MADT 136
memory resource 332
MPS INTI 139
Output Buffer Full (OBF) 563, 569
QWORD 322, 329
SMI event (SMI_EVT) 564
system type 125
WORD 327

floppy controller device objects 448
Floppy Disk Drive Mode (_FDM) control
method 450

Floppy Disk Enumerate (_FDE) object 448
Floppy Disk Information (_FDI) object 449
floppy disks See storage devices
flushing caches 391, 622
frequency mismatch 228
FromBCD (Convert BCD To Integer) 755
Function (Declare Control Method) 755
functional device configuration 624
functions

End Dependent 313
Start Dependent 312

G
G0 Working state

behavior during 615
definition 25
properties 25
transitioning to 61
transitioning to Sleeping state 621
transitioning to Soft-Off 622

G1 Sleeping state
definition 24
properties 25
transitioning to 615

G2 Soft Off
definition 24
properties 26
transitioning to 62

G3 Mechanical Off
definition 24
properties 26
transitioning from 61
transitioning to 34

game pads See input devices
GAS See Generic Address Structure
GBL_EN 87
GBL_RLS 88
GBL_STS 85
general event model 44
general-purpose event registers

addresses 72, 93
blocks 73, 95
definition 20
event 0 95
Version 5.0 December 6, 2011 905

Advanced Configuration and Power Interface Specification
event 0 enable 96
event 0 status 96
event 1 96
event 1 enable 97
event 1 status 97
grouping 71

general-purpose events
_Exx, _Lxx, and _Qxx methods 221
handling 220, 225
wake 223

generic address space, SMBus 585
Generic Address Structure (GAS) 106
generic events

example 94, 383
top-level 94

generic feature, definition 20
generic hardware

definition 55
features 67, 95
power button control 76
registers 58, 69, 92
sleep button control 78

generic ISA bus device 441
generic register resource descriptor format 336
Get POST Device (_GPD) 884
Get Power Status 38
Get ROM Data (_ROM) 884
Get Task File (_GTF) control method 442
Get Timing Mode (_GTM) control method 445
GetMemoryMap 608
Global Lock 130
Global Lock (_GLK) object 355
Global Lock Mutex 244
Global Lock Structure 131
global standby timer 65
global system interrupts 138, 148
global system states

transitioning 33, 63, 259, 261, 883
goals

ACPI 1
OSPM 1
power management 2

Going To Sleep (_GTS) control method 374

GPE
block devices 233, 450
control method 223

grammar
AML 818
ASL 671

grammar notation
AML 817
ASL 672

graphics devices, requirements for 877
Green PCs, power management for 35
groupings, register See register groupings
guides, design 6, 8
H
hardware

ACPI interfaces 4
definition 17
events 63
features 67
fixed 56
ignored bits 66
interfaces 6
legacy 65
legacy vs. ACPI 3
OEM implementation 3
OS-independent 57, 58
OSPM model 61
register definitions 58
registers 68
reserved bits 66
value-added 58

hardware ID (_HID) object 256, 257, 493
headers, long 113
headers, table 102
heat management See thermal management
hexadecimals, notation 672
holes, compatibility 626
home PCs, power management for 35
host controller objects, SMBus 587
hot insertion and removal 301
Hot Plug Parameters (_HPP) object 274, 278,
279
Hot Temperature (_HOT) object 538
906 December 6, 2011 Version 5.0

hung systems 75, 76
hysteresis 522
I
I/O APIC

_MAT (Multiple APIC Table Entry 281
definition 20
Global System Interrupts 148
mixed addresses, preventing 141, 350
structure 138

I/O port resource descriptor format 313
I/O resource flag 333
I/O SAPIC

definition 21
mixed addresses, preventing 141, 350
Platform Interrupt Source structure 142,

144
structure 141

I/O space 104
IA (Intel Architecture) specifications 15
IA-32 systems 57
IA-PC

boot architecture flags 126
definition 20
interrupt models 138
memory map system 606
RSDP location 108

ID, Compatible (_CID object) 255
IDE

controller device 443
drives 59

IDE devices See storage devices
identification objects, device 253
idle loops, CPU 43
idle timers, legacy 65
IDs, Plug and Play 231, 253
If (Conditional Execution) 760
ignored bits

definition 20, 66
PM1 Status register 86

implementation requirements
OEM 3
OS 11
OSPM 10

In Rush Current (_IRC) object 368
Include (Include Additional ASL File) 760
Increment (Integer Increment) 760
independence, OS

functional fixed hardware 57
generic hardware 58

Index (Indexed Reference To Member Object)
761
Index with Buffers 762
Index with Packages 761
Index with Strings 763
IndexField (Declare Index/Data Fields) 763
indicators, system 431
initialization

BIOS 623
boot-up 622
OS 628

initialization object (_INI) 349
Input Buffer Full (IBF) flag 564, 569
input devices, power management 853, 864
Input/Output See I/O
insertion and removal objects 297
insertion and removal, batteries 497
INT 15 mapping 606
Integer data type, ASL 703, 708
Integers 700
Intel Architecture specifications 15
Intel Architecture-Personal Computer See IA-
PC
interdependent resources 312
interfaces

ACPI 4
battery 45
BIOS, legacy 31
Control Method Battery 498
design guides 6
EC-SMB-HC 569
embedded controller 19
extensible firmware (EFI) 19
fixed hardware 57
hardware 6
sharing protocols 562
SMBus 23, 585
Version 5.0 December 6, 2011 907

Advanced Configuration and Power Interface Specification
interference, device 66
Interrupt (Extended Interrupt Descriptor Mac-
ro) 764
interrupt events

logic 63
SCI 83
shareable 83
SMI 83

Interrupt Source Overrides 138
interrupt sources, non-maskable (NMIs) 140
interrupt status bits 65
interrupts

Extended Interrupt resource descriptor for-
mat 334

models 135, 138, 148, 157, 187
Platform Interrupt Source structure 142
PMIs 142

invocation, control methods 198
IO (I/O Port Resource Descriptor Macro) 765
IPMI

data buffers 202
fields, declaring 201
operation regions 200

IRQ (Interrupt Resource Descriptor Macro 766
IRQNoFlags (Interrupt Resource Descriptor
Macro) 767
IRQs

mapping 138, 140
PCI routing 292
resource descriptor format 310

ISA
bus device 232, 245, 441
Device Objects code 735
interrupt sources 139
old cards 313

ISDN Terminal Adapters See modems
isolation logic 41
italics, ASL notation 672
J
joysticks See input devices
K
Kelvin scale 523
kernel 5

key, logic diagrams 60
keyboard controllers 559
keyboards See input devices
L
LAnd (Logical And) 767
large resource resource descriptor format 215,
218, 316
latency

acceptable 33, 259, 261, 883
global power states 25
processor power states 385

LCD panels
brightness control 877
power management 857

legacy BIOS interfaces 31
legacy hardware

BIOS specification 15
boot flags 126
converting to fixed 56
definition 21
interrupt handlers 83
support 3

legacy OS, definition 21
legacy systems

definition 21
power button functions 34
power management 65
power state transitions 61
switching devices out of 350
transitioning to ACPI 83

LEqual (Logical Equal) 767
LGreater (Logical Greater) 768
LGreaterEqual (Logical Greater Than Or
Equal) 768
lid device 232
lid status notification values 230, 231
lid switch 97
life, battery 46
link status events 869
LINT 140
LLess (Logical Less) 768
LLessEqual (Logical Less Than Or Equal) 769
LNot (Logical Not) 769
908 December 6, 2011 Version 5.0

LNotEqual (Logical Not Equal) 769
Load (Load Definition Block) 770
loading Definition Blocks 103, 132, 770
LoadTable (Load Definition Block From XS-
DT) 770
local APIC, definition 21
Local Objects encoding, AML 829
Localx (Method Local Data Objects) 771
Lock (_LCK) object 302
Lock, Global 130
logic

fixed power button 76
lid switch 98
sleep button 78
sleeping/wake control 80

LOr (Logical Or) 772
low-level warnings, battery 47
LPT ports 42
M
macros, ASL

24-bit Memory Resource Descriptor 773
32-bit Fixed Memory Resource Descriptor

775
32-bit Memory Resource Descriptor 774
coding 703
DMA Resource Descriptor 737, 754
DWordIO Resource Descriptor 737
DWordMemory Resource Descriptor 739
DWordSpace Resource Descriptor 741
EISAID Conversion 742
End Dependent Functions Resource De-

scriptor 744
Extended Interrupt Resource Descriptor

764
ExtendedIO Resource Descriptor 745
ExtendedMemory Resource Descriptor 747
ExtendedSpace Resource Descriptor 748
FixedIO Resource Descriptor 755
I/O Port Resource Descriptor 765
IRQ Interrupt Resource Descriptor 766
IRQNoFlags Interrupt Resource Descriptor

767
QWordIO Resource Descriptor 786

QWordMemory Resource Descriptor 788
QWordSpace Resource Descriptor 790
Register Resource Descriptor 792
ResourceTemplate 794
Start Dependent Function NoPri Resource

Descriptor 800
Start Dependent Function Resource De-

scriptor 799
Unicode Conversion 808
UUID Conversion 806
VendorLong Resource Descriptor 809
VendorShort Resource Descriptor 809
WordBusNumber Resource Descriptor 811
WordIO Resource Descripto 812
WordSpace Resource Descriptor 814

