
Advanced Configuration and
Power Interface Specification

Hewlett-Packard Corporation
Intel Corporation
Microsoft Corporation
Phoenix Technologies Ltd.
Toshiba Corporation

Revision 4.0a
April 5, 2010



ii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Copyright © 1996-2010, Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix
Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DO
NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.



iii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

4.0a
Apr. 2010

Errata corrected and clarifications added.

Removed text concerning government requirement of mechanical off

Clarified URL update document, Corrected section references for APIC, SLIT,
SRAT in Table 5-5, Update URLs and reformated Table 5-6

Corrected reference to Interrupt Source Override Structure

Corrected name for CPEP table

Corrected reference to SMBus, should be IPMI

Clarified BusCheck and DeviceCheck notifications in Table 5-53

Added link to non-ACPI Plug and Play ID reference document

Added missing _ATT and _GAI names, Corrected page/section references in
Table 5-67

Corrected EndTag name value. Was 0x78, correct value is 0x79 Table 6-33

Consumer/Producer bit is ignored (Restored 2.0C change that had been lost)

Clarified use of _GLK (Global Lock) object

Corrected definition of _TSD object

Corrected definition of _PSD object

Corrected table name (CPEP)

Corrected “maximum positive adjustment” value. Was 500%, correct value is
50%, Updated description of example – 300 to 400 lux, Eliminated hardcoded
package lengths in examples, Changed “brightness” to “highest ambient light
value”

Corrected reference to _IDE, should be _GTM. Corrected table reference

Clarified GPE Block Device Description

Corrected _PLD object examples

Repaired diagram that would not display properly Figure 10-2

Added missing _BCT method to Table 10-3

Clarified that OEM Information field should contain NULL string if not
supported in Table 10-4 &Table 10-5

Corrected description of _BTM arguments and return value

Clarified description of _BCT return value

Corrected HID for Power Source device. Was ACPI0003, correct value is
ACPI0004

Corrected _PIF example. First package element was a Buffer, should be
Integer, Clarified that OEM Information field should contain NULL string if
not supported Table 10-10

Corrected description of _SHL method Table 10-11

Clarified _PRL return value, a list of References

Corrected _PMC example. First package element was a Buffer, should be
Integer

2.2

5.2.6

5.2.12.4

5.2.18

5.5.2.4.3.1

5.6.5

5.6.6

5.6.7

6.4.2.8

6.4.3.5.1,2,3

6.5.7

8.4.3.4

8.4.4.5

8.4.5

9.2.5

9.8.2.1.1

9.10

9.13

10.1.3.1

10.2.2

10.2.1.1-2

10.2.2.8

10.2.2.9

10.3

10.3.3

10.4

10.3.4

10.4.1



iv

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

Clarified that OEM Information field should contain NULL string if not
supported Table 10-12

Removed “TODO” note. Updated example

Repaired diagram that would not display properly Figure 15-1

Corrected error conditions from “fatal” to “corrected

Corrected several incorrect section references, Clarified number of Generic
Error Data Entry structures is >=1 (not Zero)

Clarified number of Generic Error Data Entry structures is >=1 (not Zero)

Added new section clarifying SCI notification for generic error sources

Added new section describing Firmware First error handling

Clarified purpose of the codes Table 17-17

Added reference to table of COMMAND_STATUS codes Table 17-23

Clarified purpose of the command status codes in Table 17-27 and the error
type definitions in Table 17-28

Added _ATT resource descriptor field name

Clarified rules for Buffer vs. Integer return types from a field unit

Corrected section/page reference

10.4.1

10.5

15.1

17.1

17.3.1

17.3.2.6.1

17.3.2.6.2

17.4

17.5.1.1

17.6.1

17.6.3

18.1.8

18.5.44,89

18.5.101

4.0

June 2009

Major specification revision. Clock Domains, x2APIC Support, Logical
Processor Idling, Corrected Platform Error Polling Table, Maximum System
Characteristics Table, Power Metering and Budgeting, IPMI Operation
Region, USB3 Support in _PLD, Re-evaluation of _PPC acknowledgement via
_OST, Thermal Model Enhancements, _OSC at \_SB, Wake Alarm Device,
Battery Related Extensions, Memory Bandwidth Monitoring and Reporting,
ACPI Hardware Error Interfaces, D3hot.

3.0b

Oct. 2006
Errata corrected and clarifications added.

3.0a
Dec. 2005

Errata corrected and clarifications added.

3.0
Sept. 2004

Major specification revision. General configuration enhancements. Inter-
Processor power, performance, and throttling state dependency support added.
Support for > 256 processors added. NUMA Distancing support added. PCI
Express support added. SATA support added. Ambient Light Sensor and User
Presence device support added. Thermal model extended beyond processor-
centric support.

2.0c
Aug. 2003

Errata corrected and clarifications added.

2.0b
Oct. 2002

Errata corrected and clarifications added.

2.0a
Mar. 2002

Errata corrected and clarifications added. ACPI 2.0 Errata Document Revision
1.0 through 1.5 integrated.

ACPI 2.0 Errata corrected and clarifications added.



v

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

Errata Doc.
Rev. 1.5

ACPI 2.0
Errata Doc.
Rev. 1.4

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.3

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.2

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.1

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.0

Errata corrected and clarifications added.

2.0
Aug. 2000

Major specification revision. 64-bit addressing support added. Processor and
device performance state support added. Numerous multiprocessor workstation
and server-related enhancements. Consistency and readability enhancements
throughout.

1.0b
Feb. 1999

Errata corrected and clarifications added. New interfaces added.

1.0a
Jul. 1998

Errata corrected and clarifications added. New interfaces added.

1.0
Dec. 1996

Original Release.



vi

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Contents
1 INTRODUCTION ................................................................................................................................... 21

1.1 Principal Goals ................................................................................................................................................... 21
1.2 Power Management Rationale .......................................................................................................................... 22
1.3 Legacy Support................................................................................................................................................... 23
1.4 OEM Implementation Strategy......................................................................................................................... 23
1.5 Power and Sleep Buttons ................................................................................................................................... 23
1.6 ACPI Specification and the Structure Of ACPI .............................................................................................. 24
1.7 OS and Platform Compliance ........................................................................................................................... 25

1.7.1 Platform Implementations of ACPI-defined Interfaces ................................................................................ 25
1.7.2 OSPM Implementations ............................................................................................................................... 28
1.7.3 OS Requirements.......................................................................................................................................... 29

1.8 Target Audience ................................................................................................................................................. 29
1.9 Document Organization..................................................................................................................................... 29

1.9.1 ACPI Introduction and Overview................................................................................................................. 30
1.9.2 Programming Models ................................................................................................................................... 30
1.9.3 Implementation Details................................................................................................................................. 30
1.9.4 Technical Reference ..................................................................................................................................... 31

1.10 Related Documents........................................................................................................................................... 31

2 DEFINITION OF TERMS ..................................................................................................................... 33
2.1 General ACPI Terminology .............................................................................................................................. 33
2.2 Global System State Definitions ........................................................................................................................ 39
2.3 Device Power State Definitions.......................................................................................................................... 41
2.4 Sleeping State Definitions .................................................................................................................................. 42
2.5 Processor Power State Definitions .................................................................................................................... 42
2.6 Device and Processor Performance State Definitions...................................................................................... 43

3 ACPI OVERVIEW.................................................................................................................................. 45
3.1 System Power Management .............................................................................................................................. 46
3.2 Power States........................................................................................................................................................ 47

3.2.1 Power Button................................................................................................................................................ 48
3.2.2 Platform Power Management Characteristics............................................................................................... 48

3.3 Device Power Management ............................................................................................................................... 49
3.3.1 Power Management Standards ..................................................................................................................... 49
3.3.2 Device Power States ..................................................................................................................................... 49
3.3.3 Device Power State Definitions.................................................................................................................... 50

3.4 Controlling Device Power.................................................................................................................................. 50
3.4.1 Getting Device Power Capabilities............................................................................................................... 50
3.4.2 Setting Device Power States......................................................................................................................... 50
3.4.3 Getting Device Power Status ........................................................................................................................ 51
3.4.4 Waking the Computer................................................................................................................................... 51
3.4.5 Example: Modem Device Power Management ............................................................................................ 53

3.5 Processor Power Management .......................................................................................................................... 56
3.6 Device and Processor Performance States ....................................................................................................... 56
3.7 Configuration and “Plug and Play”.................................................................................................................. 56

3.7.1 Device Configuration Example: Configuring the Modem............................................................................ 57
3.7.2 NUMA Nodes............................................................................................................................................... 57

3.8 System Events ..................................................................................................................................................... 57
3.9 Battery Management.......................................................................................................................................... 58

3.9.1 Battery Communications .............................................................................................................................. 58
3.9.2 Battery Capacity ........................................................................................................................................... 59
3.9.3 Battery Gas Gauge........................................................................................................................................ 59



vii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9.4 Low Battery Levels ...................................................................................................................................... 59
3.9.5 Battery Calibration ....................................................................................................................................... 62

3.10 Thermal Management...................................................................................................................................... 63
3.10.1 Active and Passive Cooling Modes ............................................................................................................ 64
3.10.2 Performance vs. Energy Conservation........................................................................................................ 64
3.10.3 Acoustics (Noise) ....................................................................................................................................... 64
3.10.4 Multiple Thermal Zones ............................................................................................................................. 64

4 ACPI HARDWARE SPECIFICATION................................................................................................ 65
4.1 Fixed Hardware Programming Model ............................................................................................................. 65

4.1.1 Functional Fixed Hardware .......................................................................................................................... 65

4.2 Generic Hardware Programming Model ......................................................................................................... 66
4.3 Diagram Legends ............................................................................................................................................... 68
4.4 Register Bit Notation.......................................................................................................................................... 69
4.5 The ACPI Hardware Model .............................................................................................................................. 69

4.5.1 Hardware Reserved Bits ............................................................................................................................... 72
4.5.2 Hardware Ignored Bits.................................................................................................................................. 72
4.5.3 Hardware Write-Only Bits............................................................................................................................ 73
4.5.4 Cross Device Dependencies ......................................................................................................................... 73

4.6 ACPI Hardware Features.................................................................................................................................. 73
4.7 ACPI Register Model ......................................................................................................................................... 75

4.7.1 ACPI Register Summary .............................................................................................................................. 78
4.7.2 Fixed Hardware Features.............................................................................................................................. 80
4.7.3 Fixed Hardware Registers ............................................................................................................................ 89
4.7.4 Generic Hardware Registers ......................................................................................................................... 97

5 ACPI SOFTWARE PROGRAMMING MODEL .............................................................................. 105
5.1 Overview of the System Description Table Architecture .............................................................................. 105

5.1.1 Address Space Translation ......................................................................................................................... 107
5.2 ACPI System Description Tables .................................................................................................................... 109

5.2.1 Reserved Bits and Fields ............................................................................................................................ 109
5.2.2 Compatibility.............................................................................................................................................. 110
5.2.3 Address Format .......................................................................................................................................... 110
5.2.4 Universal Uniform Identifiers (UUID) ....................................................................................................... 111
5.2.5 Root System Description Pointer (RSDP) .................................................................................................. 111
5.2.6 System Description Table Header .............................................................................................................. 113
5.2.7 Root System Description Table (RSDT) .................................................................................................... 116
5.2.8 Extended System Description Table (XSDT)............................................................................................. 117
5.2.9 Fixed ACPI Description Table (FADT) ..................................................................................................... 118
5.2.10 Firmware ACPI Control Structure (FACS) .............................................................................................. 128
5.2.11 Definition Blocks...................................................................................................................................... 134
5.2.12 Multiple APIC Description Table (MADT).............................................................................................. 136
5.2.13 Global System Interrupts .......................................................................................................................... 147
5.2.14 Smart Battery Table (SBST)..................................................................................................................... 149
5.2.15 Embedded Controller Boot Resources Table (ECDT).............................................................................. 149
5.2.16 System Resource Affinity Table (SRAT) ................................................................................................. 151
5.2.17 System Locality Distance Information Table (SLIT) ............................................................................... 155
5.2.18 Corrected Platform Error Polling Table (CPEP)....................................................................................... 156
5.2.19 Maximum System Characteristics Table (MSCT).................................................................................... 157

5.3 ACPI Namespace.............................................................................................................................................. 160
5.3.1 Predefined Root Namespaces ..................................................................................................................... 162
5.3.2 Objects........................................................................................................................................................ 162

5.4 Definition Block Encoding............................................................................................................................... 162
5.5 Using the ACPI Control Method Source Language ...................................................................................... 164

5.5.1 ASL Statements .......................................................................................................................................... 164
5.5.2 Control Method Execution ......................................................................................................................... 165

5.6 ACPI Event Programming Model .................................................................................................................. 172



viii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.1 ACPI Event Programming Model Components.......................................................................................... 172
5.6.2 Types of ACPI Events ................................................................................................................................ 173
5.6.3 Fixed Event Handling................................................................................................................................. 174
5.6.4 General-Purpose Event Handling ............................................................................................................... 175
5.6.5 Device Object Notifications ....................................................................................................................... 178
5.6.6 Device Class-Specific Objects.................................................................................................................... 183
5.6.7 Predefined ACPI Names for Objects, Methods, and Resources ................................................................. 185

5.7 Predefined Objects ........................................................................................................................................... 193
5.7.1 \_GL (Global Lock Mutex)......................................................................................................................... 193
5.7.2 \_OSI (Operating System Interfaces).......................................................................................................... 193
5.7.3 \_OS (OS Name Object) ............................................................................................................................. 196
5.7.4 \_REV (Revision Data Object) ................................................................................................................... 197

5.8 System Configuration Objects......................................................................................................................... 197
5.8.1 _PIC Method .............................................................................................................................................. 197

6 DEVICE CONFIGURATION.............................................................................................................. 199
6.1 Device Identification Objects........................................................................................................................... 199

6.1.1 _ADR (Address)......................................................................................................................................... 200
6.1.2 _CID (Compatible ID)................................................................................................................................ 201
6.1.3 _DDN (DOS Device Name) ....................................................................................................................... 201
6.1.4 _HID (Hardware ID) .................................................................................................................................. 202
6.1.5 _MLS (Multiple Language String) ............................................................................................................. 202
6.1.6 _PLD (Physical Device Location) .............................................................................................................. 203
6.1.7 _STR (String) ............................................................................................................................................. 209
6.1.8 _SUN (Slot User Number) ......................................................................................................................... 210
6.1.9 _UID (Unique ID) ...................................................................................................................................... 210

6.2 Device Configuration Objects ......................................................................................................................... 210
6.2.1 _CDM (Clock Domain) .............................................................................................................................. 211
6.2.2 _CRS (Current Resource Settings) ............................................................................................................. 212
6.2.3 _DIS (Disable)............................................................................................................................................ 212
6.2.4 _DMA (Direct Memory Access) ................................................................................................................ 212
6.2.5 _FIX (Fixed Register Resource Provider) .................................................................................................. 215
6.2.6 _GSB (Global System Interrupt Base)........................................................................................................ 216
6.2.7 _HPP (Hot Plug Parameters) ...................................................................................................................... 217
6.2.8 _HPX (Hot Plug Parameter Extensions)..................................................................................................... 219
6.2.9 _MAT (Multiple APIC Table Entry) .......................................................................................................... 224
6.2.10 _OSC (Operating System Capabilities) .................................................................................................... 225
6.2.11 _PRS (Possible Resource Settings)........................................................................................................... 233
6.2.12 _PRT (PCI Routing Table) ....................................................................................................................... 233
6.2.13 _PXM (Proximity).................................................................................................................................... 236
6.2.14 _SLI (System Locality Information)......................................................................................................... 236
6.2.15 _SRS (Set Resource Settings)................................................................................................................... 239

6.3 Device Insertion, Removal, and Status Objects ............................................................................................. 239
6.3.1 _EDL (Eject Device List) ........................................................................................................................... 241
6.3.2 _EJD (Ejection Dependent Device) ............................................................................................................ 241
6.3.3 _EJx (Eject) ................................................................................................................................................ 243
6.3.4 _LCK (Lock) .............................................................................................................................................. 243
6.3.5 _OST (OSPM Status Indication) ................................................................................................................ 244
6.3.6 _RMV (Remove) ........................................................................................................................................ 248
6.3.7 _STA (Status) ............................................................................................................................................. 248

6.4 Resource Data Types for ACPI ....................................................................................................................... 249
6.4.1 ASL Macros for Resource Descriptors ....................................................................................................... 249
6.4.2 Small Resource Data Type ......................................................................................................................... 249
6.4.3 Large Resource Data Type ......................................................................................................................... 254

6.5 Other Objects and Control Methods .............................................................................................................. 276
6.5.1 _INI (Init) ................................................................................................................................................... 276
6.5.2 _DCK (Dock) ............................................................................................................................................. 277



ix

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.5.3 _BDN (BIOS Dock Name)......................................................................................................................... 277
6.5.4 _REG (Region)........................................................................................................................................... 277
6.5.5 _BBN (Base Bus Number) ......................................................................................................................... 279
6.5.6 _SEG (Segment)......................................................................................................................................... 279
6.5.7 _GLK (Global Lock) .................................................................................................................................. 281

7 POWER AND PERFORMANCE MANAGEMENT......................................................................... 283
7.1 Declaring a Power Resource Object ............................................................................................................... 283

7.1.1 Defined Child Objects for a Power Resource ............................................................................................. 284
7.1.2 _OFF .......................................................................................................................................................... 284
7.1.3 _ON............................................................................................................................................................ 285
7.1.4 _STA (Status) ............................................................................................................................................. 285

7.2 Device Power Management Objects ............................................................................................................... 285
7.2.1 _DSW (Device Sleep Wake) ...................................................................................................................... 287
7.2.2 _PS0 (Power State 0).................................................................................................................................. 287
7.2.3 _PS1 (Power State 1).................................................................................................................................. 288
7.2.4 _PS2 (Power State 2).................................................................................................................................. 288
7.2.5 _PS3 (Power State 3).................................................................................................................................. 288
7.2.6 _PSC (Power State Current) ....................................................................................................................... 288
7.2.7 _PR0 (Power Resources for D0)................................................................................................................. 289
7.2.8 _PR1 (Power Resources for D1)................................................................................................................. 289
7.2.9 _PR2 (Power Resources for D2)................................................................................................................. 290
7.2.10 _PR3 (Power Resources for D3hot).......................................................................................................... 290
7.2.11 _PRW (Power Resources for Wake)......................................................................................................... 290
7.2.12 _PSW (Power State Wake)....................................................................................................................... 291
7.2.13 _IRC (In Rush Current) ............................................................................................................................ 292
7.2.14 _S1D (S1 Device State) ............................................................................................................................ 292
7.2.15 _S2D (S2 Device State) ............................................................................................................................ 293
7.2.16 _S3D (S3 Device State) ............................................................................................................................ 293
7.2.17 _S4D (S4 Device State) ............................................................................................................................ 294
7.2.18 _S0W (S0 Device Wake State)................................................................................................................. 295
7.2.19 _S1W (S1 Device Wake State)................................................................................................................. 295
7.2.20 _S2W (S2 Device Wake State)................................................................................................................. 295
7.2.21 _S3W (S3 Device Wake State)................................................................................................................. 295
7.2.22 _S4W (S4 Device Wake State)................................................................................................................. 296

7.3 OEM-Supplied System-Level Control Methods ............................................................................................ 296
7.3.1 \_BFS (Back From Sleep)........................................................................................................................... 296
7.3.2 \_PTS (Prepare To Sleep) ........................................................................................................................... 297
7.3.3 \_GTS (Going To Sleep)............................................................................................................................. 297
7.3.4 System \_Sx states ...................................................................................................................................... 298
7.3.5 _SWS (System Wake Source) .................................................................................................................... 302
7.3.6 \_TTS (Transition To State)........................................................................................................................ 303
7.3.7 \_WAK (System Wake).............................................................................................................................. 303

7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS ............................................................................... 304

8 PROCESSOR CONFIGURATION AND CONTROL ...................................................................... 307
8.1 Processor Power States .................................................................................................................................... 307

8.1.1 Processor Power State C0........................................................................................................................... 309
8.1.2 Processor Power State C1........................................................................................................................... 311
8.1.3 Processor Power State C2........................................................................................................................... 311
8.1.4 Processor Power State C3........................................................................................................................... 311
8.1.5 Additional Processor Power States ............................................................................................................. 312

8.2 Flushing Caches................................................................................................................................................ 312
8.3 Power, Performance, and Throttling State Dependencies ............................................................................ 313
8.4 Declaring Processors ........................................................................................................................................ 313

8.4.1 _PDC (Processor Driver Capabilities) ........................................................................................................ 314
8.4.2 Processor Power State Control ................................................................................................................... 315



x

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.3 Processor Throttling Controls..................................................................................................................... 320
8.4.4 Processor Performance Control .................................................................................................................. 326
8.4.5 _PPE (Polling for Platform Errors)............................................................................................................. 333

8.5 Processor Aggregator Device........................................................................................................................... 333
8.5.1 Logical Processor Idling............................................................................................................................. 333

9 ACPI-DEFINED DEVICES AND DEVICE SPECIFIC OBJECTS................................................. 335
9.1 \_SI System Indicators ..................................................................................................................................... 335

9.1.1 _SST (System Status) ................................................................................................................................. 335
9.1.2 _MSG (Message)........................................................................................................................................ 335
9.1.3 _BLT (Battery Level Threshold) ................................................................................................................ 335

9.2 Ambient Light Sensor Device .......................................................................................................................... 336
9.2.1 Overview .................................................................................................................................................... 336
9.2.2 _ALI (Ambient Light Illuminance) ............................................................................................................ 337
9.2.3 _ALT (Ambient Light Temperature) .......................................................................................................... 337
9.2.4 _ALC (Ambient Light Color Chromaticity) ............................................................................................... 337
9.2.5 _ALR (Ambient Light Response)............................................................................................................... 338
9.2.6 _ALP (Ambient Light Polling)................................................................................................................... 342
9.2.7 Ambient Light Sensor Events..................................................................................................................... 342
9.2.8 Relationship to Backlight Control Methods................................................................................................ 342

9.3 Battery Device................................................................................................................................................... 343
9.4 Control Method Lid Device ............................................................................................................................. 343

9.4.1 _LID ........................................................................................................................................................... 343

9.5 Control Method Power and Sleep Button Devices......................................................................................... 343
9.6 Embedded Controller Device .......................................................................................................................... 344
9.7 Generic Container Device................................................................................................................................ 344
9.8 ATA Controller Devices................................................................................................................................... 344

9.8.1 Objects for Both ATA and SATA Controllers............................................................................................ 345
9.8.2 IDE Controller Device................................................................................................................................ 346
9.8.3 Serial ATA (SATA) Controller Device ...................................................................................................... 348

9.9 Floppy Controller Device Objects................................................................................................................... 350
9.9.1 _FDE (Floppy Disk Enumerate) ................................................................................................................. 350
9.9.2 _FDI (Floppy Disk Information) ................................................................................................................ 351
9.9.3 _FDM (Floppy Disk Drive Mode).............................................................................................................. 352

9.10 GPE Block Device........................................................................................................................................... 352
9.10.1 Matching Control Methods for General-Purpose Events in a GPE Block Device .................................... 353

9.11 Module Device ................................................................................................................................................ 353
9.11.1 Describing PCI Bus and Segment Group Numbers under Module Devices ............................................. 355

9.12 Memory Devices ............................................................................................................................................. 357
9.12.1 Address Decoding .................................................................................................................................... 358
9.12.2 Memory Bandwidth Monitoring and Reporting ....................................................................................... 358
9.12.3 _OSC Definition for Memory Device....................................................................................................... 359
9.12.4 Example: Memory Device........................................................................................................................ 360

9.13 _UPC (USB Port Capabilities) ...................................................................................................................... 360
9.13.1 USB 2.0 Host Controllers and _UPC and _PLD....................................................................................... 364

9.14 Device Object Name Collision ....................................................................................................................... 366
9.14.1 _DSM (Device Specific Method) ............................................................................................................. 366

9.15 PC/AT RTC/CMOS Devices.......................................................................................................................... 369
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00).............................................................................. 369
9.15.2 Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)....................................................................... 370
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02)...................................................... 371

9.16 User Presence Detection Device .................................................................................................................... 371
9.16.1 _UPD (User Presence Detect) .................................................................................................................. 372
9.16.2 _UPP (User Presence Polling) .................................................................................................................. 372
9.16.3 User Presence Sensor Events.................................................................................................................... 372

9.17 I/O APIC Device ............................................................................................................................................. 372



xi

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.18 Wake Alarm Device ....................................................................................................................................... 373
9.18.1 Overview .................................................................................................................................................. 373
9.18.2 _STP (Set Expired Timer Wake Policy)................................................................................................... 375
9.18.3 _STV (Set Timer Value)........................................................................................................................... 376
9.18.4 _TIP (Expired Timer Wake Policy).......................................................................................................... 376
9.18.5 _TIV (Timer Values) ................................................................................................................................ 376
9.18.6 ACPI Wakeup Alarm Events.................................................................................................................... 376
9.18.7 Relationship to Real Time Clock Alarm................................................................................................... 376
9.18.8 Example ASL code................................................................................................................................... 377

10 POWER SOURCE AND POWER METER DEVICES................................................................... 379
10.1 Smart Battery Subsystems............................................................................................................................. 379

10.1.1 ACPI Smart Battery Status Change Notification Requirements ............................................................... 381
10.1.2 Smart Battery Objects............................................................................................................................... 382
10.1.3 _SBS (Smart Battery Subsystem) ............................................................................................................. 382

10.2 Control Method Batteries .............................................................................................................................. 385
10.2.1 Battery Events .......................................................................................................................................... 385
10.2.2 Battery Control Methods .......................................................................................................................... 386

10.3 AC Adapters and Power Source Objects...................................................................................................... 398
10.3.1 _PSR (Power Source) ............................................................................................................................... 398
10.3.2 _PCL (Power Consumer List) .................................................................................................................. 399
10.3.3 _PIF (Power Source Information)............................................................................................................. 399
10.3.4 _PRL (Power Source Redundancy List) ................................................................................................... 400

10.4 Power Meters.................................................................................................................................................. 400
10.4.1 _PMC (Power Meter Capabilities) ........................................................................................................... 400
10.4.2 _PTP (Power Trip Points)......................................................................................................................... 402
10.4.3 _PMM (Power Meter Measurement) ........................................................................................................ 403
10.4.4 _PAI (Power Averaging Interval)............................................................................................................. 403
10.4.5 _GAI (Get Averaging Interval) ................................................................................................................ 403
10.4.6 _SHL (Set Hardware Limit) ..................................................................................................................... 404
10.4.7 _GHL (Get Hardware Limit) .................................................................................................................... 404
10.4.8 _PMD (Power Metered Devices).............................................................................................................. 404

10.5 Example: Power Source and Power Meter Namespace .............................................................................. 405

11 THERMAL MANAGEMENT ........................................................................................................... 407
11.1 Thermal Control............................................................................................................................................. 407

11.1.1 Active, Passive, and Critical Policies ....................................................................................................... 408
11.1.2 Dynamically Changing Cooling Temperature Trip Points........................................................................ 409
11.1.3 Detecting Temperature Changes............................................................................................................... 410
11.1.4 Active Cooling ......................................................................................................................................... 412
11.1.5 Passive Cooling ........................................................................................................................................ 412
11.1.6 Critical Shutdown..................................................................................................................................... 414

11.2 Cooling Preferences........................................................................................................................................ 415
11.2.1 Evaluating Thermal Device Lists ............................................................................................................. 416
11.2.2 Evaluating Device Thermal Relationship Information ............................................................................. 417
11.2.3 Fan Device Notifications .......................................................................................................................... 417