MADT
_MAT object 281
definition 21
flags 136
interrupt models 135, 157, 187
table fields 135, 157, 182

Magic Packet wake 869
management See power management
mapping

E820 606
EFI GetMemoryMap 608
INT 15 606
IRQs 138, 140
Query System Address Map function 611
samples 610

Match (Find Object Match) 772
Mechanical Off

definition 24
properties 26
transitioning from 61
transitioning to 34

memory
BIOS initialization 625
controller configuration 624
descriptor macros 775
devices 457
map sample 610
NVS 626
Version 5.0 December 6, 2011 909

Advanced Configuration and Power Interface Specification
resource flag 333
memory device 232
memory range descriptors

24-Bit 317
32-Bit 318
32-Bit Fixed Location 320
purpose 318

Memory24 (Memory Resource Descriptor
Macro) 773
Memory32 (Memory Resource Descriptor
Macro) 774
Memory32Fixed (Memory Resource Descrip-
tor Macro) 775
Message (_MSG) control method 431, 432
Method (Declare Control Method) 775
Method data type, ASL 704, 708
methods, control See control methods
mice See input devices
Microsoft Device Class Power Management
specifications 37
Mid (Extract Portion of Buffer or String) 777
mobile PCs

lid switch 97
power management 34
profile system type 124

Mod (Integer Modulo) 777
modems

configuration example 44
power management 853, 866
power management example 39

modifiers
ASL names 699

Module Device 233, 452
MON-ALRM 82
monitors See display devices
month alarm 82
motherboard device configurations

ACPI goals 1
controlled by OSPM 31
modems 867

MPS INTI flags 139
Multiple APIC Description Table See MADT
Multiple APIC Table Entry (_MAT) object 281

multiple Smart Battery Subsystem 495
Multiply (Integer Multiply) 778
multiprocessor PCs

performance control 407
power management for 35

mutex
acquiring 724
Global Lock 244
release synchronization objects 794

Mutex (Declare Synchronization/Mutex Ob-
ject) 778
Mutex data type, ASL 704, 708
N
Name (Declare Named Object) 779
Name Objects encoding, AML 818, 819
name terms, ASL 673
Named Objects encoding, AML 821
names, object 21
Namespace See ACPI Namespace
naming conventions 189
NAnd (Integer Bitwise Nand) 779
nested packages 761
network devices, power management 853, 868
NMIs 140
noise, active cooling 50
non-linear address spaces 200, 585
Non-Maskable Interrupt Sources (NMIs) 140
non-visible states, device power 26
Non-Volatile Sleeping memory (NVS) 626
NoOp Code (No Operation) 779
NOr (Integer Bitwise Nor) 780
Not (Integer Bitwise Not) 780
notation

AML 817
ASL 672
numeric constants 672
register bits 60

Nothing 672
notification

battery removal 497
power button control 76
Smart Battery status 492
temperature changes 523
910 December 6, 2011 Version 5.0

Notification Temperature Threshold (_NTT)
object 539
Notify (Notify Object of Event) 780
numeric constants, notation 672
NVS files

checking validity 628
NVS memory 626
O
object name, definition 21
Object Reference data type, ASL 704, 708
objects

_ BMC (Battery Maintenance Control) 509
_ACx (Active Cooling) 521, 534
_ADR (Address) 254
_BBN (Base Bus Number) 353
_BCT (Battery Charge Time) 507
_BIF (Battery Information) 498
_BIX (Battery Information Extended) 500
_BMA (Battery Measurement Averaging

Interval) 503
_BMD (Battery Maintenance Data) 507
_BMS (Battery Measurement Sampling

Time) 504
_BST (Battery Status) 504
_BTM (Battery Time) 506
_BTP (Battery Trip Point) 506
_CID (Compatible ID) 255
_CRS (Current Resource Settings) 268, 467
_CRT (Critical Temperature) 526, 538
_CST (C States) 395
_DDN (Device Name 256
_DIS (Disable) 269
_DMA (Direct Memory Access) 269
_EDL (Eject Device List) 299
_EJD (Ejection Dependent Device) 300
_EJx (Eject) 301
_FDE (Floppy Disk Enumerate) 448
_FIX (Fixed Register Resource Provider)

272
_GLK (Global Lock) 355
_HID (hardware ID) 256, 257, 493
_HOT (Hot Temperature) 538
_HPP (Hot Plug Parameters) 274, 278, 279

_INI (Init) 349
_IRC (In Rush Current) 368
_LCK (Lock) 302
_MAT (Multiple APIC Table Entry) 281
_NTT (Notification Temperature Thresh-

old) 539
_PCL (Power Consumer List) 511
_PCT (Performance Control) 408
_PPC (Performance Present Capabilities)

410
_PR0 (Power Resources for D0) 363
_PR1 (Power Resources for D1) 364
_PR2 (Power Resources for D2) 364, 365
_PRS (Possible Resource Settings) 291
_PRW (Power Resources for Wake) 224,

366
_PSL (Passive List) 539
_PSR (Power Source) 510
_PSS (Performance Supported States) 397,

403, 408, 412
_PSV (Passive) 521, 539
_PTC (Processor Throttling Control) 400
_RMV (Remove) 308
_S1D 368
_S2D 369
_S3D 369
_S4D 370
_SBS (Smart Battery Subsystem) 493, 494
_SEG (Segment) 353
_SRS (Set Resource Settings) 297
_STA (Status) 359
_STR (String) 266
_SUN (Slot User Number) 266
_TC1 (Thermal Constant 1) 543
_TC2 (Thermal Constant 2) 543
_TSP (Thermal Sampling Period) 545
_TZD (Thermal Zone Devices) 546
_TZP (Thermal Zone Polling) 439, 473,

482, 546
_UID (Unique ID) 266
ASL encoding 699
ASL statements 671
ASL, declaring 195
Version 5.0 December 6, 2011 911

Advanced Configuration and Power Interface Specification
control methods 196
definition 21
device identification 253
device insertion and removal 297
device power resource 363
dynamic 197
EC-SMB-HC 582
embedded controller interface 580
floppy controller 448
global scope 192
initialization 349
Module Device 452
names, reserved 699
Notify operator 227
OS-defined 244
Power Resource 357
processor 393
reserved and predefined 234
revision data 248
Smart Battery 493
SMBus host controller 587
static 197
thermal management 533
unnamed 193

objects See also control methods
ObjectType 671
ObjectType (Get Object Type) 781
OEM implementation 3
OEM-supplied control methods 372
OFF 358
off See Mechanical Off
ON 359
One (Constant One Object) 782
Ones (Constant Ones Object) 782
opcodes

Type 1, AML 824
Type 2, AML 825

Operating System See OS
Operation Region data type, ASL 704, 708
Operation Region Field Unit data type, ASL
703
operation regions

IPMI 200

SMBus 585
OperationRegion (Declare Operation Region)
198, 782
operator reference, ASL 723
operator summary by type, ASL 719
operator summary, ASL 715
operators, ASL 703
Or (Integer Bitwise Or) 784
organization, document 12
original equipment manufacturer See OEM
OS

AML support, required 671
boot flags 126
compatibility requirements 11
defined object names 244
device power management 37
drivers, embedded controller interface 559
functional fixed hardware implementation

57
independent generic hardware 58
legacy hardware interaction 3
loading 627
name object 248
policy owner, device power management

851
power management 2
S4 Sleeping state transition 620
transparent events 64

OSPM
caches, flushing 622
cooling policy changes 521
cooling preferences 51
device insertion and removal 298
event handlers 65
exclusive controls 33
fixed hardware access 57
fixed hardware registers 84
functions 31
general-event register access 96
generic hardware model 59
Get Power Status 38
goals 1
hardware model 61
912 December 6, 2011 Version 5.0

implementation requirements 10
passive cooling 525
performance states 43
PlaceNameplaceSet PlaceNamePower Pla-

ceTypeState operation 38
power management vs. performance 357
power state control 33
Real Time Clock Alarm (RTC) 81
resetting system 91, 92
SMBus registration 588
thermal management 519
transitioning to sleeping states 616
transitioning working to sleeping states 621
transitioning working to soft-off state 622

Output Buffer Full (OBF) flag 563, 569
output devices

control methods 889
definition 878
switching 892
types of 881

override, power button 77
P
P_BLK 90
P_LVL2 90
P_LVL3 91
P0 performance state, definition 29
P1 performance state, definition 29
Package (Declare Package Object) 784
Package data type, ASL 704, 708
packages

definition 21
length 192
length encoding, AML 820
nested 761

packet error checking (PEC) 586
parameters, ASL 706
parent bits 65, 93
parent objects, ASL statements 671
parentheses, AML notation 818
Passive (_PSV) object 521, 539
passive cooling

definition 50, 520
preferences 51, 527

processor clock throttling 525
threshold values 527

Passive List (_PSL) object 539
PC Card controllers, power management 853,
870
PC keyboard controllers 559
PCCARD 852
PCI

BAR target operations 199
bus number 353
buses, address space translation 104
Device Objects code 735
device power management 852
interrupt pins 291
IRQ routing 292
power management 852