11.3 Fan Device....................................................................................................................................................... 417
11.3.1 Fan Objects............................................................................................................................................... 417

11.4 Thermal Objects............................................................................................................................................. 421
11.4.1 _ACx (Active Cooling)............................................................................................................................. 422
11.4.2 _ALx (Active List) ................................................................................................................................... 422
11.4.3 _ART (Active Cooling Relationship Table) ............................................................................................. 423
11.4.4 _CRT (Critical Temperature) ................................................................................................................... 425
11.4.5 _DTI (Device Temperature Indication) .................................................................................................... 425
11.4.6 _HOT (Hot Temperature) ......................................................................................................................... 425
11.4.7 _NTT (Notification Temperature Threshold) ........................................................................................... 426
11.4.8 _PSL (Passive List) .................................................................................................................................. 426



xii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.4.9 _PSV (Passive) ......................................................................................................................................... 426
11.4.10 _RTV (Relative Temperature Values) .................................................................................................... 426
11.4.11 _SCP (Set Cooling Policy) ..................................................................................................................... 427
11.4.12 _TC1 (Thermal Constant 1).................................................................................................................... 429
11.4.13 _TC2 (Thermal Constant 2).................................................................................................................... 430
11.4.14 _TMP (Temperature) .............................................................................................................................. 430
11.4.15 _TPT (Trip Point Temperature).............................................................................................................. 430
11.4.16 _TRT (Thermal Relationship Table) ...................................................................................................... 430
11.4.17 _TSP (Thermal Sampling Period)........................................................................................................... 431
11.4.18 _TST (Temperature Sensor Threshold) .................................................................................................. 431
11.4.19 _TZD (Thermal Zone Devices) .............................................................................................................. 432
11.4.20 _TZM (Thermal Zone Member) ............................................................................................................. 432
11.4.21 _TZP (Thermal Zone Polling) ................................................................................................................ 432

11.5 Native OS Device Driver Thermal Interfaces .............................................................................................. 433
11.6 Thermal Zone Interface Requirements ........................................................................................................ 433
11.7 Thermal Zone Examples................................................................................................................................ 434

11.7.1 Example: The Basic Thermal Zone .......................................................................................................... 434
11.7.2 Example: Multiple-Speed Fans................................................................................................................. 435
11.7.3 Example: Thermal Zone with Multiple Devices....................................................................................... 436

12 ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATION ....................................... 443
12.1 Embedded Controller Interface Description................................................................................................ 443
12.2 Embedded Controller Register Descriptions ............................................................................................... 446

12.2.1 Embedded Controller Status, EC_SC (R)................................................................................................. 447
12.2.2 Embedded Controller Command, EC_SC (W) ......................................................................................... 448
12.2.3 Embedded Controller Data, EC_DATA (R/W) ........................................................................................ 448

12.3 Embedded Controller Command Set ........................................................................................................... 448
12.3.1 Read Embedded Controller, RD_EC (0x80)............................................................................................. 448
12.3.2 Write Embedded Controller, WR_EC (0x81)........................................................................................... 448
12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)................................................................................. 449
12.3.4 Burst Disable Embedded Controller, BD_EC (0x83) ............................................................................... 449
12.3.5 Query Embedded Controller, QR_EC (0x84)........................................................................................... 449

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT................................................. 450
12.5 Embedded Controller Firmware................................................................................................................... 450
12.6 Interrupt Model.............................................................................................................................................. 450

12.6.1 Event Interrupt Model .............................................................................................................................. 451
12.6.2 Command Interrupt Model ....................................................................................................................... 451

12.7 Embedded Controller Interfacing Algorithms............................................................................................. 451
12.8 Embedded Controller Description Information .......................................................................................... 452
12.9 SMBus Host Controller Interface via Embedded Controller ..................................................................... 452

12.9.1 Register Description ................................................................................................................................. 452
12.9.2 Protocol Description................................................................................................................................. 456
12.9.3 SMBus Register Set.................................................................................................................................. 460

12.10 SMBus Devices ............................................................................................................................................. 462
12.10.1 SMBus Device Access Restrictions........................................................................................................ 462
12.10.2 SMBus Device Command Access Restriction........................................................................................ 462

12.11 Defining an Embedded Controller Device in ACPI Namespace............................................................... 462
12.11.1 Example: EC Definition ASL Code........................................................................................................ 463

12.12 Defining an EC SMBus Host Controller in ACPI Namespace ................................................................. 463
12.12.1 Example: EC SMBus Host Controller ASL-Code .................................................................................. 464

13 ACPI SYSTEM MANAGEMENT BUS INTERFACE SPECIFICATION ................................... 465
13.1 SMBus Overview............................................................................................................................................ 465

13.1.1 SMBus Slave Addresses ........................................................................................................................... 465
13.1.2 SMBus Protocols ...................................................................................................................................... 465
13.1.3 SMBus Status Codes ................................................................................................................................ 466
13.1.4 SMBus Command Values ........................................................................................................................ 466



xiii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

13.2 Accessing the SMBus from ASL Code.......................................................................................................... 467
13.2.1 Declaring SMBus Host Controller Objects............................................................................................... 467
13.2.2 Declaring SMBus Devices........................................................................................................................ 467
13.2.3 Declaring SMBus Operation Regions....................................................................................................... 468
13.2.4 Declaring SMBus Fields........................................................................................................................... 469
13.2.5 Declaring and Using an SMBus Data Buffer............................................................................................ 471

13.3 Using the SMBus Protocols ........................................................................................................................... 472
13.3.1 Read/Write Quick (SMBQuick) ............................................................................................................... 472
13.3.2 Send/Receive Byte (SMBSendReceive) ................................................................................................... 472
13.3.3 Read/Write Byte (SMBByte).................................................................................................................... 473
13.3.4 Read/Write Word (SMBWord)................................................................................................................. 473
13.3.5 Read/Write Block (SMBBlock)................................................................................................................ 474
13.3.6 Word Process Call (SMBProcessCall)...................................................................................................... 475
13.3.7 Block Process Call (SMBBlockProcessCall)............................................................................................ 475

14 SYSTEM ADDRESS MAP INTERFACES ...................................................................................... 477
14.1 INT 15H, E820H - Query System Address Map .......................................................................................... 477
14.2 E820 Assumptions and Limitations .............................................................................................................. 479
14.3 UEFI GetMemoryMap() Boot Services Function ........................................................................................ 480
14.4 UEFI Assumptions and Limitations ............................................................................................................. 481
14.5 Example Address Map................................................................................................................................... 481
14.6 Example: Operating System Usage............................................................................................................... 483

15 WAKING AND SLEEPING............................................................................................................... 485
15.1 Sleeping States ................................................................................................................................................ 486

15.1.1 S1 Sleeping State...................................................................................................................................... 488
15.1.2 S2 Sleeping State...................................................................................................................................... 488
15.1.3 S3 Sleeping State...................................................................................................................................... 489
15.1.4 S4 Sleeping State...................................................................................................................................... 489
15.1.5 S5 Soft Off State....................................................................................................................................... 490
15.1.6 Transitioning from the Working to the Sleeping State ............................................................................. 491
15.1.7 Transitioning from the Working to the Soft Off State .............................................................................. 491

15.2 Flushing Caches.............................................................................................................................................. 491
15.3 Initialization.................................................................................................................................................... 492

15.3.1 Placing the System in ACPI Mode ........................................................................................................... 494
15.3.2 BIOS Initialization of Memory................................................................................................................. 495
15.3.3 OS Loading............................................................................................................................................... 497
15.3.4 Exiting ACPI Mode.................................................................................................................................. 498

16 NON-UNIFORM MEMORY ACCESS (NUMA) ARCHITECTURE PLATFORMS ................. 499
16.1 NUMA Node ................................................................................................................................................... 499
16.2 System Locality............................................................................................................................................... 499

16.2.1 System Resource Affinity Table Definition.............................................................................................. 499
16.3 System Locality Distance Information ......................................................................................................... 500

17 ACPI PLATFORM ERROR INTERFACES (APEI) ...................................................................... 503
17.1 Hardware Errors and Error Sources ........................................................................................................... 503
17.2 Relationship between OSPM and System Firmware................................................................................... 504
17.3 Error Source Discovery ................................................................................................................................. 504

17.3.1 Boot Error Source..................................................................................................................................... 504
17.3.2 ACPI Error Source ................................................................................................................................... 506

17.4 Firmware First Error Handling.................................................................................................................... 519
17.4.1 Example: Firmware First Handling Using NMI Notification ................................................................... 519

17.5 Error Serialization ......................................................................................................................................... 519
17.5.1 Serialization Action Table ........................................................................................................................ 520
17.5.2 Operations ................................................................................................................................................ 526

17.6 Error Injection ............................................................................................................................................... 530
17.6.1 Error Injection Table (EINJ)..................................................................................................................... 530



xiv

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.6.2 Injection Instruction Entries ..................................................................................................................... 532
17.6.3 Injection Instructions ................................................................................................................................ 533
17.6.4 Trigger Action Table ................................................................................................................................ 534
17.6.5 Error Injection Operation.......................................................................................................................... 534

18 ACPI SOURCE LANGUAGE (ASL) REFERENCE....................................................................... 535
18.1 ASL Language Grammar .............................................................................................................................. 535

18.1.1 ASL Grammar Notation ........................................................................................................................... 536
18.1.2 ASL Name and Pathname Terms.............................................................................................................. 538
18.1.3 ASL Root and Secondary Terms .............................................................................................................. 538
18.1.4 ASL Data and Constant Terms ................................................................................................................. 539
18.1.5 ASL Opcode Terms .................................................................................................................................. 541
18.1.6 ASL Primary (Terminal) Terms ............................................................................................................... 542
18.1.7 ASL Parameter Keyword Terms............................................................................................................... 551
18.1.8 ASL Resource Template Terms................................................................................................................ 552

18.2 ASL Concepts ................................................................................................................................................. 558
18.2.1 ASL Names .............................................................................................................................................. 558
18.2.2 ASL Literal Constants .............................................................................................................................. 558
18.2.3 ASL Resource Templates ......................................................................................................................... 560
18.2.4 ASL Macros ............................................................................................................................................. 562
18.2.5 ASL Data Types ....................................................................................................................................... 563

18.3 ASL Operator Summary ............................................................................................................................... 574
18.4 ASL Operator Summary By Type ................................................................................................................ 576
18.5 ASL Operator Reference ............................................................................................................................... 579

18.5.1 Acquire (Acquire a Mutex)....................................................................................................................... 579
18.5.2 Add (Integer Add) .................................................................................................................................... 579
18.5.3 Alias (Declare Name Alias)...................................................................................................................... 580
18.5.4 And (Integer Bitwise And) ....................................................................................................................... 580
18.5.5 Argx (Method Argument Data Objects) ................................................................................................... 580
18.5.6 BankField (Declare Bank/Data Field) ...................................................................................................... 580
18.5.7 Break (Break from While) ........................................................................................................................ 581
18.5.8 BreakPoint (Execution Break Point)......................................................................................................... 582
18.5.9 Buffer (Declare Buffer Object)................................................................................................................. 582
18.5.10 Case (Expression for Conditional Execution)......................................................................................... 582
18.5.11 Concatenate (Concatenate Data)............................................................................................................. 583
18.5.12 ConcatenateResTemplate (Concatenate Resource Templates) ............................................................... 583
18.5.13 CondRefOf (Create Object Reference Conditionally) ............................................................................ 583
18.5.14 Continue (Continue Innermost Enclosing While)................................................................................... 584
18.5.15 CopyObject (Copy and Store Object) ..................................................................................................... 584
18.5.16 CreateBitField (Create 1-Bit Buffer Field) ............................................................................................. 584
18.5.17 CreateByteField (Create 8-Bit Buffer Field) .......................................................................................... 585
18.5.18 CreateDWordField (Create 32-Bit Buffer Field) .................................................................................... 585
18.5.19 CreateField (Create Arbitrary Length Buffer Field) ............................................................................... 585
18.5.20 CreateQWordField (Create 64-Bit Buffer Field) .................................................................................... 585
18.5.21 CreateWordField (Create 16-Bit Buffer Field) ....................................................................................... 586
18.5.22 DataTableRegion (Create Data Table Operation Region) ...................................................................... 586
18.5.23 Debug (Debugger Output) ...................................................................................................................... 587
18.5.24 Decrement (Integer Decrement) ............................................................................................................. 587
18.5.25 Default (Default Execution Path in Switch) ........................................................................................... 587
18.5.26 DefinitionBlock (Declare Definition Block)........................................................................................... 588
18.5.27 DerefOf (Dereference an Object Reference) .......................................................................................... 588
18.5.28 Device (Declare Bus/Device Package) ................................................................................................... 588
18.5.29 Divide (Integer Divide) .......................................................................................................................... 590
18.5.30 DMA (DMA Resource Descriptor Macro) ............................................................................................. 590
18.5.31 DWordIO (DWord IO Resource Descriptor Macro)............................................................................... 591
18.5.32 DWordMemory (DWord Memory Resource Descriptor Macro)............................................................ 592
18.5.33 DWordSpace (DWord Space Resource Descriptor Macro) .................................................................... 594



xv

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.34 EISAID (EISA ID String To Integer Conversion Macro)....................................................................... 595
18.5.35 Else (Alternate Execution)...................................................................................................................... 595
18.5.36 ElseIf (Alternate/Conditional Execution) ............................................................................................... 596
18.5.37 EndDependentFn (End Dependent Function Resource Descriptor Macro) ............................................ 597
18.5.38 Event (Declare Event Synchronization Object) ...................................................................................... 597
18.5.39 ExtendedIO (Extended IO Resource Descriptor Macro) ........................................................................ 597
18.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro)...................................................... 599
18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor Macro)................................................ 600
18.5.42 External (Declare External Objects) ....................................................................................................... 601
18.5.43 Fatal (Fatal Error Check) ........................................................................................................................ 602
18.5.44 Field (Declare Field Objects).................................................................................................................. 602
18.5.45 FindSetLeftBit (Find First Set Left Bit).................................................................................................. 605
18.5.46 FindSetRightBit (Find First Set Right Bit) ............................................................................................. 605
18.5.47 FixedIO (Fixed IO Resource Descriptor Macro) .................................................................................... 605
18.5.48 FromBCD (Convert BCD To Integer) .................................................................................................... 606
18.5.49 Function (Declare Control Method)........................................................................................................ 606
18.5.50 If (Conditional Execution)...................................................................................................................... 607
18.5.51 Include (Include Additional ASL File) ................................................................................................... 607
18.5.52 Increment (Integer Increment) ................................................................................................................ 608
18.5.53 Index (Indexed Reference To Member Object) ...................................................................................... 608
18.5.54 IndexField (Declare Index/Data Fields).................................................................................................. 610
18.5.55 Interrupt (Interrupt Resource Descriptor Macro).................................................................................... 611
18.5.56 IO (IO Resource Descriptor Macro) ....................................................................................................... 612
18.5.57 IRQ (Interrupt Resource Descriptor Macro)........................................................................................... 613
18.5.58 IRQNoFlags (Interrupt Resource Descriptor Macro).............................................................................. 613
18.5.59 LAnd (Logical And) ............................................................................................................................... 614
18.5.60 LEqual (Logical Equal) .......................................................................................................................... 614
18.5.61 LGreater (Logical Greater) ..................................................................................................................... 614
18.5.62 LGreaterEqual (Logical Greater Than Or Equal) ................................................................................... 615
18.5.63 LLess (Logical Less) .............................................................................................................................. 615
18.5.64 LLessEqual (Logical Less Than Or Equal)............................................................................................. 615
18.5.65 LNot (Logical Not)................................................................................................................................. 616
18.5.66 LNotEqual (Logical Not Equal) ) ........................................................................................................... 616
18.5.67 Load (Load Definition Block) ................................................................................................................ 616
18.5.68 LoadTable (Load Definition Block From XSDT) .................................................................................. 617
18.5.69 Localx (Method Local Data Objects)...................................................................................................... 618
18.5.70 LOr (Logical Or) .................................................................................................................................... 618
18.5.71 Match (Find Object Match) .................................................................................................................... 618
18.5.72 Memory24 (Memory Resource Descriptor Macro) ................................................................................ 619
18.5.73 Memory32 (Memory Resource Descriptor Macro) ................................................................................ 620
18.5.74 Memory32Fixed (Memory Resource Descriptor Macro) ....................................................................... 621
18.5.75 Method (Declare Control Method) ......................................................................................................... 621
18.5.76 Mid (Extract Portion of Buffer or String) ............................................................................................... 623
18.5.77 Mod (Integer Modulo) ............................................................................................................................ 623
18.5.78 Multiply (Integer Multiply) .................................................................................................................... 623
18.5.79 Mutex (Declare Synchronization/Mutex Object).................................................................................... 624
18.5.80 Name (Declare Named Object)............................................................................................................... 624
18.5.81 NAnd (Integer Bitwise Nand)................................................................................................................. 625
18.5.82 NoOp Code (No Operation).................................................................................................................... 625
18.5.83 NOr (Integer Bitwise Nor)...................................................................................................................... 625
18.5.84 Not (Integer Bitwise Not) ....................................................................................................................... 625
18.5.85 Notify (Notify Object of Event).............................................................................................................. 626
18.5.86 ObjectType (Get Object Type) ............................................................................................................... 626
18.5.87 One (Constant One Object) .................................................................................................................... 627
18.5.88 Ones (Constant Ones Object) ................................................................................................................. 627
18.5.89 OperationRegion (Declare Operation Region)........................................................................................ 627
18.5.90 Or (Integer Bitwise Or)........................................................................................................................... 629



xvi

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.91 Package (Declare Package Object) ......................................................................................................... 629
18.5.92 PowerResource (Declare Power Resource) ............................................................................................ 630
18.5.93 Processor (Declare Processor) ................................................................................................................ 630
18.5.94 QWordIO (QWord IO Resource Descriptor Macro)............................................................................... 631
18.5.95 QWordMemory (QWord Memory Resource Descriptor Macro)............................................................ 632
18.5.96 QWordSpace (QWord Space Resource Descriptor Macro) .................................................................... 634
18.5.97 RefOf (Create Object Reference) ........................................................................................................... 635
18.5.98 Register (Generic Register Resource Descriptor Macro)........................................................................ 635
18.5.99 Release (Release a Mutex Synchronization Object) ............................................................................... 636
18.5.100 Reset (Reset an Event Synchronization Object) ................................................................................... 636
18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)............................................................... 637
18.5.102 Return (Return from Method Execution).............................................................................................. 637
18.5.103 Revision (Constant Revision Object).................................................................................................... 637
18.5.104 Scope (Open Named Scope)................................................................................................................. 637
18.5.105 ShiftLeft (Integer Shift Left) ................................................................................................................ 638
18.5.106 ShiftRight (Integer Shift Right) ............................................................................................................ 639
18.5.107 Signal (Signal a Synchronization Event) .............................................................................................. 639
18.5.108 SizeOf (Get Data Object Size).............................................................................................................. 639
18.5.109 Sleep (Milliseconds Sleep) ................................................................................................................... 639
18.5.110 Stall (Stall for a Short Time)................................................................................................................. 640
18.5.111 StartDependentFn (Start Dependent Function Resource Descriptor Macro) ........................................ 640
18.5.112 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)............................... 641
18.5.113 Store (Store an Object) ......................................................................................................................... 641
18.5.114 Subtract (Integer Subtract).................................................................................................................... 641
18.5.115 Switch (Select Code To Execute Based On Expression) ...................................................................... 642
18.5.116 ThermalZone (Declare Thermal Zone) ................................................................................................. 644
18.5.117 Timer (Get 64-Bit Timer Value)........................................................................................................... 644
18.5.118 ToBCD (Convert Integer to BCD)........................................................................................................ 645
18.5.119 ToBuffer (Convert Data to Buffer) ....................................................................................................... 645
18.5.120 ToDecimalString (Convert Data to Decimal String)............................................................................. 645
18.5.121 ToHexString (Convert Data to Hexadecimal String)............................................................................ 646
18.5.122 ToInteger (Convert Data to Integer) ..................................................................................................... 646
18.5.123 ToString (Convert Buffer To String) .................................................................................................... 646
18.5.124 ToUUID (Convert String to UUID Macro) .......................................................................................... 647
18.5.125 Unicode (String To Unicode Conversion Macro)................................................................................. 648
18.5.126 Unload (Unload Definition Block) ....................................................................................................... 648
18.5.127 VendorLong (Long Vendor Resource Descriptor)................................................................................ 648
18.5.128 VendorShort (Short Vendor Resource Descriptor) ............................................................................... 649
18.5.129 Wait (Wait for a Synchronization Event) ............................................................................................. 649
18.5.130 While (Conditional Loop)..................................................................................................................... 649
18.5.131 WordBusNumber (Word Bus Number Resource Descriptor Macro) ................................................... 650
18.5.132 WordIO (Word IO Resource Descriptor Macro) .................................................................................. 651
18.5.133 WordSpace (Word Space Resource Descriptor Macro) ) ..................................................................... 652
18.5.134 XOr (Integer Bitwise Xor).................................................................................................................... 654
18.5.135 Zero (Constant Zero Object)................................................................................................................. 654

19 ACPI MACHINE LANGUAGE (AML) SPECIFICATION ........................................................... 655
19.1 Notation Conventions..................................................................................................................................... 655
19.2 AML Grammar Definition ............................................................................................................................ 656

19.2.1 Table and Table Header Encoding............................................................................................................ 656
19.2.2 Name Objects Encoding ........................................................................................................................... 656
19.2.3 Data Objects Encoding ............................................................................................................................. 657
19.2.4 Package Length Encoding ........................................................................................................................ 658
19.2.5 Term Objects Encoding ............................................................................................................................ 658
19.2.6 Miscellaneous Objects Encoding.............................................................................................................. 664

19.3 AML Byte Stream Byte Values ..................................................................................................................... 665
19.4 AML Encoding of Names in the Namespace ................................................................................................ 669



xvii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A DEVICE CLASS PM SPECIFICATIONS....................................................................................... 671
A.1 Overview ........................................................................................................................................................ 671
A.2 Device Power States....................................................................................................................................... 671

A.2.1 Bus Power Management .......................................................................................................................... 672
A.2.2 Display Power Management.................................................................................................................... 672
A.2.3 PCMCIA/PCCARD/CardBus Power Management ................................................................................. 672
A.2.4 PCI Power Management .......................................................................................................................... 672
A.2.5 USB Power Management ........................................................................................................................ 672
A.2.6 Device Classes......................................................................................................................................... 673

A.3 Default Device Class ...................................................................................................................................... 673
A.3.1 Default Power State Definitions .............................................................................................................. 673
A.3.2 Default Power Management Policy ......................................................................................................... 673
A.3.3 Default Wake Events ............................................................................................................................... 674
A.3.4 Minimum Power Capabilities .................................................................................................................. 674

A.4 Audio Device Class ........................................................................................................................................ 674
A.4.1 Power State Definitions ........................................................................................................................... 674
A.4.2 Power Management Policy ...................................................................................................................... 674
A.4.3 Wake Events ............................................................................................................................................ 675
A.4.4 Minimum Power Capabilities .................................................................................................................. 675

A.5 COM Port Device Class ................................................................................................................................ 675
A.5.1 Power State Definitions ........................................................................................................................... 676
A.5.2 Power Management Policy ...................................................................................................................... 676
A.5.3 Wake Events ............................................................................................................................................ 676
A.5.4 Minimum Power Capabilities .................................................................................................................. 676

A.6 Display Device Class...................................................................................................................................... 676
A.6.1 Power State Definitions ........................................................................................................................... 677
A.6.2 Power Management Policy for the Display Class .................................................................................... 682
A.6.3 Wake Events ............................................................................................................................................ 683
A.6.4 Minimum Power Capabilities .................................................................................................................. 683
A.6.5 Performance States for Display Class Devices ........................................................................................ 683

A.7 Input Device Class ......................................................................................................................................... 685
A.7.1 Power State Definitions ........................................................................................................................... 685
A.7.2 Power Management Policy ...................................................................................................................... 685
A.7.3 Wake Events ............................................................................................................................................ 686
A.7.4 Minimum Power Capabilities .................................................................................................................. 686

A.8 Modem Device Class ..................................................................................................................................... 686
A.8.1 Technology Overview ............................................................................................................................. 686
A.8.2 Power State Definitions ........................................................................................................................... 687
A.8.3 Power Management Policy ...................................................................................................................... 688
A.8.4 Wake Events ............................................................................................................................................ 688
A.8.5 Minimum Power Capabilities .................................................................................................................. 688

A.9 Network Device Class.................................................................................................................................... 689
A.9.1 Power State Definitions ........................................................................................................................... 689
A.9.2 Power Management Policy ...................................................................................................................... 690
A.9.3 Wake Events ............................................................................................................................................ 690
A.9.4 Minimum Power Capabilities .................................................................................................................. 690

A.10 PC Card Controller Device Class............................................................................................................... 690
A.10.1 Power State Definitions ......................................................................................................................... 691
A.10.2 Power Management Policy .................................................................................................................... 692
A.10.3 Wake Events .......................................................................................................................................... 692
A.10.4 Minimum Power Capabilities ................................................................................................................ 692

A.11 Storage Device Class ................................................................................................................................... 693
A.11.1 Power State Definitions ......................................................................................................................... 693
A.11.2 Power Management Policy .................................................................................................................... 694
A.11.3 Wake Events .......................................................................................................................................... 694
A.11.4 Minimum Power Capabilities ................................................................................................................ 694



xviii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

B ACPI EXTENSIONS FOR DISPLAY ADAPTERS........................................................................ 695
B.1 Introduction ................................................................................................................................................... 695
B.2 Definitions ...................................................................................................................................................... 696
B.3 ACPI Namespace ........................................................................................................................................... 696
B.4 Display-specific Methods............................................................................................................................... 697

B.4.1 _DOS (Enable/Disable Output Switching) .............................................................................................. 697
B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter) .......................................................... 698
B.4.3 _ROM (Get ROM Data) .......................................................................................................................... 701
B.4.4 _GPD (Get POST Device) ....................................................................................................................... 702
B.4.5 _SPD (Set POST Device) ........................................................................................................................ 702
B.4.6 _VPO (Video POST Options).................................................................................................................. 703

B.5 Notifications for Display Devices.................................................................................................................. 703
B.6 Output Device-specific Methods................................................................................................................... 703

B.6.1 _ADR (Return the Unique ID for this Device) ........................................................................................ 704
B.6.2 _BCL (Query List of Brightness Control Levels Supported)................................................................... 704
B.6.3 _BCM (Set the Brightness Level) ............................................................................................................ 704
B.6.4 _BQC (Brightness Query Current level) .................................................................................................. 705
B.6.5 _DDC (Return the EDID for this Device)................................................................................................ 705
B.6.6 _DCS (Return the Status of Output Device) ............................................................................................ 705
B.6.7 _DGS (Query Graphics State).................................................................................................................. 706
B.6.8 _DSS (Device Set State) .......................................................................................................................... 706

B.7 Notifications Specific to Output Devices ...................................................................................................... 707
B.8 Notes on State Changes ................................................................................................................................. 708

INDEX ....................................................................................................................................................... 710





xx

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba









24 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1.6 ACPI Specification and the Structure Of ACPI
This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

Figure 1-1 OSPM/ACPI Global System

ACPI TablesACPI BIOSACPI Registers

Kernel

Device
Driver

ACPI
Register
Interface

ACPI Table
Interface

ACPI BIOS
Interface

- ACPI Spec Covers this area
- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Platform Hardware

Existing
industry
standard
register

interfaces to:
CMOS, PIC,

PITs, ...

ACPI Driver/
AML Interpreter

Dependent
Application

APIs

OS Specific
technologies,

interfaces, and code

OS
Independent
technologies,

interfaces,
code, and
hardware

BIOS

OSPM System Code





26 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Fixed ACPI Description Table (FADT)
Firmware ACPI Control Structure (FACS)
Differentiated System Description Table (DSDT)
Secondary System Description Table (SSDT)
Multiple APIC Description Table (MADT)
Smart Battery Table (SBST)
Extended System Description Table (XSDT)
Embedded Controller Boot Resources Table
System Resource Affinity Table (SRAT)
System Locality Information Table (SLIT)

ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):
Power management timer control/status
Power or sleep button with S5 override (also possible in generic space)
Real time clock wakeup alarm control/status
SCI /SMI routing control/status for Power Management and General-purpose events
System power state controls (sleeping/wake control) (Section 7)
Processor power state control (c states) (Section 8)
Processor throttling control/status (Section 8)
Processor performance state control/status (Section 8)
General-purpose event control/status
Global Lock control/status
System Reset control (Section 4.7.3.6)
Embedded Controller control/status (Section 12)
SMBus Host Controller (HC) control/status (Section 13)
Smart Battery Subsystem (Section 10.1)
ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2,
Section 5.6.5):

General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):

Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory

Global Lock related interfaces

ACPI Event programming model (Section 5.6)















Definition of Terms 33

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2 Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:

General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology
Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to allow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware
Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definition is provided in section 19, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)
An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple I/O subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICs commonly attached directly to
processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)
The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Control Method
A control method is a definition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of a thermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPI-compatible OS.
An ACPI-compatible system must provide a minimal set of control methods in the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by either including
control methods in the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.



34 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Central Processing Unit (CPU) or Processor
The part of a platform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines a working state, labeled G0 (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also defines processor
performance states, where the processor (while in C0) executes instructions, but with lower
performance and (potentially) lower power consumption and operating temperature. For more
information, see section 8, “Processor Configuration and Control.”

Definition Block
A definition block contains information about hardware implementation and configuration details in
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocks in the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the
contents of the Differentiated Definition Block into the ACPI Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPI Namespace, can contain
references to the Differentiated Definition Block. For more information, see section 5.2.11, “Definition
Blocks.”

Device
Hardware component outside the core chip set of a platform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Integrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget this information
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS software is responsible for saving and restoring the information.
Device Context refers to small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base
system. The OS always inserts the DSDT information into the ACPI Namespace at system boot time
and never removes it.

Unified Extensible Firmware Interface (UEFI)
An interface between the OS and the platform firmware. The interface is in the form of data tables that
contain platform related information, and boot and run-time service calls that are available to the OS
and loader. Together, these provide a standard environment for booting an OS.

Embedded Controller
The general class of microcontrollers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform design,
as long as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller Interface
A standard hardware and software communications interface between an OS driver and an embedded
controller. This allows any OS to provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
This in turn enables the OEM to provide platform features that the OS and applications can use.



Definition of Terms 35

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. The FACS is passed to an ACPI-compatible OS via the Fixed ACPI Description Table (FADT).
The FACS contains the system’s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details that
the OS needs to directly manage the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT, which contains other platform implementation and configuration details. An OEM must
provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events
A set of events that occur at the ACPI interface when a paired set of status and event bits in the fixed
feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SCI is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registers in fixed feature register space at specific address locations in system I/O
address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
general-purpose events generate SCIs.

Generic Feature
A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events.

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled G0 through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignores ignored bits in ACPI hardware registers on reads and preserves ignored bits on
writes.

Intel Architecture-Personal Computer (IA-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry-
standard PC architecture.

I/O APIC
An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the
processor’s local APIC.

I/O SAPIC
An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.



36 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses a legacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.

Legacy OS
An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.

Local SAPIC
A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/O
SAPIC.

Multiple APIC Description Table (MADT)
The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
An array of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operate in a given
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.



Definition of Terms 37

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows the
bits within a register grouping to be split between two chips.

Reserved Bits
Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bits in enable and status
registers and preserve bits in control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)
A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform description.
After the DSDT is loaded into the ACPI Namespace, each secondary description table listed in the
RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the base
support in one table, while adding smaller system options in other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem
A battery subsystem that conforms to the following specifications: Smart Battery and either Smart
Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

System Management Bus (SMBus)
A two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface
A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)
An advanced APIC commonly found on Intel ItaniumTM Processor Family-based 64-bit systems.

System Context
The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an active, low,
shareable, level interrupt.

System Management Interrupt (SMI)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems



38 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

must support a way of re-mapping the interrupt events between SMIs and SCIs when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are
marked by trip points, which are implemented to generate an SCI when the temperature in a thermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.



Definition of Terms 39

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:
1. Does application software run?
2. What is the latency from external events to application response?
3. What is the power consumption?
4. Is an OS reboot required to return to a working state?
5. Is it safe to disassemble the computer?
6. Can the state be entered and exited electronically?

Following is a list of the system states:

G3 Mechanical Off
A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of a large red switch). It is implied by the entry of this off state through a
mechanical means that no electrical current is running through the circuitry and that it can be worked
on without damaging the hardware or endangering service personnel. The OS must be restarted to
return to the Working state. No hardware context is retained. Except for the real-time clock, power
consumption is zero.

G2/S5 Soft Off
A computer state where the computer consumes a minimal amount of power. No user mode or system
mode code is run. This state requires a large latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machine in this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not
being executed, and the system “appears” to be off (from an end user’s perspective, the display is off,
and so on). Latency for returning to the Working state varies on the wake environment selected prior to
entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the
rest by system software. It is not safe to disassemble the machine in this state.

G0 Working
A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can
select, through some UI, various performance/power characteristics of the system to have the software
optimize for performance or battery life. The system responds to external events in real time. It is not
safe to disassemble the machine in this state.



40 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

S4 Non-Volatile Sleep
A special global system state that allows system context to be saved and restored (relatively slowly)
when power is lost to the motherboard. If the system has been commanded to enter S4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers.
The machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off state,
transitioning to Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OS restarting, it will reload the system context and activate it. The net effect for the
user is what looks like a resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or BIOS can save the system context takes too long from the user’s point of view. The
transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Global
system state

Software
runs Latency

Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically

G0 Working Yes 0 Large No No Yes

G1 Sleeping No >0, varies with
sleep state

Smaller No No Yes

G2/S5 Soft
Off

No Long Very near 0 Yes No Yes

G3
Mechanical
Off

No Long RTC battery Yes Yes No

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the G0 and G1 states almost exclusively (the G3 state may be used for moving the machine or
repairing it).





42 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 2-2 Summary of Device Power States

Device State Power Consumption Device Context Retained Driver Restoration

D0 - Fully-On As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization
and load

D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

2.4 Sleeping State Definitions
Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4, “System \_Sx States.” For a detailed definition of the transitions between each of the Sx states, see
section 15.1, “Sleeping States.”

S1 Sleeping State
The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping state
except that the CPU and system cache context is lost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’s reset vector after the wake event.

S3 Sleeping State
The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L2 configuration context. Control starts from the processor’s reset
vector after the wake event.

S4 Sleeping State
The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 state is similar to the S4 state except that the OS does not save any context. The system is in
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the S4 state to allow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions
Processor power states (Cx states) are processor power consumption and thermal management states within
the global working state, G0. The Cx states possess specific entry and exit semantics and are briefly defined
below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”



Definition of Terms 43

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

C0 Processor Power State
While the processor is in this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. While in the C3
state, the processor’s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions
Device and Processor performance states (Px states) are power consumption and capability states within the
active/executing states, C0 for processors and D0 for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.4.4, “Processor
Performance Control.” For a more detailed definition of each Px state from a device perspective see section
3.6, “Device and Processor Performance States,” and the device class specifications in Appendix A.

P0 Performance State
While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of a device or processor is limited below
its maximum and consumes less than maximum power.

Pn Performance State
In this performance state, the performance capability of a device or processor is at its minimum level
and consumes minimal power while remaining in an active state. State n is a maximum number and is
processor or device dependent. Processors and devices may define support for an arbitrary number of
performance states not to exceed 16.



44 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba







ACPI Overview 47

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.2 Power States
From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:

Figure 3-1 Global System Power States and Transitions

See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual devices
can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not being used.
Any device the system turns off because it is not actively in use can be turned on with short latency. (What
“short” means depends on the device. An LCD display needs to come on in sub-second times, while it is
generally acceptable to wait a few seconds for a printer to wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into one
of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
a switch and a latency of minutes is allowed, the OS could save all system context into an NVS file and
transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

G3 -Mech
Off

Legacy

Wake
Event

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure/
Power Off

G2 (S5) -
Soft Off

BIOS
Routine

C0

D0
D1

D2
D3
Modem

D0
D1

D2
D3
HDD

D0
D1

D2
D3

CDROM

C2
C1

Cn

Performance
State Px

Throttling

C0

CPU









ACPI Overview 51

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state based
on the current device requirements on that bus. For example, if all devices on a bus are in the D3 state, the
OS will send a command to the bus control chip set to remove power from the bus (thus putting the bus in
the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus in that state if all
devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be able to issue a Set
Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

When a device is to be set in a particular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS tracks all the devices on a given power
resource. When all the devices on a resource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to
be turned on, the OS first turns on the power resource using a control method and then signals the device to
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
device in that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status
OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via the SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining capacity),
the OS uses control methods from the battery’s description table to read this information. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfaces to
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer
The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devices in a device and bus
specific manner.



52 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of this bit
is listed in the device’s entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine1 (based on capabilities reported in
the description table).

When the computer is in the Sleeping state and a wake device decides to wake the machine, it signals to the
ACPI chip set. The SCI status bit corresponding to the device waking the machine is set, and the ACPI chip
set resumes the machine. After the OS is running again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from certain
states (such as the S4 state), it may start out in non-ACPI mode. In this case, the SCI status bit may be
cleared when ACPI mode is re-entered. However the platform must still attempt to record the wake source
for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device can
also be put into a low power state during the S0 system state, and that this device may generate a wake
signal in the S0 state as the following example illustrates.

1 Some OS policies may require the OS to put the machine into a global system state for which the device
can no longer wake the system. Such as when a system has very low battery power.





54 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware
as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is not
intended to describe how OEMs should build hardware.

S
w

itc
he

d
po

w
er

S
w

itc
he

d
po

w
er

ACPI core
chip set Phone

interface
Modem

controller

I/O

Control
Phone

line

PWR1 PWR2

RI

WAKE

PWR1_EN

PWR2_EN

MDM_D1
MDM_D3

I/O COM port
(UART)

I/O

COM_D3

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Obtaining the Modem Capabilities
The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports D0, D1, and D3:

D0 requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from D0,
D1, and D3)

Control methods for setting power state and resources



ACPI Overview 55

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.4.5.2 Setting the Modem Power State
While the OS is running (G0 state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the D0 state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the
PWR2_EN line. Then, OSPM runs a control method (_PS1) provided in the modem’s entry to put the
device in the D1 state. This control method asserts the MDM_D1 signal that tells the modem controller to
go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWR1 is in use. OSPM does not turn off the PWR1 resource.
It continues the state transition process by running the modem’s control method to switch the device to the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM
port is closed, the same sequence of events will take place to put it in the D3 state. Notice that these
registers might not be in the device itself. For example, the control method could read the register that
controls MDM_D3.

3.4.5.3 Obtaining the Modem Power Status
Integrated modems have no batteries; the only power status information for the device is the power state of
the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control method (_PSC)
supplied in the modem’s entry in the Differentiated Definition Block. This control method reads from the
necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer
As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can still provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devices in the appropriate power state, and puts all other devices in the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core chip set to generate a wake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OS is running, it puts the device in
the D0 state and begins handling interrupts from the modem to process the event.









ACPI Overview 59

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9.2 Battery Capacity
Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

OEM designed initial capacity for warning
OEM designed initial capacity for low

Last full charged capacity
Designed capacity

Present remaining capacity

Figure 3-3 Reporting Battery Capacity

3.9.3 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Remaining Battery Percentage[%] =
Battery Remaining Capacity [mAh/mWh]

Last Full Charged Capacity [mAh/mWh]
* 100

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Remaining Battery Life [h]=
Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels
A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteries in
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM-designed levels, but cannot set these values lower than the OEM-designed
values, as shown in the figure below



60 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Warning

Low

Full

Critical

OEM-designed initial capacity for warning (minimum)

OEM-designed initial capacity for low (minimum)

Last full charged capacity

OSPM-selected low battery
capacity

OSPM-selected low battery warning capacity

OEM-defined Battery Critical flag

F

E

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular
machine type, so the OEM-designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.13.



ACPI Overview 61

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The table below describes how these values should be set by the OEM and interpreted by the OS.

Table 3-1 Low Battery Levels

Level Description

Warning When the total available energy (mWh) or capacity (mAh) in the batteries falls below this
level, the OS will notify the user through the UI. This value should allow for a few minutes
of run-time before the “Low” level is encountered so the user has time to wrap up any
important work, change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user
defined system state (S1-S5). In most situations this should be S4 so that system state is not
lost if the battery eventually becomes completely empty. The design of the OS should
consider that users of a multiple battery system may remove one or more of the batteries in
an attempt replace or charge it. This might result in the remaining capacity falling below
the “Low” level not leaving sufficient battery capacity for the OS to safely transition the
system into the sleeping state. Therefore, if the batteries are discharging simultaneously,
the action might need to be initiated at the point when both batteries reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the OS
must attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of
0, but an OEM may choose to put a larger value in the Smart Battery Table to provide an
extra margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the system is in a critically low state and is still providing power
to the system (in other words, the battery is discharging), the system is considered to be in
a critical energy state. The _BST control method is required to return the Critical flag on a
discharging battery only when all batteries have reached a critical state; the ACPI BIOS is
otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown
Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may be lost at
any time. For example, if a hard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt files if the write were not
completed. Even if a disk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settings if power was lost halfway through the write operation.



62 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9.5 Battery Calibration
The reported capacity of many batteries generally degrade over time, providing less run time for the user.
However, it is possible with many battery systems to provide more useable runtime on an old battery if a
calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the BIOS setup menu, or by running a custom driver and calibration
application provided by the OEM. The calibration process typically takes several hours, and the laptop
must be plugged in during this time. Ideally the application that controls this should make this as good of a
user experience as possible, for example allowing the user to schedule the system to wake up and perform
the calibration at some time when the system will not be in use. Since the calibration user experience does
not need to be different from system to system it makes sense for this service to be provided by the OSPM.
.In this way OSPM can provide a common experience for end users and eliminate the need for OEMs to
develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in section 10.2.2.5 and 10.2.2.6. First, there
is a means to detect when it would be beneficial to calibrate the battery. Second there is a means to perform
that calibration cycle. Both of those functions may be implemented by dedicated hardware such as a battery
controller chip, by firmware in the embedded controller, by the BIOS, or by OSPM. From here on any
function implemented through AML, whether or not the AML code relies on hardware, will be referred to
as “AML controlled” since the interface is the same whether the AML passes control to the hardware or
not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be reported
through the _BMD method. Alternately, the _BMD method may simply report the number of cycles before
calibration should be performed and let the OS attempt to count the cycles. A counter implemented by the
hardware or the BIOS will generally be more accurate since the batteries can be used without the OS
running, but in some cases, a system designer may opt to simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle can
be AML controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the _BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle
by calling _BMC. That method will either give control to the hardware, or will control the calibration cycle
itself. If the control of the calibration cycle is implemented entirely in AML code, the BIOS may avoid
continuously running AML code by having the initial call to _BMC start the cycle, set some state flags, and
then exit. Control of later parts of the cycle can be accomplished by putting code that checks these state
flags in the battery event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in section 10.2.



ACPI Overview 63

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.10 Thermal Management
ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone. This
notebook uses one fan for active cooling and the CPU for passive cooling.

F0: PIC, PITs,
DMA, RTC, EIO, ...

CPU

CPU/
Memory/

PCI Bridge

F2:
USB

F1: BM
IDE

SIO:
COMs,
LPT,
FDC,
ACPI

EPROM

Graphics

Embedded
Controller

D
R
A
M

L
2

D
R
A
M

PCI/PCI
Bridge

L
A
N

M
P
E
G

NVRAM

LCD

LPT

COM

HDD
1

USB
Port 1

CRT

Keyboard

PS/2
Ports

Mouse

Docking

HDD
0

FDD

Momentary

Thermal
Zone

DPR0

DPR1

P
L
L

Fan
(Active Cooling)

(Passive Cooling)

Figure 3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see section 11.5, “Thermal Zone
Interface Requirements.”













ACPI Hardware Specification 69

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.4 Register Bit Notation
Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit

Registername contains the name of the register as it appears in this specification

Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

4.5 The ACPI Hardware Model
The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (G0-G3) as illustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This state is
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device still runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 state transitions into either the G0 working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the G0
working state by always returning the status bit SCI_EN set (1) (for more information, see section 4.7.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3 state requires a total
boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “Soft Off,” or the G0 “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCIs are
generated) and the hardware uses legacy power management and configuration mechanisms. While in the
Legacy state, an ACPI-compliant OS can request a transition into the G0 working state by performing an
ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in the
G0 “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE value
to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN
bit LOW (for more information, see section 4.7.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The G0 “Working” state is the normal operating environment of an ACPI machine. In this state different
devices are dynamically transitioning between their respective power states (D0, D1, D2, D3hot, or D3)
and processors are dynamically transitioning between their respective power states (C0, C1, C2 or C3). In
this state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state. The
platform can only enter a single sleeping state at a time (referred to as the global G1 state); however, the
hardware can provide up to four system sleeping states that have different power and exit latencies
represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled wake
events and what sleeping states these support). OSPM initiates the sleeping transition by enabling the
appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state and
then setting the SLP_ENx bit. The system will then enter a sleeping state; when one of the enabled wake
events occurs, it will transition the system back to the working state (for more information, see section 15,
“Waking and Sleeping”).



70 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Another global state transition option while in the G0 “working” state is to enter the G2 “soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring the
system down in an orderly fashion (unloading applications, closing files, and so on). The policy for these
types of transitions can be associated with the ACPI power button, which when pressed generates an event
to the power button driver. When OSPM is finished preparing the operating environment for a power loss,
it will either generate a pop-up message to indicate to the user to remove power, in order to enter the G3
“Mechanical Off” state, or it will initiate a G2 “soft-off” transition by writing the value of the S5 “soft off”
system state to the SLP_TYPx register and setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low-power state until awakened by an
enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context and
wake sequences (for more information, see section 15, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping
state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence).
Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only machine will re-enter
the G0 state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy machine transitions to
the Legacy state (SCI_EN bit is clear).

S4BIOS_F
S4BIOS_REQ

ACPI_DISABLE
(SCI_EN=0)

G3 -Mech
Off

Legacy
Boot

(SCI_EN=0)

Legacy
Boot

(SCI_EN=0)

ACPI_ENABLE
(SCI_EN=1)

Legacy

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

C0

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure/
Power Off

ACPI
Boot

(SCI_EN=1)

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=(S1-S4)
and

SLP_EN

D0
D1

D2
D3

Modem

D0
D1

D2
D3
HDD

D0
D1

D2
D3

CDROM

BIOS
Routine

C2
C1

Cn

Performance
State Px

Throttling

C0

CPU

Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement
this behavior model. Events are used to notify OSPM that some action is needed, and control logic is used
by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A
hardware event is one that causes the hardware to unconditionally perform some operation. For example,
any wake event will sequence the system from a sleeping state (S1, S2, S3, and S4 in the global G1 state) to
the G0 working state (see Figure 15-1).









74 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code
(for more information, see section 5, “ACPI Software Programming Model”), which can be written to
support a wide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A good
understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many
types of hardware not listed.

Table 4-1 Feature/Programming Model Summary

Feature Name Description Programming Model

Power Management
Timer

24-bit or 32-bit free running timer. Fixed Hardware Feature Control
Logic

Power Button User pushes button to switch the system
between the working and sleeping states.

Fixed Hardware Event and
Control Logic or Generic
Hardware Event and Logic

Sleep Button User pushes button to switch the system
between the working and sleeping state.

Fixed Hardware Event and
Control Logic or Generic
Hardware Event and Logic

Power Button Override User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm Programmed time to wake the system. Optional Fixed Hardware Event2

Sleep/Wake Control
Logic

Logic used to transition the system
between the sleeping and working states.

Fixed Hardware Control and
Event Logic

Embedded Controller
Interface

ACPI Embedded Controller protocol and
interface, as described in section 12,
“ACPI Embedded Controller Interface
Specification.”

Generic Hardware Event Logic,
must reside in the general-
purpose register block

Legacy/ACPI Select Status bit that indicates the system is
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

Lid switch Button used to indicate whether the
system’s lid is open or closed (mobile
systems only).

Generic Hardware Event Feature

C1 Power State Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control Logic to place the processor into a C2
power state.

Fixed Hardware Control Logic

C3 Power Control Logic to place the processor into a C3
power state.

Fixed Hardware Control Logic

2 RTC wakeup alarm is required, the fixed hardware feature status bit is optional.





76 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or
unused bits within a register block always return zero for reads and have no side effects for writes (which is
a requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object \_Sx
contains a SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer values
of 0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed by the
SLP_TYPb value within the field to the “B” register block. All other bit locations will be written with the
same value. Also, OSPM does not read the SLP_TYPx value but throws it away.

Register Block A

Register Block B

Bit d
Bit c

Bit b
Bit a

Bit e

Register
Grouping

Figure 4-5 Example Fixed Hardware Feature Register Grouping

As an example, the above diagram represents a register grouping consisting of register block A and register
block b. Bits “a” and “d” are implemented in register block B and register block A returns a zero for these
bit positions. Bits “b”, “c” and “e” are implemented in register block A and register block B returns a zero
for these bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer from
the FADT. These addresses are set by the OEM as static resources, so they are never changed—OSPM
cannot re-map ACPI resources. The following register blocks are defined:





78 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:

Table 4-2 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)

PM1a_STS PM1_EVT_LEN/2 <PM1a_EVT_BLK >

PM1a_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2

PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >

PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-3 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)

PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >

PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >

Table 4-4 PM2 Control Register

Register Size (Bytes) Address (relative to register block)

PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Table 4-5 PM Timer Register

Register Size (Bytes) Address (relative to register block)

PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Table 4-6 Processor Control Registers

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See section
8.3.1, “PTC [Processor Throttling Control].”)

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

Table 4-7 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)

GPE0_STS GPE0_LEN/2 <GPE0_BLK>

GPE0_EN GPE0_LEN/2 <GPE0_BLK>+GPE0_LEN/2

GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2





80 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.1.5 Processor Control Block (P_BLK)
There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains the
processor control register (P_CNT-a 32-bit performance control configuration register), and the P_LVL2
and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of the
processor clock logic for that processor, the P_LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers
The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPE0_BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own
length variable in the FADT, where GPE0_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is 0 or 1).
The length of the GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN. The length of the
GPE1_STS and GPE1_EN registers is equal to half the GPE1_LEN. If a generic register block is not
supported then its respective block pointer and block length values in the FADT table contain zeros. The
GPE0_LEN and GPE1_LEN do not need to be the same size.

4.7.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPI.

4.7.2.1 Power Management Timer
The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system is in the working (G0) state. To allow software to
extend the number of bits in the timer, the power management timer generates an interrupt when the last bit
of the timer changes (from 0 to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management
timer. The PM Timer is accessed directly by OSPM, and its programming model is contained in fixed
register space. The programming model can be partitioned in up to three different register blocks. The
event bits are contained in the PM1_EVT register grouping, which has two register blocks, and the timer
value can be accessed through the PM_TMR_BLK register block. A block diagram of the power
management timer is illustrated in the following figure:

PMTMR_PME

TMR_EN
PM1x_EN.0

3.579545 MHz

-- 24/32

TMR_VAL
PM_TMR.0-23/0-31

TMR_STS
PM1x_STS.024/32-bit

Counter
Bits(23/31-0)

Figure 4-7 Power Management Timer













86 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-
on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’s reset vector). The WAK_STS bit
provides a mechanism to separate OSPM’s sleeping and waking code during an S1 sequence. When the
hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able
to execute instructions), any enabled wake event is allowed to set the WAK_STS bit and sequence the
system back on (to the G0 state). If the system does not support the S1 sleeping state, the WAK_STS bit
can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. This is accomplished by waking the system;
OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit–placing the
system again in the sleeping state.

4.7.2.4 Real Time Clock Alarm
If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system is in a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STS and RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible
wake source; however, it might miss certain wake events. If implemented, the RTC wake feature is
required to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the
RTC_S4 flag within the FADT (if set, then the platform supports RTC wake in the S4 state)3.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

Real Time Clock
(RTC) RTC Wake-up

Event

RTC_EN
PM1x_EN.10

RTC_STS
PM1x_STS.10

Figure 4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and
enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. This also gives the platform the capability of indicating an RTC
wake source without consuming a GPE bit, as would be required if RTC wake was not implemented using
the fixed hardware RTC feature. If the fixed hardware feature event bits are not supported, then OSPM will
attempt to determine this by reading the RTC’s status field. If the platform implements the RTC fixed
hardware feature, and this hardware consumes resources, the _FIX method can be used to correlate these
resources with the fixed hardware. See section 6.2.5, “_FIX (Fixed Register Resource Provide”, for details.

3 Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will
disable the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.







ACPI Hardware Specification 89

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.2.6 Processor Control
The ACPI specification defines several processor controls including power state control, throttling control,
and performance state control. See Section 8, “Processor Configuration and Control,” for a complete
description of the processor controls.

4.7.3 Fixed Hardware Registers
The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.7.3.1 PM1 Event Grouping
The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in a single chip. Although the
bits can be split between the two register blocks (each register block has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 PM1 Status Registers

Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN / 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two
registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state this register is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.



90 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the most
significant bit of a 24/32-bit counter changes from clear to set or set to clear.
While TMR_EN and TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system bus master
requests the system bus, and can only be cleared by writing a “1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity
(this bit monitors any bus master that can cause an incoherent cache for a
processor in the C3 state when the bus master performs a memory
transaction).

5 GBL_STS This bit is set when an SCI is generated due to the BIOS wanting the
attention of the SCI handler. BIOS will have a control bit (somewhere within
its address space) that will raise an SCI and set this bit. This bit is set in
response to the BIOS releasing control of the Global Lock and having seen
the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.

8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off state, a wake event is
generated when the power button is pressed (regardless of the PWRBTN_EN
bit setting). This bit is only set by hardware and can only be reset by software
writing a “1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a system
that has stopped working from the G0 working state into the G2 soft-off state
called the power button override. If the Power Button is held active for more
than four seconds, this bit is cleared by hardware and the system transitions
into the G2/S5 Soft Off state (unconditionally).

Support for the power button is indicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

If the power button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the system
working state, while SLPBTN_EN and SLPBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off states a wake event is
generated when the sleeping button is pressed and the SLPBTN_EN bit is set.
This bit is only set by hardware and can only be reset by software writing a
“1” to this bit position.

Support for the sleep button is indicated by the SLP_BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

If the sleep button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.



ACPI Hardware Specification 91

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Bit Name Description

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts the RTC
IRQ signal). Additionally, if the RTC_EN bit is set then the setting of the
RTC_STS bit will generate a power management event (an SCI, SMI, or
resume event). This bit is only set by hardware and can only be reset by
software writing a “1” to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit is
set prior to returning control to OSPM. If the RTC_S4 flag within the FADT
is set, and the RTC was the cause of the wake from the S4 state), then this bit
is set prior to returning control to OSPM.

11 Ignore This bit field is ignored by software.

12-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE
_STS

This bit is required for chipsets that implement PCI Express. This bit is set by
hardware to indicate that the system woke due to a PCI Express wakeup
event. A PCI Express wakeup event is defined as the PCI Express WAKE#
pin being active , one or more of the PCI Express ports being in the beacon
state, or receipt of a PCI Express PME message at a root port. This bit should
only be set when one of these events causes the system to transition from a
non-S0 system power state to the S0 system power state. This bit is set
independent of the state of the PCIEXP_WAKE_DIS bit.