PCI configuration space 57
PCI Interrupt Link device 232
PCISIG 852
PCMCIA 852
PEC (packet error checking) 571, 586
Performance Control (_PCT) object 408
Performance Present Capabilities (_PPC) ob-
ject 410
performance states

definitions 29
device 43

Performance Supported States (_PSS) object
397, 403, 408, 412
performance, energy conservation vs. 51, 357
Persistent System Description Table (PSDT)
134
phones, answering

modem example 40
waking computer 42

PIC method 250
pins

general event model 45
GPE 96

PlaceNameAddress PlaceTypeRange types
605
PlaceNameDevice PlaceNameSet PlaceTypeS-
tate (_DSS) 890
Version 5.0 December 6, 2011 913

Advanced Configuration and Power Interface Specification
PlaceNameGraphics PlaceTypeState, Query
(_DGS) 890
PlaceNameSet PlaceNamePower PlaceTypeS-
tate 38
placeSOHO servers 125
platform

implementation 6
Platform Interrupt Source structure 142, 144
Platform Management Interrupts (PMIs) 142
Plug and Play devices

ACPI control 43
IDs 231, 253
large resource items 316
resource control method 267
small resource items 310
specifications 15

PM timer
bits 89
function 65
idle time, determining 43
operations 74
register address 72
register blocks 73

PM1 Control registers
addresses 71
bits 88
blocks 73
grouping 71, 87

PM1 Enable registers 85
PM1 Event registers

addresses 71
blocks 72
grouping 71, 84

PM1 Status registers 84
PM2 Control registers

addresses 72
bits 89
blocks 73

PM2 Controller register grouping 71
PMIs 142
Pn performance state, definition 29
PNPBIOS 31
Polarity flags 139

policy owner 851
port descriptors, I/O 313
Possible Resource Settings (_PRS) object 291
POST Device control methods 884, 885
power button

ASL code example 76
control methods 76, 441
definition 22
device ID 232
dual-button model 75
fixed hardware 76
functions 34
object notification values 229
override 77, 80
single-button model 75

Power Consumer List (_PCL) object 511
power consumption

device and processor performance states 29
global power states 25

power loss
Mechanical Off 61

power management
audio devices 854
buses 852
COM port devices 856
cooling, relationship to 51
definition 22
desktop PCs 35
device 36, 854
device objects 359
display devices 857
display standards 852
goals 2
input devices 864
legacy 65
mobile PCs 34
modem devices 866
modem example 39
multiprocessor PCs 35
network devices 868
PC Card controllers 870
PCI 852
PCMCIA 852
914 December 6, 2011 Version 5.0

performance states 43
performance vs. energy conservation 51,

357
preferred system types 124
servers 35
setting device power states 38
storage devices 872

power management (PM) timer
function 65
idle time, determining 43
operations 74
register address 72
register blocks 73

Power Resource data type, ASL 704, 708
power resources

battery management 489
child objects 358
definition 22
device objects 363
devices, turning off 38
isolation logic 41
objects 357
shared 42
wake system object 366

Power Source (_PSR) object 510
power sources

AC adapter 510
definition 22
object notification values 229, 231

power states
control methods 362, 363
controlled by OSPM 33
device 26
global 24
non-symmetric processor 387
objects 362, 363
processor 385
sleeping 27
transitioning 61

PowerResource (Declare Power Resource) 785
predefined ACPI names 234
preferences, user

performance vs. energy conservation 51,

527
power button 34

preferred PM profile system 124
Prepare to Sleep (_PTS) control method 373
Process Call (SMBProcessCall) protocol 214,
597
Processor (Declare Processor) 786
processor and device performance states 29
processor control block 73
processor control registers

addresses 72
bits 90

Processor data type, ASL 704, 708
processor device notification values 230
Processor devices 233
Processor Local APIC 137, 140, 158
Processor Local SAPIC 141
processor LVL2 register 90, 386
processor LVL3 register 90, 386
processor objects 393
processor See CPU
Processor Throttling Control (_PTC) object
400
programming models

events 218
feature summary 67
fixed 56
generic 58

protocol register (SMB_PRTCL) 571
protocols

BARs (Base Address Registers) 199
CMOS 198
SMBus 574, 586, 593

Proximity (_PXM) object 268, 293
PSDT 134
pseudocode language See AML
pulsed interrupts 567
PWRBTN_EN 87
PWRBTN_STS 85
Q
Query Embedded Controller (QR_EC) 566
query events 94
query value, definition 60
Version 5.0 December 6, 2011 915

Advanced Configuration and Power Interface Specification
quotes
AML notation 817
ASL notation 673

QWord IO Resource Descriptor Macro 786
QWord Memory Resource Descriptor Macro
788
QWORD resource descriptor format 321, 788,
790, 791
QWord Space Resource Descriptor Macro 790
R
Read Embedded Controller (RD_EC) 565
Read/Write Block (SMBBlock) protocol 596
Read/Write Byte (SMBByte) protocol 212, 595
Read/Write Quick (SMBQuick) protocol 210,
593
Read/Write Word (SMBWord) protocol 212,
596
reclaim memory 625
RefOf (Create Object Reference) 792
Region (_REG) control method 351
register bits, notation 60
register blocks 70
register definitions, hardware 58
Register Generic Register Descriptor Macro)
792
register groupings

definition 22, 69
list of 70

registers
BARs (Base Address Registers) 199
control 69
EC-SMB-HC 570
embedded controller interface 563
enable 44
fixed feature 20
fixed hardware 84
general-purpose event 20
reset 91
SMB-HC 578
status 44
virtual 202, 205, 206, 587, 592

related device interference 66
Release (Release a Mutex Synchronization Ob-

ject) 793
Release terms 778
Remaining Battery Percentage 46, 505
removal objects 297
removal, batteries 497
Remove (_RMV) object 308
requirements, implementation

OS 11
OSPM 10

reserved ACPI names 234
reserved bits

definition 22
hardware 66
PM1 Control registers 88
PM1 Enable registers 87
PM1 Status register 85, 86
software requirements 105

reserved object names 699
reserved SMBus protocol values 586
Reset (Reset an Event Synchronization Object)
794
reset register 91
resource data types

Address Space Resource Descriptors 321
control methods 309
DMA 311, 315
End Dependent Functions 313
end tag 316
IRQ 310
large 215, 218, 316
large vendor defined 318
memory range descriptors 317
small 309
small vendor defined 315
Start Dependent Functions 312
vendor defined 318

resources
allocation 297
control method 267
interdependencies 312

resources, power See power resources
ResourceTemplate Resource To Buffer Con-
version Macro) 794
916 December 6, 2011 Version 5.0

restoring system context 619
results, storing 706
Return (Return from Method Execution) 794
Revision (Constant Revision Object) 795
revision data object 248
RISC processors 321
RISC systems 34
ROM control methods 884
Root System Description Pointer See RSDP
Root System Description Table See RSDT
RSDP

definition 22
location 108
table structure 108

RSDT
definition 22
table fields 113

RTC_EN 87
RTC_STS 86
RTC/CMOS protocols 198
S
S0 State (Working) 377
S1 Sleeping state

_S1D object 368
behavior during 377
definition 28
implementation 617
transitioning 375
waking using RTC 81

S2 Sleeping state
_S2D object 369
behavior during 378
definition 28
implementation 618
transitioning 375
waking using RTC 81

S3 Sleeping state
_S3D object 369
behavior during 378
definition 28
implementation 618
transitioning 375
waking using RTC 81

S4 Sleeping state
_S4D object 370
behavior during 379
definition 28
implementation 619
low-level battery 48
waking using RTC 81

S5 Soft-Off
behavior during 620
definition 24, 28
properties 26
transitioning to 622

SAPIC
definition 23
I/O 21, 141
local 21
NMI 140
Processor Local 141

SATA
controller device 447

saving system context
during emergency shutdown 49
S4 Non-Volatile Sleep state 619

SBST 149
SCI

battery status information 38
definition 23
embedded controller events 568
enable bits 39
interrupt handlers 63, 83

SCI_EN 83, 84, 88
Scope (Open Named Scope) 795
SCSI, power management 852
Secondary System Description Table See
SSDT
Segment (_SEG) object 353
Send/Receive Byte (SMBSendReceive) proto-
col 211, 594
separators, ASL 671
Serialized methods 756, 776
server machines, power management 35
Set Cooling Policy (SCP) control method 540
Set POST Device (_SPD) 885
Version 5.0 December 6, 2011 917

Advanced Configuration and Power Interface Specification
Set Resource Settings (_SRS) object 297
Set the Brightness Level (_BCM) 888
Set Timing Mode (_STM) control method 446
settings, user

performance vs. energy conservation 51,
527

power button 34
shareable interrupts 83
shared interface, embedded controller 560, 562
ShiftLeft (Integer Shift Left) 796
ShiftRight (Integer Shift Right) 796
Short Vendor-Defined Resource Descriptor
macro 809
shutdown, emergency 48, 526
shutting down See Mechanical Off
Signal (Signal a Synchronization Event) 797
signatures

collisions, avoiding 110, 111
interpreting 103, 113
values, storing 105

single quotes
AML notation 817
ASL notation 673

SizeOf (Get Data Object Size) 797
slave addresses, SMBus 491, 585
Sleep (Milliseconds Sleep) 797
sleep button

ASL code example 79
control methods 78, 441
definition 23
device ID 232
fixed hardware 78
object notification values 230
support 78

Sleeping states
behavior during 377
button logic 78
control methods 373
definitions 24, 27
entering 616
logic controlling 80
objects 369
packages, system state 374

power consumption 25
properties 25
transitioning 33, 259, 261, 375, 883
user settings 34
waking using RTC 81

Slot User Number (_SUN) object 266
SLP_EN 88, 616
SLP_EN field 80
SLP_TYPx 88, 616
SLP_TYPx field 69, 80
SLPBTN_EN 87
SLPBTN_STS 85
small resource data type 309
Smart Batteries

(_SBS object 494
definition 23
device ID 233
multiple battery subsystem 495
single battery subsystem 495
SMBus data buffers 209, 592
SMBus devices 589
specifications 15
status notification 492
subsystem 45, 489
supported 39
table 23
table formats 149

Smart Battery Charger
functions 492
status notification 492

Smart Battery Selector 493
Smart Battery System Manager

functions 491
status notification 493

SMB-HC 491, 496, 578
SMBus

address register (SMB_ADDR) 572
alarm address register

(SMB_ALRM_ADDR) 573
block count register (SMB_BCNT) 573
Block Write-Read Block Process Call

(SMBBlockProcessCall) protocol
215, 598
918 December 6, 2011 Version 5.0

commands, restricted 580
data buffers 209, 592
data register array (SMB_DATA) 573
definition 23
device enumeration, enabling 588
device ID 232
embedded controller interface 569
encoding, bit 586
fields, declaring 204, 207, 590
host controller notification header

(OS_SMB_EVT) 566
host controller objects, declaring 587
interface 23
operation regions 585, 588
PEC (packet error checking) 586
Process Call (SMBProcessCall) protocol

214, 597
protocol register (SMB_PRTCL) 571
protocols 574, 586, 593
Read/Write Block (SMBBlock) protocol

596
Read/Write Byte (SMBByte) protocol 212,

595
Read/Write Quick (SMBQuick) 210, 593
Read/Write Word (SMBWord) protocol

212, 596
Send/Receive Byte (SMBSendReceive)

protocol 211, 594
slave addresses 491, 585
specifications 15
status codes 587
status register (SMB_STS) 570
transactions 587
virtual registers 587

SMBus devices 233
SMI

definition 23
embedded controller firmware 567
interrupt events 63, 83

SMM firmware 57
Soft-Off

behavior during 380, 620
definition 24, 28

properties 26
transitioning crashed systems to 76
transitioning to 62, 622

sources, power See power sources
SSDT 22, 134
Stall (Stall for a Short Time) 799
standards

device power states 37
Start Dependent functions resource descriptor
format 312
StartDependentFn Start Dependent Function
Resource Descriptor Macro) 799
StartDependentFnNoPri Start Dependent
Function Resource Descriptor Macro) 800
statements

ElseIf 743
If 743
Power Resource 357
Processor 393

statements, ASL 671
states See power states
static objects 197
Status (_STA) 359
Status (_STA) object 308
status bits

corresponding enable bits 95
functions 93
symbol 60

status codes, SMBus 587
status notification, Smart Battery 492
status register 44
status register (SMB_STS) 570
status, battery 38
sticky status bit, definition 60
storage devices, power management 853, 872
Store (Store an Object) 800
storing results, ASL operators 706
Streamlined Advanced Programmable Inter-
rupt Controller See SAPIC
String (_STR) object 266
String data type, ASL 704, 708
strings, ASL 700
Subtract (Integer Subtract) 801
Version 5.0 December 6, 2011 919

Advanced Configuration and Power Interface Specification
supplemental documentation 15
surprise-style removal 297, 308
Switch (Select Code To Execute Based On Ex-
pression) 801
switching, output devices 892
Sx states See Sleeping states
syntax

OperationRegion 200, 589
Power Resource statements 357

syntax, ASL 671
system context

definition 23
during emergency shutdown 49
S4 Sleeping state 619
sleep states lost in 28

System Control Interrupt See SCI
system description tables See tables
system events, general model 44
system indicators 431
System Management Bus See SMBus
System Management Interrupt See SMI
System Management Mode See SMM
System Status (_SST) control method 431
System Wake (_WAK) control method 381
T
tables

address format 106
compatibility 106
DSDT 133
embedded controller boot resources 149
encoding format 105
FACS 127
headers 102, 109
MADT 135, 157, 182
overview 101
RSDP 108
RSDT 113
SBST (Smart Battery Description) 149
signatures 110, 111
SSDT 134

Temperature (_TMP) control method 521, 544
temperature changes, detecting 522
temperature management See thermal manage-

ment
Term Objects encoding, AML 821
terminology

design guides 6, 8
device power states 26
general 17
performance states 29
sleeping states 27

terms
AML 817
ASL notation 672

Thermal Constant 1 (_TC1) object 543
Thermal Constant 2 (_TC2) object 543
thermal management

control methods 533
energy conservation, optimizing 51
notification of temperature changes 523
objects 533
OSPM controlled 519
performance, optimizing 51
polling 522, 524
temperature changes, detecting 522
threshold settings, dynamically changing

521
trip points 523

Thermal Sampling Period (_TSP) object 545
thermal states, definition 24
Thermal Zone data type, ASL 704, 708
Thermal Zone Devices (_TZD) object 546
Thermal Zone Polling (_TZP) object 439, 473,
482, 546
thermal zones

basic configuration 548, 552
examples 548, 552
mobile PC example 49
multiple-speed fan example 550
object notification values 229
object requirements 548

ThermalZone (Declare Thermal Zone) 803
thirty-two bit fixed location memory range re-
source descriptor format 320
thirty-two bit memory range resource descrip-
tor format 318
920 December 6, 2011 Version 5.0

throttling 387, 400
THT_EN 90
Timer (Get 64-Bit Timer Value) 803
timers

global standby 65
idle 65
power management (PM) 65, 74

TMR- field 75
TMR_EN 87
TMR_STS 85
TMR_VAL 89
ToBCD (Convert Integer to BCD) 804
ToBuffer (Convert Data to Buffer) 804
ToDecimalString (Convert Data to Decimal
String) 805
ToHexString (Convert Data to Hexadecimal
String) 805
ToInteger (Convert Data to Integer) 805
token ring adapters See network devices
top of memory 626
ToString (Convert Buffer To String) 806
transactions, SMBus

data buffers 209, 592
status codes 587

transitioning
crashed systems 75, 76
device power states 852
Legacy mode to ACPI 83
power states 33, 61, 259, 261, 883
working to sleeping states 621
working to soft-off states 622

transparent events 64
transparent switching, device power states 27
trap monitors 65
Trigger Mode flags 139
trip points, thermal 523
turning off See Mechanical Off
TVs 881
twenty-four bit memory range resource de-
scriptor format 317
Type 1 Opcodes, AML encoding 824
Type 2 Opcodes, AML encoding 825

U
UARTs, power management 856
Unicode (String To Unicode Conversion Mac-
ro) 808
Uninitialzed data type, ASL 703, 707
Unique ID (_UID) object 266
Unload (Unload Definition Block) 809
unnamed objects 193
unrelated device interference 66
upper case, ASL names 699
USB, power management 852, 853
user preferences

performance vs. energy conservation 51,
527

power button 34
user-visible power states 33
UUID (Convert String to UUID Macro) 806
V
value-added hardware

enabling OSPM 58
registers 92

Variable List 671
VCR-style ejection mechanism 297
vendor defined large resource descriptor for-
mat 318
vendor defined resource data types 318
vendor defined small resource descriptor for-
mat 315
VendorLong Long Vendor-Defined Descriptor
macro) 809
VendorShort Vendor Defined Resource De-
scriptor Macro) 809
VESA specifications 852
VGA 881, 884
video controllers, power management 857
Video Electronics Standards Associations (VE-
SA) 852
Video POST Options (_VPO) 885
virtual data objects 733
virtual registers 202, 205, 206, 587, 592
visible states

global system 24
Version 5.0 December 6, 2011 921

Advanced Configuration and Power Interface Specification
W
Wait (Wait for a Synchronization Event) 810
WAK_STS (Wake Status) 80, 86
wake frame events 870
waking

_BFS (Back From Sleep) control method
373

_WAK control method 381
audio devices 856
COM ports 857
device power resource object (_PRW) 366
devices 854
disabling system-waking devices 367
display devices 862
initialization 622
input devices 865
latency time 33, 259, 261, 883
lid switch 97
logic controlling 80
modem devices 868
modem example 42
network devices 869
OS operations 39
PC Card controllers 872
Real Time Clock Alarm (RTC) 81
resetting lost enable bits 95
storage devices 874

warm insertion and removal 301
warnings, battery 47
WBINVD 622
web sites

Intel Architecture 15
Microsoft 15
PCISIG 852
PCMCIA 852
Smart Battery System 15
SMBus specification 585
USB-IF 853