Software writes a 1 to clear this bit. If the WAKE# pin is still active during
the write, one or more PCI Express ports is in the beacon state or the PME
message received indication has not been cleared in the root port, then the bit
will remain active (i.e. all inputs to this bit are level-sensitive).

Note: This bit does not itself cause a wake event or prevent entry to a
sleeping state. Thus if the bit is 1 and the system is put into a sleeping state,
the system will not automatically wake.

15 WAK_STS This bit is set when the system is in the sleeping state and an enabled wake
event occurs. Upon setting this bit system will transition to the working state.
This bit is set by hardware and can only be cleared by software writing a “1”
to this bit position.



92 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.1.2 PM1 Enable Registers

Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> + PM1_EVT_LEN / 2 System I/O or
Memory Space

Default Value: 00h
Attribute: Read/Write
Size: PM1_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two
registers: PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 Enable registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state the enables are
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as zero.



ACPI Hardware Specification 93

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 4-12 PM1 Enable Registers Fixed Hardware Feature Enable Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an
SCI event is generated anytime the TMR_STS bit is set. When this bit
is reset then no interrupt is generated when the TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS
bit are set, an SCI is raised.

6-7 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit
to generate a power management event (SCI or wake). The
PWRBTN_STS bit is set anytime the power button is asserted. The
enable bit does not have to be set to enable the setting of the
PWRBTN_STS bit by the assertion of the power button (see
description of the power button hardware).

Support for the power button is indicated by the PWR_BUTTON flag
in the FADT being reset (zero). If the PWR_BUTTON flag is set or a
power button device object is present in the ACPI Namespace, then
this bit field is ignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit
to generate a power management event (SCI or wake). The
SLPBTN_STS bit is set anytime the sleep button is asserted. The
enable bit does not have to be set to enable the setting of the
SLPBTN_STS bit by the active assertion of the sleep button (see
description of the sleep button hardware).

Support for the sleep button is indicated by the SLP_BUTTON flag in
the FADT being reset (zero). If the SLP_BUTTON flag is set or a
sleep button device object is present in the ACPI Namespace, then this
bit field is ignored by OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to
generate a wake event. The RTC_STS bit is set any time the RTC
generates an alarm.

11-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_DIS This bit is required for chipsets that implement PCI Express. This bit
disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no
impact on the value of the PCIEXP_WAKE_STS bit.

15 Reserved Reserved. These bits always return a value of zero.

4.7.3.2 PM1 Control Grouping
The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT), the
bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.



94 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.2.1 PM1 Control Registers

Register Location: <PM1a_CNT_BLK / PM1b_CNT_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read/Write
Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split between
two registers: PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these pointers to
the register space are found in the FADT. Accesses to PM1 control registers are accessed through byte and
word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-13 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI interrupt for
the following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events will
generate an SMI interrupt. It is the responsibility of the hardware to set or reset
this bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the C0 state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event to the BIOS
software, that is, generates an SMI to pass execution control to the BIOS for IA-
PC platforms. BIOS software has a corresponding enable and status bit to
control its ability to receive ACPI events (for example, BIOS_EN and
BIOS_STS). The GBL_RLS bit is set by OSPM to indicate a release of the
Global Lock and the setting of the pending bit in the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.

10-12 SLP_TYPx Defines the type of sleeping state the system enters when the SLP_EN bit is set
to one. This 3-bit field defines the type of hardware sleep state the system enters
when the SLP_EN bit is set. The \_Sx object contains 3-bit binary values
associated with the respective sleeping state (as described by the object). OSPM
takes the two values from the \_Sx object and programs each value into the
respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting this bit
causes the system to sequence into the sleeping state associated with the
SLP_TYPx fields programmed with the values from the \_Sx object.

14-15 Reserved Reserved. This field always returns zero.



ACPI Hardware Specification 95

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System I/O or Memory Space
Default Value: 00h
Attribute: Read-Only
Size: 32 bits

This read-only register returns the current value of the power management timer (PM timer). The FADT
has a flag called TMR_VAL_EXT that an OEM sets to indicate a 32-bit PM timer or reset to indicate a 24-
bit PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is accessed as 32
bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-14 PM Timer Bits

Bit Name Description

0-23 TMR_VAL This read-only field returns the running count of the power management timer.
This is a 24-bit counter that runs off a 3.579545-MHz clock and counts while
in the S0 working system state. The starting value of the timer is undefined,
thus allowing the timer to be reset (or not) by any transition to the S0 state
from any other state. The timer is reset (to any initial value), and then
continues counting until the system’s 14.31818 MHz clock is stopped upon
entering its Sx state. If the clock is restarted without a reset, then the counter
will continue counting from where it stopped.

24-31 E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the
upper eight bits; if the hardware supports a 24-bit timer then this field returns
all zeros.

4.7.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System I/O, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-15 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is
CLEAR the system arbiter is enabled and the arbiter can grant the bus to other
bus masters. When this bit is SET the system arbiter is disabled and the default
CPU has ownership of the system.

OSPM clears this bit when using the C0, C1 and C2 power states.

>0 Reserved Reserved



96 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.5 Processor Register Block (P_BLK)
This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and control
methods that can be used to control processors, see section 8, “Processor Configuration and Control.” This
register block is DWORD aligned and the context of this register block is not maintained across S3 or S4
sleeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System I/O Space
or specified by _PTC Object: System I/O, System Memory, or

Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read/Write
Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FADT.
Software treats all other CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4-16 Processor Control Register Bits

Bit Name Description

0-3 CLK_VAL Possible locations for the clock throttling value.

4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field.
THT_EN bit must be reset LOW when changing the CLK_VAL field (changing
the duty setting).

5-31 CLK_VAL Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK> + 4: System I/O Space
or specified by _CST Object: System I/O, System Memory, or

Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-17 Processor LVL2 Register Bits

Bit Name Description

0-7 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C2 power state” to the clock control
logic.



ACPI Hardware Specification 97

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System I/O Space
or specified by _CST Object: System I/O, System Memory, or

Functional Fixed Hardware Space
Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-18 Processor LVL3 Register Bits

Bit Name Description

0-7 P_LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C3 power state” to the clock control
logic.

4.7.3.6 Reset Register
The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset.
When implemented, this mechanism must reset the entire system. This includes processors, core logic, all
buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the logical
equivalent to power cycling the machine. Upon gaining control after a reset, OSPM will perform actions in
like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT (always
accessed via the natural alignment and size described in RESET_REG). To reset the machine, software will
write a value (indicated in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the
FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a function
in bus 0. Therefore, the Address_Space_ID value in RESET_REG must be set to I/O space, Memory space,
or PCI Configuration space (with a bus number of 0). As the register is only 8 bits, Register_Bit_Width
must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.

4.7.4 Generic Hardware Registers
ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in
the general-purpose event registers. The general-purpose event registers are pointed to by the GPE0_BLK
and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined ACPI
address spaces. A device’s generic hardware programming model is described through an associated object
in the ACPI Namespace, which specifies the bit’s function, location, address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bits reside in either the GPE0_STS or GPE1_STS registers, and “child”
event status bits can reside in generic address space.







100 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.4.1.1.1 General-Purpose Event 0 Status Register

Register Location: <GPE0_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero of
the general-purpose registers. Each available status bit in this register corresponds to the bit with the same
bit position in the GPE0_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a “1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPE0_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE0_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the enable
bit is set, then a set status bit in the corresponding status bit will generate an SCI bit. OSPM accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block
This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPE1 register block, and is described in the ACPI FADT’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register

Register Location: <GPE1_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available
status bit in this register corresponds to the bit with the same bit position in the GPE1_EN register. Each
available status bit in this register is set when the event is active, and can only be cleared by software
writing a “1” to its respective bit position. For the general-purpose event registers, unimplemented bits are
ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).







ACPI Hardware Specification 103

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.4.2.3 Fan
ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNP0C0B.” It should then contain a list power resources used to control the
fan.

For more information, see section 9, “ACPI-Defined Devices and Device Specific Objects.”



104 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba







ACPI Software Programming Model 107

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK, and one
or more P_BLKs), see section 4.7, “ACPI Register Model.” The PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling
low-level ACPI system functions.

The GPE0_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to a data structure known as the Differentiated System Description Table (DSDT), which is encoded in
Definition Block format (See section 5.2.11, “Definition Blocks”).

A Definition Block contains information about the platform’s hardware implementation details in the form
of data objects arranged in a hierarchical (tree-structured) entity known as the “ACPI namespace”, which
represents the platform’s hardware configuration. All definition blocks loaded by OSPM combine to form
one namespace that represents the platform. Data objects are encoded in a format known as ACPI Machine
Language or AML for short. Data objects encoded in AML are “evaluated” by an OSPM entity known as
the AML interpreter. Their values may be static or dynamic. The AML interpreter’s dynamic data object
evaluation capability includes support for programmatic evaluation, including accessing address spaces (for
example, I/O or memory accesses), calculation, and logical evaluation, to determine the result. Dynamic
namespace objects are known as “control methods”. OSPM “loads” or “unloads” an entire definition block
as a logical unit – adding to or removing the associated objects from the namespace. The DSDT is always
loaded by OSPM at boot time and cannot be unloaded. It contains a Definition Block named the
Differentiated Definition Block that contains implementation and configuration information OSPM can use
to perform power management, thermal management, or Plug and Play functionality that goes beyond the
information described by the ACPI hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from I/O space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to OSPM. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware designs to be expressed.

5.1.1 Address Space Translation
Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass through
the bridges. This translation can take the form of the addition or subtraction of an offset. Or it can take the
form of a conversion from I/O cycles into Memory cycles and back again. When translation takes place, the
addresses placed on the processor bus by the processor during a read or write cycle are not the same
addresses that are placed on the I/O bus by the I/O bus bridge. The address the processor places on the
processor bus will be known here as the processor-relative address. And the address that the bridge places
on the I/O bus will be known as the bus-relative address. Unless otherwise noted, all addresses used within
this section are processor-relative addresses.



108 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode the
entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into memory space. In this second
scenario, when the processor needs to read from an I/O register of a device underneath the second root PCI
bus, it would need to perform a memory read within the range that the root PCI bus bridge is using to map
the I/O space.

Note: Industry standard PCs do not provide address space translations because of historical compatibility
issues.





110 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.2 Compatibility
All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and values plus appending data to the 1.0
tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format
Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O
space. This was targeted at the IA-32 environment. Newer architectures require addressing mechanisms
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it
must allow the placement of control registers in address spaces other than System I/O.

5.2.3.1 Generic Address Structure
The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-1), is used to express register addresses within tables
defined by ACPI .

Table 5-1 Generic Address Structure (GAS)

Field
Byte
Length

Byte
Offset Description

Address Space
ID

1 0 The address space where the data structure or register exists.
Defined values are:

0 System Memory

1 System I/O

2 PCI Configuration Space

3 Embedded Controller

4 SMBus

5 to 0x7E Reserved

0x7F Functional Fixed Hardware

0x80 to 0xBF Reserved

0xC0 to 0xFF OEM Defined

Register Bit
Width

1 1 The size in bits of the given register. When addressing a data
structure, this field must be zero.

Register Bit
Offset

1 2 The bit offset of the given register at the given address. When
addressing a data structure, this field must be zero.

Access Size 1 3 Specifies access size.

0 Undefined (legacy reasons)

1 Byte access

2 Word access

3 Dword access

4 QWord access

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)





112 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.5.2 Finding the RSDP on UEFI Enabled Systems
In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure exists
within the EFI System Table. The OS loader is provided a pointer to the EFI System Table at invocation.
The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table and convey the
pointer to OSPM, using an OS dependent data structure, as part of the hand off of control from the OS
loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table within
the EFI System Table. EFI Configuration Table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0 and the other for
ACPI 2.0 or later specification revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is: EB9D2D30-2D88-11D3-
9A16-0090273FC14D.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is: 8868E871-E4F1-
11D3-BC22-0080C73C8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer using the current
revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is
not found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before assuming
platform control via the EFI ExitBootServices interface. See the UEFI Specification for more information.

5.2.5.3 RSDP Structure
The revision number contained within the structure indicates the size of the table structure.

Table 5-3 Root System Description Pointer Structure

Field
Byte
Length

Byte
Offset Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing
blank character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table,
bytes 0 to 19, including the checksum field. These bytes must sum
to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI
version 1.0 revision number of this table is zero. The current value
for this field is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended
Checksum

1 32 This is a checksum of the entire table, including both checksum
fields.

Reserved 3 33 Reserved field



ACPI Software Programming Model 113

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.6 System Description Table Header
All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
are listed in Table 5-5.

Table 5-4 DESCRIPTION_HEADER Fields

Field
Byte
Length

Byte
Offset Description

Signature 4 0 The ASCII string representation of the table identifier. Notice that
if OSPM finds a signature in a table that is not listed in Table 5-5,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in
the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed
to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Tables 5-5 and 5-6 contain the system description table signatures defined by this specification. These
system description tables may be defined by ACPI and documented within this specification (Table 5-5) or
they may be simply reserved by ACPI and defined by other industry specifications (Table 5-6). This allows
OS and platform specific tables to be defined and pointed to by the RSDT/XSDT as needed. For tables
defined by other industry specifications, the ACPI specification acts as gatekeeper to avoid collisions in
table signatures.



114 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference URL to a document that describes the table format. Tables defined outside of the ACPI
specification may define data value encodings in either little endian or big endian format. For the purpose
of clarity, external table definition documents should include the endian-ness of their data value encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at:
http://www.acpi.info/DOWNLOADS/referenceurls.pdf. If this document does not exist at this URL, then
there are currently no updates available.

Table 5-5 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 17.3.1, “Boot Error Source”

“CPEP” Corrected Platform Error Polling
Table

Section 5.2.18, “Corrected Platform Error Polling Table”

“DSDT” Differentiated System Description
Table

Section 5.2.11.1, “Differentiated System Description
Table”

“ECDT” Embedded Controller Boot
Resources Table

Section 5.2.15, “Embedded Controller Boot Resources
Table”

“EINJ” Error Injection Table Section 17.5.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 17.4, “Error Serialization”

”FACP” Fixed ACPI Description Table
(FADT)

Section 5.2.9, “Fixed ACPI Description Table”

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“HEST” Hardware Error Source Table Section 17.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics
Table

Section 5.2.19, “Maximum System Characteristics Table”

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures starting with
“OEM” are reserved for OEM use.

“PSDT” Persistent System Description Table Section 5.2.11.3, “Persistent System Description Table”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”

“SBST” Smart Battery Specification Table Section 5.2 14, “Smart Battery Table”

“SLIT” System Locality Distance
Information Table

Section 5.2.17, “System Locality Distance Information
Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “System Resource Affinity Table”

“SSDT” Secondary System Description
Table

Section 5.2.11.2, “Secondary System Description Table”

“XSDT” Extended System Description Table Section 5.2.8, “Extended System Description Table”



ACPI Software Programming Model 115

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-6 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature Description and External Reference

“BOOT” Simple Boot Flag Table
See: Microsoft Simple Boot Flag Specification
http://www.microsoft.com/whdc/resources/respec/specs/simp_boot.mspx

“DBGP” Debug Port Table
Microsoft Debug Port Specification
http://www.microsoft.com/HWDEV/PLATFORM/pcdesign/LR/debugspec.asp

“DMAR” DMA Remapping Table
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf

“ETDT” Event Timer Description Table (Obsolete)
IA-PC Multimedia Timers Specification. This signature has been superseded by “HPET” and is
now obsolete.

“HPET” IA-PC High Precision Event Timer Table
IA-PC High Precision Event Timer Specification
http://www.intel.com/hardwaredesign/hpetspec_1.pdf

“IBFT” iSCSI Boot Firmware Table
http://www.microsoft.com/whdc/system/platform/firmware/ibft.mspx

“IVRS” I/O Virtualization Reporting Structure
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf

“MCFG” PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0
http://pcisig.com

“MCHI” Management Controller Host Interface Table
DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
http://www.dmtf.org/standards/published_documents/DSP0256_1.0.0a.pdf

“SPCR” Serial Port Console Redirection Table
Microsoft Serial Port Console Redirection Table
http://www.microsoft.com/HWDEV/PLATFORM/server/headless/SPCR.asp

“SPMI” Server Platform Management Interface Table
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf

“TCPA” Trusted Computing Platform Alliance Capabilities Table
TCPA PC Specific Implementation Specification
https://www.trustedcomputinggroup.org/home

“UEFI” UEFI ACPI Data Table
UEFI Specification
http://www.uefi.org

“WAET” Windows ACPI Enlightenment Table
http://www.microsoft.com/whdc/system/platform/virtual/WAET.mspx

“WDAT” Watch Dog Action Table
Requirements for Hardware Watchdog Timers Supported by Windows – Design Specification
http://www.microsoft.com/whdc/system/sysinternals/hw-wdt.mspx

“WDRT” Watchdog Resource Table
Watchdog Timer Hardware Requirements for Windows Server 2003
http://www.microsoft.com/whdc/system/CEC/watchdog.mspx



116 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.7 Root System Description Table (RSDT)
OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shown in Table 5-7, starts with the signature ‘RSDT’ followed by an array of physical pointers to
other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then
interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT,
described in the next section, supersedes RSDT functionality.

Table 5-7 Root System Description Table Fields (RSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘RSDT’ Signature for the Root System Description Table.

Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.



ACPI Software Programming Model 117

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.8 Extended System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

Table 5-8 Extended System Description Table Fields (XSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘XSDT’. Signature for the Extended System Description
Table.

Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.



118 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.9 Fixed ACPI Description Table (FADT)
The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
PM_TMR_BLK, GPE0_BLK, and GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Table 5-9 Fixed ACPI Description Table (FADT) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.

Length 4 4 Length, in bytes, of the entire FADT.

Revision 1 8 4

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID. This field
must match the OEM Table ID in the RSDT.

OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and
Firmware exchange control information. See section 5.2.6, “Root
System Description Table,” for a description of the FACS. If the
X_FIRMWARE_CTRL field contains a non zero value then this
field must be zero. A zero value indicates that no FACS is
specified by this field.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL, which
was eliminated in ACPI 2.0. Platforms should set this field to zero
but field values of one are also allowed to maintain compatibility
with ACPI 1.0.



ACPI Software Programming Model 119

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

0 Unspecified
1 Desktop
2 Mobile
3 Workstation
4 Enterprise Server
5 SOHO Server
6 Appliance PC
7 Performance Server
>7 Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the Global
System interrupt number of the SCI interrupt. OSPM is required to
treat the ACPI SCI interrupt as a sharable, level, active low
interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During ACPI OS
initialization, OSPM can determine that the ACPI hardware
registers are owned by SMI (by way of the SCI_EN bit), in which
case the ACPI OS issues the ACPI_ENABLE command to the
SMI_CMD port. The SCI_EN bit effectively tracks the ownership
of the ACPI hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor. This field
is reserved and must be zero on system that does not support
System Management mode.

ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI ownership of the
ACPI hardware registers. The last action SMI does to relinquish
ownership is to set the SCI_EN bit. During the OS initialization
process, OSPM will synchronously wait for the transfer of SMI
ownership to complete, so the ACPI system releases SMI
ownership as quickly as possible. This field is reserved and must
be zero on systems that do not support Legacy Mode.

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI ownership of
the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off all
SCI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot processor.
This field is reserved and must be zero on systems that do not
support Legacy Mode.

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state. The
S4BIOS state provides an alternate way to enter the S4 state where
the firmware saves and restores the memory context. A value of
zero in S4BIOS_F indicates S4BIOS_REQ is not supported. (See
Table 5-12.)







122 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor’s memory caches. This value is typically
the smallest cache line width on any of the processor’s caches. For
more information, see the description of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle setting is
within the processor’s P_CNT register.

DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows the
software to select a nominal processor frequency below its absolute
frequency as defined by:

THTL_EN = 1

BF * DC/(2DUTY_WIDTH)

Where:

BF–Base frequency

DC–Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle is
not supported and the processor continuously runs at its base
frequency.

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm value. If
this field contains a zero, then the RTC day of the month alarm
feature is not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the day of the month alarm. See section 4.7.2.4, “Real
Time Clock Alarm,” for a description of how the hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm value. If
this field contains a zero, then the RTC month of the year alarm
feature is not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the month of the year alarm. If this feature is supported,
then the DAY_ALRM feature must be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value (hundred
and thousand year decimals). If this field contains a zero, then the
RTC centenary feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space that
OSPM can use to program the centenary field.

IAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5-11 for a description of
this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5-10 for a description of this field.



ACPI Software Programming Model 123

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

RESET_REG 12 116 The address of the reset register represented in Generic Address
Structure format (See section 4.7.3.6, “Reset Register,” for a
description of the reset mechanism.)

Note: Only System I/O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to reset the
system. (See section 4.7.3.6, “Reset Register,” for a description of
the reset mechanism.)

Reserved 3 129 Must be 0.

X_FIRMWARE_CTRL 8 132 64bit physical address of the FACS. This field is used when the
physical address of the FACS is above 4GB. If the
FIRMWARE_CTRL field contains a non zero value then this field
must be zero. A zero value indicates that no FACS is specified by
this field.

X_DSDT 8 140 64bit physical address of the DSDT.

X_PM1a_EVT_BLK 12 148 Extended address of the PM1a Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. This is a required field.

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. This field is optional; if this register block is not supported,
this field contains zero.

X_PM1a_CNT_BLK 12 172 Extended address of the PM1a Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. This is a required field.

X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. This field is optional; if this register block is not
supported, this field contains zero.

X_PM2_CNT_BLK 12 196 Extended address of the Power Management 2 Control Register
Block, represented in Generic Address Structure format. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure format.
See section 4.7.3.3, “Power Management Timer (PM_TMR),” for a
hardware description layout of this register block. This is a
required field.



124 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

X_GPE0_BLK 12 220 Extended address of the General-Purpose Event 0 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. This is an optional field; if this register block is not
supported, this field contains zero.

X_GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. This is an optional field; if this register block is not
supported, this field contains zero.

Table 5-10 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag
Bit
Length

Bit
Offset Description

WBINVD 1 0 Processor properly implements a functional equivalent to the
WBINVD IA-32 instruction.

If set, signifies that the WBINVD instruction correctly flushes the
processor caches, maintains memory coherency, and upon
completion of the instruction, all caches for the current processor
contain no cached data other than what OSPM references and
allows to be cached. If this flag is not set, the ACPI OS is
responsible for disabling all ACPI features that need this function.
This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support this function and indicate this to OSPM by
setting this field.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but does
not guarantee the caches are invalidated. This provides the
complete semantics of the WBINVD instruction, and provides
enough to support the system sleeping states. If neither of the
WBINVD flags is set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are also not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors.

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to only work
on a uniprocessor (UP) system. A one indicates that the C2 power
state is configured to work on a UP or multiprocessor (MP)
system.



ACPI Software Programming Model 125

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FACP - Flag
Bit
Length

Bit
Offset Description

PWR_BUTTON 1 4 A zero indicates the power button is handled as a fixed feature
programming model; a one indicates the power button is handled
as a control method device. If the system does not have a power
button, this value would be “1” and no sleep button device would
be present.

Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the power
button is handled as a control method device.

SLP_BUTTON 1 5 A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is handled as
a control method device.

If the system does not have a sleep button, this value would be “1”
and no sleep button device would be present.

Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the sleep
button is handled as a control method device.

FIX_RTC 1 6 A zero indicates the RTC wake status is supported in fixed register
space; a one indicates the RTC wake status is not supported in
fixed register space.

RTC_S4 1 7 Indicates whether the RTC alarm function can wake the system
from the S4 state. The RTC must be able to wake the system from
an S1, S2, or S3 sleep state. The RTC alarm can optionally support
waking the system from the S4 state, as indicated by this value.

TMR_VAL_EXT 1 8 A zero indicates TMR_VAL is implemented as a 24-bit value. A
one indicates TMR_VAL is implemented as a 32-bit value. The
TMR_STS bit is set when the most significant bit of the
TMR_VAL toggles.

DCK_CAP 1 9 A zero indicates that the system cannot support docking. A one
indicates that the system can support docking. Notice that this flag
does not indicate whether or not a docking station is currently
present; it only indicates that the system is capable of docking.

RESET_REG_SUP 1 10 If set, indicates the system supports system reset via the FADT
RESET_REG as described in section 4.7. 3.6, “Reset Register.”

SEALED_CASE 1 11 System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS 1 12 System Type Attribute. If set indicates the system cannot detect the
monitor or keyboard / mouse devices.

CPU_SW_SLP 1 13 If set, indicates to OSPM that a processor native instruction must
be executed after writing the SLP_TYPx register.

PCI_EXP_WAK 1 14 If set, indicates the platform supports the PCIEXP_WAKE_STS
bit in the PM1 Status register and the PCIEXP_WAKE_EN bit in
the PM1 Enable register. This bit must be set on platforms
containing chipsets that implement PCI Express.





ACPI Software Programming Model 127

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FACP - Flag
Bit
Length

Bit
Offset Description

FORCE_APIC_PHYSI
CAL_DESTINATION
_MODE

1 19 A one indicates that all local xAPICs must be configured for
physical destination mode. If this bit is set, interrupt delivery
operation in logical destination mode is undefined. On machines
that contain fewer than 8 local xAPICs or that do not use the
xAPIC architecture, this bit is ignored.

Reserved 12 20

5.2.9.1 Preferred PM Profile System Types
The following descriptions of preferred power management profile system types are to be used as a guide
for setting the Preferred_PM_Profile field in the FADT. OSPM can use this field to set default power
management policy parameters during OS installation.

Desktop. A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This device is
used to perform work that is considered mainstream corporate or home computing (for example, word
processing, Internet browsing, spreadsheets, and so on).

Mobile. A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devices to perform its normal functions. Most often contains one processor. This
device performs the same task set as a desktop. However it may have limitations dues to its size, thermal
requirements, and/or power source life.

Workstation. A single-user, full-featured, stationary computing device that resides on or near an
individual’s work area. Often contains more than one processor. Must be connected to AC power to
function. This device is used to perform large quantities of computations in support of such work as
CAD/CAM and other graphics-intensive applications.

Enterprise Server. A multi-user, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database, communications, or
financial operations within a corporation or government.

SOHO Server. A multi-user, stationary computing device that frequently resides in a separate area or room
in a small or home office. May contain more than one processor. Must be connected to AC power to
function. This device is generally used to support all of the networking, database, communications, and
financial operations of a small office or home office.

Appliance PC. A device specifically designed to operate in a low-noise, high-availability environment
such as a consumer’s living rooms or family room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be
connected to AC power to function. Normally they are sealed case style and may only perform a subset of
the tasks normally associated with today’s personal computers.

Performance Server. A multi-user stationary computing device that frequently resides in a separate, often
specially designed room. Will often contain more than one processor. Must be connected to AC power to
function. This device is used in an environment where power savings features are willing to be sacrificed
for better performance and quicker responsiveness.



128 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.9.2 System Type Attributes
This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power management
and device settings. For example, a system that has the SEALED_CASE bit set may take a very aggressive
low noise policy toward thermal management. In another example an OS might not load video, keyboard or
mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags
This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none are
present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.” These flags pertain only to IA-PC platforms. On other system architectures, the entire
field should be set to 0.

Table 5-11 Fixed ACPI Description Table Boot Architecture Flags

BOOT_ARCH
Bit
length

Bit
offset Description

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are
devices that have end-user accessible connectors (for example,
LPT port), or devices for which the OS must load a device
driver so that an end-user application can use a device. If clear,
the OS may assume there are no such devices and that all
devices in the system can be detected exclusively via industry
standard device enumeration mechanisms (including the ACPI
namespace).