While (Conditional Loop) 810
WORD resource descriptor format 327
WordBusNumber (Word Bus Number Re-
source Descriptor Macro) 811
WordIO (Word IO Resource Descriptor Mac-

ro) 812
WordSpace (Word Space Resource Descriptor
Macro) 814
Working state

behavior during 615
definition 25
properties 25
transitioning to 61
transitioning to Sleeping state 621
transitioning to Soft-Off 622

workstations 125
Write Embedded Controller (WR_EC) 565
write-only bits

control 60
definition 66

X
XOr (Integer Bitwise Xor) 815
XSDT

definition 24
loading Definition Block 770
location 102

Z
Zero (Constant Zero Object) 815
Zero, One, Ones data type, ASL 704, 708
zones, thermal See thermal zones
922 December 6, 2011 Version 5.0

	Acknowledgements
	Revision History
	Contents
	Tables
	Figures
	1 Introduction
	1.1 Principal Goals
	1.2 Power Management Rationale
	1.3 Legacy Support
	1.4 OEM Implementation Strategy
	1.5 Power and Sleep Buttons
	1.6 ACPI Specification and the Structure Of ACPI
	1.7 OS and Platform Compliance
	1.7.1 Platform Implementations of ACPI-defined Interfaces
	1.7.2 OSPM Implementations
	1.7.3 OS Requirements

	1.8 Target Audience
	1.9 Document Organization
	1.9.1 ACPI Introduction and Overview
	1.9.2 Programming Models
	1.9.3 Implementation Details
	1.9.4 Technical Reference

	1.10 Related Documents

	2 Definition of Terms
	2.1 General ACPI Terminology
	2.2 Global System State Definitions
	2.3 Device Power State Definitions
	2.4 Sleeping State Definitions
	2.5 Processor Power State Definitions
	2.6 Device and Processor Performance State Definitions

	3 ACPI Overview
	3.1 System Power Management
	3.2 Power States
	3.2.1 Power Button
	3.2.2 Platform Power Management Characteristics

	3.3 Device Power Management
	3.3.1 Power Management Standards
	3.3.2 Device Power States
	3.3.3 Device Power State Definitions

	3.4 Controlling Device Power
	3.4.1 Getting Device Power Capabilities
	3.4.2 Setting Device Power States
	3.4.3 Getting Device Power Status
	3.4.4 Waking the Computer
	3.4.5 Example: Modem Device Power Management

	3.5 Processor Power Management
	3.6 Device and Processor Performance States
	3.7 Configuration and “Plug and Play”
	3.7.1 Device Configuration Example: Configuring the Modem
	3.7.2 NUMA Nodes

	3.8 System Events
	3.9 Battery Management
	3.9.1 Battery Communications
	3.9.2 Battery Capacity
	3.9.3 Battery Gas Gauge
	3.9.4 Low Battery Levels
	3.9.5 Battery Calibration

	3.10 Thermal Managment
	3.10.1 Active and Passive Cooling Modes
	3.10.2 Performance vs. Energy Conservation
	3.10.3 Acoustics (Noise)
	3.10.4 Multiple Thermal Zones

	3.11 Flexible Platform Architecture Support
	3.11.1 Hardware-reduced ACPI
	3.11.2 Low-Power Idle
	3.11.3 Connection Resources

	4 ACPI Hardware Specification
	4.1 Hardware-Reduced ACPI
	4.1.1 Hardware-Reduced Events

	4.2 Fixed Hardware Programming Model
	4.2.1 Functional Fixed Hardware

	4.3 Generic Hardware Programming Model
	4.4 Diagram Legends
	4.5 Register Bit Notation
	4.6 The ACPI Hardware Model
	4.6.1 Hardware Reserved Bits
	4.6.2 Hardware Ignored Bits
	4.6.3 Hardware Write-Only Bits
	4.6.4 Cross Device Dependencies

	4.7 ACPI Hardware Features
	4.8 ACPI Register Model
	4.8.1 ACPI Register Summary
	4.8.2 Fixed Hardware Features
	4.8.3 Fixed Hardware Registers
	4.8.4 Generic Hardware Registers

	5 ACPI Software Programming Model
	5.1 Overview of the System Description Table Architecture
	5.1.1 Address Space Translation

	5.2 ACPI System Description Tables
	5.2.1 Reserved Bits and Fields
	5.2.2 Compatability
	5.2.3 Address Format
	5.2.4 Universal Uniform Identifiers (UUID)
	5.2.5 Root System Description Pointer (RSDP)
	5.2.6 System Description Table Header
	5.2.7 Root System Description Table (RSDT)
	5.2.8 Extended System Description Table (XSDT)
	5.2.9 Fixed ACPI Description Table (FADT)
	5.2.10 Firmware ACPI Control Structure (FACS)
	5.2.11 Definition Blocks
	5.2.12 Multiple APIC Description Table (MADT)
	5.2.13 Global System Interrupts
	5.2.14 Smart Battery Table (SBST)
	5.2.15 Embedded Controller Boot Resources Table (ECDT)
	5.2.16 System Resource Affinity Table (SRAT)
	5.2.17 System Locality Distance Information Table (SLIT)
	5.2.18 Corrected Platform Error Polling Table (CPEP)
	5.2.19 Maximum System Characteristics Table (MSCT)
	5.2.20 ACPI RAS FeatureTable (RASF)
	5.2.21 Memory Power StateTable (MPST)
	5.2.22 Boot Graphics Resource Table (BGRT)
	5.2.23 Firmware Performance Data Table (FPDT)
	5.2.24 Generic Timer Description Table (GTDT)

	5.3 ACPI Namespace
	5.3.1 Predefined Root Namespaces
	5.3.2 Objects

	5.4 Definition Block Encoding
	5.5 Using the ACPI Control Method Source Language
	5.5.1 ASL Statements
	5.5.2 Control Method Execution

	5.6 ACPI Event Programming Model
	5.6.1 ACPI Event Programming Model Components
	5.6.2 Types of ACPI Events
	5.6.3 Fixed Event Handling
	5.6.4 General-Purpose Event Handling
	5.6.5 GPIO-signaled ACPI Events
	5.6.6 Device Object Notifications
	5.6.7 Device Class-Specific Objects
	5.6.8 Predefined ACPI Names for Objects, Methods, and Resources

	5.7 Predefined Objects
	5.7.1 _GL (Global Lock Mutex)
	5.7.2 _OSI (Operating System Interfaces)
	5.7.3 _OS (OS Name Object)
	5.7.4 _REV (Revision Data Object)
	5.7.5 _DLM (DeviceLock Mutex)

	5.8 System Configuration Objects
	5.8.1 _PIC Method

	6 Device Configuration
	6.1 Device Identification Objects
	6.1.1 _ADR (Address)
	6.1.2 _CID (Compatible ID)
	6.1.3 _CLS (Class Code)
	6.1.4 _DDN (DOS Device Name)
	6.1.5 _HID (Hardware ID)
	6.1.6 _HRV (Hardware Revision)
	6.1.7 _MLS (Multiple Language String)
	6.1.8 _PLD (Physical Device Location)
	6.1.9 _SUB
	6.1.10 _STR (String)
	6.1.11 _SUN (Slot User Number)
	6.1.12 _UID (Unique ID)

	6.2 Device Configuration Objects
	6.2.1 _CDM (Clock Domain)
	6.2.2 _CRS (Current Resource Settings)
	6.2.3 _DIS (Disable)
	6.2.4 _DMA (Direct Memory Access)
	6.2.5 _FIX (Fixed Register Resource Provider)
	6.2.6 _GSB (Global System Interrupt Base)
	6.2.7 _HPP (Hot Plug Parameters)
	6.2.8 _HPX (Hot Plug Parameter Extensions)
	6.2.9 _MAT (Multiple APIC Table Entry)
	6.2.10 _OSC (Operating System Capabilities)
	6.2.11 _PRS (Possible Resource Settings)
	6.2.12 _PRT (PCI Routing Table)
	6.2.13 _PXM (Proximity)
	6.2.14 _SLI (System Locality Information)
	6.2.15 _SRS (Set Resource Settings)

	6.3 Device Insertion, Removal, and Status Objects
	6.3.1 _EDL (Eject Device List)
	6.3.2 _EJD (Ejection Dependent Device)
	6.3.3 _EJx (Eject)
	6.3.4 _LCK (Lock)
	6.3.5 _OST (OSPM Status Indication)
	6.3.6 _RMV (Remove)
	6.3.7 _STA (Status)

	6.4 Resource Data Types for ACPI
	6.4.1 ASL Macros for Resource Descriptors
	6.4.2 Small Resource Data Type
	6.4.3 Large Resource Data Type

	6.5 Other Objects and Control Methods
	6.5.1 _INI (Init)
	6.5.2 _DCK (Dock)
	6.5.3 _BDN (BIOS Dock Name)
	6.5.4 _REG (Region)
	6.5.5 _BBN (Base Bus Number)
	6.5.6 _SEG (Segment)
	6.5.7 _GLK (Global Lock)
	6.5.8 _DEP (Operation Region Dependencies)

	7 Power and Performance Management
	7.1 Declaring a Power Resource Object
	7.1.1 Defined Child Objects for a Power Resource
	7.1.2 _OFF
	7.1.3 _ON
	7.1.4 _STA (Status)