8042 1 1 If set, indicates that the motherboard contains support for a port
60 and 64 based keyboard controller, usually implemented as an
8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the
VGA hardware (that responds to MMIO addresses A0000h-
BFFFFh and IO ports 3B0h-3BBh and 3C0h-3DFh) that may
cause machine check on this system. If clear, indicates to
OSPM that it is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCIe ASPM Controls 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

Reserved 11 5 Must be 0.

5.2.10 Firmware ACPI Control Structure (FACS)
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.9, “Fixed ACPI Description Table (FADT).”



ACPI Software Programming Model 129

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address space.
The memory where the FACS structure resides must not be reported as system AddressRangeMemory in
the system address map. For example, the E820 address map reporting interface would report the region as
AddressRangeReserved. For more information about system address map reporting interfaces, see
section 14, “System Address Map Interfaces.”

Table 5-12 Firmware ACPI Control Structure (FACS)

Field
Byte
Length

Byte
Offset Description

Signature 4 0 ‘FACS’

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. This value is 64 bytes or larger.

Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.
This value is calculated by the BIOS on a best effort basis to
indicate the base hardware configuration of the system such
that different base hardware configurations can have different
hardware signature values. OSPM uses this information in
waking from an S4 state, by comparing the current hardware
signature to the signature values saved in the non-volatile sleep
image. If the values are not the same, OSPM assumes that the
saved non-volatile image is from a different hardware
configuration and cannot be restored.

Firmware Waking
Vector

4 12 This field is superseded by the X_Firmware_Waking_Vector
field.

The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address of an
OS-specific wake function. During POST, the platform
firmware first checks if the value of the
X_Firmware_Waking_Vector field is non-zero and if so
transfers control to OSPM as outlined in the
X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function address is in memory below 1 MB
and the control is transferred while in real mode. OSPM’s wake
function restores the processors’ context.

For IA-PC platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps to.
If, for example, the physical address is 0x12345, then the BIOS
must jump to real mode address 0x1234:0x0005. In general this
relationship is

Real-mode address =

Physical address>>4 : Physical address and 0x000F

Notice that on IA-PC platforms, A20 must be enabled when the
BIOS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.



130 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-12 Firmware ACPI Control Structure (FACS) (continued)

Field
Byte
Length

Byte
Offset Description

Global Lock 4 16 This field contains the Global Lock used to synchronize access
to shared hardware resources between the OSPM environment
and an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM
or the firmware at any one time. When ownership of the lock
is attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has
been released. For example, the Global Lock can be used to
protect an embedded controller interface such that only OSPM
or the firmware will access the embedded controller interface
at any one time. See section 5.2.10.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags 4 20 Firmware control structure flags. See Table 5-13 for a
description of this field.





132 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Reserved 3 33 This value is zero.

OSPM Flags 4 36 OSPM enabled firmware control structure flags. Platform
firmware must initialize this field to zero. See Table 5-14 for
a description of the OSPM control structure feature flags.

Reserved 24 40 This value is zero.

Table 5-13 Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset Description

S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the S4 state.

64BIT_WAKE_SUP
PORTED_F

1 1 Indicates that the platform firmware supports a 64 bit
execution environment for the waking vector. When set and
the OSPM additionally set 64BIT_WAKE_F, the platform
firmware will create a 64 bit execution environment before
transferring control to the X_Firmware_Waking_Vector.

Reserved 30 2 The value is zero.

Table 5-14 OSPM Enabled Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset Description

64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the
X_Firmware_Waking_Vector requires a 64 bit execution
environment.

This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field.

This bit field has no affect on ItaniumTM Processor Family
(IPF) -based platforms, which require a 64 bit execution
environment.

Reserved 31 1 The value is zero.

5.2.10.1 Global Lock
The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the ROM
BIOS. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the FACS and is
accessed and updated by both the OS environment and the SMI environment in a defined manner to
provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the actual memory location of
the lock. The FACS and Global Lock may be located anywhere in physical memory.



ACPI Software Programming Model 133

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

By convention, this lock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its attempt to
acquire the lock, and waits for the owning environment to signal that the lock has been released before
attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after the
lock is released, a signal is sent via an interrupt mechanism to the other environment to inform it that the
lock has been released. During interrupt handling for the “lock released” event within the corresponding
environment, if the lock ownership were still desired an attempt to acquire the lock would be made. If
ownership is not acquired, then the environment must again set “pending” and wait for another “lock
release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.

Table 5-15 Global Lock Structure within the FACS

Field Bit Length Bit Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero is returned by the function, the caller has been granted ownership of the Global Lock and
can proceed. If zero is returned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt event that
the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS

acq10: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax
and edx, not 1 ; Clear pending bit
bts edx, 1 ; Check and set owner bit
adc edx, 0 ; If owned, set pending bit

lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
jnz short acq10 ; If not set, try again

cmp dl, 3 ; Was it acquired or marked pending?
sbb eax, eax ; acquired = -1, pending = 0

ret



134 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following code sequence is used by OSPM and the firmware to release ownership of the
Global Lock. If non-zero is returned, the caller must raise the appropriate event to the
other environment to signal that the Global Lock is now free. Depending on the
environment, this signaling is done by setting the either the GBL_RLS or BIOS_RLS within
their respective hardware register spaces. This signal only occurs when the other
environment attempted to acquire ownership while the lock was owned.

ReleaseGlobalLock:
mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS

rel10: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax
and edx, not 03h ; Clear owner and pending field

lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
jnz short rel10 ; If not set, try again

and eax, 1 ; Was pending set?

; If one is returned (we were pending) the caller must signal that the
; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice
that its usage when there is ownership contention could entail a significant amount of system overhead as
well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit 0 is
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to be
protected under the Global Lock, ensuring that the register’s contents do not change from underneath one
environment while the other is making changes to it. Similarly if the entire register is shared, as the case
might be for the embedded controller interface, access to the register needs to be protected under the Global
Lock.

5.2.11 Definition Blocks
A Definition Block consists of data in AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permits implementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined as
a “built in” operator.



ACPI Software Programming Model 135

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI 2.0,
see section 18.2.5, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL Definition Block’s ComplianceRevision field. See section
18.5.26, “DefinitionBlock (Declare Definition Block)”, for more information. It is the responsibility of the
ASL writer to ensure the Definition Block’s compatibility with the corresponding integer width when
setting the ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)
The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. This
Definition Block is like all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During initialization, OSPM
finds the pointer to the DSDT in the Fixed ACPI Description Table (using the FADT’s DSDT or X_DSDT
fields) and then loads the DSDT to create the ACPI Namespace.

Table 5-16 Differentiated System Description Table Fields (DSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.

Length 4 4 Length, in bytes, of the entire DSDT (including the header).

Revision 1 8 2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the interpreter to use
32-bit integers and math. Values of two and greater will cause
the interpreter to use full 64-bit integers and math.

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 The manufacture model ID.

OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID for the ASL Compiler.

Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)



136 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.11.2 Secondary System Description Table (SSDT)
Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by data in Definition Block format. There can be multiple
SSDTs present. After OSPM loads the DSDT to create the ACPI Namespace, each secondary system
description table listed in the RSDT/XSDT with a unique OEM Table ID is loaded. Note: Additional tables
can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in other
tables. For example, the OEM might put dynamic object definitions into a secondary table such that the
firmware can construct the dynamic information at boot without needing to edit the static DSDT. A SSDT
can only rely on the DSDT being loaded prior to it.

Table 5-17 Secondary System Description Table Fields (SSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.

Length 4 4 Length, in bytes, of the entire SSDT (including the header).

Revision 1 8 2

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 The manufacture model ID.

OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID for the ASL Compiler.

Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4 , “Definition Block
Encoding”)

5.2.11.3 Persistent System Description Table (PSDT)
The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
follow-on versions of the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in
like manner to the evaluation of an SSDT as described in section 5.2.11.2, “Secondary System Description
Table.”

5.2.12 Multiple APIC Description Table (MADT)
The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT–compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller (APIC) and
Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically changed by
the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports both models, an OS will install support for one model or the other; it
will not mix models. Multi-boot capability is a feature in many modern operating systems. This means that
a system may have multiple operating systems or multiple instances of an OS installed at any one time.
Platform designers must allow for this.



ACPI Software Programming Model 137

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC or SAPIC implementations.

ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support
APICs or SAPICs on an ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped
to the global system interrupt value used by ACPI. See Section 5.2.13. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that APIC or SAPIC
implementations might support (for example, identifying each processor’s local APIC ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-18 Multiple APIC Description Table (MADT) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.

Length 4 4 Length, in bytes, of the entire MADT.

Revision 1 8 3

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Local APIC
Address

4 36 The 32-bit physical address at which each processor can access
its local APIC.

Flags 4 40 Multiple APIC flags. See Table 5-19 for a description of this
field.

APIC Structure[n] — 44 A list of APIC structures for this implementation. This list will
contain all of the I/O APIC, I/O SAPIC, Local APIC, Local
SAPIC, Interrupt Source Override, Non-maskable Interrupt
Source, Local APIC NMI Source, Local APIC Address Override,
Platform Interrupt Sources, Local x2APIC, and Local x2APIC
NMI structures needed to support this platform. These structures
are described in the following sections.



138 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-19 Multiple APIC Flags

Multiple APIC
Flags

Bit
Length

Bit
Offset Description

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of APIC structures that declare the APIC features
of the machine. The first byte of each structure declares the type of that structure and the second byte
declares the length of that structure.

Table 5-20 APIC Structure Types

Value Description

0 Processor Local APIC

1 I/O APIC

2 Interrupt Source Override

3 Non-maskable Interrupt Source (NMI)

4 Local APIC NMI

5 Local APIC Address Override

6 I/O SAPIC

7 Local SAPIC

8 Platform Interrupt Sources

9 Processor Local x2APIC

0xA Local x2APIC NMI

0xB-0x7F Reserved. OSPM skips structures of the reserved type.

0x80-0xFF Reserved for OEM use

5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order
OSPM implementations may limit the number of supported processors on multi-processor platforms.
OSPM executes on the boot processor to initialize the platform including other processors. To ensure that
the boot processor is supported post initialization, two guidelines should be followed. The first is that
OSPM should initialize processors in the order that they appear in the MADT. The second is that platform
firmware should list the boot processor as the first processor entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defines logical processors in an identical manner as physical processors. To
ensure that non multi-threading aware OSPM implementations realize optimal performance on platforms
containing multi-threaded processors, two guidelines should be followed. The first is the same as above ,
that is, OSPM should initialize processors in the order that they appear in the MADT. The second is that
platform firmware should list the first logical processor of each of the individual multi-threaded processors
in the MADT before listing any of the second logical processors. This approach should be used for all
successive logical processors.



ACPI Software Programming Model 139

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in both
unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure
When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table 5-21 Processor Local APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 0 Processor Local APIC structure

Length 1 1 8

ACPI Processor
ID

1 2 The ProcessorId for which this processor is listed in the ACPI
Processor declaration operator. For a definition of the Processor
operator, see section 18.5.93, “Processor (Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-22 for a description of this field.

Table 5-22 Local APIC Flags

LocalAPIC Flags
Bit
Length

Bit
Offset Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Reserved 31 1 Must be zero.

5.2.12.3 I/O APIC Structure
In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of n is from 0 to the number of the last interrupt input on the
I/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with the
I/O APIC interrupt inputs. There is one I/O APIC structure for each I/O APIC in the system. For more
information on global system interrupts see Section 5.2.13, “Global System Interrupts.”



140 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-23 I/O APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 1 I/O APIC structure

Length 1 1 12

I/O APIC ID 1 2 The I/O APIC’s ID.

Reserved 1 3 0

I/O APIC
Address

4 4 The 32-bit physical address to access this I/O APIC. Each I/O
APIC resides at a unique address.

Global System
Interrupt Base

4 8 The global system interrupt number where this I/O APIC’s
interrupt inputs start. The number of interrupt inputs is
determined by the I/O APIC’s Max Redir Entry register.

5.2.12.4 Platforms with APIC and Dual 8259 Support
Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to
the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see section 5.2.12.5, “Interrupt
Source Override Structure” below). This means that I/O APIC interrupt inputs 0-15 must be mapped to
global system interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless overrides are used.
This allows a platform to support OSPM implementations that use the APIC model as well as OSPM
implementations that use the 8259 model (OSPM will only use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global system
interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are
ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the I/O APIC structures. For more information on hardware resource configuration see
section 6, “Configuration.”

5.2.12.5 Interrupt Source Override Structure
Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259
interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0,
but in APIC mode, it is connected to I/O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-24 Interrupt Source Override Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 2 Interrupt Source Override

Length 1 1 10



ACPI Software Programming Model 141

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Bus 1 2 0 Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System
Interrupt

4 4 The Global System Interrupt that this bus-relative interrupt source
will signal.

Flags 2 8 MPS INTI flags. See Table 5-25 for a description of this field.

The MPS INTI flags listed in Table 5-25 are identical to the flags used in Table 4-10 of the MPS version
1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table 5-25 MPS INTI Flags

Local APIC -
Flags

Bit
Length

Bit
Offset Description

Polarity 2 0 Polarity of the APIC I/O input signals:

00 Conforms to the specifications of the bus

(For example, EISA is active-low for level-triggered interrupts)

01 Active high

10 Reserved

11 Active low

Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:

00 Conforms to specifications of the bus

(For example, ISA is edge-triggered)

01 Edge-triggered

10 Reserved

11 Level-triggered

Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-standard
polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this IRQ
is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if SCI is
connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in
SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.12.6 Non-Maskable Interrupt Source Structure
This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-26 Non-maskable Source Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 3 NMI

Length 1 1 8





ACPI Software Programming Model 143

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.12.9 I/O SAPIC Structure
The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O_APIC_ID field as defined in the I/O APIC table. The Vector_Base
field remains unchanged but has been moved. The I/O APIC address has been deleted. A new address and
reserved field have been added.

Table 5-29 I/O SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 6 I/O SAPIC Structure

Length 1 1 16

I/O APIC ID 1 2 I/O SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System
Interrupt Base

4 4 The global system interrupt number where this I/O SAPIC’s
interrupt inputs start. The number of interrupt inputs is determined
by the I/O SAPIC’s Max Redir Entry register.

I/O SAPIC
Address

8 8 The 64-bit physical address to access this I/O SAPIC. Each I/O
SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information
from the I/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many I/O
SAPIC structures as I/O APIC structures and that every I/O APIC structure has a corresponding I/O SAPIC
structure (same APIC ID).

5.2.12.10 Local SAPIC Structure
The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table 5-30 Processor Local SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor
ID

1 2 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Processor statement by
matching the processor object’s ProcessorID value with this field.
For a definition of the Processor object, see section 18.5.93,
“Processor (Declare Processor).”



144 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPIC
EID

1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-22 for a description of this field.

ACPI Processor
UID Value

4 12 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
numeric value, by matching the numeric value with this field.

ACPI Processor
UID String

>=1 16 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
string, by matching the string with this field. This value is stored
as a null-terminated ASCII string.

5.2.12.11 Platform Interrupt Source Structure
The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events
(similar to SMI in IA-32). The Intel® ItaniumTM architecture permits the I/O SAPIC to send a vector value
in the interrupt message of the PMI type. This value is specified in the I/O SAPIC Vector field of the
Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the
interrupt input line used to signal such corrected errors is specified by the Global System Interrupt field in
the following table. Some systems may restrict the retrieval of corrected platform error information to a
specific processor. In such cases, the firmware indicates the processor that can retrieve the corrected
platform error information through the Processor ID and EID fields in the structure below. OSPM is
required to program the I/O SAPIC redirection table entries with the Processor ID, EID values specified by
the ACPI system firmware. On platforms where the retrieval of corrected platform error information can be
performed on any processor, the firmware indicates this capability by setting the CPEI Processor Override
flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI Processor Override Flag
is set, OSPM uses the processor specified by Processor ID, and EID fields of the structure below only as a
target processor hint and the error retrieval can be performed on any processor in the system. However,
firmware is required to specify valid values in Processor ID, EID fields to ensure backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor that is
targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can
retarget the corrected platform error interrupt to a different processor when the target processor is ejected.

Note that the _MAT object can return a buffer containing Platform Interrupt Source Structure entries. It is
allowed for such an entry to refer to a Global System Interrupt that is already specified by a Platform
Interrupt Source Structure provided through the static MADT table, provided the value of platform
interrupt source flags are identical.

Refer to the ItaniumTM Processor Family System Abstraction Layer (SAL) Specification for details on
handling the Corrected Platform Error Interrupt.



ACPI Software Programming Model 145

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-31 Platform Interrupt Sources Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 8 Platform Interrupt Source structure

Length 1 1 16

Flags 2 2 MPS INTI flags. See Table 5-25 for a description of this field.

Interrupt Type 1 4 1 PMI

2 INIT

3 Corrected Platform Error Interrupt

All other values are reserved.

Processor ID 1 5 Processor ID of destination.

Processor EID 1 6 Processor EID of destination.

I/O SAPIC
Vector

1 7 Value that OSPM must use to program the vector field of the I/O
SAPIC redirection table entry for entries with the PMI interrupt
type.

Global System
Interrupt

4 8 The Global System Interrupt that this platform interrupt will
signal.

Platform
Interrupt Source
Flags

4 12 Platform Interrupt Source Flags. See Table 5-32 for a description
of this field

Table 5-32 Platform Interrupt Source Flags

Platform
Interrupt Source
Flags

Bit
Length

Bit
Offset Description

CPEI Processor
Override

1 0 When set, indicates that retrieval of error information is allowed
from any processor and OSPM is to use the information provided
by the processor ID, EID fields of the Platform Interrupt Source
Structure (Table 5-30) as a target processor hint.

Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using the
X2APIC interrupt model, logical processors with APIC ID values of 255 and greater are required to have a
Processor Device object and must convey the processor’s APIC information to OSPM using the Processor
Local X2APIC structure. Logical processors with APIC ID values less than 255 must use the Processor
Local APIC structure to convey their APIC information to OSPM. OSPM does not expect the information
provided in this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the sleeping state, logical processors must not be added or removed, nor can their X2APIC ID or
x2APIC Flags change. When a logical processor is not present, the processor local X2APIC information is
either not reported or flagged as disabled.



146 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The format of x2APIC structure is listed in Table 5-33.

Table 5-33 Processor Local x2APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 9 Processor Local x2APIC structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. See Table 5-22 for a description of
this field.

ACPI Processor
UID

4 12 OSPM associates the X2APIC Structure with a processor object
declared in the namespace using the Device statement, when the
_UID child object of the processor device evaluates to a numeric
value, by matching the numeric value with this field

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that NMI is
connected to for each of the logical processors in the system where such a connection exists. Each NMI
connection to a processor requires a separate NMI structure. This information is needed by OSPM to enable
the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC NMI
structure. NMI connection to a logical processor with an x2APIC ID less than 255 requires a Local APIC
NMI structure. For example, if the platform contains 8 logical processors with x2APIC IDs 0-3 and 256-
259 and NMI is connected LINT1 for processor 3, 2, 256 and 257 then two Local APIC NMI entries and
two X2APIC NMI entries must be provided in the MADT.

The Local APIC NMI structure is used to specify global LINTx for all processors if all logical processors
have x2APIC ID less than 255. If the platform contains any logical processors with an x2APIC ID of 255
or greater then the Local X2APIC NMI structure must be used to specify global LINTx for ALL logical
processors. The format of x2APIC NMI structure is listed in Table 5-34.

Table 5-34 Local x2APIC NMI Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 0AH Local x2APIC NMI Structure

Length 1 1 12

Flags 2 2 Same as MPS INTI flags. See Table 5-25 for a description of this
field.



ACPI Software Programming Model 147

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

ACPI Processor
UID

4 4 UID corresponding to the ID listed in the processor Device object.
A value of 0xFFFFFFFF signifies that this applies to all
processors in the machine.

Local x2APIC
LINT#

1 8 Local x2APIC interrupt input LINTn to which NMI is connected.

Reserved 3 9 Reserved - Must be zero.

0 INTI_0 0
.
.
.
23 INTI_23

24 INTI_0 24
.
.
.
39 INTI_15

40 INTI_0 40
.
51 INTI_11
.
55 INTI_23

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Global System Interrupt Vector
(ie ACPI PnP IRQ# )

Interrupt Input Lines
on IOAPIC

‘System Vector Base’
reported in IOAPIC Struc

Figure 5-3 APIC–Global System Interrupts

5.2.13 Global System Interrupts
Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.



148 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by each
I/O APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
many interrupt inputs each I/O APIC supports and by determining the global system interrupt base for each
I/O APIC as specified by the I/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to that I/O
APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. This mapping is depicted in Figure 5-3.

There is exactly one I/O APIC structure per I/O APIC in the system.

IRQ0
.
IRQ3
.
IRQ7
IR8
.
IRQ11
.
IRQ15

8259 ISA IRQsGlobal System Interrupt Vector
(ie ACPI PnP IRQ# )

Master
8259

Slave
8259

0

8

15

7

Figure 5-4 8259–Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in
Figure 5-4.



ACPI Software Programming Model 149

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.14 Smart Battery Table (SBST)
If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the user
to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in current
(mA/mAh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh) mode so that
the energy levels specified in the SBST can be used. OSPM uses these tables with the capabilities of the
batteries to determine the different trip points. For more precise definitions of these levels, see section
3.9.3, “Battery Gas Gauge.”

Table 5-35 Smart Battery Description Table (SBST) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.

Length 4 4 Length, in bytes, of the entire SBST

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Warning Energy
Level

4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
OSPM warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which OSPM
will transition the system to a sleeping state.

Critical Energy
Level

4 44 OEM suggested platform energy level in mWh at which OSPM
performs an emergency shutdown.

5.2.15 Embedded Controller Boot Resources Table (ECDT)
This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access before
the namespace has been evaluated. If this table is not provided, the Embedded Controller region space will
not be available until the Embedded Controller device in the AML namespace has been discovered and
enumerated. The availability of the region space can be detected by providing a _REG method object
underneath the Embedded Controller device.



150 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-36 Embedded Controller Boot Resources Table Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.

Length 4 4 Length, in bytes, of the entire Embedded Controller Table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller
Command/Status register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

UID 4 60 Unique ID–Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE_BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the
embedded controller triggers.

EC_ID Variable 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “\\_SB.PCI0.ISA.EC”). Quotes
are omitted in the data field.

ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT.
ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The following example
code shows how to detect whether the Embedded Controller operation regions are available in a manner
that is backward compatible with prior versions of ACPI/OSPM.



ACPI Software Programming Model 151

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device(EC0) {
Name(REGC,Ones)
Method(_REG,2) {

If(Lequal(Arg0, 3)) {
Store(Arg1, REGC)

}
}

}
Method(ECAV,0) {

If(Lequal(REGC,Ones)) {
If(LgreaterEqual(_REV,2)) {

Return(One)
}
Else {

Return(Zero)
}
Return(REGC)

}
}

To detect the availability of the region, call the ECAV method. For example:

If (\_SB.PCI0.EC0.ECAV()) {
...regions are available...

}
else {

...regions are not available...
}

5.2.16 System Resource Affinity Table (SRAT)
This optional table provides information that allows OSPM to associate processors and memory ranges,
including ranges of memory provided by hot-added memory devices, with system localities / proximity
domains and clock domains. On NUMA platforms, SRAT information enables OSPM to optimally
configure the operating system during a point in OS initialization when evaluation of objects in the ACPI
Namespace is not yet possible. OSPM evaluates the SRAT only during OS initialization. The Local APIC
ID / Local SAPIC ID / Local x2APIC ID of all processors started at boot time must be present in the
SRAT. If the Local APIC ID / Local SAPIC ID / Local x2APIC ID of a dynamically added processor is not
present in the SRAT, a _PXM object must exist for the processor’s device or one of its ancestors in the
ACPI Namespace.

Table 5-37 Static Resource Affinity Table Format

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘SRAT’. Signature for the System Resource Affinity Table.

Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table

Revision 1 8 3

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied
OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.



152 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved to be 1 for backward compatibility

Reserved 8 40 Reserved

Static Resource
Allocation
Structure[n]

--- 48 A list of static resource allocation structures for the platform. See
section 5.2.16.1,”Processor Local APIC/SAPIC Affinity
Structure”, section 5.2.16.2 “Memory Affinity Structure”, and
section 5.2.16.3 “Processor Local x2APIC Affinity Structure”.

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure
The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or
SAPIC ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-38
provides the details of the Processor Local APIC/SAPIC Affinity structure.

Table 5-38 Processor Local APIC/SAPIC Affinity Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure

Length 1 1 16

Proximity Domain
[7:0]

1 2 Bit[7:0] of the proximity domain to which the processor belongs.

APIC ID 1 3 The processor local APIC ID.

Flags 4 4 Flags – Processor Local APIC/SAPIC Affinity Structure. See
Table 5-39 for a description of this field.

Local SAPIC EID 1 8 The processor local SAPIC EID.

Proximity Domain
[31:8]

3 9 Bit[31:8] of the proximity domain to which the processor
belongs.

Clock Domain 4 12 The clock domain to which the processor belongs. See section
6.2.1, “_CDM (Clock Domain)”.

Table 5-39 Flags – Processor Local APIC/SAPIC Affinity Structure

Field Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.

Reserved 31 1 Must be zero.





154 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-41 Flags – Memory Affinity Structure

Field Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity
Structure. This allows system firmware to populate the SRAT
with a static number of structures but only enable then as
necessary.

Hot Pluggable5 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this
memory region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of
the Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.

5.2.16.3 Processor Local x2APIC Affinity Structure
The Processor Local x2APIC Affinity structure provides the association between the local x2APIC ID of a
processor and the proximity domain to which the processor belongs. Table 5-42 provides the details of the
Processor Local x2APIC Affinity structure.

Table 5-42 Processor Local x2APIC Affinity Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved – Must be zero

Proximity Domain 4 4 The proximity domain to which the logical processor belongs.

X2APIC ID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags.
See Table 5-39 for a description of this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
section 6.2.1, “_CDM (Clock Domain)”.

Reserved 4 20 Reserved.

5 On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into
PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.



ACPI Software Programming Model 155

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.17 System Locality Distance Information Table (SLIT)
This optional table provides a matrix that describes the relative distance (memory latency) between all
System Localities, which are also referred to as Proximity Domains. Systems employing a Non Uniform
Memory Access (NUMA) architecture contain collections of hardware resources including for example,
processors, memory, and I/O buses, that comprise what is known as a “NUMA node”. Processor accesses
to memory or I/O resources within the local NUMA node is generally faster than processor accesses to
memory or I/O resources outside of the local NUMA node.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace.
See section 6.2.12, “_PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System
Locality j is the i*N + j entry in the matrix, where N is the number of System Localities. Except for the
relative distance from a System Locality to itself, each relative distance is stored twice in the matrix. This
provides the capability to describe the scenario where the relative distances for the two directions between
System Localities is different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized
to a value of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For
example, if the relative distance from System Locality i to System Locality j is 2.4, a value of 24 is stored
in table entry i*N+ j and in j*N+ i, where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (0xFF) is stored in that table entry. Distance
values of 0-9 are reserved and have no meaning.

Table 5-43 SLIT Format

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘SLIT’. Signature for the System Locality Distance
Information Table.

Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Locality Information Table, the table ID is
the manufacturer model ID.

OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.



156 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Number of System
Localities

8 36 Indicates the number of System Localities in the system.

Entry[0][0] 1 44 Matrix entry (0,0), contains a value of 10.

…

Entry[0][Number of
System Localities-1]

1 Matrix entry (0, Number of System Localities-1)

Entry[1][0] 1 Matrix entry (1,0)

…… ……

Entry[Number of
System Localities-
1][Number of System
Localities-1]

1 Matrix entry (Number of System Localities-1, Number of
System Localities-1), contains a value of 10

5.2.18 Corrected Platform Error Polling Table (CPEP)
Platforms may contain the ability to detect and correct certain operational errors while maintaining
platform function. These errors may be logged by the platform for the purpose of retrieval. Depending on
the underlying hardware support, the means for retrieving corrected platform error information varies. If
the platform hardware supports interrupt-based signaling of corrected platform errors, the MADT Platform
Interrupt Source Structure describes the Corrected Platform Error Interrupt (CPEI). See section
5.2.11.14,”Platform Interrupt Source Structure”. Alternatively, OSPM may poll processors for corrected
platform error information. Error log information retrieved from a processor may contain information for
all processors within an error reporting group. As such, it may not be necessary for OSPM to poll all
processors in the system to retrieve complete error information. This optional table provides information
that allows OSPM to poll only the processors necessary for a complete report of the platform’s corrected
platform error information.

Table 5-44 Corrected Platform Error Polling Table Format

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘CPEP’. Signature for the Corrected Platform Error Polling
Table.

Length 4 4 Length, in bytes, of the entire CPET. The length implies the
number of Entry fields at the end of the table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the Corrected Platform Error Polling Table, the table ID is the
manufacturer model ID.



ACPI Software Programming Model 157

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

OEM Revision 4 24 OEM revision of Corrected Platform Error Polling Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Reserved 8 36 Reserved, must be 0.

CPEP Processor
Structure[n]

--- 44 A list of Corrected Platform Error Polling Processor structures for
the platform. See section 5.2.17.1,” Corrected Platform Error
Polling Processor Structure”.

5.2.18.1 Corrected Platform Error Polling Processor Structure
The Corrected Platform Error Polling Processor structure provides information on the specific processors
OSPM polls for error information. Table 5-45 provides the details of the Corrected Platform Error Polling
Processor structure.

Table 5-45 Corrected Platform Error Polling Processor Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors

Length 1 1 8

Processor ID 1 2 Processor ID of destination.

Processor EID 1 3 Processor EID of destination.

Polling Interval 4 4 Platform-suggested polling interval (in milliseconds)

5.2.19 Maximum System Characteristics Table (MSCT)
This section describes the format of the Maximum System Characteristic Table (MSCT), which provides
OSPM with information characteristics of a system’s maximum topology capabilities. If the system
maximum topology is not known up front at boot time, then this table is not present. OSPM will use
information provided by the MSCT only when the System Resource Affinity Table (SRAT) exists. The
MSCT must contain all proximity and clock domains defined in the SRAT.

Table 5-46 Maximum System Characteristics Table (MSCT) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘MSCT’ Signature for the Maximum System
Characteristics Table.

Length 4 4 Length, in bytes, of the entire MSCT.



158 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the MSCT, the table ID is the manufacturer model
ID.

OEM Revision 4 24 OEM revision of MSCT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Offset to Proximity
Domain Information
Structure
[OffsetProxDomInfo]

4 36 Offset in bytes to the Proximity Domain Information
Structure table entry.

Maximum Number of
Proximity Domains

4 40 Indicates the maximum number of Proximity Domains
ever possible in the system. The number reported in this
field is (maximum domains – 1). For example if there
are 0x10000 possible domains in the system, this field
would report 0xFFFF.

Maximum Number of
Clock Domains

4 44 Indicates the maximum number of Clock Domains ever
possible in the system. The number reported in this field
is (maximum domains – 1). See section 6.2.1, “_CDM
(Clock Domain)”.

Maximum Physical
Address

8 48 Indicates the maximum Physical Address ever possible
in the system. Note: this is the top of the reachable
physical address.

Proximity Domain
Information
Structure[Maximum
Number of Proximity
Domains]

— [OffsetProx
DomInfo]

A list of Proximity Domain Information for this
implementation. The structure format is defined in the
Maximum Proximity Domain Information Structure
section.



ACPI Software Programming Model 159

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.19.1 Maximum Proximity Domain Information Structure
The Maximum Proximity Domain Information Structure is used to report system maximum characteristics.
It is likely that these characteristics may be the same for many proximity domains, but they can vary from
one proximity domain to another. This structure optimizes to cover the former case, while allowing the
flexibility for the latter as well. These structures must be organized in ascending order of the proximity
domain enumerations. All proximity domains within the Maximum Number of Proximity Domains
reported in the MSCT must be covered by one of these structures.

Table 5-47 Maximum Proximity Domain Information Structure

Field
Byte
Length

Byte
Offset Description

Revision 1 0 1

Length 1 1 22

Proximity Domain
Range (low)

4 2 The starting proximity domain for the proximity domain range
that this structure is providing information.

Proximity Domain
Range (high)

4 6 The ending proximity domain for the proximity domain range
that this structure is providing information.

Maximum
Processor
Capacity

4 10 The Maximum Processor Capacity of each of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain processors. This field must be
>= the number of processor entries for the domain in the SRAT.

Maximum
Memory Capacity

8 14 The Maximum Memory Capacity (size in bytes) of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain memory.





ACPI Software Programming Model 161

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-bit fixed-length name components together. This is useful for referring to the name of an object, such as
a control method, that is not in the scope of the current namespace.

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been
loaded.

P

R

d

d

Root

\_PR

CPU0

\PID0

_STA

_ON

_OFF

\_SB

PCI0

_HID

_CRS

IDE0

_ADR

_PR0

\_GPE

_L01

_E02

_L03

– Processor Tree

– Processor 0 object

– Power resource for IDE0

– Method to return status of power resourse

– Method to turn on power resourse

– Method to turn off power resourse

– System bus tree

– PCI bus

– Device ID

– Current resources (PCI bus number)

– IDE0 device

– PCI device #, function #

– Power resource requirements for D0

– General purpose events (GP_STS)

– Method to handle level GP_STS.1

– Method to handle edge GP_STS.2

– Method to handle level GP_STS.3

P

R

d

Package

Processor Object

Power Resource
Object

Bus/Device Object

Data Object

Control Method (AML code)

Key

Figure 5-5 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of the
namespace search rules. An attempt to access a relative object recurses toward the root until the object is
found or the root is encountered. This can cause unintentional results. For example, using the namespace
described in Figure 5.5, attempting to access a _CRS named object from within the \_SB_.PCI0.IDE0 will
have different results depending on if an absolute or relative path name is used. If an absolute pathname is
specified (\_SB_.PCI0.IDE0._CRS) an error will result since the object does not exist. Access using a
single segment name (_CRS) will actually access the \_SB_.PCI0._CRS object. Notice that the access will
occur successfully with no errors.



162 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.3.1 Predefined Root Namespaces
The following namespaces are defined under the namespace root.

Table 5-48 Namespaces Defined Under the Namespace Root

Name Description

\_GPE General events in GPE register block.

\_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined
under this namespace. ACPI allows Processor object definitions under the \_SB
namespace. Platforms may maintain the \_PR namespace for compatibility with ACPI 1.0
operating systems. An ACPI-compatible namespace may define Processor objects in
either the \_SB or \_PR scope but not both.

For more information about defining Processor objects, see section 8, “Processor
Configuration and Control.”

\_SB All Device/Bus Objects are defined under this namespace.

\_SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see section 9.1, \_SI System Indicators.”

\_TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be
defined under this namespace. Thermal Zone object definitions may now be defined under
the \_SB namespace. ACPI-compatible systems may maintain the \_TZ namespace for
compatibility with ACPI 1.0 operating systems. An ACPI-compatible namespace may
define Thermal Zone objects in either the \_SB or \_TZ scope but not both.

For more information about defining Thermal Zone objects, see section 11, “Thermal
Management.”

5.3.2 Objects
All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

Objects may contain a revision field. Successive ACPI specifications define object revisions so that they
are backwards compatible with OSPM implementations that support previous specifications / object
revisions. New object fields are added at the end of previous object definitions. OSPM interprets objects
according to the revision number it supports including all earlier revisions. As such, OSPM expects that an
object’s length can be greater than or equal to the length of the known object revision. When evaluating
objects with revision numbers greater than that known by OSPM, OSPM ignores internal object fields
values that are beyond the defined object field range for the known revision.

5.4 Definition Block Encoding
This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages. The Definition Block is encoded as a stream from beginning to end. The lead byte in the
stream comes from the AML encoding tables shown in section 18, “ACPI Source Language (ASL)
Reference,” and signifies how to interpret some number of following bytes, where each following byte can
in turn signify how to interpret some number of following bytes. For a full specification of the AML
encoding, see section 18, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents/run-time).



ACPI Software Programming Model 163

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadByte PkgLength data... LeadByte ...

PkgLength

Figure 5-6 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of 0x0FFF,
three-byte encodings of 0x0FFFFF, and four-byte length encodings of 0x0FFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly for
a datum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPI namespace and initializes objects
accordingly. The namespace for which population occurs is either from the current namespace location, as
defined by all nested packages or from the root if the name is preceded with ‘\’.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in
the “root.” Unnamed objects can be used as arguments in control methods.

Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. This is true even if the object name specified is relative. For example, the following
ASL code segments are functionally identical.

(1)
Method (DEAD,) {

Scope (\_SB_.FOO) {
Name (BAR,) // Run time definition

}
}

(2)
Scope (\_SB_) {

Name (\_SB_. FOO.BAR,) // Load time definition
}

Notice that in the above example the execution of the DEAD method will always fail because the object
\_SB_.FOO.BAR is created at load time.



164 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.5 Using the ACPI Control Method Source Language
OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4, “Definition Block
Encoding”. For example, the ASL statements that produce the example byte stream shown in that earlier
section are shown in the following ASL example. For a full specification of the ASL statements, see section
18, “ACPI Source Language (ASL) Reference.”

// ASL Example
DefinitionBlock (

"forbook.aml", // Output Filename
"DSDT", // Signature
0x02, // DSDT Compliance Revision
"OEM", // OEMID
"forbook", // TABLE ID
0x1000 // OEM Revision

)
{ // start of definition block

OperationRegion(\GIO, SystemIO, 0x125, 0x1)
Field(\GIO, ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(\_SB){ // start of scope
Device(PCI0) { // start of device

PowerResource(FET0, 0, 0) { // start of pwr
Method (_ON) {

Store (Ones, CT01) // assert power
Sleep (30) // wait 30ms

}
Method (_OFF) {

Store (Zero, CT01) // assert reset#
}
Method (_STA) {

Return (CT01)
}

} // end of power
} // end of device

} // end of scope
} // end of definition block

5.5.1 ASL Statements
ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must
have. It is written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as {x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see section 18, “ACPI Source Language (ASL)
Reference.” For a detailed specification of the ACPI Control Method Machine Language (AML), upon
which the output of the ASL translator is based, see section 19, “ACPI Machine Language (AML)
Specification.”



ACPI Software Programming Model 165

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.5.2 Control Method Execution
OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level
hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Control Methods can
reference any objects anywhere in the Namespace. Interpretation of a Control Method is not preemptive,
but it can block. When a control method does block, OSPM can initiate or continue the execution of a
different control method. A control method can only assume that access to global objects is exclusive for
any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments
Up to seven arguments can be passed to a control method. Each argument is an object that in turn could be
a “package” style object that refers to other objects. Access to the argument objects is provided via the ASL
ArgTerm (ArgX) language elements. The number of arguments passed to any control method is fixed and
is defined when the control method package is created.

Method arguments can take one of the following forms:

1) An ACPI name or namepath that refers to a named object. This includes the LocalX and ArgX names.
In this case, the object associated with the name is passed as the argument.

2) An ACPI name or namepath that refers to another control method. In this case, the method is invoked
and the return value of the method is passed as the argument. A fatal error occurs if no object is
returned from the method. If the object is not used after the method invocation it is automatically
deleted.

3) A valid ASL expression. In the case, the expression is evaluated and the object that results from this
evaluation is passed as the argument. If this object is not used after the method invocation it is
automatically deleted.

5.5.2.2 Method Calling Convention
The calling convention for control methods can best be described as call-by-reference-constant. In this
convention, objects passed as arguments are passed by “reference”, meaning that they are not copied to
new objects as they are passed to the called control method (A calling convention that copies objects or
object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the number of
buffers that must be copied. This calling convention is appropriate to the low-level nature of the ACPI
subsystem within the kernel of the host operating system where non-paged dynamic memory is typically at
a premium. The ASL programmer must be aware of the calling convention and the related side effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to modify
arguments is extremely limited. This reduces aliasing issues such as when a called method unexpectedly
modifies a object or variable that has been passed as an argument by the caller. In effect, the arguments that
are passed to control methods are passed as constants that cannot be modified except under specific
controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or modified
by the called method. In other words, when an ArgX term is used as a target operand in an ASL statement,
the existing ArgX object is not modified. Instead, the new object replaces the existing object and the ArgX
term effectively becomes a LocalX term.



166 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference created
via the RefOf ASL operator. In this case, the use of the ArgX term as a target operand will cause any
existing object stored at the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change the
value of an ArgX object. These cases are limited to Buffer and Package objects where the “value” of the
object is represented indirectly. For Buffers, a writable Index or Field can be created that refers to the
original buffer data and will allow the called method to read or modify the data. For Packages, a writable
Index can be created to allow the called method to modify the contents of individual elements of the
Package.

5.5.2.3 Local Variables and Locally Created Data Objects
Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initial control method execution, the local data objects are NULL. Access to local objects is
via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wants to
preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XYZ) {
Name (BAR, 5) // Creates \XYZ.BAR
Method (FOO, 1) {

Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
Name (BAR, 7) // Creates \XYZ.FOO.BAR
Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG
Name (\XYZ.FOOB, 3) // Creates \XYZ.FOOB

} // end method
} // end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is loaded. The
object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \XYZ.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XYZ.FOOB object is destroyed after the
\XYZ.FOO method exits.

5.5.2.4 Access to Operation Regions
Control Methods read and write data to locations in address spaces (for example, System memory and
System I/O) by using the Field operator (see section 18.5.44 Field (Declare Field Objects)”) to declare a
data element within an entity known as an “Operation Region” and then performing accesses using the data
element name. An Operation Region is a specific region of operation within an address space that is
declared as a subset of the entire address space using a starting address (offset) and a length (see section
18.5.89 “OperationRegion (Declare Operation Region)”). Control methods must have exclusive access to
any address accessed via fields declared in Operation Regions. Control methods may not directly access
any other hardware registers, including the ACPI-defined register blocks. Some of the ACPI registers, in
the defined ACPI registers blocks, are maintained on behalf of control method execution. For example, the
GPEx_BLK is not directly accessed by a control method but is used to provide an extensible interrupt
handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of the embedded controller, an embedded controller OpRegion field access may
block.



ACPI Software Programming Model 167

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

There are eight predefined Operation Region types specified by ACPI as described in Table 5-49.

Table 5-49 Operation Region Address Space Identifiers

Name (RegionSpace Keyword) Value

SystemMemory 0

SystemIO 1

PCI_Config 2

EmbeddedControl 3

SMBus 4

CMOS 5

PCIBARTarget 6

IPMI 7

Reserved 0x08-0x7F

In addition, OEMs may define Operation Regions Address Space ID types 0x80 to 0xFF.

Operation region access to the SystemMemory, SystemIO, and PCI_Config address spaces is simple and
straightforward. Operation region access to the EmbeddedControl address space is described in Section 12,
“ACPI Embedded Controller Interface Specification”. Operation region access to the SMBus address space
is described in Section 13, “ACPI System Management Bus Interface Specification”. Operation region
access to the CMOS. PCIBARTarget. and IPMI address spaces is described in the following sections.

5.5.2.4.1 CMOS Protocols
This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL. Most
computers contain an RTC/CMOS device that can be represented as a linear array of bytes of non-volatile
memory. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in devices
that are compatible with the Motorola RTC/CMOS device used in the original IBM PC/AT. Existing
RTC/CMOS devices typically contain more than 64 bytes of non-volatile RAM, and no standard
mechanism exists for access to this additional storage area. To provide access to all of the non-volatile
memory in these devices from AML, PnP IDs exist for each type of extension. These are PNP0B00,
PNP0B01, and PNP0B02. The specific devices that these PnP IDs support are described in section 9.16,
“PC/AT RTC/CMOS Device”, along with field definition ASL example code. The drivers corresponding to
these device handle operation region accesses to the CMOS operation region for their respective device
types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

5.5.2.4.2 PCI Device BAR Target Protocols
This section describes how PCI devices’ control registers can be accessed from ASL. PCI devices each
have an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many as six Base Address Registers, (BARs). These BARs contain the base address of a
series of control registers (in I/O or Memory space) for the PCI device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically using
I/O or Memory operation regions. Furthermore, a Plug and Play OS will automatically assign ownership of
the I/O and Memory regions associated with these BARs to a device driver associated with the PCI device.
An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to read and write
regions that are owned by native device drivers.



168 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device driver for
the associated PCI function. For example, if any of the BARs in a PCI function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCI function is to be entirely under the
control of the ACPI BIOS. No driver will be loaded. Thus, a PCI function can be used as a platform
controller for some task (hot-plug PCI, and so on) that the ACPI BIOS performs.

5.5.2.4.2.1 Declaring a PCI BAR Target Operation Region
PCI BARs contain the base address of an I/O or Memory region that a PCI device’s control registers lie
within. Each BAR implements a protocol for determining whether those control registers are within I/O or
Memory space and how much address space the PCI device decodes. (See the PCI Specification for more
details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI device’s
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/O or Memory cycle, not by the declaration of the operation region. The length of the region is similarly
implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the
BAR within the configuration space of the device. This would be an example of an operation region that
uses the first BAR in the device.

5.5.2.4.2.2 PCI Header Types and PCI BAR Target Operation Regions
PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI
Header Type of 0. PCI devices with other header types are bridges. The control of PCI bridges is beyond
the scope of ASL.

5.5.2.4.3 Declaring IPMI Operation Regions
This section describes the Intelligent Platform Management Interface (IPMI) address space and the use of
this address space to communicate with the Baseboard Management Controller (BMC) hardware from
AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPMI address
space represent an IPMI command and response pair. Given this uniqueness, IPMI operation regions
include restrictions on their field definitions and require the use of an IPMI-specific data buffer for all
transactions. The IPMI interface presented in this section is intended for use with any hardware
implementation compatible with the IPMI specification, regardless of the system interface type.

Support of the IPMI generic address space by ACPI-compatible operating systems is optional, and is
contingent on the existence of an ACPI IPMI device, i.e. a device with the “IPI0001” plug and play ID. If
present, OSPM should load the necessary driver software based on the system interface type as specified by
the _IFT (IPMI Interface Type) control method under the device, and register handlers for accesses into the
IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies a single IPMI network function. Operation regions are
defined only for those IPMI network functions that need to be accessed from AML. As with other regions,
IPMI operation regions are only accessible via the Field term (see section 5.5.2.4.3.1, “Declaring IPMI
Fields”).

This interface models each IPMI network function as having a 256-byte linear address range. Each byte
offset within this range corresponds to a single command value (for example, byte offset 0xC1 equates to
command value 0xC1), with a maximum of 256 command values. By doing this, IPMI address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from section 18.5.89, “OperationRegion (Declare Operation
Region]”) is described below.











ACPI Software Programming Model 173

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Component Description

SCI interrupt A level-sensitive, shareable interrupt mapped to a declared interrupt vector. The
SCI interrupt vector can be shared with other low-priority interrupts that have a
low frequency of occurrence.

ACPI AML code
general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events. This includes
using GPEx_STS events as “wake” sources as well as other general service events
defined by the OEM (“button pressed,” “thermal event,” “device present/not
present changed,” and so on).

ACPI device-specific
model events

Devices in the ACPI namespace that have ACPI-specific device IDs can provide
additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.

ACPI Embedded
Controller event model

A model that allows OEM AML code to use the response from the Embedded
Controller Query command to provide general-service event defined by the OEM.

5.6.2 Types of ACPI Events
At the ACPI hardware level, two types of events can be signaled by an SCI interrupt:

1. Fixed ACPI events
2. General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as in
the case of the embedded controller, a well-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows a large number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM can
also build additional levels of event dispatching by using AML code on a general-purpose event to sub-
dispatch in an OEM defined manner.



174 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.3 Fixed Event Handling
When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see section 4, “ACPI
Hardware Specification.”

Table 5-52 Fixed ACPI Events

Event Comment

Power
management
timer carry bit
set.

For more information, see the description of the TMR_STS and TMR_EN bits of the
PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping,” as well as the
TMR_VAL register in the PM_TMR_BLK in section 4.7.3.3, “Power Management
Timer.”

Power button
signal

A power button can be supplied in two ways. One way is to simply use the fixed status
bit, and the other uses the declaration of an ACPI power device and AML code to
determine the event. For more information about the alternate-device based power
button, see section 4.7.2.2.1.2, Control Method Power Button.”

Notice that during the S0 state, both the power and sleep buttons merely notify OSPM
that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the power
button to initiate sleep operations as requested by the user.

Sleep button
signal

A sleep button can be supplied in one of two ways. One way is to simply use the fixed
status button. The other way requires the declaration of an ACPI sleep button device and
AML code to determine the event.

RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month granularity.
The ACPI status bit for the device is optional. If the ACPI status bit is not present, the
RTC status can be used to determine when an alarm has occurred. For more information,
see the description of the RTC_STS and RTC_EN bits of the PM1x fixed register block
in section 4.7.3.1, “PM1 Event Grouping.”

Wake status The wake status bit is used to determine when the sleeping state has been completed. For
more information, see the description of the WAK_STS and WAK_EN bits of the PM1x
fixed register block in section 4.7.3.1, “PM1 Event Grouping.”

System bus
master request

The bus-master status bit provides feedback from the hardware as to when a bus master
cycle has occurred. This is necessary for supporting the processor C3 power savings
state. For more information, see the description of the BM_STS bit of the PM1x fixed
register block in section 4.7.3.1, “PM1 Event Grouping.”

Global release
status

This status is raised as a result of the Global Lock protocol, and is handled by OSPM as
part of Global Lock synchronization. For more information, see the description of the
GBL_STS bit of the PM1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.” For more information on Global Lock, see section 5.2.10.1, “Global Lock.”





176 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.4.1.1 Queuing the Matching Control Method for Execution
When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the
GPEx_BLK are indexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form \_GPE._Txx where xx is the event value and T
indicates the event EOI protocol to use (either ‘E’ for edge triggered, or ‘L’ for level triggered). The event
values for status bits in GPE0_BLK start at zero (_T00), end at the (GPE0_BLK_LEN / 2) - 1, and
correspond to each status bit index within GPE0_BLK. The event values for status bits in GPE1_BLK are
offset by GPE_BASE and therefore start at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN /
2) - 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPE0_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name \_GPE._L04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Method (\_GPE._L04) { // GPE 4 level wake handler
Notify (\_SB.PCIO.COM0, 2)

}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object. Or, the cause of
the general-purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01 through
FF. (A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The
name of the control method to queue is always of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Method(_Q34) { // embedded controller event for thermal
Notify (\_SB.TZ0.THM1, 0x80)

}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution. When
an alarm is received by the SMBus host controller, it generally receives the SMBus address of the device
issuing the alarm and one word of data. On implementations that use SMBALERT# for notifications, only
the device address will be received. The name of the control method to queue is always of the form _Qxx
where xx is the SMBus address of the device that issued the alarm. The SMBus address is 7 bits long
corresponding to hex values 0 through 7F, although some addresses are reserved and will not be used. The
control method will always be queued with one argument that contains the word of data received with the
alarm. An exception is the case of an SMBus using SMBALERT# for notifications, in this case the
argument will be 0. An example declaration for a control method that handles a SMBus alarm follows:





178 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) must have individual enable and status bits in order to properly handle the semantics used by
the system.

5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects
A device’s _PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general-purpose event bit by using OEM-specific hardware to
provide second-level status and enable bits. In this case, the OEM AML code is responsible for the second-
level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its _PSW control method (which is used to take care of the second-level enables). When the GPE
is asserted, OSPM still executes the corresponding GPE control method that determines which device
wakes are asserted and notifies the corresponding device objects. The native OS driver is then notified that
its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the S0 state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control
Methods
After a transition to the S0 state, OSPM may evaluate the _SWS object in the \_GPE scope to determine the
index of the GPE that was the source of the transition event. When a single GPE is shared among multiple
devices, the platform provides a _Wxx control method, where xx is GPE index as described in Section
5.6.2.2.3, that allows the source device of the transition to be determined . If implemented, the _Wxx
control method must exist in the \_GPE scope or in the scope of a GPE block device.

If _Wxx is implemented, either hardware or firmware must detect and save the source device as described
in Section 7.3.5, “_SWS (System Wake Source)”. During invocation, the _Wxx control method determines
the source device and issues a Notify(<device>,0x2) on the device that caused the system to transition to
the S0 state. If the device uses a bus-specific method of arming for wakeup, then the Notify must be issued
on the parent of the device that has a _PRW method. The _Wxx method must issue a Notify(<device>,0x2)
only to devices that contain a _PRW method within their device scope. OSPM’s evaluation of the _SWS
and _Wxx objects is indeterminate. As such, the platform must not rely on _SWS or _Wxx evaluation to
clear any hardware state, including GPEx_STS bits, or to perform any wakeup-related actions.

If the GPE index returned by the _SWS object is only referenced by a single _PRW object in the system, it
is implied that the device containing that _PRW is the wake source. In this case, it is not necessary for the
platform to provide a _Wxx method.

5.6.5 Device Object Notifications
During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal zone, or
processor object and a notification value that signifies the purpose of the notification. Notification values
from 0 through 0x7F are common across all device object types. Notification values of 0xC0 and above are
reserved for definition by hardware vendors for hardware specific notifications. Notification values from
0x80 to 0xBF are device-specific and defined by each such device. For more information on the Notify
operator, see section 18.5.85, “Notify (Notify).”



ACPI Software Programming Model 179

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-53 Device Object Notification Values

Value Description

0 Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform a Plug and Play re-enumeration operation on the device tree starting
from the point where it has been notified. OSPM will typically perform a full
enumeration automatically at boot time, but after system initialization it is the
responsibility of the ACPI AML code to notify OSPM whenever a re-enumeration
operation is required. The more accurately and closer to the actual change in the device
tree the notification can be done, the more efficient the operating system’s response will
be; however, it can also be an issue when a device change cannot be confirmed. For
example, if the hardware cannot recognize a device change for a particular location
during a system sleeping state, it issues a Bus Check notification on wake to inform
OSPM that it needs to check the configuration for a device change.

1 Device Check. Used to notify OSPM that the device either appeared or disappeared. If
the device has appeared, OSPM will re-enumerate from the parent. If the device has
disappeared, OSPM will invalidate the state of the device. OSPM may optimize out re-
enumeration. If _DCK is present, then Notify(object,1) is assumed to indicate an undock
request. If the device is a bridge, OSPM may re-enumerate the bridge and the child bus.

2 Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needs to notify OSPM native device driver for the device. This is only used for
devices that support _PRW.

3 Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM
needs to perform the Plug and Play ejection operation. OSPM will run the _EJx method.

4 Device Check Light. Used to notify OSPM that the device either appeared or
disappeared. If the device has appeared, OSPM will re-enumerate from the device itself,
not the parent. If the device has disappeared, OSPM will invalidate the state of the
device.

5 Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the
bus. For example, this would be used if a user tried to hot-plug a 33 MHz PCI device
into a slot that was on a bus running at greater than 33 MHz.

6 Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or
bay that cannot support the device in its current mode of operation. For example, this
would be used if a user tried to hot-plug a PCI device into a slot that was on a bus
running in PCI-X mode.

7 Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state
because of a power fault.