	7.2 Device Power Management Objects
	7.2.1 _DSW (Device Sleep Wake)
	7.2.2 _PS0 (Power State 0)
	7.2.3 _PS1 (Power State 1)
	7.2.4 _PS2 (Power State 2)
	7.2.5 _PS3 (Power State 3)
	7.2.6 _PSC (Power State Current)
	7.2.7 _PSE (Power State for Enumeration)
	7.2.8 _PR0 (Power Resources for D0)
	7.2.9 _PR1 (Power Resources for D1)
	7.2.10 _PR2 (Power Resources for D2)
	7.2.11 _PR3 (Power Resources for D3hot)
	7.2.12 _PRE (Power Resources for Enumeration)
	7.2.13 PRW (Power Resources for Wake)
	7.2.14 _PSW (Power State Wake)
	7.2.15 _IRC (In Rush Current)
	7.2.16 _S1D (S1 Device State)
	7.2.17 _S2D (S2 Device State)
	7.2.18 _S3D (S3 Device State)
	7.2.19 _S4D (S4 Device State)
	7.2.20 _S0W (S0 Device Wake State)
	7.2.21 _S1W (S1 Device Wake State)
	7.2.22 _S2W (S2 Device Wake State)
	7.2.23 _S3W (S3 Device Wake State)
	7.2.24 _S4W (S4 Device Wake State)

	7.3 OEM-Supplied System-Level Control Methods
	7.3.1 _BFS (Back From Sleep)
	7.3.2 _PTS (Prepare To Sleep)
	7.3.3 _GTS (Going To Sleep)
	7.3.4 System _Sx states
	7.3.5 _SWS (System Wake Source)
	7.3.6 _TTS (Transition To State)
	7.3.7 _WAK (System Wake)

	7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS

	8 Processor Configuration and Control
	8.1 Processor Power States
	8.1.1 Processor Power State C0
	8.1.2 Processor Power State C1
	8.1.3 Processor Power State C2
	8.1.4 Processor Power State C3
	8.1.5 Additional Processor Power States

	8.2 Flushing Caches
	8.3 Power, Performance, and Throttling State Dependencies
	8.4 Declaring Processors
	8.4.1 _PDC (Processor Driver Capabilities)
	8.4.2 Processor Power State Control
	8.4.3 Processor Throttling Controls
	8.4.4 Processor Performance Control
	8.4.5 Collaborative Processor Performance Control
	8.4.6 _PPE (Polling for Platform Errors)

	8.5 Processor Aggregator Device
	8.5.1 Logical Processor Idling
	8.5.2 OSPM _OST Evaluation

	9 ACPI-Defined Devices and Device-Specific Objects
	9.1 _SI System Indicators
	9.1.1 _SST (System Status)
	9.1.2 _MSG (Message)
	9.1.3 _BLT (Battery Level Threshold)

	9.2 Ambient Light Sensor Device
	9.2.1 Overview
	9.2.2 _ALI (Ambient Light Illuminance)
	9.2.3 _ALT (Ambient Light Temperature)
	9.2.4 _ALC (Ambient Light Color Chromaticity)
	9.2.5 _ALR (Ambient Light Response)
	9.2.6 _ALP (Ambient Light Polling)
	9.2.7 Ambient Light Sensor Events
	9.2.8 Relationship to Backlight Control Methods

	9.3 Battery Device
	9.4 Control Method Lid Device
	9.4.1 _LID

	9.5 Control Method Power and Sleep Button Devices
	9.6 Embedded Controller Device
	9.7 Generic Container Device
	9.8 ATA Controller Devices
	9.8.1 Objects for Both ATA and SATA Controllers
	9.8.2 IDE Controller Device
	9.8.3 Serial ATA (SATA) Controller Device

	9.9 Floppy Controller Device Objects
	9.9.1 _FDE (Floppy Disk Enumerate)
	9.9.2 _FDI (Floppy Disk Information)
	9.9.3 _FDM (Floppy Disk Drive Mode)

	9.10 GPE Block Device
	9.10.1 Matching Control Methods for Events in a GPE Block Device

	9.11 Module Device
	9.11.1 Describing PCI Bus and Segment Group Numbers under Module Devices

	9.12 Memory Devices
	9.12.1 Address Decoding
	9.12.2 Memory Bandwidth Monitoring and Reporting
	9.12.3 _OSC Definition for Memory Device
	9.12.4 Example: Memory Device

	9.13 _UPC (USB Port Capabilities)
	9.13.1 USB 2.0 Host Controllers and _UPC and _PLD

	9.14 Device Object Name Collision
	9.14.1 _DSM (Device Specific Method)

	9.15 PC/AT RTC/CMOS Devices
	9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)
	9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02)

	9.16 User Presence Detection Device
	9.16.1 _UPD (User Presence Detect)
	9.16.2 _UPP (User Presence Polling)
	9.16.3 User Presence Sensor Events

	9.17 I/O APIC Device
	9.18 Time and Alarm Device
	9.18.2 _GCP (Get Capability)
	9.18.3 _GRT (Get Real Time)
	9.18.4 _SRT (Set Real Time)
	9.18.5 _GWS (Get Wake alarm status)
	9.18.6 _CWS (Clear Wake alarm status)
	9.18.7 _STP (Set Expired Timer Wake Policy)
	9.18.8 _STV (Set Timer Value)
	9.18.9 _TIP (Expired Timer Wake Policy)
	9.18.10 _TIV (Timer Values)
	9.18.11 ACPI Wakeup Alarm Events
	9.18.12 Relationship to Real Time Clock Alarm
	9.18.13 Time and Alarm device as a replacement to the RTC
	9.18.14 Relationship to UEFI time source
	9.18.15 Example ASL code

	10 Power Source and Power Meter Devices
	10.1 Smart Battery Subsystems
	10.1.1 ACPI Smart Battery Status Change Notification Requirements
	10.1.2 Smart Battery Objects
	10.1.3 _SBS (Smart Battery Subsystem)

	10.2 Control Method Batteries
	10.2.1 Battery Events
	10.2.2 Battery Control Methods

	10.3 AC Adapters and Power Source Objects
	10.3.1 _PSR (Power Source)
	10.3.2 _PCL (Power Consumer List)
	10.3.3 _PIF (Power Source Information)
	10.3.4 _PRL (Power Source Redundancy List)

	10.4 Power Meters
	10.4.1 _PMC (Power Meter Capabilities)
	10.4.2 _PTP (Power Trip Points)
	10.4.3 _PMM (Power Meter Measurement)
	10.4.4 _PAI (Power Averaging Interval)
	10.4.5 _GAI (Get Averaging Interval)
	10.4.8 _PMD (Power Metered Devices)

	10.5 Example: Power Source and Power Meter Namespace

	11 Thermal Management
	11.1 Thermal Control
	11.1.1 Active, Passive, and Critical Policies
	11.1.2 Dynamically Changing Cooling Temperature Trip Points
	11.1.3 Detecting Temperature Changes
	11.1.4 Active Cooling
	11.1.5 Passive Cooling
	11.1.6 Critical Shutdown

	11.2 Cooling Preferences
	11.2.1 Evaluating Thermal Device Lists
	11.2.2 Evaluating Device Thermal Relationship Information

	11.3 Fan Device
	11.3.1 Fan Objects

	11.4 Thermal Objects
	11.4.1 _ACx (Active Cooling)
	11.4.2 _ALx (Active List)
	11.4.3 _ART (Active Cooling Relationship Table)
	11.4.4 _CRT (Critical Temperature)
	11.4.5 _DTI (Device Temperature Indication)
	11.4.6 _HOT (Hot Temperature)
	11.4.7 _NTT (Notification Temperature Threshold)
	11.4.8 _PSL (Passive List)
	11.4.9 _PSV (Passive)
	11.4.10 _RTV (Relative Temperature Values)
	11.4.11 _SCP (Set Cooling Policy)
	11.4.12 _TC1 (Thermal Constant 1)
	11.4.13 _TC2 (Thermal Constant 2)
	11.4.14 _TMP (Temperature)
	11.4.15 _TPT (Trip Point Temperature)
	11.4.16 _TRT (Thermal Relationship Table)
	11.4.17 _TSP (Thermal Sampling Period)
	11.4.18 _TST (Temperature Sensor Threshold)
	11.4.19 _TZD (Thermal Zone Devices)
	11.4.20 _TZM (Thermal Zone Member)
	11.4.21 _TZP (Thermal Zone Polling)

	11.5 Native OS Device Driver Thermal Interfaces
	11.6 Thermal Zone Interface Requirements
	11.7 Thermal Zone Examples
	11.7.1 Example: The Basic Thermal Zone
	11.7.2 Example: Multiple-Speed Fans
	11.7.3 Example: Thermal Zone with Multiple Devices

	12 ACPI Embedded Controller Interface Specification
	12.1 Embedded Controller Interface Description
	12.2 Embedded Controller Register Descriptions
	12.2.1 Embedded Controller Status, EC_SC (R)
	12.2.2 Embedded Controller Command, EC_SC (W)
	12.2.3 Embedded Controller Data, EC_DATA (R/W)

	12.3 Embedded Controller Command Set
	12.3.1 Read Embedded Controller, RD_EC (0x80)
	12.3.2 Write Embedded Controller, WR_EC (0x81)
	12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
	12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)
	12.3.5 Query Embedded Controller, QR_EC (0x84)