8 Capabilities Check. This notification is performed on a device object to indicate to
OSPM that it needs to re-evaluate the _OSC control method associated with the device.

9 Device _PLD Check. Used to notify OSPM to reevaluate the _PLD object, as the
Device’s connection point has changed.

0xA Reserved.

0xB System Locality Information Update. Dynamic reconfiguration of the system may
cause existing relative distance information to change. The platform sends the System
Locality Information Update notification to a point on a device tree to indicate to OSPM
that it needs to invoke the _SLI objects associated with the System Localities on the
device tree starting from the point notified.



180 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Description

0x0C-0x7F Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-54 Control Method Battery Device Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.

0x83-0xBF Reserved.

Table 5-55 Power Source Object Notification Values

Hex value Description

0x80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.

0x81 Power Source Information Changed. Used to notify OSPM that the power source
information has changed.

0x82-0xBF Reserved.

Table 5-56 Thermal Zone Object Notification Values

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone
temperature has changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip
points have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx,
_PSL, _TZD) have changed.

0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that
values in the either the thermal relationship table or the active cooling relationship table
have changed.

0x84-0xBF Reserved.



ACPI Software Programming Model 181

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-57 Control Method Power Button Notification Values

Hex value Description

0x80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Table 5-58 Control Method Sleep Button Notification Values

Hex value Description

0x80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Table 5-59 Control Method Lid Notification Values

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.

0x81-0xBF Reserved.

Table 5-60 Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to
re-evaluate the _PPC object. See section 8, “Processor Configuration and Control,” for
more information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor
C States has changed. This notification causes OSPM to re-evaluate the _CST object.
See section 8, “Processor Configuration and Control,” for more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the _TPC object. See section 8, “Processor Configuration and Control,” for
more information.

0x83-0xBF Reserved.

Table 5-61 User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user
presence has occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF Reserved.



182 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-62 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 ALS Illuminance Changed. Used to notify OSPM that a meaningful change in ambient
light illuminance has occurred, causing OSPM to re-evaluate the _ALI object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in
ambient light color temperature or chromaticity has occurred, causing OSPM to re-
evaluate the _ALT and/or _ALC objects.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF Reserved.

Table 5-63 Power Meter Object Notification Values

Hex value Description

0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter
information has changed.

0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter
trip points has been crossed.

0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit
has been changed by the platform.

0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit
has been enforced by the platform.

0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power
averaging interval has changed.

0x85-0xBF Reserved.

Table 5-64 Fan Device Notification Values

Hex value Description

0x80 Low Fan Speed. Used to notify OSPM of a low (errant) fan speed. Causes OSPM to re-
evaluate the _FSL object.

0x81-0xBF Reserved.

Table 5-65 Memory Device Notification Values

Hex value Description

0x80 Memory Bandwidth Low Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been reduced by the platform to less than
the low memory bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been increased by the platform to greater
than or equal to the high memory bandwidth threshold.

0x82-0xBF Reserved.



ACPI Software Programming Model 183

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.6 Device Class-Specific Objects
Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 9, 10,
and 11. Section 5.6.7, “Predefined ACPI Names for Objects, Methods, and Resources,” lists all the generic
objects and control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The table below lists the Plug and Play IDs defined by the ACPI specification.

Note: Plug and Play IDs that are not defined by the ACPI specification are defined and described in the
following document:

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

Table 5-66 ACPI Device IDs

Plug and
Play ID

Description

PNP0C08 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware
resources consumed by the ACPI fixed register spaces, and the operation regions used by
AML code. It represents the core ACPI hardware itself.

PNP0A05 Generic Container Device. A device whose settings are totally controlled by its ACPI
resource information, and otherwise needs no device or bus-specific driver support. This
was originally known as Generic ISA Bus Device. This ID should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNP0A05 device’s _CRS object must be consumed by the
container itself.

PNP0A06 Generic Container Device. This device behaves exactly the same as the PNP0A05
device. This was originally known as Extended I/O Bus. This ID should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNP0A06 device’s _CRS object must be consumed by the
container itself.

PNP0C09 Embedded Controller Device. A host embedded controller controlled through an ACPI-
aware driver.

PNP0C0A Control Method Battery. A device that solely implements the ACPI Control Method
Battery functions. A device that has some other primary function would use its normal
device ID. This ID is used when the devices primary function is that of a battery.

PNP0C0B Fan. A device that causes cooling when “on” (D0 device state).

PNP0C0C Power Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is only needed if the power button is not
supported using the fixed register space.

PNP0C0D Lid Device. A device controlled through an ACPI-aware driver that provides lid status
functionality. This device is only needed if the lid state is not supported using the fixed
register space.



184 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Plug and
Play ID

Description

PNP0C0E Sleep Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is optional.

PNP0C0F PCI Interrupt Link Device. A device that allocates an interrupt connected to a PCI
interrupt pin. See section 6., “Device Configuration,” for more details.

PNP0C80 Memory Device. This device is a memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 1.0
Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 10,
“Power Source Devices.”

ACPI0003 Power Source Device. The Power Source device specified in section 10, “Power Source
Devices.” This can represent either an AC Adapter (on mobile platforms) or a fixed
Power Supply.

ACPI0004 Module Device. This device is a container object that acts as a bus node in a namespace.
A Module Device without any of the _CRS, _PRS and _SRS methods behaves the same
way as the Generic Container Devices (PNP0A05 or PNP0A06). If the Module Device
contains a _CRS method, only these resources described in the _CRS are available for
consumption by its child devices. Also, the Module Device can support _PRS and _SRS
methods if _CRS is supported.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 2.0
Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks
beyond the two that are described in the FADT.

ACPI0007 Processor Device. This device provides an alternative to declaring processors using the
Processor ASL statement. See section 8.4, “Declaring Processors”, for more details.

ACPI0008 Ambient Light Sensor Device. This device is an ambient light sensor. See section 9.2,
“Ambient Light Sensor Device”.

ACPI0009 I/OxAPIC Device. This device is an I/O unit that complies with both the APIC and
SAPIC interrupt models.

ACPI000A I/O APIC Device. This device is an I/O unit that complies with the APIC interrupt
model.

ACPI000B I/O SAPIC Device. This device is an I/O unit that complies with the SAPIC interrupt
model.

ACPI000C Processor Aggregator Device. This device provides a control point for all processors in
the platform. See section 8.5, “Processor Aggregator Device”.

ACPI000D Power Meter Device. This device is a power meter. See section 10.4. “Power Meters”.

ACPI000E Wake Alarm Device. This device is a control method-based wake alarm. See section
9.18. “Wake Alarm Device”.



ACPI Software Programming Model 185

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.7 Predefined ACPI Names for Objects, Methods, and Resources
The following table summarizes the predefined names for the ACPI namespace objects, control methods,
and resource descriptor fields defined in this specification. Provided for each name is a short description
and a reference to the section number and page number of the actual definition of the name. ACPI names
that are predefined by other specifications are also listed along with their corresponding specification
reference.

Note: All names that begin with an underscore are reserved for ACPI use only.

Table 5-67 Predefined ACPI Names

Name Description Section Page

_ACx Active Cooling – returns the active cooling policy threshold values. 11.4.1 422

_ADR Address – (1) returns the address of a device on its parent bus.
(2) returns a unique ID for the display output device.
(3) resource descriptor field.

6.1.1
B.6.1
18.1.8

200
704
552

_ALC Ambient Light Chromaticity – returns the ambient light color chromaticity. 9.2.4 337

_ALI Ambient Light Illuminance – returns the ambient light brightness. 9.2.2 337

_ALN Alignment – base alignment, resource descriptor field. 18.1.8 552

_ALP Ambient Light Polling – returns the ambient light sensor polling frequency. 9.2.6 342

_ALR Ambient Light Response – returns the ambient light brightness to display
brightness mappings.

9.2.5 338

_ALT Ambient Light Temperature – returns the ambient light color temperature. 9.2.3 337

_ALx Active List – returns a list of active cooling device objects. 11.4.2 422

_ART Active cooling Relationship Table – returns thermal relationship information
between platform devices and fan devices.

11.4.3 423

_ASI Address Space Id – resource descriptor field. 18.1.8 552

_ASZ Access Size – resource descriptor field. 18.1.8 552

_ATT Type-Specific Attribute – resource descriptor field. 18.1.8 552

_BAS Base Address – range base address, resource descriptor field. 18.1.8 552

_BBN Bios Bus Number – returns the PCI bus number returned by the BIOS. 6.5.5 279

_BCL Brightness Control Levels – returns a list of supported brightness control
levels.

B.6.2 704

_BCM Brightness Control Method – sets the brightness level of the display device. B.6.3 704

_BCT Battery Charge Time – returns time remaining to complete charging battery. 10.2.2.9 395

_BDN Bios Dock Name – returns the Dock ID returned by the BIOS. 6.5.3 277

_BFS Back From Sleep – inform AML of a wake event. 7.3.1 296

_BIF Battery Information – returns a Control Method Battery information block. 10.2.2.1 387

_BIX Battery Information Extended – returns a Control Method Battery extended
information block.

10.2.2.2 388

_BLT Battery Level Threshold – set battery level threshold preferences. 9.1.3 335

_BM Bus Master – resource descriptor field. 18.1.8 552



186 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_BMA Battery Measurement Averaging Interval – Sets battery measurement
averaging interval.

10.2.2.4 392

_BMC Battery Maintenance Control – Sets battery maintenance and control
features.

10.2.2.11 397

_BMD Battery Maintenance Data – returns battery maintenance, control, and state
data.

10.2.2.10 395

_BMS Battery Measurement Sampling Time – Sets the battery measurement
sampling time.

10.2.2.5 392

_BQC Brightness Query Current – returns the current display brightness level. B.6.4 705

_BST Battery Status – returns a Control Method Battery status block. 10.2.2.6 393

_BTM Battery Time – returns the battery runtime. 10.2.2.8 394

_BTP Battery Trip Point – sets a Control Method Battery trip point. 10.2.2.7 394

_CBA Configuration Base Address – sets the CBA for a PCI Express host bridge.
See the PCI Firmware Specification, Revision 3.0 at http://pcisig.com

_CDM Clock Domain – returns a logical processor’s clock domain identifier. 6.2.1 211

_CID Compatible ID – returns a device’s Plug and Play Compatible ID list. 6.1.2 201

_CRS Current Resource Settings – returns the current resource settings for a device. 6.2.2 212

_CRT Critical Temperature – returns the shutdown critical temperature. 11.4.4 425

_CSD C State Dependencies – returns a list of C-state dependencies. 8.4.2.2 318

_CST C States – returns a list of supported C-states. 8.4.2.1 316

_DCK Dock – sets docking isolation. Presence indicates device is a docking station. 6.5.2 277

_DCS Display Current Status – returns status of the display output device. B.6.6 705

_DDC Display Data Current – returns the EDID for the display output device. B.6.5 705

_DDN Dos Device Name – returns a device logical name. 6.1.3 201

_DEC Decode – device decoding type, resource descriptor field. 18.1.8 552

_DGS Display Graphics State – return the current state of the output device. B.6.7 706

_DIS Disable – disables a device. 6.2.3 212

_DMA Direct Memory Access – returns a device’s current resources for DMA
transactions.

6.2.4 212

_DOD Display Output Devices – enumerate all devices attached to the display
adapter.

B.4.2 698

_DOS Disable Output Switching – sets the display output switching mode. B.4.1 697

_DSM Device Specific Method – executes device-specific functions. 9.14.1 366

_DSS Device Set State – sets the display device state. B.6.8 706

_DSW Device Sleep Wake – sets the sleep and wake transition states for a device. 7.2.1 287

_DTI Device Temperature Indication – conveys native device temperature to the
platform.

11.4.5 425

_Exx Edge GPE – method executed as a result of a general-purpose event. 5.6.4.1 175

_EC Embedded Controller – returns EC offset and query information. 12.12 463



ACPI Software Programming Model 187

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_EDL Eject Device List – returns a list of devices that are dependent on a device
(docking).

6.3.1 241

_EJD Ejection Dependent Device – returns the name of dependent (parent) device
(docking).

6.3.2 241

_EJx Eject – begin or cancel a device ejection request (docking). 6.3.3 243

_FDE Floppy Disk Enumerate – returns floppy disk configuration information. 9.9.1 350

_FDI Floppy Drive Information – returns a floppy drive information block. 9.9.2 351

_FDM Floppy Drive Mode – sets a floppy drive speed. 9.9.3 352

_FIF Fan Information – returns fan device information. 11.3.1.1 417

_FIX Fixed Register Resource Provider – returns a list of devices that implement
FADT register blocks.

6.2.5 215

_FPS Fan Performance States – returns a list of supported fan performance states. 11.3.1.2 418

_FSL Fan Set Level – Control method that sets the fan device’s speed level
(performance state).

11.3.1.3 420

_FST Fan Status – returns current status information for a fan device. 11.3.1.4 420

_GAI Get Averaging Interval – returns the power meter averaging interval. 10.4.5 403

_GHL Get Hardware Limit – returns the hardware limit enforced by the power
meter.

10.4.7 404

_GL Global Lock – OS-defined Global Lock mutex object. 5.7.1 193

_GLK Global Lock – returns a device’s Global Lock requirement for device access. 6.5.7 281

_GPD Get Post Data – returns the value of the VGA device that will be posted at
boot.

B.4.4 702

_GPE General Purpose Events – (1) predefined Scope (\_GPE.)
(2) Returns the SCI interrupt associated with the Embedded Controller.

5.3.1
12.11

162
462

_GRA Granularity – address space granularity, resource descriptor field. 18.1.8 552

_GSB Global System Interrupt Base – returns the GSB for a I/O APIC device. 6.2.6 216

_GTF Get Task File – returns a list of ATA commands to restore a drive to default
state.

9.8.1.1 345

_GTM Get Timing Mode – returns a list of IDE controller timing information. 9.8.2.1.1 347

_GTS Going To Sleep – inform AML of pending sleep. 7.3.3 297

_HE High-Edge – interrupt triggering, resource descriptor field. 18.1.8 552

_HID Hardware ID – returns a device’s Plug and Play Hardware ID. 6.1.4 202

_HOT Hot Temperature – returns the critical temperature for sleep (entry to S4). 11.4.6 425

_HPP Hot Plug Parameters – returns a list of hot-plug information for a PCI device. 6.2.7 217

_HPX Hot Plug Parameter Extensions – returns a list of hot-plug information for a
PCI device. Supersedes _HPP.

6.2.8 219

_IFT IPMI Interface Type. See the Intelligent Platform Management Interface
Specification at http://www.intel.com/design/servers/ipmi/index.htm

_INI Initialize – performs device specific initialization. 6.5.1 276



188 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_INT Interrupts – interrupt mask bits, resource descriptor field. 18.1.8 552

_IRC Inrush Current – presence indicates that a device has a significant inrush
current draw.

7.2.13 292

_Lxx Level GPE – Control method executed as a result of a general-purpose event. 5.6.4.1 175

_LCK Lock – locks or unlocks a device (docking). 6.3.4 243

_LEN Length – range length, resource descriptor field. 18.1.8 552

_LID Lid – returns the open/closed status of the lid on a mobile system. 9.4.1 343

_LL Low Level – interrupt polarity, resource descriptor field. 18.1.8 552

_MAF Maximum Address Fixed – resource descriptor field. 18.1.8 552

_MAT Multiple Apic Table Entry – returns a list of MADT APIC structure entries. 6.2.9 224

_MAX Maximum Base Address – resource descriptor field. 18.1.8 552

_MBM Memory Bandwidth Monitoring Data – returns bandwidth monitoring data
for a memory device.

9.12.2.1 358

_MEM Memory Attributes – resource descriptor field. 18.1.8 552

_MIF Minimum Address Fixed – resource descriptor field. 18.1.8 552

_MIN Minimum Base Address – resource descriptor field. 18.1.8 552

_MLS Multiple Language String – returns a device description in multiple
languages.

6.1.5 202

_MSG Message – sets the system message waiting status indicator. 9.1.2 335

_MSM Memory Set Monitoring – sets bandwidth monitoring parameters for a
memory device.

9.12.2.2 359

_MTP Memory Type – resource descriptor field. 18.1.8 552

_NTT Notification Temperature Threshold – returns a threshold for device
temperature change that requires platform notification.

11.4.7 426

_OFF Off – sets a power resource to the off state. 7.1.2 284

_ON On – sets a power resource to the on state. 7.1.3 285

_OS Operating System – returns a string that identifies the operating system. 5.7.3 196

_OSC Operating System Capabilities – inform AML of host features and
capabilities.

6.2.10 225

_OSI Operating System Interfaces – returns supported interfaces, behaviors, and
features.

5.7.2 193

_OST Ospm Status Indication – inform AML of event processing status. 6.3.5 244

_PAI Power Averaging Interval – sets the averaging interval for a power meter. 10.4.4 403

_PCL Power Consumer List – returns a list of devices powered by a power source. 10.3.2 399

_PCT Performance Control – returns processor performance control and status
registers.

8.4.4.1 327

_PDC Processor Driver Capabilities – inform AML of processor driver capabilities. 8.4.1 314

_PDL P-state Depth Limit – returns the lowest available performance P-state. 8.4.4.6 332

_PIC PIC – inform AML of the interrupt model in use. 5.8.1 197



ACPI Software Programming Model 189

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_PIF Power Source Information – returns a Power Source information block. 10.3.3 399

_PLD Physical Device Location – returns a device’s physical location information. 6.1.6 203

_PMC Power Meter Capabilities – returns a list of Power Meter capabilities info. 10.4.1 400

_PMD Power Metered Devices – returns a list of devices that are measured by the
power meter device.

10.4.8 404

_PMM Power Meter Measurement – returns the current value of the Power Meter. 10.4.3 403

_PPC Performance Present Capabilites – returns a list of the performance states
currently supported by the platform.

8.4.4.3 328

_PPE Polling for Platform Error – returns the polling interval to retrieve Corrected
Platform Error information.

8.4.5 333

_PR Processor – predefined scope for processor objects. 5.3.1 162

_PR0 Power Resources for D0 – returns a list of dependent power resources to
enter state D0 (fully on).

7.2.7 289

_PR1 Power Resources for D1 – returns a list of dependent power resources to
enter state D1.

7.2.8 289

_PR2 Power Resources for D2 – returns a list of dependent power resources to
enter state D2.

7.2.9 290

_PR3 Power Resources for D3hot – returns a list of dependent power resources to
enter state D3hot.

7.2.10 290

_PRL Power Source Redundancy List – returns a list of power source devices in the
same redundancy grouping.

10.3.4 400

_PRS Possible Resource Settings – returns a list of a device’s possible resource
settings.

6.2.11 233

_PRT Pci Routing Table – returns a list of PCI interrupt mappings. 6.2.12 233

_PRW Power Resources for Wake – returns a list of dependent power resources for
waking.

7.2.11 290

_PS0 Power State 0 – sets a device’s power state to D0 (device fully on). 7.2.2 287

_PS1 Power State 1 – sets a device’s power state to D1. 7.2.3 288

_PS2 Power State 2 – sets a device’s power state to D2. 7.2.4 288

_PS3 Power State 3 – sets a device’s power state to D3 (device off). 7.2.5 288

_PSC Power State Current – returns a device’s current power state. 7.2.6 288

_PSD Processor State Dependencies – returns processor P-State dependencies. 8.4.4.5 330

_PSL Passive List – returns a list of passive cooling device objects. 11.4.8 426

_PSR Power Source – returns the power source device currently in use. 10.3.1 398

_PSS Performance Supported States – returns a list of supported processor
performance states.

8.4.4.2 327

_PSV Passive – returns the passive trip point temperature. 11.4.9 426

_PSW Power State Wake – sets a device’s wake function. 7.2.12 291

_PTC Processor Throttling Control – returns throttling control and status registers. 8.4.3.1 320



190 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_PTP Power Trip Points – sets trip points for the Power Meter device. 10.4.2 402

_PTS Prepare To Sleep – inform the platform of an impending sleep transition. 7.3.2 297

_PUR Processor Utilization Request – returns the number of processors that the
platform would like to idle.

8.5.1.1 334

_PXM Proximity – returns a device’s proximity domain identifier. 6.2.13 236

_Qxx Query – Embedded Controller query and SMBus Alarm control method. 5.6.4.1 175

_RBO Register Bit Offset – resource descriptor field. 18.1.8 552

_RBW Register Bit Width – resource descriptor field. 18.1.8 552

_REG Region – inform AML code of an operation region availability change. 6.5.4 277

_REV Revision – returns the revision of the ACPI specification that is implemented. 5.7.4 197

_RMV Remove – returns a device’s removal ability status (docking). 6.3.6 248

_RNG Range – memory range type, resource descriptor field. 18.1.8 552

_ROM Read-Only Memory – returns a copy of the ROM data for a display device. B.4.3 701

_RT Resource Type – resource descriptor field. 18.1.8 552

_RTV Relative Temperature Values – returns temperature value information. 11.4.10 426

_RW Read-Write Status – resource descriptor field. 18.1.8 552

_S0 S0 System State – returns values to enter the system into the S0 state. 7.3.4.1 300

_S1 S1 System State – returns values to enter the system into the S1 state. 7.3.4.2 300

_S2 S2 System State – returns values to enter the system into the S2 state. 7.3.4.3 300

_S3 S3 System State – returns values to enter the system into the S3 state. 7.3.4.4 301

_S4 S4 System State – returns values to enter the system into the S4 state. 7.3.4.5 301

_S5 S5 System State – returns values to enter the system into the S5 state. 7.3.4.6 302

_S1D S1 Device State – returns the highest D-state supported by a device when in
the S1 state.

7.2.14 292

_S2D S2 Device State – returns the highest D-state supported by a device when in
the S2 state.

7.2.15 293

_S3D S3 Device State – returns the highest D-state supported by a device when in
the S3 state.

7.2.16 293

_S4D S4 Device State – returns the highest D-state supported by a device when in
the S4 state.

7.2.17 294

_S0W S0 Device Wake State – returns the lowest D-state that the device can wake
itself from S0.

7.2.18 295

_S1W S1 Device Wake State – returns the lowest D-state for this device that can
wake the system from S1.

7.2.19 295

_S2W S2 Device Wake State – returns the lowest D-state for this device that can
wake the system from S2.

7.2.20 295

_S3W S3 Device Wake State – returns the lowest D-state for this device that can
wake the system from S3.

7.2.21 295

_S4W S4 Device Wake State – returns the lowest D-state for this device that can 7.2.22 296



ACPI Software Programming Model 191

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

wake the system from S4.

_SB System Bus – scope for device and bus objects. 5.3.1 162

_SBS Smart Battery Subsystem – returns the subsystem configuration. 10.1.3 382

_SCP Set Cooling Policy – sets the cooling policy (active or passive). 11.4.11 427

_SDD Set Device Data – sets data for a SATA device. 9.8.3.3.1 350

_SEG Segment – returns a device’s PCI Segment Group number. 6.5.6 279

_SHL Set Hardware Limit – sets the hardware limit enforced by the Power Meter. 10.4.6 404

_SHR Sharable – interrupt share status, resource descriptor field. 18.1.8 552

_SI System Indicators – predefined scope. 5.3.1 162

_SIZ Size – DMA transfer size, resource descriptor field. 18.1.8 552

_SLI System Locality Information – returns a list of NUMA system localities. 6.2.14 236

_SPD Set Post Device – sets which video device will be posted at boot. B.4.5 702

_SRS Set Resource Settings – sets a device’s resource allocation. 6.2.15 239

_SRV IPMI Spec Revision. See the Intelligent Platform Management Interface
Specification at http://www.intel.com/design/servers/ipmi/index.htm

_SST System Status – sets the system status indicator. 9.1.1 335

_STA Status – (1) returns the current status of a device.
(2) Returns the current on or off state of a Power Resource.

6.3.7
7.1.4

248
285

_STM Set Timing Mode – sets an IDE controller transfer timings. 9.8.2.1.2 348

_STP Set Expired Timer Wake Policy – sets expired timer policies of the wake
alarm device.

9.18.2 375

_STR String – returns a device’s description string. 6.1.7 209

_STV Set Timer Value – set timer values of the wake alarm device. 9.18.3 376

_SUN Slot User Number – returns the slot unique ID number. 6.1.8 210

_SWS System Wake Source – returns the source event that caused the system to
wake.

7.3.5 302

_T_x Temporary – reserved for use by ASL compilers. 18.2.1.1 558

_TC1 Thermal Constant 1 – returns TC1 for the passive cooling formula. 11.4.12 429

_TC2 Thermal Constant 2 – returns TC2 for the passive cooling formula. 11.4.13 430

_TDL T-State Depth Limit – returns the _TSS entry number of the lowest power
throttling state.

8.4.3.5 326

_TIP Expired Timer Wake Policy – returns timer policies of the wake alarm device. 9.18.5 376

_TIV Timer Values – returns remaining time of the wake alarm device. 9.18.4 376

_TMP Temperature – returns a thermal zone’s current temperature. 11.4.14 430

_TPC Throttling Present Capabilities – returns the current number of supported
throttling states.

8.4.3.3 322

_TPT Trip Point Temperature – inform AML that a devices’ embedded temperature
sensor has crossed a temperature trip point.

11.4.15 430



192 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_TRA Translation – address translation offset, resource descriptor field. 18.1.8 552

_TRS Translation Sparse – sparse/dense flag, resource descriptor field. 18.1.8 552

_TRT Thermal Relationship Table – returns thermal relationships between platform
devices.

11.4.16 430

_TSD Throttling State Dependencies – returns a list of T-state dependencies. 8.4.3.4 323

_TSF Type-Specific Flags – resource descriptor field. 18.1.8 552

_TSP Thermal Sampling Period – returns the thermal sampling period for passive
cooling.

11.4.17 431

_TSS Throttling Supported States – returns supported throttling state information. 8.4.3.2 321

_TST Temperature Sensor Threshold – returns the minimum separation for a
device’s temperature trip points.

11.4.18 431

_TTP Translation Type – translation/static flag, resource descriptor field. 18.1.8 552

\_TTS Transition To State – inform AML of an S-state transition. 7.3.6 303

_TYP Type – DMA channel type (speed), resource descriptor field. 18.1.8 552

_TZ Thermal Zone – predefined scope: ACPI 1.0. 5.3.1 162

_TZD Thermal Zone Devices – returns a list of device names associated with a
Thermal Zone.

11.4.19 432

_TZM Thermal Zone Member – returns a reference to the thermal zone of which a
device is a member.

11.4.20 432

_TZP Thermal Zone Polling – returns a Thermal zone’s polling frequency. 11.4.21 432

_UID Unique ID – return a device’s unique persistent ID. 6.1.9 210

_UPC USB Port Capabilities – returns a list of USB port capabilities. 9.13 360

_UPD User Presence Detect – returns user detection information. 9.16.1 372

_UPP User Presence Polling – returns the recommended user presence polling
interval.

9.16.2 372

_VPO Video Post Options – returns the implemented video post options. B.4.6 703

\_WAK Wake – inform AML that the system has just awakened. 7.3.7 303

_Wxx Wake Event – method executed as a result of a wake event. 5.6.4.2.2 178



ACPI Software Programming Model 193

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.7 Predefined Objects
The AML interpreter of an ACPI compatible operating system supports the evaluation of a number of
predefined objects. The objects are considered “built in” to the AML interpreter on the target operating
system.

A list of predefined object names are shown in the following table.

Table 5-68 Predefined Object Names

Name Description

\_GL Global Lock mutex

\_OS Name of the operating system

\_OSI Operating System Interface support

\_REV Revision of the ACPI specification that is implemented

5.7.1 \_GL (Global Lock Mutex)
This predefined object is a Mutex object that behaves like a Mutex as defined in section 18.5.79, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also acquires
the shared environment Global Lock defined in section 5.2.10.1, “Global Lock.” This allows Control
Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 \_OSI (Operating System Interfaces)
This object provides the platform with the ability to query OSPM to determine the set of ACPI related
interfaces, behaviors, or features that the operating system supports.

The _OSI method has one argument and one return value. The argument is an OS vendor defined string
representing a set of OS interfaces and behaviors or an ACPI defined string representing an operating
system and an ACPI feature group of the form, “OSVendorString-FeatureGroupString”.

Arguments: (1)
Arg0 – A String containing the OS interface / behavior compatibility string or the Feature Group

string, as defined in Table 5-70, or the “OS Vendor String Prefix – OS Vendor Specific
String”. OS Vendor String Prefixes are defined in Table 5-69

Return Value:
An Integer containing a Boolean that indicates whether the requested feature is supported:

0x0 – The interface, behavior, or feature is not supported
0xFFFFFFFF – The interface, behavior, or feature is supported

OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports
the behaviors. For example, a newer version of an operating system may indicate support for strings from
all or some of the prior versions of that operating system.

_OSI provides the platform with the ability to support new operating system versions and their associated
features when they become available. OSPM can choose to expose new functionality based on the _OSI
argument string. That is, OSPM can use the strings passed into _OSI to ensure compatibility between older
platforms and newer operating systems by maintaining known compatible behavior for a platform. As such,
it is recommended that _OSI be evaluated by the \_SB.INI control method so that platform compatible
behavior or features are available early in operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that OS
vendor-defined strings be checked before feature group strings.



194 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Platform developers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating system
and an ACPI feature group are listed in the following tables.

Table 5-69 Operating System Vendor Strings

Operating System Vendor String Prefix Description

“FreeBSD” Free BSD

“HP-UX” HP Unix Operating Environment

“Linux” GNU/Linux Operating system

“OpenVMS” HP OpenVMS Operating Environment

“Windows” Microsoft Windows

Table 5-70 Feature Group Strings

Feature Group String Description

“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision
3.0.

“Extended Address Space
Descriptor”

OSPM supports the Extended Address Space Descriptor

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator
Device”

OSPM supports the declaration of the processor aggregator device in the
namespace using the ACPI000C processor aggregator device HID.



ACPI Software Programming Model 195

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_OSI Example ASL using OS vendor defined string:

Scope (_SB) //Scope
{

Name (TOOS, 0) // Global variable for type of OS.
// This methods sets the "TOOS" variable depending on the type of OS
// installed on the system.
// TOOS = 1 // Windows 98 & SE
// TOOS = 2 // Windows Me.
// TOOS = 3 // Windows 2000 OS or above version.
// TOOS = 4 // Windows XP OS or above version.
Method (_INI)
{

If (CondRefOf (_OSI,Local0))
{

If (\_OSI ("Windows 2001"))
{

Store(4, TOOS)
}

}
Else
{

Store (\_OS, local0)
If (LEqual (local0, "Microsoft Windows NT"))
{

Store (3, TOOS)
}
ElseIf (LEqual (Local0, "Microsoft Windows"))
{

Store (1, TOOS)
}
ElseIf (LEqual (Local0, "Microsoft WindowsME:Millennium Edition"))
{

Store (2, TOOS)
}

}
}

}



196 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_OSI Example ASL using an ACPI defined string:

Scope (_SB) {
Method (_INI) {
If (CondRefOf (_OSI,Local0)) {
If (\_OSI ("Module Device")) {

//Expose PCI Root Bridge under Module Device
LoadTable(“OEM1", “OEMID", “Table1",,,)}

Else {
// Expose PCI Root Bridge under \_SB – OS does not support Module Device
LoadTable(“OEM1", “OEMID", “Table2",,,)}

}
Else {

// Default Behavior
LoadTable(“OEM1", “OEMID", “Table2",,,)}

} //_INI Method
} //_SB scope

DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
“OEMID", "Table1", 0) {

Scope(\_SB) {
Device (\_SB.NOD0) {

Name (_HID, "ACPI0004") // Module device
Name (_UID, 0)
Name (_PRS, ResourceTemplate() {...})
Method (_SRS, 1) {...}
Method (_CRS, 0) {...}
Device (PCI0) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {...})

} // end of PCI Root Bridge
} // end of Module device

} // end of \_SB Scope
} // end of Definition Block

DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
“OEMID", "Table2", 0) {

Scope(\_SB) {
Device (PCI0) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {...})

} // end of PCI Root Bridge
} // end of \_SB Scope

} // end of Definition Block

5.7.3 \_OS (OS Name Object)
This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, \_OS evaluates differently for each OS release. This may allow AML code to
accommodate differences in OSPM implementations. This value does not change with different revisions
of the AML interpreter.

Arguments:
None

Return Value:
A String containing the operating system name



ACPI Software Programming Model 197

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.7.4 \_REV (Revision Data Object)
This predefined object evaluates to the revision of the ACPI Specification that the specified \_OS
implements as a DWORD. Larger values are newer revisions of the ACPI specification.

Arguments:
None

Return Value:
An Integer containing the revision of the currently executing ACPI implementation

5.8 System Configuration Objects

5.8.1 _PIC Method
The \_PIC optional method is used to report to the BIOS the current interrupt model used by the OS. This
control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM.
If the method is never called, the BIOS must assume PIC mode. It is important that the BIOS save the value
passed in by OSPM for later use during wake operations.

Arguments: (1)
Arg0 – An Integer containing a code for the current interrupt model:

0 – PIC mode
1 – APIC mode
2 – SAPIC mode
Other values – Reserved

Return Value:
None



198 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba





200 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.1 _ADR (Address)
This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used when specifying the address of any device on a bus that has a standard enumeration algorithm (see
3.7, “Configuration and Plug and Play”, for the situations when these devices do appear in the ACPI
namespace).

Arguments:
None

Return Value:
An Integer containing the address of the device

An _ADR object can be used to provide capabilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus from the location of the _ADR object’s device package in the ACPI
namespace. For more information about the positioning of device packages in the ACPI namespace, see
section 18.5.28, “Device (Declare Bus/Device Package)”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-2.

Table 6-2 _ADR Object Address Encodings

BUS Address Encoding

EISA EISA slot number 0–F

Floppy Bus Drive select values used for programming the floppy controller to access the specified
INT13 unit number. The _ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller 0–Primary Channel, 1–Secondary Channel

IDE Channel 0–Master drive, 1–Slave drive

Intel® High
Definition Audio

High word – SDI (Serial Data In) ID of the codec that contains the function group.

Low word – Node ID of the function group.

PCI High word–Device #, Low word–Function #. (for example, device 3, function 2 is
0x00030002). To refer to all the functions on a device #, use a function number of
FFFF).

PCMCIA Socket #; 0–First Socket

PC CARD Socket #; 0–First Socket

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port
multiplier, or 0xFFFF if no port multiplier attached. (For example, root port 2 would be
0x0002FFFF. If instead a port multiplier had been attached to root port 2, the ports
connected to the multiplier would be encoded 0x00020000, 0x00020001, etc.) The
value 0xFFFFFFFF is reserved.

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must have an _ADR of 0. No other children or
values of _ADR are allowed.

USB Ports Port number (1-n)





202 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.4 _HID (Hardware ID)
This object is used to supply OSPM with the device’s Plug and Play hardware ID.8 When describing a
platform, use of any _HID objects is optional. However, a _HID object must be used to describe any device
that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, devices on an ISA bus are enumerated by OSPM. Use the _ADR object to describe
devices enumerated by bus enumerators other than OSPM.

Arguments:
None

Return Value:
An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a string, the
format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading characters.

A valid PNP ID must be of the form “AAA####” where A is an uppercase letter and # is a hex digit. A
valid ACPI ID must be of the form “ACPI####” where # is a hex digit.

Example ASL:
Name (_HID, EISAID ("PNP0C0C")) // Control-Method Power Button
Name (_HID, EISAID ("INT0800")) // Firmware Hub
Name (_HID, "ACPI0003") // AC adapter device

6.1.5 _MLS (Multiple Language String)
The _MLS object provides OSPM a human readable description of a device in multiple languages. This
information may be provided to the end user when the OSPM is unable to get any other information about
this device. Although this functionality is also provided by the _STR object, _MLS expands that
functionality and provides vendors with the capability to provide multiple strings in multiple languages.
The _MLS object evaluates to a package of packages. Each sub-package consists of a Language identifier
and corresponding unicode string for a given locale. Specifying a language identifier allows OSPM to
easily determine if support for displaying the Unicode string is available. OSPM can use this information to
determine whether or not to display the device string, or which string is appropriate for a user’s preferred
locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for
displaying device text.

Arguments:
None

Return Value:
A variable-length Package containing a list of language descriptor Packages as described below.

8A Plug and Play (EISA) ID can be obtained by sending e-mail to pnpid@microsoft.com.



Device Configuration 203

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value Information

Package {
LanguageDescriptor[0] // Package

LanguageDescriptor[n] // Package
}

Each Language Descriptor sub-Package contains the elements described below:

Package {
LanguageId // String
UnicodeDescription // String

}

LanguageId is a string identifying the language. This string follows the format specified in the Internet
RFC 3066 document (Tags for the Identification of Languages). In addition to supporting the existing
strings in RFC 3066, Table 6-3 lists aliases that are also supported.

Table 6-3 Additional Language ID Alias Strings

RFC String Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht

UnicodeDescription is a Unicode (UTF-16) string. This string contains the language-specific description of
the device corresponding to the LanguageID.

Example:

Device (XYZ) {
Name (_ADR, 0x00020001)
Name ( _MLS, Package(){(2){“en”, Unicode("ACME super DVD controller")}})

}

6.1.6 _PLD (Physical Device Location)
This optional object is a method that conveys to OSPM a general description of the physical location of a
device’s external connection point. The _PLD may be child object for any ACPI Namespace object the
system wants to describe. This information can be used by system software to describe to the user which
specific connector or device input mechanism may be used for a given task or may need user intervention
for correct operation. The _PLD should only be evaluated when its parent device is present as indicated by
the device’s presence mechanism (i.e. _STA or other)

An externally exposed device connection point can reside on any surface of a system’s housing. The
respective surfaces of a system’s housing are identified by the “Panel” field (described below). The _PLD
method returns data to describe the location of where the device’s connection point resides and a Shape
(described below) that may be rendered at that position. One physical device may have several connection
points. A _PLD describes the offset and rotation of a single device connection point from an “origin” that
resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the front of
the system. For example, the Right Panel is the right side of the system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower left corner when the user is facing the
respective Panel. The Top Panel shall be viewed with the system is viewed resting on its Front Panel, and
the Bottom Panel shall be viewed with the system resting on its Back Panel. All other Panels shall be
viewed with the system resting on its Bottom Panel. Refer to Figure 6-1 for more information.



204 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 6-1 System Panel and Panel Origin Positions

The data bits also assume that if the system is capable of opening up like a laptop that the device may exist
on the base of the laptop system or on the lid. In the case of the latter, the “Lid” bit (described below)
should be set indicating the device connection point is on the lid. If the device is on the lid, the description
describes the device’s connection point location when the system is opened with the lid up. If the device
connection point is not on the lid, then the description describes the device’s connection point location
when the system with the lid closed.

Figure 6-2 Laptop Panel and Panel Origin Positions

Front
Panel

Lid

Lid
Front Panel

Origin

(base)
Front Panel

Origin

(base)
Top Panel

Origin

To render a view of a system Panel, all _PLDs that define the same Panel and Lid values are collected. The
_PLDs are then sorted by the value of their Order field and the view of the panel is rendered by drawing the
shapes of each connection point (in their correct Shape, Color, Horizontal Offset, Vertical Offset, Width,
Height, and Orientation) starting with all Order = 0 _PLDs first. Refer to Figure 6-4 for an example.

The location of a device connection point may change as a result of the system connecting or disconnecting
to a docking station or a port replicator. As such, Notify event of type 0x08 will cause OSPM to re-evaluate
the _PLD object residing under the particular device notified. If a platform is unable to detect the change of
connecting or disconnecting to a docking station or port replicator, a _PLD object should not be used to
describe the device connection points that will change location after such an event.

Arguments:
None

Return Value:
A variable-length Package containing a list of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer entry must
be returned using the bit definitions below.



Device Configuration 205

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Buffer 0 Return Value:

Bit 6:0 – Revision. The current revision is 0x2
Bit 7 – Ignore Color. If this bit is set, the Color field is ignored, as the color is unknown.
Bit 31:8 – Color – 24bit RGB value for the color of the device connection point. (bits 8:15 = red, bits
16:23 = green, bits 24:31 = blue)
Bit 47:32 – Width: Describes, in millimeters, the width (widest point) of the device connection point.
Bit 63:48 – Height: Describes, in millimeters, the height (tallest point) of the device connection point.

Bit 64 – User Visible: Set if the device connection point can be seen by the user without disassembly.
Bit 65 – Dock: Set if the device connection point resides in a docking station or port replicator.
Bit 66 – Lid: Set if this device connection point resides on the lid of laptop system.

Bit 69:67 – Panel: Describes which panel surface of the system’s housing the device connection point
resides on.

0 – Top
1 – Bottom
2 – Left
3 – Right
4 – Front
5 – Back
6 – Unknown (Vertical Position and Horizontal Position will be ignored)

Bit 71:70 – Vertical Position on the panel where the device connection point resides.
0 – Upper
1 – Center
2 – Lower

Bit 73:72 – Horizontal Position on the panel where the device connection point resides.
0 – Left
1 – Center
2 – Right

Bit 77:74 – Shape: Describes the shape of the device connection point. The Width and Height fields
may be used to distort a shape, e.g. A Round shape will look like an Oval shape if the Width and
Height are not equal. And a Vertical Rectangle or Horizontal Rectangle may look like a square if
Width and Height are equal. Refer to Figure 6-3.

0 – Round
1 – Oval
2 – Square
3 – Vertical Rectangle
4 – Horizontal Rectangle
5 – Vertical Trapezoid
6 – Horizontal Trapezoid
7 – Unknown – Shape rendered as a Rectangle with dotted lines
8 – Chamfered
15:9 – Reserved



206 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 6-3 Default Shape Definitions

H
ei

gh
t

H
ei

gh
t

Bit 78 – Group Orientation: if Set, indicates vertical grouping, otherwise horizontal is assumed.
Bit 86:79 – Group Token: Unique numerical value identifying a group.
Bit 94:87 – Group Position: Identifies this device connection point’s position in the group (i.e. 1st, 2nd)
Bit 95 – Bay: Set if describing a device in a bay or if device connection point is a bay.
Bit 96 – Ejectable: Set if the device is ejectable. Indicates ejectability in the absence of _EJx objects.
Bit 97 – OSPM Ejection required: Set if OSPM needs to be involved with ejection process. User-
operated physical hardware ejection is not possible.
Bit 105:98 – Cabinet Number. For single cabinet system, this field is always 0.
Bit 113:106 – Card cage Number. For single card cage system, this field is always 0.
Bit 114 – Reference: if Set, this _PLD defines a “reference” shape that is used to help orient the user
with respect to the other shapes when rendering _PLDs.
Bit 118:115 – Rotation: Rotates the Shape clockwise in 45 degree steps around its origin where:

0 – 0°
1 – 45°
2 – 90°
3 – 135°
4 – 180°
5 – 225°
6 – 270°
7 – 315°

Bit 123:119 – Order: Identifies the drawing order of the connection point described by a _PLD. Order
= 0 connection points are drawn before Order = 1 connection points. Order = 1 before Order = 2, and
so on. Order = 31 connection points are drawn last. Order should always start at 0 and be consecutively
assigned.
Bit 127:124 – Reserved, must contain a value of 0.
Bit 143:128 – Vertical Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
0xFFFFFFFF indicates that this field is not supplied.
Bit 159:144 – Horizontal Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
0xFFFFFFFF indicates that this field is not supplied.



Device Configuration 207

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All additional buffer entries returned, may contain OEM specific data, but must begin in a {GUID, data}
pair. These additional data may provide complimentary physical location information specific to certain
systems or class of machines.

Buffers 1 – N Return Value (Optional):

Buffer 1 Bit 127:0 – GUID 1
Buffer 2 Bit 127:0 – Data 1
Buffer 3 Bit 127:0 – GUID 2
Buffer 4 Bit 127:0 – Data 2
……

Figure 6-4 provides an example of a rendering of the external device connection points that may be
conveyed to the user by _PLD information. Note that three _PLDs (System Back Panel, Power Supply, and
Motherboard (MB) Connector Area) that are associated with the System Bus tree (_SB) object. Their
Reference flag is set indicating that are used to provide the user with visual queues for identifying the
relative locations of the other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and 0, respectively. And the
Reference flag of the System Back Panel, Power Supply, and MB Connector Area connection points are set
to 1. in this example are used to render Figure 6-4:

Table 6-4 _PLD Back Panel Example Settings

Name Ignore
Color

R G B Width Height VOff HOff Shape Nota-
tion

Goup
Position

Rota-
tion

Back
Panel

Yes 0 0 0 2032 4318 0 0 V
Rect

1 0

MB
Conn
area

Yes 0 0 0 445 1556 1588 127 V
Rect

2 0

Power
Supply

Yes 0 0 0 1524 889 3302 127 H
Rect

2 0

USB
Port 1

No 0 0 0 125 52 2223 159 H
Rect

C1 3 90

USB
Port 2

No 0 0 0 125 52 2223 254 H
Rect

C2 3 90

USB
Port 3

No 0 0 0 125 52 2223 350 H
Rect

C3 3 90

USB
Port 4

No 0 0 0 125 52 2223 445 H
Rect

C4 3 90

USB
Port 5

No 0 0 0 125 52 2007 159 H
Rect

C5 3 90

USB
Port 6

No 0 0 0 125 52 2007 254 H
Rect

C6 3 90

Ethernet No 0 0 0 157 171 2007 350 V
Rect

C7 3 90



208 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Name Ignore
Color

R G B Width Height VOff HOff Shape Nota-
tion

Goup
Position

Rota-
tion

Audio 1 No FF FF FF 127 127 1945 151 Round C8 3 90

Audio 2 No 151 247 127 127 127 1945 286 Round C9 3 90

Audio 3 No 0 0 0 127 127 1945 427 Round C10 3 90

SPDIF No 0 0 0 112 126 1756 176 V
Trap

C11 3 90

Audio 4 No 0 FF 0 127 127 1765 288 Round C12 3 90

Audio 5 No 0 0 FF 127 127 1765 429 Round C13 3 90

SATA No 0 0 0 239 88 3091 159 H
Rect

C14 3 90

1394 No 0 0 0 112 159 2890 254 H
Trap

C15 3 0

Coax No 0 0 0 159 159 2842 143 Round C16 3 90

PCI 1 No 0 0 0 1016 127 127 127 H
Rect

1 3 0

PCI 2 No 0 0 0 1016 127 334 127 H
Rect

2 3 0

PCI 3 No 0 0 0 1016 127 540 127 H
Rect

3 3 0

PCI 4 No 0 0 0 1016 127 747 127 H
Rect

4 3 0

PCI 5 No 0 0 0 1016 127 953 127 H
Rect

5 3 0

PCI 6 No 0 0 0 1016 127 1159 127 H
Rect

6 3 0

PCI 7 No 0 0 0 1016 127 1366 127 H
Rect

7 3 0

Note that the origin is in the lower left hand corner of the Back Panel, where positive Horizontal and
Vertical Offset values are to the right and up, respectively.



Device Configuration 209

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 6-4 _PLD Back Panel Rendering Example

6.1.7 _STR (String)
The _STR object evaluates to a Unicode string that describes the device. It may be used by an OS to
provide information to an end user. This information is particularly valuable when no other information is
available.

Arguments:
None

Return Value:
A Buffer containing a Unicode string that describes the device

Example ASL:

Device (XYZ) {
Name (_ADR, 0x00020001)
Name (_STR, Unicode ("ACME super DVD controller"))

}

Then, when all else fails, an OS can use the info included in the _STR object to describe the hardware to
the user.



210 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.8 _SUN (Slot User Number)
_SUN is an object that evaluates to the slot-unique ID number for a slot. _SUN is used by OSPM UI to
identify slots for the user. For example, this can be used for battery slots, PCI slots, PCMCIA slots, or
swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates to an integer that is
the number to be used in the user interface.

Arguments:
None

Return Value:
An Integer containing the slot’s unique ID

The _SUN value is required to be unique among the slots of the same type. It is also recommended that this
number match the slot number printed on the physical slot whenever possible.

6.1.9 _UID (Unique ID)
This object provides OSPM with a logical device ID that does not change across reboots. This object is
optional, but is required when the device has no other way to report a persistent unique device ID. The
_UID must be unique across all devices with either a common _HID or _CID. This is because a device
needs to be uniquely identified to the OSPM, which may match on either a _HID or a _CID to identify the
device. The uniqueness match must be true regardless of whether the OSPM uses the _HID or the _CID.
OSPM typically uses the unique device ID to ensure that the device-specific information, such as network
protocol binding information, is remembered for the device even if its relative location changes. For most
integrated devices, this object contains a unique identifier.

A _UID object evaluates to either a numeric value or a string.

Arguments:
None

Return Value:
An Integer or String containing the Unique ID

6.2 Device Configuration Objects
This section describes objects that provide OSPM with device specific information and allow OSPM to
configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via
ACPI. Device configuration objects provide information about current and possible resource requirements,
the relationship between shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the device. It
may also call _CRS to find the current resource settings for the device. Using this information, the Plug and
Play system determines what resources the device should consume and sets those resources by calling the
device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
a proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.



Device Configuration 211

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource producer)
that claims the shared resource in its _PRS. This allows OSPM to clearly understand the resource
dependencies in the system and move all related devices together if it needs to change resources.
Furthermore, it allows OSPM to allocate resources only to resource producers when devices that consume
that resource appear.

The device configuration objects are listed in Table 6-5.

Table 6-5 Device Configuration Objects

Object Description

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies a device’s current resource settings, or a control method that generates
such an object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the
FADT and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration
of a PCI device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug
slot or initial configuration of a PCI device at system boot. Supersedes _HPP.

_MAT Object that evaluates to a buffer of MADT APIC Structure entries.

_OSC An object OSPM evaluates to convey specific software support / capabilities to the platform
allowing the platform to configure itself appropriately.

_PRS An object that specifies a device’s possible resource settings, or a control method that
generates such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SLI Object that provides updated distance information for a system locality.

_SRS Control method that sets a device’s settings.

6.2.1 _CDM (Clock Domain)
This optional object conveys the processor clock domain to which a processor belongs. A processor clock
domain is a unique identifier representing the hardware clock source providing the input clock for a given
set of processors. This clock source drives software accessible internal counters, such as the Time Stamp
Counter, in each processor. Processor counters in the same clock domain are driven by the same hardware
clock source. In multi-processor platforms that utilize multiple clock domains, such counters may exhibit
drift when compared against processor counters on different clock domains.

The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock domain.
OSPM assumes that two devices in the same clock domain are connected to the same hardware clock.



212 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM via the SRAT or the
_CDM object, OSPM assumes all logical processors to be on a common clock domain. If the platform
defines _CDM object under a logical processor then it must define _CDM objects under all logical
processors whose clock domain information is not provided via the SRAT.

6.2.2_CRS (Current Resource Settings)
This required object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If a device is disabled, then _CRS returns a valid resource template for the device, but the actual
resource assignments in the return byte stream are ignored. If the device is disabled when _CRS is called, it
must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in section 6.4, “Resource
Data Types for ACPI,” a compatible extension of the formats specified in the PNPBIOS specification.9 The
resource data is provided as a series of data structures, with each of the resource data structures having a
unique tag or identifier. The resource descriptor data structures specify the standard PC system resources,
such as memory address ranges, I/O ports, interrupts, and DMA channels.

Arguments:
None

Return Value:
A Buffer containing a resource descriptor byte stream

6.2.3 _DIS (Disable)
This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, OSPM will have already put the device in the D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with the
Disabled bit set.

Arguments:
None

Return Value:
None

6.2.4 _DMA (Direct Memory Access)
This optional object returns a byte stream in the same format as a _CRS object. _DMA is only defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-
side of its interface. (This is analogous to the _CRS object, which describes the resources that the bus
controller decodes on the parent-side of its interface.) Any ranges described in the resources of a _DMA
object can be used by child devices for DMA or bus master transactions.

9 Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp.,
Phoenix Technologies Ltd.



Device Configuration 213

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The _DMA object is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA object
after an _SRS object has been executed because the _DMA ranges resources may change depending on
how the bridge has been configured.

If the _DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a
child device will be decoded either by a device on the bus or by the bus itself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCI bus that cannot access all of physical memory, it has a _DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices on
that bus.

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _SRS method.

Arguments:
None

Return Value:
A Buffer containing a resource descriptor byte stream



214 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_DMA Example ASL:

Device(BUS0)
{

//
// The _DMA method returns a resource template describing the
// addresses that are decoded on the child side of this
// bridge. The contained resource descriptors thus indicate
// the address ranges that bus masters living below this
// bridge can use to send accesses through the bridge toward a
// destination elsewhere in the system (e.g. main memory).
//
// In our case, any bus master addresses need to fall between
// 0 and 0x80000000 and will have 0x200000000 added as they
// cross the bridge. Furthermore, any child-side accesses
// falling into the range claimed in our _CRS will be
// interpreted as a peer-to-peer traffic and will not be
// forwarded upstream by the bridge.
//
// Our upstream address decoder will only claim one range from
// 0x20000000 to 0x5fffffff in the _CRS. Therefore _DMA
// should return two QWORDMemory descriptors, one describing
// the range below and one describing the range above this
// "peer-to-peer" address range.
//

Method(_DMA, ResourceTemplate()
{

QWORDMemory(
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0, // _MIN
0x1fffffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN
,
,
,

)
QWORDMemory(

ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0x60000000, // _MIN
0x7fffffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN
,
,
,

)
})

}



Device Configuration 215

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.5 _FIX (Fixed Register Resource Provider)
This optional object is used to provide a correlation between the fixed-hardware register blocks defined in
the FADT and the devices in the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays a role in the implementation of the fixed-hardware (for example, implements the hardware or decodes
the hardware’s address). _FIX conveys to OSPM whether a given device can be disabled, powered off, or
should be treated specially by conveying its role in the implementation of the ACPI fixed-hardware register
interfaces. This object takes no arguments.

The _CRS object describes a device’s resources. That _CRS object may contain a superset of the resources
in the FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,
in a machine that performs translation of resources within I/O bridges, the processor-relative resources in
the FADT may not be the same as the bus-relative resources in the _CRS.

Arguments:
None

Return Value:
A variable-length Package containing a list of Integers, each containing a PNP ID

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:

PNP0C20 - SMI_CMD
PNP0C21 - PM1a_EVT_BLK / X_ PM1a_EVT_BLK
PNP0C22 - PM1b_EVT_BLK / X_PM1b_EVT_BLK
PNP0C23 - PM1a_CNT_BLK / X_PM1a_CNT_BLK
PNP0C24 - PM1b_CNT_BLK / X_ PM1b_CNT_BLK
PNP0C25 - PM2_CNT_BLK / X_ PM2_CNT_BLK
PNP0C26 - PM_TMR_BLK / X_ PM_TMR_BLK
PNP0C27 - GPE0_BLK / X_GPE0_BLK
PNP0C28 - GPE1_BLK / X_ GPE1_BLK
PNP0B00 – FIXED_RTC
PNP0B01 – FIXED_RTC
PNP0B02 – FIXED_RTC

Example ASL for _FIX usage:

Scope(\_SB) {
Device(PCI0) { // Root PCI Bus

Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
Name(_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root device

// Return current resources for root bridge 0
}
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information
})
Name(_FIX, Package(1) {

EISAID("PNP0C25")} // PM2 control ID
)