	12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT
	12.5 Embedded Controller Firmware
	12.6 Interrupt Model
	12.6.1 Event Interrupt Model
	12.6.2 Command Interrupt Model

	12.7 Embedded Controller Interfacing Algorithms
	12.8 Embedded Controller Description Information
	12.9 SMBus Host Controller Interface via Embedded Controller
	12.9.1 Register Description
	12.9.2 Protocol Description

	12.10 SMBus Devices
	12.10.1 SMBus Device Access Restrictions
	12.10.2 SMBus Device Command Access Restriction

	12.11 Defining an Embedded Controller Device in ACPI Namespace
	12.11.1 Example: EC Definition ASL Code

	12.12 Defining an EC SMBus Host Controller in ACPI Namespace
	12.12.1 Example: EC SMBus Host Controller ASL-Code

	13 ACPI System Management Bus Interface Specification
	13.1 SMBus Overview
	13.1.1 SMBus Slave Addresses
	13.1.2 SMBus Protocols
	13.1.3 SMBus Status Codes
	13.1.4 SMBus Command Values

	13.2 Accessing the SMBus from ASL Code
	13.2.1 Declaring SMBus Host Controller Objects
	13.2.2 Declaring SMBus Devices
	13.2.3 Declaring SMBus Operation Regions
	13.2.4 Declaring SMBus Fields
	13.2.5 Declaring and Using an SMBus Data Buffer

	13.3 Using the SMBus Protocols
	13.3.1 Read/Write Quick (SMBQuick)
	13.3.2 Send/Receive Byte (SMBSendReceive)
	13.3.3 Read/Write Byte (SMBByte)
	13.3.4 Read/Write Word (SMBWord)
	13.3.5 Read/Write Block (SMBBlock)
	13.3.6 Word Process Call (SMBProcessCall)
	13.3.7 Block Process Call (SMBBlockProcessCall)

	14 Platform Communications Channel (PCC)
	14.1 Platform Communications Channel Table
	14.1.1 Platform Communications Channel Global Flags
	14.1.2 Platform Communications Channel Subspace Structures
	14.1.3 Generic Communications Subspace Structure (type 0)

	14.2 Generic Communications Channel Shared Memory Region
	14.2.1 Generic Communications Channel Command Field
	14.2.2 Generic Communications Channel Status Field

	14.3 Doorbell Protocol
	14.4 Platform Notification
	14.5 Referencing the PCC address space

	15 System Address Map Interfaces
	15.1 INT 15H, E820H - Query System Address Map
	15.2 E820 Assumptions and Limitations
	15.3 UEFI GetMemoryMap() Boot Services Function
	15.4 UEFI Assumptions and Limitations
	15.5 Example Address Map
	15.6 Example: Operating System Usage

	16 Waking and Sleeping
	16.1 Sleeping States
	16.1.1 S1 Sleeping State
	16.1.2 S2 Sleeping State
	16.1.3 S3 Sleeping State
	16.1.4 S4 Sleeping State
	16.1.5 S5 Soft Off State
	16.1.6 Transitioning from the Working to the Sleeping State
	16.1.7 Transitioning from the Working to the Soft Off State

	16.2 Flushing Caches
	16.3 Initialization
	16.3.1 Placing the System in ACPI Mode
	16.3.2 BIOS Initialization of Memory
	16.3.3 OS Loading
	16.3.4 Exiting ACPI Mode

	17 Non-Uniform Memory Access (NUMA) Architecture Platforms
	17.1 NUMA Node
	17.2 System Locality
	17.2.1 System Resource Affinity Table Definition

	17.3 System Locality Distance Information
	17.3.1 Online Hot Plug
	17.3.2 Impact to Existing Localities

	18 ACPI Platform Error Interfaces (APEI)
	18.2 Relationship between OSPM and System Firmware
	18.3 Error Source Discovery
	18.3.1 Boot Error Source
	18.3.2 ACPI Error Source

	18.4 Firmware First Error Handling
	18.4.1 Example: Firmware First Handling Using NMI Notification

	18.5 Error Serialization
	18.5.1 Serialization Action Table
	18.5.2 Operations

	18.6 Error Injection
	18.6.1 Error Injection Table (EINJ)
	18.6.2 Injection Instruction Entries
	18.6.3 Injection Instructions
	18.6.4 Trigger Action Table

	19 ACPI Source Language (ASL)Reference
	19.1 ASL Language Grammar
	19.1.1 ASL Grammar Notation
	19.1.2 ASL Name and Pathname Terms
	19.1.3 ASL Root and Secondary Terms
	19.1.4 ASL Data and Constant Terms
	19.1.5 ASL Opcode Terms
	19.1.6 ASL Primary (Terminal) Terms
	19.1.7 ASL Parameter Keyword Terms
	19.1.8 ASL Resource Template Terms

	19.2 ASL Concepts
	19.2.1 ASL Names
	19.2.2 ASL Literal Constants
	19.2.3 ASL Resource Templates
	19.2.4 ASL Macros
	19.2.5 ASL Data Types

	19.3 ASL Operator Summary
	19.4 ASL Operator Summary By Type
	19.5 ASL Operator Reference
	19.5.1 AccessAs (Change Field Unit Access)
	19.5.2 Acquire (Acquire a Mutex)
	19.5.3 Add (Integer Add)
	19.5.4 Alias (Declare Name Alias)
	19.5.5 And (Integer Bitwise And)
	19.5.6 Argx (Method Argument Data Objects)
	19.5.7 BankField (Declare Bank/Data Field)
	19.5.8 Break (Break from While)
	19.5.9 BreakPoint (Execution Break Point)
	19.5.10 Buffer (Declare Buffer Object)
	19.5.11 Case (Expression for Conditional Execution)
	19.5.12 Concatenate (Concatenate Data)
	19.5.13 ConcatenateResTemplate (Concatenate Resource Templates)
	19.5.14 CondRefOf (Create Object Reference Conditionally)
	19.5.15 Connection (Declare Field Connection Attributes)
	19.5.16 Continue (Continue Innermost Enclosing While)
	19.5.17 CopyObject (Copy and Store Object)
	19.5.18 CreateBitField (Create 1-Bit Buffer Field)
	19.5.19 CreateByteField (Create 8-Bit Buffer Field)
	19.5.20 CreateDWordField (Create 32-Bit Buffer Field)
	19.5.21 CreateField (Create Arbitrary Length Buffer Field)
	19.5.22 CreateQWordField (Create 64-Bit Buffer Field)
	19.5.23 CreateWordField (Create 16-Bit Buffer Field)
	19.5.24 DataTableRegion (Create Data Table Operation Region)
	19.5.25 Debug (Debugger Output)
	19.5.26 Decrement (Integer Decrement)
	19.5.27 Default (Default Execution Path in Switch)
	19.5.28 DefinitionBlock (Declare Definition Block)
	19.5.29 DerefOf (Dereference an Object Reference)
	19.5.30 Device (Declare Bus/Device Package)
	19.5.31 Divide (Integer Divide)
	19.5.32 DMA (DMA Resource Descriptor Macro)
	19.5.33 DWordIO (DWord IO Resource Descriptor Macro)
	19.5.34 DWordMemory (DWord Memory Resource Descriptor Macro)
	19.5.35 DWordSpace (DWord Space Resource Descriptor Macro)
	19.5.36 EISAID (EISA ID String To Integer Conversion Macro)
	19.5.37 Else (Alternate Execution)
	19.5.38 ElseIf (Alternate/Conditional Execution)
	19.5.39 EndDependentFn (End Dependent Function Resource Descriptor Macro)
	19.5.40 Event (Declare Event Synchronization Object)
	19.5.41 ExtendedIO (Extended IO Resource Descriptor Macro)
	19.5.42 ExtendedMemory (Extended Memory Resource Descriptor Macro)
	19.5.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro)
	19.5.44 External (Declare External Objects)
	19.5.45 Fatal (Fatal Error Check)
	19.5.46 Field (Declare Field Objects)
	19.5.47 FindSetLeftBit (Find First Set Left Bit)
	19.5.48 FindSetRightBit (Find First Set Right Bit)
	19.5.49 FixedDMA (DMA Resource Descriptor Macro)
	19.5.50 FixedIO (Fixed IO Resource Descriptor Macro)
	19.5.51 FromBCD (Convert BCD To Integer)
	19.5.52 Function (Declare Control Method)
	19.5.53 GpioInt (GPIO Interrupt Connection Resource Descriptor Macro)
	19.5.54 GpioIo (GPIO Connection IO Resource Descriptor Macro)
	19.5.55 I2CSerialBus (I2C Serial Bus Connection Resource Descriptor Macro)
	19.5.56 If (Conditional Execution)
	19.5.57 Include (Include Additional ASL File)
	19.5.58 Increment (Integer Increment)
	19.5.59 Index (Indexed Reference To Member Object)
	19.5.60 IndexField (Declare Index/Data Fields)
	19.5.61 Interrupt (Interrupt Resource Descriptor Macro)
	19.5.62 IO (IO Resource Descriptor Macro)
	19.5.63 IRQ (Interrupt Resource Descriptor Macro)
	19.5.64 IRQNoFlags (Interrupt Resource Descriptor Macro)
	19.5.65 LAnd (Logical And)
	19.5.66 LEqual (Logical Equal)
	19.5.67 LGreater (Logical Greater)
	19.5.68 LGreaterEqual (Logical Greater Than Or Equal)
	19.5.69 LLess (Logical Less)
	19.5.70 LLessEqual (Logical Less Than Or Equal)
	19.5.71 LNot (Logical Not)
	19.5.72 LNotEqual (Logical Not Equal))
	19.5.73 Load (Load Definition Block)
	19.5.74 LoadTable (Load Definition Block From XSDT)
	19.5.75 Localx (Method Local Data Objects)
	19.5.76 LOr (Logical Or)
	19.5.77 Match (Find Object Match)
	19.5.78 Memory24 (Memory Resource Descriptor Macro)
	19.5.79 Memory32 (Memory Resource Descriptor Macro)
	19.5.80 Memory32Fixed (Memory Resource Descriptor Macro)
	19.5.81 Method (Declare Control Method)
	19.5.82 Mid (Extract Portion of Buffer or String)
	19.5.83 Mod (Integer Modulo)
	19.5.84 Multiply (Integer Multiply)
	19.5.85 Mutex (Declare Synchronization/Mutex Object)
	19.5.86 Name (Declare Named Object)
	19.5.87 NAnd (Integer Bitwise Nand)
	19.5.88 NoOp Code (No Operation)
	19.5.89 NOr (Integer Bitwise Nor)
	19.5.90 Not (Integer Bitwise Not)
	19.5.91 Notify (Notify Object of Event)
	19.5.92 Offset (Change Current Field Unit Offset)
	19.5.93 ObjectType (Get Object Type)
	19.5.94 One (Constant One Integer)
	19.5.95 Ones (Constant Ones Integer)
	19.5.96 OperationRegion (Declare Operation Region)
	19.5.97 Or (Integer Bitwise Or)
	19.5.98 Package (Declare Package Object)
	19.5.99 PowerResource (Declare Power Resource)
	19.5.100 Processor (Declare Processor)
	19.5.101 QWordIO (QWord IO Resource Descriptor Macro)
	19.5.102 QWordMemory (QWord Memory Resource Descriptor Macro)
	19.5.103 QWordSpace (QWord Space Resource Descriptor Macro)
	19.5.104 RawDataBuffer
	19.5.105 RefOf (Create Object Reference)
	19.5.106 Register (Generic Register Resource Descriptor Macro)
	19.5.107 Release (Release a Mutex Synchronization Object)
	19.5.108 Reset (Reset an Event Synchronization Object)
	19.5.109 ResourceTemplate (Resource To Buffer Conversion Macro)
	19.5.110 Return (Return from Method Execution)
	19.5.111 Revision (Constant Revision Integer)
	19.5.112 Scope (Open Named Scope)
	19.5.113 ShiftLeft (Integer Shift Left)
	19.5.114 ShiftRight (Integer Shift Right)
	19.5.115 Signal (Signal a Synchronization Event)
	19.5.116 SizeOf (Get Data Object Size)
	19.5.117 Sleep (Milliseconds Sleep)
	19.5.118 SPISerialBus (SPI Serial Bus Connection Resource Descriptor Macro)
	19.5.119 Stall (Stall for a Short Time)
	19.5.120 StartDependentFn (Start Dependent Function Resource Descriptor Macro)
	19.5.121 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)
	19.5.122 Store (Store an Object)
	19.5.123 Subtract (Integer Subtract)
	19.5.124 Switch (Select Code To Execute Based On Expression)
	19.5.125 ThermalZone (Declare Thermal Zone)
	19.5.126 Timer (Get 64-Bit Timer Value)
	19.5.127 ToBCD (Convert Integer to BCD)
	19.5.128 ToBuffer (Convert Data to Buffer)
	19.5.129 ToDecimalString (Convert Data to Decimal String)
	19.5.130 ToHexString (Convert Data to Hexadecimal String)
	19.5.131 ToInteger (Convert Data to Integer)
	19.5.132 ToString (Convert Buffer To String)
	19.5.133 ToUUID (Convert String to UUID Macro)
	19.5.134 UARTSerialBus (UART Serial Bus Connection Resource Descriptor Macro)
	19.5.135 Unicode (String To Unicode Conversion Macro)
	19.5.136 Unload (Unload Definition Block)
	19.5.137 VendorLong (Long Vendor Resource Descriptor)
	19.5.138 VendorShort (Short Vendor Resource Descriptor)
	19.5.139 Wait (Wait for a Synchronization Event)
	19.5.140 While (Conditional Loop)
	19.5.141 WordBusNumber (Word Bus Number Resource Descriptor Macro)
	19.5.142 WordIO (Word IO Resource Descriptor Macro)
	19.5.143 WordSpace (Word Space Resource Descriptor Macro))
	19.5.144 XOr (Integer Bitwise Xor)
	19.5.145 Zero (Constant Zero Integer)

	20 ACPI Machine Language (AML) Specification
	20.1 Notation Conventions
	20.2 AML Grammar Definition
	20.2.1 Table and Table Header Encoding
	20.2.2 Name Objects Encoding
	20.2.3 Data Objects Encoding
	20.2.4 Package Length Encoding
	20.2.5 Term Objects Encoding
	20.2.6 Miscellaneous Objects Encoding

	20.3 AML Byte Stream Byte Values
	20.4 AML Encoding of Names in the Namespace

	21 ACPI Data Tables and Table Definition Language
	21.1 Types of ACPI Data Tables
	21.2 ACPI Table Definition Language Specification
	21.2.1 Overview of the Table Definition Language (TDL)
	21.2.2 TDL Grammar Specification
	21.2.3 Data Types
	21.2.4 Fields Set Automatically by the Compiler
	21.2.5 Special Fields
	21.2.6 21.6 TDL Generic Data Types
	21.2.7 Defining a Known ACPI Table in TDL
	21.2.8 Defining an Unknown or New ACPI table in TDL
	21.2.9 21.9 Table Definition Language Examples
	21.2.10 Minimal ECDT Definition

	Appendix A Storage Device Class
	A.1 Overview
	A.2 Device Power States
	A.2.1 Bus Power Management
	A.2.2 Display Power Management
	A.2.3 PCMCIA/PCCARD/CardBus Power Management
	A.2.4 PCI Power Management
	A.2.5 USB Power Management
	A.2.6 Device Classes

	A.3 Default Device Class
	A.3.1 Default Power Management Policy
	A.3.2 Default Wake Events
	A.3.3 Minimum Power Capabilities

	A.4 Audio Device Class
	A.4.1 Power State Definitions
	A.4.2 Power Management Policy
	A.4.3 Wake Events
	A.4.4 Minimum Power Capabilities

	A.5 COM Port Device Class
	A.5.1 Power State Definitions
	A.5.2 Power Management Policy
	A.5.3 Wake Events
	A.5.4 Minimum Power Capabilities

	A.6 Display Device Class
	A.6.1 Power State Definitions
	A.6.2 Power Management Policy for the Display Class
	A.6.3 Wake Events
	A.6.4 Minimum Power Capabilities
	A.6.5 Performance States for Display Class Devices

	A.7 Input Device Class
	A.7.1 Power State Definitions
	A.7.2 Power Management Policy
	A.7.3 Wake Events
	A.7.4 Minimum Power Capabilities

	A.8 Modem Device Class
	A.8.1 Technology Overview
	A.8.2 Power State Definitions
	A.8.3 Power Management Policy
	A.8.4 Wake Events
	A.8.5 Minimum Power Capabilities

	A.9 Network Device Class
	A.9.1 Power State Definitions
	A.9.2 Power Management Policy
	A.9.3 Wake Events
	A.9.4 Minimum Power Capabilities

	A.10 PC Card Controller Device Class
	A.10.1 Power State Definitions
	A.10.2 Power Management Policy
	A.10.3 Wake Events
	A.10.4 Minimum Power Capabilities

	A.11 Storage Device Class
	A.11.1 Power State Definitions
	A.11.2 Power Management Policy
	A.11.3 Wake Events
	A.11.4 Minimum Power Capabilities

	Appendix B Video Extensions
	B.1 ACPI Extensions for Display Adapters: Introduction
	B.2 Definitions
	B.3 ACPI Namespace
	B.3.1 _DOS (Enable/Disable Output Switching)
	B.3.2 _DOD (Enumerate All Devices Attached to the Display Adapter)
	B.3.3 _ROM (Get ROM Data)
	B.3.4 _GPD (Get POST Device)
	B.3.5 _SPD (Set POST Device)
	B.3.6 _VPO (Video POST Options)

	B.4 Notifications for Display Devices
	B.5 Output Device-specific Methods
	B.5.1 _ADR (Return the Unique ID for this Device)
	B.5.2 _BCL (Query List of Brightness Control Levels Supported)
	B.5.3 _BCM (Set the Brightness Level)
	B.5.4 _BQC (Brightness Query Current level)
	B.5.5 _DDC (Return the EDID for this Device)
	B.5.6 _DCS (Return the Status of Output Device)
	B.5.7 _DGS (Query Graphics State)
	B.5.8 _DSS (Device Set State)

	B.6 Notifications Specific to Output Devices
	B.7 Notes on State Changes

